1
|
Liu HX, Wang YY, Yang XF. Differential expression of plasma cytokines in sepsis patients and their clinical implications. World J Clin Cases 2024; 12:5681-5696. [PMID: 39247745 PMCID: PMC11263047 DOI: 10.12998/wjcc.v12.i25.5681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/25/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Sepsis, which is characterized by acute systemic inflammation and is associated with high rates of morbidity and mortality, presents a significant challenge in health care. Some scholars have found that the sequential organ failure assessment (SOFA) and quick SOFA scores are not ideal for predicting severe sepsis and mortality. Microbial culture takes a long time (2-3 d) and provides no information for early diagnosis and treatment. Therefore, new diagnostic methods for sepsis need to be explored. AIM To assess cytokine levels in the plasma of sepsis patients and identify potential biomarkers for diagnosing sepsis. METHODS Ten sepsis patients admitted to the emergency department within 24 h of onset were enrolled as the observation group, whereas ten noninfected patients served as the control group. Of the 10 noninfected patients, 9 hypertension combined with cerebral infarction, 1 patients with vertiginous syndrome. Plasma Cytokines were measured using the Bio-Plex Pro™ Human Chemokine Panel 40-plex. Differentially expressed cytokines in plasma of sepsis and nonsepsis patients were analyzed using Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. RESULTS Interleukin (IL)-16, granulocyte-macrophage granulocyte-macrophage colony-stimulating factor (GM-CSF), CX3CL1, CXCL9, CXCL16, CCL25, and CCL23 plasma levels were significantly increased in sepsis patients. GO analysis revealed that these cytokines were mainly associated with cellular structures such as intermediates, nuclear plaques, adhesion plaques, lateral plasma membranes, and cell matrix junctions. These genes were involved in various molecular functions, such as cytokine activity, receptor ligand activity, and signal receptor activator activity, contributing to various biological functions, such as leukocyte chemotaxis, migration, and chemotaxis. KEGG analysis indicated involvement in cytokine cytokine receptor interactions, chemokine signaling pathways, virus-protein interactions with cytokines and cytokine receptors, and the tumor necrosis factor signaling pathway. CONCLUSION Elevated serum levels of IL-16, GM-CSF, CX3CL1, CXCL9, CXCL16, CCL25, and CCL23 in sepsis patients suggest their potential as diagnostic biomarkers for sepsis.
Collapse
Affiliation(s)
- Hui-Xiu Liu
- Interventional Diagnosis and Treatment Center, The Affiliated Second Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Yu-Ying Wang
- Department of Emergency, The Shanghai Putuo District People's Hospital, Shanghai 200060, China
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan Province, China
| | - Xue-Feng Yang
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan Province, China
| |
Collapse
|
2
|
Cai Q, Wang H, Zhu M, Xiao Y, Zhuo T. Construction of a novel prognostic scoring model for HBV-ACLF liver failure based on dynamic data. Sci Rep 2024; 14:15198. [PMID: 38956154 PMCID: PMC11219721 DOI: 10.1038/s41598-024-63900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Early prognostic assessment of patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is important for guiding clinical management and reducing mortality. The aim of this study was to dynamically monitor the clinical characteristics of HBV-ACLF patients, thereby allowing the construction of a novel prognostic scoring model to predict the outcome of HBV-ACLF patients. Clinical data was prospectively collected for 518 patients with HBV-ACLF and randomly divided into training and validation sets. We constructed day-1, day-2, and day-(1 + 3) prognostic score models based on dynamic time points. The prognostic risk score constructed for day-3 was found to have the best predictive ability. The factors included in this scoring system, referred to as DSM-ACLF-D3, were age, hepatic encephalopathy, alkaline phosphatase, total bilirubin, triglycerides, very low-density lipoprotein, blood glucose, neutrophil count, fibrin, and INR. ROC analysis revealed the area under the curve predicted by DSM-ACLF-D3 for 28-day and 90-day mortality (0.901 and 0.889, respectively) was significantly better than those of five other scoring systems: COSSH-ACLF IIs (0.882 and 0.836), COSSH-ACLFs (0.863 and 0.832), CLIF-C ACLF (0.838 and 0.766), MELD (0.782 and 0.762) and MELD-Na (0.756 and 0.731). Dynamic monitoring of the changes in clinical factors can therefore significantly improve the accuracy of scoring models. Evaluation of the probability density function and risk stratification by DSM-ACLF-D3 also resulted in the best predictive values for mortality. The novel DSM-ACLF-D3 prognostic scoring model based on dynamic data can improve early warning, prediction and clinical management of HBV-ACLF patients.
Collapse
Affiliation(s)
- Qun Cai
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, 1111 Jiangnan Rd., Ningbo, 315100, China.
| | - Hao Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingyan Zhu
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, 1111 Jiangnan Rd., Ningbo, 315100, China
| | - Yixin Xiao
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, 1111 Jiangnan Rd., Ningbo, 315100, China
| | - Tingting Zhuo
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, 1111 Jiangnan Rd., Ningbo, 315100, China
| |
Collapse
|
3
|
Luo L, Luo Z, Wang L, Hu Y, Zhang J, Yin H, You J. Liposome Vaccine for Active Regulation of Cellular and Humoral Immunity. Mol Pharm 2023; 20:5668-5681. [PMID: 37856874 DOI: 10.1021/acs.molpharmaceut.3c00536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Despite significant progress in vaccine development, especially in the fight against viral infections, many unexplored areas remain including innovative adjuvants, diversification of vaccine formulations, and research into the coordination of humoral and cellular immune mechanisms induced by vaccines. Effective coordination of humoral and cellular immunity is crucial in vaccine design. In this study, we used the spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or ovalbumin (OVA) as antigen models and CpG DNA (an activator of toll-like receptor 9, TLR9) as an adjuvant to prepare a multitargeted liposome (LIPO) vaccine. Once equipped with the ability to target lymph nodes (LN) and the endoplasmic reticulum (ER), the LIPO vaccine significantly enhances the cross-presentation ability of antigen-presenting cells (APCs) for exogenous antigens through the ER-associated protein degradation (ERSD) mechanism. Additionally, the vaccine could fine-tune the efficiency of ER-targeted antigen delivery, actively regulating the presentation of exogenous antigen proteins via the major histocompatibility complex (MHC-I) or MHC-II pathways. Immune data from in vivo mouse experiments indicated that the LIPO vaccine effectively stimulated both humoral and cellular immune responses. Furthermore, it triggers immune protection by establishing a robust and persistent germinal center. Moreover, the multifunctionality of this LIPO vaccine extends to the fields of cancer, viruses, and bacteria, providing insights for skilled vaccine design and improvement.
