1
|
Joos R, Boucher K, Lavelle A, Arumugam M, Blaser MJ, Claesson MJ, Clarke G, Cotter PD, De Sordi L, Dominguez-Bello MG, Dutilh BE, Ehrlich SD, Ghosh TS, Hill C, Junot C, Lahti L, Lawley TD, Licht TR, Maguin E, Makhalanyane TP, Marchesi JR, Matthijnssens J, Raes J, Ravel J, Salonen A, Scanlan PD, Shkoporov A, Stanton C, Thiele I, Tolstoy I, Walter J, Yang B, Yutin N, Zhernakova A, Zwart H, Doré J, Ross RP. Examining the healthy human microbiome concept. Nat Rev Microbiol 2024:10.1038/s41579-024-01107-0. [PMID: 39443812 DOI: 10.1038/s41579-024-01107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/25/2024]
Abstract
Human microbiomes are essential to health throughout the lifespan and are increasingly recognized and studied for their roles in metabolic, immunological and neurological processes. Although the full complexity of these microbial communities is not fully understood, their clinical and industrial exploitation is well advanced and expanding, needing greater oversight guided by a consensus from the research community. One of the most controversial issues in microbiome research is the definition of a 'healthy' human microbiome. This concept is complicated by the microbial variability over different spatial and temporal scales along with the challenge of applying a unified definition to the spectrum of healthy microbiome configurations. In this Perspective, we examine the progress made and the key gaps that remain to be addressed to fully harness the benefits of the human microbiome. We propose a road map to expand our knowledge of the microbiome-health relationship, incorporating epidemiological approaches informed by the unique ecological characteristics of these communities.
Collapse
Affiliation(s)
- Raphaela Joos
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Katy Boucher
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Marcus J Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre and VistaMilk SFI Research Centre, Moorepark, Fermoy, Moorepark, Ireland
| | - Luisa De Sordi
- Centre de Recherche Saint Antoine, Sorbonne Université, INSERM, Paris, France
| | | | - Bas E Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Stanislav D Ehrlich
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Tarini Shankar Ghosh
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), New Delhi, India
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Christophe Junot
- Département Médicaments et Technologies pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, Gif-sur-Yvette, France
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - Thulani P Makhalanyane
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Jeroen Raes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Center for Microbiology, Leuven, Belgium
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pauline D Scanlan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Andrey Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre and VistaMilk SFI Research Centre, Moorepark, Fermoy, Moorepark, Ireland
| | - Ines Thiele
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Medicine, University of Ireland, Galway, Ireland
| | - Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Natalia Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hub Zwart
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
2
|
Zhao C, Chen F, Li Q, Zhang W, Peng L, Yue C. Causal relationship between oral microbiota and epilepsy risk: Evidence from Mendelian randomization analysis in East Asians. Epilepsia Open 2024. [PMID: 39382490 DOI: 10.1002/epi4.13074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVE Gut microbiota can traverse into the brain, activate the vagus nerve, and modulate immune responses and inflammatory processes, thereby influencing the onset of epileptic seizures. However, research on oral microbiota and epilepsy remains limited, and observational studies have been inconsistent. We aim to estimate the potential links between oral microbiota and epilepsy and elucidate which specific oral microbes may directly influence the pathogenesis of epilepsy. METHODS A two-sample MR analysis was conducted using genome-wide association study (GWAS) data specific to OM and epilepsy in East Asian individuals. Single nucleotide polymorphisms (SNPs) independent of confounders served as instrumental variables (IVs) to deduce causality. MR methodologies, including inverse variance weighted (IVW), MR-Egger, weighted median, and weighed mode methods, were utilized. Sensitivity analysis, including Cochrane's Q test, MR-Egger intercept test, and leave-one-out analysis, was applied to confirm the robustness of results. RESULTS Among the 3117 bacterial taxa examined, we observed that 14 OM, like s_Streptococcus_mitis, s_Streptococcus_pneumoniae, and s_Haemophilus, were positively associated with epilepsy, while 7 OM, like g_Fusobacterium and g_Aggregatibacter, were negatively related to epilepsy. The MR-Egger intercept suggested that no evidence of horizontal pleiotropy was observed (p > 0.05). The leave-one-out analysis validated the robustness of the results. SIGNIFICANCE This study underscores the effect of OM on epilepsy, suggesting potential mechanisms between the OM and epilepsy. Further investigation into the potential role of the OM is needed to enhance our in-depth understanding of the pathogenesis of epilepsy. PLAIN LANGUAGE SUMMARY Previous research has demonstrated that the microbiota may influence the onset of epileptic seizures. We applied 3117 oral microbiota from the newest publicly available database of East Asian populations. Mendelian randomization analysis was utilized to estimate the causal relationship between oral microbiota and epilepsy. Our results showed that a causal effect exists between 21 oral microbiota and epilepsy. We provided genetic evidence for risk assessment and early intervention in epilepsy.
Collapse
Affiliation(s)
- Chenyang Zhao
- The First People's Hospital of Chenzhou, Chenzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fei Chen
- Huadong Hospital, Fudan University, Shanghai, China
| | - Qiong Li
- The First People's Hospital of Chenzhou, Chenzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wei Zhang
- The First People's Hospital of Chenzhou, Chenzhou, China
| | - Lixiu Peng
- The First People's Hospital of Chenzhou, Chenzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chaoyan Yue
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Demehri S, Vardar S, Godoy C, Lopez JV, Samuel P, Kawai T, Ozga AT. Supragingival Plaque Microbiomes in a Diverse South Florida Population. Microorganisms 2024; 12:1921. [PMID: 39338595 PMCID: PMC11434252 DOI: 10.3390/microorganisms12091921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Trillions of microbes comprise the human oral cavity, collectively acting as another bodily organ. Although research is several decades into the field, there is no consensus on how oral microbiomes differ in underrepresented groups such as Hispanic, Black, and Asian populations living in the United States. Here, using 16S ribosomal RNA sequencing, we examine the bacterial ecology of supragingival plaque from four quadrants of the mouth along with a tongue swab from 26 healthy volunteers from South Florida (131 total sequences after filtering). As an area known to be a unique amalgamation of diverse cultures from across the globe, South Florida allows us to address the question of how supragingival plaque microbes differ across ethnic groups, thus potentially impacting treatment regiments related to oral issues. We assess overall phylogenetic abundance, alpha and beta diversity, and linear discriminate analysis of participants based on sex, ethnicity, sampling location in the mouth, and gingival health. Within this cohort, we find the presence of common phyla such as Firmicutes and common genera such as Streptococcus. Additionally, we find significant differences across sampling locations, sex, and gingival health. This research stresses the need for the continued incorporation of diverse populations within human oral microbiome studies.
Collapse
Affiliation(s)
- Sharlene Demehri
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.D.); (S.V.)
| | - Saynur Vardar
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.D.); (S.V.)
| | - Cristina Godoy
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Department of Public Health, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Jose V. Lopez
- Department of Biological Sciences, Halmos College of Arts and Sciences, Guy Harvey Oceanographic Center, Nova Southeastern University, Fort Lauderdale, FL 33328, USA (P.S.)
| | - Paisley Samuel
- Department of Biological Sciences, Halmos College of Arts and Sciences, Guy Harvey Oceanographic Center, Nova Southeastern University, Fort Lauderdale, FL 33328, USA (P.S.)
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Andrew T. Ozga
- Department of Biological Sciences, Halmos College of Arts and Sciences, Guy Harvey Oceanographic Center, Nova Southeastern University, Fort Lauderdale, FL 33328, USA (P.S.)
| |
Collapse
|
4
|
Gu Y, Jiang L, Shui M, Luo H, Zhou X, Zhang S, Jiang C, Huang J, Chen H, Tang J, Fu Y, Luo H, Yang G, Xu K, Chi H, Liu J, Huang S. Revealing the association between East Asian oral microbiome and colorectal cancer through Mendelian randomization and multi-omics analysis. Front Cell Infect Microbiol 2024; 14:1452392. [PMID: 39355266 PMCID: PMC11443854 DOI: 10.3389/fcimb.2024.1452392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/14/2024] [Indexed: 10/03/2024] Open
Abstract
Background Colorectal cancer (CRC) poses a global health threat, with the oral microbiome increasingly implicated in its pathogenesis. This study leverages Mendelian Randomization (MR) to explore causal links between oral microbiota and CRC using data from the China National GeneBank and Biobank Japan. By integrating multi-omics approaches, we aim to uncover mechanisms by which the microbiome influences cellular metabolism and cancer development. Methods We analyzed microbiome profiles from 2017 tongue and 1915 saliva samples, and GWAS data for 6692 CRC cases and 27178 controls. Significant bacterial taxa were identified via MR analysis. Single-cell RNA sequencing and enrichment analyses elucidated underlying pathways, and drug predictions identified potential therapeutics. Results MR identified 19 bacterial taxa significantly associated with CRC. Protective effects were observed in taxa like RUG343 and Streptococcus_umgs_2425, while HOT-345_umgs_976 and W5053_sp000467935_mgs_712 increased CRC risk. Single-cell RNA sequencing revealed key pathways, including JAK-STAT signaling and tyrosine metabolism. Drug prediction highlighted potential therapeutics like Menadione Sodium Bisulfite and Raloxifene. Conclusion This study establishes the critical role of the oral microbiome in colorectal cancer development, identifying specific microbial taxa linked to CRC risk. Single-cell RNA sequencing and drug prediction analyses further elucidate key pathways and potential therapeutics, providing novel insights and personalized treatment strategies for CRC.
