1
|
Wang Q, Yang S, Zhang X, Zhang S, Chen L, Wang W, Chen N, Yan J. Inflammasomes in neurodegenerative diseases. Transl Neurodegener 2024; 13:65. [PMID: 39710713 DOI: 10.1186/s40035-024-00459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Inflammasomes represent a crucial component of the innate immune system, which respond to threats by recognizing different molecules. These are known as pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs). In neurodegenerative diseases and neuroinflammation, the accumulation of misfolded proteins, such as beta-amyloid and alpha-synuclein, can lead to inflammasome activation, resulting in the release of interleukin (IL)-1β and IL-18. This activation also induces pyroptosis, the release of inflammatory mediators, and exacerbates neuroinflammation. Increasing evidence suggests that inflammasomes play a pivotal role in neurodegenerative diseases. Therefore, elucidating and investigating the activation and regulation of inflammasomes in these diseases is of paramount importance. This review is primarily focused on evidence indicating that inflammasomes are activated through the canonical pathway in these diseases. Inflammasomes as potential targets for treating neurodegenerative diseases are also discussed.
Collapse
Affiliation(s)
- Qianchen Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shanshan Zhang
- China Three Gorges University College of Medicine and Health Sciences, Yichang, 443002, China
| | - Liping Chen
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Wanxue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiaqing Yan
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Li MM, Shi MJ, Feng CC, Yu ZY, Bai XF, Lu-Lu. LncRNA KCNQ1OT1 promotes NLRP3 inflammasome activation in Parkinson's disease by regulating pri-miR-186/mature miR-186/NLRP3 axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167454. [PMID: 39122224 DOI: 10.1016/j.bbadis.2024.167454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 06/07/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Increasing evidence indicated that neuroinflammation was involved in progression of Parkinson's disease (PD). Long noncoding RNAs (lncRNAs) played important roles in regulating inflammatory processes in multiple kinds of human diseases such as cancer diabetes, cardiomyopathy, and neurodegenerative disorders. The mechanisms by which lncRNAs regulated PD related inflammation and dopaminergic neuronal loss have not yet been fully elucidated. In current study, we intended to explore the function and potential mechanism of lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) in regulating inflammasome activation in PD. Functional assays confirmed that knockdown of KCNQ1OT1 suppress microglial NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and attenuated dopaminergic neuronal loss in PD model mice. As KCNQ1OT1 located in both cytoplasm and nucleus of microglia, we demonstrated that KCNQ1OT1 promoted microglial NLRP3 inflammasome activation by competitive binding with miR-186 in cytoplasm and inhibited pri-miR-186 mediated NLRP3 silencing through recruitment of DiGeorge syndrome critical region gene 8 (DGCR8) in nucleus, respectively. Our study found a novel lncRNA-pri-miRNA/mature miRNA-mRNA regulatory network in microglia mediated NLRP3 inflammasome activation and dopaminergic neuronal loss, provided further insights for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Meng-Meng Li
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | - Mei-Juan Shi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Chen-Chen Feng
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhong-Yu Yu
- Sijing Community Health Service Center of Songjiang District, Shanghai 201600, China
| | - Xiao-Fei Bai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266071, China
| | - Lu-Lu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Serra M, Faustini G, Brembati V, Casu MA, Pizzi M, Morelli M, Pinna A, Bellucci A. Early α-synuclein/synapsin III co-accumulation, nigrostriatal dopaminergic synaptopathy and denervation in the MPTPp mouse model of Parkinson's Disease. Exp Neurol 2024; 383:115040. [PMID: 39500391 DOI: 10.1016/j.expneurol.2024.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/10/2024]
Abstract
Parkinson's disease (PD) is characterized by the loss of nigrostriatal dopaminergic neurons and the presence of Lewy bodies (LB), intraneuronal inclusions mainly composed of α-synuclein (α-Syn) fibrils. Compelling evidence supports that, in PD brains, synapses are the sites where neurodegeneration initiates several years before the manifestation of motor symptoms. Furthermore, the amount of α-Syn deposited at synaptic terminals is several orders greater than that constituting LB. This hints that pathological synaptic α-Syn aggregates may be the main trigger for the retrograde synapse-to-cell body degeneration pattern characterizing early prodromal phases of PD. Identifying reliable biomarkers of synaptopathy is therefore crucial for early diagnosis. Here, we studied the alterations of key dopaminergic and non-dopaminergic striatal synaptic markers during the initial phases of axonal and cell body degeneration in mice subjected to 3 or 10 administrations of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine + probenecid (MPTPp), a model for early prodromal PD. We found that MPTPp administration resulted in progressive deposition of α-Syn, advancing from synaptic terminals to axons and dopaminergic neuron cell bodies. This was accompanied by marked co-accumulation of Synapsin III (Syn III), a synaptic protein previously identified as a component of α-Syn fibrils in post-mortem PD brains and as a main stabilizer of α-Syn aggregates, as well as very early and severe reduction of vesicular monoamine transporter 2 (VMAT2), dopamine transporter (DAT) and tyrosine hydroxylase (TH) immunoreactivity in nigrostriatal neurons. Results also showed that striatal α-Syn accumulation and VMAT2 decrease, unlike other markers, did not recover following washout from 10 MPTPp administrations, supporting that these changes were precocious and severe. Finally, we found that early changes in striatal α-Syn, Syn III, VMAT2 and DAT observed following 3 MPTPp administrations, correlated with nigrostriatal neuron loss after 10 MPTPp administrations. These findings indicate that α-Syn/Syn III co-deposition characterizes very early stages of striatal dopaminergic dysfunction in the MPTPp model and highlight that VMAT2 and Syn III could be two reliable molecular imaging biomarkers to predict dopamine neuron denervation and estimate α-Syn-related synaptopathy in prodromal and early symptomatic phases of PD.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Gaia Faustini
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy
| | - Viviana Brembati
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy
| | - Maria Antonietta Casu
- National Research Council of Italy, Institute of Translational Pharmacology, UOS of Cagliari, Scientific and Technological Park of Sardinia POLARIS, Pula, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, Italy
| | - Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, Italy.
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy.
| |
Collapse
|
4
|
Xu H, Tian X, Wang Y, Lin J, Zhu B, Zhao C, Wang B, Zhang X, Sun Y, Li N, Sun X, Zeng F, Li M, Ya X, Zhao R. Exercise Promotes Hippocampal Neurogenesis in T2DM Mice via Irisin/TLR4/MyD88/NF-κB-Mediated Neuroinflammation Pathway. BIOLOGY 2024; 13:809. [PMID: 39452118 PMCID: PMC11504848 DOI: 10.3390/biology13100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Neuroinflammation is a major feature of type 2 diabetic mellitus (T2DM), adversely affecting hippocampal neurogenesis. However, the precise mechanism is not fully understood, and therapeutic approaches are currently lacking. Therefore, we determined the effects of exercise on neuroinflammation and hippocampal neurogenesis in T2DM mice, with a specific focus on understanding the role of the irisin and related cascade pathways in modulating the beneficial effects of exercise in these processes. Ten-week exercise significantly decreased T2DM-induced inflammation levels and markedly promoted hippocampal neurogenesis and memory function. However, these positive effects were reversed by 10 weeks of treatment with cyclo RGDyk, an inhibitor of irisin receptor signaling. Additionally, exercise helped reduce the M1 phenotype polarization of hippocampal microglia in diabetic mice; this effect could be reversed with cyclo RGDyk treatment. Moreover, exercise markedly increased the levels of fibronectin type III domain-containing protein 5 (FNDC5)/irisin protein while decreasing the expression of Toll-like receptor 4 (TLR4), myeloid differential protein-88 (MyD88), and nuclear factor kappa-B (NF-κB) in the hippocampus of T2DM mice. However, blocking irisin receptor signaling counteracted the down-regulation of TLR4/MyD88/NF-κB in diabetic mice undergoing exercise intervention. Conclusively, exercise appears to be effective in reducing neuroinflammation and enhancing hippocampal neurogenesis and memory in diabetes mice. The positive effects are involved in the participation of the irisin/TLR4/MyD88/NF-κB signaling pathway, highlighting the potential of exercise in the management of diabetic-induced cognitive decline.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Renqing Zhao
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (H.X.); (X.T.); (Y.W.); (J.L.); (B.Z.); (C.Z.); (B.W.); (X.Z.); (Y.S.); (N.L.); (X.S.); (F.Z.); (M.L.); (X.Y.)
| |
Collapse
|
5
|
Roodveldt C, Bernardino L, Oztop-Cakmak O, Dragic M, Fladmark KE, Ertan S, Aktas B, Pita C, Ciglar L, Garraux G, Williams-Gray C, Pacheco R, Romero-Ramos M. The immune system in Parkinson's disease: what we know so far. Brain 2024; 147:3306-3324. [PMID: 38833182 PMCID: PMC11449148 DOI: 10.1093/brain/awae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Parkinson's disease is characterized neuropathologically by the degeneration of dopaminergic neurons in the ventral midbrain, the accumulation of α-synuclein (α-syn) aggregates in neurons and chronic neuroinflammation. In the past two decades, in vitro, ex vivo and in vivo studies have consistently shown the involvement of inflammatory responses mediated by microglia and astrocytes, which may be elicited by pathological α-syn or signals from affected neurons and other cell types, and are directly linked to neurodegeneration and disease development. Apart from the prominent immune alterations seen in the CNS, including the infiltration of T cells into the brain, more recent studies have demonstrated important changes in the peripheral immune profile within both the innate and adaptive compartments, particularly involving monocytes, CD4+ and CD8+ T cells. This review aims to integrate the consolidated understanding of immune-related processes underlying the pathogenesis of Parkinson's disease, focusing on both central and peripheral immune cells, neuron-glia crosstalk as well as the central-peripheral immune interaction during the development of Parkinson's disease. Our analysis seeks to provide a comprehensive view of the emerging knowledge of the mechanisms of immunity in Parkinson's disease and the implications of this for better understanding the overall pathogenesis of this disease.
Collapse
Affiliation(s)
- Cintia Roodveldt
- Centre for Molecular Biology and Regenerative Medicine-CABIMER, University of Seville-CSIC, Seville 41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville 41009, Spain
| | - Liliana Bernardino
- Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Ozgur Oztop-Cakmak
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul 34010, Turkey
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
- Department of Molecular Biology and Endocrinology, ‘VINČA’ Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Kari E Fladmark
- Department of Biological Science, University of Bergen, 5006 Bergen, Norway
| | - Sibel Ertan
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul 34010, Turkey
| | - Busra Aktas
- Department of Molecular Biology and Genetics, Burdur Mehmet Akif Ersoy University, Burdur 15200, Turkey
| | - Carlos Pita
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Lucia Ciglar
- Center Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria
| | - Gaetan Garraux
- Movere Group, Faculty of Medicine, GIGA Institute, University of Liège, Liège 4000, Belgium
| | | | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba 8580702, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia 7510156, Santiago, Chile
| | - Marina Romero-Ramos
- Department of Biomedicine & The Danish Research Institute of Translational Neuroscience—DANDRITE, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Zhou Y, Cong T, Chen J, Chu Z, Sun Y, Zhao D, Chen X, Li L, Liu Y, Cheng J, Li Q, Yin S, Xiao Z. Protective role of TRPV2 in synaptic plasticity through the ERK1/2-CREB-BDNF pathway in chronic unpredictable mild stress rats. Biochem Biophys Res Commun 2024; 721:150128. [PMID: 38776831 DOI: 10.1016/j.bbrc.2024.150128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Chronic stress is a significant risk factor for mood disorders such as depression, where synaptic plasticity plays a central role in pathogenesis. Transient Receptor Potential Vanilloid Type-2 (TRPV2) Ion Channels are implicated in hypothalamic-pituitary-adrenal axis disorders. Previous proteomic analysis indicated a reduction in TRPV2 levels in the chronic unpredictable mild stress (CUMS) rat model, yet its role in synaptic plasticity during depression remains to be elucidated. This study aims to investigate TRPV2's role in depression and its underlying mechanisms. METHODS In vivo and in vitro experiments were conducted using the TRPV2-specific agonist probenecid and ERK1/2 inhibitors SCH772984. In vivo, rats underwent six weeks of CUMS before probenecid administration. Depressive-like behaviors were assessed through behavioral tests. ELISA kits measured 5-HT, DA, NE levels in rat hippocampal tissues. Hippocampal morphology was examined via Nissl staining. In vitro, rat hippocampal neuron cell lines were treated with ERK1/2 inhibitors SCH772984 and probenecid. Western blot, immunofluorescence, immunohistochemical staining, and RT-qPCR assessed TRPV2 expression, neurogenesis-related proteins, synaptic markers, and ERK1/2-CREB-BDNF signaling proteins. RESULTS Decreased hippocampal TRPV2 levels were observed in CUMS rats. Probenecid treatment mitigated depressive-like behavior and enhanced hippocampal 5-HT, NE, and DA levels in CUMS rats. TRPV2 activation countered CUMS-induced synaptic plasticity inhibition. Probenecid activated the ERK1/2-CREB-BDNF pathway, suggesting TRPV2's involvement in this pathway via ERK1/2. CONCLUSION These findings indicate that TRPV2 activation offers protective effects against depressive-like behaviors and enhances hippocampal synaptic plasticity in CUMS rats via the ERK1/2-CREB-BDNF pathway. TRPV2 emerges as a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Yitong Zhou
- Department of Anesthesiology, The Second Affliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China
| | - Ting Cong
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Jun Chen
- Laboratory Animal Center of Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Zhenchen Chu
- Department of Orthopedics, Qingdao Municipal Hospital, Qingdao, 266011, Shandong, China
| | - Ye Sun
- Department of Anesthesiology, The Second Affliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China
| | - Danmei Zhao
- Department of Anesthesiology, The Second Affliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China
| | - Xue Chen
- Department of Anesthesiology, The Second Affliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China
| | - Liya Li
- Department of Anesthesiology, The Second Affliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China
| | - Yingxin Liu
- Department of Physiology, Basic Medicine College of Dalian Medical University, No. 9, West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Jiani Cheng
- Department of Anesthesiology, The Second Affliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China
| | - Qiwei Li
- Department of Anesthesiology, The Second Affliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China
| | - Shengming Yin
- Department of Physiology, Basic Medicine College of Dalian Medical University, No. 9, West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, Liaoning, China.