Collapse
Affiliation(s)
- Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, 403 Yongkang Street, Jinhua 321299, China
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Litong Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yilong Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hang Yin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, 403 Yongkang Street, Jinhua 321299, China
- The First Affiliated Hospital Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310009, China
| |
Collapse
|
4
|
Mazzocco YL, Bergero G, Del Rosso S, Eberhardt N, Sola C, Saka HA, Villada SM, Bocco JL, Aoki MP. Differential expression patterns of purinergic ectoenzymes and the antioxidative role of IL-6 in hospitalized COVID-19 patient recovery. Front Immunol 2023; 14:1227873. [PMID: 37818368 PMCID: PMC10560791 DOI: 10.3389/fimmu.2023.1227873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction We have acquired significant knowledge regarding the pathogenesis of severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2). However, the underlying mechanisms responsible for disease recovery still need to be fully understood. Methods To gain insights into critical immune markers involved in COVID-19 etiopathogenesis, we studied the evolution of the immune profile of peripheral blood samples from patients who had recovered from COVID-19 and compared them to subjects with severe acute respiratory illness but negative for SARS-CoV-2 detection (controls). In addition, linear and clustered correlations between different parameters were determined. Results The data obtained revealed a significant reduction in the frequency of inflammatory monocytes (CD14+CD16+) at hospital discharge vs. admission. Remarkably, nitric oxide (NO) production by the monocyte compartment was significantly reduced at discharge. Furthermore, interleukin (IL)-6 plasma levels were negatively correlated with the frequency of NO+CD14+CD16+ monocytes at hospital admission. However, at the time of hospital release, circulating IL-6 directly correlated with the NO production rate by monocytes. In line with these observations, we found that concomitant with NO diminution, the level of nitrotyrosine (NT) on CD8 T-cells significantly diminished at the time of hospital release. Considering that purinergic signaling constitutes another regulatory system, we analyzed the kinetics of CD39 and CD73 ectoenzyme expression in CD8 T-cells. We found that the frequency of CD39+CD8+ T-cells significantly diminished while the percentage of CD73+ cells increased at hospital discharge. In vitro, IL-6 stimulation of PBMCs from COVID-19 patients diminished the NT levels on CD8 T-cells. A clear differential expression pattern of CD39 and CD73 was observed in the NT+ vs. NT-CD8+ T-cell populations. Discussion The results suggest that early after infection, IL-6 controls the production of NO, which regulates the levels of NT on CD8 T-cells modifying their effector functions. Intriguingly, in this cytotoxic cell population, the expression of purinergic ectoenzymes is tightly associated with the presence of nitrated surface molecules. Overall, the data obtained contribute to a better understanding of pathogenic mechanisms associated with COVID-19 outcomes.
Collapse
Affiliation(s)
- Yanina Luciana Mazzocco
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Gastón Bergero
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Sebastian Del Rosso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Natalia Eberhardt
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Claudia Sola
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Héctor Alex Saka
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Sofía María Villada
- Servicio de Enfermedades Infecciosas, Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - José Luis Bocco
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Maria Pilar Aoki
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| |
Collapse
|
5
|
Li Y, Tan R, Li R, Tian R, Liu Z, Wang X, Chen E, Pan T, Qu H. PKM2/STAT1-mediated PD-L1 upregulation on neutrophils during sepsis promotes neutrophil organ accumulation by serving an anti-apoptotic role. J Inflamm (Lond) 2023; 20:16. [PMID: 37131151 PMCID: PMC10155438 DOI: 10.1186/s12950-023-00341-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/25/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Delayed neutrophil apoptosis during sepsis may impact neutrophil organ accumulation and tissue immune homeostasis. Elucidating the mechanisms underlying neutrophil apoptosis may help identify potential therapeutic targets. Glycolysis is critical to neutrophil activities during sepsis. However, the precise mechanisms through which glycolysis regulates neutrophil physiology remain under-explored, especially those involving the non-metabolic functions of glycolytic enzymes. In the present study, the impact of programmed death ligand-1 (PD-L1) on neutrophil apoptosis was explored. The regulatory effect of the glycolytic enzyme, pyruvate kinase M2 (PKM2), whose role in septic neutrophils remains unaddressed, on neutrophil PD-L1 expression was also explored. METHODS Peripheral blood neutrophils were isolated from patients with sepsis and healthy controls. PD-L1 and PKM2 levels were determined by flow cytometry and Western blotting, respectively. Dimethyl sulfoxide (DMSO)-differentiated HL-60 cells were stimulated with lipopolysaccharide (LPS) as an in vitro simulation of septic neutrophils. Cell apoptosis was assessed by annexin V/propidium iodide (annexin V/PI) staining, as well as determination of protein levels of cleaved caspase-3 and myeloid cell leukemia-1 (Mcl-1) by Western blotting. An in vivo model of sepsis was constructed by intraperitoneal injection of LPS (5 mg/kg) for 16 h. Pulmonary and hepatic neutrophil infiltration was assessed by flow cytometry or immunohistochemistry. RESULTS PD-L1 level was elevated on neutrophils under septic conditions. Administration of neutralizing antibodies against PD-L1 partially reversed the inhibitory effect of LPS on neutrophil apoptosis. Neutrophil infiltration into the lung and liver was also reduced in PD-L1-/- mice 16 h after sepsis induction. PKM2 was upregulated in septic neutrophils and promoted neutrophil PD-L1 expression both in vitro and in vivo. In addition, PKM2 nuclear translocation was increased after LPS stimulation, which promoted PD-L1 expression by directly interacting with and activating signal transducer and activator of transcription 1 (STAT1). Inhibition of PKM2 activity or STAT1 activation also led to increased neutrophil apoptosis. CONCLUSION In this study, a PKM2/STAT1-mediated upregulation of PD-L1 on neutrophils and the anti-apoptotic effect of upregulated PD-L1 on neutrophils during sepsis were identified, which may result in increased pulmonary and hepatic neutrophil accumulation. These findings suggest that PKM2 and PD-L1 could serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Yinjiaozhi Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Rui Tian
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhaojun Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Erzhen Chen
- Department of Emergency Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
6
|
Kohler K, Conway Morris A. GM-CSF targeting in COVID-19: an approach based on fragile foundations. Eur Respir J 2023; 61:13993003.02091-2022. [PMID: 36396141 PMCID: PMC9686318 DOI: 10.1183/13993003.02091-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022]
Abstract
Coronavirus disease 2019 (COVID-19) arises as a result of a pathological inflammatory response following infection with the coronavirus SARS-CoV-2. Although the majority of people infected with this virus will experience minimal or mild symptoms, a proportion will go on to develop more severe disease requiring hospitalisation and oxygen therapy. The most severe forms produce acute respiratory failure, necessitating mechanical ventilation or extracorporeal membrane oxygenation (ECMO). The advent of SARS-CoV-2 vaccination has substantially altered the risk profile of COVID-19, with marked reductions in the severity of illness and hospitalisation. However, for unvaccinated patients and those who do not mount an effective immune response to vaccination, it remains a potentially lethal infection. Trials of anti-GM-CSF therapies in COVID-19 show divergent results; this may be explained by underlying biology and the fragility of the study findings. Further investigation of the pathophysiology of COVID-19 is required to better target therapies.http://bit.ly/3O1AuIo
Collapse
Affiliation(s)
- Katharina Kohler
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrew Conway Morris
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
- John V Farman Intensive Care Unit, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
7
|
Zhao PY, Yao RQ, Zheng LY, Wu Y, Li YX, Dong N, Li JY, Du XH, Yao YM. Nuclear fragile X mental retardation-interacting protein 1-mediated ribophagy protects T lymphocytes against apoptosis in sepsis. BURNS & TRAUMA 2023; 11:tkac055. [PMID: 36873287 PMCID: PMC9976742 DOI: 10.1093/burnst/tkac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/08/2022] [Indexed: 03/04/2023]
Abstract
Background Ribophagy is a selective autophagic process that specifically degrades dysfunctional or superfluous ribosomes to maintain cellular homeostasis. Whether ribophagy can ameliorate the immunosuppression in sepsis similar to endoplasmic reticulum autophagy (ERphagy) and mitophagy remains unclear. This study was conducted to investigate the activity and regulation of ribophagy in sepsis and to further explore the potential mechanism underlying the involvement of ribophagy in T-lymphocyte apoptosis. Methods The activity and regulation of nuclear fragile X mental retardation-interacting protein 1 (NUFIP1)-mediated ribophagy in T lymphocytes during sepsis were first investigated by western blotting, laser confocal microscopy and transmission electron microscopy. Then, we constructed lentivirally transfected cells and gene-defective mouse models to observe the impact of NUFIP1 deletion on T-lymphocyte apoptosis and finally explored the signaling pathway associated with T-cell mediated immune response following septic challenge. Results Both cecal ligation and perforation-induced sepsis and lipopolysaccharide stimulation significantly induced the occurrence of ribophagy, which peaked at 24 h. When NUFIP1 was knocked down, T-lymphocyte apoptosis was noticeably increased. Conversely, the overexpression of NUFIP1 exerted a significant protective impact on T-lymphocyte apoptosis. Consistently, the apoptosis and immunosuppression of T lymphocytes and 1-week mortality rate in NUFIP1 gene-deficient mice were significantly increased compared with those in wild-type mice. In addition, the protective effect of NUFIP1-mediated ribophagy on T lymphocytes was identified to be closely related to the endoplasmic reticulum stress apoptosis pathway, and PERK-ATF4-CHOP signaling was obviously involved in downregulating T-lymphocyte apoptosis in the setting of sepsis. Conclusions NUFIP1-mediated ribophagy can be significantly activated to alleviate T lymphocyte apoptosis through the PERK-ATF4-CHOP pathway in the context of sepsis. Thus, targeting NUFIP1-mediated ribophagy might be of importance in reversing the immunosuppression associated with septic complications.