Collapse
Affiliation(s)
- Yuheng Gu
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Min Shui
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Honghao Luo
- Department of Radiology, Xichong People’s Hospital, Nanchong, China
| | - Xuancheng Zhou
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Shengke Zhang
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chenglu Jiang
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jinbang Huang
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Haiqing Chen
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jingyi Tang
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yiping Fu
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Huiyan Luo
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Hao Chi
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jie Liu
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
- Department of general surgery, Dazhou Central Hospital, Dazhou, China
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Hu K, Huang T, Zhang Y, Ye Z, Guo J, Zhou H. A causal association between esophageal cancer and the oral microbiome: a Mendelian randomization study based on an Asian population. Front Cell Infect Microbiol 2024; 14:1420625. [PMID: 39346897 PMCID: PMC11427439 DOI: 10.3389/fcimb.2024.1420625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Background Previous studies have suggested a crosstalk between the oral microbiome and esophageal cancer (EC), but the exact relationship is unclear. This study aimed to investigate the causal relationship between changes in the oral microbiome and EC by Mendelian randomization (MR). Materials and methods In the study, bidirectional MR analyses were conducted using genome-wide association study data from the oral microbiomes from the 4D-SZ cohort and EC data from the BioBank Japan cohort. Multiple sensitivity tests, including Cochrane's Q statistic, MR-Egger intercept, and MR-PRESSO, were used to assess and validate the relative stability of the resulting data at various levels. Results Among the 3,117 samples studied, 73 oral microbiomes were found to be statistically causally associated with EC, 38 of which were considered protective factors. According to species analyses, positive results were concentrated in three phyla: Firmicutes (29 species), Patescibacteria (18 species), and Actinobacteria (9 species). It was also determined that Parvimonas micra, Aggregatibacter, and Clostridia had a negative causal relationship, implying that EC caused a decrease in the counts. Following p-value correction, periodonticum_C, unclassified_mgs_3234, and unclassified_mgs_45 were identified as having a strong evidence-grade causal relationship with EC. There was no strong evidence in the results of the inverse MR analyses of EC to the oral microbiome. The sensitivity analysis confirmed the robustness of the findings. Conclusion This study discovered a bidirectional causal relationship between the oral microbiome and EC, which may provide new insights into the future use of the microbiome for early screening and probiotic therapy.
Collapse
Affiliation(s)
- Keke Hu
- Department of Oncology, Hangzhou Traditional Chinese Medicine (TCM) Hospital Affiliated
to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ting Huang
- Department of Oncology, Hangzhou Traditional Chinese Medicine (TCM) Hospital Affiliated
to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yiming Zhang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong
First Medical University, Jining, Shandong, China
| | - Zhifeng Ye
- Department of Oncology, Hangzhou Traditional Chinese Medicine (TCM) Hospital Affiliated
to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Junhua Guo
- Department of Oncology, Hangzhou Traditional Chinese Medicine (TCM) Hospital Affiliated
to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Heran Zhou
- Department of Oncology, Hangzhou Traditional Chinese Medicine (TCM) Hospital Affiliated
to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Zhang Z, Wu W, Xiahou Z, Song Y. Unveiling the hidden link between oral flora and colorectal cancer: a bidirectional Mendelian randomization analysis and meta-analysis. Front Microbiol 2024; 15:1451160. [PMID: 39318433 PMCID: PMC11420047 DOI: 10.3389/fmicb.2024.1451160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Objective The impact of oral flora on intestinal micro-environment and related diseases has been widely reported, but its role in colorectal cancer (CRC) remains elusive. Methods A Two-sample Mendelian Randomization (TSMR) analysis was conducted to explore the causal relationship between oral flora and CRC, with the Inverse-Variance Weighted (IVW) serving as the primary method for evaluating this causal relationship. Data on the oral flora were derived from human samples from the tongue and saliva, with all cohort populations originating from Asia. In addition, 2 independent external cohorts were used to validate the positive results and perform a meta-analysis of the final results. Lastly, to balance the effect of positive oral flora on CRC, a Multivariate Mendelian Randomization (MVMR) analysis was also performed. Results The TSMR analysis revealed that 17 oral flora may have a causal relationship with CRC in the training cohort. Among them, s Haemophilus, g Fusobacterium, s Metamycoplasma salivarium, and s Mogibacterium pumilum were validated in two testing cohorts. Intriguingly, after integrating the results of the 3 cohorts for meta-analysis, 16 associations remained significant. In the training cohort, MVMR analysis demonstrated that s Capnocytophaga ochracea and s Metamycoplasma salivarium retained statistical significance. In one of the testing cohorts, s Metamycoplasma salivarium, s Streptococcus anginosus, and s Streptococcus sanguinis retained statistical significance. In the other testing cohort, s Metamycoplasma salivarium, s Haemophilus, and g Fusobacterium remained significant. Conclusion s Haemophilus, g Fusobacterium, s Metamycoplasma salivarium, and s Mogibacterium pumilum have a solid causal relationship with the occurrence and development of CRC.
Collapse
Affiliation(s)
- Zexin Zhang
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenfeng Wu
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhikai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Yafeng Song
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| |
Collapse
|
7
|
Luo Y, Ge P, Gong A, Chen H. Busting myths, biting facts: Unraveling the link between Porphyromonas and pancreatic cancer risk. Pharmacol Res 2024; 207:107325. [PMID: 39069197 DOI: 10.1016/j.phrs.2024.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Affiliation(s)
- Yalan Luo
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China; Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Peng Ge
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China; Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Aixia Gong
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China.
| | - Hailong Chen
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China; Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116044, China.
| |
Collapse
|
8
|
Lyu X, Xu X, Shen S, Qin F. Genetics causal analysis of oral microbiome on type 2 diabetes in East Asian populations: a bidirectional two-sample Mendelian randomized study. Front Endocrinol (Lausanne) 2024; 15:1452999. [PMID: 39247916 PMCID: PMC11380152 DOI: 10.3389/fendo.2024.1452999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction The dysbiosis of the oral microbiome is associated with the progression of various systemic diseases, including diabetes. However, the precise causal relationships remain elusive. This study aims to investigate the potential causal associations between oral microbiome and type 2 diabetes (T2D) using Mendelian randomization (MR) analyses. Methods We conducted bidirectional two-sample MR analyses to investigate the impact of oral microbiome from saliva and the tongue T2D. This analysis was based on metagenome-genome-wide association studies (mgGWAS) summary statistics of the oral microbiome and a large meta-analysis of GWAS of T2D in East Asian populations. Additionally, we utilized the T2D GWAS summary statistics from the Biobank Japan (BBJ) project for replication. The MR methods employed included Wald ratio, inverse variance weighting (IVW), weighted median, MR-Egger, contamination mixture (ConMix), and robust adjusted profile score (RAPS). Results Our MR analyses revealed genetic associations between specific bacterial species in the oral microbiome of saliva and tongue with T2D in East Asian populations. The MR results indicated that nine genera were shared by both saliva and tongue. Among these, the genera Aggregatibacter, Pauljensenia, and Prevotella were identified as risk factors for T2D. Conversely, the genera Granulicatella and Haemophilus D were found to be protective elements against T2D. However, different species within the genera Catonella, Lachnoanaerobaculum, Streptococcus, and Saccharimonadaceae TM7x exhibited multifaceted influences; some species were positively correlated with the risk of developing T2D, while others were negatively correlated. Discussion This study utilized genetic variation tools to confirm the causal effect of specific oral microbiomes on T2D in East Asian populations. These findings provide valuable insights for the treatment and early screening of T2D, potentially informing more targeted and effective therapeutic strategies.
Collapse
Affiliation(s)
- Xinyi Lyu
- West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueyuan Xu
- West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sihong Shen
- West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Qin
- Department of Endocrinology and Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Bostanghadiri N, Kouhzad M, Taki E, Elahi Z, Khoshbayan A, Navidifar T, Darban-Sarokhalil D. Oral microbiota and metabolites: key players in oral health and disorder, and microbiota-based therapies. Front Microbiol 2024; 15:1431785. [PMID: 39228377 PMCID: PMC11368800 DOI: 10.3389/fmicb.2024.1431785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
The review aimed to investigate the diversity of oral microbiota and its influencing factors, as well as the association of oral microbiota with oral health and the possible effects of dysbiosis and oral disorder. The oral cavity harbors a substantial microbial burden, which is particularly notable compared to other organs within the human body. In usual situations, the microbiota exists in a state of equilibrium; however, when this balance is disturbed, a multitude of complications arise. Dental caries, a prevalent issue in the oral cavity, is primarily caused by the colonization and activity of bacteria, particularly streptococci. Furthermore, this environment also houses other pathogenic bacteria that are associated with the onset of gingival, periapical, and periodontal diseases, as well as oral cancer. Various strategies have been employed to prevent, control, and treat these disorders. Recently, techniques utilizing microbiota, like probiotics, microbiota transplantation, and the replacement of oral pathogens, have caught the eye. This extensive examination seeks to offer a general view of the oral microbiota and their metabolites concerning oral health and disease, and also the resilience of the microbiota, and the techniques used for the prevention, control, and treatment of disorders in this specific area.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Kouhzad
- Department of Genetics, Faculty of Science, Islamic Azad University North Tehran Branch, Tehran, Iran
| | - Elahe Taki
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Stankevic E, Kern T, Borisevich D, Poulsen CS, Madsen AL, Hansen TH, Jonsson A, Schubert M, Nygaard N, Nielsen T, Belstrøm D, Ahluwalia TS, Witte DR, Grarup N, Arumugam M, Pedersen O, Hansen T. Genome-wide association study identifies host genetic variants influencing oral microbiota diversity and metabolic health. Sci Rep 2024; 14:14738. [PMID: 38926497 PMCID: PMC11208528 DOI: 10.1038/s41598-024-65538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
The microbial communities of the oral cavity are important elements of oral and systemic health. With emerging evidence highlighting the heritability of oral bacterial microbiota, this study aimed to identify host genome variants that influence oral microbial traits. Using data from 16S rRNA gene amplicon sequencing, we performed genome-wide association studies with univariate and multivariate traits of the salivary microbiota from 610 unrelated adults from the Danish ADDITION-PRO cohort. We identified six single nucleotide polymorphisms (SNPs) in human genomes that showed associations with abundance of bacterial taxa at different taxonomical tiers (P < 5 × 10-8). Notably, SNP rs17793860 surpassed our study-wide significance threshold (P < 1.19 × 10-9). Additionally, rs4530093 was linked to bacterial beta diversity (P < 5 × 10-8). Out of these seven SNPs identified, six exerted effects on metabolic traits, including glycated hemoglobin A1c, triglyceride and high-density lipoprotein cholesterol levels, the risk of type 2 diabetes and stroke. Our findings highlight the impact of specific host SNPs on the composition and diversity of the oral bacterial community. Importantly, our results indicate an intricate interplay between host genetics, the oral microbiota, and metabolic health. We emphasize the need for integrative approaches considering genetic, microbial, and metabolic factors.
