1
|
Ibraheem Shelash Al-Hawari S, Abdalkareem Jasim S, M A Altalbawy F, Bansal P, Kaur H, Hjazi A, Sani Mohammed J, Deorari M, Alsaadi SB, Hussein Zwamel A. An overview of lncRNA NEAT1 contribution in the pathogenesis of female cancers; from diagnosis to therapy resistance. Gene 2025; 933:148975. [PMID: 39353536 DOI: 10.1016/j.gene.2024.148975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Despite the ongoing progress in detecting and treating cancer, there is still a need for extensive research into the molecular mechanisms involved in the emergence, progression, and resistance to recurrence of female reproductive tissue-specific cancers such as ovarian, breast, cervical, and endometrial cancers. The nuclear paraspeckle assembly transcript 1 (NEAT1) is a long non-coding RNA (lncRNA) that exhibits increased expression in female tumors. Moreover, elevated levels of NEAT1 have been associated with poorer survival outcomes in cancer patients. NEAT1 plays a pivotal role in driving tumor initiation through modulating the expression of genes involved in various aspects of tumor cell proliferation, epithelial-to-mesenchymal transition (EMT), metastasis, chemoresistance, and radio-resistance. Mechanistically, NEAT1 acts as a scaffold RNA molecule via interacting with EZH2 (Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit), thereby influencing the expression of downstream effectors of EZH2. Additionally, NEAT1 functions as a competing endogenous RNA (ceRNA) by microRNAs (miRNAs) sponging, consequently altering the expression levels of their target genes during the development of female cancers. This comprehensive review aims to shed light on the latest insights regarding the expression pattern, biological functions, and underlying mechanisms governing the function and regulation of NEAT1 in tumors. Furthermore, particular emphasis is placed on its clinical significance as a novel diagnostic biomarker and a promising therapeutic target for female cancers.
Collapse
Affiliation(s)
- Sulieman Ibraheem Shelash Al-Hawari
- Electronic Marketing and Social Media, Economic and Administrative Sciences Zarqa University, Jordan; Research follower, INTI International University, 71800 Negeri Sembilan, Malaysia
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Jaafaru Sani Mohammed
- Medical Analysis Department, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Salim B Alsaadi
- Department of Pharmaceutics/ Al-Hadi University College, Baghdad 10011, Iraq
| | - Ahmed Hussein Zwamel
- Department of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq
| |
Collapse
|
2
|
Kadian LK, Verma D, Lohani N, Yadav R, Ranga S, Gulshan G, Pal S, Kumari K, Chauhan SS. Long non-coding RNAs in cancer: multifaceted roles and potential targets for immunotherapy. Mol Cell Biochem 2024; 479:3229-3254. [PMID: 38413478 DOI: 10.1007/s11010-024-04933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Cancer remains a major global health concern with high mortality rates mainly due to late diagnosis and poor prognosis. Long non-coding RNAs (lncRNAs) are emerging as key regulators of gene expression in human cancer, functioning through various mechanisms including as competing endogenous RNAs (ceRNAs) and indirectly regulating miRNA expression. LncRNAs have been found to have both oncogenic and tumor-suppressive roles in cancer, with the former promoting cancer cell proliferation, migration, invasion, and poor prognosis. Recent research has shown that lncRNAs are expressed in various immune cells and are involved in cancer cell immune escape and the modulation of the tumor microenvironment, thus highlighting their potential as targets for cancer immunotherapy. Targeting lncRNAs in cancer or immune cells could enhance the anti-tumor immune response and improve cancer immunotherapy outcomes. However, further research is required to fully understand the functional roles of lncRNAs in cancer and the immune system and their potential as targets for cancer immunotherapy. This review offers a comprehensive examination of the multifaceted roles of lncRNAs in human cancers, with a focus on their potential as targets for cancer immunotherapy. By exploring the intricate mechanisms underlying lncRNA-mediated regulation of cancer cell proliferation, invasion, and immune evasion, we provide insights into the diverse therapeutic applications of these molecules.
Collapse
Affiliation(s)
- Lokesh K Kadian
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
- Dept of Dermatology, Indiana University School of Medicine, Indianapolis, 46202, USA
| | - Deepika Verma
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neelam Lohani
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ritu Yadav
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Shalu Ranga
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Gulshan Gulshan
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Sanghapriya Pal
- Dept of Biochemistry, Maulana Azad Medical College and Associated Hospital, New Delhi, 110002, India
| | - Kiran Kumari
- Dept of Forensic Science, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Shyam S Chauhan
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
3
|
Wang S, Bai Y, Ma J, Qiao L, Zhang M. Long non-coding RNAs: regulators of autophagy and potential biomarkers in therapy resistance and urological cancers. Front Pharmacol 2024; 15:1442227. [PMID: 39512820 PMCID: PMC11540796 DOI: 10.3389/fphar.2024.1442227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
The non-coding RNAs (ncRNAs) comprise a large part of human genome that mainly do not code for proteins. Although ncRNAs were first believed to be non-functional, the more investigations highlighted tthe possibility of ncRNAs in controlling vital biological processes. The length of long non-coding RNAs (lncRNAs) exceeds 200 nucleotidesand can be present in nucleus and cytoplasm. LncRNAs do not translate to proteins and they have been implicated in the regulation of tumorigenesis. On the other hand, One way cells die is by a process called autophagy, which breaks down proteins and other components in the cytoplasm., while the aberrant activation of autophagy allegedly involved in the pathogenesis of diseases. The autophagy exerts anti-cancer activity in pre-cancerous lesions, while it has oncogenic function in advanced stages of cancers. The current overview focuses on the connection between lncRNAs and autophagy in urological cancers is discussed. Notably, one possible role for lncRNAs is as diagnostic and prognostic variablesin urological cancers. The proliferation, metastasis, apoptosis and therapy response in prostate, bladder and renal cancers are regulated by lncRNAs. The changes in autophagy levels can also influence the apoptosis, proliferation and therapy response in urological tumors. Since lncRNAs have modulatory functions, they can affect autophagy mechanism to determine progression of urological cancers.
Collapse
Affiliation(s)
- Shizong Wang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Yang Bai
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Jie Ma
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Liang Qiao
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Mingqing Zhang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| |
Collapse
|
4
|
Pinkney HR, Ross CR, Hodgson TO, Pattison ST, Diermeier SD. Discovery of prognostic lncRNAs in colorectal cancer using spatial transcriptomics. NPJ Precis Oncol 2024; 8:230. [PMID: 39390212 PMCID: PMC11467462 DOI: 10.1038/s41698-024-00728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Colorectal cancer (CRC) exhibits significant genetic and epigenetic diversity, evolving into sub-clonal populations with varied metastatic potentials and treatment responses. Predicting metastatic disease in CRC patients remains challenging, underscoring the need for reliable biomarkers. While most research on therapeutic targets and biomarkers has focused on proteins, non-coding RNAs such as long non-coding RNAs (lncRNAs) comprise most of the transcriptome and demonstrate superior tissue- and cancer-specific expression. We utilised spatial transcriptomics to investigate lncRNAs in CRC tumours, offering more precise cell-type-specific expression data compared to bulk RNA sequencing. Our analysis identified 301 lncRNAs linked to malignant CRC regions, which we validated with public data. Further validation using RNA-FISH revealed three lncRNAs (LINC01978, PLAC4, and LINC01303) that are detectable in stage II tumours but not in normal epithelium and are upregulated in metastatic tissues. These lncRNAs hold potential as biomarkers for early risk assessment of metastatic disease.
Collapse
Affiliation(s)
- Holly R Pinkney
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | | - Sarah D Diermeier
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
5
|
Guha S, Talukdar D, Mandal GK, Mukherjee R, Ghosh S, Naskar R, Saha P, Murmu N, Das G. Crude extract of Ruellia tuberosa L. flower induces intracellular ROS, promotes DNA damage and apoptosis in triple negative breast cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118389. [PMID: 38821138 DOI: 10.1016/j.jep.2024.118389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ruellia tuberosa L. (Acanthaceae) is a weed plant traditionally used in folklore medicine as a diuretic, anti-hypertensive, anti-pyretic, anti-cancerous, anti-diabetic, analgesic, and gastroprotective agent. It has been previously reported that R. tuberosa L. is enriched with various flavonoids, exhibiting significant cytotoxic potential in various cancer models but a detailed study concerning its molecular mechanism is yet to be explored. AIM OF THE STUDY Exploring and validating R. tuberosa L. flower methanolic extract (RTME) as an anti-cancerous agent as per traditional usage with special emphasis on multi-drug resistant human triple-negative breast cancer (TNBC) and investigating the possible signaling networks and regulatory pathways involved in it. MATERIALS AND METHODS In this study, RTME was prepared using methanol, and phytochemical analysis was performed through GC-MS. Then, the extract was tested for its anti-cancer potential through in-vitro cytotoxicity assay, clonogenic assay, wound healing assay, ROS generation assay, cell cycle arrest, apoptotic nuclear morphology study, cellular apoptosis study, mitochondrial membrane potential (MMP) alteration study, protein, and gene expressions alteration study. In addition, toxicological status was evaluated in female Balb/C mice, and to check the receptor-ligand interactions, in-silico molecular docking was also conducted. RESULTS Several phytochemicals were found within RTME through GC-MS, which have been already reported to act as ROS inductive, DNA damaging, cell cycle arresting, and apoptotic agents against cancer cells. Moreover, RTME was found to exhibit significant in-vitro cytotoxicity along with a reduction in colony formation, and inhibition of cell migratory potential. It also induced intracellular ROS, promoted G0/G1 cell cycle arrest, caused mitochondrial membrane potential (MMP) alteration, and promoted cell death. The Western blot and qRT-PCR data revealed that RTME promoted the intrinsic pathway of apoptosis. Furthermore, blood parameters and organ histology on female Balb/C mice disclosed the non-toxic nature of RTME. Finally, an in-silico molecular docking study displayed that the three identified lead phytochemicals in RTME show strong receptor-ligand interactions with the anti-apoptotic Bcl-2 and give a clue to the possible molecular mechanism of the RTME extract. CONCLUSIONS RTME is a potential source of several phytochemicals that have promising therapeutic potential against TNBC cells, and thus could further be utilized for anti-cancer drug development.
Collapse
Affiliation(s)
- Subhabrata Guha
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India; Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| | - Debojit Talukdar
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| | - Gautam Kumar Mandal
- IQ City Medical College Hospital, IQ City Road, Durgapur, 713206, West Bengal, India.
| | - Rimi Mukherjee
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| | - Srestha Ghosh
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| | - Rahul Naskar
- Department of Chemistry, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| | - Gaurav Das
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| |
Collapse
|
6
|
Liu R, Wang J, Zhang L, Wang S, Li X, Liu Y, Yu H. GLIDR-mediated regulation of tumor malignancy and cisplatin resistance in non-small cell lung cancer via the miR-342-5p/PPARGC1A axis. BMC Cancer 2024; 24:1126. [PMID: 39256686 PMCID: PMC11385156 DOI: 10.1186/s12885-024-12845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Lung cancer, particularly non-small cell lung cancer (NSCLC), remains a significant cause of cancer-related mortality, with drug resistance posing a substantial obstacle to effective therapy. LncRNAs have emerged as pivotal regulators of NSCLC progression, suggesting potential targets for cancer diagnosis and treatment. Therefore, identifying new lncRNAs as therapeutic targets and comprehending their underlying regulatory mechanisms are crucial for treating NSCLC. MATERIALS AND METHODS RNA-sequencing data from 149 lung adenocarcinoma (LUAD) patients, including 130 responders and 19 nonresponders to primary treatment, were analyzed to identify the most effective lncRNAs. The effects and regulatory pathways of the selected lncRNAs on NSCLC and cisplatin resistance were investigated. RESULTS Glioblastoma-downregulated RNA (GLIDR) was the most effective lncRNA in nonresponsive NSCLC patients undergoing primary treatment, and it was highly expressed in NSCLC patients and those with cisplatin-resistant NSCLC. Reducing GLIDR expression enhanced cisplatin sensitivity in resistant NSCLC and decreased the malignant characteristics of NSCLC. Moreover, bioinformatic analysis and luciferase assays revealed that microRNA-342-5p (miR-342-5p) directly targets GLIDR. MiR-342-5p overexpression inhibited NSCLC cell proliferation, migration, and invasion, whereas miR-342-5p inhibition promoted NSCLC malignancy, which was rescued by suppressing GLIDR. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PPARGC1A) was identified as a downstream target of miR-342-5p. PPARGC1A inhibition increased cisplatin sensitivity in resistant NSCLC. Moreover, PPARGC1A inhibition suppresses NSCLC malignancy, whereas PPARGC1A overexpression promoted it. Furthermore, GLIDR overexpression was found to counteract the inhibitory effects of miR-342-5p on PPARGC1A, and increased PPARGC1A expression reversed the inhibition of NSCLC malignancies caused by decreased GLIDR. CONCLUSIONS GLIDR is a prognostic marker for cisplatin treatment in NSCLC and a therapeutic target in cisplatin-resistant NSCLC. GLIDR promotes NSCLC progression by sponging miR-342-5p to regulate PPARGC1A expression and regulates cisplatin resistance through the miR-342-5p/PPARGC1A axis, underscoring its potential as a therapeutic target in cisplatin-resistant NSCLC.