Collapse
Affiliation(s)
- Peng-Yue Zhao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.,Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.,Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Yu-Xuan Li
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.,Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Ning Dong
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Jing-Yan Li
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.,Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xiao-Hui Du
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
8
|
Li X, Lu Y, Chen C, Luo T, Chen J, Zhang Q, Zhou S, Hei Z, Liu Z. Development and validation of a patient-specific model to predict postoperative SIRS in older patients: A two-center study. Front Public Health 2023; 11:1145013. [PMID: 37139371 PMCID: PMC10150121 DOI: 10.3389/fpubh.2023.1145013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Postoperative systemic inflammatory response syndrome (SIRS) is common in surgical patients especially in older patients, and the geriatric population with SIRS is more susceptible to sepsis, MODS, and even death. We aimed to develop and validate a model for predicting postoperative SIRS in older patients. Methods Patients aged ≥65 years who underwent general anesthesia in two centers of Third Affiliated Hospital of Sun Yat-sen University from January 2015 to September 2020 were included. The cohort was divided into training and validation cohorts. A simple nomogram was developed to predict the postoperative SIRS in the training cohort using two logistic regression models and the brute force algorithm. The discriminative performance of this model was determined by area under the receiver operating characteristics curve (AUC). The external validity of the nomogram was assessed in the validation cohort. Results A total of 5,904 patients spanning from January 2015 to December 2019 were enrolled in the training cohort and 1,105 patients from January 2020 to September 2020 comprised the temporal validation cohort, in which incidence rates of postoperative SIRS were 24.6 and 20.2%, respectively. Six feature variables were identified as valuable predictors to construct the nomogram, with high AUCs (0.800 [0.787, 0.813] and 0.822 [0.790, 0.854]) and relatively balanced sensitivity (0.718 and 0.739) as well as specificity (0.718 and 0.729) in both training and validation cohorts. An online risk calculator was established for clinical application. Conclusion We developed a patient-specific model that may assist in predicting postoperative SIRS among the aged patients.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaxin Lu
- Big Data and Artificial Intelligence Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tongsen Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingjing Chen
- Big Data and Artificial Intelligence Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaoli Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Shaoli Zhou,
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Anesthesiology, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
- Ziqing Hei,
| | - Zifeng Liu
- Big Data and Artificial Intelligence Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zifeng Liu,
| |
Collapse
|
9
|
Li Q, Yan W, Liu S, Li H. Study on the correlation and clinical significance of T-lymphocyte Subsets, IL-6 and PCT in the severity of patients with sepsis. Pak J Med Sci 2023; 39:227-231. [PMID: 36694784 PMCID: PMC9843026 DOI: 10.12669/pjms.39.1.5711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To evaluate the correlation and clinical significance of T lymphocyte subsets, IL-6 and PCT in the severity of patients with sepsis. Methods One-hundred and twenty patients with sepsis admitted to Baoding No.1 Central Hospital from March 05, 2021 to March 05, 2022 were selected and divided into three groups according to the severity of the disease: the sepsis group, the severe sepsis group and the septic shock group, with 40 cases in each group. The venous blood of all patients was drawn with a sterile vacuum blood collection tube after admission to detect the levels of T lymphocyte subsets CD3+, CD4+, CD8+, CD4+/CD8+, and the venous blood was collected to detect the levels of interleukin-6 (IL-6) and procalcitonin (PCT). The three groups of patients were compared to analyze whether there were differences, and whether there was a correlation between the level of each indicator and the prognosis of patients after treatment. Results The levels of CD3+, CD4+ and CD4+/CD8+ in the three groups decreased with the aggravation of the disease, with a significant difference (p=0.00). The levels of IL-6 and PCT increased with the aggravation of the disease among the three groups, with statistically significant differences (IL-6, p=0.00; PCT, p=0.01). The better the patients recovered after treatment, the higher the levels of CD4+ and CD4+/CD8+, and the two were positively correlated; While the lower the levels of IL-6 and PCT, the two were negatively correlated. Conclusion Peripheral blood T lymphocyte subsets and serum IL-6, PCT are abnormally expressed in patients with sepsis, and have a close bearing on the severity of the disease, which has a certain predictive value for patients after recovery. In view of this, the above indicators are of high clinical significance.
Collapse
Affiliation(s)
- Qian Li
- Qian Li, Department of Critical Care Medicine, Baoding No.1 Central Hospital, Baoding 071000, Hebei, P.R. China
| | - Wenwen Yan
- Wenwen Yan, Department of Critical Care Medicine, Baoding No.1 Central Hospital, Baoding 071000, Hebei, P.R. China
| | - Sha Liu
- Sha Liu, Department of Critical Care Medicine, Baoding No.1 Central Hospital, Baoding 071000, Hebei, P.R. China
| | - Hui Li
- Hui Li, Department of Critical Care Medicine, Baoding No.1 Central Hospital, Baoding 071000, Hebei, P.R. China
| |
Collapse
|
10
|
Veljković M, Pavlović DR, Stojanović NM, Džopalić T, Popović Dragonjić L. Behavioral and Dietary Habits That Could Influence Both COVID-19 and Non-Communicable Civilization Disease Prevention-What Have We Learned Up to Now? MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1686. [PMID: 36422225 PMCID: PMC9695647 DOI: 10.3390/medicina58111686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 08/10/2023]
Abstract
The massive expansion of the new coronavirus SARS-CoV-2 has urged countries to introduce lockdowns and set restrictive actions worldwide. The focus of the studies was to determine how COVID-19 induces damage to the lungs in order to find an alternative or adjuvant therapy that could lead to preventing COVID-19 or at least ameliorating it. This paper aims to survey the literature and provide new insights into behavioral and dietary habits that could influence the prevention of COVID-19. Maintaining an adequate mental health status, sleep, and taking moderate exercise are often disrupted in the conditions of lockdown and are followed by weakened immunity. Mediterranean and vegetarian diets are superior to other eating patterns in terms of immunity boosting and fighting COVID-19. Our study showed how adequate hydration, green tea intake, and supplementation with vitamins D, C, and E can increase our chances of avoiding the infection and even help us sleep better. Another focus of the research was on determining what level of hygiene really increases one's chances of not contracting SARS-CoV-2, but this seems a little counter-intuitive at first. Since an immunocompromised state is a familiar predisposing factor for all contagious diseases, maintaining healthy behavioral and dietary habits could be a crucial step in boosting immunity and preventing COVID-19.