Collapse
Affiliation(s)
- Evelina Stankevic
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Timo Kern
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dmitrii Borisevich
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Casper Sahl Poulsen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Lundager Madsen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tue Haldor Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Medical Department, Zealand University Hospital, Koege, Denmark
| | - Anna Jonsson
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Schubert
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikoline Nygaard
- Department of Odontology, Section for Clinical Oral Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Trine Nielsen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Medical Department, Zealand University Hospital, Koege, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Belstrøm
- Department of Odontology, Section for Clinical Oral Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- The Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Herlev-Gentofte University Hospital, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Pitchika V, Büttner M, Schwendicke F. Artificial intelligence and personalized diagnostics in periodontology: A narrative review. Periodontol 2000 2024; 95:220-231. [PMID: 38927004 DOI: 10.1111/prd.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Periodontal diseases pose a significant global health burden, requiring early detection and personalized treatment approaches. Traditional diagnostic approaches in periodontology often rely on a "one size fits all" approach, which may overlook the unique variations in disease progression and response to treatment among individuals. This narrative review explores the role of artificial intelligence (AI) and personalized diagnostics in periodontology, emphasizing the potential for tailored diagnostic strategies to enhance precision medicine in periodontal care. The review begins by elucidating the limitations of conventional diagnostic techniques. Subsequently, it delves into the application of AI models in analyzing diverse data sets, such as clinical records, imaging, and molecular information, and its role in periodontal training. Furthermore, the review also discusses the role of research community and policymakers in integrating personalized diagnostics in periodontal care. Challenges and ethical considerations associated with adopting AI-based personalized diagnostic tools are also explored, emphasizing the need for transparent algorithms, data safety and privacy, ongoing multidisciplinary collaboration, and patient involvement. In conclusion, this narrative review underscores the transformative potential of AI in advancing periodontal diagnostics toward a personalized paradigm, and their integration into clinical practice holds the promise of ushering in a new era of precision medicine for periodontal care.
Collapse
Affiliation(s)
- Vinay Pitchika
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Martha Büttner
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Falk Schwendicke
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
12
|
Xiong J, Liu H, Li C, Li Y, Feng J. Linking periodontitis with 20 cancers, emphasis on oropharyngeal cancer: a Mendelian randomization analysis. Sci Rep 2024; 14:12511. [PMID: 38822160 PMCID: PMC11143368 DOI: 10.1038/s41598-024-63447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
While associations between periodontitis and an elevated risk of cancer have been suggested, the results of existing observational studies have been inconsistent, also leaving room for further investigation into the underlying mechanisms. This study was designed to delve into the possible causal link between periodontitis and 20 standard cancers while concurrently identifying potential mediators. We initiated a Mendelian randomization analysis that drew from either publicly accessible or personally obtained genome-wide association study (GWAS) datasets. The inverse variance weighting (IVW) method served as our primary tool for analysis. To ensure the strength and consistency of our results, we implemented additional strategies, including weighted median, weighted mode, MR-Egger regression, and MR pleiotropy residual sum and outlier (MR-PRESSO), bolstered by funnel plots. Our analysis unveiled an elevated risk of head and neck cancer concomitant with periodontitis (p = 0.041, OR 0.999, 95% CI 0.999-1.000), specifically a heightened risk of oropharyngeal cancer (p = 0.022, OR 0.999, 95% CI 0.999-1.000). As a result of probing into potential mediators, Fusobacterium nucleatum emerged as a likely intermediary in the promoting effect of periodontitis on oropharyngeal cancer (p = 0.021, OR 0.999, 95% CI 0.998-1.000). Inversely, basal cell carcinoma and endometrial cancer demonstrated an association with an increased incidence of periodontitis (basal cell carcinoma: p = 0.020, OR 0.987, 95% CI 0.976-0.998; endometrial cancer: p = 0.027, OR 0.984, 95% CI 0.970-0.998). However, periodontitis exerted no significant causal impact on the 19 other common cancers or the three subtypes of head and neck cancer. To conclude, our results support the theory that periodontitis contributes to an enhanced risk of head and neck cancer, particularly oropharyngeal cancer, with Fusobacterium nucleatum functioning as a potential intermediary.
Collapse
Affiliation(s)
- Jun Xiong
- Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Conghua Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yong Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jiali Feng
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
13
|
Gao J, Yang Y, Xiang X, Zheng H, Yi X, Wang F, Liang Z, Chen D, Shi W, Wang L, Wu D, Feng S, Huang Q, Li X, Shu W, Chen R, Zhong N, Wang Z. Human genetic associations of the airway microbiome in chronic obstructive pulmonary disease. Respir Res 2024; 25:165. [PMID: 38622589 PMCID: PMC11367891 DOI: 10.1186/s12931-024-02805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Little is known about the relationships between human genetics and the airway microbiome. Deeply sequenced airway metagenomics, by simultaneously characterizing the microbiome and host genetics, provide a unique opportunity to assess the microbiome-host genetic associations. Here we performed a co-profiling of microbiome and host genetics with the identification of over 5 million single nucleotide polymorphisms (SNPs) through deep metagenomic sequencing in sputum of 99 chronic obstructive pulmonary disease (COPD) and 36 healthy individuals. Host genetic variation was the most significant factor associated with the microbiome except for geography and disease status, with its top 5 principal components accounting for 12.11% of the microbiome variability. Within COPD individuals, 113 SNPs mapped to candidate genes reported as genetically associated with COPD exhibited associations with 29 microbial species and 48 functional modules (P < 1 × 10-5), where Streptococcus salivarius exhibits the strongest association to SNP rs6917641 in TBC1D32 (P = 9.54 × 10-8). Integration of concurrent host transcriptomic data identified correlations between the expression of host genes and their genetically-linked microbiome features, including NUDT1, MAD1L1 and Veillonella parvula, TTLL9 and Stenotrophomonas maltophilia, and LTA4H and Haemophilus influenzae. Mendelian randomization analyses revealed a potential causal link between PARK7 expression and microbial type III secretion system, and a genetically-mediated association between COPD and increased relative abundance of airway Streptococcus intermedius. These results suggest a previously underappreciated role of host genetics in shaping the airway microbiome and provide fresh hypotheses for genetic-based host-microbiome interactions in COPD.
Collapse
Affiliation(s)
- Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Yuqiong Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaopeng Xiang
- The Hong Kong Polytechnic University, Hong Kong, Hung Hom Kowloon, China
| | - Huimin Zheng
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Fengyan Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Dandan Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Weijuan Shi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Di Wu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Shengchuan Feng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qiaoyun Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xueping Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wensheng Shu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China.
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Zhang Wang
- Institute of Ecological Sciences, Biomedical Research Center, School of Life Sciences, State Key Laboratory of Respiratory Disease, South China Normal University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
14
|
Zeng Q, Zhang M, Wang R. Causal link between gut microbiome and schizophrenia: a Mendelian randomization study. Psychiatr Genet 2024; 34:43-53. [PMID: 38441075 DOI: 10.1097/ypg.0000000000000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
OBJECTIVE Some observational studies have shown that gut microbiome is significantly changed in patients with schizophrenia. We aim to identify the genetic causal link between gut microbiome and schizophrenia. METHODS A two-sample Mendelian randomization (MR) study was used to evaluate the causal link between gut microbiome and schizophrenia with 28 gut microbiome-associated genetic instrumental variants chosen from recent MR reports and the largest schizophrenia genome-wide association studies (8-Apr-22 release). RESULTS Inverse variance weighted method showed that genetically increased Bacteroidales_S24-7 (per SD) resulted in increased risk of schizophrenia (OR = 1.110, 95% CI: [1.012-1.217], P = 0.027). Similarly, genetically increased Prevotellaceae promoted schizophrenia risk (OR = 1.124, 95% CI: [1.030-1.228], P = 0.009). However, genetically increased Lachnospiraceae reduced schizophrenia risk (OR = 0.878, 95% CI: [0.785-0.983], P = 0.023). In addition, schizophrenia risk was also suppressed by genetically increased Lactobacillaceae (OR = 0.878, 95% CI: [0.776-0.994], P = 0.040) and Verrucomicrobiaceae (OR = 0.860, 95% CI: [0.749-0.987], P = 0.032). Finally, we did not find any significant results in the causal association of other 23 gut microbiome with schizophrenia. CONCLUSION Our analysis suggests that genetically increased Bacteroidales_S24-7 and Prevotellaceae promotes schizophrenia risk, whereas genetically increased Lachnospiraceae, Lactobacillaceae, and Verrucomicrobiaceae reduces schizophrenia risk. Thus, regulation of the disturbed intestinal microbiota may represent a new therapeutic strategy for patients with schizophrenia.
