1
|
Li H, Zhang H, Wang T, Zhang L, Wang H, Lu H, Yang R, Ding Y. Grape Seed Proanthocyanidins Protect Pancreatic β Cells Against Ferroptosis via the Nrf2 Pathway in Type 2 Diabetes. Biol Trace Elem Res 2024; 202:5531-5544. [PMID: 38367173 PMCID: PMC11502604 DOI: 10.1007/s12011-024-04093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Pancreatic β cell damage is the primary contributor to type 2 diabetes mellitus (T2DM); however, the underlying mechanism remains nebulous. This study explored the role of ferroptosis in pancreatic β cell damage and the protective effects of grape seed proanthocyanidin extract (GSPE). In T2DM model rats, the blood glucose, water intake, urine volume, HbA1c, and homeostasis model assessment-insulin resistance were significantly increased, while the body weight and the insulin level were significantly decreased, indicating the successful establishment of the T2DM model. MIN6 mouse insulinoma β cells were cultured in high glucose and sodium palmitate conditions to obtain a glycolipid damage model, which was administered with GSPE, ferrostatin-1 (Fer-1), or nuclear factor erythroid 2-related factor 2 (Nrf2) small interfering (si) RNA. GSPE and Fer-1 treatment significantly improved pancreatic β-cell dysfunction and protected against cell death. Both treatments increased the superoxide dismutase and glutathione activity, reduced the malondialdehyde and reactive oxygen species levels, and improved iron metabolism. Furthermore, the treatments reversed the expression of ferroptosis markers cysteine/glutamate transporter (XCT) and glutathione peroxidase 4 (GPX4) caused by glycolipid toxicity. GSPE treatments activated the expression of Nrf2 and related proteins. These effects were reversed when co-transfected with si-Nrf2. GSPE inhibits ferroptosis by activating the Nrf2 signaling pathway, thus reducing β-cell damage and dysfunction in T2DM. Therefore, GSPE is a potential treatment strategy against T2DM.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Environmental Exposome, Xinjiang Medical University, No.393 Xinyi Road, Urumqi, 830011, China
- Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, China
| | - Haowei Zhang
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Tongling Wang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, China
| | - Liyuan Zhang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, China
| | - Hao Wang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, China
| | - Heng Lu
- Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, China
| | - Ruirui Yang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, China
| | - Yusong Ding
- Key Laboratory of Environmental Exposome, Xinjiang Medical University, No.393 Xinyi Road, Urumqi, 830011, China.
| |
Collapse
|
2
|
Moon JH, Munna AN, Hong JM, Seol JW, Park SY. HIF-1α stabilization inhibits Japanese encephalitis virus propagation and neurotoxicity via autophagy pathways. Biochem Biophys Res Commun 2024; 736:150853. [PMID: 39454305 DOI: 10.1016/j.bbrc.2024.150853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Japanese encephalitis (JE) is a widespread flavivirus that induces brain inflammation and affects the central nervous system (CNS). Deferoxamine, an iron chelator, has shown promising results in stabilizing HIF-1α, a protein that improves hypoxic conditions, offers protective effects against neurological, and neurodegenerative diseases. This study aimed to assess the impact of HIF-1α stabilization during JEV infection using SH-SY5Y neuroblastoma cell lines as a model. Our findings demonstrated that deferoxamine treatment increased HIF-1α protein levels, leading to a reduction in JEV propagation. Moreover, RT-PCR analysis revealed that deferoxamine ameliorated JEV-induced neuroinflammation and neurotoxicity. We proved that inducing HIF-1α is essential for having an impact of deferoxamine against JEV-mediated neurotoxicity. Thus, our findings offer a potential therapeutic approach to mitigate the detrimental effects of JEV infection on neuronal cells. Further investigations also demonstrated that deferoxamine could reverse JEV-induced autophagy inhibition by stabilizing HIF-1α, which plays a crucial role in mitigating neuronal cell damage and neuroinflammation. Based on our data, HIF-1α stabilization emerges as a vital factor against JEV infection in the neurons, highlighting deferoxamine as a promising and innovative target for developing anti-JEV agents.
Collapse
Affiliation(s)
- Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Ali Newaz Munna
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Jeong-Min Hong
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| |
Collapse
|
3
|
Saedi S, Tan Y, Watson SE, Wintergerst KA, Cai L. Potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in individuals with diabetes. Front Endocrinol (Lausanne) 2024; 15:1461171. [PMID: 39415790 PMCID: PMC11479913 DOI: 10.3389/fendo.2024.1461171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes and its complications are major diseases that affect human health. Diabetic cardiovascular complications such as cardiovascular diseases (CVDs) are the major complications of diabetes, which are associated with the loss of cardiovascular cells. Pathogenically the role of ferroptosis, an iron-dependent cell death, and cuproptosis, a copper-dependent cell death has recently been receiving attention for the pathogenesis of diabetes and its cardiovascular complications. How exposure to environmental metals affects these two metal-dependent cell deaths in cardiovascular pathogenesis under diabetic and nondiabetic conditions remains largely unknown. As an omnipresent environmental metal, cadmium exposure can cause oxidative stress in the diabetic cardiomyocytes, leading to iron accumulation, glutathione depletion, lipid peroxidation, and finally exacerbate ferroptosis and disrupt the cardiac. Moreover, cadmium-induced hyperglycemia can enhance the circulation of advanced glycation end products (AGEs). Excessive AGEs in diabetes promote the upregulation of copper importer solute carrier family 31 member 1 through activating transcription factor 3/transcription factor PU.1, thereby increasing intracellular Cu+ accumulation in cardiomyocytes and disturbing Cu+ homeostasis, leading to a decline of Fe-S cluster protein and reactive oxygen species accumulation in cardiomyocytes mitochondria. In this review, we summarize the available evidence and the most recent advances exploring the underlying mechanisms of ferroptosis and cuproptosis in CVDs and diabetic cardiovascular complications, to provide critical perspectives on the potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in diabetic individuals.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Sara E. Watson
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
| | - Kupper A. Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
4
|
Zheng D, Jin S, Liu PS, Ye J, Xie X. Targeting ferroptosis by natural products in pathophysiological conditions. Arch Toxicol 2024; 98:3191-3208. [PMID: 38987487 DOI: 10.1007/s00204-024-03812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Ferroptosis is a form of cell death that is induced by iron-mediated accumulation of lipid peroxidation. The involvement of ferroptosis in different pathophysiological conditions has offered new perspectives on potential therapeutic interventions. Natural products, which are widely recognized for their significance in drug discovery and repurposing, have shown great promise in regulating ferroptosis by targeting various ferroptosis players. In this review, we discuss the regulatory mechanisms of ferroptosis and its implications in different pathological conditions. We dissect the interactions between natural products and ferroptosis in cancer, ischemia/reperfusion, neurodegenerative diseases, acute kidney injury, liver injury, and cardiomyopathy, with an emphasis on the relevance of ferroptosis players to disease targetability.
Collapse
Affiliation(s)
- Daheng Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Shikai Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Pu-Ste Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jianping Ye
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China.
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
5
|
Xia L, Yang M, Zang N, Song J, Chen J, Hu H, Wang K, Xiang Y, Yang J, Wang L, Zou Y, Lv X, Hou X, Chen L. PEGylated β-Cell-Targeting Exosomes from Mesenchymal Stem Cells Improve β Cell Function and Quantity by Suppressing NRF2-Mediated Ferroptosis. Int J Nanomedicine 2024; 19:9575-9596. [PMID: 39296939 PMCID: PMC11410040 DOI: 10.2147/ijn.s459077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Background The depletion of β cell mass is widely recognized as a significant contributor to the progression of type 2 diabetes mellitus (T2DM). Exosomes derived from mesenchymal stem cells (MSC-EXOs) hold promise as cell-free therapies for treating T2DM. However, the precise effects and mechanisms through which MSC-EXO affects β cell function remain incompletely understood, and the limited ability of MSC-EXO to target β cells and the short blood circulation time hampers its therapeutic effectiveness. Methods The effects of MSC-EXO were investigated in T2DM mice induced by a high-fat diet combined with STZ. Additionally, the high glucose-stimulated INS-1 cell line was used to investigate the potential mechanism of MSC-EXO. Michael addition reaction-mediated chemical coupling was used to modify the surface of the exosome membrane with a β-cell-targeting aptamer and polyethylene glycol (PEG). The β-cell targeting and blood circulation time were evaluated, and whether this modification enhanced the islet-protective effect of MSC-EXO was further analyzed. Results We observed that the therapeutic effects of MSC-EXO on T2DM manifested through the reduction of random blood glucose levels, enhancement of glucose and insulin tolerance, and increased insulin secretion. These effects were achieved by augmenting β cell mass via inhibiting nuclear factor erythroid 2-related factor 2 (NRF2)-mediated ferroptosis. Mechanistically, MSC-EXOs play a role in the NRF2-mediated anti-ferroptosis mechanism by transporting active proteins that are abundant in the AKT and ERK pathways. Moreover, compared to MSC-EXOs, aptamer- and PEG-modified exosomes (Apt-EXOs) were more effective in islet protection through PEG-mediated cycle prolongation and aptamer-mediated β-cell targeting. Conclusion MSC-EXO suppresses NRF2-mediated ferroptosis by delivering bioactive proteins to regulate the AKT/ERK signaling pathway, thereby improving the function and quantity of β cells. Additionally, Apt-EXO may serve as a novel drug carrier for islet-targeted therapy.
Collapse
Affiliation(s)
- Longqing Xia
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Mengmeng Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Nan Zang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, People's Republic of China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, People's Republic of China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, People's Republic of China
| | - Huiqing Hu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Kewei Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Yingyue Xiang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Jingwen Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Liming Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Ying Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Xiaoyu Lv
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, People's Republic of China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, People's Republic of China
| |
Collapse
|
6
|
Li S, Zhang G, Hu J, Tian Y, Fu X. Ferroptosis at the nexus of metabolism and metabolic diseases. Theranostics 2024; 14:5826-5852. [PMID: 39346540 PMCID: PMC11426249 DOI: 10.7150/thno.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, is emerging as a crucial regulator of human physiology and pathology. Increasing evidence showcases a reciprocal relationship between ferroptosis and dysregulated metabolism, propagating a pathogenic vicious cycle that exacerbates pathology and human diseases, particularly metabolic disorders. Consequently, there is a rapidly growing interest in developing ferroptosis-based therapeutics. Therefore, a comprehensive understanding of the intricate interplay between ferroptosis and metabolism could provide an invaluable resource for mechanistic insight and therapeutic development. In this review, we summarize the important metabolic substances and associated pathways in ferroptosis initiation and progression, outline the cascade responses of ferroptosis in disease development, overview the roles and mechanisms of ferroptosis in metabolic diseases, introduce the methods for ferroptosis detection, and discuss the therapeutic perspectives of ferroptosis, which collectively aim to illustrate a comprehensive view of ferroptosis in basic, translational, and clinical science.
