1
|
Samuels TN, Wu F, Mahmood M, Abuzaid WA, Sun N, Moresco A, Siu VM, O'Donoghue P, Heinemann IU. Transfer RNA and small molecule therapeutics for aminoacyl-tRNA synthetase diseases. FEBS J 2024. [PMID: 39702998 DOI: 10.1111/febs.17361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Aminoacyl-tRNA synthetases catalyze the ligation of a specific amino acid to its cognate tRNA. The resulting aminoacyl-tRNAs are indispensable intermediates in protein biosynthesis, facilitating the precise decoding of the genetic code. Pathogenic alleles in the aminoacyl-tRNA synthetases can lead to several dominant and recessive disorders. To date, disease-specific treatments for these conditions are largely unavailable. We review pathogenic human synthetase alleles, the molecular and cellular mechanisms of tRNA synthetase diseases, and emerging approaches to allele-specific treatments, including small molecules and nucleic acid-based therapeutics. Current treatment approaches to rescue defective or dysfunctional tRNA synthetase mutants include supplementation with cognate amino acids and delivery of cognate tRNAs to alleviate bottlenecks in translation. Complementary approaches use inhibitors to target the integrated stress response, which can be dysregulated in tRNA synthetase diseases.
Collapse
Affiliation(s)
- Tristan N Samuels
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Fanqi Wu
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Maria Mahmood
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Wajd A Abuzaid
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Nancy Sun
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Angelica Moresco
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, London, Canada
| | - Victoria M Siu
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, London, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Department of Chemistry, Western University, London, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, London, Canada
| |
Collapse
|
2
|
Cheng J, Ye K, Fu C, Zhou Y, Chen Y, Ma G, Chen S, Tu J, Xiao H. Comprehensive assessment of rice bran dietary fiber on gut microbiota composition and metabolism during in vitro fermentation. Food Res Int 2024; 197:115231. [PMID: 39577956 DOI: 10.1016/j.foodres.2024.115231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
Rice bran, a by-product of rice processing, is rich in various nutrients. As one of the main components of rice bran, dietary fiber has a variety of potential health benefits, especially its probiotic effects on gut health. This study involved the preparation and characterization of soluble rice bran dietary fibers (RB-SDF) and insoluble rice bran dietary fibers (RB-IDF), followed by an investigation into their gastrointestinal probiotic impact and principal metabolites. These results showed that rice bran dietary fiber could promote the production of short-chain fatty acids and the growth of probiotics during the fermentation in vitro. Specifically, RB-SDF significantly stimulated the growth of Bacteroides, Parabacteroides, and Acinetobacter, while RB-IDF encouraged the expansion of Tyzzerella, Pseudoflavonifractor, and Lachnospiraceae_UCG_004. Both dietary fibers could reduce the relative abundance of Escherichia_Shigella and Fusobacterium. The differential metabolites identified by untargeted metabolomics were l-pyroglutamic acid, d-(+)-tryptophan, indole-3-lactic acid, sulfolithocholic acid, 4-hydroxybenzaldehyde, indicating that different carbohydrates could significantly affect the metabolic profile of gut microbiota. Our finding indicated that rice bran dietary fiber can produce beneficial metabolites and modulate microbial ecosystems, which deserve further development for health applications.
Collapse
Affiliation(s)
- Jingni Cheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kai Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chujing Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yu Zhou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Jiangsu Province, Zhenjiang 212008, China
| | - Gaoxing Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Tu
- School of Biotechnology, Jiangsu University of Science and Technology, Jiangsu Province, Zhenjiang 212008, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Food Science, University of Massachusetts, Amherst 01003, USA.
| |
Collapse
|
3
|
Kim U, Hwang S, Cho S, Kim HY, Ban H, Park J, Mun J, Kim N, Suh JH, Choi J, Shin Y, Kim SB, Yoon I, Kwon HS, Kim S. Intratumoral delivery of mRNA encoding the endogenous TLR2/6 agonist UNE-C1 induces immunogenic cell death and enhances antitumor activity. Front Immunol 2024; 15:1454504. [PMID: 39669578 PMCID: PMC11634859 DOI: 10.3389/fimmu.2024.1454504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/05/2024] [Indexed: 12/14/2024] Open
Abstract
Introduction Recent investigations have highlighted the intratumoral administration of Toll-like receptor (TLR) ligands as a promising approach to initiate localized immune responses and enhance antitumor immunity. However, the clinical application of these ligands is limited by their rapid dissemination from the tumor microenvironment, raising concerns about reduced effectiveness and systemic toxicity. Methods To address these challenges, our study focused on the intratumoral delivery of mRNA encoding UNE-C1, a TLR2/6 ligand known for its efficacy and low toxicity profile. We explored the potential of UNE-C1 to induce immunogenic cell death (ICD) through autocrine mechanisms, facilitated by the release of damage-associated molecular patterns (DAMPs) triggered by TLR2 activation. Results Our findings indicate that sensitivity to UNE-C1-induced cell death is dependent on the expression levels of TLR2 and the Fas-associated death domain (FADD) in cancer cells. Furthermore, we investigated the paracrine activation of dendritic cells (DCs) by UNE-C1 via TLR2 signaling, which primes a CD8+ T cell response essential for tumor regression. Discussion Our results advocate for the intratumoral delivery of UNE-C1 via mRNA therapy as a promising strategy for innovative antitumor treatments.
Collapse
Affiliation(s)
- Uijoo Kim
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Sunkyo Hwang
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Seongmin Cho
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Hyeong Yun Kim
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Hamin Ban
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Joohee Park
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Jeongwon Mun
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Nayoung Kim
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Ji Hun Suh
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Jihye Choi
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Yungyeong Shin
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Sang Bum Kim
- College of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Ina Yoon
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Hyuk-Sang Kwon
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
- Zymedi Co., Ltd., Incheon, Republic of Korea
| | - Sunghoon Kim
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
- Interdisciplinary Graduate Program in Integrative Biotechnology, Yonsei University, Incheon, Republic of Korea
- College of Medicine, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Tesfamariam K, Plekhova V, Gebreyesus SH, Lachat C, Alladio E, Argaw A, Endris BS, Roro M, De Saeger S, Vanhaecke L, De Boevre M. Rapid LA-REIMS-based metabolic fingerprinting of serum discriminates aflatoxin-exposed from non-exposed pregnant women: a prospective cohort from the Butajira Nutrition, Mental Health, and Pregnancy (BUNMAP) Study in rural Ethiopia. Mycotoxin Res 2024; 40:681-691. [PMID: 39259493 PMCID: PMC11480126 DOI: 10.1007/s12550-024-00558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
To date, the changes in maternal metabolic response associated with prenatal aflatoxin exposure remain largely unknown. This study investigated the effects of prenatal aflatoxin exposure on the maternal serum metabolome in rural Ethiopia. A total of 309 pregnant women were enrolled prospectively, and their serum aflatoxin concentrations were measured using targeted liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Serum metabolic fingerprints were obtained using laser-assisted rapid evaporative ionization mass spectrometry (LA-REIMS), followed by combination of univariate and multivariate statistical modelling to evaluate changes in circulating metabolic features between aflatoxin-exposed and unexposed mothers and to select discriminatory metabolic features. The analysis revealed that 81.8% of women were exposed to aflatoxins, with a median concentration of 12.9 pg/mg albumin. The orthogonal partial least square discriminant analysis (OPLS-DA) regression model demonstrated significant disparities in the serum metabolome when comparing Ethiopian pregnant women with low vs high aflatoxin exposure. Thirty-two differentially expressed metabolic features were identified, affecting aminoacyl-tRNA biosynthesis pathway. Several discriminatory metabolites have been identified, including glutamine, tryptophan, tyrosine, carnosine, and 1-methylnicotinamide. In conclusion, our findings indicate that aflatoxin exposure during pregnancy have shown disparities in the maternal serum metabolome, primarily affecting protein synthesis. Further research is needed to identify specific metabolite biomarkers and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Kokeb Tesfamariam
- Department of Food Technology, Safety, and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Vera Plekhova
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Integrative Metabolomics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Seifu H Gebreyesus
- Department of Nutrition and Dietetics, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Carl Lachat
- Department of Food Technology, Safety, and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Alemayehu Argaw
- Department of Food Technology, Safety, and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bilal Shikur Endris
- Department of Nutrition and Dietetics, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Meselech Roro
- Department of Reproductive Health and Health Service Management, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sarah De Saeger
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, MYTOX-SOUTH® Coordination Unit, Ghent, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa
| | - Lynn Vanhaecke
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Integrative Metabolomics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- School of Biological Sciences, Queen's University Belfast, Lisburn Road 97, Belfast, UK
| | - Marthe De Boevre
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, MYTOX-SOUTH® Coordination Unit, Ghent, Belgium.
| |
Collapse
|
5
|
Kuleš J, Bujanić M, Rubić I, Šimonji K, Konjević D. A Comprehensive Multi-Omics Study of Serum Alterations in Red Deer Infected by the Liver Fluke Fascioloides magna. Pathogens 2024; 13:922. [PMID: 39599475 PMCID: PMC11597349 DOI: 10.3390/pathogens13110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Liver fluke infections are acknowledged as diseases with global prevalence and significant implications for both veterinary and public health. The large American liver fluke, Fascioloides magna, is a significant non-native parasite introduced to Europe, threatening the survival of local wildlife populations. The aim of this study was to analyze differences in the serum proteome and metabolome between F. magna-infected and control red deer. Serum samples from red deer were collected immediately following regular hunting operations, including 10 samples with confirmed F. magna infection and 10 samples from healthy red deer. A proteomics analysis of the serum samples was performed using a tandem mass tag (TMT)-based quantitative approach, and a metabolomics analysis of the serum was performed using an untargeted mass spectrometry-based metabolomics approach. A knowledge-driven approach was applied to integrate omics data. Our findings demonstrated that infection with liver fluke was associated with changes in amino acid metabolism, energy metabolism, lipid metabolism, inflammatory host response, and related biochemical pathways. This study offers a comprehensive overview of the serum proteome and metabolome in response to F. magna infection in red deer, unveiling new potential targets for future research. The identification of proteins, metabolites, and related biological pathways enhances our understanding of host-parasite interactions and may improve current tools for more effective liver fluke control.
Collapse
Affiliation(s)
- Josipa Kuleš
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Miljenko Bujanić
- Educational Center for Game Management I/3 “Črnovšćak”, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ivana Rubić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.R.); (K.Š.)
| | - Karol Šimonji
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.R.); (K.Š.)
| | - Dean Konjević
- Department of Veterinary Economics and Epidemiology, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
6
|
Chen XB, Zheng YX, Guo TT, Xu F, Cui YZ, Nie L, Wang HB, Ye LR, Liu Y, Yang XY, Fu NC, Yan BX, Zheng M, Man XY. Inhibition of Epidermal Isoleucyl-tRNA Synthetase Ameliorates Psoriasis-Like Skin Lesions through Jak2/Signal Transducer and Activator of Transcription 3/CXCL16 Signaling Pathway. J Invest Dermatol 2024:S0022-202X(24)02095-5. [PMID: 39293712 DOI: 10.1016/j.jid.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 09/20/2024]
Affiliation(s)
- Xi-Bei Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Xin Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Fan Xu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying-Zhe Cui
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Nie
- BioRay Pharmaceutical, Taizhou, China
| | | | - Li-Ran Ye
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Liu
- BioRay Pharmaceutical, Taizhou, China
| | - Xing-Yu Yang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ni-Chang Fu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin-Xi Yan
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Sun L, Jiao YW, Cui FQ, Liu J, Xu ZY, Sun DL. tRF-Leu reverse breast cancer cells chemoresistance by regulation of BIRC5. Discov Oncol 2024; 15:449. [PMID: 39278863 PMCID: PMC11402887 DOI: 10.1007/s12672-024-01317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
OBJECTIVE Accumulating studies reported the crucial roles of tRFs in tumorigenesis. However, their further mechanisms and clinical values remains unclear. This study aimed at the further investigation of tRF-Leu in breast cancer chemotherapy resistance. METHODS The high-throughput sequencing was performed and identified the downregulation of tRF-Leu in MCF7/ADR cells. The function of tRF-Leu in breast cancer cells and breast cancer chemotherapy resistance was investigated in vitro and in vivo, including colony formation assay, CCK-8 assay, transwell assay and apoptosis assay. The binding site of tRF-Leu on BIRC5 was verified by dual-luciferase assay. RESULTS tRF-Leu was downregulated in MCF7/ADR cells. Overexpression of tRF-Leu inhibited the migration of breast cancer cells. Furthermore, tRF-Leu could reverse the resistance of MCF7/ADR cells to Adriamycin both in vitro and in vivo. BIRC5 was a target of tRF-Leu, which might be involved in the chemotherapy resistance regulation. CONCLUSION We demonstrated that tRF-Leu could inhibit the chemotherapy resistance of breast cancer by targeting BIRC5. These findings might identify new biomarkers of breast cancer therapy and bring new strategies to reverse chemotherapy resistance.