Collapse
Affiliation(s)
- Qi Zeng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
15
|
Liu X, Tong X, Zou L, Ju Y, Liu M, Han M, Lu H, Yang H, Wang J, Zong Y, Liu W, Xu X, Jin X, Xiao L, Jia H, Guo R, Zhang T. A genome-wide association study reveals the relationship between human genetic variation and the nasal microbiome. Commun Biol 2024; 7:139. [PMID: 38291185 PMCID: PMC10828421 DOI: 10.1038/s42003-024-05822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
The nasal cavity harbors diverse microbiota that contributes to human health and respiratory diseases. However, whether and to what extent the host genome shapes the nasal microbiome remains largely unknown. Here, by dissecting the human genome and nasal metagenome data from 1401 healthy individuals, we demonstrated that the top three host genetic principal components strongly correlated with the nasal microbiota diversity and composition. The genetic association analyses identified 63 genome-wide significant loci affecting the nasal microbial taxa and functions, of which 2 loci reached study-wide significance (p < 1.7 × 10-10): rs73268759 within CAMK2A associated with genus Actinomyces and family Actinomycetaceae; and rs35211877 near POM121L12 with Gemella asaccharolytica. In addition to respiratory-related diseases, the associated loci are mainly implicated in cardiometabolic or neuropsychiatric diseases. Functional analysis showed the associated genes were most significantly expressed in the nasal airway epithelium tissue and enriched in the calcium signaling and hippo signaling pathway. Further observational correlation and Mendelian randomization analyses consistently suggested the causal effects of Serratia grimesii and Yokenella regensburgei on cardiometabolic biomarkers (cystine, glutamic acid, and creatine). This study suggested that the host genome plays an important role in shaping the nasal microbiome.
Collapse
Affiliation(s)
- Xiaomin Liu
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Tong
- BGI Research, Shenzhen, 518083, China
| | | | - Yanmei Ju
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Mo Han
- BGI Research, Shenzhen, 518083, China
| | - Haorong Lu
- China National Genebank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Huanming Yang
- BGI Research, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Jian Wang
- BGI Research, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Yang Zong
- BGI Research, Shenzhen, 518083, China
| | | | - Xun Xu
- BGI Research, Shenzhen, 518083, China
| | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, 518083, China
| | - Huijue Jia
- Greater Bay Area Institute of Precision Medicine, Guangzhou, Guangdong, China.
- School of Life Sciences, Fudan University, Shanghai, China.
| | | | | |
Collapse
|
16
|
Fujihara C, Hafiyyah OA, Murakami S. Identification of disease-associate variants of aggressive periodontitis using genome-wide association studies. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:357-364. [PMID: 37860752 PMCID: PMC10582758 DOI: 10.1016/j.jdsr.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023] Open
Abstract
Aggressive periodontitis (AgP), Stage III or IV and Grade C according to the new periodontitis classification, is characterized by the rapid destruction of periodontal tissues in the systemically healthy population and often causes premature tooth loss. The presence of familial aggregation suggests the involvement of genetic factors in the pathogenesis. However, the genes associated with the onset and progression of the disease and details of its pathogenesis have not yet been fully identified. In recent years, the genome-wide approach (GWAS), a comprehensive genome analysis method using bioinformatics, has been used to search for disease-related genes, and the results have been applied in genomic medicine for various diseases, such as cancer. In this review, we discuss GWAS in the context of AgP. First, we introduce the relationship between single-nucleotide polymorphisms (SNPs) and susceptibility to diseases and how GWAS is useful for searching disease-related SNPs. Furthermore, we summarize the recent findings of disease-related genes using GWAS on AgP inside and outside Japan and a possible mechanism of the pathogenesis of AgP based on available literature and our research findings. These findings will lead to advancements in the prevention, prognosis, and treatment of AgP.
Collapse
Affiliation(s)
- Chiharu Fujihara
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Osa Amila Hafiyyah
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Periodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Shinya Murakami
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
17
|
Licandro H, Truntzer C, Fromentin S, Morabito C, Quinquis B, Pons N, Martin C, Blottière HM, Neyraud E. The bacterial species profiles of the lingual and salivary microbiota differ with basic tastes sensitivity in human. Sci Rep 2023; 13:20339. [PMID: 37989857 PMCID: PMC10663626 DOI: 10.1038/s41598-023-47636-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
Taste perception is crucial and impairments, which can be linked to pathologies, can lead to eating disorders. It is triggered by taste compounds stimulating receptors located on the tongue. However, the tongue is covered by a film containing saliva and microorganisms suspected to modulate the taste receptor environment. The present study aimed to elucidate the links between taste sensitivity (sweetness, sourness, bitterness, saltiness, umami) and the salivary as well as the tongue microbiota using shotgun metagenomics. 109 bacterial species were correlated with at least one taste. Interestingly, when a species was correlated with at least two tastes, the correlations were unidirectional, indicating a putative global implication. Some Streptococcus, SR1 and Rickenellaceae species correlated with five tastes. When comparing both ecosystems, saliva appears to be a better taste predictor than tongue. This work shows the implication of the oral microbiota in taste and exhibits specificities depending on the ecosystem considered.
Collapse
Affiliation(s)
- Hélène Licandro
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Caroline Truntzer
- Plateforme de Transfert en Biologie Cancérologique, Georges François Leclerc Cancer Center - UNICANCER, 1 rue du Professeur Marion, 21000, Dijon, France
- UMR INSERM 1231, 7 Boulevard Jeanne d'Arc, 21000, Dijon, France
| | | | - Christian Morabito
- MetaGenoPolis, INRAE, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Benoit Quinquis
- MetaGenoPolis, INRAE, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Nicolas Pons
- MetaGenoPolis, INRAE, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Christophe Martin
- Centre des Sciences du Goût et de l'Alimentation, Institut Agro Dijon, CNRS, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, 21000, Dijon, France
- PROBE Research Infrastructure, Chemosens Facility, 21000, Dijon, France
| | - Hervé M Blottière
- MetaGenoPolis, INRAE, AgroParisTech, Université Paris-Saclay, Paris, France
- INRAE, UMR 1280, PhAN, Nantes Université, 44000, Nantes, France
| | - Eric Neyraud
- Centre des Sciences du Goût et de l'Alimentation, Institut Agro Dijon, CNRS, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, 21000, Dijon, France.
| |
Collapse
|
18
|
Meslier V, Menozzi E, David A, Morabito C, Lucas Del Pozo S, Famechon A, North J, Quinquis B, Koletsi S, Macnaughtan J, Mezabrovschi R, Ehrlich SD, Schapira AHV, Almeida M. Evaluation of an Adapted Semi-Automated DNA Extraction for Human Salivary Shotgun Metagenomics. Biomolecules 2023; 13:1505. [PMID: 37892187 PMCID: PMC10604855 DOI: 10.3390/biom13101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Recent attention has highlighted the importance of oral microbiota in human health and disease, e.g., in Parkinson's disease, notably using shotgun metagenomics. One key aspect for efficient shotgun metagenomic analysis relies on optimal microbial sampling and DNA extraction, generally implementing commercial solutions developed to improve sample collection and preservation, and provide high DNA quality and quantity for downstream analysis. As metagenomic studies are today performed on a large number of samples, the next evolution to increase study throughput is with DNA extraction automation. In this study, we proposed a semi-automated DNA extraction protocol for human salivary samples collected with a commercial kit, and compared the outcomes with the DNA extraction recommended by the manufacturer. While similar DNA yields were observed between the protocols, our semi-automated DNA protocol generated significantly higher DNA fragment sizes. Moreover, we showed that the oral microbiome composition was equivalent between DNA extraction methods, even at the species level. This study demonstrates that our semi-automated protocol is suitable for shotgun metagenomic analysis, while allowing for improved sample treatment logistics with reduced technical variability and without compromising the structure of the oral microbiome.
Collapse
Affiliation(s)
- Victoria Meslier
- MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.M.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
| | - Elisa Menozzi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London (UCL), London WC1E 6BT, UK
| | - Aymeric David
- MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.M.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
| | - Christian Morabito
- MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.M.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
| | - Sara Lucas Del Pozo
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London (UCL), London WC1E 6BT, UK
| | - Alexandre Famechon
- MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.M.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
| | - Janet North
- Research Department of Hematology, Cancer Institute, University College London (UCL), London WC1E 6BT, UK
| | - Benoit Quinquis
- MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.M.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
| | - Sofia Koletsi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London (UCL), London WC1E 6BT, UK
| | - Jane Macnaughtan
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London WC1E 6BT, UK
| | - Roxana Mezabrovschi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London (UCL), London WC1E 6BT, UK
| | - S. Dusko Ehrlich
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London (UCL), London WC1E 6BT, UK
| | - Anthony H. V. Schapira
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London (UCL), London WC1E 6BT, UK
| | - Mathieu Almeida
- MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.M.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
| |
Collapse
|
19
|
Wang XL, Xu HW, Liu NN. Oral Microbiota: A New Insight into Cancer Progression, Diagnosis and Treatment. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:535-547. [PMID: 37881320 PMCID: PMC10593652 DOI: 10.1007/s43657-023-00124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 10/27/2023]
Abstract
The polymorphic microbiome has been defined as one of the "Hallmarks of Cancer". Extensive studies have now uncovered the role of oral microbiota in cancer development and progression. Bacteria, fungi, archaea, and viruses in the oral cavity interact dynamically with the oral microenvironment to maintain the oral micro-ecological homeostasis. This complex interaction is influenced by many factors, such as maternal transmission, personal factors and environmental factors. Dysbiosis of oral microbiota can disturbed this host-microbiota interaction, leading to systemic diseases. Numerous studies have shown the potential associations between oral microbiota and a variety of cancers. However, the underlying mechanisms and therapeutic insights are still poorly understood. In this review, we mainly focus on the following aspects: (1) the factors affect oral microbiota composition and function; (2) the interaction between microenvironment and oral microbiota; (3) the role of multi-kingdom oral microbiota in human health; (4) the potential underlying mechanisms and therapeutic benefits of oral microbiota against cancer. Finally, we aim to describe the impact of oral microbiota on cancer progression and provide novel therapeutic insights into cancer prevention and treatment by targeting oral microbiota.
