1
|
Zheng LY, Zhang NY, Zheng H, Wang KM, Zhang J, Meng N, Jiang CS. Synthesis and biological evaluation of ferrostatin-based diamide derivatives as new ferroptosis inhibitors. Bioorg Med Chem Lett 2024; 113:129974. [PMID: 39332647 DOI: 10.1016/j.bmcl.2024.129974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Ferroptosis, a distinct type of cell death caused by iron and lipid peroxidation, has been associated with several diseases, including cardiovascular disorders. Ferrostatin-1 (Fer-1) is a known ferroptosis inhibitor, but its clinical application is limited by low efficacy and stability. In the present study, a series of Fer-1-based diamide derivatives was synthesized and evaluated to enhance ferroptosis inhibition and in vitro metabolic stability. The synthesized compounds were tested for their protective effects against Erastin-induced injury in human vascular endothelial cells (HUVECs). Among the derivatives, compound 36 exhibited the most potent anti-ferroptosis activity with an EC50 value of 0.58 ± 0.02 µM. Remarkably, compound 36 also demonstrated superior stability in both microsomal (human and mouse) and mouse plasma assays. These findings indicated ferroptosis inhibitor 36 as a promising hit for further developing potential therapeutic drug candidates in cardiovascular diseases.
Collapse
Affiliation(s)
- Lei-Yin Zheng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Nai-Yu Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hui Zheng
- Jinan University Hospital, University of Jinan, Jinan 250022, China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
2
|
Wu SY, Liao EC, Wen YF, Wang YS, Meng H, Chou HC, Chan HL. Exploring the effects of pemetrexed on drug resistance mechanisms in human lung adenocarcinoma and its association with PGRMC1. Chem Biol Interact 2024; 403:111259. [PMID: 39368770 DOI: 10.1016/j.cbi.2024.111259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
According to the 2022 cancer statistics of the World Health Organization, lung cancer ranks among the top ten causes of death, with lung adenocarcinoma being the most prevalent type. Despite significant advancements in lung cancer therapeutics, many clinical limitations remain, primarily due to the development of drug resistance. The present study investigated the effects of pemetrexed on the drug resistance mechanisms in human lung adenocarcinoma and its association with progesterone receptor membrane component 1 (PGRMC1) expression. Given that KRAS-mutant lung adenocarcinoma cell lines (e.g., A549) exhibit a high folate synthesis activity, pemetrexed, which is structurally similar to folate, was selected as the therapeutic drug. The present study used a lung adenocarcinoma cell line (A549) and established a drug-resistant lung adenocarcinoma cell line (A549/PEM). The findings demonstrated that PGRMC1 expression was elevated in the A549/PEM cells. It has been hypothesized that PGRMC1 regulates iron absorption through heme binding, resulting in a preference for iron-related cell death pathways (ferroptosis). Our findings indicate that drug-resistant lung adenocarcinoma cells with high PGRMC1 levels exhibit elevated antioxidant activity on the cell membrane and increased reliance on iron-dependent cell death pathways. This suggests a correlation between PGRMC1 and pemetrexed-induced iron-dependent cell death. Our study contributes to the development of more effective therapeutic strategies to improve the prognosis of patients with lung adenocarcinoma, particularly those facing drug resistance challenges.
Collapse
Affiliation(s)
- Ssu-Yun Wu
- Institute of Bioinformatics and Structural Biology, National TsiFng Hua University, Hsinchu, Taiwan
| | - En-Chi Liao
- Institute of Bioinformatics and Structural Biology, National TsiFng Hua University, Hsinchu, Taiwan
| | - Yueh-Feng Wen
- Institute of Bioinformatics and Structural Biology, National TsiFng Hua University, Hsinchu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan
| | - Yi-Shiuan Wang
- Institute of Bioinformatics and Structural Biology, National TsiFng Hua University, Hsinchu, Taiwan
| | - Han Meng
- Institute of Bioinformatics and Structural Biology, National TsiFng Hua University, Hsinchu, Taiwan
| | - Hsiu-Chuan Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology, National TsiFng Hua University, Hsinchu, Taiwan; Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
3
|
Yoo SY, Kim HY, Kim DH, Shim WS, Lee SM, Lee DH, Koo JM, Yoo JH, Koh S, Park JC, Yu J, Jeon JS, Baek MJ, Kim DD, Lee JY, Oh SJ, Kim SK, Lee JY, Kang KW. Laser-responsive erastin-loaded chondroitin sulfate nanomedicine targeting CD44 and system x c- in liver cancer: A non-ferroptotic approach. J Control Release 2024; 375:574-588. [PMID: 39293529 DOI: 10.1016/j.jconrel.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/23/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Erastin, a ferroptosis-inducing system xc- inhibitor, faces clinical challenges due to suboptimal physicochemical and pharmacokinetic properties, as well as relatively low potency and off-target toxicity. Addressing these, we developed ECINs, a novel laser-responsive erastin-loaded nanomedicine utilizing indocyanine green (ICG)-grafted chondroitin sulfate A (CSA) derivatives. Our aim was to improve erastin's tumor targeting via CSA-CD44 interactions and enhance its antitumor efficacy through ICG's photothermal and photodynamic effects in the laser-on state while minimizing off-target effects in the laser-off state. ECINs, with their nanoscale size of 186.7 ± 1.1 nm and high erastin encapsulation efficiency of 93.0 ± 0.8%, showed excellent colloidal stability and sustained drug release up to 120 h. In vitro, ECINs demonstrated a mechanism of cancer cell inhibition via G1-phase cell cycle arrest, indicating a non-ferroptotic action. In vivo biodistribution studies in SK-HEP-1 xenograft mice revealed that ECINs significantly enhanced tumor distribution of erastin (1.9-fold greater than free erastin) while substantially reducing off-target accumulation in the lungs and spleen by 203-fold and 19.1-fold, respectively. Combined with laser irradiation, ECINs significantly decreased tumor size (2.6-fold, compared to free erastin; 2.4-fold, compared to ECINs without laser irradiation) with minimal systemic toxicity. This study highlights ECINs as a dual-modality approach for liver cancer treatment, demonstrating significant efficacy against tumors overexpressing CD44 and system xc-.
Collapse
Affiliation(s)
- So-Yeol Yoo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Young Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Hyun Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Wan Seob Shim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Min Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Hwan Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jang Mo Koo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji Hoon Yoo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seokjin Koh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Chan Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jieun Yu
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jang Su Jeon
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min-Jun Baek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-Yoon Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Soo Jin Oh
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Pharmacology, College of Medicine, University of Ulsan, Seoul, 05505, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jae-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Zhang YF, Guo W, Zheng H, Zhang NY, Ji HL, Meng N, Zhang J, Jiang CS. Design and Synthesis of 1,4-Diformyl-Piperazine Ferrostatin-1 Derivatives as Novel Ferroptosis Inhibitors. Chem Biol Drug Des 2024; 104:e70000. [PMID: 39468754 DOI: 10.1111/cbdd.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024]
Abstract
The present study focuses on the design and synthesis of novel 1,4-diformyl-piperazine-based ferrostatin-1 (Fer-1) derivatives, and their evaluation against ferroptosis activity. The synthesized compounds demonstrated significant anti-ferroptosis activity in human umbilical vascular endothelial cells (HUVECs), with Compound 24 showing the highest potency. Mechanistic studies revealed that Compound 24 effectively reduced intracellular reactive oxygen species (ROS) levels, mitigated mitochondrial damage, and enhanced glutathione peroxidase 4 (GPX4) expression. Additionally, Compound 24 exhibited improved solubility and plasma stability compared to control compounds, Fer-1 and JHL-12. These findings suggest that 1,4-diformyl-piperazine-based Fer-1 derivatives hold promise as therapeutic agents for ferroptosis-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Wei Guo
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Hui Zheng
- Jinan University Hospital, University of Jinan, Jinan, China
| | - Nai-Yu Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Hua-Long Ji
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
5
|
Qin Y, Lin W, Ren Y. Ferroptosis involvement in the neurotoxicity of flunitrazepam in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107128. [PMID: 39467492 DOI: 10.1016/j.aquatox.2024.107128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
In recent years, psychoactive drugs such as benzodiazepines (BZDs) have been frequently detected in water environments, however, there is still limited understanding regarding their potential impact on neurological health and underlying mechanisms. This study evaluated the neurotoxicity of the typical BZD drug flunitrazepam (FLZ, 0.2 and 5 μg/L) in zebrafish embryos and adults, and investigated the relationship between ferroptosis and FLZ-induced neurotoxicity. The results indicated that acute exposure to FLZ significantly inhibited zebrafish embryo hatching and promotes death, induced larval deformities, and led to abnormal neurobehavioral responses in larvae, likely due to ferroptosis induction. Results from a 30-day subacute exposure to FLZ showed that it decreased motor function and induced cognitive impairment in adult zebrafish. Immunofluorescence of brain tissues revealed a reduction in neurons in the telencephalon and an increase in microglia in the mesencephalon of the zebrafish exposed to FLZ. The ultrastructure of brain mitochondria showed serious damage. Besides, FLZ exposure increased iron levels, reduced GSH/GSSG and increased LPO in brain tissue, which is related to the abnormal expression of genes associated with ferroptosis. In the rescue experiments with co-exposure to deferoxamine (DFO), the motor-related parameters and biochemical indexes related to ferroptosis were restored, suggesting that FLZ can induce ferroptosis. The molecular docking results indicated that FLZ had a higher affinity with transferrin. This study elucidates the close relationship between ferroptosis and FLZ-induced neurotoxicity, which is significant for understanding the physiological damage caused by psychoactive substances and assessing environmental risks.
Collapse
Affiliation(s)
- Yingjun Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, PR China.
| |
Collapse
|
6
|
Chen L, Kong X, Zhou R, Hu J, Zhou R, Song Z, Tang Z, Wang M. Proteomics reveals the pharmacological mechanism of flavonoids from Astragali Complanati Semen in preventing chronic liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155910. [PMID: 39059265 DOI: 10.1016/j.phymed.2024.155910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Total flavonoids from Astragali Complanati Semen (TFACS), the main active ingredients in Astragali Complanati Semen (ACS), have been shown to have a protective effect on chronic liver injury (CLI), but the hepatoprotective targets and signalling pathways involved are unclear. PURPOSE The aim of our study was to identify the anti-CLI targets and signalling pathways of TFACS and to comprehensively elucidate its mechanism of action via proteomics analysis combined with in vivo and in vitro experiments. METHODS A CLI mouse model was generated via intraperitoneal injection of carbon tetrachloride (CCl4) (CCl4: olive oil = 1:4, 2 ml/kg, twice a week for 6 weeks). The hepatoprotective effect of TFACS was assessed by observing the pathological structure of the liver and analysing indicators of liver function. The key pathways and targets related to the hepatoprotective effect of TFACS were identified via 4D-label-free quantitative proteomics technology and further verified via in vivo indicator validation and in vitro cell experiments. RESULTS TFACS administration significantly normalized the histopathological structure and function of the liver, decreased the levels of inflammatory factors and oxidative stress indicators, and reduced the iron staining area and the levels of hepcidin and iron in the liver compared with those in the CLI model. A total of 424 differentially expressed proteins (DEPs) were identified between the TFACS and model groups, and these DEPs were enriched in the focal adhesion, PI3K-Akt, and ferroptosis pathways. Akt1, Pik3ca, NF-κB p65, Itga5, Itgb5, Itga6, Prkca, Fn1, Tfrc, and Vdac3 were identified as key targets of TFACS. TFACS administration significantly reversed the changes in the gene and protein expression of the key targets compared with those in the model group. In addition, TFACS treatment significantly reduced the levels of inflammatory cytokines and inhibited Akt1, NF-κB p65 and FAK activation in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. In an erastin-induced l-O2 ferroptosis cell model, treatment with TFACS normalized the mitochondrial structure, reduced the protein levels of Tfrc and Vdac3, inhibited lipid peroxidation, and reduced the amount of Fe2+ in the mitochondria. CONCLUSION TFACS protected against CLI, and its mechanism of action may be related to inhibition of the focal adhesion, PI3K/Akt and ferroptosis signalling pathways.