Collapse
Affiliation(s)
- Li Sun
- Hepatopancreatobiliary Surgery Department, The Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou, China
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yu-Wen Jiao
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Fu-Qi Cui
- Department Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Jin Liu
- Department Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Zhong-Ya Xu
- Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Dong-Lin Sun
- Hepatopancreatobiliary Surgery Department, The Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou, China.
| |
Collapse
|
8
|
Krsek A, Ostojic L, Zivalj D, Baticic L. Navigating the Neuroimmunomodulation Frontier: Pioneering Approaches and Promising Horizons-A Comprehensive Review. Int J Mol Sci 2024; 25:9695. [PMID: 39273641 PMCID: PMC11396210 DOI: 10.3390/ijms25179695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The research in neuroimmunomodulation aims to shed light on the complex relationships that exist between the immune and neurological systems and how they affect the human body. This multidisciplinary field focuses on the way immune responses are influenced by brain activity and how neural function is impacted by immunological signaling. This provides important insights into a range of medical disorders. Targeting both brain and immunological pathways, neuroimmunomodulatory approaches are used in clinical pain management to address chronic pain. Pharmacological therapies aim to modulate neuroimmune interactions and reduce inflammation. Furthermore, bioelectronic techniques like vagus nerve stimulation offer non-invasive control of these systems, while neuromodulation techniques like transcranial magnetic stimulation modify immunological and neuronal responses to reduce pain. Within the context of aging, neuroimmunomodulation analyzes the ways in which immunological and neurological alterations brought on by aging contribute to cognitive decline and neurodegenerative illnesses. Restoring neuroimmune homeostasis through strategies shows promise in reducing age-related cognitive decline. Research into mood disorders focuses on how immunological dysregulation relates to illnesses including anxiety and depression. Immune system fluctuations are increasingly recognized for their impact on brain function, leading to novel treatments that target these interactions. This review emphasizes how interdisciplinary cooperation and continuous research are necessary to better understand the complex relationship between the neurological and immune systems.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Leona Ostojic
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Dorotea Zivalj
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
9
|
Li HM, Qiu CS, Du LY, Tang XL, Liao DQ, Xiong ZY, Lai SM, Huang HX, Kuang L, Zhang BY, Li ZH. Causal Association between Circulating Metabolites and Dementia: A Mendelian Randomization Study. Nutrients 2024; 16:2879. [PMID: 39275195 PMCID: PMC11397200 DOI: 10.3390/nu16172879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
The causal association of circulating metabolites with dementia remains uncertain. We assessed the causal association of circulating metabolites with dementia utilizing Mendelian randomization (MR) methods. We performed univariable MR analysis to evaluate the associations of 486 metabolites with dementia, Alzheimer's disease (AD), and vascular dementia (VaD) risk. For secondary validation, we replicated the analyses using an additional dataset with 123 metabolites. We observed 118 metabolites relevant to the risk of dementia, 59 of which were lipids, supporting the crucial role of lipids in dementia pathogenesis. After Bonferroni adjustment, we identified nine traits of HDL particles as potential causal mediators of dementia. Regarding dementia subtypes, protective effects were observed for epiandrosterone sulfate on AD (OR = 0.60, 95% CI: 0.48-0.75) and glycoproteins on VaD (OR = 0.89, 95% CI: 0.83-0.95). Bayesian model averaging MR (MR-BMA) analysis was further conducted to prioritize the predominant metabolites for dementia risk, which highlighted the mean diameter of HDL particles and the concentration of very large HDL particles as the predominant protective factors against dementia. Moreover, pathway analysis identified 17 significant and 2 shared metabolic pathways. These findings provide support for the identification of promising predictive biomarkers and therapeutic targets for dementia.
Collapse
Affiliation(s)
- Hong-Min Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Cheng-Shen Qiu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Li-Ying Du
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xu-Lian Tang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Dan-Qing Liao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhi-Yuan Xiong
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Shu-Min Lai
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hong-Xuan Huang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ling Kuang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bing-Yun Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhi-Hao Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Bourner LA, Chung LA, Long H, McGettrick AF, Xiao J, Roth K, Bailey JD, Strickland M, Tan B, Cunningham J, Lutzke B, McGee J, Otero FJ, Gemperline DC, Zhang L, Wang YC, Chalmers MJ, Yang CW, Gutierrez JA, O'Neill LAJ, Dorsey FC. Endogenously produced itaconate negatively regulates innate-driven cytokine production and drives global ubiquitination in human macrophages. Cell Rep 2024; 43:114570. [PMID: 39093697 DOI: 10.1016/j.celrep.2024.114570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/13/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
A wide variety of electrophilic derivatives of itaconate, the Kreb's cycle-derived metabolite, are immunomodulatory, yet these derivatives have overlapping and sometimes contradictory activities. Therefore, we generated a genetic system to interrogate the immunomodulatory functions of endogenously produced itaconate in human macrophages. Endogenous itaconate is driven by multiple innate signals restraining inflammatory cytokine production. Endogenous itaconate directly targets cysteine 13 in IRAK4 (disrupting IRAK4 autophosphorylation and activation), drives the degradation of nuclear factor κB, and modulates global ubiquitination patterns. As a result, cells unable to make itaconate overproduce inflammatory cytokines such as tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), and IL-1β in response to these innate activators. In contrast, the production of interferon (IFN)β, downstream of LPS, requires the production of itaconate. These data demonstrate that itaconate is a critical arbiter of inflammatory cytokine production downstream of multiple innate signaling pathways, laying the groundwork for the development of itaconate mimetics for the treatment of autoimmunity.
Collapse
Affiliation(s)
- Luke A Bourner
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Linda A Chung
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Haiyan Long
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Anne F McGettrick
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, D02 PN40 Dublin, Ireland
| | - Junpeng Xiao
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Kenneth Roth
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Jade D Bailey
- Sitryx Therapeutics Limited, Bellhouse Building, Magdalen Centre, The Oxford Science Park, Oxford OX4 4GA, UK
| | - Marie Strickland
- Sitryx Therapeutics Limited, Bellhouse Building, Magdalen Centre, The Oxford Science Park, Oxford OX4 4GA, UK
| | - Bo Tan
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Jason Cunningham
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Barry Lutzke
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - James McGee
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Francella J Otero
- Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - David C Gemperline
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Lin Zhang
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Ying C Wang
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Michael J Chalmers
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Chiao-Wen Yang
- Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Jesus A Gutierrez
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, D02 PN40 Dublin, Ireland
| | - Frank C Dorsey
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| |
Collapse
|
11
|
Sandanusova M, Turkova K, Pechackova E, Kotoucek J, Roudnicky P, Sindelar M, Kubala L, Ambrozova G. Growth phase matters: Boosting immunity via Lacticasebacillus-derived membrane vesicles and their interactions with TLR2 pathways. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e169. [PMID: 39185335 PMCID: PMC11341917 DOI: 10.1002/jex2.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
Lipid bi-layered particles known as membrane vesicles (MVs), produced by Gram-positive bacteria are a communication tool throughout the entire bacterial growth. However, the MVs characteristics may vary across all stages of maternal culture growth, leading to inconsistencies in MVs research. This, in turn, hinders their employment as nanocarriers, vaccines and other medical applications. In this study, we aimed to comprehensively characterize MVs derived from Lacticaseibacillus rhamnosus CCM7091 isolated at different growth stages: early exponential (6 h, MV6), late exponential (12 h, MV12) and late stationary phase (48 h, MV48). We observed significant differences in protein content between MV6 and MV48 (data are available via ProteomeXchange with identifier PXD041580), likely contributing to their different immunomodulatory capacities. In vitro analysis demonstrated that MV48 uptake rate by epithelial Caco-2 cells is significantly higher and they stimulate an immune response in murine macrophages RAW 264.7 (elevated production of TNFα, IL-6, IL-10, NO). This correlated with increased expression of lipoteichoic acid (LTA) and enhanced TLR2 signalling in MV48, suggesting that LTA contributes to the immunomodulation. In conclusion, we showed that Lacticaseibacillus rhamnosus CCM7091-derived MVs from the late stationary phase boost the immune response the most effectively, which pre-destines them for therapeutical application as nanocarriers.
Collapse
Affiliation(s)
- Miriam Sandanusova
- Faculty of Science, Department of Experimental BiologyMasaryk UniversityBrnoCzech Republic
- Department of Biophysics of Immune SystemInstitute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Kristyna Turkova
- Department of Biophysics of Immune SystemInstitute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Eva Pechackova
- Faculty of Science, Department of BiochemistryMasaryk UniversityBrnoCzech Republic
| | - Jan Kotoucek
- Department of Pharmacology and ToxicologyVeterinary Research InstituteBrnoCzech Republic
| | - Pavel Roudnicky
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Martin Sindelar
- Faculty of Science, Department of Experimental BiologyMasaryk UniversityBrnoCzech Republic
| | - Lukas Kubala
- Faculty of Science, Department of Experimental BiologyMasaryk UniversityBrnoCzech Republic
- Department of Biophysics of Immune SystemInstitute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Gabriela Ambrozova
- Department of Biophysics of Immune SystemInstitute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| |
Collapse
|
12
|
Ara-Díaz JB, Bergstedt JH, Albaladejo-Riad N, Malik MS, Andersen Ø, Lazado CC. Mucosal organs exhibit distinct response signatures to hydrogen sulphide in Atlantic salmon (Salmo salar). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116617. [PMID: 38905940 DOI: 10.1016/j.ecoenv.2024.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Hydrogen sulphide (H2S) is considered an immunotoxicant, and its presence in the water can influence the mucosal barrier functions of fish. However, there is a significant knowledge gap on how fish mucosa responds to low environmental H2S levels. The present study investigated the consequences of prolonged exposure to sub-lethal levels of H2S on the mucosal defences of Atlantic salmon (Salmo salar). Fish were continuously exposed to two levels of H2S (low: 0.05 µM; and high: 0.12 µM) for 12 days. Unexposed fish served as control. Molecular and histological profiling focused on the changes in the skin, gills and olfactory rosette. In addition, metabolomics and proteomics were performed on the skin and gill mucus. The gene expression profile indicated that the gills and olfactory rosette were more sensitive to H2S than the skin. The olfactory rosette showed a dose-dependent response, but not the gills. Genes related to stress responses were triggered at mucosal sites by H2S. Moreover, H2S elicited strong inflammatory responses, particularly in the gills. All mucosal organs demonstrated the key molecular repertoire for sulphide detoxification, but their temporal and spatial expression was not substantially affected by sub-lethal H2S levels. Mucosal barrier integrity was not considerably affected by H2S. Mucus metabolomes of the skin and gills were unaffected, but a matrix-dependent response was identified. Comparing the high-concentration group's skin and gills mucus metabolomes identified altered amino acid biosynthesis and metabolism pathways. The skin and gill mucus exhibited distinct proteomic profiles. Enrichment analysis revealed that proteins related to immunity and metabolism were affected in both mucus matrices. The present study expands our knowledge of the defence mechanisms against H2S at mucosal sites in Atlantic salmon. The findings offer insights into the health and welfare consequences of sub-lethal H2S, which can be incorporated into the risk assessment protocols in salmon land-based farms.
