1
|
Lee H, Han D, Rhee SJ, Lee J, Kim J, Lee Y, Kim EY, Park DY, Roh S, Baik M, Jung HY, Lee TY, Kim M, Kim H, Kim SH, Kwon JS, Ahn YM, Ha K. Identifying clinical and proteomic markers for early diagnosis and prognosis prediction of major psychiatric disorders. J Affect Disord 2025; 369:886-896. [PMID: 39426510 DOI: 10.1016/j.jad.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND To clarify if blood proteins can predict disease progression among individuals at clinical high-risk of severe mental illness (CHR-SMI), we developed a statistical model incorporating clinical and blood protein markers to distinguish the transition group (who developed severe mental illness) (CHR-SMI-T) and from non-transition group (CHR-SMI-NT) at baseline. METHODS Ninety individuals (74 at CHR-SMI: 16 patients) were monitored for ≤4 years and were the focus of predictive models. Three predictive models (1 [100 clinical variables], 2 [158 peptides], and 3 [100 clinical variables +158 peptides]) were evaluated using area under the receiver operating characteristic (AUROC) values. Clinical and protein feature patterns were evaluated by linear mixed-effect analysis within the model at 12 and 24 months among patients who did (CHR-SMI-T) and did not transition (CHR-SMI-NT) and the entire group. RESULT Eighteen CHR-SMI individuals with major psychiatric disorders (first episode psychosis: 2; bipolar II disorder: 13; major depressive disorder; 3) developed disorders over an average of 17.7 months. The combined model showed the highest discriminatory performance (AUROC = 0.73). Cytosolic malate dehydrogenase and transgelin-2 levels were lower in the CHR-SMI-T than the CHR-SMI-NT group. Complement component C9, inter-alpha-trypsin inhibitor heavy chain H4, von Willebrand factor, and C-reactive protein were lower in the patient than the CHR-SMI-NT group. These differences were non-significant after FDR adjustment. LIMITATIONS Small sample, no control for medication use. CONCLUSION This exploratory study identified clinical and proteomic markers that might predict severe mental illness early onset, which could aid in early detection and intervention. Future studies with larger samples and controlled variables are needed to validate these findings.
Collapse
Affiliation(s)
- Hyunju Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang Jin Rhee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junhee Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Jayoun Kim
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yunna Lee
- Department of Neuropsychiatry, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Eun Young Kim
- Mental Health Center, Seoul National University Health Care Center, Seoul, Republic of Korea; Department of Human Systems Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Yeon Park
- Department of Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Sungwon Roh
- Department of Neuropsychiatry, Hanyang University Hospital, Seoul, Republic of Korea
| | - Myungjae Baik
- Department of Psychiatry, Kyung Hee University Medical Center, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Hee Yeon Jung
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Psychiatry, Kyungpook National University Hospital, Daegu, Republic of Korea; Department of Psychiatry, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeyoon Kim
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Se Hyun Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Yong Min Ahn
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| | - Kyooseob Ha
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; Department of Psychiatry, Lions Gate Hospital - Vancouver Coastal Health, British Columbia, Canada.
| |
Collapse
|
2
|
Halabian A, Radahmadi M. The neurobiological mechanisms of photoperiod impact on brain functions: a comprehensive review. Rev Neurosci 2024; 35:933-958. [PMID: 39520288 DOI: 10.1515/revneuro-2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024]
Abstract
Variations in day length, or photoperiodism, whether natural or artificial light, significantly impact biological, physiological, and behavioral processes within the brain. Both natural and artificial light sources are environmental factors that significantly influence brain functions and mental well-being. Photoperiodism is a phenomenon, occurring either over a 24 h cycle or seasonally and denotes all biological responses of humans and animals to these fluctuations in day and night length. Conversely, artificial light occurrence refers to the presence of light during nighttime hours and/or its absence during the daytime (unnaturally long and short days, respectively). Light at night, which is a form of light pollution, is prevalent in many societies, especially common in certain emergency occupations. Moreover, individuals with certain mental disorders, such as depression, often exhibit a preference for darkness over daytime light. Nevertheless, disturbances in light patterns can have negative consequences, impacting brain performance through similar mechanisms albeit with varying degrees of severity. Furthermore, changes in day length lead to alterations in the activity of receptors, proteins, ion channels, and molecular signaling pathways, all of which can impact brain health. This review aims to summarize the mechanisms by which day length influences brain functions through neural circuits, hormonal systems, neurochemical processes, cellular activity, and even molecular signaling pathways.
Collapse
Affiliation(s)
- Alireza Halabian
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western, Ontario, N6A 3K7 London, ON, Canada
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, 48455 Isfahan University of Medical Sciences , 81746-73461 Isfahan, Iran
| |
Collapse
|
3
|
Gao Q, Tang Z, Wang H, Yamazaki M, Jiang J, Fu YH, Ptacek LJ, Zhang L. Human PERIOD3 variants lead to winter depression-like behaviours via glucocorticoid signalling. Nat Metab 2024; 6:2267-2280. [PMID: 39528818 DOI: 10.1038/s42255-024-01163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Our brain adapts to seasonal changes. Mis-adaptations may lead to seasonal patterns in several psychiatric disorders, but we know little regarding the underlying mechanisms. Our previous work identified two variants in the human circadian clock gene PERIOD3 (PER3), that is, P415A and H417R, which are associated with winter depression, but whether and how these variants lead to the disorder remain to be characterized. Here we find that male mice carrying human P415A and H417R display winter depression-like behaviours that are caused by the actions of P415A and H417R in the adrenal gland. Systemic corticosterone level is downregulated in adaptation to shortening of day length, while P415A and H417R eliminate this downregulation by increasing corticosterone synthesis. Enhanced glucocorticoid signalling represses the transcription of Tph2, which encodes the rate-limiting enzyme of serotonin synthesis, leading to increased depression-like behaviours. Taken together, our findings unveil a mechanism according to which human variants contribute to seasonal mood traits.
Collapse
Affiliation(s)
- Qian Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiwei Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haili Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maya Yamazaki
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Jia Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Hui Fu
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Louis J Ptacek
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China.
| |
Collapse
|
4
|
Zhang R, Schwandt ML, Vines L, Volkow ND. Changes in Rest-Activity Rhythms in Adolescents as They Age: Associations With Brain and Behavioral Changes in the ABCD Study. J Am Acad Child Adolesc Psychiatry 2024:S0890-8567(24)01982-8. [PMID: 39537024 DOI: 10.1016/j.jaac.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/10/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Adolescents with disrupted rest-activity rhythms (RARs), including shorter sleep duration, later sleep timing, and low physical activity levels, are at greater risk for mental health and behavioral problems. It remains unclear whether the same associations can be observed for within-subject changes in RARs. METHOD This longitudinal investigation on RARs used Fitbit data from the Adolescent Brain Cognitive Development (ABCD) Study at the 2-year follow-up (FL2) (ages 10-13 years) and 4-year follow-up (FL4) (ages 13-16 years). Good-quality Fitbit data were available for 963 youths at both time points. Changes in RARs from FL2 to FL4, their environmental and demographic contributors, and brain and behavioral correlates were examined. RESULTS From FL2 to FL4, adolescents showed decreases in sleep duration and physical activity as well as delayed sleep timing (Cohen d = 0.44-0.75). Contributions of environmental and demographic factors to RAR changes were greatest for sleep timing (explained 10% variance) and least for sleep duration (explained 1% variance). Delays in sleep timing had stronger correlations with behavioral problems including impulsivity and poor academic performance than reductions in sleep duration or physical activity. Additionally, the various brain measures differed in their sensitivity to RAR changes. Reductions in sleep duration were associated with decreased functional connectivity between subcortical regions and sensorimotor and cingulo-opercular networks and with enhanced functional connectivity between sensorimotor, visual, and auditory networks. Delays in sleep timing were mainly associated with gray matter changes in subcortical regions. CONCLUSION The current findings corroborate the importance of sleep and physical activity in brain neurodevelopment and behavioral problems in adolescents. RARs might serve as biomarkers for monitoring behavioral problems and be potential therapeutic targets for mental disorders in adolescents.