Collapse
Affiliation(s)
- Shuangwen Li
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guixiang Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiankun Hu
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
7
|
Zhang W, Feng J, Ni Y, Li G, Wang Y, Cao Y, Zhou M, Zhao C. The role of SLC7A11 in diabetic wound healing: novel insights and new therapeutic strategies. Front Immunol 2024; 15:1467531. [PMID: 39290692 PMCID: PMC11405230 DOI: 10.3389/fimmu.2024.1467531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic wounds are a severe complication of diabetes, characterized by persistent, non-healing ulcers due to disrupted wound-healing mechanisms in a hyperglycemic environment. Key factors in the pathogenesis of these chronic wounds include unresolved inflammation and antioxidant defense imbalances. The cystine/glutamate antiporter SLC7A11 (xCT) is crucial for cystine import, glutathione production, and antioxidant protection, positioning it as a vital regulator of diabetic wound healing. Recent studies underscore the role of SLC7A11 in modulating immune responses and oxidative stress in diabetic wounds. Moreover, SLC7A11 influences critical processes such as insulin secretion and the mTOR signaling pathway, both of which are implicated in delayed wound healing. This review explores the mechanisms regulating SLC7A11 and its impact on immune response, antioxidant defenses, insulin secretion, and mTOR pathways in diabetic wounds. Additionally, we highlight the current advancements in targeting SLC7A11 for treating related diseases and conceptualize its potential applications and value in diabetic wound treatment strategies, along with the challenges encountered in this context.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gen Li
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Jin EJ, Jo Y, Wei S, Rizzo M, Ryu D, Gariani K. Ferroptosis and iron metabolism in diabetes: Pathogenesis, associated complications, and therapeutic implications. Front Endocrinol (Lausanne) 2024; 15:1447148. [PMID: 39279996 PMCID: PMC11392752 DOI: 10.3389/fendo.2024.1447148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Diabetes mellitus is a complex chronic disease, considered as one of the most common metabolic disorders worldwide, posing a major threat to global public health. Ferroptosis emerges as a novel mechanism of programmed cell death, distinct from apoptosis, necrosis, and autophagy, driven by iron-dependent lipid peroxidation accumulation and GPx4 downregulation. A mounting body of evidence highlights the interconnection between iron metabolism, ferroptosis, and diabetes pathogenesis, encompassing complications like diabetic nephropathy, cardiomyopathy, and neuropathy. Moreover, ferroptosis inhibitors hold promise as potential pharmacological targets for mitigating diabetes-related complications. A better understanding of the role of ferroptosis in diabetes may lead to an improvement in global diabetes management. In this review, we delve into the intricate relationship between ferroptosis and diabetes development, exploring associated complications and current pharmacological treatments.
Collapse
Affiliation(s)
- Eun-Ju Jin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Manfredi Rizzo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition, and Therapeutic Education, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
9
|
Amor M, Diaz M, Bianco V, Svecla M, Schwarz B, Rainer S, Pirchheim A, Schooltink L, Mukherjee S, Grabner GF, Beretta G, Lamina C, Norata GD, Hackl H, Kratky D. Identification of regulatory networks and crosstalk factors in brown adipose tissue and liver of a cold-exposed cardiometabolic mouse model. Cardiovasc Diabetol 2024; 23:298. [PMID: 39143620 PMCID: PMC11325583 DOI: 10.1186/s12933-024-02397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Activation of brown adipose tissue (BAT) has gained attention due to its ability to dissipate energy and counteract cardiometabolic diseases (CMDs). METHODS This study investigated the consequences of cold exposure on the BAT and liver proteomes of an established CMD mouse model based on LDL receptor-deficient (LdlrKO) mice fed a high-fat, high-sucrose, high-cholesterol diet for 16 weeks. We analyzed energy metabolism in vivo and performed untargeted proteomics on BAT and liver of LdlrKO mice maintained at 22 °C or 5 °C for 7 days. RESULTS We identified several dysregulated pathways, miRNAs, and transcription factors in BAT and liver of cold-exposed Ldlrko mice that have not been previously described in this context. Networks of regulatory interactions based on shared downstream targets and analysis of ligand-receptor pairs identified fibrinogen alpha chain (FGA) and fibronectin 1 (FN1) as potential crosstalk factors between BAT and liver in response to cold exposure. Importantly, genetic variations in the genes encoding FGA and FN1 have been associated with cardiometabolic-related phenotypes and traits in humans. DISCUSSION This study describes the key factors, pathways, and regulatory networks involved in the crosstalk between BAT and the liver in a cold-exposed CMD mouse model. These findings may provide a basis for future studies aimed at testing whether molecular mediators, as well as regulatory and signaling mechanisms involved in tissue adaption upon cold exposure, could represent a target in cardiometabolic disorders.
Collapse
Affiliation(s)
- Melina Amor
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Malena Diaz
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Monika Svecla
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- Department of Neurosurgery, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Schwarz
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Silvia Rainer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Laszlo Schooltink
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Suravi Mukherjee
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Gernot F Grabner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Claudia Lamina
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Hubert Hackl
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
10
|
Tasci T, Orta-Yilmaz B, Aydin Y, Caliskan M. N-acetylcysteine attenuates sodium arsenite-induced oxidative stress and apoptosis in embryonic fibroblast cells. Toxicol Res (Camb) 2024; 13:tfae128. [PMID: 39139367 PMCID: PMC11319482 DOI: 10.1093/toxres/tfae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
In recent years, the increase in environmental pollutants has been one of the most important factors threatening human and environmental health. Arsenic, a naturally occurring element found in soil, water, and air, easily enters the human body and leads to many metabolic disorders. In this study, we focused on the possible protective effects of N-acetylcysteine (NAC) against sodium arsenite (As)-induced toxic effects on embryonic fibroblast cells. The effects of As and NAC treatment on cells were evaluated, including cytotoxicity, oxidative stress, and apoptosis. Embryonic fibroblast cells were exposed to As (ranging from 0.01 μM to 10 μM) and NAC (at a concentration of 2 mM) for 24 h. The assessment of cytotoxicity markers, such as cell viability and lactate dehydrogenase (LDH), showed that As significantly reduced cell viability and increased LDH levels. Furthermore, we observed that As increased the amount of reactive oxygen species (ROS) in the cell, decreased the activity of antioxidant enzymes, and triggered apoptosis in cells. Additionally, our research revealed that the administration of NAC mitigates the detrimental effects of As. The results showed that As exerted hazardous effects on embryonic fibroblast cells through the induction of oxidative stress and apoptosis. In this context, our study provides evidence that NAC may have a protective effect against the toxicity of As in embryonic fibroblast cells.
Collapse
Affiliation(s)
- Tunahan Tasci
- Department of Biology, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul 34126, Turkey
- Department of Medical Services and Techniques, Vocational School of Health Services, Istanbul Bilgi University, Istanbul 34387, Turkey
| | - Banu Orta-Yilmaz
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul 34126, Turkey
| | - Yasemin Aydin
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul 34126, Turkey
| | - Mahmut Caliskan
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul 34126, Turkey
| |
Collapse
|
11
|
Xiao T, Liang J, Li M, Guo Y, Chen S, Ke Y, Gao X, Gu H, Chen X. ATG5-mediated keratinocyte ferroptosis promotes M1 polarization of macrophages to aggravate UVB-induced skin inflammation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112948. [PMID: 38833786 DOI: 10.1016/j.jphotobiol.2024.112948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Autophagy participates in the regulation of ferroptosis. Among numerous autophagy-related genes (ATGs), ATG5 plays a pivotal role in ferroptosis. However, how ATG5-mediated ferroptosis functions in UVB-induced skin inflammation is still unclear. In this study, we unveil that the core ferroptosis inhibitor GPX4 is significantly decreased in human skin tissue exposed to sunlight. We report that ATG5 deletion in mouse keratinocytes strongly protects against UVB-induced keratinocyte ferroptosis and skin inflammation. Mechanistically, ATG5 promotes the autophagy-dependent degradation of GPX4 in UVB-exposed keratinocytes, which leads to UVB-induced keratinocyte ferroptosis. Furthermore, we find that IFN-γ secreted by ferroptotic keratinocytes facilitates the M1 polarization of macrophages, which results in the exacerbation of UVB-induced skin inflammation. Together, our data indicate that ATG5 exacerbates UVB-induced keratinocyte ferroptosis in the epidermis, which subsequently gives rise to the secretion of IFN-γ and M1 polarization. Our study provides novel evidence that targeting ATG5 may serve as a potential therapeutic strategy for the amelioration of UVB-caused skin damage.
Collapse
Affiliation(s)
- Ta Xiao
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China
| | - Jinfeng Liang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China
| | - Min Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China
| | - Yiming Guo
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China; State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Sihan Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China
| | - Yangying Ke
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Heng Gu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China
| | - Xu Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
12
|
Qiao R, Guo J, Zhang C, Wang S, Fang J, Geng R, Kang SG, Huang K, Tong T. Diabetes-induced muscle wasting: molecular mechanisms and promising therapeutic targets. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39049742 DOI: 10.1080/10408398.2024.2382348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Diabetes has become a serious public health crisis, presenting significant challenges to individuals worldwide. As the largest organ in the human body, skeletal muscle is a significant target of this chronic disease, yet muscle wasting as a complication of diabetes is still not fully understood and effective treatment methods have yet to be developed. Here, we discuss the targets involved in inducing muscle wasting under diabetic conditions, both validated targets and emerging targets. Diabetes-induced skeletal muscle wasting is known to involve changes in various signaling molecules and pathways, such as protein degradation pathways, protein synthesis pathways, mitochondrial function, and oxidative stress inflammation. Recent studies have shown that some of these present potential as promising therapeutic targets, including the neuregulin 1/epidermal growth factor receptor family, advanced glycation end-products, irisin, ferroptosis, growth differentiation factor 15 and more. This study's investigation and discussion of such pathways and their potential applications provides a theoretical basis for the development of clinical treatments for diabetes-induced muscle wasting and a foundation for continued focus on this disease.
Collapse
Affiliation(s)
- Ruixue Qiao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Jingya Guo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Chengmei Zhang
- Guizhou Academy of Testing and Analysis, Guiyang, The People's Republic of China
| | - Sirui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun, Republic of Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, The People's Republic of China
- Beijing Laboratory for Food Quality and Safety, Beijing, The People's Republic of China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, The People's Republic of China
- Beijing Laboratory for Food Quality and Safety, Beijing, The People's Republic of China
| |
Collapse
|
13
|
Guo M, Huang X, Zhang J, Huang Y, Tang Y, Wen H, Xu Y, Zhang S, Wei X, Sun S, Zhu Q. Palmitic acid induces β-cell ferroptosis by activating ceramide signaling pathway. Exp Cell Res 2024; 440:114134. [PMID: 38901790 DOI: 10.1016/j.yexcr.2024.114134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Individuals with type 2 diabetes mellitus frequently display heightened levels of palmitic acid (PA) in their serum, which may lead to β-cell damage. The involvement of ferroptosis, a form of oxidative cell death in lipotoxic β-cell injury remains uncertain. Here, we have shown that PA induces intracellular lipid peroxidation, increases intracellular Fe2+ content and decreases intracellular glutathione peroxidase 4 (GPX4) expression. Furthermore, PA causes distinct changes in pancreatic islets and INS-1 cells, such as mitochondrial atrophy and increased membrane density. Furthermore, the presence of the ferroptosis inhibitor has a significant mitigating effect on PA-induced β-cell damage. Mechanistically, PA increased ceramide content and c-Jun N-terminal kinase (JNK) phosphorylation. The ceramide synthase inhibitor effectively attenuated PA-induced β-cell damage and GPX4/Fe2+ abnormalities, while inhibiting JNK phosphorylation. Additionally, the JNK inhibitor SP600125 improved PA-induced cell damage. In conclusion, by promoting ceramide synthesis, PA inhibited GPX4 expression and increased intracellular Fe2+ to induce β-cell ferroptosis. Moreover, JNK may be a downstream mechanism of ceramide-triggered lipotoxic ferroptosis in β-cells.