Collapse
Affiliation(s)
- Juan Bosco Ara-Díaz
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway
| | - Julie Hansen Bergstedt
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, PO Box 101, Hirtshals 9850, Denmark
| | - Nora Albaladejo-Riad
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | - Muhammad Salman Malik
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway
| | - Øivind Andersen
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway
| | - Carlo C Lazado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway.
| |
Collapse
|
13
|
Chang J, Liu A, Zhang J, Chu L, Hou X, Huang X, Xing Q, Bao Z. Transcriptomic analysis reveals PC4's participation in thermotolerance of scallop Argopecten irradians irradians by regulating myocardial bioelectric activity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101295. [PMID: 39053238 DOI: 10.1016/j.cbd.2024.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Rising ocean temperatures due to global warming pose a significant threat to the bay scallop aquaculture industry. Understanding the mechanisms of thermotolerance in bay scallops is crucial for developing thermotolerant breeds. Our prior research identified Arg0230340.1, part of the positive cofactor 4 (PC4) family, as a key gene associated with the thermotolerance index Arrhenius break temperature (ABT) in bay scallops. Further validation through RNA interference (RNAi) reinforced PC4's role in thermotolerance, offering a solid basis for investigating thermal response mechanisms in these scallops. In this study, we performed a comparative transcriptomic analysis on the temperature-sensitive hearts of bay scallops after siRNA-mediated RNAi targeting Arg0230340.1, to delve into the detailed molecular mechanism of PC4's participation in thermotolerance regulation. The analysis revealed that silencing Arg0230340.1 significantly reduced the expression of mitochondrial tRNA and rRNA, potentially affecting mitochondrial function and the heart's blood supply capacity. Conversely, the up-regulation of genes involved in energy metabolism, RNA polymerase II (RNAPII)-mediated basal transcription, and aminoacyl-tRNA synthesis pathways points to an intrinsic protective response, providing energy and substrates for damage repair and maintenance of essential functions under stress. GO and KEGG enrichment analyses indicated that the up-regulated genes were primarily associated with energy metabolism and spliceosome pathways, likely contributing to myocardial remodeling post-Arg0230340.1 knockdown. Down-regulated genes were enriched in ion channel pathways, particularly those for Na+, K+, and Ca2+ channels, whose dysfunction could disrupt normal myocardial bioelectric activity. The impaired cardiac performance resulting from RNAi targeting Arg0230340.1 reduced the cardiac workload in scallop hearts, thus affecting myocardial oxygen consumption and thermotolerance. We propose a hypothetical mechanism where PC4 down-regulation impairs cardiac bioelectric activity, leading to decreased thermotolerance in bay scallops, providing theoretical guidance for breeding thermotolerant scallop varieties and developing strategies for sustainable aquaculture in the face of long-term environmental changes.
Collapse
Affiliation(s)
- Jiaxi Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Longfei Chu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
14
|
Adhikary PP, Idowu T, Tan Z, Hoang C, Shanta S, Dumbani M, Mappalakayil L, Awasthi B, Bermudez M, Weiner J, Beule D, Wolber G, Page BD, Hedtrich S. Disrupting TSLP-TSLP receptor interactions via putative small molecule inhibitors yields a novel and efficient treatment option for atopic diseases. EMBO Mol Med 2024; 16:1630-1656. [PMID: 38877290 PMCID: PMC11250841 DOI: 10.1038/s44321-024-00085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a key player in atopic diseases, which has sparked great interest in therapeutically targeting TSLP. Yet, no small-molecule TSLP inhibitors exist due to the challenges of disrupting the protein-protein interaction between TSLP and its receptor. Here, we report the development of small-molecule TSLP receptor inhibitors using virtual screening and docking of >1,000,000 compounds followed by iterative chemical synthesis. BP79 emerged as our lead compound that effectively abrogates TSLP-triggered cytokines at low micromolar concentrations. For in-depth analysis, we developed a human atopic disease drug discovery platform using multi-organ chips. Here, topical application of BP79 onto atopic skin models that were co-cultivated with lung models and Th2 cells effectively suppressed immune cell infiltration and IL-13, IL-4, TSLP, and periostin secretion, while upregulating skin barrier proteins. RNA-Seq analysis corroborate these findings and indicate protective downstream effects on the lungs. To the best of our knowledge, this represents the first report of a potent putative small molecule TSLPR inhibitor which has the potential to expand the therapeutic and preventive options in atopic diseases.
Collapse
Affiliation(s)
- Partho Protim Adhikary
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Temilolu Idowu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Zheng Tan
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Christopher Hoang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Selina Shanta
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Malti Dumbani
- Institute of Pharmacy, Freie Universität of Berlin, Berlin, Germany
| | - Leah Mappalakayil
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Bhuwan Awasthi
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität of Berlin, Berlin, Germany
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - January Weiner
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität of Berlin, Berlin, Germany
| | - Brent Dg Page
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
| |
Collapse
|
15
|
Zhang H, Ma X, Liu W, Wang Z, Zhang Z, Chen G, Zhang Y, Wang T, Yu T, Zhang Y. Causal relationship between serum metabolites and juvenile idiopathic arthritis: a mendelian randomization study. Pediatr Rheumatol Online J 2024; 22:51. [PMID: 38724970 PMCID: PMC11080266 DOI: 10.1186/s12969-024-00986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Juvenile Idiopathic Arthritis (JIA) is a condition that occurs when individuals under the age of 16 develop arthritis that lasts for more than six weeks, and the cause is unknown. The development of JIA may be linked to serum metabolites. Nevertheless, the association between JIA pathogenesis and serum metabolites is unclear, and there are discrepancies in the findings across studies. METHODS In this research, the association between JIA in humans and 486 serum metabolites was assessed using genetic variation data and genome-wide association study. The identification of causal relationships was accomplished through the application of univariate Mendelian randomization (MR) analysis. Various statistical methods, including inverse variance weighted and MR-Egger, were applied to achieve this objective. To ensure that the findings from the MR analysis were trustworthy, a number of assessments were carried out. To ensure the accuracy of the obtained results, a range of techniques were utilised including the Cochran Q test, examination of the MR-Egger intercept, implementation of the leave-one-out strategy, and regression analysis of linkage disequilibrium scores. In order to identify the specific metabolic pathways associated with JIA, our primary objective was to perform pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes. RESULTS Two-sample summary data MR analyses and sensitivity analyses showed that five metabolites were significantly causally associated with JIA, including two risk factors-kynurenine (odds ratio [OR]: 16.39, 95% confidence interval [CI]: 2.07-129.63, p = 5.11 × 10- 6) and linolenate (OR: 16.48, 95% CI: 1.32-206.22, p = 0.030)-and three protective factors-3-dehydrocarnitine (OR: 0.32, 95% CI: 0.14-0.72, p = 0.007), levulinate (4-oxovalerate) (OR: 0.40, 95% CI: 0.20-0.80, p = 0.010), and X-14,208 (phenylalanylserine) (OR: 0.68, 95% CI: 0.51-0.92, p = 0.010). Furthermore, seven metabolic pathways, including α-linolenic acid metabolism and pantothenate and CoA biosynthesis, are potentially associated with the onset and progression of JIA. CONCLUSION Five serum metabolites, including kynurenine and 3-dehydrocarnitine, may be causally associated with JIA. These results provide a theoretical framework for developing effective JIA prevention and screening strategies.
Collapse
Affiliation(s)
- Han Zhang
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Ma
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wanlu Liu
- Shanxian Central Hospital, Heze, Shandong Province, China
| | - Ze Wang
- Department of Neurology, Qingdao Haici Hospital, Qingdao, China
| | - Zian Zhang
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - GuanHong Chen
- Shanxian Central Hospital, Heze, Shandong Province, China
| | - Yingze Zhang
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tianrui Wang
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Tengbo Yu
- Qingdao Municipal Hospital, Qingdao, China.
| | - Yongtao Zhang
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
16
|
Kang C, Yun D, Yoon H, Hong M, Hwang J, Shin HM, Park S, Cheon S, Han D, Moon KC, Kim HY, Choi EY, Lee EY, Kim MH, Jeong CW, Kwak C, Kim DK, Oh KH, Joo KW, Lee DS, Kim YS, Han SS. Glutamyl-prolyl-tRNA synthetase (EPRS1) drives tubulointerstitial nephritis-induced fibrosis by enhancing T cell proliferation and activity. Kidney Int 2024; 105:997-1019. [PMID: 38320721 DOI: 10.1016/j.kint.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 02/27/2024]
Abstract
Toxin- and drug-induced tubulointerstitial nephritis (TIN), characterized by interstitial infiltration of immune cells, frequently necessitates dialysis for patients due to irreversible fibrosis. However, agents modulating interstitial immune cells are lacking. Here, we addressed whether the housekeeping enzyme glutamyl-prolyl-transfer RNA synthetase 1 (EPRS1), responsible for attaching glutamic acid and proline to transfer RNA, modulates immune cell activity during TIN and whether its pharmacological inhibition abrogates fibrotic transformation. The immunological feature following TIN induction by means of an adenine-mixed diet was infiltration of EPRS1high T cells, particularly proliferating T and γδ T cells. The proliferation capacity of both CD4+ and CD8+ T cells, along with interleukin-17 production of γδ T cells, was higher in the kidneys of TIN-induced Eprs1+/+ mice than in the kidneys of TIN-induced Eprs1+/- mice. This discrepancy contributed to the fibrotic amelioration observed in kidneys of Eprs1+/- mice. TIN-induced fibrosis was also reduced in Rag1-/- mice adoptively transferred with Eprs1+/- T cells compared to the Rag1-/- mice transferred with Eprs1+/+ T cells. The use of an EPRS1-targeting small molecule inhibitor (bersiporocin) under clinical trials to evaluate its therapeutic potential against idiopathic pulmonary fibrosis alleviated immunofibrotic aggravation in TIN. EPRS1 expression was also observed in human kidney tissues and blood-derived T cells, and high expression was associated with worse patient outcomes. Thus, EPRS1 may emerge as a therapeutic target in toxin- and drug-induced TIN, modulating the proliferation and activity of infiltrated T cells.
Collapse
Affiliation(s)
- Chaelin Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Donghwan Yun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Haein Yoon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Minki Hong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Juhyeon Hwang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seokwoo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seongmin Cheon
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea; Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Eun-Young Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yon Su Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
17
|
Barai P, Chen J. Beyond protein synthesis: non-translational functions of threonyl-tRNA synthetases. Biochem Soc Trans 2024; 52:661-670. [PMID: 38477373 PMCID: PMC11088916 DOI: 10.1042/bst20230506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Aminoacyl-tRNA synthetases (AARSs) play an indispensable role in the translation of mRNAs into proteins. It has become amply clear that AARSs also have non-canonical or non-translational, yet essential, functions in a myriad of cellular and developmental processes. In this mini-review we discuss the current understanding of the roles of threonyl-tRNA synthetase (TARS) beyond protein synthesis and the underlying mechanisms. The two proteins in eukaryotes - cytoplasmic TARS1 and mitochondrial TARS2 - exert their non-canonical functions in the regulation of gene expression, cell signaling, angiogenesis, inflammatory responses, and tumorigenesis. The TARS proteins utilize a range of biochemical mechanisms, including assembly of a translation initiation complex, unexpected protein-protein interactions that lead to activation or inhibition of intracellular signaling pathways, and cytokine-like signaling through cell surface receptors in inflammation and angiogenesis. It is likely that new functions and novel mechanisms will continue to emerge for these multi-talented proteins.
Collapse
Affiliation(s)
- Pallob Barai
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
18
|
Hwang ST, Simon SI. Casting for Proteins in Psoriatic Inflammation Hooks Glycyl-tRNA Synthetases (GARS). J Invest Dermatol 2024; 144:733-734. [PMID: 38349306 DOI: 10.1016/j.jid.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 03/24/2024]
Affiliation(s)
- Sam T Hwang
- Department of Dermatology, University of California, Davis, Sacramento, California, USA.
| | - Scott I Simon
- Department of Dermatology, University of California, Davis, Sacramento, California, USA; Department of Bioengineering, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
19
|
Zhang H, Ling J. Serine mistranslation induces the integrated stress response without accumulation of uncharged tRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578812. [PMID: 38370842 PMCID: PMC10871240 DOI: 10.1101/2024.02.04.578812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that support robust and accurate protein synthesis. A rapidly expanding number of studies show that mutations in aaRSs lead to multiple human diseases, including neurological disorders and cancer. Much remains unknown about how aaRS mutations impact human health. In particular, how aminoacylation errors affect stress responses and fitness in eukaryotic cells remains poorly understood. The integrated stress response (ISR) is an adaptive mechanism in response to multiple stresses. However, chronic activation of the ISR contributes to the development of multiple diseases (e.g., neuropathies). Here we show that Ser misincorporation into Ala and Thr codons, resulting from aaRS editing defects or mutations in tRNAs, constitutively active the ISR. Such activation does not appear to depend on the accumulation of uncharged tRNAs, implicating that Ser mistranslation may lead to ribosome stalling and collision.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
20
|
Yang H, Ma L, Deng W, Fu B, Nie J, Liu X. Prognostic biomarker DARS2 correlated with immune infiltrates in bladder tumor. Front Immunol 2024; 14:1301945. [PMID: 38299141 PMCID: PMC10827901 DOI: 10.3389/fimmu.2023.1301945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024] Open
Abstract
Background DARS2 is a pivotal member of the Aminoacyl-tRNA synthetases family that is critical for regulating protein translation. However, the biological role of DARS2 in bladder cancer remains elusive. Methods We analyzed the correlation between DARS2 expression and prognosis, tumor stage, and immune infiltration in bladder cancer using The Cancer Genome Atlas (TCGA) database. We validated findings in clinical samples from The First Affiliated Hospital of Nanchang University and explored the biological functions of DARS2 using cell and animal models. Results We found DARS2 to be upregulated in bladder cancer, associated with tumor progression and poor prognosis. Immune infiltration analysis suggested that DARS2 may facilitate immune evasion by modulating PD-L1. Cell and animal experiments validated that DARS2 knockdown and overexpress can inhibit or increase cancer cell proliferation, metastasis, tumorigenesis, immune escape, and PD-L1 levels. Conclusions Our study reveals DARS2 as a potential prognostic biomarker and immunotherapy target in BLCA.
