1
|
Teplyshova A, Sharkov A. Case report: Adult patient with WWOX developmental and epileptic encephalopathy: 40 years of observation. Front Genet 2024; 15:1477466. [PMID: 39507621 PMCID: PMC11537890 DOI: 10.3389/fgene.2024.1477466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
WWOX developmental and epileptic encephalopathy is characterised by drug-resistant epilepsy with onset within the first year of life and severe psychomotor developmental delay. This report presents for the first time a clinical case of an adult patient with a homozygous likely pathogenic variant (p.Thr12Met) in the WWOX gene, with more than 40 years of follow-up. The patient had refractory epilepsy with various types of seizures during his life: mainly epileptic spasms, autonomic, myoclonic, tonic seizures, and absences. The patient had a prominent developmental delay with a lack of expressive speech, but by the age of 3, he had acquired the skills to sit, crawl, and walk with support. In adolescence, there was an acute regression of acquired skills to a total absence of independent motor activity. The patient had dysmorphic features, such as upslanting palpebral fissures, arched eyebrows, and hypertelorism. For many years, the patient was given a diagnosis of cerebral palsy; 38 years after the onset of the disease, he was given a molecular genetic diagnosis of WWOX-associated developmental and epileptic encephalopathy. Our observation illustrates the natural history of WWOX-DEE and the high clinical significance of early genetic diagnostics for identifying the cause of developmental delay and resistant epilepsy.
Collapse
Affiliation(s)
| | - Artem Sharkov
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University, Moscow, Russia
- Genomed Ltd, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Feng D, Li Y, Zhang YT, Song YJ, Qin DY, Wang F. WWOX-related epileptic encephalopathy caused by a novel mutation in the WWOX gene: a case report. Front Pediatr 2024; 12:1453778. [PMID: 39416860 PMCID: PMC11479972 DOI: 10.3389/fped.2024.1453778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Background WWOX-related epileptic encephalopathy is an autosomal recessive disorder caused by mutations in the WW-containing oxidoreductase gene, characterized by the onset of refractory seizures in infants. Early-onset epilepsy, electroencephalography abnormalities, and developmental delay or degeneration are the main clinical manifestations. Early death can occur in severe cases. In the present study, a novel variant in WWOX was detected in a patient with epilepsy and his healthy parents. Case presentation A 5-month-old boy presented with epilepsy. The main manifestations were intractable seizures, mental and motor retardation and hearing impairment. Subsequent genetic testing revealed the presence of an epilepsy-associated novel mutation: c.991C>A (amino acid change: p.Ser304Tyr) in the WWOX gene. Variants were inherited from parents with healthy phenotypes. Finally, a patient died at 6 months of age. Conclusion The discovery of novel variants has enriched the existing database of WWOX gene variants and may expand the range of clinical options for treating WWOX-related disorders.
Collapse
Affiliation(s)
- Dan Feng
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ye Li
- Department of Neonatology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ya-Ting Zhang
- Department of Neonatology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yan-Jun Song
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Dong-Yuan Qin
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Fan Wang
- Department of Neonatology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
3
|
You Y, Wu W, Du Y, Hu J, Li B. Developmental epileptic encephalopathy caused by homozygosity of a c.172+1G>C variant in the WWOX gene. Mol Genet Genomic Med 2024; 12:e2500. [PMID: 39101447 PMCID: PMC11298992 DOI: 10.1002/mgg3.2500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/01/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Variations in the WWOX gene have been identified as the leading cause of several central nervous system disorders. However, most previous reports have focused on the description of clinical phenotype, neglecting functional verification. Herein, we presented a case of a patient with developmental epileptic encephalopathy (DEE) caused by WWOX gene variation. CASE PRESENTATION Our patient was a 13-month-old girl with abnormal facial features, including facial hypotonia, arched eyebrows, a broad nose, and a depressed nasal bridge. She also had sparse and yellow hair, a low anterior hairline, and a short neck. Before the age of 8 months, she was suffering from mild seizures. Her developmental delay gradually worsened, and she suffered infantile spasms. After treatment with vigabatrin, seizures subsided. WWOX gene homozygous variation c.172+1G>C was identified using whole exome sequencing. Further minigene assay confirmed that the variation site affected splicing, causing protein truncation and affecting its function. CONCLUSION Clinical phenotype and minigene results suggest that WWOX gene homozygous variation c.172+1G>C can cause severe DEE. We also concluded that vigabatrin can effectively treat seizures.
Collapse
Affiliation(s)
- Yang You
- Department of ImagingThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiP.R. China
| | - Wenjuan Wu
- Department of NeurologyHebei Medical University, Hebei Children's HospitalShijiazhuangHebeiP.R. China
| | - Yakun Du
- Department of NeurologyHebei Medical University, Hebei Children's HospitalShijiazhuangHebeiP.R. China
| | - Jintong Hu
- Department of NeurologyHebei Medical University, Hebei Children's HospitalShijiazhuangHebeiP.R. China
| | - Baoguang Li
- Department of NeurologyHebei Medical University, Hebei Children's HospitalShijiazhuangHebeiP.R. China
- Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei ProvinceShijiazhuangP.R. China
| |
Collapse
|
4
|
Nishino M, Tanaka M, Imagawa K, Yaita K, Enokizono T, Ohto T, Suzuki H, Yamada M, Takenouchi T, Kosaki K, Takada H. Identification of a novel splice-site WWOX variant with paternal uniparental isodisomy in a patient with infantile epileptic encephalopathy. Am J Med Genet A 2024; 194:e63575. [PMID: 38407561 DOI: 10.1002/ajmg.a.63575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
WOREE syndrome is an early infantile epileptic encephalopathy characterized by drug-resistant seizures and severe psychomotor developmental delays. We report a case of a WWOX splice-site mutation with uniparental isodisomy. A 1-year and 7-month-old girl presented with nystagmus and epileptic seizures from early infancy, with no fixation or pursuit of vision. Physical examination revealed small deformities, such as swelling of both cheeks, folded fingers, rocking feet, and scoliosis. Brain imaging revealed slight hypoplasia of the cerebrum. Electroencephalogram showed focal paroxysmal discharges during the interictal phase of seizures. Vitamin B6 and zonisamide were administered for early infantile epileptic encephalopathy; however, the seizures were not relieved. Despite altering the type and dosage of antiepileptic drugs and ACTH therapy, the seizures were intractable. Whole-exome analysis revealed the homozygosity of WWOX(NM_016373.4):c.516+1G>A. The WWOX mRNA sequencing using peripheral blood RNA confirmed that exon 5 was homozygously deleted. Based on these results, the patient was diagnosed with WOREE syndrome at 5 months. The WWOX variant found in this study is novel and has never been reported before. WOREE syndrome being extremely rare, further case series and analyses of its pathophysiology are warranted.