Collapse
Affiliation(s)
- Milica Veljković
- Department of Physiology, Medical Faculty, University of Niš, 18000 Niš, Serbia
| | - Dragana R. Pavlović
- Department of Pharmacy, Medical Faculty, University of Niš, 18000 Niš, Serbia
| | | | - Tanja Džopalić
- Department of Immunology, Medical Faculty, University of Niš, 18000 Niš, Serbia
| | - Lidija Popović Dragonjić
- Department of Infectious Diseases and Epidemiology, Medical Faculty, University of Niš, 18000 Niš, Serbia
- Clinic for Infectology, University Clinical Center Niš, 18000 Niš, Serbia
| |
Collapse
|
11
|
de Mello-Neto JM, Elangovan G, Ervolino E, Johnson NW, Gustafsson A, da Figueredo CM. Colitis induced by dextran sulphate sodium causes histopathological and immunological changes in the periodontal tissues of Wistar rats. J Periodontal Res 2022; 57:1267-1276. [PMID: 36253900 DOI: 10.1111/jre.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE This study investigated the impact of colitis induced by dextran sulphate sodium (DSS)-induced colitis (DIC) on histopathological and immunological outcomes in the periodontal tissues of Wistar rats. BACKGROUND Inflammatory bowel diseases (IBD) and periodontitis have been reported to present a bidirectional relationship. However, the inflammatory pathway that connects both diseases needs further investigation. MATERIAL AND METHODS Twenty-five male Wistar rats were allocated in four groups: unilateral ligature-induced periodontitis for 14 days: LIP (n = 7); dextran sulphate sodium-induced colitis only: DIC (n = 6); DIC + LIP (n = 6) and controls (n = 6). Digital images were obtained from the histological sections. In order to assess the attachment loss (AL), the linear distance between the cementoenamel junction (CEJ) and the alveolar bone crest was measured on the mesial root using histological photomicrography's ImageJ software. Immunological analyses of gingival tissues and plasma were performed by Bio-Plex Th1/Th2 Assay. RESULTS The DIC group showed inflammatory cells extending to the periodontal connective tissues, which contained significantly elevated expressions of IL-1α, IL-1β, IL-2, IL-6, IL-12, IL-13, GM-CSF, IFN-γ and TNF-α compared to controls. There was no significant difference in bone loss between controls and DIC. There were no significant histopathological differences between DIC + LIP and LIP. However, DIC + LIP presented a significantly lower IL-2 and IL-5 than the LIP group. There was no bone loss difference between LIP+DIC and LIP groups. DIC + LIP group presented significantly higher levels of GM-CSF in plasma. CONCLUSION DSS-induced colitis was associated with an overexpression of Th1/Th2- related cytokines in the gingival tissue.
Collapse
Affiliation(s)
| | - Gayathiri Elangovan
- School of Medicine and Dentistry, Griffith University, Southport, Queensland, Australia
| | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry, São Paulo State University-UNESP, Araçatuba, Brazil
| | - Newell Walter Johnson
- School of Medicine and Dentistry, Griffith University, Southport, Queensland, Australia
| | - Anders Gustafsson
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Marcelo da Figueredo
- School of Medicine and Dentistry, Griffith University, Southport, Queensland, Australia.,Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Jamal M, Bangash HI, Habiba M, Lei Y, Xie T, Sun J, Wei Z, Hong Z, Shao L, Zhang Q. Immune dysregulation and system pathology in COVID-19. Virulence 2021; 12:918-936. [PMID: 33757410 PMCID: PMC7993139 DOI: 10.1080/21505594.2021.1898790] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/08/2021] [Accepted: 02/19/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 19 (COVID-19) caused by the novel coronavirus known as SARS-CoV-2 has caused a global public health crisis. As of 7 January 2021, 87,640,402 confirmed cases and 1,891,692 mortalities have been reported worldwide. Studies focusing on the epidemiological and clinical characteristics of COVID-19 patients have suggested a dysregulated immune response characterized by lymphopenia and cytokine storm in these patients. The exaggerated immune response induced by the cytokine storm causes septic shock, acute respiratory distress syndrome (ARDS), and/or multiple organs failure, which increases the fatality rate of patients with SARS-CoV-2 infection. Herein, we review the recent research progress on epidemiology, clinical features, and system pathology in COVID-19. Moreover, we summarized the recent therapeutic strategies, which are either approved, under clinical trial, and/or under investigation by the local or global health authorities. We assume that treatments should focus on the use of antiviral drugs in combination with immunomodulators as well as treatment of the underlying comorbidities.
Collapse
Affiliation(s)
- Muhammad Jamal
- Department of Immunology, School of Basic Medical Science, Wuhan University, WuhanP.R. China
| | - Hina Iqbal Bangash
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, WuhanChina
| | - Maria Habiba
- Department of Zoology, University of Malakand, Chakdara Dir Lower, Khyber PakhtunkhwaPakistan
| | - Yufei Lei
- Department of Immunology, School of Basic Medical Science, Wuhan University, WuhanP.R. China
| | - Tian Xie
- Department of Immunology, School of Basic Medical Science, Wuhan University, WuhanP.R. China
| | - Jiaxing Sun
- Department of Immunology, School of Basic Medical Science, Wuhan University, WuhanP.R. China
| | - Zimeng Wei
- Department of Immunology, School of Basic Medical Science, Wuhan University, WuhanP.R. China
| | - Zixi Hong
- Department of Immunology, School of Basic Medical Science, Wuhan University, WuhanP.R. China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, WuhanP.R. China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Science, Wuhan University, WuhanP.R. China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, WuhanP.R. China
| |
Collapse
|
13
|
Ingelfinger F, De Feo D, Becher B. GM-CSF: Master regulator of the T cell-phagocyte interface during inflammation. Semin Immunol 2021; 54:101518. [PMID: 34763973 DOI: 10.1016/j.smim.2021.101518] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/23/2021] [Indexed: 12/21/2022]
Abstract
The role of granulocyte-macrophage colony-stimulating factor (GM-CSF) was sequentially redefined during the past decades. Originally described as a hematopoietic growth factor for myelopoiesis, GM-CSF was recognized as a central mediator of inflammation bridging the innate and adaptive arms of the immune system. Phagocytes sensing GM-CSF adapt an inflammatory phenotype and facilitate pathogen clearance. However, in the context of chronic tissue inflammation, GM-CSF secreted by tissue-invading lymphocytes has detrimental effects by licensing tissue damage and hyperinflammation. Accordingly, therapeutic intervention at the T cell-phagocyte interface represents an attractive target to ameliorate disease progression and immunopathology. Although GM-CSF is largely dispensable for steady state myelopoiesis, dysregulation, as seen in chronic inflammatory diseases, may however lead to disrupted haematopoiesis and long-term effects on bone marrow output. Here, we will survey the role of GM-CSF during inflammation, discuss the extent to which GM-CSF-secreting T cells, debate their introduction as a separate T cell lineage and explore current and future clinical implications of GM-CSF in human disease settings.
Collapse
Affiliation(s)
- Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Palladino M. Complete blood count alterations in COVID-19 patients: A narrative review. Biochem Med (Zagreb) 2021; 31:030501. [PMID: 34658642 PMCID: PMC8495616 DOI: 10.11613/bm.2021.030501] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic represents a scientific and social crisis. One of the main unmet needs for coronavirus disease 2019 is its unpredictable clinical course, which can rapidly change in an irreversible outcome. COVID-19 patients can be classified into mild, moderate, and severe. Several haematological parameters, such as platelets, white blood cell total count, lymphocytes, neutrophils, (together with neutrophil-lymphocyte and platelet-lymphocyte ratio), and haemoglobin were described to be associated with COVID-19 infection and severity. The purpose of these review is to describe the current state of the art about complete blood count alterations during COVID-19 infection, and to summarize the crucial role of some haematological parameters during the course of the disease. Decreased platelet, lymphocyte, haemoglobin, eosinophil, and basophil count, increased neutrophil count and neutrophil-lymphocyte and platelet-lymphocyte ratio have been associated with COVID-19 infection and a worse clinical outcome. Our study adds some novelty about the identification of effective biomarkers of progressive disease, and might be helpful for diagnosis, prevention of complications, and effective therapy.