Collapse
Affiliation(s)
- Hailang Yang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Li Ma
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Jianqiang Nie
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
21
|
Dulic M, Godinic-Mikulcic V, Kekez M, Evic V, Rokov-Plavec J. Protein-Protein Interactions of Seryl-tRNA Synthetases with Emphasis on Human Counterparts and Their Connection to Health and Disease. Life (Basel) 2024; 14:124. [PMID: 38255739 PMCID: PMC10817482 DOI: 10.3390/life14010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Seryl-tRNA synthetases (SerRSs), members of the aminoacyl-tRNA synthetase family, interact with diverse proteins, enabling SerRSs to enhance their role in the translation of the genetic message or to perform alternative functions in cellular processes beyond translation. Atypical archaeal SerRS interacts with arginyl-tRNA synthetase and proteins of the ribosomal P-stalk to optimize translation through tRNA channeling. The complex between yeast SerRS and peroxin Pex21p provides a connection between translation and peroxisome function. The partnership between Arabidopsis SerRS and BEN1 indicates a link between translation and brassinosteroid metabolism and may be relevant in plant stress response mechanisms. In Drosophila, the unusual heterodimeric mitochondrial SerRS coordinates mitochondrial translation and replication via interaction with LON protease. Evolutionarily conserved interactions of yeast and human SerRSs with m3C32 tRNA methyltransferases indicate coordination between tRNA modification and aminoacylation in the cytosol and mitochondria. Human cytosolic SerRS is a cellular hub protein connecting translation to vascular development, angiogenesis, lipogenesis, and telomere maintenance. When translocated to the nucleus, SerRS acts as a master negative regulator of VEGFA gene expression. SerRS alone or in complex with YY1 and SIRT2 competes with activating transcription factors NFκB1 and c-Myc, resulting in balanced VEGFA expression important for proper vascular development and angiogenesis. In hypoxia, SerRS phosphorylation diminishes its binding to the VEGFA promoter, while the lack of nutrients triggers SerRS glycosylation, reducing its nuclear localization. Additionally, SerRS binds telomeric DNA and cooperates with the shelterin protein POT1 to regulate telomere length and cellular senescence. As an antitumor and antiangiogenic factor, human cytosolic SerRS appears to be a promising drug target and therapeutic agent for treating cancer, cardiovascular diseases, and possibly obesity and aging.
Collapse
Affiliation(s)
| | | | | | | | - Jasmina Rokov-Plavec
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (M.D.); (V.G.-M.); (M.K.); (V.E.)
| |
Collapse
|
22
|
Song B, Lu J, Hou Y, Wu T, Tao X, Liu D, Wang Y, Regenstein JM, Liu X, Zhou P. Proteomic Comparisons of Caprine Milk Whole Cream Buttermilk Whey and Cheese Whey Cream Buttermilk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:933-945. [PMID: 38153029 DOI: 10.1021/acs.jafc.3c07405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Buttermilk, a potential material used to produce milk fat globule membrane (MFGM), is obtained as a byproduct of butter making from milk whole cream and cheese whey cream. This study investigated the effects of rennet and acid coagulation on the protein profiles of buttermilk rennet-coagulated whey (BRW) and buttermilk acid-coagulated whey (BAW). They were compared to those of whey cream buttermilk (WCB). Rennet coagulation was more efficient in removing casein, while retaining more IgG and lactoferrin than acid coagulation. BRW had more MFGM than BAW. Butyrophilin, xanthine dehydrogenase, and mucin1 were significantly higher (P < 0.05) in BRW, while fatty acid-binding protein 3 was enriched in BAW. KEGG analysis showed that complement and coagulation cascades had the greatest differences, and the abundance of proteins involved in this signaling pathway in BRW and BAW was higher, suggesting their potential anticoagulant and anti-inflammatory activity. BAW had higher apolipoprotein A4 and transcobalamin 2, which are essential carriers for transporting long-chain fatty acids and vitamin B12 from the intestine to the blood. Therefore, BAW intake might improve lipids and vitamin B12 absorption. This study can help deepen the understanding of protein composition of MFGM-enriched whey and facilitate the production of MFGM proteins for infants and old-aged populations.
Collapse
Affiliation(s)
- Bo Song
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Jing Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yanmei Hou
- Hyproca Nutrition Co., Ltd., Changsha, Hunan Province 410200, China
| | - Tong Wu
- Hyproca Nutrition Co., Ltd., Changsha, Hunan Province 410200, China
| | - Xiumei Tao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Dasong Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Yancong Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York 14853-7201, United States
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| |
Collapse
|
23
|
Cheng M, Zheng Y, Wu G, Tan L, Xu F, Zhang Y, Chen X, Zhu K. Protective Effect of Artocarpus heterophyllus Lam. (Jackfruit) Polysaccharides on Liver Injury Induced by Cyclophosphamide in Mice. Nutrients 2024; 16:166. [PMID: 38201995 PMCID: PMC10780714 DOI: 10.3390/nu16010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
In recent years, Artocarpus heterophyllus Lam. (jackfruit) polysaccharides (namely JFP-Ps) have attracted much attention due to their multiple biological activities. This study aimed to explore the protective effects and the underlying mechanisms of JFP-Ps on cyclophosphamide (Cp)-induced liver damage. The protective effect of JFP-Ps was evaluated using HE staining, antioxidant testing, enzyme-linked immunosorbent assay (ELISA), real-time quantitative polymerase chain reaction (RT-qPCR), Western blot and ultra-performance liquid chromatography equipped with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) metabolomics analysis. The results showed that Cp caused pathological liver damage, activated oxidative stress and downregulated cytokine expression, while JFP-Ps treatment was found to exert antioxidant effects and play immune regulatory roles through mitogen-activated protein kinase/nuclear factor-κB (MAPK/NF-κB) related inflammation and cell apoptosis pathways to protect the Cp-induced liver injury. Metabolomic results showed that the liver-protective effects of JFP-Ps were mainly related to aminoacyl transfer ribonucleic acid (tRNA) biosynthesis, sphingolipid metabolism, purine metabolism and the citrate cycle. These results indicate that JFP-Ps have great potential application in alleviating liver injury.
Collapse
Affiliation(s)
- Ming Cheng
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yifan Zheng
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Gang Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Xiaoai Chen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| |
Collapse
|
24
|
Narsimulu B, Jakkula P, Qureshi R, Nasim F, Qureshi IA. Inhibition and structural insights of leishmanial glutamyl-tRNA synthetase for designing potent therapeutics. Int J Biol Macromol 2024; 254:127756. [PMID: 37907177 DOI: 10.1016/j.ijbiomac.2023.127756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/08/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs), essential components of the protein synthesizing machinery, have been often chosen for devising therapeutics against parasitic diseases. Due to their relevance in drug development, the current study was designed to explore functional and structural aspects of Leishmania donovani glutamyl-tRNA synthetase (LdGluRS). Hence, LdGluRS was cloned into an expression vector and purified to homogeneity using chromatographic techniques. Purified protein showed maximum enzymatic activity at physiological pH, with more binding capacity towards its cofactor (Adenosine triphosphate, 0.06 ± 0.01 mM) than the cognate substrate (L-glutamate, 9.5 ± 0.5 mM). Remarkably, salicylate inhibited LdGluRS competitively with respect to L-glutamate and exhibited druglikeness with negligible effect on human macrophages. The protein possessed more α-helices (43 %) than β-sheets (12 %), whereas reductions in thermal stability and cofactor-binding affinity, along with variation in mode of inhibition after mutation signified the role of histidine (H60) as a catalytic residue. LdGluRS could also generate a pro-inflammatory milieu in human macrophages by upregulating cytokines. The docking study demonstrated the placement of salicylate into LdGluRS substrate-binding site, and the complex was found to be stable during molecular dynamics (MD) simulation. Altogether, our study highlights the understanding of molecular inhibition and structural features of glutamyl-tRNA synthetase from kinetoplastid parasites.
Collapse
Affiliation(s)
- Bandigi Narsimulu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Pranay Jakkula
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Rahila Qureshi
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Fouzia Nasim
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India.
| |
Collapse
|
25
|
da Silva-Januário ME, da Costa CS, Tavares LA, Oliveira AK, Januário YC, de Carvalho AN, Cassiano MHA, Rodrigues RL, Miller ME, Palameta S, Arns CW, Arruda E, Paes Leme AF, daSilva LLP. HIV-1 Nef Changes the Proteome of T Cells Extracellular Vesicles Depleting IFITMs and Other Antiviral Factors. Mol Cell Proteomics 2023; 22:100676. [PMID: 37940003 PMCID: PMC10746527 DOI: 10.1016/j.mcpro.2023.100676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/19/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023] Open
Abstract
Extracellular vesicles (EVs) are biomolecule carriers for intercellular communication in health and disease. Nef is a HIV virulence factor that is released from cells within EVs and is present in plasma EVs of HIV-1 infected individuals. We performed a quantitative proteomic analysis to fully characterize the Nef-induced changes in protein composition of T cell-derived EVs and identify novel host targets of HIV. Several proteins with well-described roles in infection or not previously associated with HIV pathogenesis were specifically modulated by Nef in EVs. Among the downregulated proteins are the interferon-induced transmembrane 1, 2, and 3 (IFITM1-3) proteins, broad-spectrum antiviral factors known to be cell-to-cell transferable by EVs. We demonstrate that Nef depletes IFITM1-3 from EVs by excluding these proteins from the plasma membrane and lipid rafts, which are sites of EVs biogenesis in T cells. Our data establish Nef as a modulator of EVs' global protein content and as an HIV factor that antagonizes IFITMs.
Collapse
Affiliation(s)
- Mara E da Silva-Januário
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cristina S da Costa
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas A Tavares
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana K Oliveira
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | - Yunan C Januário
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Andreia N de Carvalho
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Murilo H A Cassiano
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Roger L Rodrigues
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Michael E Miller
- Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Soledad Palameta
- Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Clarice W Arns
- Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Eurico Arruda
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Adriana F Paes Leme
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | - Luis L P daSilva
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
26
|
Luciano-Rosario D, Peng H, Gaskins VL, Fonseca JM, Keller NP, Jurick WM. Mining the Penicillium expansum Genome for Virulence Genes: A Functional-Based Approach to Discover Novel Loci Mediating Blue Mold Decay of Apple Fruit. J Fungi (Basel) 2023; 9:1066. [PMID: 37998873 PMCID: PMC10672711 DOI: 10.3390/jof9111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023] Open
Abstract
Blue mold, a postharvest disease of pome fruits, is caused by the filamentous fungus Penicillium expansum. In addition to the economic losses caused by P. expansum, food safety can be compromised, as this pathogen is mycotoxigenic. In this study, forward and reverse genetic approaches were used to identify genes involved in blue mold infection in apple fruits. For this, we generated a random T-DNA insertional mutant library. A total of 448 transformants were generated and screened for the reduced decay phenotype on apples. Of these mutants, six (T-193, T-275, T-434, T-588, T-625, and T-711) were selected for continued studies and five unique genes were identified of interest. In addition, two deletion mutants (Δt-625 and Δt-588) and a knockdown strain (t-434KD) were generated for three loci. Data show that the ∆t-588 mutant phenocopied the T-DNA insertion mutant and had virulence penalties during apple fruit decay. We hypothesize that this locus encodes a glyoxalase due to bioinformatic predictions, thus contributing to reduced colony diameter when grown in methylglyoxal (MG). This work presents novel members of signaling networks and additional genetic factors that regulate fungal virulence in the blue mold fungus during apple fruit decay.