Collapse
Affiliation(s)
- Ruihua Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Jiemin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Lichun Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Shu Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Xiangnan Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Yueshi Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
7
|
Chen W, Pan Z, Feng Z, Wang X, Zhu S. Deciphering the code: the pivotal role of lncRNAs in advancing TNBC therapy. Front Oncol 2024; 14:1450980. [PMID: 39286016 PMCID: PMC11402698 DOI: 10.3389/fonc.2024.1450980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Triple-negative breast cancer (TNBC) represents the most formidable subtype of breast cancer, characterized by a notable dearth in targeted therapeutic options. Deciphering the underlying molecular mechanisms of TNBC is pivotal for improving patient outcomes. Recent scientific advancements have spotlighted long non-coding RNAs (lncRNAs) as key players in the genesis, progression, and metastasis of cancers. This review delineates the significant influence of lncRNAs on the advancement, detection, and neoadjuvant chemotherapy efficacy in TNBC, detailing the diverse expression patterns of aberrant lncRNAs. The paper explores the specific mechanisms by which lncRNAs regulate gene expression in both the nucleus and cytoplasm, with a special focus on their involvement in TNBC's post-transcriptional landscape. Thorough investigations into TNBC-associated lncRNAs not only forge new avenues for early diagnosis and potent treatment strategies but also highlight these molecules as promising therapeutic targets, heralding an era of personalized and precision medicine in TNBC management.
Collapse
Affiliation(s)
- Weiping Chen
- Department of Respiratory, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Zhiyong Pan
- Department of Radiotherapy, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Zhengfu Feng
- Department of Radiotherapy, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Xin Wang
- Department of Radiotherapy, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Song Zhu
- Department of Radiotherapy, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
8
|
Qattan A, Al-Tweigeri T, Suleman K, Alkhayal W, Tulbah A. Advanced Insights into Competitive Endogenous RNAs (ceRNAs) Regulated Pathogenic Mechanisms in Metastatic Triple-Negative Breast Cancer (mTNBC). Cancers (Basel) 2024; 16:3057. [PMID: 39272915 PMCID: PMC11394539 DOI: 10.3390/cancers16173057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Triple-negative breast cancer is aggressive and challenging to treat because of a lack of targets and heterogeneity among tumors. A paramount factor in the mortality from breast cancer is metastasis, which is driven by genetic and phenotypic alterations that drive epithelial-mesenchymal transition, stemness, survival, migration and invasion. Many genetic and epigenetic mechanisms have been identified in triple-negative breast cancer that drive these metastatic phenotypes; however, this knowledge has not yet led to the development of effective drugs for metastatic triple-negative breast cancer (mTNBC). One that may not have received enough attention in the literature is post-translational regulation of broad sets of cancer-related genes through inhibitory microRNAs and the complex competitive endogenous RNA (ceRNA) regulatory networks they are influenced by. This field of study and the resulting knowledge regarding alterations in these networks is coming of age, enabling translation into clinical benefit for patients. Herein, we review metastatic triple-negative breast cancer (mTNBC), the role of ceRNA network regulation in metastasis (and therefore clinical outcomes), potential approaches for therapeutic exploitation of these alterations, knowledge gaps and future directions in the field.
Collapse
Affiliation(s)
- Amal Qattan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Taher Al-Tweigeri
- Department of Medical Oncology, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Kausar Suleman
- Department of Medical Oncology, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Wafa Alkhayal
- Department of Surgery, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Asma Tulbah
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
9
|
Zakutansky PM, Ku L, Zhang G, Shi L, Li Y, Yao B, Bassell GJ, Read RD, Feng Y. Isoform balance of the long noncoding RNA NEAT1 is regulated by the RNA-binding protein QKI, governs the glioma transcriptome, and impacts cell migration. J Biol Chem 2024; 300:107595. [PMID: 39032650 PMCID: PMC11367543 DOI: 10.1016/j.jbc.2024.107595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024] Open
Abstract
The long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) is involved in a variety of human cancers. Two overlapping NEAT1 isoforms, NEAT1_1 and NEAT1_2, are produced through mutually exclusive alternative 3' end formation. Previous studies extensively investigated NEAT1 dysregulation in tumors, but often failed to achieve distinct quantification of the two NEAT1 isoforms. Moreover, molecular mechanisms governing the biogenesis of NEAT1 isoforms and the functional impacts of their dysregulation in tumorigenesis remain poorly understood. In this study, we employed an isoform-specific quantification assay and found differential dysregulation of NEAT1 isoforms in patient-derived glioblastoma multiforme cells. We further showed usage of the NEAT1 proximal polyadenylation site (PAS) is a critical mechanism that controls glioma NEAT1 isoform production. CRISPR-Cas9-mediated PAS deletion reduced NEAT1_1 and reciprocally increased NEAT1_2, which enhanced nuclear paraspeckle formation in human glioma cells. Moreover, the utilization of the NEAT1 PAS is facilitated by the RNA-binding protein quaking (QKI), which binds to the proximal QKI recognition elements. Functionally, we identified transcriptomic changes and altered biological pathways caused by NEAT1 isoform imbalance in glioma cells, including the pathway for the regulation of cell migration. Finally, we demonstrated the forced increase of NEAT1_2 upon NEAT1 PAS deletion is responsible for driving glioma cell migration and promoting the expression of genes implicated in the regulation of cell migration. Together, our studies uncovered a novel mechanism that regulates NEAT1 isoforms and their functional impacts on the glioma transcriptome, which affects pathological pathways of glioma, represented by migration.
Collapse
Affiliation(s)
- Paul M Zakutansky
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell, and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Li Ku
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Guannan Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Liang Shi
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA; Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Yue Feng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
10
|
Poltronieri P. Regulatory RNAs: role as scaffolds assembling protein complexes and their epigenetic deregulation. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:841-876. [PMID: 39280246 PMCID: PMC11390297 DOI: 10.37349/etat.2024.00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/26/2024] [Indexed: 09/18/2024] Open
Abstract
Recently, new data have been added to the interaction between non-coding RNAs (ncRNAs) and epigenetic machinery. Epigenetics includes enzymes involved in DNA methylation, histone modifications, and RNA modifications, and mechanisms underlying chromatin structure, repressive states, and active states operating in transcription. The main focus is on long ncRNAs (lncRNAs) acting as scaffolds to assemble protein complexes. This review does not cover RNA's role in sponging microRNAs, or decoy functions. Several lncRNAs were shown to regulate chromatin activation and repression by interacting with Polycomb repressive complexes and mixed-lineage leukemia (MLL) activating complexes. Various groups reported on enhancer of zeste homolog 2 (EZH2) interactions with regulatory RNAs. Knowledge of the function of these complexes opens the perspective to develop new therapeutics for cancer treatment. Lastly, the interplay between lncRNAs and epitranscriptomic modifications in cancers paves the way for new targets in cancer therapy. The approach to inhibit lncRNAs interaction with protein complexes and perspective to regulate epitrascriptomics-regulated RNAs may bring new compounds as therapeuticals in various types of cancer.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Agrofood Department, National Research Council, CNR-ISPA, 73100 Lecce, Italy
| |
Collapse
|
11
|
Zhang W, Li Z, Wang X, Sun T. Phase separation is regulated by post-translational modifications and participates in the developments of human diseases. Heliyon 2024; 10:e34035. [PMID: 39071719 PMCID: PMC11279762 DOI: 10.1016/j.heliyon.2024.e34035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) of intracellular proteins has emerged as a hot research topic in recent years. Membrane-less and liquid-like condensates provide dense spaces that ensure cells to high efficiently regulate genes transcription and rapidly respond to burst changes from the environment. The fomation and activity of LLPS are not only modulated by the cytosol conditions including but not limited to salt concentration and temperture. Interestingly, recent studies have shown that phase separation is also regulated by various post-translational modifications (PTMs) through modulating proteins multivalency, such as solubility and charge interactions. The regulation mechanism is crucial for normal functioning of cells, as aberrant protein aggregates are often closely related with the occurrence and development of human diseases including cancer and nurodegenerative diseases. Therefore, studying phase separation in the perspective of protein PTMs has long-term significance for human health. In this review, we summarized the properties and cellular physiological functions of LLPS, particularly its relationships with PTMs in human diseases according to recent researches.
Collapse
Affiliation(s)
- Weibo Zhang
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Zhengfeng Li
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Xianju Wang
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Ting Sun
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| |
Collapse
|
12
|
Bhattacharya A, Wang K, Penailillo J, Chan CN, Fushimi A, Yamashita N, Daimon T, Haratake N, Ozawa H, Nakashoji A, Shigeta K, Morimoto Y, Miyo M, Kufe DW. MUC1-C regulates NEAT1 lncRNA expression and paraspeckle formation in cancer progression. Oncogene 2024; 43:2199-2214. [PMID: 38802648 PMCID: PMC11226401 DOI: 10.1038/s41388-024-03068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
The MUC1 gene evolved in mammals for adaptation of barrier tissues in response to infections and damage. Paraspeckles are nuclear bodies formed on the NEAT1 lncRNA in response to loss of homeostasis. There is no known intersection of MUC1 with NEAT1 or paraspeckles. Here, we demonstrate that the MUC1-C subunit plays an essential role in regulating NEAT1 expression. MUC1-C activates the NEAT1 gene with induction of the NEAT1_1 and NEAT1_2 isoforms by NF-κB- and MYC-mediated mechanisms. MUC1-C/MYC signaling also induces expression of the SFPQ, NONO and FUS RNA binding proteins (RBPs) that associate with NEAT1_2 and are necessary for paraspeckle formation. MUC1-C integrates activation of NEAT1 and RBP-encoding genes by recruiting the PBAF chromatin remodeling complex and increasing chromatin accessibility of their respective regulatory regions. We further demonstrate that MUC1-C and NEAT1 form an auto-inductive pathway that drives common sets of genes conferring responses to inflammation and loss of homeostasis. Of functional significance, we find that the MUC1-C/NEAT1 pathway is of importance for the cancer stem cell (CSC) state and anti-cancer drug resistance. These findings identify a previously unrecognized role for MUC1-C in the regulation of NEAT1, RBPs, and paraspeckles that has been co-opted in promoting cancer progression.