Collapse
Affiliation(s)
- Lin Chen
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research, & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712083, PR China
| | - Xin Kong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, PR China
| | - Ruina Zhou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, PR China
| | - Jinhang Hu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research, & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712083, PR China
| | - Rui Zhou
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research, & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712083, PR China
| | - Zhongxing Song
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research, & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712083, PR China
| | - Zhishu Tang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research, & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712083, PR China; Beijing University of Chinese Medicine, Beijing 100700, PR China.
| | - Mei Wang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research, & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712083, PR China; Academic Development Office, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| |
Collapse
|
7
|
Yi JX, Sun ZY, Liu P, Wang YH, Liu H, Lv QY, Kong DC, Huang WH, Ren YH, Li Q, Jiang YQ, Li J, Jiang H. Unveiling the crucial role of ferroptosis in host resistance to streptococcus agalactiae infection. Cell Death Discov 2024; 10:423. [PMID: 39353913 PMCID: PMC11445261 DOI: 10.1038/s41420-024-02189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
IL-1β represents an important inflammatory factor involved in the host response against GBS infection. Prior research has suggested a potential involvement of IL-1β in the process of ferroptosis. However, the relationship between IL-1β and ferroptosis in the context of anti-GBS infection remains uncertain. This research demonstrates that the occurrence of ferroptosis is essential for the host's defense against GBS infection in a mouse model of abdominal infection, with peritoneal macrophages identified as the primary cells undergoing ferroptosis. Further research indicates that IL-1β induces lipid oxidation in macrophages through the upregulation of pathways related to lipid oxidation. Concurrently, IL-1β is not only involved in the initiation of ferroptosis in macrophages, but its production is intricately linked to the onset of ferroptosis. Ultimately, we posit that ferroptosis acts as a crucial initiating factor in the host response to GBS infection, with IL-1β playing a significant role in the resistance to infection by serving as a key inducer of ferroptosis.
Collapse
Affiliation(s)
- Jia-Xuan Yi
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Ze-Yu Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yu-Hang Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Hui Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Qing-Yu Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - De-Cong Kong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Wen-Hua Huang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yu-Hao Ren
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Qian Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yong-Qiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
| | - Jing Li
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan, China.
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Su C, Liu Z, Liu L, Xiong Z, Xu T, Zhang S, Chen Y, Jiang Y. Protective effects of nodosin against lipopolysaccharide-induced acute kidney injury through regulation of oxidative stress, inflammation, and ferroptosis in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8009-8022. [PMID: 38775855 DOI: 10.1007/s00210-024-03148-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/05/2024] [Indexed: 10/04/2024]
Abstract
This research aimed to explore the impact of nodosin on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) in rats. The study involved administering nodosin orally at doses of 2 and 4 mg/kg body weight orally to rats for 7 days before induction of AKI. Toward the end of the study, urine, blood, and kidneys were gathered from the rats to undergo biochemical and molecular examination after sacrificing them. Serum Scr, BUN, urine NGAL, and KIM-1 levels were significantly decreased in nodosin-treated AKI rats. Besides, nodosin administration resulted in a significant reduction in kidney MDA and 4-HNE levels. In contrast, antioxidant enzymes such as SOD, CAT, GPx, and GST levels increased, as well as Nrf2, NQO1, and HO-1 levels increased, while Keap-1 mRNA levels decreased in AKI rats. In addition, AKI rats treated with nodosin reversed excessive ferroptosis in the kidneys of LPS-induced AKI rats, as evidenced by increased mRNA and protein levels of GPX4, SLC7A11, and FTH-1. The administration of nodosin significantly reduced levels of inflammatory markers including TLR4, MYD88, NF-κB p65, IkKβ, and IL-1β, while IL-10 levels increased in the AKI-induced rats. Besides, histopathological changes were reduced in AKI-induced rats treated with nodosin. Nodosin proves highly beneficial in safeguarding the kidney from AKI by regulating oxidative stress, inflammation, and ferroptosis. The treatment of AKI could greatly benefit from this option.
Collapse
Affiliation(s)
- Chaojiang Su
- Department of Nephrology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang City, 550001, Guizhou Province, China
| | - Zongyang Liu
- Department of Nephrology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang City, 550001, Guizhou Province, China
| | - Liting Liu
- Department of Nephrology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang City, 550001, Guizhou Province, China
| | - Zhiqian Xiong
- Graduate School of Guizhou Medical University, Guiyang City, 550004, Guizhou Province, China
| | - Ting Xu
- Graduate School of Guizhou Medical University, Guiyang City, 550004, Guizhou Province, China
| | - Shuai Zhang
- Department of Intervention, The Affiliated Hospital of Guizhou Medical University, Guiyang City, 550004, Guizhou Province, China
| | - Yan Chen
- Department of Nephrology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang City, 550001, Guizhou Province, China
| | - Yan Jiang
- Department of Nephrology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang City, 550001, Guizhou Province, China.
| |
Collapse
|
9
|
Wang J, Lv C, Wei X, Li F. Molecular mechanisms and therapeutic strategies for ferroptosis and cuproptosis in ischemic stroke. Brain Behav Immun Health 2024; 40:100837. [PMID: 39228970 PMCID: PMC11369453 DOI: 10.1016/j.bbih.2024.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
Ischemic stroke, as one of the most severe and prevalent neurological disorders, poses a significant threat to the health and quality of life of affected individuals. Stemming from the obstruction of blood flow, ischemic stroke, leads to cerebral tissue hypoxia and ischemia, instigating a cascade of pathophysiological changes that markedly exacerbate neuronal damage and may even culminate in cell death. In recent years, emerging research has increasingly focused on novel cell death mechanisms such as ferroptosis and cuproptosis. Mounting evidence underscores the independent roles of ferroptosis and cuproptosis in ischemic stroke. This review aims to elucidate potential cross-regulatory mechanisms between ferroptosis and cuproptosis, exploring their regulatory roles in ischemic stroke. The objective is to provide targeted therapeutic intervention strategies.
Collapse
Affiliation(s)
- Jing Wang
- Department of neurology, Lu 'an Municipal People's Hospital, Anhui, China
- Bengbu Medical College, Anhui, China
| | - Cunming Lv
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Xinyu Wei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Feng Li
- Department of neurology, Lu 'an Municipal People's Hospital, Anhui, China
| |
Collapse
|
10
|
Cao PHA, Dominic A, Lujan FE, Senthilkumar S, Bhattacharya PK, Frigo DE, Subramani E. Unlocking ferroptosis in prostate cancer - the road to novel therapies and imaging markers. Nat Rev Urol 2024; 21:615-637. [PMID: 38627553 DOI: 10.1038/s41585-024-00869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
Ferroptosis is a distinct form of regulated cell death that is predominantly driven by the build-up of intracellular iron and lipid peroxides. Ferroptosis suppression is widely accepted to contribute to the pathogenesis of several tumours including prostate cancer. Results from some studies reported that prostate cancer cells can be highly susceptible to ferroptosis inducers, providing potential for an interesting new avenue of therapeutic intervention for advanced prostate cancer. In this Perspective, we describe novel molecular underpinnings and metabolic drivers of ferroptosis, analyse the functions and mechanisms of ferroptosis in tumours, and highlight prostate cancer-specific susceptibilities to ferroptosis by connecting ferroptosis pathways to the distinctive metabolic reprogramming of prostate cancer cells. Leveraging these novel mechanistic insights could provide innovative therapeutic opportunities in which ferroptosis induction augments the efficacy of currently available prostate cancer treatment regimens, pending the elimination of major bottlenecks for the clinical translation of these treatment combinations, such as the development of clinical-grade inhibitors of the anti-ferroptotic enzymes as well as non-invasive biomarkers of ferroptosis. These biomarkers could be exploited for diagnostic imaging and treatment decision-making.
Collapse
Affiliation(s)
- Pham Hong Anh Cao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Abishai Dominic
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fabiola Ester Lujan
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sanjanaa Senthilkumar
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Nuclear Receptors and Cell Signalling, University of Houston, Houston, TX, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | - Elavarasan Subramani
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
11
|
Lei L, Yuan J, Dai Z, Xiang S, Tu Q, Cui X, Zhai S, Chen X, He Z, Fang B, Xu Z, Yu H, Tang L, Zhang C. Targeting the Labile Iron Pool with Engineered DFO Nanosheets to Inhibit Ferroptosis for Parkinson's Disease Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409329. [PMID: 39221531 DOI: 10.1002/adma.202409329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Ferroptosis in neurons is considered one of the key factors that induces Parkinson's disease (PD), which is caused by excessive iron accumulation in the intracellular labile iron pool (LIP). The iron ions released from the LIP lead to the aberrant generation of reactive oxygen species (ROS) to trigger ferroptosis and exacerbate PD progression. Herein, a pioneering design of multifunctional nanoregulator deferoxamine (DFO)-integrated nanosheets (BDPR NSs) is presented that target the LIP to restrict ferroptosis and protect against PD. The BDPR NSs are constructed by incorporating a brain-targeting peptide and DFO into polydopamine-modified black phosphorus nanosheets. These BDPR NSs can sequester free iron ions, thereby ameliorating LIP overload and regulating iron metabolism. Furthermore, the BDPR NSs can decrease lipid peroxidation generation by mitigating ROS accumulation. More importantly, BDPR NSs can specifically accumulate in the mitochondria to suppress ROS generation and decrease mitochondrial iron accumulation. In vivo experiments demonstrated that the BDPR NSs highly efficiently mitigated dopaminergic neuronloss and its associated behavioral disorders by modulating the LIP and inhibiting ferroptosis. Thus, the BDPR-based nanovectors holds promise as a potential avenue for advancing PD therapy.
Collapse
Affiliation(s)
- Li Lei
- Department of Chemistry, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Jiali Yuan
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Zhijun Dai
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Song Xiang
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Qiuxia Tu
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Xing Cui
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China
| | - Suzhen Zhai
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Xiaozhong Chen
- The Jinyang Hospital Affiliated to Guizhou Medical University: The Second People's Hospital of Guiyang, Guiyang, 550025, China
| | - Zhixu He
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China
| | - Chunlin Zhang
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
12
|
Zhang Z, Li L, Fu W, Fu Z, Si M, Wu S, Shou Y, Pei X, Yan X, Zhang C, Wang T, Liu F. Therapeutic effects of natural compounds against diabetic complications via targeted modulation of ferroptosis. Front Pharmacol 2024; 15:1425955. [PMID: 39359249 PMCID: PMC11445066 DOI: 10.3389/fphar.2024.1425955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Diabetes mellitus, a chronic metabolic disorder, can result in serious tissue and organ damage due to long-term metabolic dysfunction, leading to various complications. Therefore, exploring the pathogenesis of diabetic complications and developing effective prevention and treatment drugs is crucial. The role of ferroptosis in diabetic complications has emerged as a significant area of research in recent years. Ferroptosis, a recently discovered form of regulated cell death closely linked to iron metabolism imbalance and lipid peroxidation, has garnered increasing attention in studies exploring the potential role of natural products in its regulation. This review provides an overview of the mechanisms underlying ferroptosis, outlines detection methods, and synthesizes information from natural product databases. It also summarizes current research on how natural products may regulate ferroptosis in diabetic complications. Studies have shown that these products can modulate the ferroptosis process by influencing iron ion balance and combating oxidative stress. This highlights the potential of natural products in treating diabetic complications by regulating ferroptosis, offering a new strategy for managing such complications.