| | - Zhaoyang Xiao
- Department of Anesthesiology, The Second Affliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China.
| |
Collapse
|
7
|
Al‐Qahtani Z, Al‐kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Ali NH, Alexiou A, Papadakis M, Saad HM, Batiha GE. The potential role of brain renin-angiotensin system in the neuropathology of Parkinson disease: Friend, foe or turncoat? J Cell Mol Med 2024; 28:e18495. [PMID: 38899551 PMCID: PMC11187740 DOI: 10.1111/jcmm.18495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/15/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Parkinson disease (PD) is one of the most common neurodegenerative diseases of the brain. Of note, brain renin-angiotensin system (RAS) is intricate in the PD neuropathology through modulation of oxidative stress, mitochondrial dysfunction and neuroinflammation. Therefore, modulation of brain RAS by angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) may be effective in reducing the risk and PD neuropathology. It has been shown that all components including the peptides and enzymes of the RAS are present in the different brain areas. Brain RAS plays a critical role in the regulation of memory and cognitive function, and in the controlling of central blood pressure. However, exaggerated brain RAS is implicated in the pathogenesis of different neurodegenerative diseases including PD. Two well-known pathways of brain RAS are recognized including; the classical pathway which is mainly mediated by AngII/AT1R has detrimental effects. Conversely, the non-classical pathway which is mostly mediated by ACE2/Ang1-7/MASR and AngII/AT2R has beneficial effects against PD neuropathology. Exaggerated brain RAS affects the viability of dopaminergic neurons. However, the fundamental mechanism of brain RAS in PD neuropathology was not fully elucidated. Consequently, the purpose of this review is to disclose the mechanistic role of RAS in in the pathogenesis of PD. In addition, we try to revise how the ACEIs and ARBs can be developed for therapeutics in PD.
Collapse
Affiliation(s)
- Zainah Al‐Qahtani
- Neurology Section, Internal Medicine Department, College of MedicineKing khaled universityAbhaSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- Department of Research & Development, FunogenAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
8
|
Xu D, Dai J, Tang L, Pan J, Zhang H. Nontargeted metabolomics reveals sequential changes in amino acid and ferroptosis-related metabolism in Parkinson's disease. Biomed Chromatogr 2024; 38:e5834. [PMID: 38308389 DOI: 10.1002/bmc.5834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
Parkinson's disease (PD) is inseparable from metabolic disorders but lacks assessment of specific metabolite alteration. To explore the sequential metabolic changes in PD progression, we evenly divided 78 C57BL/6 mice (10 weeks) into six groups (one control group and five experimental groups) and collected the hippocampus tissue of mice after treating with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and probenecid (twice a week) at five periods (1, 2, 3, 4, and 5 weeks) for metabolome analysis. Our study identified 567 differentially abundant metabolites (DAMs) (total 4348 metabolites). Compared with controls, 145, 146, 171, 208, and 213 DAMs were obtained from the five experimental groups, respectively. Notably, 40 shared DAMs were present in five experimental groups, of which 22 shared DAMs formed a new metabolic network based on amino acid metabolism. Compared with group W3, 84 DAMs were identified in group W5, including 12 unique DAMs. DAMs in different stages of PD were significantly enriched in amino acid metabolism pathway, lipid metabolism pathway, and ferroptosis pathway. l-Glutamine, spermidine, and l-tryptophan were the key hubs in the whole metabolic process of PD. N-Formyl-l-methionine gradually increased in abundance with PD progression, whereas 5-methylcytosine gradually decreased. The study emphasized the sequential changes in DAMs in PD progression, stimulating subsequent studies.
Collapse
Affiliation(s)
- Delai Xu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Dai
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liuxing Tang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Pan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Zhang C, Bo R, Zhou T, Chen N, Yuan Y. The raphe nuclei are the early lesion site of gastric α-synuclein propagation to the substantia nigra. Acta Pharm Sin B 2024; 14:2057-2076. [PMID: 38799632 PMCID: PMC11119576 DOI: 10.1016/j.apsb.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 05/29/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegeneration disease with α-synuclein accumulated in the substantia nigra pars compacta (SNpc) and most of the dopaminergic neurons are lost in SNpc while patients are diagnosed with PD. Exploring the pathology at an early stage contributes to the development of the disease-modifying strategy. Although the "gut-brain" hypothesis is proposed to explain the underlying mechanism, where the earlier lesioned site in the brain of gastric α-synuclein and how α-synuclein further spreads are not fully understood. Here we report that caudal raphe nuclei (CRN) are the early lesion site of gastric α-synuclein propagating through the spinal cord, while locus coeruleus (LC) and substantia nigra pars compacta (SNpc) were further affected over a time frame of 7 months. Pathological α-synuclein propagation via CRN leads to neuron loss and disordered neuron activity, accompanied by abnormal motor and non-motor behavior. Potential neuron circuits are observed among CRN, LC, and SNpc, which contribute to the venerability of dopaminergic neurons in SNpc. These results show that CRN is the key region for the gastric α-synuclein spread to the midbrain. Our study provides valuable details for the "gut-brain" hypothesis and proposes a valuable PD model for future research on early PD intervention.
Collapse
Affiliation(s)
| | | | - Tiantian Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| | - Yuhe Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| |
Collapse
|
10
|
Gong X, Huang M, Chen L. NRF1 mitigates motor dysfunction and dopamine neuron degeneration in mice with Parkinson's disease by promoting GLRX m 6 A methylation through upregulation of METTL3 transcription. CNS Neurosci Ther 2024; 30:e14441. [PMID: 37735974 PMCID: PMC10916419 DOI: 10.1111/cns.14441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE The feature of Parkinson's disease (PD) is the heavy dopaminergic neuron loss of substantia nigra pars compacta (SNpc), while glutaredoxin (GLRX) has been discovered to modulate the death of dopaminergic neurons. In this context, this study was implemented to uncover the impact of GRX1 on motor dysfunction and dopamine neuron degeneration in PD mice and its potential mechanism. METHODS A PD mouse model was established via injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into mice. After gain- and loss-of-function assays in mice, motor coordination was assessed using rotarod, pole, and open-field tests, and neurodegeneration in mouse SNpc tissues was determined using immunohistochemistry of tyrosine hydroxylase and Nissl staining. NRF1, methyltransferase-like 3 (METTL3), and GLRX expression in SNpc tissues were evaluated using qRT-PCR, Western blot, and immunohistochemistry. The N6-methyladenosine (m6 A) levels of GLRX mRNA were examined using MeRIP. The relationship among NRF1, METTL3, and GLRX was determined by RIP, ChIP, and dual luciferase assays. RESULTS Low GLRX, METTL3, and NRF1 expression were observed in MPTP-induced mice, accompanied by decreased m6 A modification level of GLRX mRNA. GLRX overexpression alleviated motor dysfunction and dopamine neuron degeneration in MPTP-induced mice. METTL3 promoted m6 A modification and IGF2BP2-dependent stability of GLRX mRNA, and NRF1 increased METTL3 expression by binding to METTL3 promoter. NRF1 overexpression increased m6 A modification of GLRX mRNA and repressed motor dysfunction and dopamine neuron degeneration in MPTP-induced mice, which was counteracted by METTL3 knockdown. CONCLUSION Conclusively, NRF1 constrained motor dysfunction and dopamine neuron degeneration in MPTP-induced PD mice by activating the METTL3/GLRX axis.
Collapse
Affiliation(s)
- Xin Gong
- Department of Neurosurgery, Hunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaHunanP.R. China
| | - Mengyi Huang
- Department of Neurosurgery, Hunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaHunanP.R. China
| | - Lei Chen
- Department of Neurosurgery, Hunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaHunanP.R. China
| |
Collapse
|
11
|
Pinjala P, Tryphena KP, Kulkarni A, Goswami PG, Khatri DK. Dimethyl Fumarate Exerts a Neuroprotective Effect by Enhancing Mitophagy via the NRF2/BNIP3/PINK1 Axis in the MPP + Iodide-Induced Parkinson's Disease Mice Model. J Alzheimers Dis Rep 2024; 8:329-344. [PMID: 38405353 PMCID: PMC10894611 DOI: 10.3233/adr-230128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative disorder linked to the loss of dopaminergic neurons in the substantia nigra. Mitophagy, mitochondrial selective autophagy, is critical in maintaining mitochondrial and subsequently neuronal homeostasis. Its impairment is strongly implicated in PD and is associated with accelerated neurodegeneration. Objective To study the positive effect of dimethyl fumarate (DMF) on mitophagy via the NRF2/BNIP3/PINK1 axis activation in PD disease models. Methods The neuroprotective effect of DMF was explored in in vitro and in vivo PD models. MTT assay was performed to determine the DMF dose followed by JC-1 assay to study its mitoprotective effect in MPP+ exposed SHSY5Y cells. For the in vivo study, C57BL/6 mice were divided into six groups: Normal Control (NC), Disease Control (DC), Sham (Saline i.c.v.), Low Dose (MPP+ iodide+DMF 15 mg/kg), Mid Dose (MPP+ iodide+DMF 30 mg/kg), and High Dose (MPP+ iodide+DMF 60 mg/kg). The neuroprotective effect of DMF was assessed by performing rotarod, open field test, and pole test, and biochemical parameter analysis using immunofluorescence, western blot, and RT-PCR. Results DMF treatment significantly alleviated the loss of TH positive dopaminergic neurons and enhanced mitophagy by increasing PINK1, Parkin, BNIP3, and LC3 levels in the MPP+ iodide-induced PD mice model. DMF treatment groups showed good locomotor activity and rearing time when compared to the DC group. Conclusions DMF confers neuroprotection by activating the BNIP3/PINK1/Parkin pathway, enhancing the autophagosome formation via LC3, and improving mitophagy in PD models, and could be a potential therapeutic option in PD.
Collapse
Affiliation(s)
- Poojitha Pinjala
- Department of Pharmacology and Toxicology, Molecular and Cellular Neuroscience Lab, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Kamatham Pushpa Tryphena
- Department of Pharmacology and Toxicology, Molecular and Cellular Neuroscience Lab, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Amrita Kulkarni
- Department of Pharmacology and Toxicology, Molecular and Cellular Neuroscience Lab, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Prince Giri Goswami
- Department of Pharmacology and Toxicology, Molecular and Cellular Neuroscience Lab, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, Molecular and Cellular Neuroscience Lab, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
- Department of Pharmacology, Shobhaben Pratapbai Patel School of Pharmacy and Technology Management, SVKM’s Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Mumbai, India
| |
Collapse
|
12
|
Ravichandran KA, Heneka MT. Inflammasomes in neurological disorders - mechanisms and therapeutic potential. Nat Rev Neurol 2024; 20:67-83. [PMID: 38195712 DOI: 10.1038/s41582-023-00915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Inflammasomes are molecular scaffolds that are activated by damage-associated and pathogen-associated molecular patterns and form a key element of innate immune responses. Consequently, the involvement of inflammasomes in several diseases that are characterized by inflammatory processes, such as multiple sclerosis, is widely appreciated. However, many other neurological conditions, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, stroke, epilepsy, traumatic brain injury, sepsis-associated encephalopathy and neurological sequelae of COVID-19, all involve persistent inflammation in the brain, and increasing evidence suggests that inflammasome activation contributes to disease progression in these conditions. Understanding the biology and mechanisms of inflammasome activation is, therefore, crucial for the development of inflammasome-targeted therapies for neurological conditions. In this Review, we present the current evidence for and understanding of inflammasome activation in neurological diseases and discuss current and potential interventional strategies that target inflammasome activation to mitigate its pathological consequences.