Collapse
Affiliation(s)
- Megumi Nishino
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| | - Mai Tanaka
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| | - Kazuo Imagawa
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
- Department of Child Health, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Katsuyuki Yaita
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| | - Takashi Enokizono
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| | - Tatsuyuki Ohto
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
- Department of Child Health, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Shinjuku City, Tokyo, Japan
| | - Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Shinjuku City, Tokyo, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Shinjuku City, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Shinjuku City, Tokyo, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
- Department of Child Health, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Nelson PT, Fardo DW, Wu X, Aung KZ, Cykowski MD, Katsumata Y. Limbic-predominant age-related TDP-43 encephalopathy (LATE-NC): Co-pathologies and genetic risk factors provide clues about pathogenesis. J Neuropathol Exp Neurol 2024; 83:396-415. [PMID: 38613823 PMCID: PMC11110076 DOI: 10.1093/jnen/nlae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is detectable at autopsy in more than one-third of people beyond age 85 years and is robustly associated with dementia independent of other pathologies. Although LATE-NC has a large impact on public health, there remain uncertainties about the underlying biologic mechanisms. Here, we review the literature from human studies that may shed light on pathogenetic mechanisms. It is increasingly clear that certain combinations of pathologic changes tend to coexist in aging brains. Although "pure" LATE-NC is not rare, LATE-NC often coexists in the same brains with Alzheimer disease neuropathologic change, brain arteriolosclerosis, hippocampal sclerosis of aging, and/or age-related tau astrogliopathy (ARTAG). The patterns of pathologic comorbidities provide circumstantial evidence of mechanistic interactions ("synergies") between the pathologies, and also suggest common upstream influences. As to primary mediators of vulnerability to neuropathologic changes, genetics may play key roles. Genes associated with LATE-NC include TMEM106B, GRN, APOE, SORL1, ABCC9, and others. Although the anatomic distribution of TDP-43 pathology defines the condition, important cofactors for LATE-NC may include Tau pathology, endolysosomal pathways, and blood-brain barrier dysfunction. A review of the human phenomenology offers insights into disease-driving mechanisms, and may provide clues for diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - David W Fardo
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Xian Wu
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Khine Zin Aung
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Yuriko Katsumata
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
6
|
Carrier M, Hui CW, Watters V, Šimončičová E, Picard K, González Ibáñez F, Vernoux N, Droit A, Desjardins M, Tremblay MÈ. Behavioral as well as hippocampal transcriptomic and microglial responses differ across sexes in adult mouse offspring exposed to a dual genetic and environmental challenge. Brain Behav Immun 2024; 116:126-139. [PMID: 38016491 DOI: 10.1016/j.bbi.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/15/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
INTRODUCTION A wide range of positive, negative, and cognitive symptoms compose the clinical presentation of schizophrenia. Schizophrenia is a multifactorial disorder in which genetic and environmental risk factors interact for a full emergence of the disorder. Infectious challenges during pregnancy are a well-known environmental risk factor for schizophrenia. Also, genetic variants affecting the function of fractalkine signaling between neurons and microglia were linked to schizophrenia. Translational animal models recapitulating these complex gene-environment associations have a great potential to untangle schizophrenia neurobiology and propose new therapeutic strategies. METHODS Given that genetic variants affecting the function of fractalkine signaling between neurons and microglia were linked to schizophrenia, we compared the outcomes of a well-characterized model of maternal immune activation induced using the viral mimetic polyinosinic:polycytidylic acid (Poly I:C) in wild-type versus fractalkine receptor knockout mice. Possible behavioral and immune alterations were assessed in male and female offspring during adulthood. Considering the role of the hippocampus in schizophrenia, microglial analyses and bulk RNA sequencing were performed within this region to assess the neuroimmune dynamics at play. Males and females were examined separately. RESULTS Offspring exposed to the dual challenge paradigm exhibited symptoms relevant to schizophrenia and unpredictably to mood disorders. Males displayed social and cognitive deficits related to schizophrenia, while females mainly presented anxiety-like behaviors related to mood disorders. Hippocampal microglia in females exposed to the dual challenge were hypertrophic, indicative of an increased surveillance, whereas those in males showed on the other end of the spectrum blunted morphologies with a reduced phagocytosis. Hippocampal bulk-RNA sequencing further revealed a downregulation in females of genes related to GABAergic transmission, which represents one of the main proposed causes of mood disorders. CONCLUSIONS Building on previous results, we identified in the current study distinctive behavioral phenotypes in female mice exposed to a dual genetic and environmental challenge, thus proposing a new model of neurodevelopmentally-associated mood and affective symptoms. This paves the way to future sex-specific investigations into the susceptibility to developmental challenges using animal models based on genetic and immune vulnerability as presented here.
Collapse
Affiliation(s)
- Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada; Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Chin W Hui
- Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Valérie Watters
- Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Katherine Picard
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada; Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Fernando González Ibáñez
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada; Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Nathalie Vernoux
- Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Arnaud Droit
- Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada; Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Michèle Desjardins
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, QC, Canada; Oncology Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
7
|
Battaglia L, Scorrano G, Spiaggia R, Basile A, Palmucci S, Foti PV, Spatola C, Iacomino M, Marinangeli F, Francia E, Comisi F, Corsello A, Salpietro V, Vittori A, David E. Neuroimaging features of WOREE syndrome: a mini-review of the literature. Front Pediatr 2023; 11:1301166. [PMID: 38161429 PMCID: PMC10757851 DOI: 10.3389/fped.2023.1301166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
The WWOX gene encodes a 414-amino-acid protein composed of two N-terminal WW domains and a C-terminal short-chain dehydrogenase/reductase (SDR) domain. WWOX protein is highly conserved among species and mainly expressed in the cerebellum, cerebral cortex, brain stem, thyroid, hypophysis, and reproductive organs. It plays a crucial role in the biology of the central nervous system, and it is involved in neuronal development, migration, and proliferation. Biallelic pathogenic variants in WWOX have been associated with an early infantile epileptic encephalopathy known as WOREE syndrome. Both missense and null variants have been described in affected patients, leading to a reduction in protein function and stability. The most severe WOREE phenotypes have been related to biallelic null/null variants, associated with the complete loss of function of the protein. All affected patients showed brain anomalies on magnetic resonance imaging (MRI), suggesting the pivotal role of WWOX protein in brain homeostasis and developmental processes. We provided a literature review, exploring both the clinical and radiological spectrum related to WWOX pathogenic variants, described to date. We focused on neuroradiological findings to better delineate the WOREE phenotype with diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Laura Battaglia
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Giovanna Scorrano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rossana Spiaggia
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Pietro Valerio Foti
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Corrado Spatola
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Instituto Giannina Gaslini, Genoa, Italy
| | - Franco Marinangeli
- Department of Anesthesia, Critical Care and Pain Therapy, University of L’aquila, L’aquila, Italy
| | - Elisa Francia
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | | | | | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Alessandro Vittori
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Emanuele David
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| |
Collapse
|
8
|
Dong XS, Wen XJ, Zhang S, Wang DG, Xiong Y, Li ZM. Identification of compound heterozygous deletion of the WWOX gene in WOREE syndrome. BMC Med Genomics 2023; 16:291. [PMID: 37974179 PMCID: PMC10652538 DOI: 10.1186/s12920-023-01731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Biallelic loss-of-function variants in WWOX cause WWOX-related epileptic encephalopathy (WOREE syndrome), which has been reported in 60 affected individuals to date. In this study, we report on an affected individual with WOREE syndrome who presented with early-onset refractory seizures and global neurodevelopmental delay and died at the age of two and a half years. METHODS We present clinical and molecular findings in the affected individual, including biallelic pathogenic variants in the WWOX gene. We employed different molecular approaches, such as whole exome sequencing, quantitative real-time polymerase chain reaction (qPCR), and whole-genome sequencing, to identify the genetic variants. The breakpoints were determined through gap PCR and Sanger sequencing. RESULT Whole exome sequencing revealed homozygous exon 6 deletion in the WWOX gene in the proband. Quantitative real-time PCR confirmed that the parents were heterozygous carriers of exon 6 deletion. However, using whole-genome sequencing, we identified three larger deletions (maternal allele with exon 6-8 deletion and paternal allele with two deletions in proximity one in intron 5 and the other in exon 6) involving the WWOX gene in the proband, with deletion sizes of 13,261 bp, 53,904 bp, and 177,200 bp. The exact breakpoints were confirmed through gap PCR and Sanger sequencing. We found that the proband inherited the discontinuous deletion of intron 5 and exon 6 from the father, and the exons 6-8 deletion from the mother using gap PCR. CONCLUSION Our findings extend the variant spectrum of WOREE syndrome and support the critical role of the WWOX gene in neural development.