Collapse
Affiliation(s)
- Maojun Guo
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Xiaolong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Junhan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Ying Huang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Ying Tang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Honghua Wen
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Yanan Xu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China; Department of Endocrinology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, 222002, China
| | - Shaokun Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China; Department of Infectious Diseases, Taizhou Second People's Hospital, Taizhou, Jiangsu, 225500, China
| | - Xiao Wei
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Shuoshuo Sun
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qun Zhu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China.
| |
Collapse
|
14
|
Xian M, Wang Q, Xiao L, Zhong L, Xiong W, Ye L, Su P, Zhang C, Li Y, Orlowski RZ, Zhan F, Ganguly S, Zu Y, Qian J, Yi Q. Leukocyte immunoglobulin-like receptor B1 (LILRB1) protects human multiple myeloma cells from ferroptosis by maintaining cholesterol homeostasis. Nat Commun 2024; 15:5767. [PMID: 38982045 PMCID: PMC11233649 DOI: 10.1038/s41467-024-50073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by uncontrolled proliferation of plasma cells in the bone marrow. MM patients with aggressive progression have poor survival, emphasizing the urgent need for identifying new therapeutic targets. Here, we show that the leukocyte immunoglobulin-like receptor B1 (LILRB1), a transmembrane receptor conducting negative immune response, is a top-ranked gene associated with poor prognosis in MM patients. LILRB1 deficiency inhibits MM progression in vivo by enhancing the ferroptosis of MM cells. Mechanistic studies reveal that LILRB1 forms a complex with the low-density lipoprotein receptor (LDLR) and LDLR adapter protein 1 (LDLRAP1) to facilitate LDL/cholesterol uptake. Loss of LILRB1 impairs cholesterol uptake but activates the de novo cholesterol synthesis pathway to maintain cellular cholesterol homeostasis, leading to the decrease of anti-ferroptotic metabolite squalene. Our study uncovers the function of LILRB1 in regulating cholesterol metabolism and protecting MM cells from ferroptosis, implicating LILRB1 as a promising therapeutic target for MM patients.
Collapse
Affiliation(s)
- Miao Xian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Qiang Wang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Liuling Xiao
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ling Zhong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Wei Xiong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Lingqun Ye
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Pan Su
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Chuanchao Zhang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Yabo Li
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Siddhartha Ganguly
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Institute for Academic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Jianfei Qian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Qing Yi
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Guo C, Peng J, Cheng P, Yang C, Gong S, Zhang L, Zhang T, Peng J. Mechanistic elucidation of ferroptosis and ferritinophagy: implications for advancing our understanding of arthritis. Front Physiol 2024; 15:1290234. [PMID: 39022306 PMCID: PMC11251907 DOI: 10.3389/fphys.2024.1290234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/23/2024] [Indexed: 07/20/2024] Open
Abstract
In recent years, the emerging phenomenon of ferroptosis has garnered significant attention as a distinctive mode of programmed cell death. Distinguished by its reliance on iron and dependence on reactive oxygen species (ROS), ferroptosis has emerged as a subject of extensive investigation. Mechanistically, this intricate process involves perturbations in iron homeostasis, dampening of system Xc-activity, morphological dynamics within mitochondria, and the onset of lipid peroxidation. Additionally, the concomitant phenomenon of ferritinophagy, the autophagic degradation of ferritin, assumes a pivotal role by facilitating the liberation of iron ions from ferritin, thereby advancing the progression of ferroptosis. This discussion thoroughly examines the detailed cell structures and basic processes behind ferroptosis and ferritinophagy. Moreover, it scrutinizes the intricate web of regulators that orchestrate these processes and examines their intricate interplay within the context of joint disorders. Against the backdrop of an annual increase in cases of osteoarthritis, rheumatoid arthritis, and gout, these narrative sheds light on the intriguing crossroads of pathophysiology by dissecting the intricate interrelationships between joint diseases, ferroptosis, and ferritinophagy. The newfound insights contribute fresh perspectives and promising therapeutic avenues, potentially revolutionizing the landscape of joint disease management.
Collapse
Affiliation(s)
- Caopei Guo
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Jiaze Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Piaotao Cheng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Chengbing Yang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Shouhang Gong
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Lin Zhang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiachen Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| |
Collapse
|
16
|
Ji Y, Chen L, Wang Y, Zhang J, Yu Y, Wang M, Wang X, Liu W, Yan B, Xiao L, Song X, Lv C, Chen L. Realistic Nanoplastics Induced Pulmonary Damage via the Crosstalk of Ferritinophagy and Mitochondrial Dysfunction. ACS NANO 2024; 18:16790-16807. [PMID: 38869479 DOI: 10.1021/acsnano.4c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The smaller size fraction of plastics may be more substantially existing and detrimental than larger-sized particles. However, reports on nanoplastics (NPs), especially their airborne occurrences and potential health hazards to the respiratory system, are scarce. Previous studies limit the understanding of their real respiratory effects, since sphere-type polystyrene (PS) nanoparticles differ from NPs occurring in nature with respect to their physicochemical properties. Here, we employ a mechanical breakdown method, producing NPs directly from bulk plastic, preserving NP properties in nature. We report that among four relatively high abundance NP materials PS, polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polyethylene (PE) with a size of 100 nm, PVC induced slightly more severe lung toxicity profiles compared to the other plastics. The lung cytotoxicity of NPs is higher than that of commercial PS NPs and comparable to natural particles silicon dioxide (SiO2) and anatase titanium dioxide (TiO2). Mechanistically, BH3-interacting domain death agonist (Bid) transactivation-mediated mitochondrial dysfunction and nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy or ferroptosis are likely common mechanisms of NPs regardless of their chemical composition. This study provides relatively comprehensive data for evaluating the risk of atmospheric NPs to lung health.
Collapse
Affiliation(s)
- Yunxia Ji
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Libang Chen
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Yunqing Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jinjin Zhang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Yue Yu
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Meirong Wang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Xiaoyan Wang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Weili Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Lingxin Chen
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
17
|
Zhang S, Huang J, Lan Z, Xiao Y, Liao Y, Basnet S, Huang P, Li Y, Yan J, Sheng Y, Zhou W, Liu Q, Tan H, Tan Y, Yuan L, Wang L, Dai L, Zhang W, Du C. CPEB1 Controls NRF2 Proteostasis and Ferroptosis Susceptibility in Pancreatic Cancer. Int J Biol Sci 2024; 20:3156-3172. [PMID: 38904009 PMCID: PMC11186365 DOI: 10.7150/ijbs.95962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Pancreatic cancer is the deadliest malignancy with a poor response to chemotherapy but is potentially indicated for ferroptosis therapy. Here we identified that cytoplasmic polyadenylation element binding protein 1 (CPEB1) regulates NRF2 proteostasis and susceptibility to ferroptosis in pancreatic ductal adenocarcinoma (PDAC). We found that CPEB1 deficiency in cancer cells promotes the translation of p62/SQSTM1 by facilitating mRNA polyadenylation. Consequently, upregulated p62 enhances NRF2 stability by sequestering KEAP1, an E3 ligase for proteasomal degradation of NRF2, leading to the transcriptional activation of anti-ferroptosis genes. In support of the critical role of this signaling cascade in cancer therapy, CPEB1-deficient pancreatic cancer cells display higher resistance to ferroptosis-inducing agents than their CPEB1-normal counterparts in vitro and in vivo. Furthermore, based on the pathological evaluation of tissue specimens from 90 PDAC patients, we established that CPEB1 is an independent prognosticator whose expression level is closely associated with clinical therapeutic outcomes in PDAC. These findings identify the role of CPEB1 as a key ferroptosis regulator and a potential prognosticator in pancreatic cancer.
Collapse
Affiliation(s)
- Shuxia Zhang
- Key University Laboratory of Metabolism and Health of Guangdong, Biochemistry Department, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
- Department of Gastroenterology, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, 1017 Dongmen North Road, Shenzhen, Guangdong 518020, P.R. China
| | - Jingnan Huang
- Department of Geriatrics, and Shenzhen Clinical Research Centre for Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, 1017 Dongmen North Road, Shenzhen, Guangdong 518020, P.R. China
| | - Zhangzhang Lan
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Yanlin Xiao
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Youyou Liao
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Shiva Basnet
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Piying Huang
- Department of Geriatrics, and Shenzhen Clinical Research Centre for Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, 1017 Dongmen North Road, Shenzhen, Guangdong 518020, P.R. China
| | - Yunze Li
- Key University Laboratory of Metabolism and Health of Guangdong, Biochemistry Department, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Jingyu Yan
- Key University Laboratory of Metabolism and Health of Guangdong, Biochemistry Department, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Yuling Sheng
- Key University Laboratory of Metabolism and Health of Guangdong, Biochemistry Department, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Wenwen Zhou
- Key University Laboratory of Metabolism and Health of Guangdong, Biochemistry Department, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Qi Liu
- Key University Laboratory of Metabolism and Health of Guangdong, Biochemistry Department, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Haoyuan Tan
- Key University Laboratory of Metabolism and Health of Guangdong, Biochemistry Department, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Yi Tan
- Key University Laboratory of Metabolism and Health of Guangdong, Biochemistry Department, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Leyong Yuan
- Clinical laboratory, Southern University of Science and Technology Hospital, 6019 Liuxian Street, Xili Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Lisheng Wang
- Department of Gastroenterology, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, 1017 Dongmen North Road, Shenzhen, Guangdong 518020, P.R. China
| | - Lingyun Dai
- Department of Geriatrics, and Shenzhen Clinical Research Centre for Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, 1017 Dongmen North Road, Shenzhen, Guangdong 518020, P.R. China
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Changzheng Du
- Key University Laboratory of Metabolism and Health of Guangdong, Biochemistry Department, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
- Beijing Tsinghua Changgung Hospital & Tsinghua University School of Medicine, 168 Litang Road, Changping District, Beijing 102218, P.R. China
| |
Collapse
|
18
|
Li X, Zhou Z, Ma Y, Ding K, Xiao H, Chen D, Liu N. Shared Genetic Architectures between Coronary Artery Disease and Type 2 Diabetes Mellitus in East Asian and European Populations. Biomedicines 2024; 12:1243. [PMID: 38927450 PMCID: PMC11201280 DOI: 10.3390/biomedicines12061243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Coronary artery disease (CAD) is a common comorbidity of type 2 diabetes mellitus (T2DM). However, the pathophysiology connecting these two phenotypes remains to be further understood. Combined analysis in multi-ethnic populations can help contribute to deepening our understanding of biological mechanisms caused by shared genetic loci. We applied genetic correlation analysis and then performed conditional and joint association analyses in Chinese, Japanese, and European populations to identify the genetic variants jointly associated with CAD and T2DM. Next, the associations between genes and the two traits were also explored. Finally, fine-mapping and functional enrichment analysis were employed to identify the potential causal variants and pathways. Genetic correlation results indicated significant genetic overlap between CAD and T2DM in the three populations. Over 10,000 shared signals were identified, and 587 were shared by East Asian and European populations. Fifty-six novel shared genes were found to have significant effects on both CAD and T2DM. Most loci were fine-mapped to plausible causal variant sets. Several similarities and differences of the involved genes in GO terms and KEGG pathways were revealed across East Asian and European populations. These findings highlight the importance of immunoregulation, neuroregulation, heart development, and the regulation of glucose metabolism in shared etiological mechanisms between CAD and T2DM.