Collapse
Affiliation(s)
- Kishore Aravind Ravichandran
- Department of Neuroinflammation, Institute of innate immunity, University of Bonn Medical Center Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Esch-sur-Alzette, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, MA, USA.
| |
Collapse
|
13
|
Li HY, Liu DS, Li LB, Zhang YB, Dong HY, Rong H, Zhang JY, Wang JP, Jin M, Luo N, Zhang XJ. Total Glucosides of White Paeony Capsule ameliorates Parkinson's disease-like behavior in MPTP-induced mice model by regulating LRRK2/alpha-synuclein signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117319. [PMID: 37838295 DOI: 10.1016/j.jep.2023.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Total Glucosides of White Paeony Capsule (TGPC), one of the traditional Chinese patent medicines, has been used for the treatment of autoimmune diseases such as rheumatoid arthritis (RA) in clinical practice. Besides, the components of TGPC are extracted from Radix Paeoniae Alba (RPA) and have displayed neuroprotective properties. AIM OF THE STUDY The present study was designed to evaluate the anti-PD-like effects of TGPC on a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced mice model and explore its potential molecular mechanisms. MATERIALS AND METHODS Behavioral tests, hematoxylin and eosin (HE) staining, Nissl staining, immunohistochemistry (IHC), western blotting (WB) and Enzyme-Linked Immunosorbent Assay (ELISA) were performed in this study. RESULTS It was observed that TGPC treatment (150, 300 mg/kg) significantly reversed MPTPinduced PD-like behaviors, such as reduced locomotive activity in the open field test, prolonged time to turn downward on the ball (T-turn) and to climb down the whole pole (T-descend) in the pole test, decreased movement scores in the traction test and extended the latency to fall in the hanging wire test. In addition, TGPC improved neurodegeneration, inhibited the excessive activation of microglia and suppressed the overproduction of proinflammatory cytokines induced by MPTP, partially by restoring leucine-rich repeat kinase 2 (LRRK2) activity and inhibiting alpha-synuclein (α-syn) mediated neuroinflammation signaling. CONCLUSION Taken together, TGPC exhibited neuroprotective effects on MPTP-induced mice model of PD, which was associated with the prevention of neuroinflammation and neurodegeneration modulated by LRRK2/α-syn pathway.
Collapse
MESH Headings
- Mice
- Animals
- Parkinson Disease/drug therapy
- alpha-Synuclein/metabolism
- Glucosides/pharmacology
- Glucosides/therapeutic use
- Glucosides/metabolism
- Paeonia
- Neuroinflammatory Diseases
- Mice, Inbred C57BL
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Neuroprotective Agents/metabolism
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use
- Dopaminergic Neurons
- Disease Models, Animal
Collapse
Affiliation(s)
- Hong-Yan Li
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin, 150000, PR China
| | - De-Shui Liu
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Li-Bo Li
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Ying-Bo Zhang
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Hai-Ying Dong
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Hua Rong
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Jing-Yan Zhang
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Jun-Ping Wang
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Ming Jin
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Nan Luo
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Xiao-Jie Zhang
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin, 150000, PR China; Heilongjiang Nursing College, Haerbin, 150000, PR China.
| |
Collapse
|
14
|
Xue J, Tao K, Wang W, Wang X. What Can Inflammation Tell Us about Therapeutic Strategies for Parkinson's Disease? Int J Mol Sci 2024; 25:1641. [PMID: 38338925 PMCID: PMC10855787 DOI: 10.3390/ijms25031641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with a complicated etiology and pathogenesis. α-Synuclein aggregation, dopaminergic (DA) neuron loss, mitochondrial injury, oxidative stress, and inflammation are involved in the process of PD. Neuroinflammation has been recognized as a key element in the initiation and progression of PD. In this review, we summarize the inflammatory response and pathogenic mechanisms of PD. Additionally, we describe the potential anti-inflammatory therapies, including nod-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome inhibition, nuclear factor κB (NF-κB) inhibition, microglia inhibition, astrocyte inhibition, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition, the peroxisome proliferator-activated receptor γ (PPARγ) agonist, targeting the mitogen-activated protein kinase (MAPK) pathway, targeting the adenosine monophosphate-activated protein kinase (AMPK)-dependent pathway, targeting α-synuclein, targeting miRNA, acupuncture, and exercise. The review focuses on inflammation and will help in designing new prevention strategies for PD.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| | | | | | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| |
Collapse
|
15
|
He Y, Zhao J, Dong H, Zhang X, Duan Y, Ma Y, Yu M, Fei J, Huang F. TLR2 deficiency is beneficial at the late phase in MPTP-induced Parkinson' disease mice. Life Sci 2023; 333:122171. [PMID: 37827233 DOI: 10.1016/j.lfs.2023.122171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
AIMS Parkinson's disease (PD) is a progressive neurodegenerative disorder. The etiology of PD is still elusive but neuroinflammation is proved to be an important contributor. Toll-like receptor 2 (TLR2) involves in the release of several inflammatory cytokines. Whether TLR2 serves as a mediator contributing to the damage of DA system in PD remain unclear. MAIN METHODS Tlr2 knockout (Tlr2-/-) and wild-type (WT) mice were treated with a subacute regimen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). At 3, 7 and 14 days after MPTP injection, the behavioral performance, including the Pole test, the Rotarod test, the Rearing test and the Wire hang test was evaluated. Moreover, the PD-like phenotypes, including dopaminergic degeneration, the activation of glial cells and the α-Syn expression were systematically analyzed in the nigrostriatal pathway. Finally, the composition of gut microbiota in the MPTP-treated groups were assessed. KEY FINDINGS TLR2 deficiency had no obvious impact on the dopaminergic injury at 3 and 7 days following MPTP administration. On the contrary, at 14 days post injection, TLR2 deficiency not only significantly attenuated motor deficits in the Pole test and the Rotarod test, and the nigrostriatal dopaminergic degeneration, but also mitigated α-Syn abnormality, astrocyte activation and neuroinflammation through the suppressed TLR2/MyD88/TRAF6/NF-κB signaling pathways. Additionally, the alteration of gut microbiota was also detected in the mutant mice. SIGNIFICANCE These findings highlight the neuroprotective effect of TLR2-pathways at the late phase in the MPTP-induced PD mouse model.
Collapse
Affiliation(s)
- Yongtao He
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Jiayin Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Hongtian Dong
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yufei Duan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Mei Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| | - Jian Fei
- School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC., Shanghai 201203, China.
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
16
|
Yin S, Ma XY, Sun YF, Yin YQ, Long Y, Zhao CL, Ma JW, Li S, Hu Y, Li MT, Hu G, Zhou JW. RGS5 augments astrocyte activation and facilitates neuroinflammation via TNF signaling. J Neuroinflammation 2023; 20:203. [PMID: 37674228 PMCID: PMC10481574 DOI: 10.1186/s12974-023-02884-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Astrocytes contribute to chronic neuroinflammation in a variety of neurodegenerative diseases, including Parkinson's disease (PD), the most common movement disorder. However, the precise role of astrocytes in neuroinflammation remains incompletely understood. Herein, we show that regulator of G-protein signaling 5 (RGS5) promotes neurodegenerative process through augmenting astrocytic tumor necrosis factor receptor (TNFR) signaling. We found that selective ablation of Rgs5 in astrocytes caused an inhibition in the production of cytokines resulting in mitigated neuroinflammatory response and neuronal survival in animal models of PD, whereas overexpression of Rgs5 had the opposite effects. Mechanistically, RGS5 switched astrocytes from neuroprotective to pro-inflammatory property via binding to the receptor TNFR2. RGS5 also augmented TNFR signaling-mediated pro-inflammatory response by interacting with the receptor TNFR1. Moreover, interrupting RGS5/TNFR interaction by either RGS5 aa 1-108 or small molecular compounds feshurin and butein, suppressed astrocytic cytokine production. We showed that the transcription of astrocytic RGS5 was controlled by transcription factor early B cell factor 1 whose expression was reciprocally influenced by RGS5-modulated TNF signaling. Thus, our study indicates that beyond its traditional role in G-protein coupled receptor signaling, astrocytic RGS5 is a key modulator of TNF signaling circuit with resultant activation of astrocytes thereby contributing to chronic neuroinflammation. Blockade of the astrocytic RGS5/TNFR interaction is a potential therapeutic strategy for neuroinflammation-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Shu Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Xin-Yue Ma
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Ying-Feng Sun
- Center for Brain Disorders Research, Center of Parkinson's Disease, Capital Medical University, Beijing Institute for Brain Disorders, Beijing, 100053, China
| | - Yan-Qing Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Ying Long
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Chun-Lai Zhao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Jun-Wei Ma
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Sen Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yan Hu
- Guangdong Provincial Key Laboratory of Brain Function, Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ming-Tao Li
- Guangdong Provincial Key Laboratory of Brain Function, Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Jia-Wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Center for Brain Science, Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
- Co-Innovation Center of Neuroregeneration, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
17
|
Cui C, Hong H, Shi Y, Zhou Y, Qiao CM, Zhao WJ, Zhao LP, Wu J, Quan W, Niu GY, Wu YB, Li CS, Cheng L, Hong Y, Shen YQ. Vancomycin Pretreatment on MPTP-Induced Parkinson's Disease Mice Exerts Neuroprotection by Suppressing Inflammation Both in Brain and Gut. J Neuroimmune Pharmacol 2023; 18:72-89. [PMID: 35091889 DOI: 10.1007/s11481-021-10047-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/21/2021] [Indexed: 01/02/2023]
Abstract
A growing body of evidence implies that gut microbiota was involved in pathogenesis of Parkinson's disease (PD), but the mechanism is still unclear. The aim of this study is to investigate the effects of antibiotics pretreatment on the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mice. In this study, vancomycin pretreatment was given by gavage once daily with either vancomycin or distilled water for 14 days to mice, then mice were administered with MPTP (20 mg/kg, i.p) for four times in one day to establish an acute PD model. Results show that vancomycin pretreatment significantly improved motor dysfunction of mice in pole and traction tests. Although vancomycin pretreatment had no effect on dopamine (DA) or the process of DA synthesis, it inhibited the metabolism of DA by suppressing the expression of striatal monoamine oxidase B (MAO-B). Furthermore, vancomycin pretreatment reduced the number of astrocytes and microglial cells in the substantia nigra pars compacta (SNpc) to alleviate neuroinflammation, decreased the expression of TLR4/MyD88/NF-κB/TNF-α signaling pathway in both brain and gut. Meanwhile, vancomycin pretreatment changed gut microbiome composition and the levels of fecal short chain fatty acids (SCFAs). The abundance of Akkermansia and Blautia increased significantly after vancomycin pretreatment, which might be related to inflammation and inhibition of TLR4 signaling pathway. In summary, these results demonstrate that the variation of gut microbiota and its metabolites induced by vancomycin pretreatment might decrease dopamine metabolic rate and relieve inflammation in both gut and brain via the microbiota-gut-brain axis in MPTP-induced PD mice. The neuroprotection of vancomycin pretreatment on MPTP-induced Parkinson's disease mice The alterations of gut microbiota and SCFAs induced by vancomycin pretreatment might not only improve motor dysfunction, but also decrease dopamine metabolism and relieve inflammation in both brain and gut via TLR4/MyD88/NF-κB/TNF-α pathway in MPTP-induced PD mice.
Collapse
Affiliation(s)
- Chun Cui
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hui Hong
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yun Shi
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yu Zhou
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Chen-Meng Qiao
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wei-Jiang Zhao
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li-Ping Zhao
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian Wu
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wei Quan
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Gu-Yu Niu
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yi-Bo Wu
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Chao-Sheng Li
- Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yan-Qin Shen
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
18
|
Li Q, Meng LB, Chen LJ, Shi X, Tu L, Zhou Q, Yu JL, Liao X, Zeng Y, Yuan QY. The role of the microbiota-gut-brain axis and intestinal microbiome dysregulation in Parkinson's disease. Front Neurol 2023; 14:1185375. [PMID: 37305758 PMCID: PMC10249504 DOI: 10.3389/fneur.2023.1185375] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is a complex progressive neurodegenerative disease associated with aging. Its main pathological feature is the degeneration and loss of dopaminergic neurons related to the misfolding and aggregation of α-synuclein. The pathogenesis of PD has not yet been fully elucidated, and its occurrence and development process are closely related to the microbiota-gut-brain axis. Dysregulation of intestinal microbiota may promote the damage of the intestinal epithelial barrier, intestinal inflammation, and the upward diffusion of phosphorylated α-synuclein from the enteric nervous system (ENS) to the brain in susceptible individuals and further lead to gastrointestinal dysfunction, neuroinflammation, and neurodegeneration of the central nervous system (CNS) through the disordered microbiota-gut-brain axis. The present review aimed to summarize recent advancements in studies focusing on the role of the microbiota-gut-brain axis in the pathogenesis of PD, especially the mechanism of intestinal microbiome dysregulation, intestinal inflammation, and gastrointestinal dysfunction in PD. Maintaining or restoring homeostasis in the gut microenvironment by targeting the gut microbiome may provide future direction for the development of new biomarkers for early diagnosis of PD and therapeutic strategies to slow disease progression.
Collapse
Affiliation(s)
- Qing Li
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Ling-bing Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Li-jun Chen
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Xia Shi
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Ling Tu
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Qi Zhou
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Jin-long Yu
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Xin Liao
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Yuan Zeng
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Qiao-ying Yuan
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| |
Collapse
|
19
|
García-Rodríguez C, Mujica P, Illanes-González J, López A, Vargas C, Sáez JC, González-Jamett A, Ardiles ÁO. Probenecid, an Old Drug with Potential New Uses for Central Nervous System Disorders and Neuroinflammation. Biomedicines 2023; 11:1516. [PMID: 37371611 DOI: 10.3390/biomedicines11061516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Probenecid is an old uricosuric agent used in clinics to treat gout and reduce the renal excretion of antibiotics. In recent years, probenecid has gained attention due to its ability to interact with membrane proteins such as TRPV2 channels, organic anion transporters, and pannexin 1 hemichannels, which suggests new potential therapeutic utilities in medicine. Some current functions of probenecid include their use as an adjuvant to increase the bioavailability of several drugs in the Central Nervous System (CNS). Numerous studies also suggest that this drug has important neuroprotective, antiepileptic, and anti-inflammatory properties, as evidenced by their effect against neurological and neurodegenerative diseases. In these studies, the use of probenecid as a Panx1 hemichannel blocker to reduce neuroinflammation is highlighted since neuroinflammation is a major trigger for diverse CNS alterations. Although the clinical use of probenecid has declined over the years, advances in its use in preclinical research indicate that it may be useful to improve conventional therapies in the psychiatric field where the drugs used have a low bioavailability, either because of a deficient passage through the blood-brain barrier or a high efflux from the CNS or also a high urinary clearance. This review summarizes the history, pharmacological properties, and recent research uses of probenecid and discusses its future projections as a potential pharmacological strategy to intervene in neurodegeneration as an outcome of neuroinflammation.