Collapse
Affiliation(s)
| | - Hui Peng
- Everglades Research and Education Center, Horticultural Sciences Department, University of Florida, Belle Glade, FL 33430, USA;
| | - Verneta L. Gaskins
- Food Quality Laboratory, USDA-ARS, Beltsville, MD 20705, USA; (V.L.G.); (J.M.F.)
| | - Jorge M. Fonseca
- Food Quality Laboratory, USDA-ARS, Beltsville, MD 20705, USA; (V.L.G.); (J.M.F.)
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA;
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| | - Wayne M. Jurick
- Food Quality Laboratory, USDA-ARS, Beltsville, MD 20705, USA; (V.L.G.); (J.M.F.)
| |
Collapse
|
27
|
Saettini F, Guerra F, Fazio G, Bugarin C, McMillan HJ, Ohtake A, Ardissone A, Itoh M, Giglio S, Cappuccio G, Giardino G, Romano R, Quadri M, Gasperini S, Moratto D, Chiarini M, Akira I, Fukuhara Y, Hayakawa I, Okazaki Y, Mauri M, Piazza R, Cazzaniga G, Biondi A. Antibody Deficiency in Patients with Biallelic KARS1 Mutations. J Clin Immunol 2023; 43:2115-2125. [PMID: 37770806 DOI: 10.1007/s10875-023-01584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
Biallelic KARS1 mutations cause KARS-related diseases, a rare syndromic condition encompassing central and peripheral nervous system impairment, heart and liver disease, and deafness. KARS1 encodes the t-RNA synthase of lysine, an aminoacyl-tRNA synthetase, involved in different physiological mechanisms (such as angiogenesis, post-translational modifications, translation initiation, autophagy and mitochondrial function). Although patients with immune-hematological abnormalities have been individually described, results have not been collectively discussed and functional studies investigating how KARS1 mutations affect B cells have not been performed. Here, we describe one patient with severe developmental delay, sensoneurinal deafness, acute disseminated encephalomyelitis, hypogammaglobulinemia and recurrent infections. Pathogenic biallelic KARS1 variants (Phe291Val/ Pro499Leu) were associated with impaired B cell metabolism (decreased mitochondrial numbers and activity). All published cases of KARS-related diseases were identified. The corresponding authors and researchers involved in the diagnosis of inborn errors of immunity or genetic syndromes were contacted to obtain up-to-date clinical and immunological information. Seventeen patients with KARS-related diseases were identified. Recurrent/severe infections (9/17) and B cell abnormalities (either B cell lymphopenia [3/9], hypogammaglobulinemia [either IgG, IgA or IgM; 6/15] or impaired vaccine responses [4/7]) were frequently reported. Immunoglobulin replacement therapy was given in five patients. Full immunological assessment is warranted in these patients, who may require detailed investigation and specific supportive treatment.
Collapse
Affiliation(s)
- Francesco Saettini
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy.
| | - Fabiola Guerra
- Pediatria, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Dipartimento Di Medicina E Chirurgia, Università Degli Studi Milano-Bicocca, Milan, Italy
| | - Grazia Fazio
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Cristina Bugarin
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Hugh J McMillan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Akira Ohtake
- Department of Clinical Genomics & Pediatrics, Saitama Medical University, Moroyama, Saitama, Japan
| | - Anna Ardissone
- Child Neurology, "Fondazione IRCCS IstitutoNeurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Sabrina Giglio
- Unit of Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Gerarda Cappuccio
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University of Naples, Naples, Italy
- Current address: Baylor College of Medicine, Houston, TX, USA
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Manuel Quadri
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Serena Gasperini
- Pediatria, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Daniele Moratto
- Flow Cytometry Unit, Clinical ChemistryLaboratory, ASST Spedali Civili, Brescia, Italy
| | - Marco Chiarini
- Flow Cytometry Unit, Clinical ChemistryLaboratory, ASST Spedali Civili, Brescia, Italy
| | - Ishiguro Akira
- Center for Postgraduate Education and Training, National Center for Child Health and Development (NCCHD), Tokyo, Japan
- Division of Hematology, National Center for Child Health and Development (NCCHD), Tokyo, Japan
| | - Yasuyuki Fukuhara
- Division of Medical Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Itaru Hayakawa
- Division of Neurology, National Center for Child Health and Development (NCCHD), Tokyo, Japan
| | - Yasushi Okazaki
- Division of Neurology, National Center for Child Health and Development (NCCHD), Tokyo, Japan
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Mario Mauri
- Dipartimento Di Medicina E Chirurgia, Università Degli Studi Milano-Bicocca, Milan, Italy
| | - Rocco Piazza
- Ematologia, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Gianni Cazzaniga
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Dipartimento Di Medicina E Chirurgia, Università Degli Studi Milano-Bicocca, Milan, Italy
| | - Andrea Biondi
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Pediatria, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Dipartimento Di Medicina E Chirurgia, Università Degli Studi Milano-Bicocca, Milan, Italy
| |
Collapse
|
28
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
29
|
Kimura A, Takagi T, Thamamongood T, Sakamoto S, Ito T, Seki I, Okamoto M, Aono H, Serada S, Naka T, Imataka H, Miyake K, Ueda T, Miyanokoshi M, Wakasugi K, Iwamoto N, Ohmagari N, Iguchi T, Nitta T, Takayanagi H, Yamashita H, Kaneko H, Tsuchiya H, Fujio K, Handa H, Suzuki H. Extracellular aaRSs drive autoimmune and inflammatory responses in rheumatoid arthritis via the release of cytokines and PAD4. Ann Rheum Dis 2023; 82:1153-1161. [PMID: 37400117 DOI: 10.1136/ard-2023-224055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/23/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVES Recent studies demonstrate that extracellular-released aminoacyl-tRNA synthetases (aaRSs) play unique roles in immune responses and diseases. This study aimed to understand the role of extracellular aaRSs in the pathogenesis of rheumatoid arthritis (RA). METHODS Primary macrophages and fibroblast-like synoviocytes were cultured with aaRSs. aaRS-induced cytokine production including IL-6 and TNF-α was detected by ELISA. Transcriptomic features of aaRS-stimulated macrophages were examined using RNA-sequencing. Serum and synovial fluid (SF) aaRS levels in patients with RA were assessed using ELISA. Peptidyl arginine deiminase (PAD) 4 release from macrophages stimulated with aaRSs was detected by ELISA. Citrullination of aaRSs by themselves was examined by immunoprecipitation and western blotting. Furthermore, aaRS inhibitory peptides were used for inhibition of arthritis in two mouse RA models, collagen-induced arthritis and collagen antibody-induced arthritis. RESULTS All 20 aaRSs functioned as alarmin; they induced pro-inflammatory cytokines through the CD14-MD2-TLR4 axis. Stimulation of macrophages with aaRSs displayed persistent innate inflammatory responses. Serum and SF levels of many aaRSs increased in patients with RA compared with control subjects. Furthermore, aaRSs released PAD4 from living macrophages, leading to their citrullination. We demonstrate that aaRS inhibitory peptides suppress cytokine production and PAD4 release by aaRSs and alleviate arthritic symptoms in a mouse RA model. CONCLUSIONS Our findings uncovered the significant role of aaRSs as a novel alarmin in RA pathogenesis, indicating that their blocking agents are potent antirheumatic drugs.
Collapse
Affiliation(s)
- Akihiro Kimura
- Dep of Immunology and Pathology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Takeshi Takagi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Thiprampai Thamamongood
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Satoshi Sakamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Takumi Ito
- Center for Future Medical Research, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Iwao Seki
- Research and Development Department, AYUMI Pharmaceutical Corporation, Chuo-ku, Tokyo, Japan
| | - Masahiro Okamoto
- Research and Development Department, AYUMI Pharmaceutical Corporation, Chuo-ku, Tokyo, Japan
| | - Hiroyuki Aono
- Research and Development Department, AYUMI Pharmaceutical Corporation, Chuo-ku, Tokyo, Japan
| | - Satoshi Serada
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Morioka, Iwate, Japan
| | - Tetsuji Naka
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Morioka, Iwate, Japan
| | - Hiroaki Imataka
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Takuya Ueda
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Miki Miyanokoshi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Keisuke Wakasugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Noriko Iwamoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takahiro Iguchi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Yamashita
- Division of Rheumatic Diseases, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Kaneko
- Division of Rheumatic Diseases, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Haruka Tsuchiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Handa
- Center for Future Medical Research, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Harumi Suzuki
- Dep of Immunology and Pathology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| |
Collapse
|
30
|
Rodríguez-Muguruza S, Altuna-Coy A, Arreaza-Gil V, Mendieta-Homs M, Castro-Oreiro S, Poveda-Elices MJ, del Castillo-Piñol N, Fontova-Garrofé R, Chacón MR. A serum metabolic biomarker panel for early rheumatoid arthritis. Front Immunol 2023; 14:1253913. [PMID: 37720214 PMCID: PMC10502709 DOI: 10.3389/fimmu.2023.1253913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Objective There is an urgent need for novel biomarkers to improve the early diagnosis of rheumatoid arthritis (ERA). Current serum biomarkers used in the management of ERA, including rheumatoid factor and anti-cyclic citrullinated peptide (ACPA), show limited specificity and sensitivity. Here, we used metabolomics to uncover new serum biomarkers of ERA. Methods We applied an untargeted metabolomics approach including gas chromatography time-of-flight mass spectrometry in serum samples from an ERA cohort (n=32) and healthy controls (n=19). Metabolite set enrichment analysis was performed to explore potentially important biological pathways. Partial least squares discriminant analysis and variable importance in projection analysis were performed to construct an ERA biomarker panel. Results Significant differences in the content of 11/81 serum metabolites were identified in patients with ERA. Receiver operating characteristic (ROC) analysis showed that a panel of only three metabolites (glyceric acid, lactic acid, and 3-hydroxisovaleric acid) could correctly classify 96.7% of patients with ERA, with an area under the ROC curve of 0.963 and with 94.4% specificity and 93.5% sensitivity, outperforming ACPA-based diagnosis by 2.9% and, thus, improving the preclinical detection of ERA. Aminoacyl-tRNA biosynthesis and serine, glycine, and phenylalanine metabolism were the most significant dysregulated pathways in patients with ERA. Conclusion A metabolomics serum-based biomarker panel composed of glyceric acid, lactic acid, and 3-hydroxisovaleric acid offers potential for the early clinical diagnosis of RA.
Collapse
Affiliation(s)
- Samantha Rodríguez-Muguruza
- Disease Biomarkers and Molecular Mechanisms Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
- Rheumatology Department, Joan XXIII University Hospital, Tarragona, Spain
| | - Antonio Altuna-Coy
- Disease Biomarkers and Molecular Mechanisms Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | - Verónica Arreaza-Gil
- Disease Biomarkers and Molecular Mechanisms Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | - Marina Mendieta-Homs
- Disease Biomarkers and Molecular Mechanisms Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | | | | | | | - Ramon Fontova-Garrofé
- Disease Biomarkers and Molecular Mechanisms Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
- Rheumatology Department, Joan XXIII University Hospital, Tarragona, Spain
| | - Matilde R. Chacón
- Disease Biomarkers and Molecular Mechanisms Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
31
|
Castillo KD, Chapa ED, Lamb TM, Gangopadhyay M, Bell-Pedersen D. Circadian clock control of tRNA synthetases in Neurospora crassa. F1000Res 2023; 11:1556. [PMID: 37841830 PMCID: PMC10576190 DOI: 10.12688/f1000research.125351.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/17/2023] Open
Abstract
Background: In Neurospora crassa, the circadian clock controls rhythmic mRNA translation initiation through regulation of the eIF2α kinase CPC-3 (the homolog of yeast and mammalian GCN2). Active CPC-3 phosphorylates and inactivates eIF2α, leading to higher phosphorylated eIF2α (P-eIF2α) levels and reduced translation initiation during the subjective day. This daytime activation of CPC-3 is driven by its binding to uncharged tRNA, and uncharged tRNA levels peak during the day under control of the circadian clock. The daily rhythm in uncharged tRNA levels could arise from rhythmic amino acid levels or aminoacyl-tRNA synthetase (aaRSs) levels. Methods: To determine if and how the clock potentially controls rhythms in aspartyl-tRNA synthetase (AspRS) and glutaminyl-tRNA synthetase (GlnRS), both observed to be rhythmic in circadian genomic datasets, transcriptional and translational fusions to luciferase were generated. These luciferase reporter fusions were examined in wild type (WT), clock mutant Δ frq, and clock-controlled transcription factor deletion strains. Results: Translational and transcriptional fusions of AspRS and GlnRS to luciferase confirmed that their protein levels are clock-controlled with peak levels at night. Moreover, clock-controlled transcription factors NCU00275 and ADV-1 drive robust rhythmic protein expression of AspRS and GlnRS, respectively. Conclusions: These data support a model whereby coordinate clock control of select aaRSs drives rhythms in uncharged tRNAs, leading to rhythmic CPC-3 activation, and rhythms in translation of specific mRNAs.