Collapse
Affiliation(s)
| | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Johany Penailillo
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chi Ngai Chan
- Tissue Technologies Unit, Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nami Yamashita
- Breast Surgical Oncology, Breast Oncology Center, The Cancer Institute Hospital of the JFCR, Tokyo, Japan
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hiroki Ozawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Keisuke Shigeta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yoshihiro Morimoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masaaki Miyo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Xie X, Sinha S. Quantitative estimates of the regulatory influence of long non-coding RNAs on global gene expression variation using TCGA breast cancer transcriptomic data. PLoS Comput Biol 2024; 20:e1012103. [PMID: 38838009 PMCID: PMC11198904 DOI: 10.1371/journal.pcbi.1012103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/25/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have received attention in recent years for their regulatory roles in diverse biological contexts including cancer, yet large gaps remain in our understanding of their mechanisms and global maps of their targets. In this work, we investigated a basic unanswered question of lncRNA systems biology: to what extent can gene expression variation across individuals be attributed to lncRNA-driven regulation? To answer this, we analyzed RNA-seq data from a cohort of breast cancer patients, explaining each gene's expression variation using a small set of automatically selected lncRNA regulators. A key aspect of this analysis is that it accounts for confounding effects of transcription factors (TFs) as common regulators of a lncRNA-mRNA pair, to enrich the explained gene expression for lncRNA-mediated regulation. We found that for 16% of analyzed genes, lncRNAs can explain more than 20% of expression variation. We observed 25-50% of the putative regulator lncRNAs to be in 'cis' to, i.e., overlapping or located proximally to the target gene. This led us to quantify the global regulatory impact of such cis-located lncRNAs, which was found to be substantially greater than that of trans-located lncRNAs. Additionally, by including statistical interaction terms involving lncRNA-protein pairs as predictors in our regression models, we identified cases where a lncRNA's regulatory effect depends on the presence of a TF or RNA-binding protein. Finally, we created a high-confidence lncRNA-gene regulatory network whose edges are supported by co-expression as well as a plausible mechanism such as cis-action, protein scaffolding or competing endogenous RNAs. Our work is a first attempt to quantify the extent of gene expression control exerted globally by lncRNAs, especially those located proximally to their regulatory targets, in a specific biological (breast cancer) context. It also marks a first step towards systematic reconstruction of lncRNA regulatory networks, going beyond the current paradigm of co-expression networks, and motivates future analyses assessing the generalizability of our findings to additional biological contexts.
Collapse
Affiliation(s)
- Xiaoman Xie
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Saurabh Sinha
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
14
|
Elmasri RA, Rashwan AA, Gaber SH, Rostom MM, Karousi P, Yasser MB, Kontos CK, Youness RA. Puzzling out the role of MIAT LncRNA in hepatocellular carcinoma. Noncoding RNA Res 2024; 9:547-559. [PMID: 38515792 PMCID: PMC10955557 DOI: 10.1016/j.ncrna.2024.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 03/23/2024] Open
Abstract
A non-negligible part of our DNA has been proven to be transcribed into non-protein coding RNA and its intricate involvement in several physiological processes has been highly evidenced. The significant biological role of non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) has been variously reported. In the current review, the authors highlight the multifaceted role of myocardial infarction-associated transcript (MIAT), a well-known lncRNA, in hepatocellular carcinoma (HCC). Since its discovery, MIAT has been described as a regulator of carcinogenesis in several malignant tumors and its overexpression predicts poor prognosis in most of them. At the molecular level, MIAT is closely linked to the initiation of metastasis, invasion, cellular migration, and proliferation, as evidenced by several in-vitro and in-vivo models. Thus, MIAT is considered a possible theranostic agent and therapeutic target in several malignancies. In this review, the authors provide a comprehensive overview of the underlying molecular mechanisms of MIAT in terms of its downstream target genes, interaction with other classes of ncRNAs, and potential clinical implications as a diagnostic and/or prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Rawan Amr Elmasri
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| | - Alaa A. Rashwan
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo (AUC), 11835, Cairo, Egypt
| | - Sarah Hany Gaber
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| | - Monica Mosaad Rostom
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), 11835, Cairo, Egypt
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| |
Collapse
|
15
|
Huang P, Wen F, Li Y, Li Q. The tale of SOX2: Focusing on lncRNA regulation in cancer progression and therapy. Life Sci 2024; 344:122576. [PMID: 38492918 DOI: 10.1016/j.lfs.2024.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as influential contributors to diverse cellular processes, which regulate gene function and expression via multiple mechanistic pathways. Therefore, it is essential to exploit the structures and interactions of lncRNAs to comprehend their mechanistic functions within cells. A growing body of evidence has revealed that deregulated lncRNAs are involved in multiple regulations of malignant events including cell proliferation, growth, invasion, and metabolism. SRY-related high mobility group box (SOX)2, a well-recognized member of the SOX family, is commonly overexpressed in various types of cancer, contributing to tumor progression and maintenance of stemness. Emerging studies have shown that lncRNAs interact with SOX2 to remarkably contribute to carcinogenesis and disease states. This review elaborates on the crosstalk between the intricate and complicated functions of lncRNAs and SOX2 in the context of malignant diseases. We elucidate distinct molecular mechanisms that contribute to the onset/advancement of cancer, indicating that lncRNAs/SOX2 axes hold immense promise for potential therapeutic targets. Furthermore, we delve into the modalities of emerging feasible treatment options for targeting lncRNAs, highlighting the limitations of such therapies and providing novel insights into further ameliorations of targeted strategies of lncRNAs to promote the clinical implications. Translating current discoveries into clinical applications could ultimately boost improved survival and prognosis of cancer patients.
Collapse
Affiliation(s)
- Peng Huang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feng Wen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - YiShan Li
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, West China School of Nursing, Chengdu, Sichuan 610041, China
| | - Qiu Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
16
|
Zhang S, Kim EJ, Huang J, Liu P, Donahue K, Wang Q, Wang Y, Mcilwain S, Xie L, Chen X, Li L, Xu W. NEAT1 repression by MED12 creates chemosensitivity in p53 wild-type breast cancer cells. FEBS J 2024; 291:1909-1924. [PMID: 38380720 PMCID: PMC11068489 DOI: 10.1111/febs.17097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/05/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Breast cancer is often treated with chemotherapy. However, the development of chemoresistance results in treatment failure. Long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been shown to contribute to chemoresistance in breast cancer cells. In studying the transcriptional regulation of NEAT1 using multi-omics approaches, we showed that NEAT1 is up-regulated by 5-fluorouracil in breast cancer cells with wild-type cellular tumor antigen p53 but not in mutant-p53-expressing breast cancer cells. The regulation of NEAT1 involves mediator complex subunit 12 (MED12)-mediated repression of histone acetylation marks at the promoter region of NEAT1. Knockdown of MED12 but not coactivator-associated arginine methyltransferase 1 (CARM1) induced histone acetylation at the NEAT1 promoter, leading to elevated NEAT1 mRNAs, resulting in a chemoresistant phenotype. The MED12-dependent regulation of NEAT1 differs between wild-type and mutant p53-expressing cells. MED12 depletion led to increased expression of NEAT1 in a wild-type p53 cell line, but decreased expression in a mutant p53 cell line. Chemoresistance caused by MED12 depletion can be partially rescued by NEAT1 knockdown in p53 wild-type cells. Collectively, our study reveals a novel mechanism of chemoresistance dependent on MED12 transcriptional regulation of NEAT1 in p53 wild-type breast cancer cells.
Collapse
Affiliation(s)
- Shengjie Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Present Address: Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Eui-Jun Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Peng Liu
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Department of Biostatistics and Medical Informatics, Carbone Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Kristine Donahue
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qinchuan Wang
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310018, China
| | - Yidan Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sean Mcilwain
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Ling Xie
- Department of Biochemistry & Biophysics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Xian Chen
- Department of Biochemistry & Biophysics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
17
|
Qiu H, Fu Y, Guo Z, Zhang X, Wang X, Wu H. Dysregulated microRNAs and long non-coding RNAs associated with extracellular matrix stiffness. Exp Cell Res 2024; 437:114014. [PMID: 38547959 DOI: 10.1016/j.yexcr.2024.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Extracellular matrix (ECM) stiffness regulates development and homeostasis in vivo and affects both physiological and pathological processes. A variety of studies have demonstrated that mRNAs, such as Piezo1, integrin β1, and Yes-associated protein (YAP)/tafazzin (TAZ), can sense the mechanical signals induced by ECM stiffness and transmit them from the extracellular space into the cytoplasm. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have been reported to play important roles in various cellular processes. Therefore, the interactions between ncRNAs and ECM stiffness, as well as the underlying molecular mechanisms, have become intriguing. In this review, we summarize recent findings on miRNAs and lncRNAs that interact with ECM stiffness. Several miRNAs and lncRNAs are involved in the progression of liver cancer, breast cancer, osteosarcoma, and cardiovascular diseases under the regulation of ECM stiffness. Through these ncRNAs, cellular behaviors including cell differentiation, proliferation, adhesion, migration, invasion, and epithelial-mesenchymal transition (EMT) are affected by ECM stiffness. We also integrate the ncRNA signaling pathways associated with ECM stiffness, in which typical signaling pathways like integrin β1/TGFβ1, phosphatidylinositol-3 kinase (PI3K)/AKT, and EMT are involved. Although our understanding of the relationships between ncRNAs and ECM stiffness is still limited, further investigations may provide new insights for disease treatment. ECM-associated ncRNAs may serve as disease biomarkers or be targeted by drugs.
Collapse
Affiliation(s)
- Huimin Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Yangpu, 200093, Shanghai, China; Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| | - Yi Fu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| | - Zhinan Guo
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China; School of Sports and Health, Shanghai University of Sport, Yangpu, 200438, Shanghai, China.
| | - Xinjia Zhang
- School of Medical Instruments, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| | - Xinyue Wang
- School of Medical Instruments, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| | - Hailong Wu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| |
Collapse
|
18
|
Song B, Wei F, Peng J, Wei X, Liu M, Nie Z, Ma Y, Peng T. Icariin Regulates EMT and Stem Cell-Like Character in Breast Cancer through Modulating lncRNA NEAT1/TGFβ/SMAD2 Signaling Pathway. Biol Pharm Bull 2024; 47:399-410. [PMID: 38220208 DOI: 10.1248/bpb.b23-00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Metastases and drug resistance are the major risk factors associated with breast cancer (BC), which is the most common type of tumor affecting females. Icariin (ICA) is a traditional Chinese medicine compound that possesses significant anticancer properties. Long non-coding RNAs (lncRNAs) are involved in a wide variety of biological and pathological processes and have been shown to modulate the effectiveness of certain drugs in cancer. The purpose of this study was to examine the potential effect of ICA on epithelial mesenchymal transition (EMT) and stemness articulation in BC cells, as well as the possible relationship between its inhibitory action on EMT and stemness with the NEAT1/transforming growth factor β (TGFβ)/SMAD2 pathway. The effect of ICA on the proliferation (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony assays), EMT (Western blotting, immunofluorescence, and wound healing), and stemness (mammosphere formation assays, Western blotting) of BC cells were examined. According to the findings, ICA suppressed the proliferation, EMT, and stem cell-like in MDA-MB-231 cells, and exerted its inhibitory impact by downregulating the TGFβ/SMAD2 signaling pathway. ICA could significantly downregulate the expression of lncRNA NEAT1, and silencing NEAT1 enhanced the effect of ICA in suppressing EMT and expression of different stem cell markers. In addition, silencing NEAT1 was found to attenuate the TGFβ/SMAD2 signaling pathway, thereby improving the inhibitory impact of ICA on stemness and EMT in BC cells. In conclusion, ICA can potentially inhibit the metastasis of BC via affecting the NEAT1/TGFβ/SMAD2 pathway, which provides a theoretical foundation for understanding the mechanisms involved in potential application of ICA for BC therapy.