Collapse
Affiliation(s)
- Xing-Sheng Dong
- Prenatal Diagnosis Center, Zhongshan Boai Hospital Affiliated to Southern Medical University, Zhongshan, Guangdong, China
| | - Xiao-Jun Wen
- Reproductive Medicine Center, Zhongshan Boai Hospital Affiliated to Southern Medical University, Zhongshan, Guangdong, China
| | - Sheng Zhang
- Department of Pediatrics, Zhongshan Boai Hospital Affiliated to Southern Medical University, Zhongshan, Guangdong, China
| | - De-Gang Wang
- Prenatal Diagnosis Center, Zhongshan Boai Hospital Affiliated to Southern Medical University, Zhongshan, Guangdong, China
| | - Yi Xiong
- Prenatal Diagnosis Center, Zhongshan Boai Hospital Affiliated to Southern Medical University, Zhongshan, Guangdong, China
| | - Zhi-Ming Li
- Prenatal Diagnosis Center, Zhongshan Boai Hospital Affiliated to Southern Medical University, Zhongshan, Guangdong, China.
| |
Collapse
|
9
|
Pagnamenta AT, Camps C, Giacopuzzi E, Taylor JM, Hashim M, Calpena E, Kaisaki PJ, Hashimoto A, Yu J, Sanders E, Schwessinger R, Hughes JR, Lunter G, Dreau H, Ferla M, Lange L, Kesim Y, Ragoussis V, Vavoulis DV, Allroggen H, Ansorge O, Babbs C, Banka S, Baños-Piñero B, Beeson D, Ben-Ami T, Bennett DL, Bento C, Blair E, Brasch-Andersen C, Bull KR, Cario H, Cilliers D, Conti V, Davies EG, Dhalla F, Dacal BD, Dong Y, Dunford JE, Guerrini R, Harris AL, Hartley J, Hollander G, Javaid K, Kane M, Kelly D, Kelly D, Knight SJL, Kreins AY, Kvikstad EM, Langman CB, Lester T, Lines KE, Lord SR, Lu X, Mansour S, Manzur A, Maroofian R, Marsden B, Mason J, McGowan SJ, Mei D, Mlcochova H, Murakami Y, Németh AH, Okoli S, Ormondroyd E, Ousager LB, Palace J, Patel SY, Pentony MM, Pugh C, Rad A, Ramesh A, Riva SG, Roberts I, Roy N, Salminen O, Schilling KD, Scott C, Sen A, Smith C, Stevenson M, Thakker RV, Twigg SRF, Uhlig HH, van Wijk R, Vona B, Wall S, Wang J, Watkins H, Zak J, Schuh AH, Kini U, Wilkie AOM, Popitsch N, Taylor JC. Structural and non-coding variants increase the diagnostic yield of clinical whole genome sequencing for rare diseases. Genome Med 2023; 15:94. [PMID: 37946251 PMCID: PMC10636885 DOI: 10.1186/s13073-023-01240-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Whole genome sequencing is increasingly being used for the diagnosis of patients with rare diseases. However, the diagnostic yields of many studies, particularly those conducted in a healthcare setting, are often disappointingly low, at 25-30%. This is in part because although entire genomes are sequenced, analysis is often confined to in silico gene panels or coding regions of the genome. METHODS We undertook WGS on a cohort of 122 unrelated rare disease patients and their relatives (300 genomes) who had been pre-screened by gene panels or arrays. Patients were recruited from a broad spectrum of clinical specialties. We applied a bioinformatics pipeline that would allow comprehensive analysis of all variant types. We combined established bioinformatics tools for phenotypic and genomic analysis with our novel algorithms (SVRare, ALTSPLICE and GREEN-DB) to detect and annotate structural, splice site and non-coding variants. RESULTS Our diagnostic yield was 43/122 cases (35%), although 47/122 cases (39%) were considered solved when considering novel candidate genes with supporting functional data into account. Structural, splice site and deep intronic variants contributed to 20/47 (43%) of our solved cases. Five genes that are novel, or were novel at the time of discovery, were identified, whilst a further three genes are putative novel disease genes with evidence of causality. We identified variants of uncertain significance in a further fourteen candidate genes. The phenotypic spectrum associated with RMND1 was expanded to include polymicrogyria. Two patients with secondary findings in FBN1 and KCNQ1 were confirmed to have previously unidentified Marfan and long QT syndromes, respectively, and were referred for further clinical interventions. Clinical diagnoses were changed in six patients and treatment adjustments made for eight individuals, which for five patients was considered life-saving. CONCLUSIONS Genome sequencing is increasingly being considered as a first-line genetic test in routine clinical settings and can make a substantial contribution to rapidly identifying a causal aetiology for many patients, shortening their diagnostic odyssey. We have demonstrated that structural, splice site and intronic variants make a significant contribution to diagnostic yield and that comprehensive analysis of the entire genome is essential to maximise the value of clinical genome sequencing.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Carme Camps
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Edoardo Giacopuzzi
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Human Technopole, Viale Rita Levi Montalcini 1, 20157, Milan, Italy
| | - John M Taylor
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Mona Hashim
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Eduardo Calpena
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Pamela J Kaisaki
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Akiko Hashimoto
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Jing Yu
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Edward Sanders
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Ron Schwessinger
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Jim R Hughes
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Gerton Lunter
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- University Medical Center Groningen, Groningen University, PO Box 72, 9700 AB, Groningen, The Netherlands
| | - Helene Dreau
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Matteo Ferla
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Lukas Lange
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Yesim Kesim
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Vassilis Ragoussis
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Dimitrios V Vavoulis
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Holger Allroggen
- Neurosciences Department, UHCW NHS Trust, Clifford Bridge Road, Coventry, CV2 2DX, UK
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Benito Baños-Piñero
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - David Beeson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Tal Ben-Ami
- Pediatric Hematology-Oncology Unit, Kaplan Medical Center, Rehovot, Israel
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Celeste Bento
- Hematology Department, Hospitais da Universidade de Coimbra, Coimbra, Portugal
| | - Edward Blair
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Charlotte Brasch-Andersen
- Department of Clinical Genetics, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Katherine R Bull
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Holger Cario
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Eythstrasse 24, 89075, Ulm, Germany
| | - Deirdre Cilliers
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Valerio Conti
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
| | - E Graham Davies
- Department of Immunology, Great Ormond Street Hospital for Children NHS Trust and UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 2Nd Floor, 20C Guilford Street, London, WC1N 1DZ, UK
| | - Fatima Dhalla
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Oxford, OX3 7TY, UK
| | - Beatriz Diez Dacal
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Yin Dong
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - James E Dunford
- Oxford NIHR Musculoskeletal BRC and Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Old Road, Oxford, OX3 7HE, UK
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Jane Hartley
- Liver Unit, Birmingham Women's & Children's Hospital and University of Birmingham, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Georg Hollander
- Department of Paediatrics, University of Oxford, Level 2, Children's Hospital, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Kassim Javaid
- Oxford NIHR Musculoskeletal BRC and Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Old Road, Oxford, OX3 7HE, UK
| | - Maureen Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Pharmacy Hall North, Room 731, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Deirdre Kelly
- Liver Unit, Birmingham Women's & Children's Hospital and University of Birmingham, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Dominic Kelly
- Children's Hospital, OUH NHS Foundation Trust, NIHR Oxford BRC, Headley Way, Oxford, OX3 9DU, UK
| | - Samantha J L Knight
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Alexandra Y Kreins
- Department of Immunology, Great Ormond Street Hospital for Children NHS Trust and UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 2Nd Floor, 20C Guilford Street, London, WC1N 1DZ, UK
| | - Erika M Kvikstad
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Craig B Langman
- Feinberg School of Medicine, Northwestern University, 211 E Chicago Avenue, Chicago, IL, MS37, USA
| | - Tracy Lester
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Kate E Lines
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- University of Oxford, Academic Endocrine Unit, OCDEM, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Simon R Lord
- Early Phase Clinical Trials Unit, Department of Oncology, University of Oxford, Cancer and Haematology Centre, Level 2 Administration Area, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Xin Lu
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Sahar Mansour
- St George's University Hospitals NHS Foundation Trust, Blackshore Road, Tooting, London, SW17 0QT, UK
| | - Adnan Manzur
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Brian Marsden
- Nuffield Department of Medicine, Kennedy Institute, University of Oxford, Oxford, OX3 7BN, UK
| | - Joanne Mason
- Yourgene Health Headquarters, Skelton House, Lloyd Street North, Manchester Science Park, Manchester, M15 6SH, UK
| | - Simon J McGowan
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
| | - Hana Mlcochova
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Yoshiko Murakami
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Steven Okoli
- Imperial College NHS Trust, Department of Haematology, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Elizabeth Ormondroyd
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- University of Oxford, Level 6 West Wing, Oxford, OX3 9DU, JR, UK
| | - Lilian Bomme Ousager
- Department of Clinical Genetics, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Smita Y Patel
- Clinical Immunology, John Radcliffe Hospital, Level 4A, Oxford, OX3 9DU, UK
| | - Melissa M Pentony
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Chris Pugh
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Aboulfazl Rad
- Department of Otolaryngology-Head & Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Archana Ramesh
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Simone G Riva
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Irene Roberts
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Department of Paediatrics, University of Oxford, Level 2, Children's Hospital, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Noémi Roy
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Level 4, Haematology, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Outi Salminen
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Kyleen D Schilling
- Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Caroline Scott
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Arjune Sen
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Conrad Smith
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Mark Stevenson
- University of Oxford, Academic Endocrine Unit, OCDEM, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Rajesh V Thakker
- University of Oxford, Academic Endocrine Unit, OCDEM, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Stephen R F Twigg
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Holm H Uhlig
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Paediatrics, University of Oxford, Level 2, Children's Hospital, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Richard van Wijk
- UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Barbara Vona
- Department of Otolaryngology-Head & Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Steven Wall
- Oxford Craniofacial Unit, John Radcliffe Hospital, Level LG1, West Wing, Oxford, OX3 9DU, UK
| | - Jing Wang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Hugh Watkins
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- University of Oxford, Level 6 West Wing, Oxford, OX3 9DU, JR, UK
| | - Jaroslav Zak
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Anna H Schuh
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Usha Kini
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Andrew O M Wilkie
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Niko Popitsch
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter(VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Jenny C Taylor
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK.