Collapse
Affiliation(s)
- Claudia García-Rodríguez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Paula Mujica
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Javiera Illanes-González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Araceli López
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Camilo Vargas
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Juan C Sáez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Arlek González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Álvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Centro Interdisciplinario de Estudios en Salud, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2540064, Chile
| |
Collapse
|
20
|
Bourque M, Morissette M, Soulet D, Di Paolo T. Impact of Sex on Neuroimmune contributions to Parkinson's disease. Brain Res Bull 2023:110668. [PMID: 37196734 DOI: 10.1016/j.brainresbull.2023.110668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/27/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. Inflammation has been observed in both the idiopathic and familial forms of PD. Importantly, PD is reported more often in men than in women, men having at least 1.5- fold higher risk to develop PD than women. This review summarizes the impact of biological sex and sex hormones on the neuroimmune contributions to PD and its investigation in animal models of PD. Innate and peripheral immune systems participate in the brain neuroinflammation of PD patients and is reproduced in neurotoxin, genetic and alpha-synuclein based models of PD. Microglia and astrocytes are the main cells of the innate immune system in the central nervous system and are the first to react to restore homeostasis in the brain. Analysis of serum immunoprofiles in female and male control and PD patients show that a great proportion of these markers differ between male and female. The relationship between CSF inflammatory markers and PD clinical characteristics or PD biomarkers shows sex differences. Conversely, in animal models of PD, sex differences in inflammation are well documented and the beneficial effects of endogenous and exogenous estrogenic modulation in inflammation have been reported. Targeting neuroinflammation in PD is an emerging therapeutic option but gonadal drugs have not yet been investigated in this respect, thus offering new opportunities for sex specific treatments.
Collapse
Affiliation(s)
- Mélanie Bourque
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada.
| | - Marc Morissette
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada.
| | - Denis Soulet
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec (Québec) G1V 0A6, Canada.
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec (Québec) G1V 0A6, Canada.
| |
Collapse
|
21
|
Conte C, Ingrassia A, Breve J, Bol JJ, Timmermans-Huisman E, van Dam AM, Beccari T, van de Berg WDJ. Toll-like Receptor 4 Is Upregulated in Parkinson's Disease Patients and Co-Localizes with pSer129αSyn: A Possible Link with the Pathology. Cells 2023; 12:1368. [PMID: 37408202 DOI: 10.3390/cells12101368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 07/07/2023] Open
Abstract
Growing evidence suggests a crucial role of neuroinflammation in the pathophysiology of Parkinson's disease (PD). Neuroinflammation is linked to the accumulation and aggregation of a-synuclein (αSyn), the primary pathological hallmark of PD. Toll-like receptors 4 (TLR4) can have implications in the development and progression of the pathology. In this study, we analyzed the expression of TLR4 in the substantia nigra (SN) and medial temporal gyrus (GTM) of well-characterized PD patients and age-matched controls. We also assessed the co-localization of TLR4 with pSer129 αSyn. Using qPCR, we observed an upregulation of TLR4 expression in the SN and GTM in PD patients compared to controls, which was accompanied by a reduction in αSyn expression likely due to the depletion of dopaminergic (DA) cells. Additionally, using immunofluorescence and confocal microscopy, we observed TLR4-positive staining and co-localization with pSer129-αSyn in Lewy bodies of DA neurons in the SN, as well as in pyramidal neurons in the GTM of PD donors. Furthermore, we observed a co-localization of TLR4 and Iba-1 in glial cells of both SN and GTM. Our findings provide evidence for the increased expression of TLR4 in the PD brain and suggest that the interaction between TLR4 and pSer129-αSyn could play a role in mediating the neuroinflammatory response in PD.
Collapse
Affiliation(s)
- Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06100 Perugia, Italy
| | - Angela Ingrassia
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - John Breve
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - John J Bol
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Evelien Timmermans-Huisman
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Anne-Marie van Dam
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06100 Perugia, Italy
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
22
|
Yildirim S, Oylumlu E, Ozkan A, Sinen O, Bulbul M, Goksu ET, Ertosun MG, Tanriover G. ZINC (Zn) AND ADIPOSE-DERIVED MESENCHYMAL STEM CELLS (AD-MSCs) ON MPTP-INDUCED PARKINSON'S DISEASE MODEL: A COMPARATIVE EVALUATION OF BEHAVIORAL AND IMMUNOHISTOCHEMICAL RESULTS. Neurotoxicology 2023; 97:1-11. [PMID: 37146888 DOI: 10.1016/j.neuro.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons and sustained neuroinflammation due to microglial activation. Adipose tissue-derived mesenchymal stem cells (AD-MSCs) secrete neuroprotective factors to prevent neuronal damage. Furthermore, Zn regulates stem cell proliferation and differentiation and has immunomodulatory functions. Our in vivo study aimed to investigate whether Zn affects the activities of AD-MSCs in the MPTP-induced mouse model. Male C57BL/6 mice were randomly divided into six groups (n=6): Control, Zn, PD, PD+Zn, PD+(AD-MSC), PD+(AD-MSC)+Zn. MPTP toxin (20mg/kg) was dissolved in saline and intraperitoneally injected into experimental groups for two days with 12h intervals. On the 3rd day, AD-MSCs were given to the right lateral ventricle of the PD+(AD-MSC) and PD+(AD-MSC)+Zn groups by stereotaxic surgery. Then, ZnSO4H2O was administered intraperitoneally for 4 days at 2mg/kg. Seven days post MPTP injection, the motor activities of the mouse were evaluated. Then immunohistochemical analyzes were performed in SNpc. Our results showed that motor activity was lower in Group PD. AD-MSC and Zn administration have improved this impairment. MPTP caused a decrease in TH and BDNF expressions in dopaminergic neurons in Group PD. However, TH and BDNF expressions were more intense in the other groups. MCP-1, TGF-β, and IL-10 expressions increased in administered groups compared to the Group PD. The present study indicates that Zn's individual and combined administration with AD-MSCs reduces neuronal damage in the MPTP-induced mouse model. In addition, anti-inflammatory responses that emerge with Zn and AD-MSCs may have a neuroprotective effect.
Collapse
Affiliation(s)
- Sendegul Yildirim
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey
| | - Ece Oylumlu
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey
| | - Ayse Ozkan
- Izmir Bakircay University, Faculty of Medicine, Department of Physiology, Izmir, Turkey
| | - Osman Sinen
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Mehmet Bulbul
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Ethem Taner Goksu
- Akdeniz University, Faculty of Medicine, Department of Neurosurgery, Antalya, Turkey
| | - Mustafa Gokhan Ertosun
- Akdeniz University, Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Antalya, Turkey
| | - Gamze Tanriover
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey; Akdeniz University, Faculty of Medicine, Department of Medical Biotechnology, Antalya, Turkey.
| |
Collapse
|
23
|
Martínez-Gopar PE, Pérez-Rodríguez MJ, Angeles-López QD, Tristán-López L, González-Espinosa C, Pérez-Severiano F. Toll-Like Receptor 4 Plays a Significant Role in the Biochemical and Neurological Alterations Observed in Two Distinct Mice Models of Huntington's Disease. Mol Neurobiol 2023; 60:2678-2690. [PMID: 36701109 DOI: 10.1007/s12035-023-03234-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/14/2023] [Indexed: 01/27/2023]
Abstract
Toll-like receptors (TLRs) are central players in innate immunity responses. They are expressed in glial cells and neurons, and their overactivation leads to the production of proinflammatory molecules, neuroinflammation, and neural damage associated with many neurodegenerative pathologies, such as Huntington's disease (HD). HD is an inherited disorder caused by a mutation in the gene coding for the protein Huntingtin (Htt). Expression of mutated Htt (mHtt) causes progressive neuronal degeneration characterized by striatal loss of GABAergic neurons, oxidative damage, neuroinflammatory processes, and impaired motor behavior. The main animal models to study HD are the intrastriatal injection of quinolinic acid (QA) and the transgenic B6CBA-Tg (HDexon1)61Gpb/1 J mice (R6/1). Those models mimic neuronal damage and systemic manifestations of HD. The objective of this work was to study the participation of TLR4 in the manifestations of neuronal damage and HD symptoms in the two mentioned models. For this purpose, C57BL6/J and TLR4-KO mice were administered with QA, and after that motor activity, and neuronal and oxidative damages were measured. R6/1 and TLR4-KO were mated to study the effect of low expression of TLR4 on the phenotype manifestation in R6/1 mice. We found that TLR4 is involved in motor activity, and neurological and oxidative damage induced by intrastriatal injection of QA, and the low expression of TLR4 causes a delay in the onset of phenotypic manifestations by the mHtt expression in R6/1 mice. Our results show that TLR4 is involved in both models of HD and focuses then as a therapeutic target for some deleterious reactions in HD.
Collapse
Affiliation(s)
- Pablo E Martínez-Gopar
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Colonia Granjas Coapa, Alcaldía Tlalpan, 14330, Mexico City, CP, Mexico
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico
| | - Marian J Pérez-Rodríguez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Colonia Granjas Coapa, Alcaldía Tlalpan, 14330, Mexico City, CP, Mexico
| | - Quetzalli D Angeles-López
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico
| | - Luis Tristán-López
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Colonia Granjas Coapa, Alcaldía Tlalpan, 14330, Mexico City, CP, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico.
| |
Collapse
|
24
|
Zhang Z, Liu Z, Lv A, Fan C. How Toll-like receptors influence Parkinson's disease in the microbiome-gut-brain axis. Front Immunol 2023; 14:1154626. [PMID: 37207228 PMCID: PMC10189046 DOI: 10.3389/fimmu.2023.1154626] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Recently, a large number of experimenters have found that the pathogenesis of Parkinson's disease may be related to the gut microbiome and proposed the microbiome-gut-brain axis. Studies have shown that Toll-like receptors, especially Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4), are key mediators of gut homeostasis. In addition to their established role in innate immunity throughout the body, research is increasingly showing that the Toll-like receptor 2 and Toll-like receptor 4 signaling pathways shape the development and function of the gut and enteric nervous system. Notably, Toll-like receptor 2 and Toll-like receptor 4 are dysregulated in Parkinson's disease patients and may therefore be identified as the core of early gut dysfunction in Parkinson's disease. To better understand the contribution of Toll-like receptor 2 and Toll-like receptor 4 dysfunction in the gut to early α-synuclein aggregation, we discussed the structural function of Toll-like receptor 2 and Toll-like receptor 4 and signal transduction of Toll-like receptor 2 and Toll-like receptor 4 in Parkinson's disease by reviewing clinical, animal models, and in vitro studies. We also present a conceptual model of the pathogenesis of Parkinson's disease, in which microbial dysbiosis alters the gut barrier as well as the Toll-like receptor 2 and Toll-like receptor 4 signaling pathways, ultimately leading to a positive feedback loop for chronic gut dysfunction, promoting α-synuclein aggregation in the gut and vagus nerve.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China
- Baotou Clinical Medical College, Inner Mongolia Medical University, Baotou, China
| | - Zhihui Liu
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China
- *Correspondence: Zhihui Liu,
| | - Ao Lv
- The First Clinical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chenhui Fan
- Safety Engineering, People’s Public Security University of China, Beijing, China
| |
Collapse
|
25
|
Zhou J, Lin H, Lv T, Hao J, Zhang H, Sun S, Yang J, Chi J, Guo H. Inappropriate Activation of TLR4/NF-κB is a Cause of Heart Failure. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2022. [DOI: 10.15212/cvia.2022.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Significance: Heart failure, a disease with extremely high incidence, is closely associated with inflammation and oxidative stress. The Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway plays an important role in the occurrence and development of heart failure.
Recent advances: Previous studies have shown that TLR4/NF-κB causes heart failure by inducing oxidative stress and inflammation; damaging the endothelia; promoting fibrosis; and inducing myocardial hypertrophy, apoptosis, pyroptosis, and autophagy.
Critical issues: Understanding the pathogenesis of heart failure is essential for the treatment of this disease. In this review, we outline the mechanisms underlying TLR4/NF-κB pathway-mediated heart failure and discuss drugs that alleviate heart failure by regulating the TLR4/NF-κB pathway.
Future directions: During TLR4/NF-κB overactivation, interventions targeting specific receptor antagonists may effectively alleviate heart failure, thus providing a basis for the development of new anti-heart failure drugs.