Collapse
Affiliation(s)
- Bo Song
- School of Third Clinical Medicine, Shanxi University of Chinese Medicine
| | - Fuxia Wei
- School of Third Clinical Medicine, Shanxi University of Chinese Medicine
| | - Jiehao Peng
- School of Third Clinical Medicine, Shanxi University of Chinese Medicine
| | - Xiuhong Wei
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine
| | - Mingran Liu
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine
| | - Zhongbiao Nie
- Pharmaceutical Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| | - Yanmiao Ma
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine
| | - Tao Peng
- Famous Chinese Medicine Studio, Shanxi Hospital of Integrated Traditional Chinese and Western Medicine
- Shanxi Provincial Key Laboratory of Classical Prescription Strengthening Yang, Shanxi Hospital of Integrated Traditional Chinese and Western Medicine
| |
Collapse
|
19
|
Weghorst F, Torres Marcén M, Faridi G, Lee YCG, Cramer KS. Deep Conservation and Unexpected Evolutionary History of Neighboring lncRNAs MALAT1 and NEAT1. J Mol Evol 2024; 92:30-41. [PMID: 38189925 PMCID: PMC10869381 DOI: 10.1007/s00239-023-10151-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024]
Abstract
Long non-coding RNAs (lncRNAs) have begun to receive overdue attention for their regulatory roles in gene expression and other cellular processes. Although most lncRNAs are lowly expressed and tissue-specific, notable exceptions include MALAT1 and its genomic neighbor NEAT1, two highly and ubiquitously expressed oncogenes with roles in transcriptional regulation and RNA splicing. Previous studies have suggested that NEAT1 is found only in mammals, while MALAT1 is present in all gnathostomes (jawed vertebrates) except birds. Here we show that these assertions are incomplete, likely due to the challenges associated with properly identifying these two lncRNAs. Using phylogenetic analysis and structure-aware annotation of publicly available genomic and RNA-seq coverage data, we show that NEAT1 is a common feature of tetrapod genomes except birds and squamates. Conversely, we identify MALAT1 in representative species of all major gnathostome clades, including birds. Our in-depth examination of MALAT1, NEAT1, and their genomic context in a wide range of vertebrate species allows us to reconstruct the series of events that led to the formation of the locus containing these genes in taxa from cartilaginous fish to mammals. This evolutionary history includes the independent loss of NEAT1 in birds and squamates, since NEAT1 is found in the closest living relatives of both clades (crocodilians and tuataras, respectively). These data clarify the origins and relationships of MALAT1 and NEAT1 and highlight an opportunity to study the change and continuity in lncRNA structure and function over deep evolutionary time.
Collapse
Affiliation(s)
- Forrest Weghorst
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | - Martí Torres Marcén
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | - Garrison Faridi
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | - Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, USA.
| |
Collapse
|
20
|
Zhao Y, Xing C, Peng H. ALYREF (Aly/REF export factor): A potential biomarker for predicting cancer occurrence and therapeutic efficacy. Life Sci 2024; 338:122372. [PMID: 38135116 DOI: 10.1016/j.lfs.2023.122372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
5-Methylcytosine (m5C) methylation is present in almost all types of RNA as an essential epigenetic modification. It is dynamically modulated by its associated enzymes, including m5C methyltransferases (NSUN, DNMT and TRDMT family members), demethylases (TET family and ALKBH1) and binding proteins (YTHDF2, ALYREF and YBX1). Among them, aberrant expression of the RNA-binding protein ALYREF can facilitate a variety of malignant phenotypes such as maintenance of proliferation, malignant heterogeneity, metastasis, and drug resistance to cell death through different regulatory mechanisms, including pre-mRNA processing, mRNA stability, and nuclear-cytoplasmic shuttling. The induction of these cellular processes by ALYREF results in treatment resistance and poor outcomes for patients. However, there are currently few reports of clinical applications or drug trials related to ALYREF. In addition, the looming observations on the role of ALYREF in the mechanisms of carcinogenesis and disease prognosis have triggered considerable interest, but critical evidence is not available. For example, animal experiments and ALYREF small molecule inhibitor trials. In this review, we, therefore, revisit the literature on ALYREF and highlight its importance as a prognostic biomarker for early prevention and as a therapeutic target.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, Hunan 410011, China; Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan 410011, China.
| |
Collapse
|
21
|
Liu Y, Liu G. Targeting NEAT1 Affects the Sensitivity to PARPi in Serous Ovarian Cancer by Regulating the Homologous Recombination Repair Pathway. J Cancer 2024; 15:1397-1413. [PMID: 38356722 PMCID: PMC10861825 DOI: 10.7150/jca.91896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/16/2023] [Indexed: 02/16/2024] Open
Abstract
Objective: Patients initially sensitive to PARPi (PARP inhibitor) regain resistance because of homologous recombination (HR) restoration, although PARPi has a synthetic lethality effect on serous ovarian cancer cells with BRCA1/2 mutations. This study aimed to investigate the role of NEAT1 in HR function and whether targeting NEAT1 in serous ovarian cancer cells could increase PARPi sensitivity. Methods: Ovarian cancer patients' clinical information and the expression of NEAT1 were collected from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). Ovarian cancer (OC) cells HeyA8 and SKOV3 were silenced by transfecting NEAT1 ASO. QRT-PCR confirmed the mRNA expression of RAD51, FOXM1, NEAT1_1 and NEAT1_2. We assessed the expression of RAD51, FOXM1, and γ-H2AX by Western blotting and Immunofluorescence. Comet Assays were used to detect DNA double-strand damage levels. In OC cells transfected with NEAT1 ASO or co-transfected overexpression RAD51/empty vector and si-NEAT1/si-ctrl, the sensitivity to Olaparib was determined using CCK8 assay. The Kaplan-Meier survival curves assessed the prognostic and predictive roles of NEAT1 in OC. Results: NEAT1 was an independent prognostic marker of ovarian cancer. NEAT1 knockdown reduced the expression of NEAT1_1, NEAT1_2, RAD51, and FOXM1 and increased the expression of γ-H2AX. In addition, Olaparib increased the expression of RAD51, representing HR repair efficiency, which was inhibited by NEAT1 knockdown. Moreover, the knockdown of NEAT1 increased the DNA damage caused by Olaparib, demonstrated by increased nuclear γ-H2AX foci, DNA in the tail, and expression of γ-H2AX. NEAT1 knockdown sensitized ovarian cancer cells to Olaparib by targeting RAD51-HR. NEAT1 expression could predict response to chemotherapy for ovarian cancer. Conclusions: NEAT1 knockdown inhibited HR capacity and increased DNA damage caused by Olaparib in serous ovarian cancer cells, making them more sensitive to Olaparib and providing a crucial therapeutic advantage of increasing sensitivity to Olaparib.
Collapse
Affiliation(s)
- Yang Liu
- Departments of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Guoyan Liu
- Correspondence to: Dr. Guoyan Liu, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| |
Collapse
|
22
|
Hussain MS, Afzal O, Gupta G, Goyal A, Almalki WH, Kazmi I, Alzarea SI, Alfawaz Altamimi AS, Kukreti N, Chakraborty A, Singh SK, Dua K. Unraveling NEAT1's complex role in lung cancer biology: a comprehensive review. EXCLI JOURNAL 2024; 23:34-52. [PMID: 38343745 PMCID: PMC10853633 DOI: 10.17179/excli2023-6553] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 09/05/2024]
Abstract
This review delves into the pivotal role of the long non-coding RNA NEAT1 in cancer biology, particularly in lung cancer (LC). It emphasizes NEAT1's unique subcellular localization and active involvement in gene regulation and chromatin remodeling. The review highlights NEAT1's impact on LC development and progression, including cell processes such as proliferation, migration, invasion, and resistance to therapy, positioning it as a potential diagnostic marker and therapeutic target. The complex web of NEAT1's regulatory interactions with proteins and microRNAs is explored, alongside challenges in targeting it therapeutically. The review concludes optimistically, suggesting future avenues for research and personalized LC therapies, shedding light on NEAT1's crucial role in LC. See also the Graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura 302017, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
- Centre for Transdisciplinary Research, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U. P., India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Neelam Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
23
|
Yang Q, Fu Y, Wang J, Yang H, Zhang X. Roles of lncRNA in the diagnosis and prognosis of triple-negative breast cancer. J Zhejiang Univ Sci B 2023; 24:1123-1140. [PMID: 38057269 PMCID: PMC10710915 DOI: 10.1631/jzus.b2300067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/24/2023] [Indexed: 12/08/2023]
Abstract
Breast cancer is a malignant tumor that seriously endangers women's lives. The prognosis of breast cancer patients differs among molecular types. Compared with other subtypes, triple-negative breast cancer (TNBC) has been a research hotspot in recent years because of its high degree of malignancy, strong invasiveness, rapid progression, easy of recurrence, distant metastasis, poor prognosis, and high mortality. Many studies have found that long non-coding RNA (lncRNA) plays an important role in the occurrence, proliferation, migration, recurrence, chemotherapy resistance, and other characteristics of TNBC. Some lncRNAs are expected to become biomarkers in the diagnosis and prognosis of TNBC, and even new targets for its treatment. Based on a PubMed literature search, this review summarizes the progress in research on lncRNAs in TNBC and discusses their roles in TNBC diagnosis, prognosis, and chemotherapy with the hope of providing help for future research.
Collapse
Affiliation(s)
- Qiuhui Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Yeqin Fu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Jiaxuan Wang
- Shanxi Medical University, Jinzhong 030600, China
| | - Hongjian Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiping Zhang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
24
|
Hamelin B, Obradović MMS, Sethi A, Kloc M, Münst S, Beisel C, Eschbach K, Kohler H, Soysal S, Vetter M, Weber WP, Stadler MB, Bentires-Alj M. Single-cell Analysis Reveals Inter- and Intratumour Heterogeneity in Metastatic Breast Cancer. J Mammary Gland Biol Neoplasia 2023; 28:26. [PMID: 38066300 PMCID: PMC10709262 DOI: 10.1007/s10911-023-09551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Metastasis is the leading cause of cancer-related deaths of breast cancer patients. Some cancer cells in a tumour go through successive steps, referred to as the metastatic cascade, and give rise to metastases at a distant site. We know that the plasticity and heterogeneity of cancer cells play critical roles in metastasis but the precise underlying molecular mechanisms remain elusive. Here we aimed to identify molecular mechanisms of metastasis during colonization, one of the most important yet poorly understood steps of the cascade. We performed single-cell RNA-Seq (scRNA-Seq) on tumours and matched lung macrometastases of patient-derived xenografts of breast cancer. After correcting for confounding factors such as the cell cycle and the percentage of detected genes (PDG), we identified cells in three states in both tumours and metastases. Gene-set enrichment analysis revealed biological processes specific to proliferation and invasion in two states. Our findings suggest that these states are a balance between epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial transitions (MET) traits that results in so-called partial EMT phenotypes. Analysis of the top differentially expressed genes (DEGs) between these cell states revealed a common set of partial EMT transcription factors (TFs) controlling gene expression, including ZNF750, OVOL2, TP63, TFAP2C and HEY2. Our data suggest that the TFs related to EMT delineate different cell states in tumours and metastases. The results highlight the marked interpatient heterogeneity of breast cancer but identify common features of single cells from five models of metastatic breast cancer.
Collapse
Affiliation(s)
- Baptiste Hamelin
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Milan M S Obradović
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- , Roche, Basel, Switzerland
| | - Atul Sethi
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- , Roche, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Michal Kloc
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Simone Münst
- Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Katja Eschbach
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Savas Soysal
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Marcus Vetter
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Walter P Weber
- Breast Center, Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Mohamed Bentires-Alj
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland.