Collapse
Affiliation(s)
- Xiaoyi Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (X.L.); (Z.Z.); (Y.M.); (K.D.); (H.X.)
| | - Zechen Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (X.L.); (Z.Z.); (Y.M.); (K.D.); (H.X.)
| | - Yujia Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (X.L.); (Z.Z.); (Y.M.); (K.D.); (H.X.)
| | - Kexin Ding
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (X.L.); (Z.Z.); (Y.M.); (K.D.); (H.X.)
| | - Han Xiao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (X.L.); (Z.Z.); (Y.M.); (K.D.); (H.X.)
| | - Dafang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (X.L.); (Z.Z.); (Y.M.); (K.D.); (H.X.)
| | - Na Liu
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
19
|
Liu X, Wang N, Gu S, He Z. Changes of RNA m 6A/m 5C Modification Regulatory Molecules in Ferroptosis of T2DM Rat Pancreas. Cell Biochem Biophys 2024; 82:1279-1289. [PMID: 38709441 DOI: 10.1007/s12013-024-01282-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
N6-methyladenine (m6A) and 5-methylcytosine (m5C) are two common forms of RNA methylation that play an important role in the epigenetics of type 2 diabetes mellitus (T2DM). One type of cell death, ferroptosis, has been implicated in islet β-cell damage in T2DM. Notably, RNA methylation, an upstream regulatory mechanism of mRNAs, can regulate the expression of ferroptosis signaling molecules, thereby affecting cell proliferation and death. Here, we found that the ferroptosis signaling pathway was activated in pancreas of T2DM rats, followed by significant changes in m6A/m5C modification regulatory molecules. These detection data together with the prediction results that m6A and m5C exist in the mRNAs of ferroptosis molecules, we speculate that m6A and m5C are probably involved in pancreatic cell damage by modifying of ferroptosis signaling molecules. In short, our findings provide a new research idea for future studies on the molecular mechanisms of pancreatic cell damage and point to a new direction for exploring the mechanisms of ferroptosis from the perspective of RNA methylation modification.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, Yunnan, China
| | - Nan Wang
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, Yunnan, China
| | - Shiyan Gu
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, Yunnan, China.
| | - Zuoshun He
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, Yunnan, China.
| |
Collapse
|
20
|
Zhou M, Hanschmann EM, Römer A, Linn T, Petry SF. The significance of glutaredoxins for diabetes mellitus and its complications. Redox Biol 2024; 71:103043. [PMID: 38377787 PMCID: PMC10891345 DOI: 10.1016/j.redox.2024.103043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/13/2024] [Indexed: 02/22/2024] Open
Abstract
Diabetes mellitus is a non-communicable metabolic disease hallmarked by chronic hyperglycemia caused by beta-cell failure. Diabetic complications affect the vasculature and result in macro- and microangiopathies, which account for a significantly increased morbidity and mortality. The rising incidence and prevalence of diabetes is a major global health burden. There are no feasible strategies for beta-cell preservation available in daily clinical practice. Therefore, patients rely on antidiabetic drugs or the application of exogenous insulin. Glutaredoxins (Grxs) are ubiquitously expressed and highly conserved members of the thioredoxin family of proteins. They have specific functions in redox-mediated signal transduction, iron homeostasis and biosynthesis of iron-sulfur (FeS) proteins, and the regulation of cell proliferation, survival, and function. The involvement of Grxs in chronic diseases has been a topic of research for several decades, suggesting them as therapeutic targets. Little is known about their role in diabetes and its complications. Therefore, this review summarizes the available literature on the significance of Grxs in diabetes and its complications. In conclusion, Grxs are differentially expressed in the endocrine pancreas and in tissues affected by diabetic complications, such as the heart, the kidneys, the eye, and the vasculature. They are involved in several pathways essential for insulin signaling, metabolic inflammation, glucose and fatty acid uptake and processing, cell survival, and iron and mitochondrial metabolism. Most studies describe significant changes in glutaredoxin expression and/or activity in response to the diabetic metabolism. In general, mitigated levels of Grxs are associated with oxidative distress, cell damage, and even cell death. The induced overexpression is considered a potential part of the cellular stress-response, counteracting oxidative distress and exerting beneficial impact on cell function such as insulin secretion, cytokine expression, and enzyme activity.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Eva-Maria Hanschmann
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Axel Römer
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Sebastian Friedrich Petry
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
21
|
Chen Y, Zhao W, Hu A, Lin S, Chen P, Yang B, Fan Z, Qi J, Zhang W, Gao H, Yu X, Chen H, Chen L, Wang H. Type 2 diabetic mellitus related osteoporosis: focusing on ferroptosis. J Transl Med 2024; 22:409. [PMID: 38693581 PMCID: PMC11064363 DOI: 10.1186/s12967-024-05191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
With the aging global population, type 2 diabetes mellitus (T2DM) and osteoporosis(OP) are becoming increasingly prevalent. Diabetic osteoporosis (DOP) is a metabolic bone disorder characterized by abnormal bone tissue structure and reduced bone strength in patients with diabetes. Studies have revealed a close association among diabetes, increased fracture risk, and disturbances in iron metabolism. This review explores the concept of ferroptosis, a non-apoptotic cell death process dependent on intracellular iron, focusing on its role in DOP. Iron-dependent lipid peroxidation, particularly impacting pancreatic β-cells, osteoblasts (OBs) and osteoclasts (OCs), contributes to DOP. The intricate interplay between iron dysregulation, which comprises deficiency and overload, and DOP has been discussed, emphasizing how excessive iron accumulation triggers ferroptosis in DOP. This concise overview highlights the need to understand the complex relationship between T2DM and OP, particularly ferroptosis. This review aimed to elucidate the pathogenesis of ferroptosis in DOP and provide a prospective for future research targeting interventions in the field of ferroptosis.
Collapse
Affiliation(s)
- Yili Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wen Zhao
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - An Hu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Shi Lin
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Ping Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bing Yang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhirong Fan
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ji Qi
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenhui Zhang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huanhuan Gao
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiubing Yu
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haiyun Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Luyuan Chen
- Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China.
| | - Haizhou Wang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
22
|
Walravens M, Koeken I, Vanden Berghe T. Therapeutic exploitation of ferroptosis. Biochem Soc Trans 2024; 52:693-706. [PMID: 38629629 DOI: 10.1042/bst20230550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Pathological breakdown of membrane lipids through excessive lipid peroxidation (LPO) was first described in the mid-20th century and is now recognized as a form of regulated cell death, dubbed ferroptosis. Accumulating evidence unveils how metabolic regulation restrains peroxidation of phospholipids within cellular membranes, thereby impeding ferroptosis execution. Unleashing these metabolic breaks is currently therapeutically explored to sensitize cancers to ferroptosis inducing anti-cancer therapies. Reversely, these natural ferroptotic defense mechanisms can fail resulting in pathological conditions or diseases such as ischemia-reperfusion injury, multi-organ dysfunction, stroke, infarction, or neurodegenerative diseases. This minireview outlines current ferroptosis-inducing anti-cancer strategies and highlights the detection as well as the therapeutic targeting of ferroptosis in preclinical experimental settings. Herein, we also briefly summarize observations related to LPO, iron and redox deregulation in patients that might hint towards ferroptosis as a contributing factor.
Collapse
Affiliation(s)
- Magali Walravens
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ine Koeken
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tom Vanden Berghe
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Pang H, Huang G, Xie Z, Zhou Z. The role of regulated necrosis in diabetes and its complications. J Mol Med (Berl) 2024; 102:495-505. [PMID: 38393662 DOI: 10.1007/s00109-024-02421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024]
Abstract
Morphologically, cell death can be divided into apoptosis and necrosis. Apoptosis, which is a type of regulated cell death, is well tolerated by the immune system and is responsible for hemostasis and cellular turnover under physiological conditions. In contrast, necrosis is defined as a form of passive cell death that leads to a dramatic inflammatory response (also referred to as necroinflammation) and causes organ dysfunction under pathological conditions. Recently, a novel form of cell death named regulated necrosis (such as necroptosis, pyroptosis, and ferroptosis) was discovered. Distinct from apoptosis, regulated necrosis is modulated by multiple internal or external factors, but meanwhile, it results in inflammation and immune response. Accumulating evidence has indicated that regulated necrosis is associated with multiple diseases, including diabetes. Diabetes is characterized by hyperglycemia caused by insulin deficiency and/or insulin resistance, and long-term high glucose leads to various diabetes-related complications. Here, we summarize the mechanisms of necroptosis, pyroptosis, and ferroptosis, and introduce recent advances in characterizing the associations between these three types of regulated necrosis and diabetes and its complications.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
24
|
Feng F, He S, Li X, He J, Luo L. Mitochondria-mediated Ferroptosis in Diseases Therapy: From Molecular Mechanisms to Implications. Aging Dis 2024; 15:714-738. [PMID: 37548939 PMCID: PMC10917537 DOI: 10.14336/ad.2023.0717] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023] Open
Abstract
Ferroptosis, a type of cell death involving iron and lipid peroxidation, has been found to be closely associated with the development of many diseases. Mitochondria are vital components of eukaryotic cells, serving important functions in energy production, cellular metabolism, and apoptosis regulation. Presently, the precise relationship between mitochondria and ferroptosis remains unclear. In this study, we aim to systematically elucidate the mechanisms via which mitochondria regulate ferroptosis from multiple perspectives to provide novel insights into mitochondrial functions in ferroptosis. Additionally, we present a comprehensive overview of how mitochondria contribute to ferroptosis in different conditions, including cancer, cardiovascular disease, inflammatory disease, mitochondrial DNA depletion syndrome, and novel coronavirus pneumonia. Gaining a comprehensive understanding of the involvement of mitochondria in ferroptosis could lead to more effective approaches for both basic cell biology studies and medical treatments.
Collapse
Affiliation(s)
- Fuhai Feng
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Xiaoling Li
- Animal Experiment Center, Guangdong Medical University, Zhanjiang, China.
| | - Jiake He
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China.
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, China.
| |
Collapse
|
25
|
Dugbartey GJ. Cellular and molecular mechanisms of cell damage and cell death in ischemia-reperfusion injury in organ transplantation. Mol Biol Rep 2024; 51:473. [PMID: 38553658 PMCID: PMC10980643 DOI: 10.1007/s11033-024-09261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/16/2024] [Indexed: 04/02/2024]
Abstract
Ischemia-reperfusion injury (IRI) is a critical pathological condition in which cell death plays a major contributory role, and negatively impacts post-transplant outcomes. At the cellular level, hypoxia due to ischemia disturbs cellular metabolism and decreases cellular bioenergetics through dysfunction of mitochondrial electron transport chain, causing a switch from cellular respiration to anaerobic metabolism, and subsequent cascades of events that lead to increased intracellular concentrations of Na+, H+ and Ca2+ and consequently cellular edema. Restoration of blood supply after ischemia provides oxygen to the ischemic tissue in excess of its requirement, resulting in over-production of reactive oxygen species (ROS), which overwhelms the cells' antioxidant defence system, and thereby causing oxidative damage in addition to activating pro-inflammatory pathways to cause cell death. Moderate ischemia and reperfusion may result in cell dysfunction, which may not lead to cell death due to activation of recovery systems to control ROS production and to ensure cell survival. However, prolonged and severe ischemia and reperfusion induce cell death by apoptosis, mitoptosis, necrosis, necroptosis, autophagy, mitophagy, mitochondrial permeability transition (MPT)-driven necrosis, ferroptosis, pyroptosis, cuproptosis and parthanoptosis. This review discusses cellular and molecular mechanisms of these various forms of cell death in the context of organ transplantation, and their inhibition, which holds clinical promise in the quest to prevent IRI and improve allograft quality and function for a long-term success of organ transplantation.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
- Department of Physiology & Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana.