Collapse
Affiliation(s)
- Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland.
| | | | - Leah Vines
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland; National Institute on Drug Abuse, Bethesda, Maryland
| |
Collapse
|
5
|
Polemiti E, Hese S, Schepanski K, Yuan J, Schumann G. How does the macroenvironment influence brain and behaviour-a review of current status and future perspectives. Mol Psychiatry 2024; 29:3268-3286. [PMID: 38658771 PMCID: PMC11449798 DOI: 10.1038/s41380-024-02557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
The environment influences brain and mental health, both detrimentally and beneficially. Existing research has emphasised the individual psychosocial 'microenvironment'. Less attention has been paid to 'macroenvironmental' challenges, including climate change, pollution, urbanicity, and socioeconomic disparity. Notably, the implications of climate and pollution on brain and mental health have only recently gained prominence. With the advent of large-scale big-data cohorts and an increasingly dense mapping of macroenvironmental parameters, we are now in a position to characterise the relation between macroenvironment, brain, and behaviour across different geographic and cultural locations globally. This review synthesises findings from recent epidemiological and neuroimaging studies, aiming to provide a comprehensive overview of the existing evidence between the macroenvironment and the structure and functions of the brain, with a particular emphasis on its implications for mental illness. We discuss putative underlying mechanisms and address the most common exposures of the macroenvironment. Finally, we identify critical areas for future research to enhance our understanding of the aetiology of mental illness and to inform effective interventions for healthier environments and mental health promotion.
Collapse
Affiliation(s)
- Elli Polemiti
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Sören Hese
- Institute of Geography, Friedrich Schiller University Jena, Jena, Germany
| | | | - Jiacan Yuan
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology & IRDR-ICOE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Benca RM. REM sleep and mental disorders on the 70th anniversary of the discovery of REM sleep. J Sleep Res 2024:e14364. [PMID: 39343619 DOI: 10.1111/jsr.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
The discovery of rapid eye movement sleep in 1953 led to numerous studies investigating the relationship between rapid eye movement sleep abnormalities and psychiatric disorders. The most salient findings were the association of rapid eye movement sleep alterations-reduced rapid eye movement sleep latency, increased rapid eye movement sleep volume of total sleep, and increased rapid eye movement density-with major depression. This paper briefly reviews the history of rapid eye movement sleep research in psychiatry with a focus on the work related to major depressive disorder and some of the various theories that have been proposed to explain the associated rapid eye movement sleep abnormalities. Given the increasing evidence that rapid eye movement sleep is important for emotional processing, memory and cognition, a better understanding of the underlying mechanisms for the relationship between rapid eye movement sleep and mood disorders could lead to improved treatments for these common and disabling illnesses.
Collapse
Affiliation(s)
- Ruth M Benca
- Department of Psychiatry and Behavioral Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
7
|
Kim JW, Kim M, Seo MS, Shin JY. Risk of neuropsychiatric adverse events associated with montelukast use in children and adolescents: a population-based case-crossover study. BMJ Paediatr Open 2024; 8:e002483. [PMID: 39251365 DOI: 10.1136/bmjpo-2023-002483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
PURPOSE Montelukast is used extensively in children and adolescents for allergic rhinitis and asthma. However, concerns have been raised regarding the increased risk of neuropsychiatric adverse events (NPAEs) associated with montelukast use. Therefore, our case-crossover study was conducted to observe whether there is an increased risk of NPAEs associated with montelukast use in children and adolescents. MATERIALS AND METHODS A population-based case-crossover study using the customised Health Insurance Review and Assessment (HIRA) dataset was conducted. Paediatric patients aged between 0 and 19 years diagnosed with allergic rhinitis and/or asthma with a history of at least one montelukast prescription between 1 January 2018 and 31 December 2021 were included. Exposure to montelukast was assessed during 3-, 7-, 14-, 28- and 56-day hazard periods prior to each patient's NPAE. Stratified analyses according to age group, gender and season for the risk of NPAEs associated with montelukast use in the previous 7 days and 14 days were performed, respectively. Conditional logistic regression analysis was used to calculate adjusted ORs (aORs) with their corresponding 95% CIs, adjusting for concomitant medications. RESULTS A total of 161 386 paediatric patients was identified. An increased risk of NPAEs associated with montelukast was found in all time window periods, including 3-day (aOR 1.28, 95% CI 1.24 to 1.32), 7-day (aOR 1.29, 95% CI 1.26 to 1.33), 14-day (aOR 1.34, 95% CI 1.31 to 1.37), 28-day (aOR 1.38, 95% CI 1.36 to 1.41) and 56-day (aOR 1.21, 95% CI 1.19 to 1.22) preceding hazard periods compared with use in the four control periods. CONCLUSION Children and adolescents with allergic rhinitis and/or asthma should be prescribed montelukast with caution considering clinical benefits.
Collapse
Affiliation(s)
- Jae Won Kim
- Department of Clinical and Social Pharmacy, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Mideum Kim
- Department of Paediatrics, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Min Sook Seo
- Department of Clinical and Social Pharmacy, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ju-Young Shin
- Department of Clinical and Social Pharmacy, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
8
|
Sun L, Malén T, Tuisku J, Kaasinen V, Hietala JA, Rinne J, Nuutila P, Nummenmaa L. Seasonal variation in D2/3 dopamine receptor availability in the human brain. Eur J Nucl Med Mol Imaging 2024; 51:3284-3291. [PMID: 38730083 PMCID: PMC11369044 DOI: 10.1007/s00259-024-06715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/14/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE Brain functional and physiological plasticity is essential to combat dynamic environmental challenges. The rhythmic dopamine signaling pathway, which regulates emotion, reward and learning, shows seasonal patterns with higher capacity of dopamine synthesis and lower number of dopamine transporters during dark seasons. However, seasonal variation of the dopamine receptor signaling remains to be characterized. METHODS Based on a historical database of healthy human brain [11C]raclopride PET scans (n = 291, 224 males and 67 females), we investigated the seasonal patterns of D2/3 dopamine receptor signaling. Daylength at the time of scanning was used as a predictor for brain regional non-displaceable binding of the radiotracer, while controlling for age and sex. RESULTS Daylength was negatively correlated with availability of D2/3 dopamine receptors in the striatum. The largest effect was found in the left caudate, and based on the primary sample, every 4.26 h (i.e., one standard deviation) increase of daylength was associated with a mean 2.8% drop (95% CI -0.042 to -0.014) of the receptor availability. CONCLUSIONS Seasonally varying D2/3 receptor signaling may also underlie the seasonality of mood, feeding, and motivational processes. Our finding suggests that in future studies of brain dopamine signaling, especially in high-latitude regions, the effect of seasonality should be considered.