Collapse
Affiliation(s)
- Kathrina D. Castillo
- Biology, Texas A&M University, College Station, TX, 77843, USA
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Emily D. Chapa
- Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Teresa M. Lamb
- Biology, Texas A&M University, College Station, TX, 77843, USA
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Madhusree Gangopadhyay
- Biology, Texas A&M University, College Station, TX, 77843, USA
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Deborah Bell-Pedersen
- Biology, Texas A&M University, College Station, TX, 77843, USA
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
32
|
Xu K, Saaoud F, Shao Y, Lu Y, Wu S, Zhao H, Chen K, Vazquez-Padron R, Jiang X, Wang H, Yang X. Early hyperlipidemia triggers metabolomic reprogramming with increased SAH, increased acetyl-CoA-cholesterol synthesis, and decreased glycolysis. Redox Biol 2023; 64:102771. [PMID: 37364513 PMCID: PMC10310484 DOI: 10.1016/j.redox.2023.102771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
To identify metabolomic reprogramming in early hyperlipidemia, unbiased metabolome was screened in four tissues from ApoE-/- mice fed with high fat diet (HFD) for 3 weeks. 30, 122, 67, and 97 metabolites in the aorta, heart, liver, and plasma, respectively, were upregulated. 9 upregulated metabolites were uremic toxins, and 13 metabolites, including palmitate, promoted a trained immunity with increased syntheses of acetyl-CoA and cholesterol, increased S-adenosylhomocysteine (SAH) and hypomethylation and decreased glycolysis. The cross-omics analysis found upregulation of 11 metabolite synthetases in ApoE‾/‾ aorta, which promote ROS, cholesterol biosynthesis, and inflammation. Statistical correlation of 12 upregulated metabolites with 37 gene upregulations in ApoE‾/‾ aorta indicated 9 upregulated new metabolites to be proatherogenic. Antioxidant transcription factor NRF2-/- transcriptome analysis indicated that NRF2 suppresses trained immunity-metabolomic reprogramming. Our results have provided novel insights on metabolomic reprogramming in multiple tissues in early hyperlipidemia oriented toward three co-existed new types of trained immunity.
Collapse
Affiliation(s)
- Keman Xu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ying Shao
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yifan Lu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Sheng Wu
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Medical Education and Data Science, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Kaifu Chen
- Computational Biology Program, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33125, USA
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
33
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Dominant aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182845. [PMID: 37274211 PMCID: PMC10234151 DOI: 10.3389/fnins.2023.1182845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 06/06/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) play an essential role in protein synthesis, being responsible for ligating tRNA molecules to their corresponding amino acids in a reaction known as 'tRNA aminoacylation'. Separate ARSs carry out the aminoacylation reaction in the cytosol and in mitochondria, and mutations in almost all ARS genes cause pathophysiology most evident in the nervous system. Dominant mutations in multiple cytosolic ARSs have been linked to forms of peripheral neuropathy including Charcot-Marie-Tooth disease, distal hereditary motor neuropathy, and spinal muscular atrophy. This review provides an overview of approaches that have been employed to model each of these diseases in vivo, followed by a discussion of the existing animal models of dominant ARS disorders and key mechanistic insights that they have provided. In summary, ARS disease models have demonstrated that loss of canonical ARS function alone cannot fully account for the observed disease phenotypes, and that pathogenic ARS variants cause developmental defects within the peripheral nervous system, despite a typically later onset of disease in humans. In addition, aberrant interactions between mutant ARSs and other proteins have been shown to contribute to the disease phenotypes. These findings provide a strong foundation for future research into this group of diseases, providing methodological guidance for studies on ARS disorders that currently lack in vivo models, as well as identifying candidate therapeutic targets.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
34
|
Ng TA, Rashid S, Kwoh CK. Virulence network of interacting domains of influenza a and mouse proteins. FRONTIERS IN BIOINFORMATICS 2023; 3:1123993. [PMID: 36875146 PMCID: PMC9982101 DOI: 10.3389/fbinf.2023.1123993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
There exist several databases that provide virus-host protein interactions. While most provide curated records of interacting virus-host protein pairs, information on the strain-specific virulence factors or protein domains involved, is lacking. Some databases offer incomplete coverage of influenza strains because of the need to sift through vast amounts of literature (including those of major viruses including HIV and Dengue, besides others). None have offered complete, strain specific protein-protein interaction records for the influenza A group of viruses. In this paper, we present a comprehensive network of predicted domain-domain interaction(s) (DDI) between influenza A virus (IAV) and mouse host proteins, that will allow the systematic study of disease factors by taking the virulence information (lethal dose) into account. From a previously published dataset of lethal dose studies of IAV infection in mice, we constructed an interacting domain network of mouse and viral protein domains as nodes with weighted edges. The edges were scored with the Domain Interaction Statistical Potential (DISPOT) to indicate putative DDI. The virulence network can be easily navigated via a web browser, with the associated virulence information (LD50 values) prominently displayed. The network will aid influenza A disease modeling by providing strain-specific virulence levels with interacting protein domains. It can possibly contribute to computational methods for uncovering influenza infection mechanisms mediated through protein domain interactions between viral and host proteins. It is available at https://iav-ppi.onrender.com/home.
Collapse
Affiliation(s)
| | | | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
35
|
Haj AK, Hasan H, Raife TJ. Heritability of Protein and Metabolite Biomarkers Associated with COVID-19 Severity: A Metabolomics and Proteomics Analysis. Biomolecules 2022; 13:46. [PMID: 36671431 PMCID: PMC9855380 DOI: 10.3390/biom13010046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Prior studies have characterized protein and metabolite changes associated with SARS-CoV-2 infection; we hypothesized that these biomarkers may be part of heritable metabolic pathways in erythrocytes. METHODS Using a twin study of erythrocyte protein and metabolite levels, we describe the heritability of, and correlations among, previously identified biomarkers that correlate with COVID-19 severity. We used gene ontology and pathway enrichment analysis tools to identify pathways and biological processes enriched among these biomarkers. RESULTS Many COVID-19 biomarkers are highly heritable in erythrocytes. Among heritable metabolites downregulated in COVID-19, metabolites involved in amino acid metabolism and biosynthesis are enriched. Specific amino acid metabolism pathways (valine, leucine, and isoleucine biosynthesis; glycine, serine, and threonine metabolism; and arginine biosynthesis) are heritable in erythrocytes. CONCLUSIONS Metabolic pathways downregulated in COVID-19, particularly amino acid biosynthesis and metabolism pathways, are heritable in erythrocytes. This finding suggests that a component of the variation in COVID-19 severity may be the result of phenotypic variation in heritable metabolic pathways; future studies will be necessary to determine whether individual variation in amino acid metabolism pathways correlates with heritable outcomes of COVID-19.
Collapse
Affiliation(s)
| | | | - Thomas J. Raife
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 3170 UW Medical Foundation Centennial Building (MFCB), Madison, WI 53705-2281, USA
| |
Collapse
|
36
|
Lee WJ, Ryu S, Kang AN, Song M, Shin M, Oh S, Kim Y. Molecular characterization of gut microbiome in weaning pigs supplemented with multi-strain probiotics using metagenomic, culturomic, and metabolomic approaches. Anim Microbiome 2022; 4:60. [PMID: 36434671 PMCID: PMC9700986 DOI: 10.1186/s42523-022-00212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Probiotics have been reported to exhibit positive effects on host health, including improved intestinal barrier function, preventing pathogenic infection, and promoting nutrient digestion efficiency. These internal changes are reflected to the fecal microbiota composition and, bacterial metabolites production. In accordance, the application of probiotics has been broadened to industrial animals, including swine, which makes people to pursue better knowledge of the correlation between changes in the fecal microbiota and metabolites. Therefore, this study evaluated the effect of multi-strain probiotics (MSP) supplementation to piglets utilizing multiomics analytical approaches including metagenomics, culturomics, and metabolomics. RESULTS Six-week-old piglets were supplemented with MSP composed of Lactobacillus isolated from the feces of healthy piglets. To examine the effect of MSP supplement, piglets of the same age were selected and divided into two groups; one with MSP supplement (MSP group) and the other one without MSP supplement (Control group). MSP feeding altered the composition of the fecal microbiota, as demonstrated by metagenomics analysis. The abundance of commensal Lactobacillus was increased by 2.39%, while Clostridium was decreased, which revealed the similar pattern to the culturomic approach. Next, we investigated the microbial metabolite profiles, specifically SCFAs using HPLC-MS/MS and others using GC-MS, respectively. MSP supplement elevated the abundance of amino acids, including valine, isoleucine and proline as well as the concentration of acetic acid. According to the correlation analyses, these alterations were found out to be crucial in energy synthesizing metabolism, such as branched-chain amino acid (BCAA) metabolism and coenzyme A biosynthesis. Furthermore, we isolated commensal Lactobacillus strains enriched by MSP supplement, and analyzed the metabolites and evaluated the functional improvement, related to tight junction from intestinal porcine enterocyte cell line (IPEC-J2). CONCLUSIONS In conclusion, MSP administration to piglets altered their fecal microbiota, by enriching commensal Lactobacillus strains. This change contributed amino acid, acetic acid, and BCAA concentrations to be increased, and energy metabolism pathway was also increased at in vivo and in vitro. These changes produced by MSP supplement suggests the correlation between the various physiological energy metabolism functions induced by health-promoting Lactobacillus and the growth performance of piglets.
Collapse
Affiliation(s)
- Woong Ji Lee
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826 Korea
| | - Sangdon Ryu
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826 Korea
| | - An Na Kang
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826 Korea
| | - Minho Song
- grid.254230.20000 0001 0722 6377Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134 Korea
| | - Minhye Shin
- grid.202119.90000 0001 2364 8385Department of Microbiology, College of Medicine, Inha University, Incheon, 22212 Korea
| | - Sangnam Oh
- grid.411845.d0000 0000 8598 5806Department of Functional Food and Biotechnology, Jeonju University, Jeonju, 55069 Korea
| | - Younghoon Kim
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
37
|
Evaluation of the metabolomic profile through 1H-NMR spectroscopy in ewes affected by postpartum hyperketonemia. Sci Rep 2022; 12:16463. [PMID: 36183000 PMCID: PMC9526738 DOI: 10.1038/s41598-022-20371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Ketosis is one of the most important health problems in dairy sheep. The aim of this study was to evaluate the metabolic alterations in hyperketonemic (HYK) ewes. Forty-six adult Sardinian ewes were enrolled between 7 ± 3 days post-partum. Blood samples were collected from the jugular vein using Venosafe tubes containing clot activator from jugular vein after clinical examination. The concentration of β-hydroxybutyrate (BHB) was determined in serum and used to divide ewes into assign ewes into: Non-HYK (serum BHB < 0.80 mmol/L) and HYK (serum BHB ≥ 0.80 mmol/L) groups. Animal data and biochemical parameters of groups were examined with one-way ANOVA, and metabolite differences were tested using a t-test. A robust principal component analysis model and a heatmap were used to highlight common trends among metabolites. Over-representation analysis was performed to investigate metabolic pathways potentially altered in connection with BHB alterations. The metabolomic analysis identified 54 metabolites with 14 different between groups. These metabolites indicate altered ruminal microbial populations and fermentations; an interruption of the tricarboxylic acid cycle; initial lack of glucogenic substrates; mobilization of body reserves; the potential alteration of electron transport chain; influence on urea synthesis; alteration of nervous system, inflammatory response, and immune cell function.