Collapse
Affiliation(s)
- Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Wei Fu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Zhengchao Fu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Mahang Si
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Siyu Wu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Yueying Shou
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xinyu Pei
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaoyi Yan
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Chenguang Zhang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Tong Wang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Fei Liu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
13
|
Liu M, Gao S, Wang Y, Yang X, Fang H, Hou X. Discovery of a Novel Benzimidazole Derivative Targeting Histone Deacetylase to Induce Ferroptosis and Trigger Immunogenic Cell Death. J Med Chem 2024; 67:15098-15117. [PMID: 39145486 DOI: 10.1021/acs.jmedchem.4c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Ferroptosis is a unique type of cell death, characterized by its reliance on iron dependency and lipid peroxidation (LPO). Consequently, small-molecule ferroptosis modulators have garnered substantial interest as a promising avenue for cancer therapy. Herein, we explored the ferroptosis sensitivity of epigenetic modulators and found that the antiproliferative effects of class I histone deacetylase (HDAC) inhibitors are significantly reliant on ferroptosis. Subsequently, we developed a novel series of HDAC inhibitors, identifying HL-5s with robust inhibitory activity against class I HDACs, particularly HDAC1. Notably, HL-5s induces ferroptosis by augmenting LPO production. Mechanistically, HL-5s increased the YB-1 acetylation and inhibited the Nrf2/HO-1 signaling pathway. Furthermore, HL-5s not only significantly suppresses tumor growth in the PC-9 xenograft model but also remodels the tumor microenvironment in the LLC allograft model. Our study has unveiled that class I HDAC inhibitors can exert antitumor effects by triggering ferroptosis, and HL-5s may serve as a promising candidate for future cancer treatment.
Collapse
Affiliation(s)
- Meng Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Shan Gao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yong Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 26003, P. R. China
| | - Xinying Yang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Hao Fang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xuben Hou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
14
|
Li L, Liu X, Han C, Tian L, Wang Y, Han B. Ferroptosis in radiation-induced brain injury: roles and clinical implications. Biomed Eng Online 2024; 23:93. [PMID: 39261942 PMCID: PMC11389269 DOI: 10.1186/s12938-024-01288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Radiation-induced brain injury (RBI) presents a significant challenge for patients undergoing radiation therapy for head, neck, and intracranial tumors. This review aims to elucidate the role of ferroptosis in RBI and its therapeutic implications. Specifically, we explore how ferroptosis can enhance the sensitivity of tumor cells to radiation while also examining strategies to mitigate radiation-induced damage to normal brain tissues. By investigating the mechanisms through which radiation increases cellular reactive oxygen species (ROS) and initiates ferroptosis, we aim to develop targeted therapeutic strategies that maximize treatment efficacy and minimize neurotoxicity. The review highlights key regulatory factors in the ferroptosis pathway, including glutathione peroxidase 4 (GPX4), cystine/glutamate antiporter system Xc- (System Xc-), nuclear factor erythroid 2-related factor 2 (NRF2), Acyl-CoA synthetase long-chain family member 4 (ACSL4), and others, and their interactions in the context of RBI. Furthermore, we discuss the clinical implications of modulating ferroptosis in radiation therapy, emphasizing the potential for selective induction of ferroptosis in tumor cells and inhibition in healthy cells. The development of advanced diagnostic tools and therapeutic strategies targeting ferroptosis offers a promising avenue for enhancing the safety and efficacy of radiation therapy, underscoring the need for further research in this burgeoning field.
Collapse
Affiliation(s)
- Lifang Li
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Xia Liu
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Chunfeng Han
- Department of Pharmacy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Licheng Tian
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Yongzhi Wang
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Baolin Han
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China.
| |
Collapse
|
15
|
Antonelli A, Battaglia AM, Sacco A, Petriaggi L, Giorgio E, Barone S, Biamonte F, Giudice A. Ferroptosis and oral squamous cell carcinoma: connecting the dots to move forward. FRONTIERS IN ORAL HEALTH 2024; 5:1461022. [PMID: 39296524 PMCID: PMC11408306 DOI: 10.3389/froh.2024.1461022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive disease whose incomplete biological comprehension contributes to the inappropriate clinical management and poor prognosis. Thus, the identification of new promising molecular targets to treat OSCC is of paramount importance. Ferroptosis is a regulated cell death caused by the iron-dependent accumulation of reactive oxygen species and the consequent oxidative damage of lipid membranes. Over the last five years, a growing number of studies has reported that OSCC is sensitive to ferroptosis induction and that ferroptosis inducers exert a remarkable antitumor effect in OSCC, even in those displaying low response to common approaches, such as chemotherapy and radiotherapy. In addition, as ferroptosis is considered an immunogenic cell death, it may modulate the immune response against OSCC. In this review, we summarize the so far identified ferroptosis regulatory mechanisms and prognostic models based on ferroptosis-related genes in OSCC. In addition, we discuss the perspective of inducing ferroptosis as a novel strategy to directly treat OSCC or, alternatively, to improve sensitivity to other approaches. Finally, we integrate data emerging from the research studies, reviewed here, through in silico analysis and we provide a novel personal perspective on the potential interconnection between ferroptosis and autophagy in OSCC.
Collapse
Affiliation(s)
- Alessandro Antonelli
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Anna Martina Battaglia
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Alessandro Sacco
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Lavinia Petriaggi
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Emanuele Giorgio
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Selene Barone
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Flavia Biamonte
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Amerigo Giudice
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
16
|
Chen J, Qiu S, Liu Y, Sun W, Zhou T, Zhao L, Li Z, Duan Y. Ultrasound targeted microbubble destruction assisted exosomal delivery of siHmox1 effectively inhibits doxorubicin-induced cardiomyocyte ferroptosis. J Nanobiotechnology 2024; 22:531. [PMID: 39218878 PMCID: PMC11367924 DOI: 10.1186/s12951-024-02794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Ferroptosis, triggered by iron overload and excessive lipid peroxidation, plays a pivotal role in the progression of DOX-induced cardiomyopathy (DIC), and thus limits the use of doxorubicin (DOX) in clinic. Here, we further showed that cardiac ferroptosis induced by DOX in mice was attributed to up-regulation of Hmox1, as knockdown of Hmox1 effectively inhibited cardiomyocyte ferroptosis. To targeted delivery of siRNA into cardiomyocytes, siRNA-encapsulated exosomes were injected followed by ultrasound microbubble targeted destruction (UTMD) in the heart region. UTMD greatly facilitated exosome delivery into heart. Consistently, UTMD assisted exosomal delivery of siHomox1 nearly blocked the ferroptosis and the subsequent cardiotoxicity induced by doxorubicin. In summary, our findings reveal that the upregulation of HMOX1 induces ferroptosis in cardiomyocytes and UTMD-assisted exosomal delivery of siHmox1 can be used as a potential therapeutic strategy for DIC.
Collapse
Affiliation(s)
- Jianmei Chen
- Department of Ultrasound Diagnostics, Tangdu Hospital, The Fourth Military Medical University, NO. 569th Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
- Department of Health Medicine, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Shuo Qiu
- Department of Ultrasound Diagnostics, Tangdu Hospital, The Fourth Military Medical University, NO. 569th Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Yang Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, The Fourth Military Medical University, NO. 569th Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Wenqi Sun
- Department of Ultrasound Diagnostics, Tangdu Hospital, The Fourth Military Medical University, NO. 569th Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Tian Zhou
- Department of Ultrasound Diagnostics, Tangdu Hospital, The Fourth Military Medical University, NO. 569th Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Lianbi Zhao
- Department of Ultrasound Diagnostics, Tangdu Hospital, The Fourth Military Medical University, NO. 569th Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China.
| | - Zhelong Li
- Department of Ultrasound Diagnostics, Tangdu Hospital, The Fourth Military Medical University, NO. 569th Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China.
| | - Yunyou Duan
- Department of Ultrasound Diagnostics, Tangdu Hospital, The Fourth Military Medical University, NO. 569th Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China.
| |
Collapse
|
17
|
Sun LL, He HY, Li W, Jin WL, Wei YJ. The solute carrier transporters (SLCs) family in nutrient metabolism and ferroptosis. Biomark Res 2024; 12:94. [PMID: 39218897 PMCID: PMC11367818 DOI: 10.1186/s40364-024-00645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Ferroptosis is a novel form of programmed cell death caused by damage to lipid membranes due to the accumulation of lipid peroxides in response to various stimuli, such as high levels of iron, oxidative stress, metabolic disturbance, etc. Sugar, lipid, amino acid, and iron metabolism are crucial in regulating ferroptosis. The solute carrier transporters (SLCs) family, known as the "metabolic gating" of cells, is responsible for transporting intracellular nutrients and metabolites. Recent studies have highlighted the significant role of SLCs family members in ferroptosis by controlling the transport of various nutrients. Here, we summarized the function and mechanism of SLCs in ferroptosis regulated by ion, metabolic control of nutrients, and multiple signaling pathways, with a focus on SLC-related transporters that primarily transport five significant components: glucose, amino acid, lipid, trace metal ion, and other ion. Furthermore, the potential clinical applications of targeting SLCs with ferroptosis inducers for various diseases, including tumors, are discussed. Overall, this paper delves into the novel roles of the SLCs family in ferroptosis, aiming to enhance our understanding of the regulatory mechanisms of ferroptosis and identify new therapeutic targets for clinical applications.
Collapse
Affiliation(s)
- Li-Li Sun
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hai-Yan He
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Yi-Ju Wei
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
18
|
Zhang M, Li J, Hu W. The complex interplay between ferroptosis and atherosclerosis. Biomed Pharmacother 2024; 178:117183. [PMID: 39079265 DOI: 10.1016/j.biopha.2024.117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024] Open
Abstract
Atherosclerosis, characterized by the accumulation of plaque within the arterial walls, is an intricate cardiovascular disease that often results in severe health issues. Recent studies have emphasized the importance of ferroptosis, a controlled type of cell death dependent on iron, as a critical factor in this disease state. Ferroptosis, distinguished by its reliance on iron and the accumulation of lipid hydroperoxides, offers a unique insight into the pathology of atherosclerotic lesions. This summary encapsulates the current knowledge of the intricate role ferroptosis plays in the onset and progression of atherosclerosis. It explores the molecular processes through which lipid peroxidation and iron metabolism contribute to the development of atheromatous plaques and evaluates the possibility of utilizing ferroptosis as a novel treatment approach for atherosclerosis. By illuminating the intricate relationship between ferroptosis-related processes and atherosclerosis, this review paves the way for future clinical applications and personalized medicine approaches aimed at alleviating the effects of atherosclerosis.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Vascular Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiangping Li
- Department of Oncological Radiotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Hu
- Department of Vascular Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
19
|
Chen Y, Yang X, Li H, Wu X, Wu W, Chen J, Wu A, Wang X. Self-Assembled Fe-Phenolic Acid Network Synergizes with Ferroptosis to Enhance Tumor Nanotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402073. [PMID: 38686676 DOI: 10.1002/smll.202402073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 05/02/2024]
Abstract
Natural polyphenolic compound rosmarinic acid (RA) has good antitumor activity. However, the distinctive tumor microenvironment, characterized by low pH and elevated levels of glutathione (GSH), enhances the tolerance of tumors to the singular anti-tumor treatment mode using RA, resulting in unsatisfactory therapeutic efficacy. Targeting nonapoptotic programmed cell death processes may provide another impetus to inhibit tumor growth. RA possesses the capability to coordinate with metal elements. To solve the effect restriction of the above single treatment mode, it is proposed to construct a self-assembled nanocomposite, Fe-RA. Under tumor microenvironment, Fe-RA nanocomposite exerts the characteristics of POD-like enzyme activity and depletion of GSH, producing a large amount of hydroxyl radical (·OH) while disrupting the antioxidant defense system of tumor cells. Moreover, due to the enhanced permeability and retention effect (EPR), Fe-RA can transport Fe2+ to a greater extent to tumor cells and increase intracellular iron content. Causing an imbalance in iron metabolism in tumor cells and promoting cell ferroptosis. The results of the synchrotron X-ray absorption spectroscopy (XAS) and high-resolution mass spectrometry (HRMS) prove the successful complexation of Fe-RA nanocomposite. Density functional theory (DFT) explains the efficient catalytic mechanism of its peroxide-like enzyme activity and the reaction principle with GSH.