Collapse
Affiliation(s)
- Lihua Sun
- Huashan Institute of Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Turku PET Centre, University of Turku, Turku, Finland.
- Turku PET Centre, Turku University Hospital, Turku, Finland.
| | - Tuulia Malén
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Turku University Hospital, Neurocenter, Turku, Finland
| | - Jarmo A Hietala
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Turku, Turku University Hospital, Turku, Finland
| | - Juha Rinne
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
9
|
Barbosa MR, Costa EFL, Coimbra DG, Pinto VTBC, Gitaí DLG, Duzzioni M, Crespo MT, Golombek DA, Chiesa JJ, Agostino PV, de Andrade TG. Transitional photoperiod induces a mania-like behavior in male mice. Eur J Neurosci 2024; 60:5141-5155. [PMID: 39119736 DOI: 10.1111/ejn.16498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
This study aimed to investigate the behavioral responses and circadian rhythms of mice to both rapid and gradual increases in photoperiod, mimicking the transition from winter to summer, which is associated with a heightened prevalence of hospitalizations for mania and suicidal behavior. Behavioral tests were performed in C57BL/6 male mice exposed to a transitional photoperiod, from short to long durations. To determine if circadian rhythms are affected, we measured spontaneous locomotor activity and body temperature. Mice exhibited heightened exploratory and risk-taking behaviors compared with equatorial and static long (16:8 h of light-dark cycle for several days) groups. These behaviors were prevented by lithium. Spontaneous locomotor activity and body temperature rhythms persisted and were effectively synchronized; however, the relative amplitude of activity and interdaily stability were diminished. Additionally, the animals displayed increased activity during the light phase. Photoperiodic transition modulates behavior and circadian rhythms, mirroring certain features observed in bipolar disorder patients. This study introduces an animal model for investigating mania-like behavior induced by photoperiodic changes, offering potential insights for suicide prevention strategies and the management of mood disorders.
Collapse
Affiliation(s)
- Mayara Rodrigues Barbosa
- Circadian Medicine Center, Faculty of Medicine, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Daniel Gomes Coimbra
- Circadian Medicine Center, Faculty of Medicine, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Daniel Leite Góes Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Alagoas, Brazil
| | - Marcelo Duzzioni
- Laboratory of Pharmacology Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Brazil
| | - Manuel Tomás Crespo
- Department of Science and Technology, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| | - Diego Andrés Golombek
- Department of Science and Technology, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
- Laboratorio Interdisciplinario del Tiempo (LITERA), Universidad de San Andrés, Victoria, Argentina
| | - Juan José Chiesa
- Department of Science and Technology, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| | | | - Tiago Gomes de Andrade
- Circadian Medicine Center, Faculty of Medicine, Federal University of Alagoas, Maceió, Alagoas, Brazil
| |
Collapse
|
10
|
Dell’Angelica D, Singh K, Colwell CS, Ghiani CA. Circadian Interventions in Preclinical Models of Huntington's Disease: A Narrative Review. Biomedicines 2024; 12:1777. [PMID: 39200241 PMCID: PMC11351982 DOI: 10.3390/biomedicines12081777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder caused by an autosomal-dominant mutation in the huntingtin gene, which manifests with a triad of motor, cognitive and psychiatric declines. Individuals with HD often present with disturbed sleep/wake cycles, but it is still debated whether altered circadian rhythms are intrinsic to its aetiopathology or a consequence. Conversely, it is well established that sleep/wake disturbances, perhaps acting in concert with other pathophysiological mechanisms, worsen the impact of the disease on cognitive and motor functions and are a burden to the patients and their caretakers. Currently, there is no cure to stop the progression of HD, however, preclinical research is providing cementing evidence that restoring the fluctuation of the circadian rhythms can assist in delaying the onset and slowing progression of HD. Here we highlight the application of circadian-based interventions in preclinical models and provide insights into their potential translation in clinical practice. Interventions aimed at improving sleep/wake cycles' synchronization have shown to improve motor and cognitive deficits in HD models. Therefore, a strong support for their suitability to ameliorate HD symptoms in humans emerges from the literature, albeit with gaps in our knowledge on the underlying mechanisms and possible risks associated with their implementation.
Collapse
Affiliation(s)
- Derek Dell’Angelica
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Karan Singh
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Cristina A. Ghiani
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| |
Collapse
|
11
|
Maddaloni G, Chang YJ, Senft RA, Dymecki SM. Adaptation to photoperiod via dynamic neurotransmitter segregation. Nature 2024; 632:147-156. [PMID: 39020173 DOI: 10.1038/s41586-024-07692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/07/2024] [Indexed: 07/19/2024]
Abstract
Changes in the amount of daylight (photoperiod) alter physiology and behaviour1,2. Adaptive responses to seasonal photoperiods are vital to all organisms-dysregulation associates with disease, including affective disorders3 and metabolic syndromes4. The circadian rhythm circuitry is implicated in such responses5,6, yet little is known about the precise cellular substrates that underlie phase synchronization to photoperiod change. Here we identify a brain circuit and system of axon branch-specific and reversible neurotransmitter deployment that are critical for behavioural and sleep adaptation to photoperiod. A type of neuron called mrEn1-Pet17 in the mouse brainstem median raphe nucleus segregates serotonin from VGLUT3 (also known as SLC17A8, a proxy for glutamate) to different axonal branches that innervate specific brain regions involved in circadian rhythm and sleep-wake timing8,9. This branch-specific neurotransmitter deployment did not distinguish between daylight and dark phase; however, it reorganized with change in photoperiod. Axonal boutons, but not cell soma, changed neurochemical phenotype upon a shift away from equinox light/dark conditions, and these changes were reversed upon return to equinox conditions. When we genetically disabled Vglut3 in mrEn1-Pet1 neurons, sleep-wake periods, voluntary activity and clock gene expression did not synchronize to the new photoperiod or were delayed. Combining intersectional rabies virus tracing and projection-specific neuronal silencing, we delineated a preoptic area-to-mrEn1Pet1 connection that was responsible for decoding the photoperiodic inputs, driving the neurotransmitter reorganization and promoting behavioural synchronization. Our results reveal a brain circuit and periodic, branch-specific neurotransmitter deployment that regulates organismal adaptation to photoperiod change.