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK.
| |
Collapse
|
10
|
van Eyk CL, Fahey MC, Gecz J. Redefining cerebral palsies as a diverse group of neurodevelopmental disorders with genetic aetiology. Nat Rev Neurol 2023; 19:542-555. [PMID: 37537278 DOI: 10.1038/s41582-023-00847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Cerebral palsy is a clinical descriptor covering a diverse group of permanent, non-degenerative disorders of motor function. Around one-third of cases have now been shown to have an underlying genetic aetiology, with the genetic landscape overlapping with those of neurodevelopmental disorders including intellectual disability, epilepsy, speech and language disorders and autism. Here we review the current state of genomic testing in cerebral palsy, highlighting the benefits for personalized medicine and the imperative to consider aetiology during clinical diagnosis. With earlier clinical diagnosis now possible, we emphasize the opportunity for comprehensive and early genomic testing as a crucial component of the routine diagnostic work-up in people with cerebral palsy.
Collapse
Affiliation(s)
- Clare L van Eyk
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
| |
Collapse
|
11
|
Engel C, Valence S, Delplancq G, Maroofian R, Accogli A, Agolini E, Alkuraya FS, Baglioni V, Bagnasco I, Becmeur-Lefebvre M, Bertini E, Borggraefe I, Brischoux-Boucher E, Bruel AL, Brusco A, Bubshait DK, Cabrol C, Cilio MR, Cornet MC, Coubes C, Danhaive O, Delague V, Denommé-Pichon AS, Di Giacomo MC, Doco-Fenzy M, Engels H, Cremer K, Gérard M, Gleeson JG, Heron D, Goffeney J, Guimier A, Harms FL, Houlden H, Iacomino M, Kaiyrzhanov R, Kamien B, Karimiani EG, Kraus D, Kuentz P, Kutsche K, Lederer D, Massingham L, Mignot C, Morris-Rosendahl D, Nagarajan L, Odent S, Ormières C, Partlow JN, Pasquier L, Penney L, Philippe C, Piccolo G, Poulton C, Putoux A, Rio M, Rougeot C, Salpietro V, Scheffer I, Schneider A, Srivastava S, Straussberg R, Striano P, Valente EM, Venot P, Villard L, Vitobello A, Wagner J, Wagner M, Zaki MS, Zara F, Lesca G, Yassaee VR, Miryounesi M, Hashemi-Gorji F, Beiraghi M, Ashrafzadeh F, Galehdari H, Walsh C, Novelli A, Tacke M, Sadykova D, Maidyrov Y, Koneev K, Shashkin C, Capra V, Zamani M, Van Maldergem L, Burglen L, Piard J. BRAT1-related disorders: phenotypic spectrum and phenotype-genotype correlations from 97 patients. Eur J Hum Genet 2023; 31:1023-1031. [PMID: 37344571 PMCID: PMC10474045 DOI: 10.1038/s41431-023-01410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/26/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
BRAT1 biallelic variants are associated with rigidity and multifocal seizure syndrome, lethal neonatal (RMFSL), and neurodevelopmental disorder associating cerebellar atrophy with or without seizures syndrome (NEDCAS). To date, forty individuals have been reported in the literature. We collected clinical and molecular data from 57 additional cases allowing us to study a large cohort of 97 individuals and draw phenotype-genotype correlations. Fifty-nine individuals presented with BRAT1-related RMFSL phenotype. Most of them had no psychomotor acquisition (100%), epilepsy (100%), microcephaly (91%), limb rigidity (93%), and died prematurely (93%). Thirty-eight individuals presented a non-lethal phenotype of BRAT1-related NEDCAS phenotype. Seventy-six percent of the patients in this group were able to walk and 68% were able to say at least a few words. Most of them had cerebellar ataxia (82%), axial hypotonia (79%) and cerebellar atrophy (100%). Genotype-phenotype correlations in our cohort revealed that biallelic nonsense, frameshift or inframe deletion/insertion variants result in the severe BRAT1-related RMFSL phenotype (46/46; 100%). In contrast, genotypes with at least one missense were more likely associated with NEDCAS (28/34; 82%). The phenotype of patients carrying splice variants was variable: 41% presented with RMFSL (7/17) and 59% with NEDCAS (10/17).
Collapse
Affiliation(s)
- Camille Engel
- Centre de Génétique Humaine, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France.