Collapse
Affiliation(s)
- Yinyin Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiujuan Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haoran Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xinyue Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Junzhou Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
20
|
Wang XW, Yang ZY, Li T, Zhao XR, Li XZ, Wang XX. Verteporfin Exerts Anticancer Effects and Reverses Resistance to Paclitaxel via Inducing Ferroptosis in Esophageal Squamous Cell Cancer Cells. Mol Biotechnol 2024; 66:2558-2568. [PMID: 37751128 DOI: 10.1007/s12033-023-00891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/06/2023] [Indexed: 09/27/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors. Ferroptosis is a new form of regulated cell death and targeting ferroptosis provides a novel therapeutic approach for human cancers. Verteporfin (VP) has been identified as a Yes-associated protein (YAP) inhibitor for treatment of several human cancers. However, it remains unclear whether VP exerts anticancer activity by inducing ferroptosis in ESCC cells. In the current study, we found that VP reduced cell viability and led to cell death in ESCC cell lines (KYSE150 and KYSE30) by inhibiting YAP expression. Subsequently, the findings revealed that VP treatment triggered significant ferroptosis events, including accumulation of Fe2+, reactive oxygen species (ROS) and malondialdehyde (MDA), reduction of mitochondrial membrane potential (MMP), glutathione (GSH) and glutathione peroxidase 4 (GPX4) expression. Further study showed that the effects of ESCC cell proliferation and death caused by VP could be reversed by ferroptosis inhibitor ferrostatin-1 (Fer-1). Moreover, VP enhanced the chemosensitivity of ESCC resistant cells to paclitaxel (PTX). And VP combined with PTX can synergistically inhibit cell proliferation and induce cell death by triggering ferroptosis of PTX-resistant cells. All these data suggested that VP suppressed ESCC cell survival and reversed resistance to PTX through inducing ferroptosis, which may provide a promising therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Xue-Wei Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Zi-Yi Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Ting Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xin-Ran Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiao-Zhong Li
- Department of Infectious Diseases, Shanxi Provincial People's Hospital, Affiliated People's Hospital of Shanxi Medical University, Taiyuan, 030012, China.
| | - Xiao-Xia Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
21
|
Li J, Wang Y, Huang J, Gong D. Knowledge mapping of ferroptosis in Parkinson's disease: a bibliometric analysis: 2012-2023. Front Aging Neurosci 2024; 16:1433325. [PMID: 39280701 PMCID: PMC11401074 DOI: 10.3389/fnagi.2024.1433325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Background Ferroptosis is a crucial pathogenic mechanism in Parkinson's disease, offering significant potential for pharmacological intervention. Despite its importance, the number of bibliometric analyses examining the relationship between ferroptosis and Parkinson's disease remains limited. This study aims to elucidate the knowledge structure and primary research focuses within this field using various bibliometric tools search. Materials and methods We conducted a comprehensive literature son ferroptosis in Parkinson's disease using the Web of Science Core Collection database. Bibliometric analyses and visualizations were performed with VOSviewer, examining the geographical and institutional distribution of publications, journal interconnections, and keyword prevalence. Furthermore, CiteSpace was used to visually explore and analyze journal interactions and citation dynamics. The bibliometrix R package facilitated the delineation of collaborative networks across different countries and the construction of visual network representations illustrating relationships among authors, keywords, and journals. Data visualization was further enhanced with Microsoft Office Excel 2021. Results Recently, there has been a significant increase in publications on ferroptosis, with China emerging as a leading contributor in this research area. Keyword analysis highlights the critical role of ferroptosis in the pathogenesis of Parkinson's disease, identifying GPX4 as a key enzyme mitigating lipid peroxidation. This study also elucidates the connections and distinctions between ferroptosis and other cell death processes such as apoptosis, autophagy, and pyroptosis. Current research primarily focuses on immunotherapy, prognosis, oxidative stress, lipid peroxidation, and the tumor microenvironment. Conclusion This study provides a comprehensive initial analysis of the research landscape, identifying current focal points and potential future directions for ferroptosis research in Parkinson's disease. The findings leverage a variety of bibliometric methodologies to offer valuable insights into this emerging field.
Collapse
Affiliation(s)
- Juanqin Li
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang, China
| | - Yanli Wang
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang, China
| | - Jing Huang
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang, China
| | - Daokai Gong
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang, China
| |
Collapse
|
22
|
Guan J, Tang L, Wang Y, Fu M, Xia T, Zheng K, Sabi MM, Cong H, Wang J, Zhou C, Zhou H, Weiss LM, Qu H, Han B. Microsporidian EnP1 alters host cell H2B monoubiquitination and prevents ferroptosis facilitating microsporidia survival. Proc Natl Acad Sci U S A 2024; 121:e2400657121. [PMID: 39141344 PMCID: PMC11348272 DOI: 10.1073/pnas.2400657121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
Microsporidia are intracellular eukaryotic pathogens that pose a substantial threat to immunocompromised hosts. The way these pathogens manipulate host cells during infection remains poorly understood. Using a proximity biotinylation strategy we established that microsporidian EnP1 is a nucleus-targeted effector that modifies the host cell environment. EnP1's translocation to the host nucleus is meditated by nuclear localization signals (NLSs). In the nucleus, EnP1 interacts with host histone H2B. This interaction disrupts H2B monoubiquitination (H2Bub), subsequently impacting p53 expression. Crucially, this inhibition of p53 weakens its control over the downstream target gene SLC7A11, enhancing the host cell's resilience against ferroptosis during microsporidian infection. This favorable condition promotes the proliferation of microsporidia within the host cell. These findings shed light on the molecular mechanisms by which microsporidia modify their host cells to facilitate their survival.
Collapse
Affiliation(s)
- Jingyu Guan
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Liyuan Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Yongliang Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Ming Fu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Tian Xia
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Kai Zheng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Musa Makongoro Sabi
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Hua Cong
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Juncheng Wang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Chunxue Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Huaiyu Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, New York, NY10461
| | - Hongnan Qu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Bing Han
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| |
Collapse
|
23
|
Yao H, Jiang W, Liao X, Wang D, Zhu H. Regulatory mechanisms of amino acids in ferroptosis. Life Sci 2024; 351:122803. [PMID: 38857653 DOI: 10.1016/j.lfs.2024.122803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Ferroptosis, an iron-dependent non-apoptotic regulated cell death process, is associated with the pathogenesis of various diseases. Amino acids, which are indispensable substrates of vital activities, significantly regulate ferroptosis. Amino acid metabolism is involved in maintaining iron and lipid homeostasis and redox balance. The regulatory effects of amino acids on ferroptosis are complex. An amino acid may exert contrasting effects on ferroptosis depending on the context. This review systematically and comprehensively summarized the distinct roles of amino acids in regulating ferroptosis and highlighted the emerging opportunities to develop clinical therapeutic strategies targeting amino acid-mediated ferroptosis.
Collapse
Affiliation(s)
- Heying Yao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Wei Jiang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Dongqing Wang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
24
|
Kang H, Meng F, Liu F, Xie M, Lai H, Li P, Zhang X. Nanomedicines Targeting Ferroptosis to Treat Stress-Related Diseases. Int J Nanomedicine 2024; 19:8189-8210. [PMID: 39157732 PMCID: PMC11328858 DOI: 10.2147/ijn.s476948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
Ferroptosis, a unique form of regulated cell death driven by iron-dependent lethal lipid peroxidation, is implicated in various stress-related diseases like neurodegeneration, vasculopathy, and metabolic disturbance. Stress-related diseases encompass widespread medical disorders that are influenced or exacerbated by stress. These stressors can manifest in various organ or tissue systems and have significant implications for human overall health. Understanding ferroptosis in these diseases offers insights for therapeutic strategies targeting relevant pathways. This review explores ferroptosis mechanisms, its role in pathophysiology, its connection to stress-related diseases, and the potential of ferroptosis-targeted nanomedicines in treating conditions. This monograph also delves into the engineering of ferroptosis-targeted nanomedicines for tackling stress-related diseases, including cancer, cardia-cerebrovascular, neurodegenerative, metabolic and inflammatory diseases. Anyhow, nanotherapy targeting ferroptosis holds promise by both promoting and suppressing ferroptosis for managing stress-related diseases.
Collapse
Affiliation(s)
- Hao Kang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, Anhui College of Traditional Chinese Medicine, Wuhu, People’s Republic of China
- Wuhu Modern Technology Research and Development Center of Chinese Medicine and Functional Food, Wuhu, People’s Republic of China
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, People’s Republic of China
| | - Fengjie Liu
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Mengjie Xie
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Haibiao Lai
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, People’s Republic of China
| | - Pengfei Li
- Department of Oncology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
25
|
Ji J, Jin Y, Ma S, Zhu Y, Bi X, You Q, Jiang Z. Discovery of a NCOA4 Degrader for Labile Iron-Dependent Ferroptosis Inhibition. J Med Chem 2024; 67:12521-12533. [PMID: 39047113 DOI: 10.1021/acs.jmedchem.4c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Ferroptosis, a distinctive form of programmed cell death, has been implicated in numerous pathological conditions, and its inhibition is considered a promising therapeutic strategy. Currently, there is a scarcity of efficient antagonists for directly regulating intracellular ferrous iron. Ferritinophagy, an essential process for supplying intracellular labile iron, relies on nuclear receptor coactivator 4 (NCOA4), a selective autophagy receptor for the ferritin iron storage complex, thus playing a pivotal role in ferritinophagy. In this study, we reported a novel von Hippel-Lindau-based NCOA4 degrader, V3, as a potent ferroptosis inhibitor with an intracellular ferrous iron inhibition mechanism. V3 significantly reduced NCOA4 levels and downregulated intracellular ferrous iron (Fe2+) levels, thereby effectively suppressing ferroptosis induced by multiple pathways within cells and alleviating liver damage. This research presents a chemical knockdown tool targeting NCOA4 for further exploration into intracellular ferrous iron in ferroptosis, offering a promising therapeutic avenue for ferroptosis-related acute liver injury.