| |
Collapse
|
26
|
Cao Y, Jin Z, Xi Y, Cheng J, Fang Z, Zhao Q, Weng J, Zhu J, Tang Y, Zhang Z, Jiang H. Roles of ferroptosis in type 1 diabetes induced spermatogenic dysfunction. Free Radic Biol Med 2024; 214:193-205. [PMID: 38369075 DOI: 10.1016/j.freeradbiomed.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Diabetes mellitus (DM) is a widespread metabolic disease presenting with various complications, including spermatogenic dysfunction. However, the underlying mechanisms are still unclear. Ferroptosis, a novel type of programmed cell death, is associated with much metabolic diseases. Here, we investigated the role of ferroptosis in spermatogenic dysfunction of streptozotocin (STZ)-induced type 1 diabetic mice (diabetic mice), high glucose (HG)-treated GC-2 cells (HG cells) as well as testicular tissues of diabetic patients. We found an accumulation of iron, elevated malondialdehyde level and reduced glutathione level in the testis tissues of diabetic mice and HG cells. Histological examination showed a decrease in spermatogenic cells and spermatids within the seminiferous tubules as well as mitochondrial shrinkage in the testis tissues of diabetic mice. Ferrostatin-1 (Fer-1), the inhibitor of ferroptosis, mitigated ferroptosis-associated iron overload, lipid peroxidation accumulation and spermatogenic dysfunction of diabetic mice. Furthermore, we observed a downregulation of GPX4, FTL and SLC7A11 in diabetic mice and HG cells. Fer-1 treatment and GPX4 overexpression counteracted the effects of HG on cell viability, reactive oxygen species, lipid peroxidation and glutathione via inhibition of ferroptosis. Moreover, we found an elevation of ferroptosis in testicular tissues of diabetic patients. Taken together, our results identify the crucial role of ferroptosis in diabetic spermatogenic dysfunction and ferroptosis may be a promising therapeutic target to improve spermatogenesis in diabetic patients.
Collapse
Affiliation(s)
- Yalei Cao
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Zirun Jin
- Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, Beijing, China; Department of andrology, Peking University First Hospital, Beijing, China
| | - Yu Xi
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Jianxing Cheng
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Zishui Fang
- Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, Beijing, China; Department of andrology, Peking University First Hospital, Beijing, China
| | - Qiancheng Zhao
- Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, Beijing, China; Department of andrology, Peking University First Hospital, Beijing, China
| | - Jiaming Weng
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Jun Zhu
- Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, Beijing, China; Department of andrology, Peking University First Hospital, Beijing, China
| | - Yanlin Tang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Zhe Zhang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.
| | - Hui Jiang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China; Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, Beijing, China; Department of andrology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
27
|
Singh G, Kesharwani P, Kumar Singh G, Kumar S, Putta A, Modi G. Ferroptosis and its modulators: A raising target for cancer and Alzheimer's disease. Bioorg Med Chem 2024; 98:117564. [PMID: 38171251 DOI: 10.1016/j.bmc.2023.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
The process of ferroptosis, a recently identified form of regulated cell death (RCD) is associated with the overloading of iron species and lipid-derived ROS accumulation. Ferroptosis is induced by various mechanisms such as inhibiting system Xc, glutathione depletion, targeting excess iron, and directly inhibiting GPX4 enzyme. Also, ferroptosis inhibition is achieved by blocking excessive lipid peroxidation by targeting different pathways. These mechanisms are often related to the pathophysiology and pathogenesis of diseases like cancer and Alzheimer's. Fundamentally distinct from other forms of cell death, such as necrosis and apoptosis, ferroptosis differs in terms of biochemistry, functions, and morphology. The mechanism by which ferroptosis acts as a regulatory factor in many diseases remains elusive. Studying the activation and inhibition of ferroptosis as a means to mitigate the progression of various diseases is a highly intriguing and actively researched topic. It has emerged as a focal point in etiological research and treatment strategies. This review systematically summarizes the different mechanisms involved in the inhibition and induction of ferroptosis. We have extensively explored different agents that can induce or inhibit ferroptosis. This review offers current perspectives on recent developments in ferroptosis research, highlighting the disease's etiology and presenting references to enhance its understanding. It also explores new targets for the treatment of cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar Gaya, 824236, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anjaneyulu Putta
- Department of Chemistry, University of South Dakota, Churchill Haines, Vermillion SD-57069, United States
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
28
|
Zhou D, Lu P, Mo X, Yang B, Chen T, Yao Y, Xiong T, Yue L, Yang X. Ferroptosis and metabolic syndrome and complications: association, mechanism, and translational applications. Front Endocrinol (Lausanne) 2024; 14:1248934. [PMID: 38260171 PMCID: PMC10800994 DOI: 10.3389/fendo.2023.1248934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome is a medical condition characterized by several metabolic disorders in the body. Long-term metabolic disorders raise the risk of cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). Therefore, it is essential to actively explore the aetiology of metabolic syndrome (MetS) and its comorbidities to provide effective treatment options. Ferroptosis is a new form of cell death that is characterized by iron overload, lipid peroxide accumulation, and decreased glutathione peroxidase 4(GPX4) activity, and it involves the pathological processes of a variety of diseases. Lipid deposition caused by lipid diseases and iron overload is significant in metabolic syndrome, providing the theoretical conditions for developing ferroptosis. Recent studies have found that the major molecules of ferroptosis are linked to common metabolic syndrome consequences, such as T2DM and atherosclerosis. In this review, we first discussed the mechanics of ferroptosis, the regulatory function of inducers and inhibitors of ferroptosis, and the significance of iron loading in MetS. Next, we summarized the role of ferroptosis in the pathogenesis of MetS, such as obesity, type 2 diabetes, and atherosclerosis. Finally, we discussed relevant ferroptosis-targeted therapies and raised some crucial issues of concern to provide directions for future Mets-related treatments and research.
Collapse
Affiliation(s)
- Dongmei Zhou
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Peipei Lu
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xianglai Mo
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Bing Yang
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Ting Chen
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - You Yao
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Tian Xiong
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Lin Yue
- School of Nursing, Hunan University of Medicine, Huaihua, China
| | - Xi Yang
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
29
|
Lou X, Zhang Y, Guo J, Gao L, Ding Y, Zhuo X, Lei Q, Bian J, Lei R, Gong W, Zhang X, Jiao Q. What is the impact of ferroptosis on diabetic cardiomyopathy: a systematic review. Heart Fail Rev 2024; 29:1-11. [PMID: 37555989 DOI: 10.1007/s10741-023-10336-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Iron overload increases the production of harmful reactive oxygen species in the Fenton reaction, which causes oxidative stress in the body and lipid peroxidation in the cell membrane, and eventually leads to ferroptosis. Diabetes is associated with increased intracellular oxidative stress, inflammation, autophagy, microRNA alterations, and advanced glycation end products (AGEs), which cause cardiac remodeling and cardiac diastolic contractile dysfunction, leading to the development of diabetic cardiomyopathy (DCM). While these factors are also closely associated with ferroptosis, more and more studies have shown that iron-mediated ferroptosis is an important causative factor in DCM. In order to gain fresh insights into the functions of ferroptosis in DCM, this review methodically summarizes the traits and mechanisms connected with ferroptosis and DCM.
Collapse
Affiliation(s)
- Xiaokun Lou
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Yuanyuan Zhang
- Department of Cardiovascular Ultrasonic Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junfeng Guo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Lina Gao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Yingying Ding
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Xinyu Zhuo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Qingqing Lei
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Jing Bian
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Rumei Lei
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Wenyan Gong
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China.
- Hangzhou Institute of Cardiovascular Disease, Hangzhou, 310000, China.
| | - Xingwei Zhang
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China.
- Hangzhou Institute of Cardiovascular Disease, Hangzhou, 310000, China.
| | - Qibin Jiao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
30
|
Huang Z, Ma Y, Sun Z, Cheng L, Wang G. Ferroptosis: potential targets and emerging roles in pancreatic diseases. Arch Toxicol 2024; 98:75-94. [PMID: 37934210 DOI: 10.1007/s00204-023-03625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Ferroptosis is a newly discovered form of regulatory cell death characterized by excessive iron-dependent lipid peroxidation. In the past decade, significant breakthroughs have been made in comprehending the features and regulatory mechanisms of ferroptosis, and it has been confirmed that ferroptosis plays a pivotal role in the pathophysiological processes of various diseases, including tumors, inflammation, neurodegenerative diseases, and infectious diseases. The pancreas, which is the second largest digestive gland in the human body and has both endocrine and exocrine functions, is a vital organ for controlling digestion and metabolism. In recent years, numerous studies have confirmed that ferroptosis is closely related to pancreatic diseases, which is attributed to abnormal iron accumulation, as an essential biochemical feature of ferroptosis, is often present in the pathological processes of various pancreatic exocrine and endocrine diseases and the vulnerability of the pancreas to oxidative stress stimulation and damage. Therefore, comprehending the regulatory mechanism of ferroptosis in pancreatic diseases may provide valuable new insights into treatment strategies. In this review, we first summarize the hallmark features of ferroptosis and then analyze the exact mechanisms by which ferroptosis is precisely regulated at multiple levels and links, including iron metabolism, lipid metabolism, the GPX4-mediated ferroptosis defense system, the GPX4-independent ferroptosis defense system, and the regulation of autophagy on ferroptosis. Finally, we discuss the role of ferroptosis in the occurrence and development of pancreatic diseases and summarize the feasibility and limitations of ferroptosis as a therapeutic target for pancreatic diseases.
Collapse
Affiliation(s)
- Zijian Huang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yuan Ma
- Medical Department, The First Affifiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhiguo Sun
- Department of General Surgery, The Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Long Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
31
|
Zhang J, Song J, Liu S, Zhang Y, Qiu T, Jiang L, Bai J, Yao X, Wang N, Yang G, Sun X. m 6A methylation-mediated PGC-1α contributes to ferroptosis via regulating GSTK1 in arsenic-induced hepatic insulin resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167202. [PMID: 37730054 DOI: 10.1016/j.scitotenv.2023.167202] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Arsenic exposure has been closely linked to hepatic insulin resistance (IR) and ferroptosis with the mechanism elusive. Peroxisome proliferator γ-activated receptor coactivator 1-α (PGC-1α) is essential for glucose metabolism as well as for the production of reactive oxygen species (ROS). However, it was unclear whether there is a regulatory connection between PGC-1α and ferroptosis. Besides, the definitive mechanism of arsenic-induced hepatic IR progression remains to be determined. Here, we found that hepatic insulin sensitivity impaired by sodium arsenite (NaAsO2) could be reversed by inhibiting ferroptosis. Mechanistically, we found that PGC-1α suppression inhibited the protein expression of glutathione s-transferase kappa 1 (GSTK1) via nuclear respiratory factor 1 (NRF1), thereby increasing ROS accumulation and promoting ferroptosis. Furthermore, we showed that NaAsO2 induced hepatic IR and ferroptosis via methyltransferase-like 14 (METTL14) and YTH domain-containing family protein 2 (YTHDF2)-mediated N6-methyladenosine (m6A) of PGC-1α mRNA. In conclusion, NaAsO2-mediated PGC-1α suppression was m6A methylation-dependent and induced ferroptosis via the PGC-1α/NRF1/GSTK1 pathway in hepatic IR. The data might provide insight into potential targets for diabetes prevention and treatment.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Jinwei Song
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Shuang Liu
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Yuhan Zhang
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Tianming Qiu
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Liping Jiang
- Experimental Teaching Center of Public Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Jie Bai
- Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Ningning Wang
- Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Guang Yang
- Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Xiance Sun
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
32
|
Bao T, Zhang X, Xie W, Wang Y, Li X, Tang C, Yang Y, Sun J, Gao J, Yu T, Zhao L, Tong X. Natural compounds efficacy in complicated diabetes: A new twist impacting ferroptosis. Biomed Pharmacother 2023; 168:115544. [PMID: 37820566 DOI: 10.1016/j.biopha.2023.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Ferroptosis, as a way of cell death, participates in the body's normal physiological and pathological regulation. Recent studies have shown that ferroptosis may damage glucose-stimulated islets β Insulin secretion and programmed cell death of T2DM target organs are involved in the pathogenesis of T2DM and its complications. Targeting suppression of ferroptosis with specific inhibitors may provide new therapeutic opportunities for previously untreated T2DM and its target organs. Current studies suggest that natural bioactive compounds, which are abundantly available in drugs, foods, and medicinal plants for the treatment of T2DM and its target organs, have recently received significant attention for their various biological activities and minimal toxicity, and that many natural compounds appear to have a significant role in the regulation of ferroptosis in T2DM and its target organs. Therefore, this review summarized the potential treatment strategies of natural compounds as ferroptosis inhibitors to treat T2DM and its complications, providing potential lead compounds and natural phytochemical molecular nuclei for future drug research and development to intervene in ferroptosis in T2DM.