Collapse
Affiliation(s)
- G Maddaloni
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Y J Chang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - R A Senft
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - S M Dymecki
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Meena PS, Sharma A, Maurya A, Bansal V. Seasonal variations in psychiatry outpatient service utilization in a tertiary health care center in subtropical arid regions of northwestern India. Indian J Psychiatry 2024; 66:736-743. [PMID: 39398511 PMCID: PMC11469565 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_141_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 10/15/2024] Open
Abstract
Background Research on climatic parameters contributing to psychiatric disorder seasonality is limited, particularly in subtropical, arid climates like Rajasthan, necessitating investigation into seasonal variations in psychiatric disorder incidence in the region. This study investigates seasonal variations in psychiatric disorder prevalence over 2 years at a Rajasthan tertiary healthcare center, aiming to uncover links with climatic factors. Aims To investigate seasonal variations in the utilization of outpatient psychiatry services and elucidate potential determinants contributing to these temporal variations. Settings and Design This is a hospital-based study. A retrospective chart review of all new patients who utilized psychiatry outpatient services from July 2021 to July 2023 was conducted. Methods and Material Data were gathered from psychiatric outpatient records of adults (July 2021 to July 2023), diagnosed using ICD-10. Seasons were categorized: winter (November-January), spring (February-April), summer (May-July), and rainy (August-October). Meteorological data, temperature, and day length were obtained. Statistical analyses, including Pearson correlation and Chi-square fitness, assessed seasonal associations with psychiatric disorders. Results A total of 29,164 patient records were observed. Depression correlated with temperature and photoperiod. Mania peaked in August, linked to day length. Schizophrenia showed seasonal variation without environmental correlation. Anxiety peaked in March with no statistical significance. Obsessive compulsive disorder cases spiked in June, moderately correlated with temperature and photoperiod. Alcohol-related disorders peaked in December, while opioid dependence remained steady. Cannabis-induced psychosis peaked in summer, strongly correlated with temperature and day length. Headaches surged in August, positively correlated with temperature and day length. Conclusions This study reveals complex relationships between seasonality, environmental factors, and psychiatric disorders, emphasizing their importance in mental health research and practice.
Collapse
Affiliation(s)
- Parth S. Meena
- Department of Psychiatry, Jawahar Lal Nehru Medical College, Ajmer, Rajasthan, India
| | - Anubhuti Sharma
- Department of Psychiatry, Mahatma Gandhi Medical College, Jaipur, Rajasthan, India
| | - Ayush Maurya
- Department of Psychiatry, Jawahar Lal Nehru Medical College, Ajmer, Rajasthan, India
| | - Varun Bansal
- Department of Psychiatry, Jawahar Lal Nehru Medical College, Ajmer, Rajasthan, India
| |
Collapse
|
13
|
Tomescu MI, Papasteri C, Sofonea A, Berceanu AI, Carcea I. Personality Moderates Intra-Individual Variability in EEG Microstates and Spontaneous Thoughts. Brain Topogr 2024; 37:524-535. [PMID: 38038786 PMCID: PMC11199214 DOI: 10.1007/s10548-023-01019-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Variability in brain activity that persists after accounting for overt behavioral and physiological states is often considered noise and controlled as a covariate in research. However, studying intra-individual variability in brain function can provide valuable insights into the dynamic nature of the brain. To explore this, we conducted a study on 43 participants analyzing the EEG microstate dynamics and self-reported spontaneous mental activity during five-minute resting-state recordings on two separate days with a twenty days average delay between recordings. Our results showed that the associations between EEG microstates and spontaneous cognition significantly changed from one day to another. Moreover, microstate changes were associated with changes in spontaneous cognition. Specifically, inter-day changes in Verbal thoughts about Others and future Planning were positively related to bottom-up sensory network-related microstate changes and negatively associated with top-down, attention, and salience network-related microstates. In addition, we find that personality traits are related to inter-day changes in microstates and spontaneous thoughts. Specifically, extraversion, neuroticism, agreeableness, and openness to experience moderated the relationship between inter-day changes in EEG microstates and spontaneous thoughts. Our study provides valuable information on the dynamic changes in the EEG microstate-spontaneous cognition organization, which could be essential for developing interventions and treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Miralena I Tomescu
- Department of Psychology, Faculty of Educational Sciences, University "Stefan cel Mare" of Suceava, Suceava, Romania.
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania.
- Department of Cognitive Sciences, Faculty of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania.
| | - Claudiu Papasteri
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
- Department of Cognitive Sciences, Faculty of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania
| | - Alexandra Sofonea
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
| | - Alexandru I Berceanu
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
| | - Ioana Carcea
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers Brain Health Institute, New Jersey, NJ, USA
| |
Collapse
|
14
|
Moyses-Oliveira M, Zamariolli M, Tempaku PF, Fernandes Galduroz JC, Andersen ML, Tufik S. Shared genetic mechanisms underlying association between sleep disturbances and depressive symptoms. Sleep Med 2024; 119:44-52. [PMID: 38640740 DOI: 10.1016/j.sleep.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/28/2024] [Accepted: 03/16/2024] [Indexed: 04/21/2024]
Abstract
OBJECTIVES Polygenic scores (PGS) for sleep disturbances and depressive symptoms in an epidemiological cohort were contrasted. The overlap between genes assigned to variants that compose the PGS predictions was tested to explore the shared genetic bases of sleep problems and depressive symptoms. METHODS PGS analysis was performed on the São Paulo Epidemiologic Sleep Study (EPISONO, N = 1042), an adult epidemiological sample. A genome wide association study (GWAS) for depression grounded the PGS calculations for Beck Depression Index (BDI), while insomnia GWAS based the PGS for Insomnia Severity Index (ISI) and Pittsburg Sleep Quality Index (PSQI). Pearson's correlation was applied to contrast PGS and clinical scores. Fisher's Exact and Benjamin-Hochberg tests were used to verify the overlaps between PGS-associated genes and the pathways enriched among their intersections. RESULTS All PGS models were significant when individuals were divided as cases or controls according to BDI (R2 = 1.2%, p = 0.00026), PSQI (R2 = 3.3%, p = 0.007) and ISI (R2 = 3.4%, p = 0.021) scales. When clinical scales were used as continuous variables, the PGS models for BDI (R2 = 1.5%, p = 0.0004) and PSQI scores (R2 = 3.3%, p = 0.0057) reached statistical significance. PSQI and BDI scores were correlated, and the same observation was applied to their PGS. Genes assigned to variants that compose the best-fit PGS predictions for sleep quality and depressive symptoms were significantly overlapped. Pathways enriched among the intersect genes are related to synapse function. CONCLUSIONS The genetic bases of sleep quality and depressive symptoms are correlated; their implicated genes are significantly overlapped and converge on neural pathways. This data suggests that sleep complaints accompanying depressive symptoms are not secondary issues, but part of the core mental illness.