Collapse
|
15
|
Martino M, Macheda S, Aguglia U, Arcudi L, Pucci G, Martino B, Altomonte M, Rossetti AM, Cusumano G, Russo L, Imbalzano L, Stelitano C, Alati C, Germano' J, Labate D, Amalfi V, Florenzano MT, Morabito A, Borzumati V, Dattola V, Gattuso C, Moschella A, Quattrone D, Curmaci F, Franzutti C, Scappatura G, Rao CM, Loddo V, Pontari A, Pellicano' M, Surace R, Sanguedolce C, Naso V, Ferreri A, Irrera G, Console G, Moscato T, Loteta B, Canale FA, Trimarchi A, Monteleone R, Al Sayyad S, Cirrone F, Bruno B. Identifying and managing CAR T-cell-mediated toxicities: on behalf of an Italian CAR-T multidisciplinary team. Expert Opin Biol Ther 2021; 22:407-421. [PMID: 34463175 DOI: 10.1080/14712598.2021.1974394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR)-T-cell therapy is a new treatment for patients with hematologic malignancies in which other therapies have failed. AREAS COVERED The review provides an overview for recognizing and managing the most acute toxicities related to CAR-T cells. EXPERT OPINION The development of immune-mediated toxicities is a common challenge of CAR-T therapy. The mechanism that determines this toxicity is still unclear, although an unfavorable tumor microenvironment and a pro-inflammatory state put patients at risk. The monitoring, diagnosis, and treatment of post-CAR-T toxicities must be determined and based on international guidelines and internal clinical practice. It is urgent to identify biomarkers that can identify patients at greater risk of developing complications. The adoption of consistent grading criteria is necessary to improve toxicity management strategies continually. The first-line therapy consists of supportive care and treatment with tocilizumab or corticosteroids. An early start of cytokine blockade therapies could mitigate toxicity. The plan will include cytokine release prophylaxis, a risk-adapted treatment, prevention of on-target/off-tumor effect, and a switch on/off CAR-T approach.
Collapse
Affiliation(s)
- Massimo Martino
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Sebastiano Macheda
- Intensive Care Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Umberto Aguglia
- Department of Medicine, Surgery and Health Sciences, Magna Græcia University, Catanzaro, Italy, Regional Epilepsy Centre, Great Metropolitan Hospital "Bianchi-melacrino-morelli," Reggio Calabria, Italy.,Neurology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Luciano Arcudi
- Neurology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Giulia Pucci
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy.,Stem Cell Processing Laboratory Unit, Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Bruno Martino
- Hematology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Maria Altomonte
- Pharmacy Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Antonio Maria Rossetti
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Giuseppa Cusumano
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Letteria Russo
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Lucrezia Imbalzano
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Caterina Stelitano
- Hematology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Caterina Alati
- Hematology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Jessyca Germano'
- Hematology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Demetrio Labate
- Intensive Care Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Vincenzo Amalfi
- Intensive Care Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Maria Teresa Florenzano
- Pharmacy Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Antonella Morabito
- Pharmacy Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Vittoria Borzumati
- Pharmacy Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Vincenzo Dattola
- Neurology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Caterina Gattuso
- Neurology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Antonio Moschella
- Pain Center Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Domenico Quattrone
- Pain Center Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Francesco Curmaci
- Pain Center Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Claudio Franzutti
- Radiology Department, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Giuseppe Scappatura
- Radiology Department, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Carmelo Massimiliano Rao
- Cardiology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Viviana Loddo
- Catholic University of the Sacred Heart, Rome, Italy
| | - Antonella Pontari
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy.,Stem Cell Processing Laboratory Unit, Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Maria Pellicano'
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy.,Intensive Care Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Rosangela Surace
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy.,Intensive Care Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Cristina Sanguedolce
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy.,Intensive Care Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Virginia Naso
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Anna Ferreri
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Giuseppe Irrera
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Giuseppe Console
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Tiziana Moscato
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Barbara Loteta
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Filippo Antonio Canale
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Alfonso Trimarchi
- Immunotransfusion Service Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli,", Reggio, Calabria, Italy
| | - Renza Monteleone
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Said Al Sayyad
- Onco-hematology and Radiotherapy Department, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy
| | - Frank Cirrone
- Department of Pharmacy, Nyu Langone Health, New York, NY
| | - Benedetto Bruno
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Department of Oncology, Division of Hematology, A.o.u. Città Della Salute E Della Scienza Di Torino, Presidio Molinette, Torino, Italy.,Division Of Hematology And Medical Oncology, Perlmutter Cancer Center, Grossman School Of Medicine, NYU Langone Health, New York, Ny
| |
Collapse
|
16
|
Miljković Đ, Stanisavljević S, Jensen IJ, Griffith TS, Badovinac VP. Sepsis and multiple sclerosis: Causative links and outcomes. Immunol Lett 2021; 238:40-46. [PMID: 34320384 DOI: 10.1016/j.imlet.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/08/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Sepsis is a life-threatening condition characterized by an acute cytokine storm followed by prolonged dysfunction of the immune system in the survivors. Post-septic lymphopenia and functional deficits of the remaining immune cells lead to increased susceptibility to secondary infections and other morbid conditions causing late death in the patients. This state of post-septic immunoparalysis may also influence disorders stemming from inappropriate or overactive immune responses, such as autoimmune and immunoinflammatory diseases, including multiple sclerosis. In addition, ongoing autoimmunity likely influences the susceptibility to and outcome of sepsis. This review article addresses the bidirectional relationship between sepsis and multiple sclerosis, with a focus on the immunologic mechanisms of the interaction and potential directions for future studies.
Collapse
Affiliation(s)
- Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia.
| | - Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Isaac J Jensen
- Department of Pathology, Department of Microbiology and Immunology, Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology PhD Program, Department of Urology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| | - Vladimir P Badovinac
- Department of Pathology, Department of Microbiology and Immunology, Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
17
|
Mu X, Liu K, Li H, Wang FS, Xu R. Granulocyte-macrophage colony-stimulating factor: an immunotarget for sepsis and COVID-19. Cell Mol Immunol 2021; 18:2057-2058. [PMID: 34282298 PMCID: PMC8287545 DOI: 10.1038/s41423-021-00719-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Xiuying Mu
- Peking University 302 Clinical Medical School, Beijing, China
| | - Kai Liu
- Peking University 302 Clinical Medical School, Beijing, China.,Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Huajie Li
- Peking University 302 Clinical Medical School, Beijing, China
| | - Fu-Sheng Wang
- Peking University 302 Clinical Medical School, Beijing, China. .,Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
| | - Ruonan Xu
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
| |
Collapse
|
18
|
Kreutmair S, Unger S, Núñez NG, Ingelfinger F, Alberti C, De Feo D, Krishnarajah S, Kauffmann M, Friebel E, Babaei S, Gaborit B, Lutz M, Jurado NP, Malek NP, Goepel S, Rosenberger P, Häberle HA, Ayoub I, Al-Hajj S, Nilsson J, Claassen M, Liblau R, Martin-Blondel G, Bitzer M, Roquilly A, Becher B. Distinct immunological signatures discriminate severe COVID-19 from non-SARS-CoV-2-driven critical pneumonia. Immunity 2021; 54:1578-1593.e5. [PMID: 34051147 PMCID: PMC8106882 DOI: 10.1016/j.immuni.2021.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/24/2021] [Accepted: 05/04/2021] [Indexed: 12/29/2022]
Abstract
Immune profiling of COVID-19 patients has identified numerous alterations in both innate and adaptive immunity. However, whether those changes are specific to SARS-CoV-2 or driven by a general inflammatory response shared across severely ill pneumonia patients remains unknown. Here, we compared the immune profile of severe COVID-19 with non-SARS-CoV-2 pneumonia ICU patients using longitudinal, high-dimensional single-cell spectral cytometry and algorithm-guided analysis. COVID-19 and non-SARS-CoV-2 pneumonia both showed increased emergency myelopoiesis and displayed features of adaptive immune paralysis. However, pathological immune signatures suggestive of T cell exhaustion were exclusive to COVID-19. The integration of single-cell profiling with a predicted binding capacity of SARS-CoV-2 peptides to the patients' HLA profile further linked the COVID-19 immunopathology to impaired virus recognition. Toward clinical translation, circulating NKT cell frequency was identified as a predictive biomarker for patient outcome. Our comparative immune map serves to delineate treatment strategies to interfere with the immunopathologic cascade exclusive to severe COVID-19.