Collapse
|
38
|
Jiang Y, You J, Wu C, Kang Y, Chen F, Chen L, Wu W. High expression of DARS2 indicates poor prognosis in lung adenocarcinoma. J Clin Lab Anal 2022; 36:e24691. [PMID: 36085578 PMCID: PMC9550967 DOI: 10.1002/jcla.24691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 01/25/2023] Open
Abstract
Background DARS2 was overexpressed in multiple tumor types, but the biological role of DARS2 in lung adenocarcinoma (LUAD) have not been elucidated. Methods Firstly, the DARS2 expression in LUAD was explored using The Cancer Genome Atlas (TCGA). Then, qRT‐PCR and Western blot were performed to confirm DARS2 expression in LUAD. Next, Cox regression and Kaplan–Meier methods were utilized to evaluate whether DARS2 expression can affect the overall survival. The relationships between DARS2 expression and clinicopathological characteristics were investigated by TCGA database. Moreover, we utilized Gene Set Enrichment Analysis (GSEA) to detect DARS2‐related signaling pathways in LUAD. Finally, the special function of DARS2 in cell proliferation, invasion and apoptosis was assessed in vitro. Results The higher expression of DARS2 was found in LUAD compared to para‐carcinoma tissues and significantly related to tumor stage, T stage, and M stage. The survival analysis indicated that DARS2 overexpression was related to poor prognosis in LUAD. Multivariate analysis suggested that DARS2 expression was a prognostic indicator. GSEA revealed that DARS2 was primarily involved in cell cycle‐related pathways. In addition, upregulation of DARS2 facilitated LUAD cell proliferation, migration, invasion and inhabited apoptosis, DARS2 knockdown showed an opposite result. Conclusion DARS2 modulates the proliferation, invasion and apoptosis of LUAD cells, and sever as a promising therapeutic target for LUAD.
Collapse
Affiliation(s)
- Yingfeng Jiang
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jianbin You
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chuncai Wu
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Yanli Kang
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Falin Chen
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Liangyuan Chen
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wenbing Wu
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
39
|
Wusiman W, Zhang Z, Ding Q, Liu M. The pathophyiological role of aminoacyl-tRNA synthetases in digestive system diseases. Front Physiol 2022; 13:935576. [PMID: 36017335 PMCID: PMC9396140 DOI: 10.3389/fphys.2022.935576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) catalyze the ligation of amino acids to their cognate transfer RNAs and are indispensable enzymes for protein biosynthesis in all the cells. Previously, ARSs were considered simply as housekeeping enzymes, however, they are now known to be involved in a variety of physiological and pathological processes, such as tumorigenesis, angiogenesis, and immune response. In this review, we summarize the role of ARSs in the digestive system, including the esophagus, stomach, small intestine, colon, as well as the auxiliary organs such as the pancreas, liver, and the gallbladder. Furthermore, we specifically focus on the diagnostic and prognostic value of ARSs in cancers, aiming to provide new insights into the pathophysiological implications of ARSs in tumorigenesis.
Collapse
Affiliation(s)
- Wugelanmu Wusiman
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Ding
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Mei Liu,
| |
Collapse
|
40
|
Pinto D, Calabrese FM, De Angelis M, Celano G, Giuliani G, Rinaldi F. Lichen Planopilaris: The first biopsy layer microbiota inspection. PLoS One 2022; 17:e0269933. [PMID: 35849580 PMCID: PMC9292073 DOI: 10.1371/journal.pone.0269933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Lichen Planopilaris (LPP) is a lymphatic disease affecting the scalp that is characterized by a chronic and destructive inflammation process, named as ‘cicatricial alopecia’ in which the hair follicles are targeted and may involve predominantly lymphocytes or neutrophils. Scalp and biopsy layers have never been used to investigate microbial community composition and its relative taxa abundances in LPP. We sought to examine the significant taxa of this chronic relapsing inflammatory skin disease, together with inspect the existing connections with metabolic pathways featuring this microbial community. We used a multilevel analysis based on 16S rRNA marker sequencing in order to detect OTU abundances in pathologic/healthy samples, real time PCR for measuring the levels of IL-23 interleukin expression and urinary metabolomics to find out volatile organic metabolites (VOMs). By using a linear regression model, we described peculiar taxa that significantly differentiated LPP and healthy samples. We inspected taxa abundances and interleukin mRNA levels and the Microbacteriaceae family resulted negatively correlated with the IL-23 expression. Moreover, starting from 16S taxa abundances, we predicted the metabolic pathways featuring this microbial community. By inspecting microbial composition, sample richness, metabolomics profiles and the relative metabolic pathways in a cohort of LPP and healthy samples we deepened the contribution of significant taxa that are connected to inflammation maintenance and microbiota plasticity in LPP pathology.
Collapse
Affiliation(s)
- Daniela Pinto
- Human Advanced Microbiome Project-HMAP, Milan, Italy
- * E-mail: (DP); (FMC)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Science, “Aldo Moro” University, Bari, Bari, Italy
- * E-mail: (DP); (FMC)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, “Aldo Moro” University, Bari, Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, “Aldo Moro” University, Bari, Bari, Italy
| | | | - Fabio Rinaldi
- Human Advanced Microbiome Project-HMAP, Milan, Italy
| |
Collapse
|
41
|
The Aminoacyl-tRNA Synthetase and tRNA Expression Levels Are Deregulated in Cancer and Correlate Independently with Patient Survival. Curr Issues Mol Biol 2022; 44:3001-3017. [PMID: 35877431 PMCID: PMC9324904 DOI: 10.3390/cimb44070207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that load amino acids to their cognate tRNA molecules. The expression of certain ARSs and tRNAs has been shown to be deregulated in cancer, presumably to accommodate elevated protein synthesis requirements. In this work, the expression of cytoplasmic ARSs and tRNAs in ten TCGA cancers has been systematically examined. ARSs were found to be mostly upregulated in tumours and their upregulation often correlated with worse patient survival. tRNAs were found to be either upregulated or downregulated in tumours and their expression sometimes correlated to worse survival outcomes. However, although the expression of most ARSs and tRNAs was deregulated in tumours when compared to healthy adjacent tissues, only in a few cases, and independently, did it correlate to patient survival. These data point to the general uncoupling of concomitant ARS and tRNA expression deregulation and patient survival, highlighting the different ARS and tRNA requirements in cancers.
Collapse
|
42
|
Ceballos FC, Virseda-Berdices A, Resino S, Ryan P, Martínez-González O, Peréz-García F, Martin-Vicente M, Brochado-Kith O, Blancas R, Bartolome-Sánchez S, Vidal-Alcántara EJ, Albóniga-Díez OE, Cuadros-González J, Blanca-López N, Martínez I, Martinez-Acitores IR, Barbas C, Fernández-Rodríguez A, Jiménez-Sousa MÁ. Metabolic Profiling at COVID-19 Onset Shows Disease Severity and Sex-Specific Dysregulation. Front Immunol 2022; 13:925558. [PMID: 35844615 PMCID: PMC9280146 DOI: 10.3389/fimmu.2022.925558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Backgroundmetabolic changes through SARS-CoV-2 infection has been reported but not fully comprehended. This metabolic dysregulation affects multiple organs during COVID-19 and its early detection can be used as a prognosis marker of severity. Therefore, we aimed to characterize metabolic and cytokine profile at COVID-19 onset and its relationship with disease severity to identify metabolic profiles predicting disease progression.Material and Methodswe performed a retrospective cross-sectional study in 123 COVID-19 patients which were stratified as asymptomatic/mild, moderate and severe according to the highest COVID-19 severity status, and a group of healthy controls. We performed an untargeted plasma metabolic profiling (gas chromatography and capillary electrophoresis-mass spectrometry (GC and CE-MS)) and cytokine evaluation.ResultsAfter data filtering and identification we observed 105 metabolites dysregulated (66 GC-MS and 40 CE-MS) which shown different expression patterns for each COVID-19 severity status. These metabolites belonged to different metabolic pathways including amino acid, energy, and nitrogen metabolism among others. Severity-specific metabolic dysregulation was observed, as an increased transformation of L-tryptophan into L-kynurenine. Thus, metabolic profiling at hospital admission differentiate between severe and moderate patients in the later phase of worse evolution. Several plasma pro-inflammatory biomarkers showed significant correlation with deregulated metabolites, specially with L-kynurenine and L-tryptophan. Finally, we describe a strong sex-related dysregulation of metabolites, cytokines and chemokines between severe and moderate patients. In conclusion, metabolic profiling of COVID-19 patients at disease onset is a powerful tool to unravel the SARS-CoV-2 molecular pathogenesis.ConclusionsThis technique makes it possible to identify metabolic phenoconversion that predicts disease progression and explains the pronounced pathogenesis differences between sexes.
Collapse
Affiliation(s)
- Francisco C. Ceballos
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Ana Virseda-Berdices
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Salvador Resino
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Ryan
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Oscar Martínez-González
- Critical Care Department, Hospital Universitario del Tajo, Aranjuez, Spain
- Universidad Alfonso X el Sabio, Villanueva de la Cañada, Madrid, Spain
| | - Felipe Peréz-García
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
- Department of Biomedicine and Biotecnology, Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, Spain
| | - María Martin-Vicente
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Brochado-Kith
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Blancas
- Critical Care Department, Hospital Universitario del Tajo, Aranjuez, Spain
- Universidad Alfonso X el Sabio, Villanueva de la Cañada, Madrid, Spain
| | - Sofía Bartolome-Sánchez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Erick Joan Vidal-Alcántara
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Oihane Elena Albóniga-Díez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Juan Cuadros-González
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
- Department of Biomedicine and Biotecnology, Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, Spain
| | | | - Isidoro Martínez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Amanda Fernández-Rodríguez, ; María Ángeles Jiménez-Sousa,
| | - María Ángeles Jiménez-Sousa
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Amanda Fernández-Rodríguez, ; María Ángeles Jiménez-Sousa,
| |
Collapse
|
43
|
An Equine Model for Vaccination against a Hepacivirus: Insights into Host Responses to E2 Recombinant Protein Vaccination and Subsequent Equine Hepacivirus Inoculation. Viruses 2022; 14:v14071401. [PMID: 35891381 PMCID: PMC9318657 DOI: 10.3390/v14071401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 12/10/2022] Open
Abstract
Equine hepacivirus (EqHV) is the closest known genetic homologue of hepatitis C virus. An effective prophylactic vaccine is currently not available for either of these hepaciviruses. The equine as potential surrogate model for hepacivirus vaccine studies was investigated, while equine host responses following vaccination with EqHV E2 recombinant protein and subsequent EqHV inoculation were elucidated. Four ponies received prime and booster vaccinations (recombinant protein, adjuvant) four weeks apart (day −55 and −27). Two control ponies received adjuvant only. Ponies were inoculated with EqHV RNA-positive plasma on day 0. Blood samples and liver biopsies were collected over 26 weeks (day −70 to +112). Serum analyses included detection of EqHV RNA, isotypes of E2-specific immunoglobulin G (IgG), nonstructural protein 3-specific IgG, haematology, serum biochemistry, and metabolomics. Liver tissue analyses included EqHV RNA detection, RNA sequencing, histopathology, immunohistochemistry, and fluorescent in situ hybridization. Al-though vaccination did not result in complete protective immunity against experimental EqHV inoculation, the majority of vaccinated ponies cleared the serum EqHV RNA earlier than the control ponies. The majority of vaccinated ponies appeared to recover from the EqHV-associated liver insult earlier than the control ponies. The equine model shows promise as a surrogate model for future hepacivirus vaccine research.
Collapse
|
44
|
Bae SS, Dong TS, Wang J, Lagishetty V, Katzka W, Jacobs JP, Charles-Schoeman C. Altered Gut Microbiome in Patients With Dermatomyositis. ACR Open Rheumatol 2022; 4:658-670. [PMID: 35615912 PMCID: PMC9374048 DOI: 10.1002/acr2.11436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The study objective was to compare the microbial composition of patients with dermatomyositis (DM) and healthy controls (HCs) and determine whether microbial alterations are associated with clinical manifestations of DM. METHODS The 16S ribosomal RNA gene sequencing was performed on fecal samples from patients with DM and HCs. Microbial composition and diversity were compared between subjects with DM and HCs and in association with several DM-specific clinical variables, including myositis-specific autoantibodies (MSAs). Differentially abundant microbial taxa and genes associated with clinical characteristics were identified, and functional analysis was performed using predicted metagenomics. Dietary intake was assessed using a 24-hour dietary recall. RESULTS The fecal microbiome of 36 patients with DM and 26 HCs were analyzed. Patients with DM trended toward lower microbial diversity compared with HCs. The higher physician global damage score was significantly correlated with the lower microbial diversity in patients with DM. Patients with interstitial lung disease (ILD)-associated MSA (antisynthetase antibody (ab), anti-melanoma differentiation-associated protein 5 ab, n = 12) had significant differences in microbial composition and lower microbial diversity compared with HCs. Differential abundance testing demonstrated a unique taxonomic signature in the ILD-MSA subgroup, and predictive metagenomics identified functional alterations in a number of metabolic pathways. A significant increase in the relative abundance of Proteobacteria was positively correlated with multiple pathways involved in lipopolysaccharide synthesis and transport in the ILD-MSA group. CONCLUSION Patients with DM, particularly with ILD-associated MSAs, have lower microbial diversity and a distinct taxonomic composition compared with HCs. Further studies are needed to validate our findings and elucidate specific pathogenetic mechanisms that link the gut microbiome to clinical and pathological features of DM.