Collapse
Affiliation(s)
| | - Malu Zamariolli
- Sleep Institute, Associacao Fundo de Incentivo a Pesquisa, Sao Paulo, Brazil
| | - Priscila F Tempaku
- Sleep Institute, Associacao Fundo de Incentivo a Pesquisa, Sao Paulo, Brazil
| | | | - Monica L Andersen
- Sleep Institute, Associacao Fundo de Incentivo a Pesquisa, Sao Paulo, Brazil; Departamento de Psicobiologia, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Sergio Tufik
- Sleep Institute, Associacao Fundo de Incentivo a Pesquisa, Sao Paulo, Brazil; Departamento de Psicobiologia, Universidade Federal de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
15
|
Zhang R, Tomasi D, Shokri-Kojori E, Manza P, Demiral SB, Wang GJ, Volkow ND. Seasonality in regional brain glucose metabolism. Psychol Med 2024; 54:2264-2272. [PMID: 38634486 DOI: 10.1017/s0033291724000436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
BACKGROUND Daylength and the rates of changes in daylength have been associated with seasonal fluctuations in psychiatric symptoms and in cognition and mood in healthy adults. However, variations in human brain glucose metabolism in concordance with seasonal changes remain under explored. METHODS In this cross-sectional study, we examined seasonal effects on brain glucose metabolism, which we measured using 18F-fluorodeoxyglucose-PET in 97 healthy participants. To maximize the sensitivity of regional effects, we computed relative metabolic measures by normalizing the regional measures to white matter metabolism. Additionally, we explored the role of rest-activity rhythms/sleep-wake activity measured with actigraphy in the seasonal variations of regional brain metabolic activity. RESULTS We found that seasonal variations of cerebral glucose metabolism differed across brain regions. Glucose metabolism in prefrontal regions increased with longer daylength and with greater day-to-day increases in daylength. The cuneus and olfactory bulb had the maximum and minimum metabolic values around the summer and winter solstice respectively (positively associated with daylength), whereas the temporal lobe, brainstem, and postcentral cortex showed maximum and minimum metabolic values around the spring and autumn equinoxes, respectively (positively associated with faster daylength gain). Longer daylength was associated with greater amplitude and robustness of diurnal activity rhythms suggesting circadian involvement. CONCLUSIONS The current findings advance our knowledge of seasonal patterns in a key indicator of brain function relevant for mood and cognition. These data could inform treatment interventions for psychiatric symptoms that peak at specific times of the year.
Collapse
Affiliation(s)
- Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sukru Baris Demiral
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Maddaloni G, Barsotti N, Migliarini S, Giordano M, Nazzi S, Picchi M, Errico F, Usiello A, Pasqualetti M. Impact of Serotonin Deficiency on Circadian Dopaminergic Rhythms. Int J Mol Sci 2024; 25:6475. [PMID: 38928178 PMCID: PMC11203511 DOI: 10.3390/ijms25126475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Physiology and behavior are structured temporally to anticipate daily cycles of light and dark, ensuring fitness and survival. Neuromodulatory systems in the brain-including those involving serotonin and dopamine-exhibit daily oscillations in neural activity and help shape circadian rhythms. Disrupted neuromodulation can cause circadian abnormalities that are thought to underlie several neuropsychiatric disorders, including bipolar mania and schizophrenia, for which a mechanistic understanding is still lacking. Here, we show that genetically depleting serotonin in Tph2 knockout mice promotes manic-like behaviors and disrupts daily oscillations of the dopamine biosynthetic enzyme tyrosine hydroxylase (TH) in midbrain dopaminergic nuclei. Specifically, while TH mRNA and protein levels in the Substantia Nigra (SN) and Ventral Tegmental Area (VTA) of wild-type mice doubled between the light and dark phase, TH levels were high throughout the day in Tph2 knockout mice, suggesting a hyperdopaminergic state. Analysis of TH expression in striatal terminal fields also showed blunted rhythms. Additionally, we found low abundance and blunted rhythmicity of the neuropeptide cholecystokinin (Cck) in the VTA of knockout mice, a neuropeptide whose downregulation has been implicated in manic-like states in both rodents and humans. Altogether, our results point to a previously unappreciated serotonergic control of circadian dopamine signaling and propose serotonergic dysfunction as an upstream mechanism underlying dopaminergic deregulation and ultimately maladaptive behaviors.
Collapse
Affiliation(s)
- Giacomo Maddaloni
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy (M.P.)
- Harvard Medical School, Department of Genetics, Harvard University, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Noemi Barsotti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy (M.P.)
- Centro per l’Integrazione della Strumentazione Scientifica dell’Università di Pisa (CISUP), 56126 Pisa, Italy
| | - Sara Migliarini
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy (M.P.)
| | - Martina Giordano
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy (M.P.)
| | - Serena Nazzi
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy (M.P.)
| | - Marta Picchi
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy (M.P.)
| | - Francesco Errico
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy
| | - Alessandro Usiello
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy (M.P.)
- Centro per l’Integrazione della Strumentazione Scientifica dell’Università di Pisa (CISUP), 56126 Pisa, Italy
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| |
Collapse
|
17
|
López-Otín C, Kroemer G. The missing hallmark of health: psychosocial adaptation. Cell Stress 2024; 8:21-50. [PMID: 38476764 PMCID: PMC10928495 DOI: 10.15698/cst2024.03.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
The eight biological hallmarks of health that we initially postulated (Cell. 2021 Jan 7;184(1):33-63) include features of spatial compartmentalization (integrity of barriers, containment of local perturbations), maintenance of homeostasis over time (recycling & turnover, integration of circuitries, rhythmic oscillations) and an array of adequate responses to stress (homeostatic resilience, hormetic regulation, repair & regeneration). These hallmarks affect all eight somatic strata of the human body (molecules, organelles, cells, supracellular units, organs, organ systems, systemic circuitries and meta-organism). Here we postulate that mental and socioeconomic factors must be added to this 8×8 matrix as an additional hallmark of health ("psychosocial adaptation") and as an additional stratum ("psychosocial interactions"), hence building a 9×9 matrix. Potentially, perturbation of each of the somatic hallmarks and strata affects psychosocial factors and vice versa. Finally, we discuss the (patho)physiological bases of these interactions and their implications for mental health improvement.
Collapse
Affiliation(s)
- Carlos López-Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
18
|
Mastellari T, Saint-Dizier C, Fovet T, Geoffroy PA, Rogers J, Lamer A, Amad A. Exploring seasonality in catatonia diagnosis: Evidence from a large-scale population study. Psychiatry Res 2024; 331:115652. [PMID: 38071881 DOI: 10.1016/j.psychres.2023.115652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/12/2023] [Accepted: 11/29/2023] [Indexed: 01/02/2024]
Abstract
Catatonia is a severe psychomotor syndrome mainly associated with psychiatric disorders, such as mood disorders and schizophrenia. Seasonal patterns have been described for these psychiatric disorders, and a previous study conducted in South London showed for the first time a seasonal pattern in the onset of catatonia. In this study, we aim to extend those findings to a larger national sample of patients admitted to French metropolitan hospitals, between 2015 and 2022, and to perform subgroup analyses by the main associated psychiatric disorder. A total of 6225 patients diagnosed with catatonia were included. A seasonal pattern for catatonia diagnosis was described, using cosinor models. Two peaks of diagnoses for catatonic cases were described in March and around September-October. Depending on the associated psychiatric disorder, the seasonality of catatonia diagnosis differed. In patients suffering with mood disorders, peaks of catatonia diagnosis were found in March and July. For patients suffering with schizophrenia, no seasonal pattern was found.