Collapse
Affiliation(s)
- Jian'ai Ji
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing 210009, Jiangsu, China
| | - Yuhui Jin
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sinan Ma
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Zhu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyu Bi
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
26
|
Luo X, Jiao Q, Pei S, Zhou S, Zheng Y, Shao W, Xu K, Zhong W. A Photoactivated Self-Assembled Nanoreactor for Inducing Cascade-Amplified Oxidative Stress toward Type I Photodynamic Therapy in Hypoxic Tumors. Adv Healthc Mater 2024:e2401787. [PMID: 39101321 DOI: 10.1002/adhm.202401787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Type I photodynamic therapy (PDT) generates reactive oxygen species (ROS) through oxygen-independent photoreactions, making it a promising method for treating hypoxic tumors. However, the superoxide anion (O2∙-) generated usually exhibits a low oxidation capacity, restricting the antitumor efficacy of PDT in clinical practice. Herein, a photoactivated self-assembled nanoreactor (1-NBS@CeO2) is designed through integration of type I PDT and cerium oxide (CeO2) nanozymes for inducing cascade-amplified oxidative stress in hypoxic tumors. The nanoreactor is constructed though co-assembly of an amphiphilic peptide (1-NBS) and CeO2, giving well-dispersed spherical nanoparticles with enhanced superoxide dismutase (SOD)-like and peroxidase (POD)-like activities. Following light irradiation, 1-NBS@CeO2 undergoes type I photoreactions to generated O2∙-, which is further catalyzed by the nanoreactors, ultimately forming hypertoxic hydroxyl radical (∙OH) through cascade-amplified reactions. The PDT treatment using 1-NBS@CeO2 results in elevation of intracellular ROS and depletion of GSH content in A375 cells, thereby inducing mitochondrial dysfunction and triggering apoptosis and ferroptosis of tumor cells. Importantly, intravenous administration of 1-NBS@CeO2 alongside light irradiation showcases enhances antitumor efficacy and satisfactory biocompatibility in vivo. Together, the self-assembled nanoreactor facilitates cascade-amplified photoreactions for achieving efficacious type I PDT, which holds great promise in developing therapeutic modules towards hypoxic tumors.
Collapse
Affiliation(s)
- Xuan Luo
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Qishu Jiao
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Shicheng Pei
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuyao Zhou
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yaxin Zheng
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Weiyang Shao
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Keming Xu
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenying Zhong
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
27
|
Jiang Y, Cao Y, Li Y, Bi L, Wang L, Chen Q, Lin Y, Jin H, Xu X, Peng R, Chen Z. SNP alleviates mitochondrial homeostasis dysregulation-mediated developmental toxicity in diabetic zebrafish larvae. Biomed Pharmacother 2024; 177:117117. [PMID: 38996709 DOI: 10.1016/j.biopha.2024.117117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
The incidence of diabetes is increasing annually, and the disease is uncurable due to its complex pathogenesis. Therefore, understanding diabetes pathogenesis and developing new treatments are crucial. This study showed that the NO donor SNP (8 µM) significantly alleviated high glucose-induced developmental toxicity in zebrafish larvae. High glucose levels caused hyperglycemia, leading to oxidative stress and mitochondrial damage from excessive ROS accumulation. This promoted mitochondrial-dependent apoptosis and lipid peroxidation (LPO)-induced ferroptosis, along with immune inflammatory reactions that decreased mitochondrial function and altered intracellular grid morphology, causing imbalanced kinetics and autophagy. After SNP treatment, zebrafish larvae showed improved developmental toxicity and glucose utilization, reduced ROS accumulation, and increased antioxidant activity. The NO-sGC-cGMP signaling pathway, inhibited by high glucose, was significantly activated by SNP, improving mitochondrial homeostasis, increasing mitochondrial count, and enhancing mitochondrial function. It's worth noting that apoptosis, ferroptosis and immune inflammation were effectively alleviated. In summary, SNP improved high glucose-induced developmental toxicity by activating the NO-sGC-cGMP signaling pathway to reduce toxic effects such as apoptosis, ferroptosis and inflammation resulting from mitochondrial homeostasis imbalance.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Emergency, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yaoqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Lv Wang
- Department of Emergency, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yue Lin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Huanzhi Jin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Xiaoming Xu
- Scientific Research Center, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Zheyan Chen
- Department of Plastic Surgery, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China.
| |
Collapse
|
28
|
Ferreyra MR, Romero VL, Fernandez-Hubeid LE, Gonzales-Moreno C, Aschner M, Virgolini MB. Ferrostatin-1 mitigates cellular damage in a ferroptosis-like environment in Caenorhabditis elegans. Toxicol Sci 2024; 200:357-368. [PMID: 38754108 DOI: 10.1093/toxsci/kfae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Although iron (Fe) is the most biologically abundant transition metal, it is highly toxic when it accumulates as Fe2+, forming a labile Fe pool and favoring the Fenton reaction. This oxidative scenario leads to a type of caspase-independent programmed cell death, referred to as ferroptosis, where following processes take place: (i) Fe2+ overload, (ii) glutathione peroxidase 4 inactivation, (iii) lipid peroxidation, and (iv) glutathione depletion. The present study sought to evaluate the consequences of Fe2+ administration on ferroptosis induction in Caenorhabditis elegans. We demonstrated higher mortality, increased lipid peroxidation, reduced glutathione peroxidase activity, and morphological damage in dopaminergic neurons upon Fe2+ overload. Pharmacological intervention at the level of lipid peroxidation with ferrostatin-1 (250 μM) mitigated the damage and returned the biochemical parameters to basal levels, revealing the potential of this therapeutical approach. Finally, to assess the relationship between ferroptosis and dopamine in a Parkinsonian background, we evaluated the UA44 worm strain which overexpresses the alpha-synuclein protein in cherry-labeled dopaminergic neurons. We demonstrated that Fe2+ administration reduced lethality associated with similar alterations in biochemical and dopaminergic morphological parameters in wild-type animals. These experiments provide mechanistic-based evidence on the efficacy of a pharmacological approach to mitigate the physiological, biochemical, and morphological consequences of Fe2+ overload. At the same time, they encourage further research on the impact of the combined effects resulting from the genetic background and dopamine signaling in a Parkinsonian phenotype.
Collapse
Affiliation(s)
- Melisa R Ferreyra
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba X5000HUA, Argentina
| | - Verónica L Romero
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba X5000HUA, Argentina
| | - Lucia E Fernandez-Hubeid
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba X5000HUA, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET) , Córdoba X5000HUA, Argentina
| | - Candelaria Gonzales-Moreno
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba X5000HUA, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET) , Córdoba X5000HUA, Argentina
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Miriam B Virgolini
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba X5000HUA, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET) , Córdoba X5000HUA, Argentina
| |
Collapse
|
29
|
Adelusi OB, Etemadi Y, Akakpo JY, Ramachandran A, Jaeschke H. Effect of ferroptosis inhibitors in a murine model of acetaminophen-induced liver injury. J Biochem Mol Toxicol 2024; 38:e23791. [PMID: 39082238 PMCID: PMC11382325 DOI: 10.1002/jbt.23791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Liver injury caused by acetaminophen (APAP) overdose is the leading cause of acute liver failure in western countries. The mode of APAP-induced cell death has been controversially discussed with ferroptosis emerging as a more recent hypothesis. Ferroptosis is characterized by ferrous iron-catalyzed lipid peroxidation (LPO) causing cell death, which can be prevented by the lipophilic antioxidants ferrostatin-1 and UAMC-3203. To assess the efficacy of these ferroptosis inhibitors, we used two murine models of APAP hepatotoxicity, APAP overdose alone or in combination with FeSO4 in fasted male C57BL/6J mice. APAP triggered severe liver injury in the absence of LPO measured as hepatic malondialdehyde (MDA) levels. In contrast, ferrous iron co-treatment aggravated APAP-induced liver injury and caused extensive LPO. Standard doses of ferrostatin-1 did not affect MDA levels or the injury in both models. In contrast, UAMC-3203 partially protected in both models and reduced LPO in the presence of ferrous iron. However, UAMC-3203 attenuated the translocation of phospho-JNK through downregulation of the mitochondrial anchor protein Sab resulting in reduced mitochondrial dysfunction and liver injury. Thus, APAP toxicity does not involve ferroptosis under normal conditions. The lack of effects of ferroptosis inhibitors in the pathophysiology indicates that ferroptosis signaling pathways are not relevant therapeutic targets.
Collapse
Affiliation(s)
- Olamide B Adelusi
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yasaman Etemadi
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
30
|
Liu M, Wang X, Zhu J. PDLIM3 knockdown promotes ferroptosis in endometriosis progression via inducing Gli1 degradation and blocking Hedgehog signaling pathway. J Assist Reprod Genet 2024; 41:2117-2128. [PMID: 38771390 PMCID: PMC11339231 DOI: 10.1007/s10815-024-03131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
AIMS Current evidence suggests that there is no completely effective method for endometriosis (EMS) without trauma due to diverse adverse effects. Reliable evidence illustrates that inhibiting ferroptosis is a potential strategy for EMS. We sufficiently verified that the expression of endogenous protein PDZ and LIM domain 3 (PDLIM3) was significantly increased in EMS. METHODS PDLIM3 knockdown reduced primary ectopic endometrial stromal cells' (EESCs) viability and migration, and elevated ferroptosis signaling indicators including Fe2+, malondialdehyde (MDA), and reactive oxygen species (ROS) in EESCs. RESULTS Mechanistic studies revealed that inhibition of PDLIM3 accelerated glioma-associated oncogene-1 (Gli1) degradation and further deactivated Hedgehog signaling. Gli1 inhibitor, GANT61, abrogated the impact of PDLIM3 deletion on EESC growth, migration, and ferroptosis. In vivo experiments suggested that PDLIM3 reduction repressed the growth of endometrial lesions. Likewise, repression of PDLIM3 promoted ferroptosis and attenuated Hedgehog signaling in endometrial lesions. CONCLUSIONS Collectively, silencing of PDLIM3 facilitates ferroptosis in EMS by inducing Gli1 degradation and blocking Hedgehog signaling. It may provide an alternative strategy for developing therapeutic agents of EMS in the future.
Collapse
Affiliation(s)
- Mingwei Liu
- Gynecology Treatment Area II, Songyuan City Central Hospital, No.1188, Wenhua Road, Ningjiang District, Songyuan, 138000, Jilin, China.
| | - Xianxian Wang
- Gynecology Treatment Area I, Songyuan City Central Hospital, Songyuan, Jilin, China
| | - Jiannan Zhu
- Gynecology Treatment Area II, Songyuan City Central Hospital, No.1188, Wenhua Road, Ningjiang District, Songyuan, 138000, Jilin, China
| |
Collapse
|
31
|
Kang Z, Zhou Y, Ma Y, Wang W, Zhang Y, Chen SW, Tu Q, Wang J, Yuan MS. Dual-Site Chemosensor for Visualizing •OH-GSH Redox and Tracking Ferroptosis-Inducing Pathways In Vivo. Anal Chem 2024; 96:11932-11941. [PMID: 38984509 DOI: 10.1021/acs.analchem.4c01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Oxidative stress, characterized by an imbalance between oxidative and antioxidant processes, results in excessive accumulation of intracellular reactive oxygen species. Among these responses, the regulation of intracellular hydroxyl radicals (•OH) and glutathione (GSH) is vital for physiological processes. Real-time in situ monitoring these two opposing bioactive species and their redox interactions is essential for understanding physiological balance and imbalance. In this study, we developed a dual-site fluorescence chemosensor OG-3, which can independently image both exogenous and endogenous •OH and GSH in separate channels both within cells and in vivo, eliminating issues of spatiotemporal inhomogeneous distribution and cross-interference. With its imaging capabilities of monitoring •OH-GSH redox, OG-3 elucidated two different pathways for ferroptosis induction: (i) inhibition of system xc- to block cystine uptake (extrinsic pathway) and (ii) GPX4 inactivation, leading to the loss of antioxidant defense (intrinsic pathway). Moreover, we assessed the antiferroptotic function and effects of ferroptosis inhibitors by monitoring •OH and GSH fluctuations during ferroptosis. This method provides a reliable platform for identifying potential ferroptosis inhibitors, contributing to our understanding of relevant metabolic and physiological mechanisms. It shows potential for elucidating the regulation of ferroptosis mechanisms and investigating further strategies for therapeutic applications.