Collapse
Affiliation(s)
| | - Tien S Dong
- David Geffen School of Medicine at University of California, Los Angeles and VA Greater Los Angeles Healthcare System, Los Angeles
| | - Jennifer Wang
- University of California, Los Angeles School of Medicine, Los Angeles
| | - Venu Lagishetty
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles
| | - William Katzka
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles
| | - Jonathan P Jacobs
- David Geffen School of Medicine at University of California, Los Angeles and VA Greater Los Angeles Healthcare System, Los Angeles
| | | |
Collapse
|
45
|
Tang Y, Shah S, Cho KS, Sun X, Chen DF. Metabolomics in Primary Open Angle Glaucoma: A Systematic Review and Meta-Analysis. Front Neurosci 2022; 16:835736. [PMID: 35645711 PMCID: PMC9135181 DOI: 10.3389/fnins.2022.835736] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/15/2022] [Indexed: 01/01/2023] Open
Abstract
Glaucoma is a leading cause of blindness worldwide. It is suggested that primary open angle glaucoma (POAG), the most common form of glaucoma, may be associated with significant metabolic alternations, but the systemic literature review and meta-analysis in the area have been missing. Altered metabolomic profiles in the aqueous humor and plasma may serve as possible biomarkers for early detection or treatment targets. In this article, we performed a systematic meta-analysis of the current literature surrounding the metabolomics of patients with POAG and metabolites associated with the disease. Results suggest several metabolites found to be specifically altered in patients with POAG, suggesting broad generalizability and pathways for future research.
Collapse
Affiliation(s)
- Yizhen Tang
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Simran Shah
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Xinghuai Sun
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Dong Feng Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
- *Correspondence: Dong Feng Chen,
| |
Collapse
|
46
|
Zhu L, Cao Z, Wang S, Zhang C, Fang L, Ren Y, Xie B, Geng J, Xie S, Zhao L, Ma L, Dai H, Wang C. Single-Cell Transcriptomics Reveals Peripheral Immune Responses in Anti-Synthetase Syndrome-Associated Interstitial Lung Disease. Front Immunol 2022; 13:804034. [PMID: 35250976 PMCID: PMC8891123 DOI: 10.3389/fimmu.2022.804034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Interstitial lung diseases (ILDs) secondary to anti-synthetase syndrome (ASS) greatly influence the prognoses of patients with ASS. Here we aimed to investigate the peripheral immune responses to understand the pathogenesis of this condition. METHODS We performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) from 5 patients with ASS-ILD and 3 healthy donors (HDs). Flow cytometry of PBMCs was performed to replenish the results of scRNA-seq. RESULTS We used scRNA-seq to depict a high-resolution visualization of cellular landscape in PBMCs from patients with ASS-ILD. Patients showed upregulated interferon responses among NK cells, monocytes, T cells, and B cells. And the ratio of effector memory CD8 T cells to naïve CD8 T cells was significantly higher in patients than that in HDs. Additionally, Th1, Th2, and Th17 cell differentiation signaling pathways were enriched in T cells. Flow cytometry analyses showed increased proportions of Th17 cells and Th2 cells, and decreased proportion of Th1 cells in patients with ASS-ILD when compared with HDs, evaluated by the expression patterns of chemokine receptors. CONCLUSIONS The scRNA-seq data analyses reveal that ASS-ILD is characterized by upregulated interferon responses, altered CD8 T cell homeostasis, and involvement of differentiation signaling pathways of CD4 T cells. The flow cytometry analyses show that the proportions of Th17 cells and Th2 cells are increased and the proportion of Th1 cells is decreased in patients with ASS-ILD. These findings may provide foundations of novel therapeutic targets for patients with this condition.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhong Cao
- Institute for Artificial Intelligence, Tsinghua University (THUAI), State Key Lab of Intelligent Technologies and Systems, Beijing National Research Center for Information Science and Technology (BNRist), Beijing, China
| | - Shiyao Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Changshui Zhang
- Institute for Artificial Intelligence, Tsinghua University (THUAI), State Key Lab of Intelligent Technologies and Systems, Beijing National Research Center for Information Science and Technology (BNRist), Beijing, China
| | - Lei Fang
- DataCanvas Technology Co., Ltd, Beijing, China
| | - Yanhong Ren
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bingbing Xie
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Geng
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Sheng Xie
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Ling Zhao
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Li Ma
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
47
|
Kang Y, Vijay S, Gujral TS. Deep Neural Network Modeling Identifies Biomarkers of Response to Immune-checkpoint Therapy. iScience 2022; 25:104228. [PMID: 35494249 PMCID: PMC9044175 DOI: 10.1016/j.isci.2022.104228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/18/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
Immunotherapy has shown significant promise as a treatment for cancer, such as lung cancer and melanoma. However, only 10%–30% of the patients respond to treatment with immune checkpoint blockers (ICBs), underscoring the need for biomarkers to predict response to immunotherapy. Here, we developed DeepGeneX, a computational framework that uses advanced deep neural network modeling and feature elimination to reduce single-cell RNA-seq data on ∼26,000 genes to six of the most important genes (CCR7, SELL, GZMB, WARS, GZMH, and LGALS1), that accurately predict response to immunotherapy. We also discovered that the high LGALS1 and WARS-expressing macrophage population represent a biomarker for ICB therapy nonresponders, suggesting that these macrophages may be a target for improving ICB response. Taken together, DeepGeneX enables biomarker discovery and provides an understanding of the molecular basis for the model’s predictions. Predicting biomarkers for immunotherapy response remains a challenge DeepGeneX combines neural networks with single-cell RNAseq to predict responders LGALS1 and WARS-expressing macrophages in nonresponders impact T cell activation DeepGeneX enables biomarker discovery and elucidates underlying molecular mechanism
Collapse
|
48
|
Khan K, Gogonea V, Fox PL. Aminoacyl-tRNA synthetases of the multi-tRNA synthetase complex and their role in tumorigenesis. Transl Oncol 2022; 19:101392. [PMID: 35278792 PMCID: PMC8914993 DOI: 10.1016/j.tranon.2022.101392] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, 20 aminoacyl-tRNA synthetases (AARS) catalyze the ligation of amino acids to their cognate tRNAs to generate aminoacylated-tRNAs. In higher eukaryotes, 9 of the 20 AARSs, along with 3 auxiliary proteins, join to form the cytoplasmic multi-tRNA synthetase complex (MSC). The complex is absent in prokaryotes, but evolutionary expansion of MSC constituents, primarily by addition of novel interacting domains, facilitates formation of subcomplexes that join to establish the holo-MSC. In some cases, environmental cues direct the release of constituents from the MSC which enables the execution of non-canonical, i.e., "moonlighting", functions distinct from their essential activities in protein translation. These activities are generally beneficial, but can also be deleterious to the cell. Elucidation of the non-canonical activities of several AARSs residing in the MSC suggest they are potential therapeutic targets for cancer, as well as metabolic and neurologic diseases. Here, we describe the role of MSC-resident AARSs in cancer progression, and the factors that regulate their release from the MSC. Also, we highlight recent developments in therapeutic modalities that target MSC AARSs for cancer prevention and treatment.
Collapse
Affiliation(s)
- Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, United States of America
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
49
|
Jani J, Pappachan A. A review on quality control agents of protein translation - The role of Trans-editing proteins. Int J Biol Macromol 2022; 199:252-263. [PMID: 34995670 DOI: 10.1016/j.ijbiomac.2021.12.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Translation of RNA to protein is a key feature of cellular life. The fidelity of this process mainly depends on the availability of correctly charged tRNAs. Different domains of tRNA synthetase (aaRS) maintain translation quality by ensuring the proper attachment of particular amino acid with respective tRNA, thus it establishes the rule of genetic code. However occasional errors by aaRS generate mischarged tRNAs, which can become lethal to the cells. Accurate protein synthesis necessitates hydrolysis of mischarged tRNAs. Various cis and trans-editing proteins are identified which recognize these mischarged products and correct them by hydrolysis. Trans-editing proteins are homologs of cis-editing domains of aaRS. The trans-editing proteins work in close association with aaRS, Ef-Tu, and ribosome to prevent global mistranslation and ensures correct charging of tRNA. In this review, we discuss the major trans-editing proteins and compared them with their cis-editing counterparts. We also discuss their structural features, biochemical activity and role in maintaining cellular protein homeostasis.
Collapse
Affiliation(s)
- Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Sector 30, Gandhinagar 382030, Gujarat, India
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Sector 30, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
50
|
Jiang QL, Lu Y, Zhang MJ, Cui ZY, Pei ZM, Li WH, Lu LG, Wang JJ, Lu YY. Mucosal bacterial dysbiosis in patients with nodular lymphoid hyperplasia in the terminal ileum. World J Gastroenterol 2022; 28:811-824. [PMID: 35317097 PMCID: PMC8900573 DOI: 10.3748/wjg.v28.i8.811] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/19/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nodular lymphoid hyperplasia (NLH) in the small intestine is a rare benign lesion characterized by multiple small nodules on the intestinal surface. Patients with terminal ileal NLH may experience long-term abdominal pain, diarrhea, and abdominal distension, among other symptoms. Supplementation with probiotics could mitigate these symptoms. NLH is linked to the immune system, and it may result from accumulation of plasma-cell precursors due to a maturational defect during the development of B lymphocytes. The intestinal microbiome plays an essential role in the immune system. Thus, we speculate that the gut flora plays a key role in terminal ileal NLH.
AIM To explore the correlation between intestinal flora and terminal ileal NLH.
METHODS We collected mucosal biopsy samples that were obtained via colonoscopy from 15 patients with terminal ileal NLH (the test group) and 15 normal subjects (the control group). We subsequently performed 16S-rRNA gene amplicon sequencing of these samples, and the results were evaluated using alpha diversity, beta diversity and microbial composition analyses. The Phylogenetic Investigation of Communities by Reconstruction of Unobserved States was used to predict the metabolic pathways and orthologous groups according to the Kyoto Encyclopedia of Genes and Genomes database.
RESULTS Compared with the control group, the terminal ileal NLH group showed an increased alpha diversity (P < 0.05). The overall intestinal microbiota in the NLH group was significantly different from that of the control group (P < 0.05), implying that there was the dysbiosis in the terminal ileal NLH patients. The relative abundance of phylum Bacteroidetes was significantly lower in the NLH group, while that of Patescibacteria and Campilobacterota was significantly higher. The genus Bacteroides was the dominant gut microbiota in both groups, but its abundance was significantly lower in the test group than it was in the control group. Conversely, the relative abundances of Haemophilus, Streptococcus, Pseudomonas, Actinomyces, TM7X, Fusobacterium nucleatum, Parvimonas, Granulicatella, Helicobacter, and the [Eubacterium] nodatum group were significantly higher in the test group than they were in the control group. In addition, several altered metabolic pathways, orthologous groups, and modules were found. For example, the Peptidoglycan biosynthesis and Aminoacyl tRNA biosynthesis were both increased in the test group.
CONCLUSION Maintaining the microbial balance and supplementing targeted protective bacteria could improve symptoms and potentially reduce the risk of lymphoma transformation in patients with terminal ileal NLH.
Collapse
Affiliation(s)
- Qiao-Li Jiang
- Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
| | - You Lu
- Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
| | - Meng-Jie Zhang
- Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
| | - Zhen-Yu Cui
- Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
| | - Zhong-Mei Pei
- Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
| | - Wen-Hua Li
- Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
| | - Lun-Gen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jing-Jing Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ying-Ying Lu
- Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| |
Collapse
|