Collapse
Affiliation(s)
- Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Xiangyuan Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Weinan Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Ying Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Xiuyang Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Cheng Tang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Yingying Yang
- National Center for Integrated Traditional and Western Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun Sun
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, No. 1478, Gongnong Road, Chaoyang District, Changchun 130021, China
| | - Jiaqi Gao
- School of Qi-Huang Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd Ring East Roa, Chaoyang Distric, Beijing 10010, China
| | - Tongyue Yu
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
33
|
Zhu B, Wei Y, Zhang M, Yang S, Tong R, Li W, Long E. Metabolic dysfunction-associated steatotic liver disease: ferroptosis related mechanisms and potential drugs. Front Pharmacol 2023; 14:1286449. [PMID: 38027027 PMCID: PMC10665502 DOI: 10.3389/fphar.2023.1286449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is considered a "multisystem" disease that simultaneously suffers from metabolic diseases and hepatic steatosis. Some may develop into liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Given the close connection between metabolic diseases and fatty liver, it is urgent to identify drugs that can control metabolic diseases and fatty liver as a whole and delay disease progression. Ferroptosis, characterized by iron overload and lipid peroxidation resulting from abnormal iron metabolism, is a programmed cell death mechanism. It is an important pathogenic mechanism in metabolic diseases or fatty liver, and may become a key direction for improving MASLD. In this article, we have summarized the physiological and pathological mechanisms of iron metabolism and ferroptosis, as well as the connections established between metabolic diseases and fatty liver through ferroptosis. We have also summarized MASLD therapeutic drugs and potential active substances targeting ferroptosis, in order to provide readers with new insights. At the same time, in future clinical trials involving subjects with MASLD (especially with the intervention of the therapeutic drugs), the detection of serum iron metabolism levels and ferroptosis markers in patients should be increased to further explore the efficacy of potential drugs on ferroptosis.
Collapse
Affiliation(s)
- Baoqiang Zhu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuankui Wei
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingming Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiyu Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenyuan Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Enwu Long
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
34
|
de Baat A, Meier DT, Rachid L, Fontana A, Böni-Schnetzler M, Donath MY. Cystine/glutamate antiporter System x c- deficiency impairs insulin secretion in mice. Diabetologia 2023; 66:2062-2074. [PMID: 37650924 PMCID: PMC10541846 DOI: 10.1007/s00125-023-05993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 09/01/2023]
Abstract
AIMS/HYPOTHESIS Glutamate-induced cytotoxicity (excitotoxicity) has been detected in pancreatic beta cells. The cystine/glutamate antiporter System xc- exports glutamate to the extracellular space and is therefore implicated as driving excitotoxicity. As of yet, it has not been investigated whether System xc- contributes to pancreatic islet function. METHODS This study describes the implications of deficiency of System xc- on glucose metabolism in both constitutive and myeloid cell-specific knockout mice using metabolic tests and diet-induced obesity. Pancreatic islets were isolated and analysed for beta cell function, glutathione levels and ER stress. RESULTS Constitutive System xc- deficiency led to an approximately threefold decrease in glutathione levels in the pancreatic islets as well as cystine shortage characterised by upregulation of Chac1. This shortage further manifested as downregulation of beta cell identity genes and a tonic increase in endoplasmic reticulum stress markers, which resulted in diminished insulin secretion both in vitro and in vivo. Myeloid-specific deletion did not have a significant impact on metabolism or islet function. CONCLUSIONS/INTERPRETATION These findings suggest that System xc- is required for glutathione maintenance and insulin production in beta cells and that the system is dispensable for islet macrophage function.
Collapse
Affiliation(s)
- Axel de Baat
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Leila Rachid
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Adriano Fontana
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marianne Böni-Schnetzler
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
35
|
Wei B, Zhang X, Qian J, Tang Z, Zhang B. Nrf2: Therapeutic target of islet function protection in diabetes and islet transplantation. Biomed Pharmacother 2023; 167:115463. [PMID: 37703659 DOI: 10.1016/j.biopha.2023.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) has been reported as a major intracellular regulator of antioxidant stress, notably in islet β cells with low antioxidant enzyme content. Nrf2 is capable of regulating antioxidant function, while it can also regulate insulin secretion, proliferation, and differentiation of β cells, ER stress, as well as mitochondrial function. Thus, Nrf2 pharmacological activators have been employed in the laboratory for the treatment of diabetic mice. Islet cells are exposed to oxidative environment when islet is being transplanted. Accordingly, less than 50% of islet cells are well transplanted, and their normal function is maintained. The pharmacological activation of Nrf2 has been confirmed to protect islet cells at different stages of transplantation stages during experiments for islet transplantation.
Collapse
Affiliation(s)
- Butian Wei
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Xin Zhang
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Jiwei Qian
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Zhe Tang
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Bo Zhang
- Department of general Surgery, The Second affiliated Hospital, Zhejiang university School of Medicine, Hangzhou 310000, China.
| |
Collapse
|
36
|
Wang X, Dai S, Zheng W, Chen W, Li J, Chen X, Zhou S, Yang R. Identification and verification of ferroptosis-related genes in diabetic foot using bioinformatics analysis. Int Wound J 2023; 20:3191-3203. [PMID: 37249237 PMCID: PMC10502281 DOI: 10.1111/iwj.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 05/31/2023] Open
Abstract
Ferroptosis is a novel form of cell death that plays a key role in several diseases, including inflammation and tumours; however, the role of ferroptosis-related genes in diabetic foot remains unclear. Herein, diabetic foot-related genes were downloaded from the Gene Expression Omnibus and the ferroptosis database (FerrDb). The least absolute shrinkage and selection operator regression algorithm was used to construct a related risk model, and differentially expressed genes were analysed through immune infiltration. Finally, we identified relevant core genes through a protein-protein interaction network, subsequently verified using immunohistochemistry. Comprehensive analysis showed 198 genes that were differentially expressed during ferroptosis. Based on functional enrichment analysis, these genes were primarily involved in cell response, chemical stimulation, and autophagy. Using the CIBERSORT algorithm, we calculated the immune infiltration of 22 different types of immune cells in diabetic foot and normal tissues. The protein-protein interaction network identified the hub gene TP53, and according to immunohistochemistry, the expression of TP53 was high in diabetic foot tissues but low in normal tissues. Accordingly, we identified the ferroptosis-related gene TP53 in the diabetic foot, which may play a key role in the pathogenesis of diabetic foot and could be used as a potential biomarker.
Collapse
Affiliation(s)
- Xiaoxiang Wang
- The First Clinical Medical CollegeGuangdong Medical UniversityZhanjiangChina
| | - Shangtai Dai
- Medical schoolKunming University of Science and Technology, The First People's Hospital of Yunnan ProvinceKunmingChina
| | - Wenlian Zheng
- The First Clinical Medical CollegeGuangdong Medical UniversityZhanjiangChina
| | - Wentao Chen
- The First Clinical Medical CollegeGuangdong Medical UniversityZhanjiangChina
| | - Jiehua Li
- Department of DermatologyThe First People's Hospital of FoshanFoshanChina
| | - Xiaodong Chen
- Department of Burn Surgery and Skin RegenerationThe First People's Hospital of FoshanFoshanChina
| | - Sitong Zhou
- Department of DermatologyThe First People's Hospital of FoshanFoshanChina
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's HospitalSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
37
|
Wang L, Zhang X, Xu M, Zheng G, Chen J, Li S, Cui J, Zhang S. Implication of ferroptosis in hepatic toxicity upon single or combined exposure to polystyrene microplastics and cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122250. [PMID: 37487871 DOI: 10.1016/j.envpol.2023.122250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 07/26/2023]
Abstract
Microplastics (MPs) are a newly emerging type of pollutants. To date, MPs have been found in the atmosphere, soil, water, and even in human samples, posing a non-negligible threat to humans. Furthermore, multiple heavy metals have been found to co-exist with MPs or be absorbed by MPs. This leads to a widespread concern about their combined toxicity, which is currently elusive. Herein, we investigated the single or combined toxic effects of polystyrene MPs (PS-MPs) and cadmium chloride (CdCl2) on the liver and hepatocytes. After co-incubation, cadmium (Cd) can be absorbed by PS-MPs, resulting in physiochemical alterations of PS-MPs. In vivo and in vitro experiments revealed that PS-MPs solely or together with CdCl2 induced ferroptosis in hepatocytes, a newly defined programmed cell death characterized by lipid oxidation and iron accumulation. PS-MPs exerted more ferroptotic effect on hepatocytes than CdCl2, and combined exposure to PS-MPs and CdCl2 enhanced their ferroptotic effect, mainly by stimulating reactive oxygen species (ROS) production and inhibiting antioxidant activity. Upon single or combined exposure to PS-MPs and CdCl2, the induction of ferroptosis in hepatocytes can be inhibited by N-acetyl-cysteine (NAC, an ROS scavenger), deferoxamine (DFO, an iron chelator), and particularly ferrostatin-1 (Fer-1, a specific ferroptosis inhibitor). Fer-1 efficiently rescued the cell viability of hepatocytes upon exposure to PS-MPs and CdCl2 through enhancing the antioxidant system via upregulating GPX4 and SLC7A11. These findings would contribute to an in-depth understanding of the single and combined toxicity of microplastics and cadmium.