Collapse
Affiliation(s)
- Xiu-Li Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Hua-Wen Xu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| |
Collapse
|
20
|
Dang K, Zhang N, Gao H, Wang G, Liang H, Xue M. Influence of intestinal microecology in the development of gout or hyperuricemia and the potential therapeutic targets. Int J Rheum Dis 2023; 26:1911-1922. [PMID: 37606177 DOI: 10.1111/1756-185x.14888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
Gout and hyperuricemia are common metabolic diseases. Patients with purine metabolism disorder and/or decreased uric acid excretion showed increased uric acid levels in the blood. The increase of uric acid in the blood leads to the deposition of urate crystals in tissues, joints, and kidneys, and causes gout. Recent studies have revealed that imbalance of the intestinal microecology is closely related to the occurrence and development of hyperuricemia and gout. Disorder of the intestinal flora often occurs in patients with gout, and high purine and high fructose may induce the disorder of intestinal flora. Short-chain fatty acids and endotoxins produced by intestinal bacteria are closely related to the inflammatory response of gout. This article summarizes the characteristics of intestinal microecology in patients or animal models with hyperuricemia or gout, and explores the relationship between intestinal microecology and gout or hyperuricemia from the aspect of the intestinal barrier, intestinal microorganisms, intestinal metabolites, and intestinal immune system. We also review the current status of hyperuricemia treatment by targeting intestinal microecology.
Collapse
Affiliation(s)
- Kai Dang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haiqi Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guifa Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao, China
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Perez-Garcia J, Espuela-Ortiz A, Hernández-Pérez JM, González-Pérez R, Poza-Guedes P, Martin-Gonzalez E, Eng C, Sardón-Prado O, Mederos-Luis E, Corcuera-Elosegui P, Sánchez-Machín I, Korta-Murua J, Villar J, Burchard EG, Lorenzo-Diaz F, Pino-Yanes M. Human genetics influences microbiome composition involved in asthma exacerbations despite inhaled corticosteroid treatment. J Allergy Clin Immunol 2023; 152:799-806.e6. [PMID: 37301411 PMCID: PMC10522330 DOI: 10.1016/j.jaci.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The upper-airway microbiome is involved in asthma exacerbations despite inhaled corticosteroid (ICS) treatment. Although human genetics regulates microbiome composition, its influence on asthma-related airway bacteria remains unknown. OBJECTIVE We sought to identify genes and biological pathways regulating airway-microbiome traits involved in asthma exacerbations and ICS response. METHODS Saliva, nasal, and pharyngeal samples from 257 European patients with asthma were analyzed. The association of 6,296,951 genetic variants with exacerbation-related microbiome traits despite ICS treatment was tested through microbiome genome-wide association studies. Variants with 1 × 10-4 RESULTS Genes associated with exacerbation-related airway-microbiome traits were enriched in asthma comorbidities development (ie, reflux esophagitis, obesity, and smoking), and were likely regulated by trichostatin A and the nuclear factor-κB, the glucocorticosteroid receptor, and CCAAT/enhancer-binding protein transcription factors (7.8 × 10-13 ≤ false discovery rate ≤ 0.022). Enrichment in smoking, trichostatin A, nuclear factor-κB, and glucocorticosteroid receptor were replicated in the saliva samples from diverse populations (4.42 × 10-9 ≤ P ≤ .008). The ICS-response-associated single nucleotide polymorphisms rs5995653 (APOBEC3B-APOBEC3C), rs6467778 (TRIM24), and rs5752429 (TPST2) were identified as microbiome quantitative trait loci of Streptococcus, Tannerella, and Campylobacter in the upper airway (0.027 ≤ false discovery rate ≤ 0.050). CONCLUSIONS Genes associated with asthma exacerbation-related microbiome traits might influence asthma comorbidities. We reinforced the therapeutic interest of trichostatin A, nuclear factor-κB, the glucocorticosteroid receptor, and CCAAT/enhancer-binding protein in asthma exacerbations.
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Antonio Espuela-Ortiz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - José M Hernández-Pérez
- Pulmonary Medicine Service, Hospital Universitario N.S de Candelaria, La Laguna, Tenerife, Spain; Pulmonary Medicine Section, Hospital Universitario de La Palma, La Palma, Spain
| | - Ruperto González-Pérez
- Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - Paloma Poza-Guedes
- Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - Elena Martin-Gonzalez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Celeste Eng
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, Calif
| | - Olaia Sardón-Prado
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain; Department of Pediatrics, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Elena Mederos-Luis
- Allergy Department, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - Paula Corcuera-Elosegui
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | | | - Javier Korta-Murua
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain; Li Ka Shing Knowledge Institute at the St. Michael's Hospital, Toronto, Ontario, Canada
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, Calif; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco (UCSF), San Francisco, Calif
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| |
Collapse
|
22
|
Blostein F, Zou T, Bhaumik D, Salzman E, Bakulski K, Shaffer J, Marazita M, Foxman B. Bacterial Community Modifies Host Genetics Effect on Early Childhood Caries. J Dent Res 2023; 102:1098-1105. [PMID: 37395259 PMCID: PMC10552462 DOI: 10.1177/00220345231175356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
By age 5, approximately one-fifth of children have early childhood caries (ECC). Both the oral microbiome and host genetics are thought to influence susceptibility. Whether the oral microbiome modifies genetic susceptibility to ECC has not been tested. We test whether the salivary bacteriome modifies the association of a polygenic score (PGS, a score derived from genomic data that summarizes genetic susceptibility to disease) for primary tooth decay on ECC in the Center for Oral Health Research in Appalachia 2 longitudinal birth cohort. Children were genotyped using the Illumina Multi-Ethnic Genotyping Array and underwent annual dental examinations. We constructed a PGS for primary tooth decay using weights from an independent, genome-wide association meta-analysis. Using Poisson regression, we tested for associations between the PGS (high versus low) and ECC incidence, adjusting for demographic characteristics (n = 783). An incidence-density sampled subset of the cohort (n = 138) had salivary bacteriome data at 24 mo of age. We tested for effect modification of the PGS on ECC case status by salivary bacterial community state type (CST). By 60 mo, 20.69% of children had ECC. High PGS was not associated with an increased rate of ECC (incidence rate ratio, 1.09; 95% confidence interval [CI], 0.83-1.42). However, having a cariogenic salivary bacterial CST at 24 mo was associated with ECC (odds ratio [OR], 7.48; 95% CI, 3.06-18.26), which was robust to PGS adjustment. An interaction existed between the salivary bacterial CST and the PGS on the multiplicative scale (P = 0.04). The PGS was associated with ECC (OR, 4.83; 95% CI, 1.29-18.17) only among individuals with a noncariogenic salivary bacterial CST (n = 70). Genetic causes of caries may be harder to detect when not accounting for cariogenic oral microbiomes. As certain salivary bacterial CSTs increased ECC risk across genetic risk strata, preventing colonization of cariogenic microbiomes would be universally beneficial.
Collapse
Affiliation(s)
- F. Blostein
- Department of Epidemiology, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - T. Zou
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - D. Bhaumik
- Department of Epidemiology, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - E. Salzman
- Department of Epidemiology, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - K.M. Bakulski
- Department of Epidemiology, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - J.R. Shaffer
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - M.L. Marazita
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical and Translational Sciences Institute, and Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - B. Foxman
- Department of Epidemiology, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Nam NN, Do HDK, Loan Trinh KT, Lee NY. Metagenomics: An Effective Approach for Exploring Microbial Diversity and Functions. Foods 2023; 12:2140. [PMID: 37297385 PMCID: PMC10252221 DOI: 10.3390/foods12112140] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Various fields have been identified in the "omics" era, such as genomics, proteomics, transcriptomics, metabolomics, phenomics, and metagenomics. Among these, metagenomics has enabled a significant increase in discoveries related to the microbial world. Newly discovered microbiomes in different ecologies provide meaningful information on the diversity and functions of microorganisms on the Earth. Therefore, the results of metagenomic studies have enabled new microbe-based applications in human health, agriculture, and the food industry, among others. This review summarizes the fundamental procedures on recent advances in bioinformatic tools. It also explores up-to-date applications of metagenomics in human health, food study, plant research, environmental sciences, and other fields. Finally, metagenomics is a powerful tool for studying the microbial world, and it still has numerous applications that are currently hidden and awaiting discovery. Therefore, this review also discusses the future perspectives of metagenomics.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 72820, Vietnam
| | - Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
24
|
Räisänen L, Agrawal N, Mathew B, Kääriäinen S, Kolho KL, Viljakainen H. Pre-Diagnostic Saliva Microbiota of School-Aged Children Who Developed Type 1 Diabetes or Inflammatory Bowel Diseases. Int J Mol Sci 2023; 24:ijms24098279. [PMID: 37175985 PMCID: PMC10179007 DOI: 10.3390/ijms24098279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Altered commensal microbiota composition has been associated with pediatric type 1 diabetes mellitus (T1D) and inflammatory bowel diseases (IBD), but the causal relationship is still unclear. To search for potential pre-diagnostic biomarkers for pediatric T1D or IBD, we compared microbiota in saliva samples in a nested case-control design comprising children developing T1D (nchildren = 52) or IBD (nchildren = 21) and controls with a similar age, sex, and residential area (nchildren = 79). The pre-diagnostic saliva microbiota alpha- and beta-diversity of children who would develop T1D (nsamples = 27) or IBD (nsamples = 14) minimally varied from that of controls. The relative abundances of Abiotrophia were higher, while those of Veillonella, Actinomyces, Megasphaera, Butyrivibrio, and Candidatus ancillula were lower in children who would develop T1D. Within 2 years before diagnosis, the metabolic PWY-5677 pathway (converting succinate into butyrate) was lower in pre-T1D samples than in controls (q = 0.034). No significant pre-IBD differences were found. In conclusion, saliva microbiota diversity or composition were not successful predictors for pediatric T1D nor IBD. Intriguingly, the succinate fermentation pathway was predicted to be lowered before the onset of T1D. Thus, investigating functional pathways might provide a better approach in searching for biomarkers for autoimmune disease in the future.