| | - Stéphanie Valence
- Service de Neurologie Pédiatrique, Hôpital Armand Trousseau, APHP Sorbonne Université, Paris, France
| | - Geoffroy Delplancq
- Centre de Génétique Humaine, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Reza Maroofian
- Department of Neuromuscular Diseases UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Andrea Accogli
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Valentina Baglioni
- Department of Human Neurosciences, Institute of Child and Adolescent Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Irene Bagnasco
- Division of Neuropsychiatry, Epilepsy Center for Children, Martini Hospital, 10141, Turin, Italy
| | | | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Ingo Borggraefe
- Department of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University of Munich, 80337, Munich, Germany
| | - Elise Brischoux-Boucher
- Centre de Génétique Humaine, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Ange-Line Bruel
- UMR 1231 GAD, Inserm, Université de Bourgogne Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10126, Turin, Italy
| | - Dalal K Bubshait
- Department of Pediatrics, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Christelle Cabrol
- Centre de Génétique Humaine, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Maria Roberta Cilio
- Department of Pediatrics, Division of Pediatric Neurology Saint-Luc University Hospital, and Institute of Neuroscience (IoNS), Catholic University of Louvain, Brussels, Belgium
| | - Marie-Coralie Cornet
- Department of Pediatrics, Division of Neonatology, University of California San Francisco, San Francisco, CA, USA
| | - Christine Coubes
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Olivier Danhaive
- Division of Neonatology, Saint-Luc university Hospital, and Institut of Clinical and Experimental Research (IREC), Bruxelles, Belgium
| | - Valérie Delague
- Aix Marseille Univ, INSERM, Marseille Medical Genetics Center, MMG, Marseille, France
| | - Anne-Sophie Denommé-Pichon
- UMR 1231 GAD, Inserm, Université de Bourgogne Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Marilena Carmela Di Giacomo
- Medical Genetics Service and Laboratory of Cytogenetics, SIC Anatomia Patologica, "San Carlo" Hospital, 85100, Potenza, Italy
| | - Martine Doco-Fenzy
- CHU Reims, Service de Génétique, Reims, France
- CHU de Nantes, service de génétique médicale, Nantes, France
- L'institut du thorax, INSERM, UNIV Nantes, Nantes, France
| | - Hartmut Engels
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Kirsten Cremer
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Marion Gérard
- Clinical Genetics, Côte de Nacre University Hospital Center, Caen, France
| | - Joseph G Gleeson
- University of California San Diego, Department of Neurosciences, Rady Children's Institute for Genomic Medicine, San Diego, CA, 92037, USA
| | - Delphine Heron
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Joanna Goffeney
- Service de neuropédiatrie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Anne Guimier
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker Enfants Malades, Institut Imagine et Université Paris-Cité, Paris, France
| | - Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henry Houlden
- Department of Neuromuscular Diseases UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Instituto Giannina Gaslini, Genova, Italy
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Diseases UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Benjamin Kamien
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, 6008, Australia
| | - Ehsan Ghayoor Karimiani
- Department of Molecular Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Dror Kraus
- Department of Neurology, Schneider Children's Medical Center of Israel, Petah Tiqva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Paul Kuentz
- UMR 1231 GAD, Inserm, Université de Bourgogne Franche Comté, Dijon, France
- Oncobiologie Génétique Bioinformatique, PCBio, CHU Besançon, Besançon, France
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Damien Lederer
- Institute for Pathology and Genetics, 6040, Gosselies, Belgium
| | - Lauren Massingham
- Division of Medical Genetics, Department of Pediatrics, Hasbro Children's Hospital, Providence, RI, USA
| | - Cyril Mignot
- APHP, Sorbonne Université, Département de Génétique, Paris, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, GH Pitié-Salpêtrière/Hôpital Armand Trousseau, Paris, France
| | - Déborah Morris-Rosendahl
- Clinical Genetics and Genomics, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- NHLI, Imperial College London, London, UK
| | - Lakshmi Nagarajan
- Department of Neurology, Perth Children's Hospital, Nedlands, WA, Australia
- University of Western Australia, Nedlands, WA, Australia
| | - Sylvie Odent
- Service de Génétique Clinique, Centre Référence "Déficiences Intellectuelles de causes rares" (CRDI), Centre Référence Anomalies du développement (CLAD-Ouest), CHU Rennes, Univ Rennes, Rennes, France
| | - Clothilde Ormières
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker Enfants Malades, Institut Imagine et Université Paris-Cité, Paris, France
| | - Jennifer Neil Partlow
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Laurent Pasquier
- Service de Génétique Clinique, Centre Référence "Déficiences Intellectuelles de causes rares" (CRDI), Centre Référence Anomalies du développement (CLAD-Ouest), CHU Rennes, Univ Rennes, Rennes, France
| | - Lynette Penney
- Department of Pediatrics, IWK Health Centre, Dalhousie University, Halifax, NS, Canada
| | - Christophe Philippe
- UMR 1231 GAD, Inserm, Université de Bourgogne Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | | | - Cathryn Poulton
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, 6008, Australia
| | - Audrey Putoux
- Hospices Civils de Lyon, Service de Génétique, Bron, France
- Équipe GENDEV, Centre de Recherche en Neurosciences de Lyon, INSERM U1028 CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Marlène Rio
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker Enfants Malades, Institut Imagine et Université Paris-Cité, Paris, France
| | | | - Vincenzo Salpietro
- Department of Neuromuscular Diseases UCL Queen Square Institute of Neurology, University College London, London, UK
- IRCCS Giannina Gaslini Institute, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Ingrid Scheffer
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
- Royal Children's Hospital, Florey Institute and Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Amy Schneider
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | | | - Rachel Straussberg
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Pasquale Striano
- IRCCS Giannina Gaslini Institute, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Perrine Venot
- Neonatal Intensive Care Unit, Institut Alix de Champagne, Reims, France
| | - Laurent Villard
- Aix Marseille Univ, INSERM, Marseille Medical Genetics Center, MMG, Marseille, France
- Département de Génétique Médicale, AP-HM, Hôpital d'Enfants de La Timone, Marseille, France
| | - Antonio Vitobello
- UMR 1231 GAD, Inserm, Université de Bourgogne Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Johanna Wagner
- Department of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University of Munich, 80337, Munich, Germany
| | - Matias Wagner
- Department of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University of Munich, 80337, Munich, Germany
- Institute for Neurogenomics, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University Munich, Munich, Germany
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Federizo Zara
- IRCCS Giannina Gaslini Institute, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Gaetan Lesca
- Hospices Civils de Lyon, Service de Génétique, Bron, France
- Pathophysiology and Genetics of Neuron and Muscle (PGNM, UCBL - CNRS UMR5261 - INSERM U1315), Université Claude Bernard Lyon 1, Lyon, France
| | - Vahid Reza Yassaee
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hashemi-Gorji
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Beiraghi
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farah Ashrafzadeh
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Christopher Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Moritz Tacke
- Department of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University of Munich, 80337, Munich, Germany
| | | | - Yerdan Maidyrov
- S. D. Asfendiyarov Kazakh National Medical University Almaty, Almaty, Kazakhstan
| | - Kairgali Koneev
- Department of Neurology and Neurosurgery, Asfendiyarov Kazakh National Medical University, Almaty, 050000, Kazakhstan
| | - Chingiz Shashkin
- Department of Neurology, The International Institute of Postraduate Education, Almaty, Kazakhstan
| | - Valeria Capra
- Unit of Medical Genetics, IRCCS Instituto Giannina Gaslini, Genova, Italy
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Lionel Van Maldergem
- Centre de Génétique Humaine, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Lydie Burglen
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique, AP-HP, Sorbonne Université, Hôpital Trousseau, Paris, France
| | - Juliette Piard
- Centre de Génétique Humaine, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
- UMR 1231 GAD, Inserm, Université de Bourgogne Franche Comté, Dijon, France
| |
Collapse
|
12
|
Bayanova M, Bolatov AK, Bazenova A, Nazarova L, Nauryzbayeva A, Tanko NM, Rakhimova S, Satvaldina N, Samatkyzy D, Kozhamkulov U, Kairov U, Akilzhanova A, Sarbassov D. Whole-Genome Sequencing Among Kazakhstani Children with Early-Onset Epilepsy Revealed New Gene Variants and Phenotypic Variability. Mol Neurobiol 2023; 60:4324-4335. [PMID: 37095367 PMCID: PMC10293429 DOI: 10.1007/s12035-023-03346-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023]
Abstract
In Kazakhstan, there is insufficient data on genetic epilepsy, which has its own clinical and management implications. Thus, this study aimed to use whole genome sequencing to identify and evaluate genetic variants and genetic structure of early onset epilepsy in the Kazakhstani pediatric population. In this study, for the first time in Kazakhstan, whole genome sequencing was carried out among epilepsy diagnosed children. The study involved 20 pediatric patients with early onset epilepsy and no established cause of the disease during the July-December, 2021. The average age at enrolment was 34.5 months, with a mean age at seizure onset of 6 months. Six patients (30%) were male, and 7 were familial cases. We identified pathogenic and likely pathogenic variants in 14 (70%) cases, among them, 6 novel disease gene variants (KCNQ2, CASK, WWOX, MT-CO3, GRIN2D, and SLC12A5). Other genes associated with the disease were SCN1A (x2), SLC2A1, ARX, CACNA1B, PCDH19, KCNT1, and CHRNA2. Identification of the genetic causes in 70% of cases confirms the general structure of the etiology of early onset epilepsy and the necessity of using NGS in diagnostics. Moreover, the study describes new genotype-phenotypic correlations in genetic epilepsy. Despite certain limitations of the study, it can be concluded that the genetic etiology of pediatric epilepsy in Kazakhstan is very broad and requires further research.