Collapse
Affiliation(s)
- Tomas Mastellari
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Chloé Saint-Dizier
- Fédération Régionale de Recherche en Santé Mentale et Psychiatrie, Hauts-de-France, France; Univ. Lille, Faculté Ingénierie et Management de la Santé, Lille F-59000, France
| | - Thomas Fovet
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Pierre-Alexis Geoffroy
- Département de Psychiatrie et d'Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, F-75018 Paris, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, F-75019 Paris, France; GHU Paris - Psychiatry & Neurosciences, 1 rue Cabanis, 75014 Paris, France
| | - Jonathan Rogers
- Division of Psychiatry, University College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | - Antoine Lamer
- Fédération Régionale de Recherche en Santé Mentale et Psychiatrie, Hauts-de-France, France; Univ. Lille, Faculté Ingénierie et Management de la Santé, Lille F-59000, France; Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille F-59000, France
| | - Ali Amad
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| |
Collapse
|
19
|
Yao Y, Green IK, Taub AB, Tazebay R, LeSauter J, Silver R. Vasculature of the Suprachiasmatic Nucleus: Pathways for Diffusible Output Signals. J Biol Rhythms 2023; 38:571-585. [PMID: 37553858 PMCID: PMC10652420 DOI: 10.1177/07487304231189537] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Transplant studies demonstrate unequivocally that the suprachiasmatic nucleus (SCN) produces diffusible signals that can sustain circadian locomotor rhythms. There is a vascular portal pathway between the SCN and the organum vasculosum of the lamina terminalis in mouse brain. Portal pathways enable low concentrations of neurosecretions to reach specialized local targets without dilution in the systemic circulation. To explore the SCN vasculature and the capillary vessels whereby SCN neurosecretions might reach portal vessels, we investigated the blood vessels (BVs) of the core and shell SCN. The arterial supply of the SCN differs among animals, and in some animals, there are differences between the 2 sides. The rostral SCN is supplied by branches from either the superior hypophyseal artery (SHpA) or the anterior cerebral artery or the anterior communicating artery. The caudal SCN is consistently supplied by the SHpA. The rostral SCN is drained by the preoptic vein, while the caudal is drained by the basal vein, with variations in laterality of draining vessels. In addition, several key features of the core and shell SCN regions differ: Median BV diameter is significantly smaller in the shell than the core based on confocal image measurements, and a similar trend occurs in iDISCO-cleared tissue. In the cleared tissue, whole BV length density and surface area density are significantly greater in the shell than the core. Finally, capillary length density is also greater in the shell than the core. The results suggest three hypotheses: First, the distinct arterial and venous systems of the rostral and caudal SCN may contribute to the in vivo variations of metabolic and neural activities observed in SCN networks. Second, the dense capillaries of the SCN shell are well positioned to transport blood-borne signals. Finally, variations in SCN vascular supply and drainage may contribute to inter-animal differences.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Psychology, Columbia University, New York City, NY
| | | | - Alana B. Taub
- Department of Neuroscience and Behavior, Barnard College, New York City, NY
| | - Ruya Tazebay
- Department of Neuroscience and Behavior, Barnard College, New York City, NY
| | - Joseph LeSauter
- Department of Neuroscience and Behavior, Barnard College, New York City, NY
| | - Rae Silver
- Department of Psychology, Columbia University, New York City, NY
- Department of Neuroscience and Behavior, Barnard College, New York City, NY
- Department of Pathology and Cell Biology, Columbia University, New York City, NY
- Zuckerman Institute, Columbia University, New York City, NY
| |
Collapse
|
20
|
Demas GE, Munley KM, Jasnow AM. A seasonal switch hypothesis for the neuroendocrine control of aggression. Trends Endocrinol Metab 2023; 34:799-812. [PMID: 37722999 DOI: 10.1016/j.tem.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Aggression is a well-studied social behavior that is universally exhibited by animals across a wide range of contexts. Prevailing knowledge suggests gonadal steroids primarily mediate aggression; however, this is based mainly on studies of male-male aggression in laboratory rodents. When males and females of other species, including humans, are examined, a positive relationship between gonadal steroids and aggression is less substantiated. For instance, hamsters housed in short 'winter-like' days show increased aggression compared with long-day housed hamsters, despite relatively low circulating gonadal steroids. These results suggest alternative, non-gonadal mechanisms controlling aggression. Here, we propose the seasonal switch hypothesis, which employs a multidisciplinary approach to describe how seasonal variation in extra-gonadal steroids, orchestrated by melatonin, drives context-specific changes in aggression.
Collapse
Affiliation(s)
- Gregory E Demas
- Department of Biology, Program in Neuroscience, and Program in Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Kathleen M Munley
- Department of Psychology, University of Houston, Houston, TX 77204, USA
| | - Aaron M Jasnow
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
21
|
Hsiao CC, Yang AM, Wang C, Lin CY. Association between glyphosate exposure and cognitive function, depression, and neurological diseases in a representative sample of US adults: NHANES 2013-2014 analysis. ENVIRONMENTAL RESEARCH 2023; 237:116860. [PMID: 37562738 DOI: 10.1016/j.envres.2023.116860] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Glyphosate, the most widely used herbicide globally, has been linked to neurological impairments in some occupational studies. However, the potential neurotoxic effects of glyphosate exposure in the general population are still not fully understood. We conducted analyses on existing data collected from 1532 adults of the 2013-2014 National Health and Nutrition Examination Survey (NHANES) to explore the possible relationship between glyphosate exposure and cognitive function, depressive symptoms, disability, and neurological medical conditions. Our results showed a significant negative association between urinary glyphosate levels and the Consortium to Establish a Registry for Alzheimer's Disease Word List Memory Test (CERAD-WLT) trial 3 recall and delayed recall scores in both models, with ß coefficients of -0.288 (S.E. = 0.111, P = 0.021) and -0.426 (S.E. = 0.148, P = 0.011), respectively. Furthermore, the odds ratio did not show a significant increase with the severity of depressive symptoms with a one-unit increase in ln-glyphosate levels. However, the odds ratio for severe depressive symptoms was significantly higher than for no symptoms (odds ratio = 4.148 (95% CI = 1.009-17.133), P = 0.049). Notably, the odds ratio showed a significant increase for individuals with serious hearing difficulty (odds ratio = 1.354 (95% CI = 1.018-1.800), P = 0.039) with a one-unit increase in ln-glyphosate levels, but not for other neurological medical conditions. In conclusion, our findings provide the first evidence that glyphosate exposure may be associated with neurological health outcomes in the US adult population. Additional investigation is necessary to understand the potential mechanisms and clinical significance of these correlations.