Collapse
Affiliation(s)
- Laura Räisänen
- Faculty of Medicine and Health Technology (MET), Tampere University, 33100 Tampere, Finland
- Department of Pediatrics, Tampere University Hospital, 33520 Tampere, Finland
- Folkhälsan Research Center, 00250 Helsinki, Finland
| | - Nitin Agrawal
- Folkhälsan Research Center, 00250 Helsinki, Finland
- Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Binu Mathew
- Folkhälsan Research Center, 00250 Helsinki, Finland
| | - Sohvi Kääriäinen
- Finnish Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Kaija-Leena Kolho
- Faculty of Medicine and Health Technology (MET), Tampere University, 33100 Tampere, Finland
- Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital (HUS), 00290 Helsinki, Finland
| | - Heli Viljakainen
- Folkhälsan Research Center, 00250 Helsinki, Finland
- Finnish Institute for Health and Welfare, 00271 Helsinki, Finland
| |
Collapse
|
25
|
Blostein F, Zou T, Bhaumik D, Salzman E, Bakulski KM, Shaffer JR, Marazita ML, Foxman B. Bacterial community modifies host genetics effect on early childhood caries. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.11.23284235. [PMID: 37090669 PMCID: PMC10120800 DOI: 10.1101/2023.01.11.23284235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background By age five approximately one-fifth of children have early childhood caries (ECC). Both the oral microbiome and host genetics are thought to influence susceptibility. Whether the oral microbiome modifies genetic susceptibility to ECC has not been tested. We test whether the salivary bacteriome modifies the association of a polygenic score (PGS, a score derived from genomic data that summarizes genetic susceptibility to disease) for primary tooth decay on ECC in the Center for Oral Health Research in Appalachia 2 longitudinal birth cohort. Methods Children were genotyped using the Illumina Multi-Ethnic Genotyping Array and underwent annual dental examinations. We constructed a PGS for primary tooth decay using weights from an independent, genome-wide association meta-analysis. Using Poisson regression, we tested for associations between the PGS (high versus low) and ECC incidence, adjusting for demographic characteristics (n=783). An incidence-density sampled subset of the cohort (n=138) had salivary bacteriome data at 24- months of age. We tested for effect modification of the PGS on ECC case status by salivary bacterial community state type (CST). Results By 60-months, 20.69% of children had ECC. High PGS was not associated with an increased rate of ECC (incidence-rate ratio:1.09 (95% confidence interval (CI): 0.83, 1.42)). However, having a cariogenic salivary bacterial CST at 24-months was associated with ECC (odds ratio (OR): 7.48 (95%CI: 3.06, 18.26)), which was robust to PGS adjustment. An interaction existed between the salivary bacterial CST and the PGS on the multiplicative scale (P= 0.04). The PGS was associated with ECC (OR: 4.83 (95% CI: 1.29, 18.17)) only among individuals with a noncariogenic salivary bacterial CST (n=70). Conclusions Genetic causes of caries may be harder to detect when not accounting for cariogenic oral microbiomes. As certain salivary bacterial CSTs increased ECC-risk across genetic-risk strata, preventing colonization of cariogenic microbiomes would be universally beneficial.
Collapse
Affiliation(s)
- Freida Blostein
- Department of Epidemiology, University of Michigan School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tianyu Zou
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Deesha Bhaumik
- Department of Epidemiology, University of Michigan School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Elizabeth Salzman
- Department of Epidemiology, University of Michigan School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John R Shaffer
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mary L Marazita
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Clinical and Translational Sciences Institute, and Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Betsy Foxman
- Department of Epidemiology, University of Michigan School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
26
|
Wang XW, Sun Z, Jia H, Michel-Mata S, Angulo MT, Dai L, He X, Weiss ST, Liu YY. Identifying keystone species in microbial communities using deep learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532858. [PMID: 36993659 PMCID: PMC10055077 DOI: 10.1101/2023.03.15.532858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Previous studies suggested that microbial communities harbor keystone species whose removal can cause a dramatic shift in microbiome structure and functioning. Yet, an efficient method to systematically identify keystone species in microbial communities is still lacking. This is mainly due to our limited knowledge of microbial dynamics and the experimental and ethical difficulties of manipulating microbial communities. Here, we propose a Data-driven Keystone species Identification (DKI) framework based on deep learning to resolve this challenge. Our key idea is to implicitly learn the assembly rules of microbial communities from a particular habitat by training a deep learning model using microbiome samples collected from this habitat. The well-trained deep learning model enables us to quantify the community-specific keystoneness of each species in any microbiome sample from this habitat by conducting a thought experiment on species removal. We systematically validated this DKI framework using synthetic data generated from a classical population dynamics model in community ecology. We then applied DKI to analyze human gut, oral microbiome, soil, and coral microbiome data. We found that those taxa with high median keystoneness across different communities display strong community specificity, and many of them have been reported as keystone taxa in literature. The presented DKI framework demonstrates the power of machine learning in tackling a fundamental problem in community ecology, paving the way for the data-driven management of complex microbial communities.
Collapse
|
27
|
Liu X, Zou L, Nie C, Qin Y, Tong X, Wang J, Yang H, Xu X, Jin X, Xiao L, Zhang T, Min J, Zeng Y, Jia H, Hou Y. Mendelian randomization analyses reveal causal relationships between the human microbiome and longevity. Sci Rep 2023; 13:5127. [PMID: 36991009 PMCID: PMC10052271 DOI: 10.1038/s41598-023-31115-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Although recent studies have revealed the association between the human microbiome especially gut microbiota and longevity, their causality remains unclear. Here, we assess the causal relationships between the human microbiome (gut and oral microbiota) and longevity, by leveraging bidirectional two-sample Mendelian randomization (MR) analyses based on genome-wide association studies (GWAS) summary statistics of the gut and oral microbiome from the 4D-SZ cohort and longevity from the CLHLS cohort. We found that some disease-protected gut microbiota such as Coriobacteriaceae and Oxalobacter as well as the probiotic Lactobacillus amylovorus were related to increased odds of longevity, whereas the other gut microbiota such as colorectal cancer pathogen Fusobacterium nucleatum, Coprococcus, Streptococcus, Lactobacillus, and Neisseria were negatively associated with longevity. The reverse MR analysis further revealed genetically longevous individuals tended to have higher abundances of Prevotella and Paraprevotella but lower abundances of Bacteroides and Fusobacterium species. Few overlaps of gut microbiota-longevity interactions were identified across different populations. We also identified abundant links between the oral microbiome and longevity. The additional analysis suggested that centenarians genetically had a lower gut microbial diversity, but no difference in oral microbiota. Our findings strongly implicate these bacteria to play a role in human longevity and underscore the relocation of commensal microbes among different body sites that would need to be monitored for long and healthy life.
Collapse
Affiliation(s)
- Xiaomin Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Chao Nie
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Xin Tong
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Tao Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Junxia Min
- School of Medicine, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| | - Yi Zeng
- Center for Healthy Aging and Development Studies, National School of Development, Raissun Institute for Advanced Studies, Peking University, Beijing, China.
| | - Huijue Jia
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Shanghai, China.
| | - Yong Hou
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
28
|
Nagata N, Takeuchi T, Masuoka H, Aoki R, Ishikane M, Iwamoto N, Sugiyama M, Suda W, Nakanishi Y, Terada-Hirashima J, Kimura M, Nishijima T, Inooka H, Miyoshi-Akiyama T, Kojima Y, Shimokawa C, Hisaeda H, Zhang F, Yeoh YK, Ng SC, Uemura N, Itoi T, Mizokami M, Kawai T, Sugiyama H, Ohmagari N, Ohno H. Human Gut Microbiota and Its Metabolites Impact Immune Responses in COVID-19 and Its Complications. Gastroenterology 2023; 164:272-288. [PMID: 36155191 PMCID: PMC9499989 DOI: 10.1053/j.gastro.2022.09.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS We investigate interrelationships between gut microbes, metabolites, and cytokines that characterize COVID-19 and its complications, and we validate the results with follow-up, the Japanese 4D (Disease, Drug, Diet, Daily Life) microbiome cohort, and non-Japanese data sets. METHODS We performed shotgun metagenomic sequencing and metabolomics on stools and cytokine measurements on plasma from 112 hospitalized patients with SARS-CoV-2 infection and 112 non-COVID-19 control individuals matched by important confounders. RESULTS Multiple correlations were found between COVID-19-related microbes (eg, oral microbes and short-chain fatty acid producers) and gut metabolites (eg, branched-chain and aromatic amino acids, short-chain fatty acids, carbohydrates, neurotransmitters, and vitamin B6). Both were also linked to inflammatory cytokine dynamics (eg, interferon γ, interferon λ3, interleukin 6, CXCL-9, and CXCL-10). Such interrelationships were detected highly in severe disease and pneumonia; moderately in the high D-dimer level, kidney dysfunction, and liver dysfunction groups; but rarely in the diarrhea group. We confirmed concordances of altered metabolites (eg, branched-chain amino acids, spermidine, putrescine, and vitamin B6) in COVID-19 with their corresponding microbial functional genes. Results in microbial and metabolomic alterations with severe disease from the cross-sectional data set were partly concordant with those from the follow-up data set. Microbial signatures for COVID-19 were distinct from diabetes, inflammatory bowel disease, and proton-pump inhibitors but overlapping for rheumatoid arthritis. Random forest classifier models using microbiomes can highly predict COVID-19 and severe disease. The microbial signatures for COVID-19 showed moderate concordance between Hong Kong and Japan. CONCLUSIONS Multiomics analysis revealed multiple gut microbe-metabolite-cytokine interrelationships in COVID-19 and COVID-19related complications but few in gastrointestinal complications, suggesting microbiota-mediated immune responses distinct between the organ sites. Our results underscore the existence of a gut-lung axis in COVID-19.