Collapse
Affiliation(s)
- Mirgul Bayanova
- University Medical Center CF, Kerey-Zhanibek Handar St. 5/1, Z05P3Y4, Astana, Kazakhstan
| | - Aidos K Bolatov
- University Medical Center CF, Kerey-Zhanibek Handar St. 5/1, Z05P3Y4, Astana, Kazakhstan.
- Astana Medical University, Beybitshilik St. 49A, Z10K9D9, Astana, Kazakhstan.
| | - Assiya Bazenova
- University Medical Center CF, Kerey-Zhanibek Handar St. 5/1, Z05P3Y4, Astana, Kazakhstan
| | - Lyazzat Nazarova
- University Medical Center CF, Kerey-Zhanibek Handar St. 5/1, Z05P3Y4, Astana, Kazakhstan
| | - Alissa Nauryzbayeva
- University Medical Center CF, Kerey-Zhanibek Handar St. 5/1, Z05P3Y4, Astana, Kazakhstan
| | - Naanlep Matthew Tanko
- University Medical Center CF, Kerey-Zhanibek Handar St. 5/1, Z05P3Y4, Astana, Kazakhstan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan, 010000
| | - Saule Rakhimova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| | - Nazerke Satvaldina
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| | - Diana Samatkyzy
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| | - Ulan Kozhamkulov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| | - Ulykbek Kairov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| | - Ainur Akilzhanova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| | - Dos Sarbassov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
- School of Sciences and Humanities, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| |
Collapse
|
13
|
Oliver KL, Trivisano M, Mandelstam SA, De Dominicis A, Francis DI, Green TE, Muir AM, Chowdhary A, Hertzberg C, Goldhahn K, Metreau J, Prager C, Pinner J, Cardamone M, Myers KA, Leventer RJ, Lesca G, Bahlo M, Hildebrand MS, Mefford HC, Kaindl AM, Specchio N, Scheffer IE. WWOX developmental and epileptic encephalopathy: Understanding the epileptology and the mortality risk. Epilepsia 2023; 64:1351-1367. [PMID: 36779245 PMCID: PMC10952634 DOI: 10.1111/epi.17542] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
OBJECTIVE WWOX is an autosomal recessive cause of early infantile developmental and epileptic encephalopathy (WWOX-DEE), also known as WOREE (WWOX-related epileptic encephalopathy). We analyzed the epileptology and imaging features of WWOX-DEE, and investigated genotype-phenotype correlations, particularly with regard to survival. METHODS We studied 13 patients from 12 families with WWOX-DEE. Information regarding seizure semiology, comorbidities, facial dysmorphisms, and disease outcome were collected. Electroencephalographic (EEG) and brain magnetic resonance imaging (MRI) data were analyzed. Pathogenic WWOX variants from our cohort and the literature were coded as either null or missense, allowing individuals to be classified into one of three genotype classes: (1) null/null, (2) null/missense, (3) missense/missense. Differences in survival outcome were estimated using the Kaplan-Meier method. RESULTS All patients experienced multiple seizure types (median onset = 5 weeks, range = 1 day-10 months), the most frequent being focal (85%), epileptic spasms (77%), and tonic seizures (69%). Ictal EEG recordings in six of 13 patients showed tonic (n = 5), myoclonic (n = 2), epileptic spasms (n = 2), focal (n = 1), and migrating focal (n = 1) seizures. Interictal EEGs demonstrated slow background activity with multifocal discharges, predominantly over frontal or temporo-occipital regions. Eleven of 13 patients had a movement disorder, most frequently dystonia. Brain MRIs revealed severe frontotemporal, hippocampal, and optic atrophy, thin corpus callosum, and white matter signal abnormalities. Pathogenic variants were located throughout WWOX and comprised both missense and null changes including five copy number variants (four deletions, one duplication). Survival analyses showed that patients with two null variants are at higher mortality risk (p-value = .0085, log-rank test). SIGNIFICANCE Biallelic WWOX pathogenic variants cause an early infantile developmental and epileptic encephalopathy syndrome. The most common seizure types are focal seizures and epileptic spasms. Mortality risk is associated with mutation type; patients with biallelic null WWOX pathogenic variants have significantly lower survival probability compared to those carrying at least one presumed hypomorphic missense pathogenic variant.
Collapse
Affiliation(s)
- Karen L. Oliver
- Epilepsy Research Centre, Department of MedicineUniversity of Melbourne, Austin HealthHeidelbergVictoriaAustralia
- Population Health and Immunity DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of NeuroscienceBambino Gesù Children's Hospital IRCCS, full member of European Reference Network EpiCARERomeItaly
| | - Simone A. Mandelstam
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
- Florey Institute of Neuroscience and Mental HealthMelbourneVictoriaAustralia
- Department of Radiology, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Angela De Dominicis
- Rare and Complex Epilepsy Unit, Department of NeuroscienceBambino Gesù Children's Hospital IRCCS, full member of European Reference Network EpiCARERomeItaly
- Department of Biomedicine and PreventionUniversity of Rome “Tor Vergata”RomeItaly
| | - David I. Francis
- Victorian Clinical Genetics ServicesMurdoch Children's Research Institute, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Timothy E. Green
- Epilepsy Research Centre, Department of MedicineUniversity of Melbourne, Austin HealthHeidelbergVictoriaAustralia
| | - Alison M. Muir
- Department of PediatricsUniversity of WashingtonSeattleWashingtonUSA
| | - Apoorva Chowdhary
- Department of PediatricsUniversity of WashingtonSeattleWashingtonUSA
| | - Christoph Hertzberg
- Zentrum für Sozialpädiatrie und Neuropädiatrie (DBZ)Vivantes Hospital NeukoellnBerlinGermany
| | - Klaus Goldhahn
- Department of Pediatrics and Neuropediatrics, DRK Klinikum WestendBerlinGermany
| | - Julia Metreau
- Department of Pediatric NeurologyHôpital Bicêtre, Assistance Publique Hopitaux de ParisLe Kremlin‐BicêtreFrance
| | - Christine Prager
- Center for Chronically Sick Children (SPZ)Charité‐Universitätsmedizin BerlinBerlinGermany
- Department of Pediatric NeurologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Jason Pinner
- Sydney Children's HospitalRandwickNew South WalesAustralia
- School of Women's and Children's HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Michael Cardamone
- Sydney Children's HospitalRandwickNew South WalesAustralia
- School of Women's and Children's HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Kenneth A. Myers
- Division of Child Neurology, Department of PediatricsMcGill UniversityMontrealQuebecCanada
- Research Institute of the McGill University Health CentreMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMontreal Children's Hospital, McGill UniversityMontrealQuebecCanada
| | - Richard J. Leventer
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
- Department of NeurologyRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University HospitalUniversité Claude Bernard Lyon 1, member of the European Reference Network EpiCARELyonFrance
| | - Melanie Bahlo
- Population Health and Immunity DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Michael S. Hildebrand
- Epilepsy Research Centre, Department of MedicineUniversity of Melbourne, Austin HealthHeidelbergVictoriaAustralia
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
| | - Heather C. Mefford
- Department of PediatricsUniversity of WashingtonSeattleWashingtonUSA
- Center for Pediatric Neurological Disease ResearchSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Angela M. Kaindl
- Center for Chronically Sick Children (SPZ)Charité‐Universitätsmedizin BerlinBerlinGermany
- Department of Pediatric NeurologyCharité–Universitätsmedizin BerlinBerlinGermany
- Institute of Cell Biology and NeurobiologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of NeuroscienceBambino Gesù Children's Hospital IRCCS, full member of European Reference Network EpiCARERomeItaly
| | - Ingrid E. Scheffer
- Epilepsy Research Centre, Department of MedicineUniversity of Melbourne, Austin HealthHeidelbergVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
- Florey Institute of Neuroscience and Mental HealthMelbourneVictoriaAustralia
| |
Collapse
|
14
|
Hussain T, Sanchez K, Crayton J, Saha D, Jeter C, Lu Y, Abba M, Seo R, Noebels JL, Fonken L, Aldaz CM. WWOX P47T partial loss-of-function mutation induces epilepsy, progressive neuroinflammation, and cerebellar degeneration in mice phenocopying human SCAR12. Prog Neurobiol 2023; 223:102425. [PMID: 36828035 PMCID: PMC10835625 DOI: 10.1016/j.pneurobio.2023.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
WWOX gene loss-of-function (LoF) has been associated with neuropathologies resulting in developmental, epileptic, and ataxic phenotypes of varying severity based on the level of WWOX dysfunction. WWOX gene biallelic germline variant p.Pro47Thr (P47T) has been causally associated with a new form of autosomal recessive cerebellar ataxia with epilepsy and intellectual disability (SCAR12, MIM:614322). This mutation affecting the WW1 protein binding domain of WWOX, impairs its interaction with canonical proline-proline-X-tyrosine motifs in partner proteins. We generated a mutant knock-in mouse model of Wwox P47T mutation that phenocopies human SCAR12. WwoxP47T/P47T mice displayed epilepsy, profound social behavior and cognition deficits, and poor motor coordination, and unlike KO models that survive only for 1 month, live beyond 1 year of age. These deficits progressed with age and mice became practically immobile, suggesting severe cerebellar dysfunction. WwoxP47T/P47T mice brains revealed signs of progressive neuroinflammation with elevated astro-microgliosis that increased with age. Cerebellar cortex displayed significantly reduced molecular and granular layer thickness and a strikingly reduced number of Purkinje cells with degenerated dendrites. Transcriptome profiling from various brain regions of WW domain LoF mice highlighted widespread changes in neuronal and glial pathways, enrichment of bioprocesses related to neuroinflammation, and severe cerebellar dysfunction. Our results show significant pathobiological effects and potential mechanisms through which WWOX partial LoF leads to epilepsy, cerebellar neurodegeneration, neuroinflammation, and ataxia. Additionally, the mouse model described here will be a useful tool to understand the role of WWOX in common neurodegenerative conditions in which this gene has been identified as a novel risk factor.