Collapse
Affiliation(s)
- Ching Chung Hsiao
- Department of Nephrology, New Taipei Municipal Tucheng Hospital, New Taipei City, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - An-Ming Yang
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, 237, Taiwan; Department of Healthcare Management, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan.
| | - ChiKang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan.
| | - Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, 237, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, 242, Taiwan.
| |
Collapse
|
22
|
Virtanen M, Törmälehto S, Partonen T, Elovainio M, Ruuhela R, Hakulinen C, Komulainen K, Airaksinen J, Väänänen A, Koskinen A, Sund R. Seasonal patterns of sickness absence due to diagnosed mental disorders: a nationwide 12-year register linkage study. Epidemiol Psychiatr Sci 2023; 32:e64. [PMID: 37941381 PMCID: PMC7615330 DOI: 10.1017/s2045796023000768] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
AIMS Although seasonality has been documented for mental disorders, it is unknown whether similar patterns can be observed in employee sickness absence from work due to a wide range of mental disorders with different severity level, and to what extent the rate of change in light exposure plays a role. To address these limitations, we used daily based sickness absence records to examine seasonal patterns in employee sickness absence due to mental disorders. METHODS We used nationwide diagnosis-specific psychiatric sickness absence claims data from 2006 to 2017 for adult individuals aged 16-67 (n = 636,543 sickness absence episodes) in Finland, a high-latitude country with a profound variation in daylength. The smoothed time-series of the ratio of observed and expected (O/E) daily counts of episodes were estimated, adjusted for variation in all-cause sickness absence rates during the year. RESULTS Unipolar depressive disorders peaked in October-November and dipped in July, with similar associations in all forms of depression. Also, anxiety and non-organic sleep disorders peaked in October-November. Anxiety disorders dipped in January-February and in July-August, while non-organic sleep disorders dipped in April-August. Manic episodes reached a peak from March to July and dipped in September-November and in January-February. Seasonality was not dependent on the severity of the depressive disorder. CONCLUSIONS These results suggest a seasonal variation in sickness absence due to common mental disorders and bipolar disorder, with high peaks in depressive, anxiety and sleep disorders towards the end of the year and a peak in manic episodes starting in spring. Rapid changes in light exposure may contribute to sickness absence due to bipolar disorder. The findings can help clinicians and workplaces prepare for seasonal variations in healthcare needs.
Collapse
Affiliation(s)
- M. Virtanen
- School of Educational Sciences and Psychology, University of Eastern Finland, Joensuu, Finland
- Division of Insurance Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - S. Törmälehto
- School of Educational Sciences and Psychology, University of Eastern Finland, Joensuu, Finland
| | - T. Partonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - M. Elovainio
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - R. Ruuhela
- Weather and Climate Change Impact Research, Finnish Meteorological Institute, Helsinki, Finland
| | - C. Hakulinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - K. Komulainen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - J. Airaksinen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - A. Väänänen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - A. Koskinen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - R. Sund
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
23
|
Polemiti E, Hese S, Schepanski K, Yuan J, Schumann G. How does the macroenvironment influence brain and behaviour - a review of current status and future perspectives. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.09.23296785. [PMID: 37873310 PMCID: PMC10593044 DOI: 10.1101/2023.10.09.23296785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The environment influences mental health, both detrimentally and beneficially. Current research has emphasized the individual psychosocial 'microenvironment'. Less attention has been paid to 'macro-environmental' challenges including climate change, pollution, urbanicity and socioeconomic disparity. With the advent of large-scale big-data cohorts and an increasingly dense mapping of macroenvironmental parameters, we are now in a position to characterise the relation between macroenvironment, brain, and behaviour across different geographic and cultural locations globally. This review synthesises findings from recent epidemiological and neuroimaging studies, aiming to provide a comprehensive overview of the existing evidence between the macroenvironment and the structure and functions of the brain, with a particular emphasis on its implications for mental illness. We discuss putative underlying mechanisms and address the most common exposures of the macroenvironment. Finally, we identify critical areas for future research to enhance our understanding of the aetiology of mental illness and to inform effective interventions for healthier environments and mental health promotion.
Collapse
Affiliation(s)
- Elli Polemiti
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité, Universitätsmedizin Berlin, Germany
| | - Soeren Hese
- Institute of Geography, Friedrich Schiller University Jena, Germany
| | | | - Jiacan Yuan
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology & IRDR-ICOE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité, Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | | |
Collapse
|
24
|
Maddaloni G, Chang YJ, Senft RA, Dymecki SM. A brain circuit and neuronal mechanism for decoding and adapting to change in daylength. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557218. [PMID: 37745319 PMCID: PMC10515809 DOI: 10.1101/2023.09.11.557218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Changes in daylight amount (photoperiod) drive pronounced alterations in physiology and behaviour1,2. Adaptive responses to seasonal photoperiods are vital to all organisms - dysregulation is associated with disease, from affective disorders3 to metabolic syndromes4. Circadian rhythm circuitry has been implicated5,6 yet little is known about the precise neural and cellular substrates that underlie phase synchronization to photoperiod change. Here we present a previously unknown brain circuit and novel system of axon branch-specific and reversible neurotransmitter deployment that together prove critical for behavioural and sleep adaptation to photoperiod change. We found that the recently defined neuron type called mrEn1-Pet17 located in the mouse brainstem Median Raphe Nucleus (MRN) segregates serotonin versus VGLUT3 (here proxy for the neurotransmitter glutamate) to different axonal branches innervating specific brain regions involved in circadian rhythm and sleep/wake timing8,9. We found that whether measured during the light or dark phase of the day this branch-specific neurotransmitter deployment in mrEn1-Pet1 neurons was indistinguishable; however, it strikingly reorganizes on photoperiod change. Specifically, axonal boutons but not cell soma show a shift in neurochemical phenotype upon change away from equinox light/dark conditions that reverses upon return to equinox. When we genetically disabled the deployment of VGLUT3 in mrEn1-Pet1 neurons, we found that sleep/wake periods and voluntary activity failed to synchronize to the new photoperiod or was significantly delayed. Combining intersectional rabies virus tracing and projection-specific neuronal silencing in vivo, we delineated a Preoptic Area-to-mrEn1Pet1 connection responsible for decoding the photoperiodic inputs, driving the neurochemical shift and promoting behavioural synchronization. Our results reveal a previously unrecognized brain circuit along with a novel form of periodic, branch-specific neurotransmitter deployment that together regulate organismal adaptation to photoperiod changes.
Collapse
Affiliation(s)
- G Maddaloni
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115 MA, USA
| | - Y J Chang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115 MA, USA
| | - R A Senft
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115 MA, USA
| | - S M Dymecki
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115 MA, USA
| |
Collapse
|
25
|
Pavicic M, Walker AM, Sullivan KA, Lagergren J, Cliff A, Romero J, Streich J, Garvin MR, Pestian J, McMahon B, Oslin DW, Beckham JC, Kimbrel NA, Jacobson DA. Using iterative random forest to find geospatial environmental and Sociodemographic predictors of suicide attempts. Front Psychiatry 2023; 14:1178633. [PMID: 37599888 PMCID: PMC10433206 DOI: 10.3389/fpsyt.2023.1178633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/21/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Despite a recent global decrease in suicide rates, death by suicide has increased in the United States. It is therefore imperative to identify the risk factors associated with suicide attempts to combat this growing epidemic. In this study, we aim to identify potential risk factors of suicide attempt using geospatial features in an Artificial intelligence framework. Methods We use iterative Random Forest, an explainable artificial intelligence method, to predict suicide attempts using data from the Million Veteran Program. This cohort incorporated 405,540 patients with 391,409 controls and 14,131 attempts. Our predictive model incorporates multiple climatic features at ZIP-code-level geospatial resolution. We additionally consider demographic features from the American Community Survey as well as the number of firearms and alcohol vendors per 10,000 people to assess the contributions of proximal environment, access to means, and restraint decrease to suicide attempts. In total 1,784 features were included in the predictive model. Results Our results show that geographic areas with higher concentrations of married males living with spouses are predictive of lower rates of suicide attempts, whereas geographic areas where males are more likely to live alone and to rent housing are predictive of higher rates of suicide attempts. We also identified climatic features that were associated with suicide attempt risk by age group. Additionally, we observed that firearms and alcohol vendors were associated with increased risk for suicide attempts irrespective of the age group examined, but that their effects were small in comparison to the top features. Discussion Taken together, our findings highlight the importance of social determinants and environmental factors in understanding suicide risk among veterans.