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
25
|
Hussain MS, Gupta G, Afzal M, Alqahtani SM, Samuel VP, Hassan Almalki W, Kazmi I, Alzarea SI, Saleem S, Dureja H, Singh SK, Dua K, Thangavelu L. Exploring the role of lncrna neat1 knockdown in regulating apoptosis across multiple cancer types: A review. Pathol Res Pract 2023; 252:154908. [PMID: 37950931 DOI: 10.1016/j.prp.2023.154908] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression, contributing significantly to a diverse range of cellular processes, including apoptosis. One such lncRNA is NEAT1, which is elevated in several types of cancer and aid in cancer growth. However, recent studies have also demonstrated that the knockdown of NEAT1 can inhibit cancer cells proliferation, movement, and infiltration while enhancing apoptosis. This article explores the function of lncRNA NEAT1 knockdown in regulating apoptosis across multiple cancer types. We explore the existing understanding of NEAT1's involvement in the progression of malignant conditions, including its structure and functions. Additionally, we investigate the molecular mechanisms by which NEAT1 modulates the cell cycle, cellular proliferation, apoptosis, movement, and infiltration in diverse cancer types, including acute myeloid leukemia, breast cancer, cervical cancer, colorectal cancer, esophageal squamous cell carcinoma, glioma, non-small cell lung cancer, ovarian cancer, prostate cancer, and retinoblastoma. Furthermore, we review the recent studies investigating the therapeutic potential of NEAT1 knockdown in cancer treatment. Targeting the lncRNA NEAT1 presents a promising therapeutic approach for treating cancer. It has shown the ability to suppress cancer cell proliferation, migration, and invasion while promoting apoptosis in various cancer types.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Safar M Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK Medical & Health Sciences University, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Kamal Dua
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| |
Collapse
|
26
|
Yan G, Dai M, Poulet S, Wang N, Boudreault J, Daliah G, Ali S, Lebrun JJ. Combined in vitro/in vivo genome-wide CRISPR screens in triple negative breast cancer identify cancer stemness regulators in paclitaxel resistance. Oncogenesis 2023; 12:51. [PMID: 37932309 PMCID: PMC10628277 DOI: 10.1038/s41389-023-00497-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Triple negative breast cancer (TNBC) is defined as lacking the expressions of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). TNBC patients exhibit relatively poor clinical outcomes due to lack of molecular markers for targeted therapies. As such chemotherapy often remains the only systemic treatment option for these patients. While chemotherapy can initially help shrink TNBC tumor size, patients eventually develop resistance to drug, leading to tumor recurrence. We report a combined in vitro/in vivo genome-wide CRISPR synthetic lethality screening approach in a relevant TNBC cell line model to identify several targets responsible for the chemotherapy drug, paclitaxel resistance. Computational analysis integrating in vitro and in vivo data identified a set of genes, for which specific loss-of-function deletion enhanced paclitaxel resistance in TNBC. We found that several of these genes (ATP8B3, FOXR2, FRG2, HIST1H4A) act as cancer stemness negative regulators. Finally, using in vivo orthotopic transplantation TNBC models we showed that FRG2 gene deletion reduced paclitaxel efficacy and promoted tumor metastasis, while increasing FRG2 expression by means of CRISPR activation efficiently sensitized TNBC tumors to paclitaxel treatment and inhibited their metastatic abilities. In summary, the combined in vitro/in vivo genome-wide CRISPR screening approach proved effective as a tool to identify novel regulators of paclitaxel resistance/sensitivity and highlight the FRG2 gene as a potential therapeutical target overcoming paclitaxel resistance in TNBC.
Collapse
Affiliation(s)
- Gang Yan
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Meiou Dai
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Sophie Poulet
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Ni Wang
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Julien Boudreault
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Girija Daliah
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Suhad Ali
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Jean-Jacques Lebrun
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
27
|
Ahmadpour ST, Orre C, Bertevello PS, Mirebeau-Prunier D, Dumas JF, Desquiret-Dumas V. Breast Cancer Chemoresistance: Insights into the Regulatory Role of lncRNA. Int J Mol Sci 2023; 24:15897. [PMID: 37958880 PMCID: PMC10650504 DOI: 10.3390/ijms242115897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a subclass of noncoding RNAs composed of more than 200 nucleotides without the ability to encode functional proteins. Given their involvement in critical cellular processes such as gene expression regulation, transcription, and translation, lncRNAs play a significant role in organism homeostasis. Breast cancer (BC) is the second most common cancer worldwide and evidence has shown a relationship between aberrant lncRNA expression and BC development. One of the main obstacles in BC control is multidrug chemoresistance, which is associated with the deregulation of multiple mechanisms such as efflux transporter activity, mitochondrial metabolism reprogramming, and epigenetic regulation as well as apoptosis and autophagy. Studies have shown the involvement of a large number of lncRNAs in the regulation of such pathways. However, the underlying mechanism is not clearly elucidated. In this review, we present the principal mechanisms associated with BC chemoresistance that can be directly or indirectly regulated by lncRNA, highlighting the importance of lncRNA in controlling BC chemoresistance. Understanding these mechanisms in deep detail may interest the clinical outcome of BC patients and could be used as therapeutic targets to overcome BC therapy resistance.
Collapse
Affiliation(s)
- Seyedeh Tayebeh Ahmadpour
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | - Charlotte Orre
- Inserm U1083, UMR CNRS 6214, Angers University, 49933 Angers, France; (C.O.); (D.M.-P.)
| | - Priscila Silvana Bertevello
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | | - Jean-François Dumas
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | |
Collapse
|
28
|
Yang K, Xiao Y, Zhong L, Zhang W, Wang P, Ren Y, Shi L. p53-regulated lncRNAs in cancers: from proliferation and metastasis to therapy. Cancer Gene Ther 2023; 30:1456-1470. [PMID: 37679529 DOI: 10.1038/s41417-023-00662-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as master gene regulators through various mechanisms such as transcription, translation, protein modification and RNA-protein complexes. LncRNA dysregulation is frequently associated with a variety of biological functions and human diseases including cancer. The p53 network is a key tumor-suppressive mechanism that transcriptionally activates target genes to suppress cellular proliferation in human malignancies. Recent research indicates that lncRNAs play an important role in the p53 signaling pathway. In this review, we summarize the current knowledge of lncRNAs in p53-relevant functions and provide an overview of how these altered lncRNAs contribute to tumor initiation and progression. We also discuss the association between lncRNA and up- or downstream genes of p53. These findings imply that lncRNAs can help identify cellular vulnerabilities that may prove to be promising potential biomarkers and therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Kaixin Yang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yinan Xiao
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Linghui Zhong
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenyang Zhang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Peng Wang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, 075131, People's Republic of China
| | - Yaru Ren
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Lei Shi
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
29
|
Adewunmi O, Shen Y, Zhang XHF, Rosen JM. Targeted Inhibition of lncRNA Malat1 Alters the Tumor Immune Microenvironment in Preclinical Syngeneic Mouse Models of Triple-Negative Breast Cancer. Cancer Immunol Res 2023; 11:1462-1479. [PMID: 37603945 PMCID: PMC10618655 DOI: 10.1158/2326-6066.cir-23-0045] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/18/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Long noncoding RNAs (lncRNA) play an important role in gene regulation in both normal tissues and cancer. Targeting lncRNAs is a promising therapeutic approach that has become feasible through the development of gapmer antisense oligonucleotides (ASO). Metastasis-associated lung adenocarcinoma transcript (Malat1) is an abundant lncRNA whose expression is upregulated in several cancers. Although Malat1 increases the migratory and invasive properties of tumor cells, its role in the tumor microenvironment (TME) is still not well defined. We explored the connection between Malat1 and the tumor immune microenvironment (TIME) using several immune-competent preclinical syngeneic Tp53-null triple-negative breast cancer (TNBC) mouse models that mimic the heterogeneity and immunosuppressive TME found in human breast cancer. Using a Malat1 ASO, we were able to knockdown Malat1 RNA expression resulting in a delay in primary tumor growth, decreased proliferation, and increased apoptosis. In addition, immunophenotyping of tumor-infiltrating lymphocytes revealed that Malat1 inhibition altered the TIME, with a decrease in immunosuppressive tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC) as well as an increase in cytotoxic CD8+ T cells. Malat1 depletion in tumor cells, TAMs, and MDSCs decreased immunosuppressive cytokine/chemokine secretion whereas Malat1 inhibition in T cells increased inflammatory secretions and T-cell proliferation. Combination of a Malat1 ASO with chemotherapy or immune checkpoint blockade (ICB) improved the treatment responses in a preclinical model. These studies highlight the immunostimulatory effects of Malat1 inhibition in TNBC, the benefit of a Malat1 ASO therapeutic, and its potential use in combination with chemotherapies and immunotherapies.
Collapse
Affiliation(s)
- Oluwatoyosi Adewunmi
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, Texas
| | - Yichao Shen
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Xiang H.-F. Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Jeffrey M. Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
30
|
Das PK, Siddika A, Rashel KM, Auwal A, Soha K, Rahman MA, Pillai S, Islam F. Roles of long noncoding RNA in triple-negative breast cancer. Cancer Med 2023; 12:20365-20379. [PMID: 37795578 PMCID: PMC10652353 DOI: 10.1002/cam4.6600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023] Open
Abstract
INTRODUCTION Long noncoding RNAs (lncRNAs) play crucial roles in regulating various hallmarks in cancers. Triple-negative (Estrogen receptor, ER; Human epidermal growth factor receptor 2, HER2; Progesterone receptor, PR) breast cancer (TNBC) is the most aggressive form of breast cancers with a poor prognosis and no available molecular targeted therapy. METHODS We reviewed the current literature on the roles of lncRNAs in the pathogenesis, therapy resistance, and prognosis of patients with TBNC. RESULTS LncRNAs are associated with TNBC pathogenesis, therapy resistance, and prognosis. For example, lncRNAs such as small nucleolar RNA host gene 12 (SNHG12), highly upregulated in liver cancer (HULC) HOX transcript antisense intergenic RNA (HOTAIR), lincRNA-regulator of reprogramming (LincRNA-ROR), etc., are aberrantly expressed in TNBC and are involved in the pathogenesis of the disease. LncRNAs act as a decoy, scaffold, or sponge to regulate the expression of genes, miRNAs, and transcription factors associated with pathogenesis and progression of TNBC. Moreover, lncRNAs such as ferritin heavy chain 1 pseudogene 3 (FTH1P3), BMP/OP-responsive gene (BORG) contributes to the therapy resistance property of TNBC through activating ABCB1 (ATP-binding cassette subfamily B member 1) drug efflux pumps by increasing DNA repair capacity or by inducing signaling pathway involved in therapeutic resistance. CONCLUSION In this review, we outline the functions of various lncRNAs along with their molecular mechanisms involved in the pathogenesis, therapeutic resistance of TBNC. Also, the prognostic implications of lncRNAs in patients with TNBC is illustrated. Moreover, potential strategies targeting lncRNAs against highly aggressive TNBC is discussed in this review.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
- Institute for GlycomicsGriffith UniversityGold CoastAustralia
| | - Ayesha Siddika
- Institute of Tissue Banking & Biomaterial Research, Atomic Energy Research Establishment (AERE) SavarDhakaBangladesh
| | - Khan Mohammad Rashel
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Abdul Auwal
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Kazi Soha
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Md. Arifur Rahman
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Suja Pillai
- School of Biomedical SciencesUniversity of QueenslandSaint LuciaAustralia
| | - Farhadul Islam
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
- Institute for GlycomicsGriffith UniversityGold CoastAustralia
| |
Collapse
|
31
|
Farzaneh M, Abouali Gale Dari M, Anbiyaiee A, Najafi S, Dayer D, Mousavi Salehi A, Keivan M, Ghafourian M, Uddin S, Azizidoost S. Emerging roles of the long non-coding RNA NEAT1 in gynecologic cancers. J Cell Commun Signal 2023; 17:531-547. [PMID: 37310654 PMCID: PMC10409959 DOI: 10.1007/s12079-023-00746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/10/2023] [Indexed: 06/14/2023] Open
Abstract
Gynecologic cancers are a worldwide problem among women. Recently, molecular targeted therapy opened up an avenue for cancer diagnosis and treatment. Long non-coding RNAs (lncRNAs) are RNA molecules (> 200 nt) that are not translated into protein, and interact with DNA, RNA, and proteins. LncRNAs were found to play pivotal roles in cancer tumorigenesis and progression. Nuclear paraspeckle assembly transcript 1 (NEAT1) is a lncRNA that mediates cell proliferation, migration, and EMT in gynecologic cancers by targeting several miRNAs/mRNA axes. Therefore, NEAT1 may function as a potent biomarker for the prediction and treatment of breast, ovarian, cervical, and endometrial cancers. In this narrative review, we summarized various NEAT1-related signaling pathways that are critical in gynecologic cancers. Long non-coding RNA (lncRNA) by targeting various signaling pathways involved in its target genes can regulate the occurrence of gynecologic cancers.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dian Dayer
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abdolah Mousavi Salehi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mona Keivan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehri Ghafourian
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 22602 India
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
32
|
Mostafa A, Sabry D, Aboraia N, Fawzy A, Abou-Elalla AA. Dyslipidemia initiates keratinocytes proliferation through upregulation of lncRNA NEAT in psoriasis patients. Mol Biol Rep 2023; 50:7597-7604. [PMID: 37531036 PMCID: PMC10460715 DOI: 10.1007/s11033-023-08527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 05/15/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory immune-mediated and hyper proliferative skin disorder that has underlying genetic factors. Psoriasis can result from interaction of cytokines between keratinocytes and T-lymphocytes. NEAT is a lncRNA involved in immune modulation and has been previously studied in cancers. This study aims to clarify the unprecedented role of NEAT in psoriasis pathogenesis. METHODS The study was conducted on 50 healthy control subjects and 50 psoriasis patients. Blood samples from all participants were collected for analysis of their lipid profile. qRT-PCR was done for lncRNA NEAT, TNF-α, VEGF genes expression. The levels of ROS and caspase-3 were estimated by ELISA. ROC analysis was done to detect the diagnostic value of lncRNA NEAT gene expression. RESULTS Dyslipidemia is more prevalent among psoriasis patients. A significant up regulation in lncRNA NEAT, TNF-α, VEGF genes expression (p value˂0.001) in psoriasis patients in addition to significant increase in ROS and caspase-3 levels (p value˂0.001) in compare to controls. Additionally, a positive significant correlation between TNF-α, ROS, NEAT, caspase-3 and dyslipidemia. NEAT had an area under the curve (AUC) of 0.931 (95% CI 0.844-0.978, p < 0.001). CONCLUSION Dyslipidemia is an initiating signal in psoriasis pathogenesis that creates a state of chronic inflammation and oxidative stress. This state induces keratinocytes proliferation and release of NEAT with subsequent caspase-3 activation to counteract the proliferating cells. NEAT could be considered as a good diagnostic biomarker for psoriasis.