Collapse
Affiliation(s)
- Jiedong Zhou
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People’s Hospital Shaoxing Hospital, Shaoxing, China
| | - Tingting Lv
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Jinjin Hao
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hanlin Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Shimin Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Juntao Yang
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People’s Hospital Shaoxing Hospital, Shaoxing, China
| | - Hangyuan Guo
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
26
|
Williams GP, Schonhoff AM, Sette A, Lindestam Arlehamn CS. Central and Peripheral Inflammation: Connecting the Immune Responses of Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S129-S136. [PMID: 35754290 PMCID: PMC9535591 DOI: 10.3233/jpd-223241] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inflammation has increasingly become a focus of study in regards to Parkinson’s disease (PD). Moreover, both central and peripheral sources of inflammation have been implicated in the pathogenesis of PD. Central inflammation consisting of activated microglia, astroglia, and T cell responses within the PD central nervous system; and peripheral inflammation referring to activated innate cells and T cell signaling in the enteric nervous system, gastrointestinal tract, and blood. This review will highlight important work that further implicates central and peripheral inflammation in playing a role in PD. We also discuss how these two distant inflammations appear related and how that may be mediated by autoantigenic responses to α-syn.
Collapse
Affiliation(s)
- Gregory P. Williams
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Aubrey M. Schonhoff
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cecilia S. Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
27
|
Squillace S, Salvemini D. Toll-like receptor-mediated neuroinflammation: relevance for cognitive dysfunctions. Trends Pharmacol Sci 2022; 43:726-739. [PMID: 35753845 PMCID: PMC9378500 DOI: 10.1016/j.tips.2022.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 10/17/2022]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) with a well-documented role in the innate and adaptive immune responses. Interestingly, TLR activation has also been linked to several brain functions including neurogenesis and synaptogenesis. Increasing evidence supports TLR involvement in peripheral and central inflammation underlying normal aging and the pathogenesis of clinical conditions characterized by cognitive decline. These include not only major neurodegenerative diseases but also traumatic brain injuries, surgeries, and alcohol consumption- and chemotherapy-induced cognitive impairment. We first summarize the physiological roles of TLRs in the nervous system, and then illustrate the emerging involvement of TLRs in cognitive functions, pointing to these receptors as novel enticing pharmacological targets to develop more efficient drugs for the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology, and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA.
| |
Collapse
|
28
|
Vora U, Vyas VK, Wal P, Saxena B. Effects of eugenol on the behavioral and pathological progression in the MPTP-induced Parkinson's disease mouse model. Drug Discov Ther 2022; 16:154-163. [PMID: 36002316 DOI: 10.5582/ddt.2022.01026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Parkinson's disease (PD) is the world's second most common neurological disorder. Oxidative stress and neuroinflammation play a crucial role in the pathogenesis of PD. Eugenol is a phytochemical with potent antioxidant and anti-inflammatory activity. The present investigation is aimed to study the effect of eugenol in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mouse model of PD and its relationship to antioxidant effect. The effects of seven days of oral pre-treatment and post-treatment with three doses of eugenol (25, 50 and 100 mg/kg/day) were investigated against the MPTP-induced PD mouse model. In addition to the assessment of behavioural parameters using various tests (actophotometer, beam walking test, catalepsy, rearing, rotarod), biochemical parameters including lipid peroxidation and reduced glutathione levels in brain tissues, were also estimated in this study. The binding mode of eugenol in the human myeloid differentiation factor-2 (hMD-2) was also studied. Results showed that MPTP administration in mice resulted in the development of motor dysfunction (impaired motor coordination and hypo locomotion) similar to that of PD in different behavioural studies. Pre-treatment with eugenol reversed motor dysfunction caused by MPTP administration while post-treatment with eugenol at a high dose aggravated the symptoms of akinesia associated with MPTP administration. MPTP resulted in increased lipid peroxidation while decreased reduced glutathione levels in the brains of mice. MPTP-induced increased lipid peroxidation and attenuated levels of reduced glutathione were found to be alleviated with eugenol pre-treatment while augmented with eugenol post-treatment. Eugenol showed a binding affinity of -6.897 kcal/mol against the MD2 coreceptor of toll-like receptor-4 (TLR4). Biochemical, as well as neurobehavioral studies, showed that eugenol is having a protective effect, but does not have a curative effect on PD.
Collapse
Affiliation(s)
- Urmi Vora
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Vivek Kumar Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Pranay Wal
- Department of Pharmacology, Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Bhagawati Saxena
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
29
|
Fathi M, Vakili K, Yaghoobpoor S, Qadirifard MS, Kosari M, Naghsh N, Asgari taei A, Klegeris A, Dehghani M, Bahrami A, Taheri H, Mohamadkhani A, Hajibeygi R, Rezaei Tavirani M, Sayehmiri F. Pre-clinical Studies Identifying Molecular Pathways of Neuroinflammation in Parkinson's Disease: A Systematic Review. Front Aging Neurosci 2022; 14:855776. [PMID: 35912090 PMCID: PMC9327618 DOI: 10.3389/fnagi.2022.855776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/23/2022] [Indexed: 12/09/2022] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by neuroinflammation, formation of Lewy bodies, and progressive loss of dopaminergic neurons in the substantia nigra of the brain. In this review, we summarize evidence obtained by animal studies demonstrating neuroinflammation as one of the central pathogenetic mechanisms of PD. We also focus on the protein factors that initiate the development of PD and other neurodegenerative diseases. Our targeted literature search identified 40 pre-clinical in vivo and in vitro studies written in English. Nuclear factor kappa B (NF-kB) pathway is demonstrated as a common mechanism engaged by neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), as well as the bacterial lipopolysaccharide (LPS). The α-synuclein protein, which plays a prominent role in PD neuropathology, may also contribute to neuroinflammation by activating mast cells. Meanwhile, 6-OHDA models of PD identify microsomal prostaglandin E synthase-1 (mPGES-1) as one of the contributors to neuroinflammatory processes in this model. Immune responses are used by the central nervous system to fight and remove pathogens; however, hyperactivated and prolonged immune responses can lead to a harmful neuroinflammatory state, which is one of the key mechanisms in the pathogenesis of PD.
Collapse
Affiliation(s)
- Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Qadirifard
- Department of Nursing and Midwifery, Islamic Azad University, Tehran, Iran
- Department of Nursing, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Mohammadreza Kosari
- The First Clinical College, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Navid Naghsh
- Department of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Afsaneh Asgari taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| | - Mina Dehghani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ashkan Bahrami
- Faculty of Medicine, Kashan University of Medical Science, Kashan, Iran
| | - Hamed Taheri
- Dental School, Kazan Federal University, Kazan, Russia
| | - Ashraf Mohamadkhani
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramtin Hajibeygi
- Department of Cardiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mostafa Rezaei Tavirani
| | - Fatemeh Sayehmiri
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Fatemeh Sayehmiri
| |
Collapse
|
30
|
Yu Z, Qin G, Ge Z, Li W. Beneficial effect of transient desflurane inhalation on relieving inflammation and reducing signaling induced by MPTP in mice. J Int Med Res 2022; 50:3000605221115388. [PMID: 35915871 PMCID: PMC9350528 DOI: 10.1177/03000605221115388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Objective To determine if the beneficial effects of transient desflurane application
mitigates inflammation and decrease associated signaling induced by
1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) in mice. Methods Mice were induced to develop Parkinson’s disease (PD) by intraperitoneal
injection with MPTP for 20 consecutive days, and validated mice were
randomly allocated to four groups. Collected samples from euthanized mice
were designated for the following analyses: 1) immunohistochemical staining
for positive dopaminergic neurons in the substantia nigra and striatum, 2)
immunofluorescence staining for ionized calcium binding adaptor molecule-1
(Iba1) and glial fibrillary acid protein (GFAP), and 3) western blotting for
p38, p-p38, toll-like receptor 4, and tumor necrosis factor (TNF)-α. Results The inhalation of desflurane for 1 hour ameliorated locomotory dysfunctions
of PD mice by recovering the loss of Iba1- and GFAP-positive dopaminergic
neurons, deactivating microglial cells and astrocytes, and decreasing the
amounts of inflammatory cytokines (TNF-α). Conclusions These findings suggest that transient desflurane inhalation may provide some
benefits for PD through ameliorating inflammation and enhancing locomotor
activity.
Collapse
Affiliation(s)
- Zhiyang Yu
- Department of Anesthesiology, Jinling Hospital, Nanjing Medical University, Nanjing, P.R. China
| | - Guowei Qin
- Department of Anesthesiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, P.R. China
| | - Zhenzhong Ge
- Department of Emergency Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, P.R. China
| | - Weiyan Li
- Department of Anesthesiology, Jinling Hospital, Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
31
|
Heidari A, Yazdanpanah N, Rezaei N. The role of Toll-like receptors and neuroinflammation in Parkinson's disease. J Neuroinflammation 2022; 19:135. [PMID: 35668422 PMCID: PMC9172200 DOI: 10.1186/s12974-022-02496-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/26/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, characterized by motor and non-motor symptoms, significantly affecting patients' life. Pathologically, PD is associated with the extensive degeneration of dopaminergic neurons in various regions of the central nervous system (CNS), specifically the substantia nigra. This neuronal loss is accompanied by the aggregation of misfolded protein, named α-synuclein. MAIN TEXT Recent studies detected several clues of neuroinflammation in PD samples using postmortem human PD brains and various PD animal models. Some evidence of neuroinflammation in PD patients included higher levels of proinflammatory cytokines in serum and cerebrospinal fluid (CSF), presence of activated microglia in various brain regions such as substantia nigra, infiltration of peripheral inflammatory cells in affected brain regions, and altered function of cellular immunity like monocytes phagocytosis defects. On the other side, Toll-like receptors (TLRs) are innate immune receptors primarily located on microglia, as well as other immune and non-immune cells, expressing pivotal roles in recognizing exogenous and endogenous stimuli and triggering inflammatory responses. Most studies indicated an increased expression of TLRs in the brain and peripheral blood cells of PD samples. Besides, this upregulation was associated with excessive neuroinflammation followed by neurodegeneration in affected regions. Therefore, evidence proposed that TLR-mediated neuroinflammation might lead to a dopaminergic neural loss in PD patients. In this regard, TLR2, TLR4, and TLR9 have the most prominent roles. CONCLUSION Although the presence of inflammation in acute phases of PD might have protective effects concerning the clearance of α-synuclein and delaying the disease advancement, the chronic activation of TLRs and neuroinflammation might lead to neurodegeneration, resulting in the disease progression. Therefore, this study aimed to review additional evidence of the contribution of TLRs and neuroinflammation to PD pathogenesis, with the hope that TLRs could serve as novel disease-modifying therapeutic targets in PD patients in the future.
Collapse
Affiliation(s)
- Arash Heidari
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran. .,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Han B, Li X, Ai RS, Deng SY, Ye ZQ, Deng X, Ma W, Xiao S, Wang JZ, Wang LM, Xie C, Zhang Y, Xu Y, Zhang Y. Atmospheric particulate matter aggravates CNS demyelination through involvement of TLR-4/NF-kB signaling and microglial activation. eLife 2022; 11:72247. [PMID: 35199645 PMCID: PMC8893720 DOI: 10.7554/elife.72247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/18/2022] [Indexed: 11/24/2022] Open
Abstract
Atmospheric Particulate Matter (PM) is one of the leading environmental risk factors for the global burden of disease. Increasing epidemiological studies demonstrated that PM plays a significant role in CNS demyelinating disorders; however, there is no direct testimony of this, and yet the molecular mechanism by which the occurrence remains unclear. Using multiple in vivo and in vitro strategies, in the present study we demonstrate that PM exposure aggravates neuroinflammation, myelin injury, and dysfunction of movement coordination ability via boosting microglial pro-inflammatory activities, in both the pathological demyelination and physiological myelinogenesis animal models. Indeed, pharmacological disturbance combined with RNA-seq and ChIP-seq suggests that TLR-4/NF-kB signaling mediated a core network of genes that control PM-triggered microglia pathogenicity. In summary, our study defines a novel atmospheric environmental mechanism that mediates PM-aggravated microglia pathogenic activities, and establishes a systematic approach for the investigation of the effects of environmental exposure in neurologic disorders.
Collapse
Affiliation(s)
- Bing Han
- Shaanxi Normal University, Xi'an, China
| | - Xing Li
- Shaanxi Normal University, Xi'an, China
| | | | | | | | - Xin Deng
- Shaanxi Normal University, Xi'an, China
| | - Wen Ma
- Shaanxi Normal University, Xi'an, China
| | - Shun Xiao
- Shaanxi Normal University, Xi'an, China
| | | | - Li-Mei Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chong Xie
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Shaanxi Normal University, Xi'an, China
| | - Yan Xu
- Shaanxi Normal University, Xi'an, China
| | | |
Collapse
|
33
|
Nguyen LTN, Nguyen HD, Kim YJ, Nguyen TT, Lai TT, Lee YK, Ma HI, Kim YE. Role of NLRP3 Inflammasome in Parkinson's Disease and Therapeutic Considerations. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2117-2133. [PMID: 35988226 PMCID: PMC9661339 DOI: 10.3233/jpd-223290] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/31/2022] [Indexed: 05/23/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, with two main pathological features: misfolded α-synuclein protein accumulation and neurodegeneration. Inflammation has recently been identified as a contributor to a cascade of events that may aggravate PD pathology. Inflammasomes, a group of intracellular protein complexes, play an important role in innate immune responses to various diseases, including infection. In PD research, accumulating evidence suggests that α-synuclein aggregations may activate inflammasomes, particularly the nucleotide-binding oligomerization domain-leucine-rich repeat-pyrin domain-containing 3 (NLRP3) type, which exacerbates inflammation in the central nervous system by secreting proinflammatory cytokines like interleukin (IL)-18 and IL-1β. Afterward, activated NLRP3 triggers local microglia and astrocytes to release additional IL-1β. In turn, the activated inflammatory process may contribute to additional α-synuclein aggregation and cell loss. This review summarizes current research evidence on how the NLRP3 inflammasome contributes to PD pathogenesis, as well as potential therapeutic strategies targeting the NLRP3 inflammasome in PD.