Collapse
Affiliation(s)
- Naoyoshi Nagata
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan; Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Tadashi Takeuchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroaki Masuoka
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ryo Aoki
- Mechanism-based Research Laboratory, Ezaki Glico Co, Ltd, Osaka, Japan
| | - Masahiro Ishikane
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Noriko Iwamoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan,Department of Viral Pathogenesis and Controls, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yumiko Nakanishi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Junko Terada-Hirashima
- Division of Respiratory Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Moto Kimura
- Department of Clinical Research Strategic Planning Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Hiroshi Inooka
- Mechanism-based Research Laboratory, Ezaki Glico Co, Ltd, Osaka, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yasushi Kojima
- Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Chikako Shimokawa
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hajime Hisaeda
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Fen Zhang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China,Microbiota I-Center, Hong Kong, China,Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun Kit Yeoh
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China,Microbiota I-Center, Hong Kong, China,Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C. Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China,Microbiota I-Center, Hong Kong, China,Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Naomi Uemura
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan,Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Kohnodai Hospital, Tokyo, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Takashi Kawai
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| | - Haruhito Sugiyama
- Division of Respiratory Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
29
|
Orlova E, Dudding T, Chernus JM, Alotaibi RN, Haworth S, Crout RJ, Lee MK, Mukhopadhyay N, Feingold E, Levy SM, McNeil DW, Foxman B, Weyant RJ, Timpson NJ, Marazita ML, Shaffer JR. Association of Early Childhood Caries with Bitter Taste Receptors: A Meta-Analysis of Genome-Wide Association Studies and Transcriptome-Wide Association Study. Genes (Basel) 2022; 14:59. [PMID: 36672800 PMCID: PMC9858612 DOI: 10.3390/genes14010059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
Although genetics affects early childhood caries (ECC) risk, few studies have focused on finding its specific genetic determinants. Here, we performed genome-wide association studies (GWAS) in five cohorts of children (aged up to 5 years, total N = 2974, cohorts: Center for Oral Health Research in Appalachia cohorts one and two [COHRA1, COHRA2], Iowa Fluoride Study, Iowa Head Start, Avon Longitudinal Study of Parents and Children [ALSPAC]) aiming to identify genes with potential roles in ECC biology. We meta-analyzed the GWASs testing ~3.9 million genetic variants and found suggestive evidence for association at genetic regions previously associated with caries in primary and permanent dentition, including the β-defensin anti-microbial proteins. We then integrated the meta-analysis results with gene expression data in a transcriptome-wide association study (TWAS). This approach identified four genes whose genetically predicted expression was associated with ECC (p-values < 3.09 × 10−6; CDH17, TAS2R43, SMIM10L1, TAS2R14). Some of the strongest associations were with genes encoding members of the bitter taste receptor family (TAS2R); other members of this family have previously been associated with caries. Of note, we identified the receptor encoded by TAS2R14, which stimulates innate immunity and anti-microbial defense in response to molecules released by the cariogenic bacteria, Streptococcus mutans and Staphylococcus aureus. These findings provide insight into ECC genetic architecture, underscore the importance of host-microbial interaction in caries risk, and identify novel risk genes.
Collapse
Affiliation(s)
- Ekaterina Orlova
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tom Dudding
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, University of Bristol, Bristol BS8 1QU, UK
| | - Jonathan M. Chernus
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Rasha N. Alotaibi
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Simon Haworth
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, University of Bristol, Bristol BS8 1QU, UK
| | - Richard J. Crout
- Department of Periodontics, School of Dentistry, West Virginia University, Morgantown, WV 26505, USA
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nandita Mukhopadhyay
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Steven M. Levy
- Department of Preventive & Community Dentistry, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Daniel W. McNeil
- Department of Psychology & Department of Dental Public Health and Professional Practice, West Virginia University, Morgantown, WV 26505, USA
| | - Betsy Foxman
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert J. Weyant
- Dental Public Health, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nicholas J. Timpson
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, University of Bristol, Bristol BS8 1QU, UK
- Avon Longitudinal Study of Parents and Children, University of Bristol, Bristol BS8 1QU, UK
| | - Mary L. Marazita
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John R. Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
30
|
Sex differences in the oral microbiome, host traits, and their causal relationships. iScience 2022; 26:105839. [PMID: 36660475 PMCID: PMC9843272 DOI: 10.1016/j.isci.2022.105839] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The oral microbiome has been implicated in a growing number of diseases; however, determinants of the oral microbiome and their roles remain elusive. Here, we investigated the oral (saliva and tongue dorsum) metagenome, the whole genome, and other omics data in a total of 4,478 individuals and demonstrated that the oral microbiome composition and its major contributing host factors significantly differed between sexes. We thus conducted a sex-stratified metagenome-genome-wide-association study (M-GWAS) and identified 11 differential genetic associations with the oral microbiome (p sex-difference < 5 × 10-8). Furthermore, we performed sex-stratified Mendelian randomization (MR) analyses and identified abundant causalities between the oral microbiome and serum metabolites. Notably, sex-specific microbes-hormonal interactions explained the mostly observed sex hormones differences such as the significant causalities enrichments for aldosterone in females and androstenedione in males. These findings illustrate the necessity of sex stratification and deepen our understanding of the interplay between the oral microbiome and serum metabolites.
Collapse
|
31
|
Li Y, Zhu M, Liu Y, Luo B, Cui J, Huang L, Chen K, Liu Y. The oral microbiota and cardiometabolic health: A comprehensive review and emerging insights. Front Immunol 2022; 13:1010368. [PMID: 36466857 PMCID: PMC9716288 DOI: 10.3389/fimmu.2022.1010368] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/26/2022] [Indexed: 08/26/2023] Open
Abstract
There is mounting evidence demonstrating that oral dysbiosis causes periodontal disease and promotes the development of cardiovascular disease. The advancement of omics techniques has driven the optimization of oral microbiota species analysis and has provided a deeper understanding of oral pathogenic bacteria. A bi-directional relationship exists between the oral microbiota and the host, and oral-gut microbiota transfer is known to alter the composition of the gut microbiota and may cause local metabolic disorders. Furthermore, cardiovascular health can also be highly affected by oral microbiota functions and metabolites, including short-chain fatty acids (SCFAs), nitric oxide (NO), hydrogen sulfide (H2S), and some lipid metabolites. Studies have found that trimethylamine oxide (TMAO) may have adverse effects on cardiovascular health, whereas SCFAs, NO, and H2S have cardioprotective effects. SCFAs and H2S exert varying oral and cardiovascular effects, however reports on this specific topic remain controversial. Previous evidences are accustomed to summarizing the functions of oral microbiota in the context of periodontitis. The direct relationship between oral microbiota and cardiovascular diseases is insufficient. By systematically summarizing the methods associated with oral microbiota transplantation (OMT), this review facilitates an investigation into the causal links between oral microbiota and cardiovascular disease. The concomitant development of omics, bioinformatics, bacterial culture techniques, and microbiota transplantation techniques is required to gain a deeper understanding of the relationship between oral microbiota and cardiovascular disease occurrence.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Binyu Luo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Cui
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- China Center for Evidence-based Medicine of Traditional Chinese Medicine (TCM), China Academy of Chinese Medical Sciences, Beijing, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Vieira AR, Modesto A. Oral microbiome-dental caries associated genotypes analysis of 6- to 19-year-old individuals shows novel associations. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.875953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The need to determine risk factors for complex diseases continues to drive efforts of identification of etiological factors of common conditions. Molecular tools have created new opportunities to identify risk factors that may act interactively. The goal of this work was exploring potential interactions between oral microbial species and common genetic variants. Ninety-two 6- to 19-year-old individuals recruited through the University of Pittsburgh Dental Registry and DNA Repository project that had oral microbiome and genotyping of 44 single nucleotide polymorphism (SNP) data available were studied. Over-representation of alleles between individuals with or without particular microorganisms was determined using chi-square or Fisher's exact tests. Alpha of 0.001, to account for multiple testing (0.05/44), was considered statistically significant. Associations were found between Candida albicans and enamelin rs3796704 (p = 0.0006), and Staphylococcus epidermidis and tuftelin rs3828054 (p = 0.001). Microbiota and their metabolites might predispose oral disease when interacting with the host genetic variation and future studies should address their causal roles in oral disease.