Collapse
Affiliation(s)
- Lixin Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, 050018, China
| | - Xuan Zhang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, 050018, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Man Xu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, 050018, China
| | - Guangzhe Zheng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Jiamin Chen
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, 050018, China
| | - Shan Li
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, 050018, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Jiansheng Cui
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, 050018, China
| | - Shuping Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
38
|
Wang S, Lu Y, Chi T, Zhang Y, Zhao Y, Guo H, Feng L. Identification of ferroptosis-related genes in type 2 diabetes mellitus based on machine learning. Immun Inflamm Dis 2023; 11:e1036. [PMID: 37904700 PMCID: PMC10566453 DOI: 10.1002/iid3.1036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM), which has a high incidence and several harmful consequences, poses a severe danger to human health. Research on the function of ferroptosis in T2DM is increasing. This study uses bioinformatics techniques identify new diagnostic T2DM biomarkers associated with ferroptosis. METHODS To identify ferroptosis-related genes (FRGs) that are differentially expressed between T2DM patients and healthy individuals, we first obtained T2DM sequencing data and FRGs from the Gene Expression Omnibus (GEO) database and FerrDb database. Then, drug-gene interaction networks and competitive endogenous RNA (ceRNA) networks linked to the marker genes were built after marker genes were filtered by two machine learning algorithms (LASSO and SVM-RFE algorithms). Finally, to confirm the expression of marker genes, the GSE76895 dataset was utilized. The protein and RNA expression of some marker genes in T2DM and nondiabetic tissues was also examined by Western blotting, immunohistochemistry (IHC), immunofluorescence (IF) and quantitative real-time PCR (qRT-PCR). RESULTS We obtained 58 differentially expressed genes (DEGs) associated with ferroptosis. GO and KEGG enrichment analyses showed that these DEGs were significantly enriched in hypoxia and ferroptosis. Subsequently, eight marker genes (SCD, CD44, HIF1A, BCAT2, MTF1, HILPDA, NR1D2, and MYCN) were screened by LASSO and SVM-RFE machine learning algorithms, and a model was constructed based on these eight genes. This model also has high diagnostic power. In addition, based on these eight genes, we obtained 48 drugs and constructed a complex ceRNA network map. Finally, Western blotting, IHC, IF, and qRT-PCR results of clinical samples further confirmed the results of public databases. CONCLUSIONS The diagnosis and aetiology of T2DM can be greatly aided by eight FRGs, providing novel therapeutic avenues.
Collapse
Affiliation(s)
- Sen Wang
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan HospitalShandong First Medical UniversityJinanShandongChina
| | - Yongpan Lu
- Department of Plastic Surgery, The First Clinical Medical College, Shandong University of Traditional Chinese MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan HospitalJinanShandongChina
| | - Tingting Chi
- Department of Acupuncture and RehabilitationThe Affiliated Qingdao Hai Ci Hospital of Qingdao University (West Hospital Area)QingdaoShandongChina
| | - Yixin Zhang
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan HospitalShandong First Medical UniversityJinanShandongChina
| | - Yuli Zhao
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan HospitalShandong First Medical UniversityJinanShandongChina
| | - Huimin Guo
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan HospitalShandong First Medical UniversityJinanShandongChina
| | - Li Feng
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan HospitalShandong First Medical UniversityJinanShandongChina
| |
Collapse
|
39
|
Zhao Y, Gao Q, Li B, Wang Y, Wang Y. Ferroptosis and its potential role in gestational diabetes mellitus: updated evidence from pathogenesis to therapy. Front Endocrinol (Lausanne) 2023; 14:1177547. [PMID: 37664858 PMCID: PMC10471987 DOI: 10.3389/fendo.2023.1177547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Background Studies have demonstrated that high iron status is positively associated with gestational diabetes mellitus (GDM), implying that iron overload and ferroptosis play important roles in the development of GDM. The aim of this study was to explore effective therapeutic drugs from traditional Chinese medicine (TCM)formulas for the treatment of GDM based on ferroptosis. Methods In this study, the presence of ferroptosis in the placenta was verified through clinical and experimental data, and key genes were subsequently screened for association with ferroptosis in the development of GDM. The analysis was based on transcriptome sequencing of datasets combined with differentially expressed genes (DEGs) analysis and weighted gene correlation network analysis (WGCNA); functional enrichment analysis was also performed. A protein-protein interaction (PPI) network was constructed and pivotal genes were identified using Cytoscape. Finally, traditional Chinese medicine (TCM)formulas related to treating GDM were collected, then the proteins corresponding to the key genes were molecularly docked with the small molecular structures of clinically proven effective herbal tonics, and molecular dynamic simulations were performed to select the best candidates for pharmacological compounds. Results Elevated ferritin levels in patients with GDM were verified using clinical data. The presence of ferroptosis in placental tissues of patients with GDM was confirmed using electron microscopy and western blotting. Ninety-nine key genes with the highest correlation with ferroptosis were identified from DEGs and weighted gene co-expression network analysis (WGCNA). Analysis using the Kyoto Encyclopedia of Genes and Genomes demonstrated that the DEGs were primarily involved in the oxidative phosphorylation pathway. The key genes were further screened by PPI; two key genes, SF3B14 and BABAM1, were identified by combining the gene corresponding to protein structure and function, followed by molecular docking and molecular dynamic simulation. Coptis chinensis was proposed as the best candidate for herbal treatment at the molecular level. Conclusion This data revealed the presence of ferroptosis in patients with GDM and identified possible modulatory roles of ferroptosis-related genes involved in the molecular mechanisms of GDM, providing new insights into the pathogenesis of GDM, which also provided new directions for the systematic optimization of TCM formulas for the management and targeted treatment of GDM.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qianqian Gao
- Department of Obstetrics, Weifang People’s Hospital, Weifang, ShanDong, China
| | - Baoxuan Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Wang
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Wang
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
40
|
Xie D, Li K, Feng R, Xiao M, Sheng Z, Xie Y. Ferroptosis and Traditional Chinese Medicine for Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2023; 16:1915-1930. [PMID: 37398945 PMCID: PMC10312342 DOI: 10.2147/dmso.s412747] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Ferroptosis, an emerging form of regulated programmed cell death, has garnered significant attention in the past decade. It is characterized by the accumulation of lipid peroxides and subsequent damage to cellular membranes, which is dependent on iron. Ferroptosis has been implicated in the pathogenesis of various diseases, including tumors and diabetes mellitus. Traditional Chinese medicine (TCM) has unique advantages in preventing and treating type 2 diabetes mellitus (T2DM) due to its anti-inflammatory, antioxidant, immunomodulatory, and intestinal flora-regulating functions. Recent studies have determined that TCM may exert therapeutic effects on T2DM and its complications by modulating the ferroptosis-related pathways. Therefore, a comprehensive and systematic understanding of the role of ferroptosis in the pathogenesis and TCM treatment of T2DM is of great significance for developing therapeutic drugs for T2DM and enriching the spectrum of effective T2DM treatment with TCM. In this review, we review the concept, mechanism, and regulatory pathways of ferroptosis and the ferroptosis mechanism of action involved in the development of T2DM. Also, we develop a search strategy, establish strict inclusion and exclusion criteria, and summarize and analyze the application of the ferroptosis mechanism in TCM studies related to T2DM and its complications. Finally, we discuss the shortcomings of current studies and propose a future research focus.
Collapse
Affiliation(s)
- Dandan Xie
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, People’s Republic of China
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, Health Management Center, the Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Department of Clinical Nutrition, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, People’s Republic of China
| | - Kai Li
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, People’s Republic of China
| | - Ruxue Feng
- Department of Stomatology, Geriatric Hospital of Hainan, Haikou, Hainan, People’s Republic of China
| | - Man Xiao
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, Hainan, People’s Republic of China
| | - Zhifeng Sheng
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, Health Management Center, the Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Yiqiang Xie
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, People’s Republic of China
| |
Collapse
|
41
|
Ma M, Wang R, Xu M. Thorium(IV) triggers ferroptosis through disrupting iron homeostasis and heme metabolism in the liver following oral ingestion. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131217. [PMID: 36940529 DOI: 10.1016/j.jhazmat.2023.131217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Thorium is a byproduct of the rare earth mining industry and can be utilized as fuel for the next-generation nuclear power facilities, which may pose health risks to the population. Although published literature has shown that the toxicity of thorium possibly originates from its interactions with iron/heme-containing proteins, the underlying mechanisms are still largely unclear. Since the liver plays an irreplaceable role in iron and heme metabolism in the body, it is essential to investigate how thorium affects iron and heme homeostasis in hepatocytes. In this study, we first assessed the liver injury in mice exposed to tetravalent thorium (Th(IV)) in the form of thorium nitrite via the oral route. After a two-week oral exposure, thorium accumulation and iron overload were observed in the liver, which are both closely associated with lipid peroxidation and cell death. Transcriptomics analysis revealed that ferroptosis, which has not previously been documented in cells for actinides, is the main mechanism of programmed cell death induced by Th(IV). Further mechanistic studies suggested that Th(IV) could activate the ferroptotic pathway through disrupting iron homeostasis and generating lipid peroxides. More significantly, the disorder of heme metabolism, which is crucial for maintaining intracellular iron and redox homeostasis, was found to contribute to ferroptosis in hepatocytes exposed to Th(IV). Our findings may shed light on a key mechanism of hepatoxicity in response to Th(IV) stress and provide in-depth understanding of the health risk of thorium.
Collapse
Affiliation(s)
- Minghao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
42
|
Prasad MK, Mohandas S, Ramkumar KM. Dysfunctions, molecular mechanisms, and therapeutic strategies of pancreatic β-cells in diabetes. Apoptosis 2023:10.1007/s10495-023-01854-0. [PMID: 37273039 DOI: 10.1007/s10495-023-01854-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 06/06/2023]
Abstract
Pancreatic beta-cell death has been established as a critical mediator in the progression of type 1 and type 2 diabetes mellitus. Beta-cell death is associated with exacerbating hyperglycemia and insulin resistance and paves the way for the progression of DM and its complications. Apoptosis has been considered the primary mechanism of beta-cell death in diabetes. However, recent pieces of evidence have implicated the substantial involvement of several other novel modes of cell death, including autophagy, pyroptosis, necroptosis, and ferroptosis. These distinct mechanisms are characterized by their unique biochemical features and often precipitate damage through the induction of cellular stressors, including endoplasmic reticulum stress, oxidative stress, and inflammation. Experimental studies were identified from PubMed literature on different modes of beta cell death during the onset of diabetes mellitus. This review summarizes current knowledge on the crucial pathways implicated in pancreatic beta cell death. The article also focuses on applying natural compounds as potential treatment strategies in inhibiting these cell death pathways.
Collapse
Affiliation(s)
- Murali Krishna Prasad
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
43
|
Zheng G, Zhang J, Zhang X, Zhang Z, Liu S, Zhang S, Zhang C. Implications of ferroptosis in silver nanoparticle-induced cytotoxicity of macrophages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115057. [PMID: 37229872 DOI: 10.1016/j.ecoenv.2023.115057] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Metal nanoparticles (NPs) are widely used in daily life and commercial activities owing to their unique physicochemical properties. Consequently, there is an increasing risk of daily and occupational exposure to metal NPs, which raises concerns regarding their health hazards. Programmed cell deaths (PCDs) have been clarified to be involved in metal NP-induced cytotoxicity, including apoptosis, autophagy, and pyroptosis. However, whether and how ferroptosis, a newly recognized PCD, contributes to metal NP-induced cell death remain unclear. In this study, we investigated the ferroptotic effects of two representative metal NPs, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), on macrophages in vitro. Our results revealed that AgNPs, rather than AuNPs, induced non-apoptotic PCD, accompanied by lipid peroxidation and iron homeostasis disorders, which are two hallmarks of ferroptosis, in macrophages. Treatment with a ferroptosis inhibitor (ferrostatin-1) and iron chelator (deferoxamine) reversed AgNP-induced PCD, corroborating the induction of ferroptosis upon exposure to AgNPs. Moreover, our results revealed that smaller AgNPs elicited greater ferroptotic effects on macrophages than larger ones. Importantly, ferroptosis in AgNP-treated macrophages was mainly triggered by AgNPs per se rather than by Ag ions. Overall, our study highlights the ferroptotic effects elicited by AgNPs in macrophages, which will promote the understanding of their cytotoxic effects and facilitate the safer design of metal nanoproducts.