Collapse
Affiliation(s)
- Abeer Mostafa
- Medical Biochemistry and Molecular Biology department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Medical Biochemistry and Molecular Biology department, Faculty of Medicine, Badr University in Cairo, Badr City, Egypt
| | - Nesreen Aboraia
- Dermatology department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Ahmed Fawzy
- Physiology department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amany A. Abou-Elalla
- Medical Laboratory Technology department, Faculty of Applied Health Science Technology, Misr University for Science and Technology, 6th of October City, Egypt
| |
Collapse
|
33
|
Palcau AC, Brandi R, Mehterov NH, Botti C, Blandino G, Pulito C. Exploiting Long Non-Coding RNAs and Circular RNAs as Pharmacological Targets in Triple-Negative Breast Cancer Treatment. Cancers (Basel) 2023; 15:4181. [PMID: 37627209 PMCID: PMC10453179 DOI: 10.3390/cancers15164181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer is one of the most frequent causes of cancer death among women worldwide. In particular, triple-negative breast cancer (TNBC) represents the most aggressive breast cancer subtype because it is characterized by the absence of molecular targets, thus making it an orphan type of malignancy. The discovery of new molecular druggable targets is mandatory to improve treatment success. In that context, non-coding RNAs represent an opportunity for modulation of cancer. They are RNA molecules with apparently no protein coding potential, which have been already demonstrated to play pivotal roles within cells, being involved in different processes, such as proliferation, cell cycle regulation, apoptosis, migration, and diseases, including cancer. Accordingly, they could be used as targets for future TNBC personalized therapy. Moreover, the peculiar characteristics of non-coding RNAs make them reliable biomarkers to monitor cancer treatment, thus, to monitor recurrence or chemoresistance, which are the most challenging aspects in TNBC. In the present review, we focused on the oncogenic or oncosuppressor role of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) mostly involved in TNBC, highlighting their mode of action and depicting their potential role as a biomarker and/or as targets of new non-coding RNA-based therapeutics.
Collapse
Affiliation(s)
- Alina Catalina Palcau
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| | - Renata Brandi
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| | - Nikolay Hristov Mehterov
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Claudio Botti
- Breast Surgery Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| | - Claudio Pulito
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| |
Collapse
|
34
|
Chen H, Zhang M, Deng Y. Long Noncoding RNAs in Taxane Resistance of Breast Cancer. Int J Mol Sci 2023; 24:12253. [PMID: 37569629 PMCID: PMC10418730 DOI: 10.3390/ijms241512253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Breast cancer is a common cancer in women and a leading cause of mortality. With the early diagnosis and development of therapeutic drugs, the prognosis of breast cancer has markedly improved. Chemotherapy is one of the predominant strategies for the treatment of breast cancer. Taxanes, including paclitaxel and docetaxel, are widely used in the treatment of breast cancer and remarkably decrease the risk of death and recurrence. However, taxane resistance caused by multiple factors significantly impacts the effect of the drug and leads to poor prognosis. Long noncoding RNAs (lncRNAs) have been shown to play a significant role in critical cellular processes, and a number of studies have illustrated that lncRNAs play vital roles in taxane resistance. In this review, we systematically summarize the mechanisms of taxane resistance in breast cancer and the functions of lncRNAs in taxane resistance in breast cancer. The findings provide insight into the role of lncRNAs in taxane resistance and suggest that lncRNAs may be used to develop therapeutic targets to prevent or reverse taxane resistance in patients with breast cancer.
Collapse
Affiliation(s)
- Hailong Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Mengwen Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Yongchuan Deng
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| |
Collapse
|
35
|
Chen H, Xie G, Luo Q, Yang Y, Hu S. Regulatory miRNAs, circRNAs and lncRNAs in cell cycle progression of breast cancer. Funct Integr Genomics 2023; 23:233. [PMID: 37432486 DOI: 10.1007/s10142-023-01130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
Breast cancer is a complex and heterogeneous disease that poses a significant public health concern worldwide, and it remains a major challenge despite advances in treatment options. One of the main properties of cancer cells is the increased proliferative activity that has lost regulation. Dysregulation of various positive and negative modulators in the cell cycle has been identified as one of the driving factors of breast cancer. In recent years, non-coding RNAs have garnered much attention in the regulation of cell cycle progression, with microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) being of particular interest. MiRNAs are a class of highly conserved and regulatory small non-coding RNAs that play a crucial role in the modulation of various cellular and biological processes, including cell cycle regulation. CircRNAs are a novel form of non-coding RNAs that are highly stable and capable of modulating gene expression at posttranscriptional and transcriptional levels. LncRNAs have also attracted considerable attention because of their prominent roles in tumor development, including cell cycle progression. Emerging evidence suggests that miRNAs, circRNAs and lncRNAs play important roles in the regulation of cell cycle progression in breast cancer. Herein, we summarized the latest related literatures in breast cancer that emphasize the regulatory roles of miRNAs, circRNAs and lncRNAs in cell cycle progress of breast cancer. Further understanding of the precise roles and mechanisms of non-coding RNAs in breast cancer cell cycle regulation could lead to the development of new diagnostic and therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Guoping Xie
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| | - Qunying Luo
- Department of Internal Medicine-Neurology, Huarun Wuhan Iron and Steel General Hospital, Wuhan, China
| | - Yisha Yang
- Luoyang Campus, Henan Vocational College of Agriculture, Luoyang, China
| | - Siheng Hu
- Department of Clinical Laboratory, Honggangcheng Street Community Health Service Center, Wuhan, China.
| |
Collapse
|
36
|
Agarwal S, Afaq F, Bajpai P, Behring M, Kim HG, Varambally A, Chandrashekar DS, Peter S, Al Diffalha S, Khushman M, Seeber A, Varambally S, Manne U. BZW2 Inhibition Reduces Colorectal Cancer Growth and Metastasis. Mol Cancer Res 2023; 21:698-712. [PMID: 37067340 PMCID: PMC10329991 DOI: 10.1158/1541-7786.mcr-23-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/06/2023] [Accepted: 03/17/2023] [Indexed: 04/18/2023]
Abstract
Because survival of patients with metastatic colorectal cancer remain poor, there is an urgent need to identify potential novel druggable targets that are associated with colorectal cancer progression. One such target, basic leucine zipper and W2 domains 2 (BZW2), is involved in regulation of protein translation, and its overexpression is associated with human malignancy. Thus, we investigated the expression and regulation of BZW2, assessed its role in activation of WNT/β-catenin signaling, identified its downstream molecules, and demonstrated its involvement in metastasis of colorectal cancer. In human colorectal cancers, high mRNA and protein expression levels of BZW2 were associated with tumor progression. BZW2-knockdown reduced malignant phenotypes, including cell proliferation, invasion, and spheroid and colony formation. BZW2-knockdown also reduced tumor growth and metastasis; conversely, transfection of BZW2 into BZW2 low-expressing colorectal cancer cells promoted malignant features, including tumor growth and metastasis. BZW2 expression was coordinately regulated by microRNA-98, c-Myc, and histone methyltransferase enhancer of zeste homolog 2 (EZH2). RNA sequencing analyses of colorectal cancer cells modulated for BZW2 identified P4HA1 and the long noncoding RNAs, MALAT1 and NEAT1, as its downstream targets. Further, BZW2 activated the Wnt/β-catenin signaling pathway in colorectal cancers expressing wild-type β-catenin. In sum, our study suggests the possibility of targeting BZW2 expression by inhibiting EZH2 and/or c-Myc. IMPLICATIONS FDA-approved small-molecule inhibitors of EZH2 can indirectly target BZW2 and because BZW2 functions as an oncogene, these inhibitors could serve as therapeutic agents for colorectal cancer.
Collapse
Affiliation(s)
- Sumit Agarwal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Farrukh Afaq
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Prachi Bajpai
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Michael Behring
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Hyung-Gyoon Kim
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | | | | | - Shajan Peter
- Department of Medicine, Division of Gastroenterology, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Sameer Al Diffalha
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Moh’d Khushman
- Department of Medicine, Division of Hematology and Oncology, Washington University, St. Louis, MO
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
37
|
Sanya DRA, Onésime D. Roles of non-coding RNAs in the metabolism and pathogenesis of bladder cancer. Hum Cell 2023:10.1007/s13577-023-00915-5. [PMID: 37209205 DOI: 10.1007/s13577-023-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Bladder cancer (BC) is featured as the second most common malignancy of the urinary tract worldwide with few treatments leading to high incidence and mortality. It stayed a virtually intractable disease, and efforts to identify innovative and effective therapies are urgently needed. At present, more and more evidence shows the importance of non-coding RNA (ncRNA) for disease-related study, diagnosis, and treatment of diverse types of malignancies. Recent evidence suggests that dysregulated functions of ncRNAs are closely associated with the pathogenesis of numerous cancers including BC. The detailed mechanisms underlying the dysregulated role of ncRNAs in cancer progression are still not fully understood. This review mainly summarizes recent findings on regulatory mechanisms of the ncRNAs, long non-coding RNAs, microRNAs, and circular RNAs, in cancer progression or suppression and focuses on the predictive values of ncRNAs-related signatures in BC clinical outcomes. A deeper understanding of the ncRNA interactive network could be compelling framework for developing biomarker-guided clinical trials.