Collapse
|
33
|
Mao X, Hiergeist A, Auer DL, Scholz KJ, Muehler D, Hiller KA, Maisch T, Buchalla W, Hellwig E, Gessner A, Al-Ahmad A, Cieplik F. Ecological Effects of Daily Antiseptic Treatment on Microbial Composition of Saliva-Grown Microcosm Biofilms and Selection of Resistant Phenotypes. Front Microbiol 2022; 13:934525. [PMID: 35847089 PMCID: PMC9280182 DOI: 10.3389/fmicb.2022.934525] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/25/2022] [Indexed: 01/17/2023] Open
Abstract
Antiseptics are widely used in dental practice and included in numerous over-the-counter oral care products. However, the effects of routine antiseptic use on microbial composition of oral biofilms and on the emergence of resistant phenotypes remain unclear. Microcosm biofilms were inoculated from saliva samples of four donors and cultured in the Amsterdam Active Attachment biofilm model for 3 days. Then, they were treated two times daily with chlorhexidine digluconate (CHX) or cetylpyridinium chloride (CPC) for a period of 7 days. Ecological changes upon these multiple antiseptic treatments were evaluated by semiconductor-based sequencing of bacterial 16S rRNA genes and identification of amplicon sequence variants (ASVs). Furthermore, culture-based approaches were used for colony-forming units (CFU) assay, identification of antiseptic-resistant phenotypes using an agar dilution method, and evaluation of their antibiotic susceptibilities. Both CHX and CPC showed only slight effects on CFU and could not inhibit biofilm growth despite the two times daily treatment for 7 days. Both antiseptics showed significant ecological effects on the microbial compositions of the surviving microbiota, whereby CHX led to enrichment of rather caries-associated saccharolytic taxa and CPC led to enrichment of rather gingivitis-associated proteolytic taxa. Antiseptic-resistant phenotypes were isolated on antiseptic-containing agar plates, which also exhibited phenotypic resistance to various antibiotics. Our results highlight the need for further research into potential detrimental effects of antiseptics on the microbial composition of oral biofilms and on the spread of antimicrobial resistance in the context of their frequent use in oral healthcare.
Collapse
Affiliation(s)
- Xiaojun Mao
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - David L. Auer
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Konstantin J. Scholz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Denise Muehler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Tim Maisch
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
- *Correspondence: Fabian Cieplik,
| |
Collapse
|
34
|
Li Z, Liu Y, Zhang L. Role of the microbiome in oral cancer occurrence, progression and therapy. Microb Pathog 2022; 169:105638. [PMID: 35718272 DOI: 10.1016/j.micpath.2022.105638] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
The oral cavity, like other digestive or mucosal sites, contains a site-specific microbiome that plays a significant role in maintaining health and homeostasis. Strictly speaking, the gastrointestinal tract starts from the oral cavity, with special attention paid to the specific flora of the oral cavity. In healthy people, the microbiome of the oral microenvironment is governed by beneficial bacteria, that benefit the host by symbiosis. When a microecological imbalance occurs, changes in immune and metabolic signals affect the characteristics of cancer, as well as chronic inflammation, disruption of the epithelial barrier, changes in cell proliferation and cell apoptosis, genomic instability, angiogenesis, and epithelial barrier destruction and metabolic regulation. These pathophysiological changes could result in oral cancer. Rising evidence suggests that oral dysbacteriosis and particular microbes may play a positive role in the evolution, development, progression, and metastasis of oral cancer, for instance, oral squamous cell carcinoma (OSCC) through direct or indirect action.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| | - Yuan Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| |
Collapse
|
35
|
Yin H, Liu N, Chen J. The Role of the Intestine in the Development of Hyperuricemia. Front Immunol 2022; 13:845684. [PMID: 35281005 PMCID: PMC8907525 DOI: 10.3389/fimmu.2022.845684] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Gout is a common inflammatory arthritis caused by the deposition of sodium urate crystals in the joints. Hyperuricemia is the fundamental factor of gout. The onset of hyperuricemia is related to purine metabolism disorders or uric acid excretion disorders. Current studies have shown that the intestine is an important potential organ for the excretion of uric acid outside the kidneys. The excretion of uric acid of gut is mainly achieved through the action of uric acid transporters and the catabolism of intestinal flora, which plays an important role in the body’s uric acid balance. Here we reviewed the effects of intestinal uric acid transporters and intestinal flora on uric acid excretion, and provide new ideas for the treatment of hyperuricemia and gout.
Collapse
Affiliation(s)
- Hui Yin
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, The First Hospital of Nanchang Medical College, Nanchang, China.,Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Na Liu
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, The First Hospital of Nanchang Medical College, Nanchang, China.,Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Jie Chen
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, The First Hospital of Nanchang Medical College, Nanchang, China.,Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Gomez A. Heritable oral microbes and their importance in microbiome research for public health. Cell Host Microbe 2022; 30:439-443. [PMID: 35421339 DOI: 10.1016/j.chom.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In 2016, I made part of an effort to characterize oral microbial communities in twins with dental caries. Here, I revisit the results published by me and my colleagues in Cell Host & Microbe in 2017, which shed light on plaque biofilm bacteria influenced by host genotype and their role in oral disease.
Collapse
Affiliation(s)
- Andres Gomez
- Department of Animal Science, University of Minnesota, Twin Cities, Minneapolis, MN, USA; Microbial and Plant Genomics Institute, University of Minnesota, Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|
37
|
La X, Jiang H, Chen A, Zheng H, Shen L, Chen W, Yang F, Zhang L, Cai X, Mao H, Cheng L. Profile of the oral microbiota from preconception to the third trimester of pregnancy and its association with oral hygiene practices. J Oral Microbiol 2022; 14:2053389. [PMID: 35341210 PMCID: PMC8942530 DOI: 10.1080/20002297.2022.2053389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The oral microbiota plays vital roles in both oral and systemic health, but limited studies have explored the transition of the female oral microbiota from preconception to pregnancy along with pronounced hormonal fluctuations. Aim To characterize the oral microbiota among women in preconception and pregnancy through a prospective study and to explore the associations between the oral microbiota and oral hygiene practices. Methods A total of 202 unstimulated saliva samples were collected from 101 women in both preconception and late pregnancy. The oral microbiota was analyzed using 16S rRNA gene sequencing. Results The Ace and phylogenetic diversity (PD) index were significantly lower in the third trimester than preconception. The pathogenic taxa Prevotella and Atopobium parvulum were significantly higher during late pregnancy than preconception. Women with overall better oral hygiene practice showed lower richness and diversity in preconception compared to women with poorer oral hygiene practice. The abundance of pathogens such as Dialister during both preconception and pregnancy decreased among women with better oral hygiene practice. Conclusions The composition of the oral microbiota changed slightly from preconception to late pregnancy, with more pathogens in saliva samples during pregnancy. Improving oral hygiene practices has the potential to maintain oral micro-ecological balance.
Collapse
Affiliation(s)
- Xuena La
- School of Public Health, Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Xuhui District, Shanghai,China.,Department of Non-communicable Diseases Surveillance, Shanghai Municipal Center for Disease Control and Prevention (SCDC), Changning District, Shanghai,China
| | - Hong Jiang
- School of Public Health, Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Xuhui District, Shanghai,China
| | - An Chen
- Institute of Healthcare Engineering, Management and Architecture (HEMA), Department of Industrial Engineering and Management, Aalto University, Espoo, Finland
| | - Huajun Zheng
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Xuhui District, Shanghai,China
| | - Liandi Shen
- Department of Administrative Office, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai,China
| | - Weiyi Chen
- School of Public Health, Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Xuhui District, Shanghai,China
| | - Fengyun Yang
- Department of Administrative Office, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai,China
| | - Lifeng Zhang
- Department of Administrative Office, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai,China
| | - Xushan Cai
- Department of Woman Health care, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai, China
| | - Hongfang Mao
- Department of Woman Health care, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai, China
| | - Lu Cheng
- Department of Computer Science, Aalto University, Espoo, Finland
| |
Collapse
|
38
|
Li C, Chen Y, Wen Y, Jia Y, Cheng S, Liu L, Zhang H, Pan C, Zhang J, Zhang Z, Yang X, Meng P, Yao Y, Zhang F. A genetic association study reveals the relationship between the oral microbiome and anxiety and depression symptoms. Front Psychiatry 2022; 13:960756. [PMID: 36440396 PMCID: PMC9685528 DOI: 10.3389/fpsyt.2022.960756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Growing evidence supports that alterations in the gut microbiota play an essential role in the etiology of anxiety, depression, and other psychiatric disorders. However, the potential effect of oral microbiota on mental health has received little attention. METHODS Using the latest genome-wide association study (GWAS) summary data of the oral microbiome, polygenic risk scores (PRSs) of 285 salivary microbiomes and 309 tongue dorsum microbiomes were conducted. Logistic and linear regression models were applied to evaluate the relationship between salivary-tongue dorsum microbiome interactions with anxiety and depression. Two-sample Mendelian randomization (MR) was utilized to compute the causal effects between the oral microbiome, anxiety, and depression. RESULTS We observed significant salivary-tongue dorsum microbiome interactions related to anxiety and depression traits. Significantly, one common interaction was observed to be associated with both anxiety score and depression score, Centipeda periodontii SGB 224 × Granulicatella uSGB 3289 (P depressionscore = 1.41 × 10-8, P anxietyscore = 5.10 × 10-8). Furthermore, we detected causal effects between the oral microbiome and anxiety and depression. Importantly, we identified one salivary microbiome associated with both anxiety and depression in both the UKB database and the Finngen public database, Eggerthia (P IVW - majordepression - UKB = 2.99 × 10-6, P IVW - Self - reportedanxiety/panicattacks - UKB = 3.06 × 10-59, P IVW - depression - Finngen = 3.16 × 10 , - 16 P IVW - anxiety - Finngen = 1.14 × 10-115). CONCLUSION This study systematically explored the relationship between the oral microbiome and anxiety and depression, which could help improve our understanding of disease pathogenesis and propose new diagnostic targets and early intervention strategies.
Collapse
Affiliation(s)
- Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|