Collapse
Affiliation(s)
- Mirko Pavicic
- Oak Ridge National Laboratory, Computational and Predictive Biology, Oak Ridge, TN, United States
| | - Angelica M. Walker
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, United States
| | - Kyle A. Sullivan
- Oak Ridge National Laboratory, Computational and Predictive Biology, Oak Ridge, TN, United States
| | - John Lagergren
- Oak Ridge National Laboratory, Computational and Predictive Biology, Oak Ridge, TN, United States
| | - Ashley Cliff
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, United States
| | - Jonathon Romero
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, United States
| | - Jared Streich
- Oak Ridge National Laboratory, Computational and Predictive Biology, Oak Ridge, TN, United States
| | - Michael R. Garvin
- Oak Ridge National Laboratory, Computational and Predictive Biology, Oak Ridge, TN, United States
| | - John Pestian
- Oak Ridge National Laboratory, Computational and Predictive Biology, Oak Ridge, TN, United States
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Benjamin McMahon
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - David W. Oslin
- VISN 4 Mental Illness Research, Education, and Clinical Center, Center of Excellence, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jean C. Beckham
- Durham Veterans Affairs Health Care System, Durham, NC, United States
- VA Mid-Atlantic Mental Illness, Research, Education, and Clinical Center, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Nathan A. Kimbrel
- Durham Veterans Affairs Health Care System, Durham, NC, United States
- VA Mid-Atlantic Mental Illness, Research, Education, and Clinical Center, Seattle, WA, United States
- Duke University School of Medicine, Duke University, Durham, NC, United States
- VA Health Services Research and Development Center of Innovation to Accelerate Discovery and Practice Transformation, Durham, NC, United States
| | - Daniel A. Jacobson
- Oak Ridge National Laboratory, Computational and Predictive Biology, Oak Ridge, TN, United States
| |
Collapse
|
26
|
Zhang R, Shokri-Kojori E, Volkow ND. Seasonal effect-an overlooked factor in neuroimaging research. Transl Psychiatry 2023; 13:238. [PMID: 37400428 DOI: 10.1038/s41398-023-02530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
In neuroimaging research, seasonal effects are often neglected or controlled as confounding factors. However, seasonal fluctuations in mood and behavior have been observed in both psychiatric disorders and healthy participants. There are vast opportunities for neuroimaging studies to understand seasonal variations in brain function. In this study, we used two longitudinal single-subject datasets with weekly measures over more than a year to investigate seasonal effects on intrinsic brain networks. We found that the sensorimotor network displayed a strong seasonal pattern. The sensorimotor network is not only relevant for integrating sensory inputs and coordinating movement, but it also affects emotion regulation and executive function. Therefore, the observed seasonality effects in the sensorimotor network could contribute to seasonal variations in mood and behavior. Genetic analyses revealed seasonal modulation of biological processes and pathways relevant to immune function, RNA metabolism, centrosome separation, and mitochondrial translation that have a significant impact on human physiology and pathology. In addition, we revealed critical factors such as head motion, caffeine use, and scan time that could interfere with seasonal effects and need to be considered in future studies.
Collapse
Affiliation(s)
- Rui Zhang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA.
| | - Ehsan Shokri-Kojori
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA.
| |
Collapse
|
27
|
Francis TC, Porcu A. Emotionally clocked out: cell-type specific regulation of mood and anxiety by the circadian clock system in the brain. Front Mol Neurosci 2023; 16:1188184. [PMID: 37441675 PMCID: PMC10333695 DOI: 10.3389/fnmol.2023.1188184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/29/2023] [Indexed: 07/15/2023] Open
Abstract
Circadian rhythms are self-sustained oscillations of biological systems that allow an organism to anticipate periodic changes in the environment and optimally align feeding, sleep, wakefulness, and the physiological and biochemical processes that support them within the 24 h cycle. These rhythms are generated at a cellular level by a set of genes, known as clock genes, which code for proteins that inhibit their own transcription in a negative feedback loop and can be perturbed by stress, a risk factor for the development of mood and anxiety disorders. A role for circadian clocks in mood and anxiety has been suggested for decades on the basis of clinical observations, and the dysregulation of circadian rhythms is a prominent clinical feature of stress-related disorders. Despite our understanding of central clock structure and function, the effect of circadian dysregulation in different neuronal subtypes in the suprachiasmatic nucleus (SCN), the master pacemaker region, as well as other brain systems regulating mood, including mesolimbic and limbic circuits, is just beginning to be elucidated. In the brain, circadian clocks regulate neuronal physiological functions, including neuronal activity, synaptic plasticity, protein expression, and neurotransmitter release which in turn affect mood-related behaviors via cell-type specific mechanisms. Both animal and human studies have revealed an association between circadian misalignment and mood disorders and suggest that internal temporal desynchrony might be part of the etiology of psychiatric disorders. To date, little work has been conducted associating mood-related phenotypes to cell-specific effects of the circadian clock disruptions. In this review, we discuss existing literature on how clock-driven changes in specific neuronal cell types might disrupt phase relationships among cellular communication, leading to neuronal circuit dysfunction and changes in mood-related behavior. In addition, we examine cell-type specific circuitry underlying mood dysfunction and discuss how this circuitry could affect circadian clock. We provide a focus for future research in this area and a perspective on chronotherapies for mood and anxiety disorders.
Collapse
Affiliation(s)
- T. Chase Francis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Alessandra Porcu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
28
|
Walker WE, Garcia LF, Singh V, Mireles B, Dwivedi AK. Preclinical Mouse Models in Sepsis: Don't Throw the Baby Out with the Bathwater [Response to Letter]. J Inflamm Res 2023; 16:2021-2022. [PMID: 37197439 PMCID: PMC10184833 DOI: 10.2147/jir.s417208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Affiliation(s)
- Wendy E Walker
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Luiz F Garcia
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Vishwajeet Singh
- Biostatistics and Epidemiology Consulting Lab, Office of Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Blake Mireles
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Alok Kumar Dwivedi
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
- Biostatistics and Epidemiology Consulting Lab, Office of Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
- Division of Biostatistics and Epidemiology, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| |
Collapse
|