Collapse
Affiliation(s)
- Linh Thi Nhat Nguyen
- Department of Medical Sciences, Graduate School of Hallym University, Chuncheon, Gangwon, South Korea
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, South Korea
| | - Huu Dat Nguyen
- Department of Medical Sciences, Graduate School of Hallym University, Chuncheon, Gangwon, South Korea
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi, South Korea
| | - Tinh Thi Nguyen
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, South Korea
| | - Thuy Thi Lai
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, South Korea
| | - Yoon Kyoung Lee
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, South Korea
| | - Hyeo-il Ma
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, South Korea
- Hallym Neurological Institute, Hallym University, Anyang, Gyeonggi, South Korea
| | - Young Eun Kim
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, South Korea
- Hallym Neurological Institute, Hallym University, Anyang, Gyeonggi, South Korea
| |
Collapse
|
34
|
Inflammasome activation in neurodegenerative diseases. Essays Biochem 2021; 65:885-904. [PMID: 34846519 DOI: 10.1042/ebc20210021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Approximately ten million people are diagnosed with dementia annually since they experience difficulties with memory and thinking skills. Since neurodegenerative diseases are diagnosed late, most of them are difficult to treat. This is due to the increased severity of the disease during the progression when neuroinflammation plays a critical role. The activation of immune cells, especially microglia, plays a crucial role in the development of neurodegenerative diseases. Molecular sensors within these microglia, such as the NLRP3 inflammasome, are activated by signals that represent the hallmarks of neurodegenerative diseases. Here, we first summarize the two activation steps of NLRP3 inflammasome activation. Furthermore, we discuss the key factors that contribute to NLRP3 inflammasome activation in the different neuroinflammatory diseases, like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). The prominent NLRP3 inflammasome triggers include amyloid β and tau oligomers in AD, α-synuclein in PD, and superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP43) in ALS. NLRP3 inhibitor treatment has shown promising results in several preclinical mouse models of AD, PD, and ALS. Finally, we postulate that current understandings underpin the potential for NLRP3 inhibitors as a therapeutic target in neurodegenerative diseases.
Collapse
|
35
|
Somensi N, Lopes SC, Gasparotto J, Mayer Gonçalves R, Tiefensee-Ribeiro C, Oppermann Peixoto D, Ozorio Brum P, Pinho CM, Agnes JP, Santos L, de Oliveira J, Spiller F, Fonseca Moreira JC, Zanotto-Filho A, Prediger RD, Pens Gelain D. Role of toll-like receptor 4 and sex in 6-hydroxydopamine-induced behavioral impairments and neurodegeneration in mice. Neurochem Int 2021; 151:105215. [PMID: 34710535 DOI: 10.1016/j.neuint.2021.105215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/02/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive loss of the nigrostriatal dopaminergic neurons that are associated with motor alterations and non-motor manifestations (such as depression). Neuroinflammation is a process with a critical role in the pathogenesis of PD. In this regard, toll-like receptor 4 (TLR4) is a central mediator of immune response in PD. Moreover, there are gender-related differences in the incidence, prevalence, and clinical features of PD. Therefore, we aimed to elucidate the role of TLR4 in the sex-dependent response to dopaminergic denervation induced by 6-hydroxydopamine (6-OHDA) in mice. Female and male adult wildtype (WT) and TLR4 knockout (TLR4-/-) mice were administered with unilateral injection of 6-OHDA in the dorsal striatum, and non-motor and motor impairments were evaluated for 30 days, followed by biochemistry analysis in the substantia nigra pars compacta (SNc), dorsal striatum, and dorsoventral cortex. Early non-motor impairments (i.e., depressive-like behavior and spatial learning deficits) induced by 6-OHDA were observed in the male WT mice but not in male TLR4-/- or female mice. Motor alterations were observed after administration of 6-OHDA in both strains, and the lack of TLR4 was also related to motor commitment. Moreover, ablation of TLR4 prevented 6-OHDA-induced dopaminergic denervation and microgliosis in the SNc, selectively in female mice. These results reinforced the existence of sex-biased alterations in PD and indicated TLR4 as a promising therapeutic target for the motor and non-motor symptoms of PD, which will help counteract the neuroinflammatory and neurodegenerative processes.
Collapse
Affiliation(s)
- Nauana Somensi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Samantha Cristiane Lopes
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Juciano Gasparotto
- Instituto de Ciências Biomédicas - Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700. CEP: 37130-001. Centro - Alfenas/MG, Alfenas, Minas Gerais, Brazil
| | - Rosângela Mayer Gonçalves
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Camila Tiefensee-Ribeiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Oppermann Peixoto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Ozorio Brum
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cibele Martins Pinho
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Jonathan Paulo Agnes
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Lucas Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jade de Oliveira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernando Spiller
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - José Cláudio Fonseca Moreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alfeu Zanotto-Filho
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Rui Daniel Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Daniel Pens Gelain
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
36
|
Yildirim S, Ozkan A, Aytac G, Agar A, Tanriover G. Role of melatonin in TLR4-mediated inflammatory pathway in the MTPT-induced mouse model. Neurotoxicology 2021; 88:168-177. [PMID: 34808223 DOI: 10.1016/j.neuro.2021.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/08/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022]
Abstract
Neuroinflammation has an essential role in various neurodegenerative diseases including Parkinson's disease (PD). Microglial activation as a result of neuroinflammation exacerbates the pathological consequences of the disease. The toxic effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes alpha-synuclein (α-synuclein) accumulation, which leads to dopaminergic neuron death in the MPTP-induced mouse model. Toll-like receptor 4 (TLR4) stimulates release of cytokine through NF-kB by activating glial cells, thus resulting in the death of dopaminergic neurons. Melatonin has the ability to cross the blood-brain barrier and protect neurons through anti-inflammatory properties. We hypothesized that melatonin could suppress TLR4-mediated neuroinflammation, decrease cytokine release due to the inflammatory response, and reduce dopaminergic neuron loss in the MPTP-induced mouse model. In the MPTP-induced mouse model, we aimed to assess the neuroinflammatory responses caused by TLR4 activation as well as the effect of melatonin on these responses. Three-month-old male C57BL/6 mice were randomly divided into five groups; Control (Group-C), Sham (Group-S), Melatonin-treated (Group-M), MPTP-injected (Group-P), and MPTP + melatonin-injected (Group-P + M). MPTP toxin (20 mg/kg) was dissolved in saline and intraperitoneally (i.p.) injected to mice for two days with 12 h intervals. The total dose per mouse was 80 mg/kg. Melatonin was administered (20 mg/kg) intraperitoneally to Group-M and Group-P + M twice a day for five days. Eight days after starting the experiment, the motor activities of mice were evaluated by locomotor activity tests. The effects on dopamine neurons in the SNPc was determined by tyrosine hydroxylase (TH) immunohistochemistry. TLR4, α-synuclein, and p65 expression was evaluated by immunostaining as well. The amount of TNF-alpha in the total brain was evaluated by western blot analysis. In our results seen that locomotor activity was lower in Group-P compared to Group-C. However, melatonin administration was improved this impairment. MPTPcaused decrease in TH immuno-expression in dopaminergic neurons in Group-P. TLR4 (p < 0.001), α-synuclein (p < 0.001), and p65 (p < 0.01) immuno-expressions were also decreased in Group-P+M compared to Group-P (using MPTP). TNF-α expression was lower in Group-C, Group-S, Group-M, and Group-P+M, when compared to Group-P (p < 0.0001) due to the absence of inflammatory response. In conclusion, our study revealed that melatonin administration reduced α-synuclein aggregation and TLR4-mediated inflammatory response in the MPTP-induced mouse model.
Collapse
Affiliation(s)
- Sendegul Yildirim
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey
| | - Ayse Ozkan
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Gunes Aytac
- TOBB University of Economics & Technology, Faculty of Medicine, Department of Anatomy, Ankara, Turkey; University of Hawai'i at Mānoa, John A. Burns School of Medicine, Department of Anatomy, Biochemistry & Physiology, Hawaii, USA
| | - Aysel Agar
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Gamze Tanriover
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey; Akdeniz University, Faculty of Medicine, Department of Medical Biotechnology, Antalya, Turkey.
| |
Collapse
|
37
|
Gorecki AM, Anyaegbu CC, Anderton RS. TLR2 and TLR4 in Parkinson's disease pathogenesis: the environment takes a toll on the gut. Transl Neurodegener 2021; 10:47. [PMID: 34814947 PMCID: PMC8609261 DOI: 10.1186/s40035-021-00271-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is an incurable, devastating disorder that is characterized by pathological protein aggregation and neurodegeneration in the substantia nigra. In recent years, growing evidence has implicated the gut environment and the gut-brain axis in the pathogenesis and progression of PD, especially in a subset of people who exhibit prodromal gastrointestinal dysfunction. Specifically, perturbations of gut homeostasis are hypothesized to contribute to α-synuclein aggregation in enteric neurons, which may spread to the brain over decades and eventually result in the characteristic central nervous system manifestations of PD, including neurodegeneration and motor impairments. However, the mechanisms linking gut disturbances and α-synuclein aggregation are still unclear. A plethora of research indicates that toll-like receptors (TLRs), especially TLR2 and TLR4, are critical mediators of gut homeostasis. Alongside their established role in innate immunity throughout the body, studies are increasingly demonstrating that TLR2 and TLR4 signalling shapes the development and function of the gut and the enteric nervous system. Notably, TLR2 and TLR4 are dysregulated in patients with PD, and may thus be central to early gut dysfunction in PD. To better understand the putative contribution of intestinal TLR2 and TLR4 dysfunction to early α-synuclein aggregation and PD, we critically discuss the role of TLR2 and TLR4 in normal gut function as well as evidence for altered TLR2 and TLR4 signalling in PD, by reviewing clinical, animal model and in vitro research. Growing evidence on the immunological aetiology of α-synuclein aggregation is also discussed, with a focus on the interactions of α-synuclein with TLR2 and TLR4. We propose a conceptual model of PD pathogenesis in which microbial dysbiosis alters the permeability of the intestinal barrier as well as TLR2 and TLR4 signalling, ultimately leading to a positive feedback loop of chronic gut dysfunction promoting α-synuclein aggregation in enteric and vagal neurons. In turn, α-synuclein aggregates may then migrate to the brain via peripheral nerves, such as the vagal nerve, to contribute to neuroinflammation and neurodegeneration typically associated with PD.
Collapse
Affiliation(s)
- Anastazja M Gorecki
- School of Biological Science, University of Western Australia, Crawley, WA, Australia.
- Neurodegenerative Disorders Research Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.
| | - Chidozie C Anyaegbu
- Curtin Health Innovation Research Institute, Ralph and Patricia Sarich Neuroscience Research Institute, Curtin University, Nedlands, WA, Australia
| | - Ryan S Anderton
- Faculty of Medicine, Nursing and Midwifery and Faculty of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia
- School of Nursing, Midwifery, Health Sciences and Physiotherapy, University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
38
|
Lee JW, Chun W, Lee HJ, Kim SM, Min JH, Kim DY, Kim MO, Ryu HW, Lee SU. The Role of Microglia in the Development of Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9101449. [PMID: 34680566 PMCID: PMC8533549 DOI: 10.3390/biomedicines9101449] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 01/15/2023] Open
Abstract
Microglia play an important role in the maintenance and neuroprotection of the central nervous system (CNS) by removing pathogens, damaged neurons, and plaques. Recent observations emphasize that the promotion and development of neurodegenerative diseases (NDs) are closely related to microglial activation. In this review, we summarize the contribution of microglial activation and its associated mechanisms in NDs, such as epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), based on recent observations. This review also briefly introduces experimental animal models of epilepsy, AD, PD, and HD. Thus, this review provides a better understanding of microglial functions in the development of NDs, suggesting that microglial targeting could be an effective therapeutic strategy for these diseases.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| |
Collapse
|
39
|
Page MJ, Pretorius E. Platelet Behavior Contributes to Neuropathologies: A Focus on Alzheimer's and Parkinson's Disease. Semin Thromb Hemost 2021; 48:382-404. [PMID: 34624913 DOI: 10.1055/s-0041-1733960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The functions of platelets are broad. Platelets function in hemostasis and thrombosis, inflammation and immune responses, vascular regulation, and host defense against invading pathogens, among others. These actions are achieved through the release of a wide set of coagulative, vascular, inflammatory, and other factors as well as diverse cell surface receptors involved in the same activities. As active participants in these physiological processes, platelets become involved in signaling pathways and pathological reactions that contribute to diseases that are defined by inflammation (including by pathogen-derived stimuli), vascular dysfunction, and coagulation. These diseases include Alzheimer's and Parkinson's disease, the two most common neurodegenerative diseases. Despite their unique pathological and clinical features, significant shared pathological processes exist between these two conditions, particularly relating to a central inflammatory mechanism involving both neuroinflammation and inflammation in the systemic environment, but also neurovascular dysfunction and coagulopathy, processes which also share initiation factors and receptors. This triad of dysfunction-(neuro)inflammation, neurovascular dysfunction, and hypercoagulation-illustrates the important roles platelets play in neuropathology. Although some mechanisms are understudied in Alzheimer's and Parkinson's disease, a strong case can be made for the relevance of platelets in neurodegeneration-related processes.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| |
Collapse
|
40
|
Zhong Z, Chen W, Gao H, Che N, Xu M, Yang L, Zhang Y, Ye M. Fecal Microbiota Transplantation Exerts a Protective Role in MPTP-Induced Parkinson's Disease via the TLR4/PI3K/AKT/NF-κB Pathway Stimulated by α-Synuclein. Neurochem Res 2021; 46:3050-3058. [PMID: 34347266 DOI: 10.1007/s11064-021-03411-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 01/15/2023]
Abstract
Gut microbiota is closely related to the Parkinson's disease (PD) pathogenesis. Additionally, aggregation of α-synuclein (α-syn) is central to PD pathogenesis. Here we identified the further mechanisms of gut microbiota in PD. A mouse model with PD was established via injection of MPTP. Normal or MPTP-induced PD like animals were treated with FMT from healthy normal mice. Pole test and traction test were performed to examine the effects of FMT on motor function of PD mice. Fecal SCFAs were assessed by gas chromatography-mass spectrometry. The α-syn level in the substantia nigra pars compacta (SN) of mice was measured using western blot. Dopaminergic neurons and microglial activation in the SN were analyzed by immunohistochemistry (IHC) and immunofluorescence (IF) staining. FMT alleviated physical impairment, decreased fecal SCFAs in a mouse model of PD. Additionally, FMT decreased the expression of α-syn, as well as inhibited the activation of microglia in the SN, and blocked the TLR4/PI3K/AKT/NF-κB signaling in the SN and striatum. FMT could protect mice against PD via suppressing α-syn expression and inactivating the TLR4/PI3K/AKT/NF-κB signaling.