Collapse
Affiliation(s)
- Stefanie Kreutmair
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Partner Site Freiburg, 79106 Freiburg, Germany
| | - Susanne Unger
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Nicolás Gonzalo Núñez
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Chiara Alberti
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Sinduya Krishnarajah
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Manuel Kauffmann
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Ekaterina Friebel
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Sepideh Babaei
- Department Internal Medicine I, Eberhard-Karls University, 72076 Tuebingen, Germany
| | - Benjamin Gaborit
- Université de Nantes, CHU Nantes, Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, 44093 Nantes, France
| | - Mirjam Lutz
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Nicole Puertas Jurado
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Nisar P Malek
- Department Internal Medicine I, Eberhard-Karls University, 72076 Tuebingen, Germany
| | - Siri Goepel
- Department Internal Medicine I, Eberhard-Karls University, 72076 Tuebingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tuebingen, 72076 Tuebingen, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, Eberhard-Karls University, 72076 Tuebingen, Germany
| | - Helene A Häberle
- Department of Anesthesiology and Intensive Care Medicine, Eberhard-Karls University, 72076 Tuebingen, Germany
| | - Ikram Ayoub
- Toulouse Institute for Infectious and Inflammatory Diseases, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UPS, 31024 Toulouse, France
| | - Sally Al-Hajj
- Toulouse Institute for Infectious and Inflammatory Diseases, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UPS, 31024 Toulouse, France
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Manfred Claassen
- Department Internal Medicine I, Eberhard-Karls University, 72076 Tuebingen, Germany
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UPS, 31024 Toulouse, France
| | - Guillaume Martin-Blondel
- Toulouse Institute for Infectious and Inflammatory Diseases, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UPS, 31024 Toulouse, France; Department of Infectious and Tropical Diseases, Toulouse University Hospital, 31059 Toulouse, France
| | - Michael Bitzer
- Department Internal Medicine I, Eberhard-Karls University, 72076 Tuebingen, Germany
| | - Antoine Roquilly
- Université de Nantes, CHU Nantes, Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, 44093 Nantes, France
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
19
|
Éliás S, Schmidt A, Gomez-Cabrero D, Tegnér J. Gene Regulatory Network of Human GM-CSF-Secreting T Helper Cells. J Immunol Res 2021; 2021:8880585. [PMID: 34285924 PMCID: PMC8275380 DOI: 10.1155/2021/8880585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 12/13/2022] Open
Abstract
GM-CSF produced by autoreactive CD4-positive T helper cells is involved in the pathogenesis of autoimmune diseases, such as multiple sclerosis. However, the molecular regulators that establish and maintain the features of GM-CSF-positive CD4 T cells are unknown. In order to identify these regulators, we isolated human GM-CSF-producing CD4 T cells from human peripheral blood by using a cytokine capture assay. We compared these cells to the corresponding GM-CSF-negative fraction, and furthermore, we studied naïve CD4 T cells, memory CD4 T cells, and bulk CD4 T cells from the same individuals as additional control cell populations. As a result, we provide a rich resource of integrated chromatin accessibility (ATAC-seq) and transcriptome (RNA-seq) data from these primary human CD4 T cell subsets and we show that the identified signatures are associated with human autoimmune diseases, especially multiple sclerosis. By combining information about mRNA expression, DNA accessibility, and predicted transcription factor binding, we reconstructed directed gene regulatory networks connecting transcription factors to their targets, which comprise putative key regulators of human GM-CSF-positive CD4 T cells as well as memory CD4 T cells. Our results suggest potential therapeutic targets to be investigated in the future in human autoimmune disease.
Collapse
Affiliation(s)
- Szabolcs Éliás
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
| | - Angelika Schmidt
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
| | - David Gomez-Cabrero
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
- Mucosal & Salivary Biology Division, King's College London Dental Institute, London SE1 9RT, UK
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, Saudi Arabia
| | - Jesper Tegnér
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
- Biological and Environmental Sciences and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, Saudi Arabia
| |
Collapse
|
20
|
Bibert S, Guex N, Lourenco J, Brahier T, Papadimitriou-Olivgeris M, Damonti L, Manuel O, Liechti R, Götz L, Tschopp J, Quinodoz M, Vollenweider P, Pagani JL, Oddo M, Hügli O, Lamoth F, Erard V, Voide C, Delorenzi M, Rufer N, Candotti F, Rivolta C, Boillat-Blanco N, Bochud PY. Transcriptomic Signature Differences Between SARS-CoV-2 and Influenza Virus Infected Patients. Front Immunol 2021; 12:666163. [PMID: 34135895 PMCID: PMC8202013 DOI: 10.3389/fimmu.2021.666163] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
The reason why most individuals with COVID-19 have relatively limited symptoms while other develop respiratory distress with life-threatening complications remains unknown. Increasing evidence suggests that COVID-19 associated adverse outcomes mainly rely on dysregulated immunity. Here, we compared transcriptomic profiles of blood cells from 103 patients with different severity levels of COVID-19 with that of 27 healthy and 22 influenza-infected individuals. Data provided a complete overview of SARS-CoV-2-induced immune signature, including a dramatic defect in IFN responses, a reduction of toxicity-related molecules in NK cells, an increased degranulation of neutrophils, a dysregulation of T cells, a dramatic increase in B cell function and immunoglobulin production, as well as an important over-expression of genes involved in metabolism and cell cycle in patients infected with SARS-CoV-2 compared to those infected with influenza viruses. These features also differed according to COVID-19 severity. Overall and specific gene expression patterns across groups can be visualized on an interactive website (https://bix.unil.ch/covid/). Collectively, these transcriptomic host responses to SARS-CoV-2 infection are discussed in the context of current studies, thereby improving our understanding of COVID-19 pathogenesis and shaping the severity level of COVID-19.
Collapse
Affiliation(s)
- Stéphanie Bibert
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Joao Lourenco
- SIB Swiss Institute of Bioinformatics and Department of Fundamenal Oncology, University of Lausanne, Lausanne, Switzerland
| | - Thomas Brahier
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Lauro Damonti
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Infectious Diseases, Bern University Hospital, Bern, Switzerland
| | - Oriol Manuel
- Infectious Diseases Service and Transplantation Center, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Robin Liechti
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics and Department of Fundamenal Oncology, University of Lausanne, Lausanne, Switzerland
| | - Lou Götz
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics and Department of Fundamenal Oncology, University of Lausanne, Lausanne, Switzerland
| | - Jonathan Tschopp
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Peter Vollenweider
- Internal Medicine Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Luc Pagani
- Department of Adult Intensive Care Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mauro Oddo
- Department of Adult Intensive Care Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Olivier Hügli
- Emergency Department, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Laboratory Medicine, Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Véronique Erard
- Clinique de Médecine et spécialités, Infectiologie, Hôpital Fribourgeois-Fribourg, Fribourg, Switzerland
| | - Cathy Voide
- Department of Infectious Diseases, Central Institute, Valais Hospital, Sion, Switzerland
| | - Mauro Delorenzi
- SIB Swiss Institute of Bioinformatics and Department of Fundamenal Oncology, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Nathalie Rufer
- Department of Oncology, University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Fabio Candotti
- Division of Immunology and Allergy, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Noémie Boillat-Blanco
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pierre-Yves Bochud
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Vogel TP, Top KA, Karatzios C, Hilmers DC, Tapia LI, Moceri P, Giovannini-Chami L, Wood N, Chandler RE, Klein NP, Schlaudecker EP, Poli MC, Muscal E, Munoz FM. Multisystem inflammatory syndrome in children and adults (MIS-C/A): Case definition & guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 2021; 39:3037-3049. [PMID: 33640145 PMCID: PMC7904456 DOI: 10.1016/j.vaccine.2021.01.054] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
This is a Brighton Collaboration Case Definition of the term "Multisystem Inflammatory Syndrome in Children and Adults (MIS-C/A)" to be utilized in the evaluation of adverse events following immunization. The case definition was developed by topic experts convened by the Coalition for Epidemic Preparedness Innovations (CEPI) in the context of active development of vaccines for SARS-CoV-2. The format of the Brighton Collaboration was followed, including an exhaustive review of the literature, to develop a consensus definition and defined levels of certainty. The document underwent peer review by the Brighton Collaboration Network and by selected expert external reviewers prior to submission. The comments of the reviewers were taken into consideration and edits incorporated into this final manuscript.