Collapse
Affiliation(s)
- Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kevin Sanchez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer Crayton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dhurjhoti Saha
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Martin Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, School of Medicine, Universidad de La Plata, La Plata 1900, Argentina
| | - Ryan Seo
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laura Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - C Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
15
|
Chong SC, Cao Y, Fung ELW, Kleppe S, Gripp KW, Hertecant J, El-Hattab AW, Suleiman J, Clark G, von Allmen G, Rodziyevska O, Lewis RA, Rosenfeld JA, Dong J, Wang X, Miller MJ, Bi W, Liu P, Scaglia F. Expansion of the clinical and molecular spectrum of WWOX-related epileptic encephalopathy. Am J Med Genet A 2023; 191:776-785. [PMID: 36537114 DOI: 10.1002/ajmg.a.63074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 02/14/2023]
Abstract
WWOX biallelic loss-of-function pathogenic single nucleotide variants (SNVs) and copy number variants (CNVs) including exonic deletions and duplications cause WWOX-related epileptic encephalopathy (WOREE) syndrome. This disorder is characterized by refractory epilepsy, axial hypotonia, peripheral hypertonia, progressive microcephaly, and premature death. Here we report five patients with WWOX biallelic predicted null variants identified by exome sequencing (ES), genome sequencing (GS), and/or chromosomal microarray analysis (CMA). SNVs and intragenic deletions of one or more exons were commonly reported in WOREE syndrome patients which made the genetic diagnosis challenging and required a combination of different diagnostic technologies. These patients presented with severe, developmental and epileptic encephalopathy (DEE), and other cardinal features consistent with WOREE syndrome. This report expands the clinical phenotype associated with this condition, including failure to thrive in most patients and epilepsy that responded to a ketogenic diet in three patients. Dysmorphic features and abnormal prenatal findings were not commonly observed. Additionally, recurrent pancreatitis and sensorineural hearing loss each were observed in single patients. In summary, these phenotypic features broaden the clinical spectrum of WOREE syndrome.
Collapse
Affiliation(s)
- Shuk Ching Chong
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China.,Joint BCM-CUHK Center of Medical Genetics, Chinese University of Hong Kong, Hong Kong, China
| | - Ye Cao
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China.,Joint BCM-CUHK Center of Medical Genetics, Chinese University of Hong Kong, Hong Kong, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Eva L W Fung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Soledad Kleppe
- Unidad de Metabolismo, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Karen W Gripp
- Division of Medical Genetics, A. I. du Pont Hospital for Children/Nemours, Wilmington, Delaware, USA
| | - Jozef Hertecant
- Division of Genetic and Metabolic Disorders, Departments of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jehan Suleiman
- Division of Neurology, Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates.,Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gary Clark
- Neurology and Developmental Neuroscience, Baylor College of Medicine, Neurology Service, Texas Children's Hospital, Houston, Texas, USA
| | - Gretchen von Allmen
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School, Houston, Texas, USA
| | - Olga Rodziyevska
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School, Houston, Texas, USA
| | - Richard A Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jie Dong
- Baylor Genetics, Houston, Texas, USA
| | | | - Xia Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - Marcus J Miller
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - Fernando Scaglia
- Joint BCM-CUHK Center of Medical Genetics, Chinese University of Hong Kong, Hong Kong, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong, China.,Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
16
|
Baryła I, Kośla K, Bednarek AK. WWOX and metabolic regulation in normal and pathological conditions. J Mol Med (Berl) 2022; 100:1691-1702. [PMID: 36271927 PMCID: PMC9691486 DOI: 10.1007/s00109-022-02265-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 01/05/2023]
Abstract
WW domain-containing oxidoreductase (WWOX) spans the common fragile site FRA16D. There is evidence that translocations and deletions affecting WWOX accompanied by loss of expression are frequent in many cancers and often correlate with a worse prognosis. Additionally, WWOX germline mutations were also found to be the cause of pathologies of brain development. Because WWOX binds to some transcription factors, it is a modulator of many cellular processes, including metabolic processes. Recently, studies have linked WWOX to familial dyslipidemias, osteopenia, metabolic syndrome, and gestational diabetes, confirming its role as a regulator of steroid, cholesterol, glucose, and normal bone metabolism. The WW domain of WWOX is directly engaged in the control of the activity of transcription factors such as HIF1α and RUNX2; therefore, WWOX gene alterations are associated with some metabolic abnormalities. Presently, most interest is devoted to the associations between WWOX and glucose and basic energy metabolism disturbances. In particular, its involvement in the initiation of the Warburg effect in cancer or gestational diabetes and type II diabetes is of interest. This review is aimed at systematically and comprehensively presenting the current state of knowledge about the participation of WWOX in the metabolism of healthy and diseased organisms.