Collapse
Affiliation(s)
- Daniel Ruben Akiola Sanya
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France.
| | - Djamila Onésime
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
38
|
Lee Q, Song R, Phan DAV, Pinello N, Tieng J, Su A, Halstead JM, Wong ACH, van Geldermalsen M, Lee BSL, Rong B, Cook KM, Larance M, Liu R, Lan F, Tiffen JC, Wong JJL. Overexpression of VIRMA confers vulnerability to breast cancers via the m 6A-dependent regulation of unfolded protein response. Cell Mol Life Sci 2023; 80:157. [PMID: 37208522 DOI: 10.1007/s00018-023-04799-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Virilizer-like m6A methyltransferase-associated protein (VIRMA) maintains the stability of the m6A writer complex. Although VIRMA is critical for RNA m6A deposition, the impact of aberrant VIRMA expression in human diseases remains unclear. We show that VIRMA is amplified and overexpressed in 15-20% of breast cancers. Of the two known VIRMA isoforms, the nuclear-enriched full-length but not the cytoplasmic-localised N-terminal VIRMA promotes m6A-dependent breast tumourigenesis in vitro and in vivo. Mechanistically, we reveal that VIRMA overexpression upregulates the m6A-modified long non-coding RNA, NEAT1, which contributes to breast cancer cell growth. We also show that VIRMA overexpression enriches m6A on transcripts that regulate the unfolded protein response (UPR) pathway but does not promote their translation to activate the UPR under optimal growth conditions. Under stressful conditions that are often present in tumour microenvironments, VIRMA-overexpressing cells display enhanced UPR and increased susceptibility to death. Our study identifies oncogenic VIRMA overexpression as a vulnerability that may be exploited for cancer therapy.
Collapse
Affiliation(s)
- Quintin Lee
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Dang Anh Vu Phan
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Natalia Pinello
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Jessica Tieng
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Anni Su
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - James M Halstead
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Alex C H Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Michelle van Geldermalsen
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Bob S-L Lee
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | - Bowen Rong
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Kristina M Cook
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Mark Larance
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Renjing Liu
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jessamy C Tiffen
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Melanoma Epigenetics Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Justin J-L Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia.
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- , Locked Bag 6, Newtown, NSW, 2042, Australia.
| |
Collapse
|
39
|
Huang Y, Mo W, Ding X, Ding Y. Long non-coding RNAs in breast cancer stem cells. Med Oncol 2023; 40:177. [PMID: 37178429 DOI: 10.1007/s12032-023-02046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Breast cancer, one of the most commonly diagnosed cancers worldwide, is a heterogeneous disease with high rates of recurrence and metastasis that contribute to its high mortality rate. Breast cancer stem cells (BCSCs) are a small but significant subset of heterogeneous breast cancer cells that possess stem cell characteristics such as self-renewal and differentiation abilities that may drive metastasis and recurrence. Long non-coding RNAs (lncRNAs) are a class of RNAs that are longer than 200 nucleotides in length and do not possess protein-coding properties. An increasing number of studies have shown that some lncRNAs are abnormally expressed in BCSCs, and have great biological significance in the occurrence, progression, invasion, and metastasis of various cancers. However, the importance of lncRNAs, as well as the molecular mechanisms that regulate and promote the stemness of BCSCs, are still poorly understood. In the current review, we aim to summarize recent studies that highlight the role of lncRNAs in tumor occurrence and progression through BCSCs. In addition, the utility of lncRNAs as biomarkers of breast cancer progression, and their potential use as therapeutic targets for treatment of breast cancer, will be discussed.
Collapse
Affiliation(s)
- Yuting Huang
- Department of Oncology, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Wenju Mo
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xiaowen Ding
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Yuqin Ding
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
40
|
Kumar R, Kushwaha PP, Singh AK, Kumar S, Pandey AK. Anti-proliferative, apoptosis inducing, and antioxidant potential of Callistemon lanceolatus bark extracts: an in vitro and in silico study. Med Oncol 2023; 40:169. [PMID: 37156972 DOI: 10.1007/s12032-023-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
The present study reports anticancer and antioxidant activities of Callistemon lanceolatus bark extracts. Anticancer activity was studied against MDA-MB-231 cells. Antioxidant assessment of the chloroform and methanol extracts showed considerable free radical scavenging, metal ion chelating, and reducing power potential. Chloroform extract exhibited potent inhibition of cancer cell proliferation in MTT assay (IC50 9.6 μg/ml) and promoted programmed cell death. Reactive oxygen species (ROS) generation, mitochondria membrane potential (MMP) disruption ability, and nuclear morphology changes were studied using H2-DCFDA, JC-1, and Hoechst dyes, respectively, using confocal microscopy. Apoptotic cells exhibited fragmented nuclei, increased ROS generation, and altered MMP in dose- and time-dependent manner. Chloroform extract upregulated the BAX-1 and CASP3 mRNA expression coupled with downregulation of BCL-2 gene. Further, in silico docking of phytochemicals present in C. lanceolatus with anti-apoptotic Bcl-2 protein endorsed apoptosis by its inhibition and thus corroborated the experimental findings. Obatoclax, a known inhibitor of Bcl-2 was used as a reference compounds.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj), 211002, Uttar Pradesh, India
- Department of Biochemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Prem Prakash Kushwaha
- Department of Biochemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Atul Kumar Singh
- Department of Biochemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Shashank Kumar
- Department of Biochemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Abhay Kumar Pandey
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj), 211002, Uttar Pradesh, India.
| |
Collapse
|
41
|
Wei X, Tao S, Mao H, Zhu H, Mao L, Pei W, Shi X, Shi Y, Zhang S, Wu Y, Wei K, Wang J, Pang S, Wang W, Chen C, Yang Q. Exosomal lncRNA NEAT1 induces paclitaxel resistance in breast cancer cells and promotes cell migration by targeting miR-133b. Gene 2023; 860:147230. [PMID: 36717039 DOI: 10.1016/j.gene.2023.147230] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
The lncRNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) has been associated with the development, metastasis and drug resistance of breast cancer (BC). However, the mechanisms underlying NEAT1-induced paclitaxel resistance in the microenvironment of BC remain unclear. In this study, NEAT1 expression was found to be high in paclitaxel-resistant BC cells (SKBR3/PR cells) and exosomes derived from these cells. NEAT1 promoted the migration of BC cells and their resistance to paclitaxel, whereas its downregulation reduced the drug resistance. In addition, downregulation of NEAT1 decreased the migration and proliferation of BC cells by inhibiting the expression of CXCL12 by reducing the adsorption of miR-133b. Furthermore, inhibition of miR-133b reversed the interference of NEAT1 and CXCL12 in paclitaxel resistance, migration and proliferation of BC cells. Knockdown of NEAT1 in a xenograft-bearing mouse model remarkably inhibited cancer progression and improved the response to paclitaxel. Altogether, this study revealed that SKBR3/PR cell-derived exosomal lncRNA NEAT1 can induce paclitaxel resistance and cell migration and growth in the tumour microenvironment of BC and may serve as a new target for the clinical treatment of BC.
Collapse
Affiliation(s)
- Xinyu Wei
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Shuang Tao
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Huilan Mao
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Life Sciences, Bengbu Medical College, Anhui 233030, China
| | - Haitao Zhu
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Lingyu Mao
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Life Sciences, Bengbu Medical College, Anhui 233030, China
| | - Wenhao Pei
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Life Sciences, Bengbu Medical College, Anhui 233030, China
| | - Xiuru Shi
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Yingxiang Shi
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Shiwen Zhang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Life Sciences, Bengbu Medical College, Anhui 233030, China
| | - Yulun Wu
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Life Sciences, Bengbu Medical College, Anhui 233030, China
| | - Ke Wei
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Jing Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Siyan Pang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Life Sciences, Bengbu Medical College, Anhui 233030, China
| | - Wenrui Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui 233030, China.
| | - Changjie Chen
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China.
| | - Qingling Yang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China.
| |
Collapse
|
42
|
Nandi S, Mondal A, Ghosh A, Mukherjee S, Das C. Lnc-ing epigenetic mechanisms with autophagy and cancer drug resistance. Adv Cancer Res 2023; 160:133-203. [PMID: 37704287 DOI: 10.1016/bs.acr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) comprise a diverse class of RNA molecules that regulate various physiological processes and have been reported to be involved in several human pathologies ranging from neurodegenerative disease to cancer. Therapeutic resistance is a major hurdle for cancer treatment. Over the past decade, several studies has emerged on the role of lncRNAs in cancer drug resistance and many trials have been conducted employing them. LncRNAs also regulate different cell death pathways thereby maintaining a fine balance of cell survival and death. Autophagy is a complex cell-killing mechanism that has both cytoprotective and cytotoxic roles. Similarly, autophagy can lead to the induction of both chemosensitization and chemoresistance in cancer cells upon therapeutic intervention. Recently the role of lncRNAs in the regulation of autophagy has also surfaced. Thus, lncRNAs can be used in cancer therapeutics to alleviate the challenges of chemoresistance by targeting the autophagosomal axis. In this chapter, we discuss about the role of lncRNAs in autophagy-mediated cancer drug resistance and its implication in targeted cancer therapy.
Collapse
Affiliation(s)
- Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Aritra Ghosh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Indian Institute of Science Education and Research, Kolkata, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
43
|
Hashemi M, Rashidi M, Hushmandi K, Ten Hagen TLM, Salimimoghadam S, Taheriazam A, Entezari M, Falahati M. HMGA2 regulation by miRNAs in cancer: affecting cancer hallmarks and therapy response. Pharmacol Res 2023; 190:106732. [PMID: 36931542 DOI: 10.1016/j.phrs.2023.106732] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
High mobility group A 2 (HMGA2) is a protein that modulates the structure of chromatin in the nucleus. Importantly, aberrant expression of HMGA2 occurs during carcinogenesis, and this protein is an upstream mediator of cancer hallmarks including evasion of apoptosis, proliferation, invasion, metastasis, and therapy resistance. HMGA2 targets critical signaling pathways such as Wnt/β-catenin and mTOR in cancer cells. Therefore, suppression of HMGA2 function notably decreases cancer progression and improves outcome in patients. As HMGA2 is mainly oncogenic, targeting expression by non-coding RNAs (ncRNAs) is crucial to take into consideration since it affects HMGA2 function. MicroRNAs (miRNAs) belong to ncRNAs and are master regulators of vital cell processes, which affect all aspects of cancer hallmarks. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs), other members of ncRNAs, are upstream mediators of miRNAs. The current review intends to discuss the importance of the miRNA/HMGA2 axis in modulation of various types of cancer, and mentions lncRNAs and circRNAs, which regulate this axis as upstream mediators. Finally, we discuss the effect of miRNAs and HMGA2 interactions on the response of cancer cells to therapy. Regarding the critical role of HMGA2 in regulation of critical signaling pathways in cancer cells, and considering the confirmed interaction between HMGA2 and one of the master regulators of cancer, miRNAs, targeting miRNA/HMGA2 axis in cancer therapy is promising and this could be the subject of future clinical trial experiments.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
44
|
Lu Y, Cheng J, Mao Q, Wang Z, Wei Q. Long non-coding RNA TDRG1 aggravates lung cancer stemness by binding to Sox2 mRNA. ENVIRONMENTAL TOXICOLOGY 2023; 38:645-653. [PMID: 36444968 DOI: 10.1002/tox.23714] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/01/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
The roles of long non-coding RNA TDRG1 have been revealed in several tumors, especially its roles in CSC progression have been recently elucidated; However, its effects in lung CSC progression have not been revealed. In the present study, we collected 3D non-adherent spheres as the CSC model to measure lncRNA TDRG1 level in lung CSC and the parental lung cancer cells, and found that TDRG1 level was significantly upregulated in lung CSCs compared to that of parental lung cancer cells. Then we constructed the lung CSCs with or without TDRG1 stable knockdown and lung cancer cells with or without TDRG1 stable overexpression. It was found that TDRG1 positively regulated lung cancer stemness. Mechanistically, we identified that TDRG1 directly bound to Sox2 mRNA, which is a critical stemness regulator, enhanced its mRNA stability, and thus increased Sox2 expression. Indeed, we demonstrated that TDRG1 aggravated lung cancer stemness dependent on Sox2 expression. Thus, this study suggests that TDRG1 is a critical stemness promoter of lung cancer cells by acting as a stabilizer for Sox2 mRNA.