Collapse
Affiliation(s)
- Tiphanie P Vogel
- Department of Pediatrics, Section of Rheumatology, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA.
| | - Karina A Top
- Departments of Pediatrics, Division of Infectious Diseases, and Community Health and Epidemiology, Canadian Center for Vaccinology, Dalhousie University, Halifax, NS, Canada
| | - Christos Karatzios
- Department of Pediatrics, Division of Infectious Diseases, McGill University Health Centre, Montreal, Canada
| | - David C Hilmers
- Departments of Medicine and Pediatrics, and Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Lorena I Tapia
- Department of Pediatrics, Hospital Roberto del Río and Virology Program, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pamela Moceri
- UR2CA, Department of Cardiology, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
| | - Lisa Giovannini-Chami
- Department of Pediatric Pulmonology and Allergology, Hôpitaux pédiatriques de Nice CHU- Lenval, Université de Nice Sophia-Antipolis, Nice, France
| | - Nicholas Wood
- Department of Child and Adolescent Health, University of Sydney, Sydney, Australia
| | | | - Nicola P Klein
- Kaiser Permanente Vaccine Study Center, Kaiser Permanente Northern California Division of Research, Oakland, CA, USA
| | - Elizabeth P Schlaudecker
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - M Cecilia Poli
- Departments of Immunology and Rheumatology, Hospital Roberto del Río, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Eyal Muscal
- Department of Pediatrics, Section of Rheumatology, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Flor M Munoz
- Texas Children's Hospital, Houston, TX, USA; Departments of Pediatrics, Section of Infectious Diseases, and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
Fouladseresht H, Doroudchi M, Rokhtabnak N, Abdolrahimzadehfard H, Roudgari A, Sabetian G, Paydar S. Predictive monitoring and therapeutic immune biomarkers in the management of clinical complications of COVID-19. Cytokine Growth Factor Rev 2021; 58:32-48. [PMID: 33199179 PMCID: PMC7544568 DOI: 10.1016/j.cytogfr.2020.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
The coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), appears with a wide spectrum of mild-to-critical clinical complications. Many clinical and experimental findings suggest the role of inflammatory mechanisms in the immunopathology of COVID-19. Hence, cellular and molecular mediators of the immune system can be potential targets for predicting, monitoring, and treating the progressive complications of COVID-19. In this review, we assess the latest cellular and molecular data on the immunopathology of COVID-19 according to the pathological evidence (e.g., mucus and surfactants), dysregulations of pro- and anti-inflammatory mediators (e.g., cytokines and chemokines), and impairments of innate and acquired immune system functions (e.g., mononuclear cells, neutrophils and antibodies). Furthermore, we determine the significance of immune biomarkers for predicting, monitoring, and treating the progressive complications of COVID-19. We also discuss the clinical importance of recent immune biomarkers in COVID-19, and at the end of each section, recent clinical trials in immune biomarkers for COVID-19 are mentioned.
Collapse
Affiliation(s)
- Hamed Fouladseresht
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Rokhtabnak
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hossein Abdolrahimzadehfard
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Roudgari
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Golnar Sabetian
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Paydar
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Bhardwaj A, Sapra L, Saini C, Azam Z, Mishra PK, Verma B, Mishra GC, Srivastava RK. COVID-19: Immunology, Immunopathogenesis and Potential Therapies. Int Rev Immunol 2021; 41:171-206. [PMID: 33641587 PMCID: PMC7919479 DOI: 10.1080/08830185.2021.1883600] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/09/2020] [Accepted: 01/21/2021] [Indexed: 02/08/2023]
Abstract
The Coronavirus Disease-2019 (COVID-19) imposed public health emergency and affected millions of people around the globe. As of January 2021, 100 million confirmed cases of COVID-19 along with more than 2 million deaths were reported worldwide. SARS-CoV-2 infection causes excessive production of pro-inflammatory cytokines thereby leading to the development of "Cytokine Storm Syndrome." This condition results in uncontrollable inflammation that further imposes multiple-organ-failure eventually leading to death. SARS-CoV-2 induces unrestrained innate immune response and impairs adaptive immune responses thereby causing tissue damage. Thus, understanding the foremost features and evolution of innate and adaptive immunity to SARS-CoV-2 is crucial in anticipating COVID-19 outcomes and in developing effective strategies to control the viral spread. In the present review, we exhaustively discuss the sequential key immunological events that occur during SARS-CoV-2 infection and are involved in the immunopathogenesis of COVID-19. In addition to this, we also highlight various therapeutic options already in use such as immunosuppressive drugs, plasma therapy and intravenous immunoglobulins along with various novel potent therapeutic options that should be considered in managing COVID-19 infection such as traditional medicines and probiotics.
Collapse
Affiliation(s)
- Asha Bhardwaj
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Chaman Saini
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Zaffar Azam
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Pradyumna K. Mishra
- Department of Molecular Biology, ICMR-NIREH, Nehru Hospital Building, Gandhi Medical College Campus, Bhopal, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Gyan C. Mishra
- Lab # 1, National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
24
|
Umbilical Cord-Derived CD362 + Mesenchymal Stromal Cells Attenuate Polymicrobial Sepsis Induced by Caecal Ligation and Puncture. Int J Mol Sci 2020; 21:ijms21218270. [PMID: 33158246 PMCID: PMC7672591 DOI: 10.3390/ijms21218270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have a multimodal, immunomodulatory mechanism of action and are now in clinical trials for single organ and systemic sepsis. However, a number of practicalities around source, homogeneity and therapeutic window remain to be determined. Here, we utilised conditioned medium from CD362+-sorted umbilical cord-human MSCs (UC-hMSCs) for a series of in vitro anti-inflammatory assays and the cryopreserved MSCs themselves in a severe (Series 1) or moderate (Series 2+3) caecal ligation and puncture (CLP) rodent model. Surviving animals were assessed at 48 h post injury induction. MSCs improved human lung, colonic and kidney epithelial cell survival following cytokine activation. In severe systemic sepsis, MSCs administered at 30 min enhanced survival (Series 1), and reduced organ bacterial load. In moderate systemic sepsis (Series 2), MSCs were ineffective when delivered immediately or 24 h later. Of importance, MSCs delivered 4 h post induction of moderate sepsis (Series 3) were effective, improving serum lactate, enhancing bacterial clearance from tissues, reducing pro-inflammatory cytokine concentrations and increasing antimicrobial peptides in serum. While demonstrating benefit and immunomodulation in systemic sepsis, therapeutic efficacy may be limited to a specific point of disease onset, and repeat dosing, MSC enhancement or other contingencies may be necessary.