Collapse
Affiliation(s)
- Guangzhe Zheng
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Jie Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xuan Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Zhihong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Sijin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Changwen Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
44
|
Shi JF, Liu Y, Wang Y, Gao R, Wang Y, Liu J. Targeting ferroptosis, a novel programmed cell death, for the potential of alcohol-related liver disease therapy. Front Pharmacol 2023; 14:1194343. [PMID: 37214434 PMCID: PMC10196366 DOI: 10.3389/fphar.2023.1194343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Ferroptosis is a new iron-dependent cell death mode, which is different from the other types of programmed cell death, such as apoptosis, necrosis, and autophagy. Ferroptosis is characterized by a process in which fatal lipids from lipid peroxidation accumulate in cells and eventually lead to cell death. Alcohol-related liver disease (ALD) is a type of liver injury caused by excessive alcohol intake. Alcohol-related liver disease is a broad-spectrum disease category, which includes fatty liver, steatohepatitis, hepatitis, cirrhosis, and hepatocellular tumors. Recent studies have found that ferroptosis is involved in the pathological development of non-viral liver diseases. Therefore, ferroptosis may be an ideal target for the treatment of non-viral liver diseases. In this review article, we will elaborate the molecular mechanism and regulatory mechanism of ferroptosis, explore the key role of ferroptosis in the Alcohol-related liver disease process, and summarize the existing targeted ferroptosis drugs and their feasibility for the treatment of Alcohol-related liver disease.
Collapse
Affiliation(s)
- Jing-Fen Shi
- Institute for Health Policy and Hospital Management, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Wenjiang District People’s Hospital of Chengdu, Chengdu, China
| | - Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Yan Wang
- Wenjiang District People’s Hospital of Chengdu, Chengdu, China
| | - Ru Gao
- Wenjiang District People’s Hospital of Chengdu, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Liu
- Wenjiang District People’s Hospital of Chengdu, Chengdu, China
- Department of Ultrasound Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
45
|
Wang X, Zhou Y, Min J, Wang F. Zooming in and out of ferroptosis in human disease. Front Med 2023; 17:173-206. [PMID: 37121959 DOI: 10.1007/s11684-023-0992-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/12/2023] [Indexed: 05/02/2023]
Abstract
Ferroptosis is defined as an iron-dependent regulated form of cell death driven by lipid peroxidation. In the past decade, it has been implicated in the pathogenesis of various diseases that together involve almost every organ of the body, including various cancers, neurodegenerative diseases, cardiovascular diseases, lung diseases, liver diseases, kidney diseases, endocrine metabolic diseases, iron-overload-related diseases, orthopedic diseases and autoimmune diseases. Understanding the underlying molecular mechanisms of ferroptosis and its regulatory pathways could provide additional strategies for the management of these disease conditions. Indeed, there are an expanding number of studies suggesting that ferroptosis serves as a bona-fide target for the prevention and treatment of these diseases in relevant pre-clinical models. In this review, we summarize the progress in the research into ferroptosis and its regulatory mechanisms in human disease, while providing evidence in support of ferroptosis as a target for the treatment of these diseases. We also discuss our perspectives on the future directions in the targeting of ferroptosis in human disease.
Collapse
Affiliation(s)
- Xue Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, 315000, China
| | - Junxia Min
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Fudi Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
46
|
Xie L, Fang B, Zhang C. The role of ferroptosis in metabolic diseases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119480. [PMID: 37127193 DOI: 10.1016/j.bbamcr.2023.119480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
The annual incidence of metabolic diseases such as diabetes, non-alcoholic fatty liver disease (NAFLD), osteoporosis, and atherosclerosis (AS) is increasing, resulting in a heavy burden on human health and the social economy. Ferroptosis is a novel form of programmed cell death driven by iron-dependent lipid peroxidation, which was discovered in recent years. Emerging evidence has suggested that ferroptosis contributes to the development of metabolic diseases. Here, we summarize the mechanisms and molecular signaling pathways involved in ferroptosis. Then we discuss the role of ferroptosis in metabolic diseases. Finally, we analyze the potential of targeting ferroptosis as a promising therapeutic approach for metabolic diseases.
Collapse
Affiliation(s)
- Ling Xie
- Department of Nephrology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430072, Hubei, China
| | - Bin Fang
- Department of Nephrology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430072, Hubei, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430072, Hubei, China.
| |
Collapse
|
47
|
Wu Y, Sun Y, Wu Y, Zhang K, Chen Y. Predictive value of ferroptosis-related biomarkers for diabetic kidney disease: a prospective observational study. Acta Diabetol 2023; 60:507-516. [PMID: 36633709 PMCID: PMC10033569 DOI: 10.1007/s00592-022-02028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023]
Abstract
AIMS To explore the predictive value of ferroptosis-related (FR) biomarkers for diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus (T2DM). METHODS This prospective observational study enrolled patients with T2DM at the Second Hospital of Jilin University between December 2021 and March 2022. DKD was measured by the urinary albumin-to-creatinine ratio. Receiver operating characteristic curve (ROC) analysis was performed to assess the predictive value of ferroptosis-related biomarkers for DKD.The risk factors for massive proteinuria were performed by multivariable logistic regression analysis. RESULTS Finally, 118 patients (53.0 ± 12.2 years, 76 males) were enrolled, 52 of them without DKD (had normal proteinuria), while 66 with DKD. (Forty-one had microproteinuria, and 25 had massive proteinuria.) FR biomarkers, including acyl-CoA synthase long chain family member 4 (ACSL4), malondialdehyde (MDA), and reactive oxygen species (ROS), were significantly higher in the massive proteinuria group than in the other groups, while glutathione peroxidase 4 (GPX4) was significantly lower (all P < 0.05). The area under the ROC of the combination of GPX4, ACSL4, MDA, and ROS for predicting DKD was 0.804 (P < 0.001). Additionally, multivariate logistic regression analysis showed that the course of disease and ferritin levels were independent risk factors for massive proteinuria, while high serum iron, transferrin, and GPX4 levels were independent protective factors for massive proteinuria in patients with T2DM (all P < 0.05). CONCLUSIONS The GPX4, ACSL4, MDA, and ROS combination might have a good predictive value for DKD. Additionally, the course of disease, ferritin levels, serum iron, transferrin, and GPX4 were independently associated with massive proteinuria.
Collapse
Affiliation(s)
- You Wu
- Department of Endocrinology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Nanguan Distract, Changchun, 130041, China
| | - Yunwei Sun
- Department of Endocrinology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Nanguan Distract, Changchun, 130041, China
| | - Yiwei Wu
- Department of Endocrinology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Nanguan Distract, Changchun, 130041, China
| | - Kecheng Zhang
- Department of Endocrinology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Nanguan Distract, Changchun, 130041, China
| | - Yan Chen
- Department of Endocrinology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Nanguan Distract, Changchun, 130041, China.
| |
Collapse
|
48
|
Iron metabolism and ferroptosis in type 2 diabetes mellitus and complications: mechanisms and therapeutic opportunities. Cell Death Dis 2023; 14:186. [PMID: 36882414 PMCID: PMC9992652 DOI: 10.1038/s41419-023-05708-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023]
Abstract
The maintenance of iron homeostasis is essential for proper endocrine function. A growing body of evidence suggests that iron imbalance is a key factor in the development of several endocrine diseases. Nowadays, ferroptosis, an iron-dependent form of regulated cell death, has become increasingly recognized as an important process to mediate the pathogenesis and progression of type 2 diabetes mellitus (T2DM). It has been shown that ferroptosis in pancreas β cells leads to decreased insulin secretion; and ferroptosis in the liver, fat, and muscle induces insulin resistance. Understanding the mechanisms concerning the regulation of iron metabolism and ferroptosis in T2DM may lead to improved disease management. In this review, we summarized the connection between the metabolic pathways and molecular mechanisms of iron metabolism and ferroptosis in T2DM. Additionally, we discuss the potential targets and pathways concerning ferroptosis in treating T2DM and analysis the current limitations and future directions concerning these novel T2DM treatment targets.
Collapse
|
49
|
Deng Q, Zhu Y, Zhang M, Fei A, Liang J, Zheng J, Zhang Q, Cheng T, Ge X. Ferroptosis as a potential new therapeutic target for diabetes and its complications. Endocr Connect 2023; 12:e220419. [PMID: 36656308 PMCID: PMC9986392 DOI: 10.1530/ec-22-0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/20/2023]
Abstract
Diabetes is a complex metabolic disease. In recent years, diabetes and its chronic complications have become a health hotspot of global concern. It is very important to find promising therapeutic targets and directions. Ferroptosis is a new type of programmed cell death that is different from cell necrosis, apoptosis, and autophagy. Ferroptosis is mainly characterized by iron-dependent lipid peroxidation. With the reduction of the anti-oxidative capacity of cells, the accumulated reactive lipid oxygen species will cause oxidative cell death and lead to ferroptosis at lethal levels. Recent studies have shown that ferroptosis plays an important regulatory role in the initiation and development of diabetes, as well as various complications of diabetes. In this review, we will summarize new findings related to ferroptosis and diabetic complications and propose ferroptosis as a potential target for treating diabetic complications.
Collapse
Affiliation(s)
- Qian Deng
- Graduate College of Anhui University of Chinese Medicine, Hefei, China
| | - Yue Zhu
- Graduate College of Anhui University of Chinese Medicine, Hefei, China
| | - Mengmeng Zhang
- Graduate College of Anhui University of Chinese Medicine, Hefei, China
| | - Aihua Fei
- Department of Endocrinology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jiaqi Liang
- Graduate College of Anhui University of Chinese Medicine, Hefei, China
| | - Jinjin Zheng
- Graduate College of Anhui University of Chinese Medicine, Hefei, China
| | - Qingping Zhang
- College of Acupuncture-moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei, China
| | - Tong Cheng
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xia Ge
- Department of Endocrinology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
50
|
Jiao D, Xu J, Lou C, Luo Y, Ni C, Shen G, Fang M, Gong X. Quercetin alleviates subarachnoid hemorrhage-induced early brain injury via inhibiting ferroptosis in the rat model. Anat Rec (Hoboken) 2023; 306:638-650. [PMID: 36437694 DOI: 10.1002/ar.25130] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Early brain injury (EBI) refers to a series of pathophysiological brain lesions that occur within 72 hr after subarachnoid hemorrhage (SAH), which is an extremely crucial factor in the poor prognosis of patients. In EBI, ferroptosis has been proven to cause neuronal death. Quercetin (QCT) is effective in deactivating reactive oxygen species (ROS), inhibiting lipid peroxidation, and even chelating iron, but its role in SAH remains unclear. In this study, the mortality rate, severity grade of SAH, brain water content (BWC), blood-brain barrier permeability, and neurological function of the rats were detected. Moreover, mitochondrial morphology in cortical neurons were observed and their sizes were subsequently quantified. The levels of lipid peroxidation on glutathione and malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) were determined, whereas the protein expressions of glutathione peroxidase 4 (GPX4), SLC7A11 (xCT), transferrin receptor 1 (TfR1), and ferroportin-1 (FPN1) were analyzed by western immunoblotting. The neurodegeneration involved in EBI was investigated by fluoro-Jade C staining, while iron staining was utilized to measure iron content. Our results showed that inhibition of ferroptosis by QCT could suppress EBI and improve neurological function in SAH rats. QCT increased the expression levels of GPX4, xCT, and FPN1, while downregulated TfR1, and exerted protective effects on neurons as well as alleviated iron accumulation and lipid peroxidation in the cortex of SAH rats. In conclusion, our study revealed that QCT might alleviate the EBI by inhibiting ferroptosis in SAH rats.
Collapse
Affiliation(s)
- Dian Jiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianmiao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Chengjian Lou
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengtao Ni
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Guanghong Shen
- The Affiliated People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangyang Gong
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|