Collapse
Affiliation(s)
- Zuzhe Kang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yue Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yatuan Ma
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenji Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yue Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shu-Wei Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qin Tu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinyi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mao-Sen Yuan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
32
|
Berry CE, Kendig CB, An N, Fazilat AZ, Churukian AA, Griffin M, Pan PM, Longaker MT, Dixon SJ, Wan DC. Role of ferroptosis in radiation-induced soft tissue injury. Cell Death Discov 2024; 10:313. [PMID: 38969638 PMCID: PMC11226648 DOI: 10.1038/s41420-024-02003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 07/07/2024] Open
Abstract
Ionizing radiation has been pivotal in cancer therapy since its discovery. Despite its therapeutic benefits, IR causes significant acute and chronic complications due to DNA damage and the generation of reactive oxygen species, which harm nucleic acids, lipids, and proteins. While cancer cells are more vulnerable to ionizing radiation due to their inefficiency in repairing damage, healthy cells in the irradiated area also suffer. Various types of cell death occur, including apoptosis, necrosis, pyroptosis, autophagy-dependent cell death, immunogenic cell death, and ferroptosis. Ferroptosis, driven by iron-dependent lipid peroxide accumulation, has been recognized as crucial in radiation therapy's therapeutic effects and complications, with extensive research across various tissues. This review aims to summarize the pathways involved in radiation-related ferroptosis, findings in different organs, and drugs targeting ferroptosis to mitigate its harmful effects.
Collapse
Affiliation(s)
- Charlotte E Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Carter B Kendig
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas An
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander Z Fazilat
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew A Churukian
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Phoebe M Pan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
33
|
Tan M, Li W, He H, Wang J, Chen Y, Guo Y, Lin T, Ke F. Targeted mitochondrial fluorescence probe with large stokes shift for detecting viscosity changes in vivo and in ferroptosis process. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124246. [PMID: 38593540 DOI: 10.1016/j.saa.2024.124246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
We created four fluorescent sensors in our work to determine the viscosity of mitochondria. Following screening, the probe Mito-3 was chosen because in contrast to the other three probes, it had a greater fluorescence enhancement, large Stokes shift (113 nm) and had a particular response to viscosity that was unaffected by polarity or biological species. As the viscosity increased from PBS to 90 % glycerol, the fluorescence intensity of probe at 586 nm increased 17-fold. Mito-3 has strong biocompatibility and is able to track changes in cell viscosity in response to nystatin and monensin stimulation. Furthermore, the probe has been successfully applied to detect changes in viscosity caused by nystatin and monensin in zebrafish. Above all, the probe can be applied to the increase in mitochondrial viscosity that accompanies the ferroptosis process. Mito-3 has the potential to help further study the relationship between viscosity and ferroptosis.
Collapse
Affiliation(s)
- Meixia Tan
- School of Pharmacy, Institute of Materia Medica, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Wei Li
- School of Pharmacy, Institute of Materia Medica, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Hongxing He
- Fujian Medical University Laboratory Animal Center, Fujian Medical University, Fuzhou 350004, China
| | - Jin Wang
- School of Pharmacy, Institute of Materia Medica, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Yan Chen
- School of Pharmacy, Institute of Materia Medica, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Yuelin Guo
- School of Pharmacy, Institute of Materia Medica, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Tiansheng Lin
- Department of Nuclear Medicine, Fujian Medical University Union Hospital, Fuzhou 350004, China.
| | - Fang Ke
- School of Pharmacy, Institute of Materia Medica, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China.
| |
Collapse
|
34
|
Zeng L, Yang K, Yu G, Hao W, Zhu X, Ge A, Chen J, Sun L. Advances in research on immunocyte iron metabolism, ferroptosis, and their regulatory roles in autoimmune and autoinflammatory diseases. Cell Death Dis 2024; 15:481. [PMID: 38965216 PMCID: PMC11224426 DOI: 10.1038/s41419-024-06807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Autoimmune diseases commonly affect various systems, but their etiology and pathogenesis remain unclear. Currently, increasing research has highlighted the role of ferroptosis in immune regulation, with immune cells being a crucial component of the body's immune system. This review provides an overview and discusses the relationship between ferroptosis, programmed cell death in immune cells, and autoimmune diseases. Additionally, it summarizes the role of various key targets of ferroptosis, such as GPX4 and TFR, in immune cell immune responses. Furthermore, the release of multiple molecules, including damage-associated molecular patterns (DAMPs), following cell death by ferroptosis, is examined, as these molecules further influence the differentiation and function of immune cells, thereby affecting the occurrence and progression of autoimmune diseases. Moreover, immune cells secrete immune factors or their metabolites, which also impact the occurrence of ferroptosis in target organs and tissues involved in autoimmune diseases. Iron chelators, chloroquine and its derivatives, antioxidants, chloroquine derivatives, and calreticulin have been demonstrated to be effective in animal studies for certain autoimmune diseases, exerting anti-inflammatory and immunomodulatory effects. Finally, a brief summary and future perspectives on the research of autoimmune diseases are provided, aiming to guide disease treatment strategies.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junpeng Chen
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA.
- College of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
35
|
Thirupathi A, Marqueze LF, Outeiro TF, Radak Z, Pinho RA. Physical Exercise-Induced Activation of NRF2 and BDNF as a Promising Strategy for Ferroptosis Regulation in Parkinson's Disease. Neurochem Res 2024; 49:1643-1654. [PMID: 38782838 DOI: 10.1007/s11064-024-04152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Ferroptosis, an iron-dependent form of regulated cell death, may contribute to the progression of PD owing to an unbalanced brain redox status. Physical exercise is a complementary therapy that can modulate ferroptosis in PD by regulating the redox system through the activation of nuclear factor (erythroid-derived 2)-like 2 (NRF2) and brain-derived neurotrophic factor (BDNF) signaling. However, the precise effects of physical exercise on ferroptosis in PD remain unclear. In this review, we explored how physical exercise influences NRF2 and BDNF signaling and affects ferroptosis in PD. We further investigated relevant publications over the past two decades by searching the PubMed, Web of Science, and Google Scholar databases using keywords related to physical exercise, PD, ferroptosis, and neurotrophic factor antioxidant signaling. This review provides insights into current research gaps and demonstrates the necessity for future research to elucidate the specific mechanisms by which exercise regulates ferroptosis in PD, including the assessment of different exercise protocols and their long-term effects. Ultimately, exploring these aspects may lead to the development of improved exercise interventions for the better management of patients with PD.
Collapse
Affiliation(s)
| | - Luis Felipe Marqueze
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Ricardo A Pinho
- Faculty of Sports Science, Ningbo University, Ningbo, China.
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil.
| |
Collapse
|
36
|
Li Z, Zhang Y, Ji M, Wu C, Zhang Y, Ji S. Targeting ferroptosis in neuroimmune and neurodegenerative disorders for the development of novel therapeutics. Biomed Pharmacother 2024; 176:116777. [PMID: 38795640 DOI: 10.1016/j.biopha.2024.116777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Neuroimmune and neurodegenerative ailments impose a substantial societal burden. Neuroimmune disorders involve the intricate regulatory interactions between the immune system and the central nervous system. Prominent examples of neuroimmune disorders encompass multiple sclerosis and neuromyelitis optica. Neurodegenerative diseases result from neuronal degeneration or demyelination in the brain or spinal cord, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. The precise underlying pathogenesis of these conditions remains incompletely understood. Ferroptosis, a programmed form of cell death characterised by lipid peroxidation and iron overload, plays a pivotal role in neuroimmune and neurodegenerative diseases. In this review, we provide a detailed overview of ferroptosis, its mechanisms, pathways, and regulation during the progression of neuroimmune and neurodegenerative diseases. Furthermore, we summarise the impact of ferroptosis on neuroimmune-related cells (T cells, B cells, neutrophils, and macrophages) and neural cells (glial cells and neurons). Finally, we explore the potential therapeutic implications of ferroptosis inhibitors in diverse neuroimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zihao Li
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China
| | - Ye Zhang
- Department of Forensic Medicine, Shantou University Medical College (SUMC), Shantou, Guangdong, China
| | - Meiling Ji
- Department of Emergency, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Chenglong Wu
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China
| | - Yanxing Zhang
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China.
| | - Senlin Ji
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Translational Medicine Institute of Brain Disorders, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
37
|
Rai A, Patwardhan RS, Jayakumar S, Pachpatil P, Das D, Panigrahi GC, Gota V, Patwardhan S, Sandur SK. Clobetasol propionate, a Nrf-2 inhibitor, sensitizes human lung cancer cells to radiation-induced killing via mitochondrial ROS-dependent ferroptosis. Acta Pharmacol Sin 2024; 45:1506-1519. [PMID: 38480835 PMCID: PMC11192725 DOI: 10.1038/s41401-024-01233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/24/2024] [Indexed: 06/23/2024] Open
Abstract
Combining radiotherapy with Nrf-2 inhibitor holds promise as a potential therapeutic strategy for radioresistant lung cancer. Here, the radiosensitizing efficacy of a synthetic glucocorticoid clobetasol propionate (CP) in A549 human lung cancer cells was evaluated. CP exhibited potent radiosensitization in lung cancer cells via inhibition of Nrf-2 pathway, leading to elevation of oxidative stress. Transcriptomic studies revealed significant modulation of pathways related to ferroptosis, fatty acid and glutathione metabolism. Consistent with these findings, CP treatment followed by radiation exposure showed characteristic features of ferroptosis in terms of mitochondrial swelling, rupture and loss of cristae. Ferroptosis is a form of regulated cell death triggered by iron-dependent ROS accumulation and lipid peroxidation. In combination with radiation, CP showed enhanced iron release, mitochondrial ROS, and lipid peroxidation, indicating ferroptosis induction. Further, iron chelation, inhibition of lipid peroxidation or scavenging mitochondrial ROS prevented CP-mediated radiosensitization. Nrf-2 negatively regulates ferroptosis through upregulation of antioxidant defense and iron homeostasis. Interestingly, Nrf-2 overexpressing A549 cells were refractory to CP-mediated ferroptosis induction and radiosensitization. Thus, this study identified anti-psoriatic drug clobetasol propionate can be repurposed as a promising radiosensitizer for Keap-1 mutant lung cancers.