Collapse
|
25
|
Silva TF, Tomiotto-Pellissier F, Sanfelice RA, Gonçalves MD, da Silva Bortoleti BT, Detoni MB, Rodrigues ACJ, Carloto ACM, Concato VM, Siqueira EDS, Costa IN, Pavanelli WR, Conchon-Costa I, Miranda-Sapla MM. A 21st Century Evil: Immunopathology and New Therapies of COVID-19. Front Immunol 2020; 11:562264. [PMID: 33193331 PMCID: PMC7652766 DOI: 10.3389/fimmu.2020.562264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19) has been classified as a global threat, affecting millions of people and killing thousands. It is caused by the SARS-CoV-2 virus, which emerged at the end of 2019 in Wuhan, China, quickly spreading worldwide. COVID-19 is a disease with symptoms that range from fever and breathing difficulty to acute respiratory distress and death, critically affecting older patients and people with previous comorbidities. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) receptor and mainly spreads through the respiratory tract, which it then uses to reach several organs. The immune system of infected patients has been demonstrated to suffer important alterations, such as lymphopenia, exhausted lymphocytes, excessive amounts of inflammatory monocytes and macrophages, especially in the lungs, and cytokine storms, which may contribute to its severity and difficulty of establishing an effective treatment. Even though no specific treatment is currently available, several studies have been investigating potential therapeutic strategies, including the use of previously approved drugs and immunotherapy. In this context, this review addresses the interaction between SARS-CoV-2 and the patient's host immune system during infection, in addition to discussing the main immunopathological mechanisms involved in the development of the disease and potential new therapeutic approaches.
Collapse
Affiliation(s)
- Taylon Felipe Silva
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer—LIDNC, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | | | - Raquel Arruda Sanfelice
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer—LIDNC, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Manoela Daiele Gonçalves
- Laboratory of Biotransformation and Phytochemistry, Department of Chemistry, Center of Exact Sciences, State University of Londrina, Londrina, Brazil
| | | | - Mariana Barbosa Detoni
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer—LIDNC, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Ana Carolina Jacob Rodrigues
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer—LIDNC, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Amanda Cristina Machado Carloto
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer—LIDNC, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Virgínia Márcia Concato
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer—LIDNC, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Elaine da Silva Siqueira
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer—LIDNC, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Idessania Nazareth Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer—LIDNC, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Wander Rogério Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer—LIDNC, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer—LIDNC, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Milena Menegazzo Miranda-Sapla
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer—LIDNC, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
26
|
Abstract
ABSTRACT Neutrophils play a critical role in the eradication of pathogenic organisms, particularly bacteria. However, in the septic patient the prolonged activation and accumulation of neutrophils may augment tissue and organ injury. This review discusses the different activation states and chemotaxis of neutrophils in septic patients. Neutrophil killing of bacteria and the formation of neutrophil extracellular traps represent important components of the innate immune response and they become dysregulated during sepsis, possibly through changes in their metabolism. Delayed neutrophil apoptosis may contribute to organ injury, or allow better clearance of pathogens. Neutrophils provide a friendly immune response to clear infections, but excessive activation and recruitment has the potential to turn them into potent foes.
Collapse
|
27
|
Lin X, Twelkmeyer T, Wang SY, Xu RN, Wang FS, Zhang C, Tang H. An immunopathogenic perspective of interleukin-1 signaling. Cell Mol Immunol 2020; 17:892-893. [PMID: 32467618 PMCID: PMC7471464 DOI: 10.1038/s41423-020-0475-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 11/21/2022] Open
Affiliation(s)
- Xinwen Lin
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- IPS-GWCMC Joint Center for Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Trix Twelkmeyer
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- IPS-GWCMC Joint Center for Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Si-Yu Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruo-Nan Xu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
| | - Hong Tang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
- IPS-GWCMC Joint Center for Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
- Pasteurien College, Suzhou University, Jiangsu, China.
| |
Collapse
|
28
|
Lang FM, Lee KMC, Teijaro JR, Becher B, Hamilton JA. GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nat Rev Immunol 2020; 20:507-514. [PMID: 32576980 PMCID: PMC7309428 DOI: 10.1038/s41577-020-0357-7] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Therapeutics against coronavirus disease 2019 (COVID-19) are urgently needed. Granulocyte–macrophage colony-stimulating factor (GM-CSF), a myelopoietic growth factor and pro-inflammatory cytokine, plays a critical role in alveolar macrophage homeostasis, lung inflammation and immunological disease. Both administration and inhibition of GM-CSF are currently being therapeutically tested in COVID-19 clinical trials. This Perspective discusses the pleiotropic biology of GM-CSF and the scientific merits behind these contrasting approaches. Recombinant granulocyte–macrophage colony-stimulating factor (GM-CSF) as well as antibodies targeted at GM-CSF or its receptor are being tested in clinical trials for coronavirus disease 2019 (COVID-19). This Perspective introduces the pleiotropic functions of GM-CSF and explores the rationale behind these different approaches.
Collapse
Affiliation(s)
| | - Kevin M-C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - John R Teijaro
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia. .,Australian Institute for Musculoskeletal Science, The University of Melbourne and Western Health, St Albans, Melbourne, Victoria, Australia.
| |
Collapse
|
29
|
Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Levantovsky R, Malle L, Moreira A, Park MD, Pia L, Risson E, Saffern M, Salomé B, Esai Selvan M, Spindler MP, Tan J, van der Heide V, Gregory JK, Alexandropoulos K, Bhardwaj N, Brown BD, Greenbaum B, Gümüş ZH, Homann D, Horowitz A, Kamphorst AO, Curotto de Lafaille MA, Mehandru S, Merad M, Samstein RM. Immunology of COVID-19: Current State of the Science. Immunity 2020; 52:910-941. [PMID: 32505227 PMCID: PMC7200337 DOI: 10.1016/j.immuni.2020.05.002] [Citation(s) in RCA: 1158] [Impact Index Per Article: 231.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide, igniting an unprecedented effort from the scientific community to understand the biological underpinning of COVID19 pathophysiology. In this Review, we summarize the current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death. We also discuss the rationale and clinical outcome of current therapeutic strategies as well as prospective clinical trials to prevent or treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nicolas Vabret
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Graham J Britton
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Conor Gruber
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samarth Hegde
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joel Kim
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Kuksin
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Levantovsky
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louise Malle
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alvaro Moreira
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luisanna Pia
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Risson
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Saffern
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bérengère Salomé
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Myvizhi Esai Selvan
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew P Spindler
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Tan
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Verena van der Heide
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jill K Gregory
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Nina Bhardwaj
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D Brown
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Greenbaum
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zeynep H Gümüş
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dirk Homann
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Horowitz
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice O Kamphorst
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Saurabh Mehandru
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Robert M Samstein
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
30
|
Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin Immunol 2020; 215:108427. [PMID: 32325252 PMCID: PMC7169933 DOI: 10.1016/j.clim.2020.108427] [Citation(s) in RCA: 1155] [Impact Index Per Article: 231.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
In December 2019, a novel coronavirus, now named as SARS-CoV-2, caused a series of acute atypical respiratory diseases in Wuhan, Hubei Province, China. The disease caused by this virus was termed COVID-19. The virus is transmittable between humans and has caused pandemic worldwide. The number of death tolls continues to rise and a large number of countries have been forced to do social distancing and lockdown. Lack of targeted therapy continues to be a problem. Epidemiological studies showed that elder patients were more susceptible to severe diseases, while children tend to have milder symptoms. Here we reviewed the current knowledge about this disease and considered the potential explanation of the different symptomatology between children and adults.
Collapse
Affiliation(s)
- Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Department of Anaesthesia, Harvard Medical School, United States of America.
| | - Miho Fujiogi
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Department of Anaesthesia, Harvard Medical School, United States of America.
| | - Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Department of Anaesthesia, Harvard Medical School, United States of America.
| |
Collapse
|
31
|
Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, Sun R, Tian Z, Xu X, Wei H. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl Sci Rev 2020; 7:998-1002. [PMID: 34676125 PMCID: PMC7108005 DOI: 10.1093/nsr/nwaa041] [Citation(s) in RCA: 687] [Impact Index Per Article: 137.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yonggang Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Binqing Fu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, China
| | - Xiaohu Zheng
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, China
| | - Dongsheng Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Changcheng Zhao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Yingjie Qi
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Rui Sun
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, China
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, China
| | - Xiaoling Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, China
| |
Collapse
|