Collapse
Affiliation(s)
- Zhe Zhong
- Department of Neurology, Affiliated BenQ Hospital of Nanjing Medical University, No. 71, Hexi Street, Jianye District, 210019, Nanjing, Jiangsu, China
| | - Weijie Chen
- Department of Neurology, Affiliated BenQ Hospital of Nanjing Medical University, No. 71, Hexi Street, Jianye District, 210019, Nanjing, Jiangsu, China
| | - Huan Gao
- Department of Neurology, Affiliated BenQ Hospital of Nanjing Medical University, No. 71, Hexi Street, Jianye District, 210019, Nanjing, Jiangsu, China
| | - Ningning Che
- Department of Neurology, Affiliated BenQ Hospital of Nanjing Medical University, No. 71, Hexi Street, Jianye District, 210019, Nanjing, Jiangsu, China
| | - Min Xu
- Department of Neurology, Affiliated BenQ Hospital of Nanjing Medical University, No. 71, Hexi Street, Jianye District, 210019, Nanjing, Jiangsu, China
| | - Lanqing Yang
- Department of Neurology, Affiliated BenQ Hospital of Nanjing Medical University, No. 71, Hexi Street, Jianye District, 210019, Nanjing, Jiangsu, China
| | - Yingfang Zhang
- Department of Neurology, Affiliated BenQ Hospital of Nanjing Medical University, No. 71, Hexi Street, Jianye District, 210019, Nanjing, Jiangsu, China
| | - Min Ye
- Department of Neurology, Affiliated BenQ Hospital of Nanjing Medical University, No. 71, Hexi Street, Jianye District, 210019, Nanjing, Jiangsu, China.
| |
Collapse
|
41
|
Treadmill exercise alleviates neuronal damage by suppressing NLRP3 inflammasome and microglial activation in the MPTP mouse model of Parkinson's disease. Brain Res Bull 2021; 174:349-358. [PMID: 34224819 DOI: 10.1016/j.brainresbull.2021.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022]
Abstract
Treadmill exercise has been recognized as an effectively therapeutic strategy for Parkinson's disease (PD). However, its exact molecular mechanism of promoting PD remain unclear. Recently, the NLRP3 inflammasome is considered to play a critical role in the pathogenesis of PD. In this study, we investigated whether NLRP3 inflammasome was involved in treadmill exercise-induced neuroprotection and anti-inflammation effect in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. 8-week-old male mice (C57BL/6 strain) were divided into four groups: Control, MPTP, MPTP + EX and EX. MPTP was intraperitoneally injected into mice to establish chronic PD model. The open-field test and pole test were used to assess motor function. The results showed that treadmill exercise significantly alleviated motor dysfunction and dopaminergic neuron degeneration induced by MPTP. In addition, we also found that treadmill exercise suppressed MPTP-triggered microglia activation and the co-localization of NLRP3+/Iba-1+ cells in the substantia nigra. These effects were associated with suppression NLRP3 inflammasome via down-regulation of TLR4/MyD88/NF-κB pathway. Overall, our study demonstrated that treadmill exercise could effectively alleviates neuronal damage via inhibition of NLRP3 inflammasome and microglial activation in MPTP-induced PD mouse model.
Collapse
|
42
|
Chen MM, Hu ZL, Ding JH, Du RH, Hu G. Astrocytic Kir6.1 deletion aggravates neurodegeneration in the lipopolysaccharide-induced mouse model of Parkinson's disease via astrocyte-neuron cross talk through complement C3-C3R signaling. Brain Behav Immun 2021; 95:310-320. [PMID: 33838249 DOI: 10.1016/j.bbi.2021.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/19/2021] [Accepted: 04/03/2021] [Indexed: 12/17/2022] Open
Abstract
Complement pathway over-activation has been implicated in a variety of neurological diseases. However, the signaling pathways governing astrocytic complement activation in Parkinson's disease (PD) are poorly understood. Kir6.1, a pore-forming subunit of ATP-sensitive potassium (K-ATP) channel, is prominently expressed in astrocytes and exhibits anti-inflammatory effects. Therefore, we hypothesize that Kir6.1/K-ATP channel may regulate astrocytic complement activation in the pathogenesis of PD. In this study, astrocytic Kir6.1 knockout (KO) mice were used to examine the effect of astrocytic Kir6.1/K-ATP channel on astrocytic complement activation triggered by the lipopolysaccharide (LPS). Here, we found that astrocytic Kir6.1 KO mice showed more dopaminergic neuron loss and more astrocyte reactivity in substantia nigra compacta than controls. We also found that astrocytic Kir6.1 KO increased the expression of complement C3 in astrocytes in LPS-induced mouse model of PD. Mechanistically, astrocytic Kir6.1 KO promoted astroglial NF-κB activation to elicit extracellular release of C3, which in turn interacted with neuronal C3aR to induce neuron death. Blocking complement function by NF-κB inhibitor or C3aR antagonist rescued the aggravated neuron death induced by Kir6.1 KO. Collectively, our findings reveal that astrocytic Kir6.1/K-ATP channel prevents neurodegeneration in PD via astrocyte-neuron cross talk through NF-κB/C3/C3aR signaling and suggest that targeting astroglial Kir6.1/K-ATP channel-NF-κB-C3-neuronal C3aR signaling represents a novel therapeutic strategy for PD.
Collapse
Affiliation(s)
- Miao-Miao Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Zhao-Li Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Jian-Hua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Ren-Hong Du
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China.
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China; Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
43
|
Custodia A, Aramburu-Núñez M, Correa-Paz C, Posado-Fernández A, Gómez-Larrauri A, Castillo J, Gómez-Muñoz A, Sobrino T, Ouro A. Ceramide Metabolism and Parkinson's Disease-Therapeutic Targets. Biomolecules 2021; 11:945. [PMID: 34202192 PMCID: PMC8301871 DOI: 10.3390/biom11070945] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Ceramide is a bioactive sphingolipid involved in numerous cellular processes. In addition to being the precursor of complex sphingolipids, ceramides can act as second messengers, especially when they are generated at the plasma membrane of cells. Its metabolic dysfunction may lead to or be a consequence of an underlying disease. Recent reports on transcriptomics and electrospray ionization mass spectrometry analysis have demonstrated the variation of specific levels of sphingolipids and enzymes involved in their metabolism in different neurodegenerative diseases. In the present review, we highlight the most relevant discoveries related to ceramide and neurodegeneration, with a special focus on Parkinson's disease.
Collapse
Affiliation(s)
- Antía Custodia
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Marta Aramburu-Núñez
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Clara Correa-Paz
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Adrián Posado-Fernández
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Ana Gómez-Larrauri
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48980 Bilbao, Spain; (A.G.-L.); (A.G.-M.)
- Respiratory Department, Cruces University Hospital, Barakaldo, 48903 Bizkaia, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Antonio Gómez-Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48980 Bilbao, Spain; (A.G.-L.); (A.G.-M.)
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Alberto Ouro
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| |
Collapse
|
44
|
Oliveira SR, Dionísio PA, Gaspar MM, Correia Guedes L, Coelho M, Rosa MM, Ferreira JJ, Amaral JD, Rodrigues CMP. miR-335 Targets LRRK2 and Mitigates Inflammation in Parkinson's Disease. Front Cell Dev Biol 2021; 9:661461. [PMID: 34211970 PMCID: PMC8239393 DOI: 10.3389/fcell.2021.661461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
Parkinson’s disease (PD) is mainly driven by dopaminergic neuronal degeneration in the substantia nigra pars compacta accompanied by chronic neuroinflammation. Despite being mainly sporadic, approximately 10% of all cases are defined as heritable forms of PD, with mutations in the leucine-rich repeat kinase (LRRK2) gene being the most frequent known cause of familial PD. MicroRNAs (miRNAs or miRs), including miR-335, are frequently deregulated in neurodegenerative diseases, such as PD. Here, we aimed to dissect the protective role of miR-335 during inflammation and/or neurodegenerative events in experimental models of PD. Our results showed that miR-335 is significantly downregulated in different PD-mimicking conditions, including BV2 microglia cells stimulated with lipopolysaccharide (LPS) and/or overexpressing wild-type LRRK2. Importantly, these results were confirmed in serum of mice injected with 1-methyl-1-4-phenyl-1,2,3,6-tetrahydripyridine hydrochloride (MPTP), and further validated in patients with idiopathic PD (iPD) and those harboring mutations in LRRK2 (LRRK2-PD), thus corroborating potential clinical relevance. Mechanistically, miR-335 directly targeted LRRK2 mRNA. In the BV2 and N9 microglia cell lines, miR-335 strongly counteracted LPS-induced proinflammatory gene expression, and downregulated receptor interacting protein 1 (RIP1) and RIP3, two important players of necroptotic and inflammatory signaling pathways. Further, miR-335 inhibited LPS-mediated ERK1/2 activation. LRRK2-Wt-induced proinflammatory gene expression was also significantly reduced by miR-335 overexpression. Finally, in SH-SY5Y neuroblastoma cells, miR-335 decreased the expression of pro-inflammatory genes triggered by α-synuclein. In conclusion, we revealed novel roles for miR-335 in both microglia and neuronal cells that strongly halt the effects of classical inflammatory stimuli or LRRK2-Wt overexpression, thus attenuating chronic neuroinflammation.
Collapse
Affiliation(s)
- Sara R Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro A Dionísio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria M Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Leonor Correia Guedes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Department of Neuroscience and Mental Health, Neurology, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Miguel Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Department of Neuroscience and Mental Health, Neurology, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Mário M Rosa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Department of Neuroscience and Mental Health, Neurology, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal.,Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim J Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joana D Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
45
|
Liu X, Liu S, Tang Y, Pu Z, Xiao H, Gao J, Yin Q, Jia Y, Bai Q. Intragastric Administration of Casein Leads to Nigrostriatal Disease Progressed Accompanied with Persistent Nigrostriatal-Intestinal Inflammation Activited and Intestinal Microbiota-Metabolic Disorders Induced in MPTP Mouse Model of Parkinson's Disease. Neurochem Res 2021; 46:1514-1539. [PMID: 33719004 DOI: 10.1007/s11064-021-03293-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Gut microbial dysbiosis and alteration of gut microbiota composition in Parkinson's disease (PD) have been increasingly reported, no recognized therapies are available to halt or slow progression of PD and more evidence is still needed to illustrate its causative impact on gut microbiota and PD and mechanisms for targeted mitigation. Epidemiological evidence supported an association between milk intake and a higher incidence of Parkinson's disease (PD), questions have been raised about prospective associations between dietary factors and the incidence of PD. Here, we investigated the significance of casein in the development of PD. The mice were given casein (6.75 g/kg i.g.) for 21 days after MPTP (25 mg/kg i.p. × 5 days) treatment, the motor function, dopaminergic neurons, inflammation, gut microbiota and fecal metabolites were observed. The experimental results revealed that the mice with casein gavage after MPTP treatment showed a persisted dyskinesia, the content of dopamine in striatum and the expression of TH in midbrain and ileum were decreased, the expression of Iba-1, CD4, IL-22 in midbrain and ileum increased continuously with persisted intestinal histopathology and intestinal barrier injury. Decreased intestinal bile secretion in addition with abnormal digestion and metabolism of carbohydrate, lipids and proteins were found, whereas these pathological status for the MPTP mice without casein intake had recovered after 24 days, no significant differences were observed with regard to only treated with casein. Our study demonstrates that intestinal pathologic injury, intestinal dysbacteriosis and metabolism changes promoted by casein in MPTP mice ultimately exacerbated the lesions to dopaminergic neurons.