Collapse
Affiliation(s)
- Archita Rai
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sundarraj Jayakumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Pradnya Pachpatil
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
- Bio Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Dhruv Das
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
- Applied Genomics Section, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Girish Ch Panigrahi
- Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, 410210, India
| | - Vikram Gota
- Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, 410210, India
| | - Sejal Patwardhan
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
- Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, 410210, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
38
|
Zhang JY, Meng X, Zhu XL, Peng SR, Li HB, Mo HZ, Hu LB. Thymol Induces Fenton-Reaction-Dependent Ferroptosis in Vibrio parahemolyticus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14337-14348. [PMID: 38867141 DOI: 10.1021/acs.jafc.4c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Thymol has efficient bactericidal activity against a variety of pathogenic bacteria, but the bactericidal mechanism against Vibrio parahemolyticus (V. parahemolyticus) has rarely been reported. In the current study, we investigated the bactericidal mechanism of thymol against V. parahemolyticus. The Results revealed that 150 μg/mL of thymol had 99.9% bactericidal activity on V. parahemolyticus. Intracellular bursts of reactive oxygen species (ROS), Fe2+accumulation, lipid peroxidation, and DNA breakage were checked by cell staining. The exogenous addition of H2O2 and catalase promoted and alleviated thymol-induced cell death to a certain extent, respectively, and the addition of the ferroptosis inhibitor Liproxstatin-1 also alleviated thymol-induced cell death, confirming that thymol induced Fenton-reaction-dependent ferroptosis in V. parahemolyticus. Proteomic analysis revealed that relevant proteins involved in ROS production, lipid peroxidation accumulation, and DNA repair were significantly upregulated after thymol treatment. Molecular docking revealed two potential binding sites (amino acids 46H and 42F) between thymol and ferritin, and thymol could promote the release of Fe2+ from ferritin proteins through in vitro interactions analyzed. Therefore, we hypothesized that ferritin as a potential target may mediate thymol-induced ferroptosis in V. parahemolyticus. This study provides new ideas for the development of natural inhibitors for controlling V. parahemolyticus in aquatic products.
Collapse
Affiliation(s)
- Jia-Yi Zhang
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Xuan Meng
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Xiao-Lin Zhu
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Shu-Rui Peng
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Hong-Bo Li
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Hai-Zhen Mo
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Liang-Bin Hu
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| |
Collapse
|
39
|
Mokhtarpour K, Razi S, Rezaei N. Ferroptosis as a promising targeted therapy for triple negative breast cancer. Breast Cancer Res Treat 2024:10.1007/s10549-024-07387-7. [PMID: 38874688 DOI: 10.1007/s10549-024-07387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Triple negative breast cancer (TNBC) is a challenging subtype characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Standard treatment options are limited, and approximately 45% of patients develop distant metastasis. Ferroptosis, a regulated form of cell death triggered by iron-dependent lipid peroxidation and oxidative stress, has emerged as a potential targeted therapy for TNBC. METHODS This study utilizes a multifaceted approach to investigate the induction of ferroptosis as a therapeutic strategy for TNBC. It explores metabolic alterations, redox imbalance, and oncogenic signaling pathways to understand their roles in inducing ferroptosis, characterized by lipid peroxidation, reactive oxygen species (ROS) generation, and altered cellular morphology. Critical pathways such as Xc-/GSH/GPX4, ACSL4/LPCAT3, and nuclear factor erythroid 2-related factor 2 (NRF2) are examined for their regulatory roles in ferroptosis and their potential dysregulation contributing to cancer cell survival and resistance. RESULTS Inducing ferroptosis has been shown to inhibit tumor growth, enhance the efficacy of conventional therapies, and overcome drug resistance in TNBC. Lipophilic antioxidants, GPX4 inhibitors, and inhibitors of the Xc- system have been demonstrated to be potential ferroptosis inducers. Additionally, targeting the NRF2 pathway and exploring other ferroptosis regulators, such as ferroptosis suppressor protein 1 (FSP1), and the PERK-eIF2α-ATF4-CHOP pathway, may offer novel therapeutic avenues. CONCLUSION Further research is needed to understand the mechanisms, optimize therapeutic strategies, and evaluate the safety and efficacy of ferroptosis-targeted therapies in TNBC treatment. Overall, targeting ferroptosis represents a promising approach to improving treatment outcomes and overcoming the challenges posed by TNBC.
Collapse
Affiliation(s)
- Kasra Mokhtarpour
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Nima Rezaei
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
40
|
Wang K, Xu H, Zou R, Zeng G, Yuan Y, Zhu X, Zhao X, Li J, Zhang L. PCYT1A deficiency disturbs fatty acid metabolism and induces ferroptosis in the mouse retina. BMC Biol 2024; 22:134. [PMID: 38858683 PMCID: PMC11165903 DOI: 10.1186/s12915-024-01932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Inherited retinal dystrophies (IRDs) are a group of debilitating visual disorders characterized by the progressive degeneration of photoreceptors, which ultimately lead to blindness. Among the causes of this condition, mutations in the PCYT1A gene, which encodes the rate-limiting enzyme responsible for phosphatidylcholine (PC) de novo synthesis via the Kennedy pathway, have been identified. However, the precise mechanisms underlying the association between PCYT1A mutations and IRDs remain unclear. To address this knowledge gap, we focused on elucidating the functions of PCYT1A in the retina. RESULTS We found that PCYT1A is highly expressed in Müller glial (MG) cells in the inner nuclear layer (INL) of the retina. Subsequently, we generated a retina-specific knockout mouse model in which the Pcyt1a gene was targeted (Pcyt1a-RKO or RKO mice) to investigate the molecular mechanisms underlying IRDs caused by PCYT1A mutations. Our findings revealed that the deletion of Pcyt1a resulted in retinal degenerative phenotypes, including reduced scotopic electroretinogram (ERG) responses and progressive degeneration of photoreceptor cells, accompanied by loss of cells in the INL. Furthermore, through proteomic and bioinformatic analyses, we identified dysregulated retinal fatty acid metabolism and activation of the ferroptosis signalling pathway in RKO mice. Importantly, we found that PCYT1A deficiency did not lead to an overall reduction in PC synthesis within the retina. Instead, this deficiency appeared to disrupt free fatty acid metabolism and ultimately trigger ferroptosis. CONCLUSIONS This study reveals a novel mechanism by which mutations in PCYT1A contribute to the development of IRDs, shedding light on the interplay between fatty acid metabolism and retinal degenerative diseases, and provides new insights into the treatment of IRDs.
Collapse
Affiliation(s)
- Kaifang Wang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Huijuan Xu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
| | - Rong Zou
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Guangqun Zeng
- The People's Hospital of Pengzhou, Chengdu, 611930, Sichuan, China
| | - Ye Yuan
- Medical Center Hospital of Qionglai City, Chengdu, 611530, Sichuan, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Xiaohui Zhao
- The People's Hospital of Pengzhou, Chengdu, 611930, Sichuan, China.
| | - Jie Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
41
|
Su Y, Liu B, Wang B, Chan L, Xiong C, Lu L, Zhang X, Zhan M, He W. Progress and Challenges in Tumor Ferroptosis Treatment Strategies: A Comprehensive Review of Metal Complexes and Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310342. [PMID: 38221682 DOI: 10.1002/smll.202310342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/27/2023] [Indexed: 01/16/2024]
Abstract
Ferroptosis is a new form of regulated cell death featuring iron-dependent lipid peroxides accumulation to kill tumor cells. A growing body of evidence has shown the potential of ferroptosis-based cancer therapy in eradicating refractory malignancies that are resistant to apoptosis-based conventional therapies. In recent years, studies have reported a number of ferroptosis inducers that can increase the vulnerability of tumor cells to ferroptosis by regulating ferroptosis-related signaling pathways. Encouraged by the rapid development of ferroptosis-driven cancer therapies, interdisciplinary fields that combine ferroptosis, pharmaceutical chemistry, and nanotechnology are focused. First, the prerequisites and metabolic pathways for ferroptosis are briefly introduced. Then, in detail emerging ferroptosis inducers designed to boost ferroptosis-induced tumor therapy, including metal complexes, metal-based nanoparticles, and metal-free nanoparticles are summarized. Subsequently, the application of synergistic strategies that combine ferroptosis with apoptosis and other regulated cell death for cancer therapy, with emphasis on the use of both cuproptosis and ferroptosis to induce redox dysregulation in tumor and intracellular bimetallic copper/iron metabolism disorders during tumor treatment is discussed. Finally, challenges associated with clinical translation and potential future directions for potentiating cancer ferroptosis therapies are highlighted.
Collapse
Affiliation(s)
- Yanhong Su
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Binghan Wang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Leung Chan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Chan Xiong
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Weiling He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| |
Collapse
|
42
|
Lan J, Liu L, Zhao W, Li Z, Zeng R, Fang S, Chen L, Shen Y, Wei H, Zhang T, Ding Y. Unlocking the anticancer activity of gambogic acid: a shift towards ferroptosis via a GSH/Trx dual antioxidant system. Free Radic Biol Med 2024; 218:26-40. [PMID: 38570172 DOI: 10.1016/j.freeradbiomed.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in ferroptosis by regulating the cellular antioxidant response and maintaining redox balance. However, compounds that induce ferroptosis through dual antioxidant pathways based on Nrf2 have not been fully explored. In our study, we investigated the impact of Gambogic acid (GA) on MCF-7 cells and HepG2 cells in vitro. The cytotoxicity, colony formation assay and cell cycle assay demonstrated potent tumor-killing ability of GA, while its effect was rescued by ferroptosis inhibitors. Furthermore, RNA sequencing revealed the enrichment of ferroptosis pathway mediated by GA. In terms of ferroptosis indicators detection, evidences for GA were provided including reactive oxygen species (ROS) accumulation, alteration in mitochondrial membrane potential (MMP), disappearance of mitochondrial cristae, lipid peroxidation induction, malondialdehyde (MDA) accumulation promotion, iron ion accumulation as well as glutathione (GSH)/thioredoxin (Trx) depletion. Notably, Ferrostatin-1 (Fer-1) and Liproxstatin-1 (Lip-1) successfully rescued GA-induced MDA accumulation. In terms of mechanism, Nrf2 was found to play a pivotal role in GA-induced ferroptosis by inducing protein alterations through the iron metabolism pathway and GSH/Trx dual antioxidant pathway. Furthermore, GA exerted good antitumor activity in vivo through GSH/Trx dual antioxidant pathway, and Fer-1 significantly attenuated its efficacy. In conclusion, our findings first provided new evidence for GA as an inducer of ferroptosis, and Nrf2-mediated GSH/Trx dual antioxidant system played an important role in GA-induced ferroptosis.
Collapse
Affiliation(s)
- Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenjun Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shiyuan Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; National Innovation Platform for Medical Industry-education Integration, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; National Innovation Platform for Medical Industry-education Integration, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
43
|
Kong L, Wang Y, Tong Z, Dai R, Yusuf A, Du L, Liu B, Huang Z, Hu L. Granulathiazole A protects 6-OHDA-induced Parkinson's disease from ferroptosis via activating Nrf2/HO-1 pathway. Bioorg Chem 2024; 147:107399. [PMID: 38678778 DOI: 10.1016/j.bioorg.2024.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Two pairs of enantiomers (1a-2b), namely (±)-alterpyrone F and (±)-alterpyrone G, along with a rare benzothiazole meroterpenoid granulathiazole A (3, GA), and two undescribed compounds called respectively granulahydeoate (4) and granulaone (5), were obtained from the co-cultivation of Alternaria brassicicola and Penicillium sp. HUBU0120. Exhaustive analyses of NMR, single crystal XRD, Mo2(OAc)4-induced circular dichroism data, and a modified Mosher's method distinguished the absolute configurations of isolates. Bioactive evaluations exhibited that GA possessed promising anti-PD activity in both in vitro and in vivo PD models viz. 6-OHDA-induced SH-SY5Y cells and 6-OHDA-induced zebrafish, respectively. Moreover, our research demonstrated that ferroptosis activated by 6-OHDA was mitigated in PD models after treated with GA. Extensive molecular mechanism studies in PD-modelled cells manifested that GA attenuated the decreased expressions of SLC7A11, GPX4, and FSP-1, and the increased level of ACSL4 via activating Nrf2/HO-1 pathway as well as ameliorated the accumulation of α-synuclein.