Collapse
Affiliation(s)
- You Lu
- Department of Interventional Radiology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jing Cheng
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Qixing Mao
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zhongqiu Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Qiang Wei
- Department of Ultrasonic, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
45
|
Mechanisms of Long Non-Coding RNA in Breast Cancer. Int J Mol Sci 2023; 24:ijms24054538. [PMID: 36901971 PMCID: PMC10002950 DOI: 10.3390/ijms24054538] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
The landscape of pervasive transcription in eukaryotic genomes has made space for the identification of thousands of transcripts that are difficult to frame in a specific functional category. A new class has been broadly named as long non-coding RNAs (lncRNAs) and shortly defined as transcripts that are longer than 200 nucleotides with no or limited coding potential. So far, about 19,000 lncRNAs genes have been annotated in the human genome (Gencode 41), nearly matching the number of protein-coding genes. A key scientific priority is the functional characterization of lncRNAs, a major challenge in molecular biology that has encouraged many high-throughput efforts. LncRNA studies have been stimulated by the enormous clinical potential that these molecules promise and have been based on the characterization of their expression and functional mechanisms. In this review, we illustrate some of these mechanisms as they have been pictured in the context of breast cancer.
Collapse
|
46
|
Singh DD, Lee HJ, Yadav DK. Recent Clinical Advances on Long Non-Coding RNAs in Triple-Negative Breast Cancer. Cells 2023; 12:cells12040674. [PMID: 36831341 PMCID: PMC9955037 DOI: 10.3390/cells12040674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a more aggressive type of breast cancer due to its heterogeneity and complex molecular mechanisms. TNBC has a high risk for metastasis, and it is difficult to manage clinical conditions of the patients. Various investigations are being conducted to overcome these challenges using RNA, DNA, and proteins for early diagnosis and treatment. Recently, long non-coding RNAs (lncRNAs) have emerged as a novel target to treat the multistep process of TNBC. LncRNAs regulate epigenetic expression levels, cell proliferation and apoptosis, and tumour invasiveness and metastasis. Thus, lncRNA-based early diagnosis and treatment options could be helpful, especially for patients with severe TNBC. lncRNAs are expressed in a highly specific manner in cells and tissues and are involved in TNBC progression and development. lncRNAs could be used as sensitive and specific targets for diagnosis, treatment, and monitoring of patients with TNBC. Therefore, the exploration of novel diagnostic and prognostic biomarkers is of extreme importance. Here, we discuss the molecular advances on lncRNA regulation of TNBC and lncRNA-based early diagnosis, treatment, and drug resistance.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionano Technology, Gachon University, Seongnam-si 13120, Republic of Korea
- Correspondence: (H.-J.L.); (D.K.Y.)
| | | |
Collapse
|
47
|
Kashyap D, Sharma R, Goel N, Buttar HS, Garg VK, Pal D, Rajab K, Shaikh A. Coding roles of long non-coding RNAs in breast cancer: Emerging molecular diagnostic biomarkers and potential therapeutic targets with special reference to chemotherapy resistance. Front Genet 2023; 13:993687. [PMID: 36685962 PMCID: PMC9852779 DOI: 10.3389/fgene.2022.993687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/07/2022] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of epigenetic mechanisms have been depicted in several pathological consequence such as cancer. Different modes of epigenetic regulation (DNA methylation (hypomethylation or hypermethylation of promotor), histone modifications, abnormal expression of microRNAs (miRNAs), long non-coding RNAs, and small nucleolar RNAs), are discovered. Particularly, lncRNAs are known to exert pivot roles in different types of cancer including breast cancer. LncRNAs with oncogenic and tumour suppressive potential are reported. Differentially expressed lncRNAs contribute a remarkable role in the development of primary and acquired resistance for radiotherapy, endocrine therapy, immunotherapy, and targeted therapy. A wide range of molecular subtype specific lncRNAs have been assessed in breast cancer research. A number of studies have also shown that lncRNAs may be clinically used as non-invasive diagnostic biomarkers for early detection of breast cancer. Such molecular biomarkers have also been found in cancer stem cells of breast tumours. The objectives of the present review are to summarize the important roles of oncogenic and tumour suppressive lncRNAs for the early diagnosis of breast cancer, metastatic potential, and chemotherapy resistance across the molecular subtypes.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Riya Sharma
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Harpal S. Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, ON, Canada
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, India,*Correspondence: Vivek Kumar Garg, ; Asadullah Shaikh,
| | - Deeksha Pal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Khairan Rajab
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| | - Asadullah Shaikh
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia,*Correspondence: Vivek Kumar Garg, ; Asadullah Shaikh,
| |
Collapse
|
48
|
Liu Q, Bao H, Zhang S, Song T, Li C, Sun G, Sun X, Fu T, Wang Y, Liang P. Identification of a cellular senescence-related-lncRNA (SRlncRNA) signature to predict the overall survival of glioma patients and the tumor immune microenvironment. Front Genet 2023; 14:1096792. [PMID: 36911393 PMCID: PMC9998504 DOI: 10.3389/fgene.2023.1096792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Gliomas are brain tumors that arise from glial cells, and they are the most common primary intracranial tumors with a poor prognosis. Cellular senescence plays a critical role in cancer, especially in glioma. In this study, we constructed a senescence-related lncRNA (SRlncRNA) signature to assess the prognosis of glioma. Methods: The Cancer Genome Atlas was used to collect SRlncRNA transcriptome profiles and clinical data about glioma. Patients were randomized to training, testing, and whole cohorts. LASSO and Cox regression analyses were employed to construct the SRlncRNA signature, and Kaplan-Meier (K-M) analysis was performed to determine each cohort's survival. Receiver operating characteristic (ROC) curves were applied to verify the accuracy of this signature. Gene set enrichment analysis was used to visualize functional enrichment (GSEA). The CIBERSORT algorithm, ESTIMATE and TIMER databases were utilized to evaluate the differences in the infiltration of 22 types of immune cells and their association with the signature. RT-qPCR and IHC were used to identify the consistency of the signature in tumor tissue. Results: An SRlncRNA signature consisting of six long non-coding RNAs (lncRNAs) was constructed, and patients were divided into high-risk and low-risk groups by the median of their riskscore. The KM analysis showed that the high-risk group had worse overall survival, and the ROC curve confirmed that the riskscore had more accurate predictive power. A multivariate Cox analysis and its scatter plot with clinical characteristics confirmed the riskscore as an independent risk factor for overall survival. GSEA showed that the GO and KEGG pathways were mainly enriched in the immune response to tumor cells, p53 signaling pathway, mTOR signaling pathway, and Wnt signaling pathway. Further validation also yielded significant differences in the risk signature in terms of immune cell infiltration, which may be closely related to prognostic differences, and qRT-PCR and IHC confirmed the consistency of the expression differences in the major lncRNAs with those in the prediction model. Conclusion Our findings indicated that the SRlncRNA signature might be used as a predictive biomarker and that there is a link between it and immune infiltration. This discovery is consistent with the present categorization system and may open new avenues for research and personalized therapy.
Collapse
Affiliation(s)
- Qing Liu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Sibin Zhang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianjun Song
- Department of Medicine II, University Hospital LMU Munich, Munich, Germany
| | - Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guiyin Sun
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaoyang Sun
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianjiao Fu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yujie Wang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
49
|
Jayaraman H, Anandhapadman A, Ghone NV. In Vitro and In Vivo Comparative Analysis of Differentially Expressed Genes and Signaling Pathways in Breast Cancer Cells on Interaction with Mesenchymal Stem Cells. Appl Biochem Biotechnol 2023; 195:401-431. [PMID: 36087230 DOI: 10.1007/s12010-022-04119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
The interaction of breast cancer cells (BCC) with mesenchymal stem cells (MSC) plays a vital role in influencing the gene expression in breast cancer cells and thereby its uncontrolled proliferation, metastasis, and drug resistance. The extent of MSC governing the BCC or the extent of BCC influencing the MSC is a complex process, and the interaction strongly depends upon conditions such as the presence or absence of other cell types and in vivo tumor microenvironment or simple in vitro conditions. Hence, understanding this interaction through gene expression profiling may provide key insights about potential genes which can be targeted for breast cancer treatment. In the current study, in vitro microarray dataset and in vivo RNA-seq dataset of BCC on interaction with the MSC were downloaded from NCBI GEO database and analyzed for differentially expressed genes (DEGs), gene ontology (GO) term enrichment, and Reactome pathway analysis. To target the genes which have similar effect on both in vitro and in vivo, a comparative analysis was performed, 24 genes were commonly upregulated in both in vitro and in vivo datasets, while no common downregulated genes were observed. Out of which, 16 significant genes based upon fold change (logFC > 2) are identified for manipulating the interactions between MSC and BCC. Among them, 6 of the identified genes (FSTL1, LOX, SERPINE1, INHBA, FN1, and VEGFA) have already been reported to be upregulated in BCC on interaction with MSC by various studies. Further experiments need to be conducted to understand the role of remaining 10 identified genes (EFEMP1, IGFBP3, EDIL3, IFITM1, IGFBP4, ITGA5, SLC3A2, HRH1, PPP1R15A, and NNMT) in MSC-BCC interaction. In addition to the reported significant genes and its associated pathways, the expression of long non-coding RNA identified in this study may increase our understanding about the way MSC interacts with BCC and accelerate MSC-based treatment strategies for breast cancer.
Collapse
Affiliation(s)
- Hariharan Jayaraman
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No. 1, Sriperumbudur Taluk, 602117, Kancheepuram, Tamil Nadu, India
| | - Ashwin Anandhapadman
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No. 1, Sriperumbudur Taluk, 602117, Kancheepuram, Tamil Nadu, India
| | - Nalinkanth Veerabadran Ghone
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Rajiv Gandhi Salai (OMR), Kalavakkam, 603110, Tamil Nadu, India.
| |
Collapse
|
50
|
Xie Y, Liang H, Jiang N, Liu D, Zhang N, Li Q, Zhang K, Sang X, Feng Y, Chen R, Zhang Y, Chen Q. Graphene quantum dots induce cascadic apoptosis via interaction with proteins associated with anti-oxidation after endocytosis by Trypanosoma brucei. Front Immunol 2022; 13:1022050. [PMID: 36561761 PMCID: PMC9763322 DOI: 10.3389/fimmu.2022.1022050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Trypanosoma brucei, the pathogen causing African sleeping sickness (trypanosomiasis) in humans, causes debilitating diseases in many regions of the world, but mainly in African countries with tropical and subtropical climates. Enormous efforts have been devoted to controlling trypanosomiasis, including expanding vector control programs, searching for novel anti-trypanosomial agents, and developing vaccines, but with limited success. In this study, we systematically investigated the effect of graphene quantum dots (GQDs) on trypanosomal parasites and their underlying mechanisms. Ultrasmall-sized GQDs can be efficiently endocytosed by T. brucei and with no toxicity to mammalian-derived cells, triggering a cascade of apoptotic reactions, including mitochondrial disorder, intracellular reactive oxygen species (ROS) elevation, Ca2+ accumulation, DNA fragmentation, adenosine triphosphate (ATP) synthesis impairment, and cell cycle arrest. All of these were caused by the direct interaction between GQDs and the proteins associated with cell apoptosis and anti-oxidation responses, such as trypanothione reductase (TryR), a key protein in anti-oxidation. GQDs specifically inhibited the enzymatic activity of TryR, leading to a reduction in the antioxidant capacity and, ultimately, parasite apoptotic death. These data, for the first time, provide a basis for the exploration of GQDs in the development of anti-trypanosomials.
Collapse
Affiliation(s)
- Yiwei Xie
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Hongrui Liang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Dingyuan Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Naiwen Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Qilong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Kai Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China,*Correspondence: Qijun Chen,
| |
Collapse
|