Collapse
Affiliation(s)
- Xinrong Liu
- School of Public Health and Management, Chongqing Medical University, 1Yi Xue Yuan Road, Chongqing, 400016, P.R. China
| | - Shuya Liu
- School of Public Health and Management, Chongqing Medical University, 1Yi Xue Yuan Road, Chongqing, 400016, P.R. China
| | - Yong Tang
- Chongqing Orthopedics Hospital of Traditional Chinese Medicine, Chongqing, 400039, P.R. China
| | - Zhengjia Pu
- School of Public Health and Management, Chongqing Medical University, 1Yi Xue Yuan Road, Chongqing, 400016, P.R. China
| | - Hong Xiao
- School of Public Health and Management, Chongqing Medical University, 1Yi Xue Yuan Road, Chongqing, 400016, P.R. China
| | - Jieying Gao
- School of Public Health and Management, Chongqing Medical University, 1Yi Xue Yuan Road, Chongqing, 400016, P.R. China
| | - Qi Yin
- School of Public Health and Management, Chongqing Medical University, 1Yi Xue Yuan Road, Chongqing, 400016, P.R. China
| | - Yan Jia
- School of Public Health and Management, Chongqing Medical University, 1Yi Xue Yuan Road, Chongqing, 400016, P.R. China
| | - Qunhua Bai
- School of Public Health and Management, Chongqing Medical University, 1Yi Xue Yuan Road, Chongqing, 400016, P.R. China.
| |
Collapse
|
46
|
Vasconcelos AR, da Paixão AG, Kinoshita PF, Orellana AM, Scavone C, Kawamoto EM. Toll-like Receptor 4 Signaling is Critical for the Adaptive Cellular Stress Response Effects Induced by Intermittent Fasting in the Mouse Brain. Neuroscience 2021; 465:142-153. [PMID: 33957205 DOI: 10.1016/j.neuroscience.2021.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Among different kinds of dietary energy restriction, intermittent fasting (IF) has been considered a dietary regimen which causes a mild stress to the organism. IF can stimulate proteins and signaling pathways related to cell stress that can culminate in the increase of the body resistance to severe stress conditions. Energy intake reduction induced by IF can induce modulation of receptors, kinases, and phosphatases, which in turn can modulate the activation of transcription factors such as NF-E2-related factor 2 (NRF2) and cAMP response element-binding (CREB) which regulate the transcription of genes related to the translation of proteins such as growth factors: brain-derived neurotrophic factor (BDNF), chaperone proteins: heat shock proteins (HSP), and so on. It has been shown that toll-like receptors (TLRs) are important molecules in innate immune response which are present not only in the periphery but also in neurons and glial cells. In central nervous system, TLRs can exert functions related to set up responses to infection, as well as influence neural progenitor cell proliferation and differentiation, being involved in cognitive parameters such as learning and memory. Little is known about the involvement of TLR4 on the beneficial effects induced by IF protocol. The present work investigated the effects of IF on memory and on the signaling mechanisms associated with NRF2 and CREB in Tlr4 knockout mice. The results suggest that TLR4 participates in the modulatory effects of IF on oxidative stress levels, on the transcription factors CREB and NRF2, and on BDNF and HSP90 expressions in hippocampus.
Collapse
Affiliation(s)
- Andrea R Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-900, Brazil
| | - Amanda G da Paixão
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-900, Brazil
| | - Paula F Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-900, Brazil
| | - Ana M Orellana
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-900, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-900, Brazil
| | - Elisa M Kawamoto
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-900, Brazil.
| |
Collapse
|
47
|
Ma X, Wang Y, Yin H, Hua L, Zhang X, Xiao J, Yuan Q, Wang S, Liu Y, Zhang S, Wang Y. Down-regulated long non-coding RNA RMST ameliorates dopaminergic neuron damage in Parkinson's disease rats via regulation of TLR/NF-κB signaling pathway. Brain Res Bull 2021; 174:22-30. [PMID: 33933526 DOI: 10.1016/j.brainresbull.2021.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/04/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Current treatment and prognosis of Parkinson's disease (PD) are not ideal. This study explored the mechanism of long non-coding RNA (lncRNA) rhabdomyosarcoma 2-associated transcript (RMST) in dopaminergic (DA) neuron damage in PD rats. METHODS PD rats were modeled and injected with RMST silence or overexpression vectors to figure out its roles in oxidative stress, the apoptosis of DA neurons in brain substantia nigra (SN), and neurobehavioral activities of PD rats. Tyrosine hydroxylase (TH), synaptophysin (SYN), glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule (Iba-1) in SN were detected. RMST and Toll-like receptor (TLR)/nuclear factor kappa B (NF-κB) pathway-related factors were detected. RESULTS RMST expression in brain SN of rats, TLR2, TLR4 expression in neurons and NF-κB expression in cell nucleus were increased. Silenced RMST improved the neurobehavioral activities, depressed oxidative stress and neuronal apoptosis, increased TH and SYN expression, and reduced the activation degree of glial cells in SN and the inflammatory response via reducing GFAP and Iba-1. Moreover, reduced RMST reduced TLR2 and TLR4 expression in neurons and NF-κB expression in cell nucleus in PD rats. CONCLUSION Inhibited RMST attenuates DA neuron damage in PD rats, which may be implicated with TLR/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xuelian Ma
- Neurology Department, The 960th Hospital of the PLA, Zibo 255300, Shandong, China
| | - Yutong Wang
- Qilu Medical University, Zibo 255300, Shandong, China
| | - Honglei Yin
- Neurology Department, The 960th Hospital of the PLA, Zibo 255300, Shandong, China
| | - Linlin Hua
- Neurology Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| | - Xiaolei Zhang
- Neurology Department, The 960th Hospital of the PLA, Zibo 255300, Shandong, China
| | - Jianhao Xiao
- Neurology Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| | - Qian Yuan
- Neurology Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| | - Shanshan Wang
- Neurology Department, The 960th Hospital of the PLA, Zibo 255300, Shandong, China
| | - Yajun Liu
- Neurology Department, The 960th Hospital of the PLA, Zibo 255300, Shandong, China
| | - Simiao Zhang
- Neurology Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| | - Yunliang Wang
- Neurology Department, The 960th Hospital of the PLA, Zibo 255300, Shandong, China; Neurology Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China.
| |
Collapse
|
48
|
Kim C, Kwon S, Iba M, Spencer B, Rockenstein E, Mante M, Adame A, Shin SJ, Fields JA, Rissman RA, Lee SJ, Masliah E. Effects of innate immune receptor stimulation on extracellular α-synuclein uptake and degradation by brain resident cells. Exp Mol Med 2021; 53:281-290. [PMID: 33594256 PMCID: PMC8080790 DOI: 10.1038/s12276-021-00562-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 01/19/2023] Open
Abstract
Synucleinopathies are age-related neurological disorders characterized by the progressive deposition of α-synuclein (α-syn) aggregates and include Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). Although cell-to-cell α-syn transmission is thought to play a key role in the spread of α-syn pathology, the detailed mechanism is still unknown. Neuroinflammation is another key pathological feature of synucleinopathies. Previous studies have identified several immune receptors that mediate neuroinflammation in synucleinopathies, such as Toll-like receptor 2 (TLR2). However, the species of α-syn aggregates varies from study to study, and how different α-syn aggregate species interact with innate immune receptors has yet to be addressed. Therefore, we investigated whether innate immune receptors can facilitate the uptake of different species of α-syn aggregates. Here, we examined whether stimulation of TLRs could modulate the cellular uptake and degradation of α-syn fibrils despite a lack of direct interaction. We observed that stimulation of TLR2 in vitro accelerated α-syn fibril uptake in neurons and glia while delaying the degradation of α-syn in neurons and astrocytes. Internalized α-syn was rapidly degraded in microglia regardless of whether TLR2 was stimulated. However, cellular α-syn uptake and degradation kinetics were not altered by TLR4 stimulation. In addition, upregulation of TLR2 expression in a synucleinopathy mouse model increased the density of Lewy-body-like inclusions and induced morphological changes in microglia. Together, these results suggest that cell type-specific modulation of TLR2 may be a multifaceted and promising therapeutic strategy for synucleinopathies; inhibition of neuronal and astroglial TLR2 decreases pathogenic α-syn transmission, but activation of microglial TLR2 enhances microglial extracellular α-syn clearance. New treatments for neurological disorders could target immune receptors associated with the build-up of protein aggregates in neurons. Synucleinopathies are characterized by abnormal deposition of α-synuclein, but the mechanism how α-synuclein spreads between cells is still elusive. Changyoun Kim and Eliezer Masliah at the National Institutes of Health in Bethesda, USA, and co-workers investigated indirect role of TLR2 in α-synuclein spreading. TLR2 has been known to interact with β-sheet-enriched oligomeric forms of α-synuclein, but not with fibrilar forms of α-synuclein (fibril). Herein, the authors found that TLR2 stimulation accelerated the uptake of fibrils in both neurons and glial cells, delayed degradation of internalized fibrils and worsen α-synuclein pathology in mouse brains. The study provides indirect modulation of α-synuclein spearding via innate immune receptor which might be a potential therapy for synucleinopathies.
Collapse
Affiliation(s)
- Changyoun Kim
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Somin Kwon
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michiyo Iba
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian Spencer
- Department of Neurosciences, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Edward Rockenstein
- Department of Neurosciences, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Michael Mante
- Department of Neurosciences, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Anthony Adame
- Department of Neurosciences, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Soo Jean Shin
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Jerel A Fields
- Department of Psychiatry, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Robert A Rissman
- Department of Neurosciences, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA. .,Division of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
49
|
Han NR, Kim YK, Ahn S, Hwang TY, Lee H, Park HJ. A Comprehensive Phenotype of Non-motor Impairments and Distribution of Alpha-Synuclein Deposition in Parkinsonism-Induced Mice by a Combination Injection of MPTP and Probenecid. Front Aging Neurosci 2021; 12:599045. [PMID: 33519420 PMCID: PMC7838388 DOI: 10.3389/fnagi.2020.599045] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is characterized by non-motor symptoms as well as motor deficits. The non-motor symptoms rarely appear individually and occur simultaneously with motor deficits or independently. However, a comprehensive research on the non-motor symptoms using an experimental model of PD remains poorly understood. The aim of the current study is to establish a chronic mouse model of PD mimicking the comprehensive non-motor symptoms of human PD by injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probenecid (MPTP/p). The non-motor and motor symptoms were evaluated by performing buried food, short-term olfactory memory, hot plate, open field, tail suspension, Y maze, novel object recognition, bead expulsion, one-h stool collection, rotarod, rearing, catalepsy, and akinesia tests after 10 injections of MPTP/p into mice. The expression levels of α-synuclein, glial fibrillary acidic protein (GFAP), tyrosine hydroxylase (TH) or DJ-1 were analyzed by Western blotting or immunostaining. MPTP/p-treated mice achieved to reproduce the key features of non-motor symptoms including olfactory deficit, thermal hyperalgesia, anxiety, depression, cognitive decline, and gastrointestinal dysfunction in addition to motor deficits. The MPTP/p-treated mice also showed the high levels of α-synuclein and low levels of TH and DJ-1 in striatum, substantia nigra, olfactory bulb, hippocampus, amygdala, prefrontal cortex, locus coeruleus, or colon. In addition, the expression levels of phosphorylated-α-synuclein and GFAP were elevated in the striatum and substantia nigra in the MPTP/p-treated mice. Taken together, our study clarifies that the chronic MPTP/p-treated mice have a variety of non-motor dysfunctions as well as motor abnormalities by α-synuclein overexpression and dopaminergic depletion. Therefore, the study of comprehensive phenotypes of non-motor symptoms in one PD model would advance in-depth understandings of neuropathological alternations and contribute to future strategies for PD treatment.
Collapse
Affiliation(s)
- Na-Ra Han
- Integrative Parkinson's Disease Research Group, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea.,Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Yu-Kang Kim
- Integrative Parkinson's Disease Research Group, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea.,Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sora Ahn
- Integrative Parkinson's Disease Research Group, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea
| | - Tae-Yeon Hwang
- Integrative Parkinson's Disease Research Group, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea.,Department of Meridian & Acupoints, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyejung Lee
- Department of Meridian & Acupoints, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hi-Joon Park
- Integrative Parkinson's Disease Research Group, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea.,Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
50
|
Cannon T, Sinha A, Trudeau LE, Maurice CF, Gruenheid S. Characterization of the intestinal microbiota during Citrobacter rodentium infection in a mouse model of infection-triggered Parkinson's disease. Gut Microbes 2020; 12:1-11. [PMID: 33064969 PMCID: PMC7575009 DOI: 10.1080/19490976.2020.1830694] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that has been shown to be influenced by the intestinal milieu. The gut microbiota is altered in PD patients, and murine studies have begun suggesting a causative role for the gut microbiota in progression of PD. We have previously shown that repeated infection with the intestinal murine pathogen Citrobacter rodentium resulted in the development of PD-like pathology in Pink1-/- mice compared to wild-type littermates. This addendum aims to expand this work by characterizing the gut microbiota during C. rodentium infection in our Pink1-/- PD model. We observed little disturbance to the fecal microbiota diversity both between infection timepoints and between Pink1-/- and wild-type control littermates. However, the level of short-chain fatty acids appeared to be altered over the course of infection with butyric acid significantly increasing in Pink1-/- mice and isobutyric acid increasing in wild-type mice.
Collapse
Affiliation(s)
- Tyler Cannon
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Anshul Sinha
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology, Department of Neuroscience, GRSNC, Université de Montréal, Montreal, QC, Canada
| | - Corinne F. Maurice
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada,CONTACT Samantha Gruenheid Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|