Collapse
Affiliation(s)
- Luqi Kong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yilan Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhou Tong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Rongrong Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Abdulla Yusuf
- College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi 844000, China.
| | - Lifen Du
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan 430033, China.
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Linzhen Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, China; College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi 844000, China.
| |
Collapse
|
44
|
Zhang L, Luo YL, Xiang Y, Bai XY, Qiang RR, Zhang X, Yang YL, Liu XL. Ferroptosis inhibitors: past, present and future. Front Pharmacol 2024; 15:1407335. [PMID: 38846099 PMCID: PMC11153831 DOI: 10.3389/fphar.2024.1407335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic mode of programmed cell death characterized by iron dependence and lipid peroxidation. Since the ferroptosis was proposed, researchers have revealed the mechanisms of its formation and continue to explore effective inhibitors of ferroptosis in disease. Recent studies have shown a correlation between ferroptosis and the pathological mechanisms of neurodegenerative diseases, as well as diseases involving tissue or organ damage. Acting on ferroptosis-related targets may provide new strategies for the treatment of ferroptosis-mediated diseases. This article specifically describes the metabolic pathways of ferroptosis and summarizes the reported mechanisms of action of natural and synthetic small molecule inhibitors of ferroptosis and their efficacy in disease. The paper also describes ferroptosis treatments such as gene therapy, cell therapy, and nanotechnology, and summarises the challenges encountered in the clinical translation of ferroptosis inhibitors. Finally, the relationship between ferroptosis and other modes of cell death is discussed, hopefully paving the way for future drug design and discovery.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yi Lin Luo
- School of Medicine, Yan’an University, Yan’an, China
| | - Yang Xiang
- College of Physical Education, Yan’an University, Yan’an, China
| | - Xin Yue Bai
- School of Medicine, Yan’an University, Yan’an, China
| | | | - Xin Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yan Ling Yang
- School of Medicine, Yan’an University, Yan’an, China
| | - Xiao Long Liu
- School of Medicine, Yan’an University, Yan’an, China
| |
Collapse
|
45
|
Song C, Chu Z, Dai J, Xie D, Qin T, Xie L, Zhai Z, Huang S, Xu Y, Sun T. Water extract of moschus alleviates erastin-induced ferroptosis by regulating the Keap1/Nrf2 pathway in HT22 cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117937. [PMID: 38423409 DOI: 10.1016/j.jep.2024.117937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moschus, first described in the Shennong's Classic of the Materia medicine, is a scarce and precious animal medicine. Modern pharmacological researches have suggested that Moschus has neuroprotective actions, and its mechanism is related to anti-inflammatory, antioxidant, and anti-apoptosis effects. Ferroptosis is one of the major pathologies of Alzheimer's disease (AD) and is widely implicated in the pathogenesis and progression of AD. Although previous studies have suggested that Moschus possesses neuroprotective effect, whether Moschus could mitigate neuronal damages by inhibiting the onset of ferroptosis is unknown in model cells of AD. AIM OF THE STUDY The aim of study was to explore the water extract of Moschus (WEM) on ferroptosis caused by erastin and the potential mechanism. MATERIALS AND METHODS Erastin was used to stimulate HT22 cells to form ferroptosis model to evaluate the anti-ferroptosis effect of WEM by cell counting kit-8 and lactic dehydrogenase (LDH) tests. The malondialdehyde (MDA) and glutathione (GSH) kits are used for detection of MDA and GSH levels, and 2',7'-dichlorofluorescein diacetate and C11 BODIPY 581/591 fluorescence probe are used for evaluation of reactive oxygen species (ROS) and lipid peroxide (LOOH) levels. And Western blot was used to test nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), heme oxygenase-1 (HO-1), and ferroptosis associated proteins including glutathione peroxidase 4 (GPX4), cystine/glutamate antiporter subunit (SLC7A11), ferritin heavy chain 1 (FTH1), ferroportin1 (FPN1), transferrin receptor (TFRC). In addition, the Nrf2 inhibitor ML385 was applied to verify whether WEM prevents erastin-induced ferroptosis by activating the Keap1/Nrf2 pathway. RESULTS After WEM treatment, erastin-induced HT22 cell survival was significantly elevated, the accumulation of intracellular MDA, ROS, and LOOH were significantly reduced, the level of GSH and expressions of ferroptosis inhibitors GPX4 and SLC7A11 were significantly increased, and iron metabolism-related proteins TFRC, FPN1, and FTH1 were regulated. These effects of WEM are implemented by activating the Keap1/Nrf2 pathway. CONCLUSIONS This study demonstrated that WEM could perform neuroprotective effects by alleviating ferroptosis, verified that WEM treatment of AD can be mediated by the Keap1/Nrf2 pathway, and provided theoretical support for the application of WEM in the treatment of AD.
Collapse
Affiliation(s)
- Caiyou Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhili Chu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingyi Dai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Linjiang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhenwei Zhai
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sha Huang
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
46
|
Zhu G, Luo D, Zhao Y, Xiang Z, Chen C, Li N, Hao X, Ding X, Zhang Y, Zhao Y. Pacidusin B isolated from Phyllanthus acidus triggers ferroptotic cell death in HT1080 cells. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:34. [PMID: 38780674 PMCID: PMC11116305 DOI: 10.1007/s13659-024-00454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Cancer cells generally exhibit 'iron addiction' phenotypes, which contribute to their vulnerability to ferroptosis inducers. Ferroptosis is a newly discovered form of programmed cell death caused by iron-dependent lipid peroxidation. In the present study, pacidusin B, a dichapetalin-type triterpenoid from Phyllanthus acidus (L.) Skeels (Euphorbiaceae), induces ferroptosis in the HT1080 human fibrosarcoma cell line. Cells treated with pacidusin B exhibited the morphological characteristic 'ballooning' phenotype of ferroptosis. The biochemical hallmarks of ferroptosis were also observed in pacidusin B-treated cells. Both oxidative stress and ER stress play significant roles in pacidusin B-induced ferroptosis. The activation of the PERK-Nrf2-HO-1 signaling pathway led to iron overload, while inhibition of GPX4 further sensitized cancer cells to ferroptosis. Furthermore, the molecular docking study showed that pacidusin B docked in the same pocket in xCT as the ferroptosis inducer erastin. These results revealed that pacidusin B exerts anticancer effects via inducing ER-mediated ferroptotic cell death.
Collapse
Affiliation(s)
- Guangyu Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dian Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueqin Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengrui Xiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Na Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Yingjun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Yuhan Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
47
|
Hai E, Li B, Zhang J, Zhang J. Sperm freezing damage: the role of regulated cell death. Cell Death Discov 2024; 10:239. [PMID: 38762505 PMCID: PMC11102515 DOI: 10.1038/s41420-024-02013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Substantial progress in research on sperm cryopreservation has occurred since the twentieth century, especially focusing on improving sperm freezing procedures and optimizing semen extenders. However, the cellular biological mechanisms of sperm freezing damage are still unclear, which greatly restricts the promotion and development of sperm cryopreservation. An essential component of sperm freezing damage is the occurrence of cell death. Considering the existence of multiple types of cell death pathways, this review discusses connections between characteristics of regulated cell death (e.g., apoptosis and ferroptosis), and accidental cell death (e.g., intracellular ice crystals) with sperm freezing damage and explores possible future research directions in this field.
Collapse
Affiliation(s)
- Erhan Hai
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Boyuan Li
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Jian Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
48
|
Miki K, Yagi M, Kang D, Kunisaki Y, Yoshimoto K, Uchiumi T. Glucose starvation causes ferroptosis-mediated lysosomal dysfunction. iScience 2024; 27:109735. [PMID: 38706843 PMCID: PMC11067335 DOI: 10.1016/j.isci.2024.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
Lysosomes, the hub of metabolic signaling, are associated with various diseases and participate in autophagy by supplying nutrients to cells under nutrient starvation. However, their function and regulation under glucose starvation remain unclear and are studied herein. Under glucose starvation, lysosomal protein expression decreased, leading to the accumulation of damaged lysosomes. Subsequently, cell death occurred via ferroptosis and iron accumulation due to DMT1 degradation. GPX4, a key factor in ferroptosis inhibition located on the outer membrane of lysosomes, accumulated in lysosomes, especially under glucose starvation, to protect cells from ferroptosis. ALDOA, GAPDH, NAMPT, and PGK1 are also located on the outer membrane of lysosomes and participate in lysosomal function. These enzymes did not function effectively under glucose starvation, leading to lysosomal dysfunction and ferroptosis. These findings may facilitate the treatment of lysosomal-related diseases.
Collapse
Affiliation(s)
- Kenji Miki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Kashiigaoka Rehabilitation Hospital, Fukuoka 813-0002, Japan
- Department of Medical Laboratory Science, Faculty of Health Sciences, Junshin Gakuen University, Fukuoka 815-8510, Japan
| | - Yuya Kunisaki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
49
|
Arimoto KI, Miyauchi S, Liu M, Zhang DE. Emerging role of immunogenic cell death in cancer immunotherapy. Front Immunol 2024; 15:1390263. [PMID: 38799433 PMCID: PMC11116615 DOI: 10.3389/fimmu.2024.1390263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Cancer immunotherapy, such as immune checkpoint blockade (ICB), has emerged as a groundbreaking approach for effective cancer treatment. Despite its considerable potential, clinical studies have indicated that the current response rate to cancer immunotherapy is suboptimal, primarily attributed to low immunogenicity in certain types of malignant tumors. Immunogenic cell death (ICD) represents a form of regulated cell death (RCD) capable of enhancing tumor immunogenicity and activating tumor-specific innate and adaptive immune responses in immunocompetent hosts. Therefore, gaining a deeper understanding of ICD and its evolution is crucial for developing more effective cancer therapeutic strategies. This review focuses exclusively on both historical and recent discoveries related to ICD modes and their mechanistic insights, particularly within the context of cancer immunotherapy. Our recent findings are also highlighted, revealing a mode of ICD induction facilitated by atypical interferon (IFN)-stimulated genes (ISGs), including polo-like kinase 2 (PLK2), during hyperactive type I IFN signaling. The review concludes by discussing the therapeutic potential of ICD, with special attention to its relevance in both preclinical and clinical settings within the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Kei-ichiro Arimoto
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Sayuri Miyauchi
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Mengdan Liu
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- School of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Dong-Er Zhang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- School of Biological Sciences, University of California San Diego, La Jolla, CA, United States
- Department of Pathology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
50
|
Ji HL, Zhang YF, Zhang NY, Wang KM, Meng N, Zhang J, Jiang CS. Design, synthesis, and evaluation of formylpiperazine analogs of Ferrostatin-1 as novel improved ferroptosis inhibitors. Bioorg Med Chem 2024; 105:117716. [PMID: 38608329 DOI: 10.1016/j.bmc.2024.117716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
In this study, a series of new formylpiperazine-derived ferroptosis inhibitors were designed and synthesized based on the structure of a known ferroptosis inhibitor, ferrostatin-1 (Fer-1). The anti-ferroptosis activity of these synthetic compounds in human umbilical vein endothelial cells (HUVECs) induced by Erastin was evaluated. It was found that some of the new compounds, especially compound 26, showed potent anti-ferroptosis activity, as evidenced by its ability to restore cell viability, reduce iron accumulation, scavenge reactive oxygen species, maintain mitochondrial membrane potential, increase GSH levels, decrease LPO and MDA content, and upregulate GPX4 expression. Moreover, compound 26 exhibited superior microsomal stability than Fer-1. The present results suggest that compound 26 is a promising lead compound for the development of new ferroptosis inhibitors for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Hua-Long Ji
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yi-Fan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Nai-Yu Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|