Collapse
Affiliation(s)
- Izabela Baryła
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kośla
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K. Bednarek
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
17
|
Riva A, Nobile G, Giacomini T, Ognibene M, Scala M, Balagura G, Madia F, Accogli A, Romano F, Tortora D, Severino M, Scudieri P, Baldassari S, Musante I, Uva P, Salpietro V, Torella A, Nigro V, Capra V, Nobili L, Striano P, Mancardi MM, Zara F, Iacomino M. A Phenotypic-Driven Approach for the Diagnosis of WOREE Syndrome. Front Pediatr 2022; 10:847549. [PMID: 35573960 PMCID: PMC9100683 DOI: 10.3389/fped.2022.847549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/16/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND WOREE syndrome is a rare neurodevelopmental disorder featuring drug-resistant epilepsy and global developmental delay. The disease, caused by biallelic pathogenic variants in the WWOX gene, usually leads to severe disability or death within the first years of life. Clinicians have become more confident with the phenotypic picture of WOREE syndrome, allowing earlier clinical diagnosis. We report a boy with a peculiar clinic-radiological pattern supporting the diagnosis of WOREE syndrome. METHODS DNA was extracted from blood samples of the proband and his parents and subjected to Exome Sequencing (ES). Agarose gel electrophoresis, real-time quantitative PCR (Q-PCR), and array-CGH 180K were also performed. RESULTS ES detected a pathogenic stop variant (c.790C > T, p.Arg264*) in one allele of WWOX in the proband and his unaffected mother. A 180K array-CGH analysis revealed a 84,828-bp (g.chr16:78,360,803-78,445,630) deletion encompassing exon 6. The Q-PCR product showed that the proband and his father harbored the same deleted fragment, fusing exons 5 and 7 of WWOX. CONCLUSIONS Genetic testing remains crucial in establishing the definitive diagnosis of WOREE syndrome and allows prenatal interventions/parental counseling. However, our findings suggest that targeted Next Generation Sequencing-based testing may occasionally show technical pitfalls, prompting further genetic investigation in selected cases with high clinical suspicion.
Collapse
Affiliation(s)
- Antonella Riva
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Giulia Nobile
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Thea Giacomini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Unit of Child Neuropsychiatry, Epilepsy Centre, Department of Medical and Surgical Neuroscience and Rehabilitation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marzia Ognibene
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Scala
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ganna Balagura
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, Netherlands
| | - Francesca Madia
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre (MUHC), Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Ferruccio Romano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Paolo Scudieri
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ilaria Musante
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Uva
- Bioinformatica Clinica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Vincenzo Salpietro
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Valeria Capra
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lino Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Unit of Child Neuropsychiatry, Epilepsy Centre, Department of Medical and Surgical Neuroscience and Rehabilitation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Pasquale Striano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Margherita Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Unit of Child Neuropsychiatry, Epilepsy Centre, Department of Medical and Surgical Neuroscience and Rehabilitation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Bioinformatica Clinica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
18
|
Repudi S, Kustanovich I, Abu‐Swai S, Stern S, Aqeilan RI. Neonatal neuronal WWOX gene therapy rescues Wwox null phenotypes. EMBO Mol Med 2021; 13:e14599. [PMID: 34747138 PMCID: PMC8649866 DOI: 10.15252/emmm.202114599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
WW domain-containing oxidoreductase (WWOX) is an emerging neural gene-regulating homeostasis of the central nervous system. Germline biallelic mutations in WWOX cause WWOX-related epileptic encephalopathy (WOREE) syndrome and spinocerebellar ataxia and autosomal recessive 12 (SCAR12), two devastating neurodevelopmental disorders with highly heterogenous clinical outcomes, the most common being severe epileptic encephalopathy and profound global developmental delay. We recently demonstrated that neuronal ablation of murine Wwox recapitulates phenotypes of Wwox-null mice leading to intractable epilepsy, hypomyelination, and postnatal lethality. Here, we designed and produced an adeno-associated viral vector (AAV9) harboring murine Wwox or human WWOX cDNA and driven by the human neuronal Synapsin I promoter (AAV-SynI-WWOX). Testing the efficacy of AAV-SynI-WWOX delivery in Wwox-null mice demonstrated that specific neuronal restoration of WWOX expression rescued brain hyperexcitability and seizures, hypoglycemia, myelination deficits, and the premature lethality and behavioral deficits of Wwox-null mice. These findings provide a proof-of-concept for WWOX gene therapy as a promising approach to curing children with WOREE and SCAR12.
Collapse
Affiliation(s)
- Srinivasarao Repudi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research‐IMRICHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | | | - Sara Abu‐Swai
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research‐IMRICHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Shani Stern
- Sagol Department of NeurobiologyUniversity of HaifaHaifaIsrael
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research‐IMRICHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| |
Collapse
|
19
|
Breton VL, Aquilino MS, Repudi S, Saleem A, Mylvaganam S, Abu-Swai S, Bardakjian BL, Aqeilan RI, Carlen PL. Altered neocortical oscillations and cellular excitability in an in vitro Wwox knockout mouse model of epileptic encephalopathy. Neurobiol Dis 2021; 160:105529. [PMID: 34634460 PMCID: PMC8609180 DOI: 10.1016/j.nbd.2021.105529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 12/02/2022] Open
Abstract
Loss of function mutations of the WW domain-containing oxidoreductase (WWOX) gene are associated with severe and fatal drug-resistant pediatric epileptic encephalopathy. Epileptic seizures are typically characterized by neuronal hyperexcitability; however, the specific contribution of WWOX to that hyperexcitability has yet to be investigated. Using a mouse model of neuronal Wwox-deletion that exhibit spontaneous seizures, in vitro whole-cell and field potential electrophysiological characterization identified spontaneous bursting activity in the neocortex, a marker of the underlying network hyperexcitability. Spectral analysis of the neocortical bursting events highlighted increased phase-amplitude coupling, and a propagation from layer II/III to layer V. These bursts were NMDAR and gap junction dependent. In layer II/III pyramidal neurons, Wwox knockout mice demonstrated elevated amplitude of excitatory post-synaptic currents, whereas the frequency and amplitude of inhibitory post-synaptic currents were reduced, as compared to heterozygote and wild-type littermate controls. Furthermore, these neurons were depolarized and demonstrated increased action potential frequency, sag current, and post-inhibitory rebound. These findings suggest WWOX plays an essential role in balancing neocortical excitability and provide insight towards developing therapeutics for those suffering from WWOX disorders.
Collapse
Affiliation(s)
- Vanessa L Breton
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Krembil Research Institute, Division of Fundamental Neurobiology, Toronto Western Hospital, Toronto, Ontario M5T 0S8, Canada.
| | - Mark S Aquilino
- Krembil Research Institute, Division of Fundamental Neurobiology, Toronto Western Hospital, Toronto, Ontario M5T 0S8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada.
| | - Srinivasarao Repudi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Afifa Saleem
- Krembil Research Institute, Division of Fundamental Neurobiology, Toronto Western Hospital, Toronto, Ontario M5T 0S8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Shanthini Mylvaganam
- Krembil Research Institute, Division of Fundamental Neurobiology, Toronto Western Hospital, Toronto, Ontario M5T 0S8, Canada
| | - Sara Abu-Swai
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Berj L Bardakjian
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Peter L Carlen
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Krembil Research Institute, Division of Fundamental Neurobiology, Toronto Western Hospital, Toronto, Ontario M5T 0S8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Department of Medicine (Neurology), University Health Network, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
20
|
Oğuz S, Arslan UE, Kiper PÖŞ, Alikaşifoğlu M, Boduroğlu K, Utine GE. Diagnostic yield of microarrays in individuals with non-syndromic developmental delay and intellectual disability. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2021; 65:1033-1048. [PMID: 34661940 DOI: 10.1111/jir.12892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 07/04/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Intellectual disability (ID), or developmental delay (DD) when the individual is yet under 5 years of age, is evident before 18 years of age and is characterised by significant limitations in both intellectual functioning and adaptive behaviour. ID/DD may be clinically classified as syndromic or non-syndromic. Genomic copy number variations (CNVs) constitute a well-established aetiological subgroup of ID/DD. Overall diagnostic yield of microarrays is estimated at 10-25% for ID/DD, especially higher when particular clinical features that render the condition syndromic accompany. METHODS In this study, we aimed to investigate the diagnostic yield of microarrays in the subgroup of individuals with non-syndromic ID/DD (NSID/NSDD). A total of 302 NSID/NSDD individuals who have undergone microarray analysis between October 2013 and April 2020 were included. Accompanying clinical data, including head circumference, delayed developmental areas, seizures and behavioural problems were collected and analysed separately in NSID and NSDD subgroups. RESULTS The diagnostic yield of microarray analyses in NSID/NSDD was determined as 10.9% in NSID (10.7%) and in NSDD (11.1%). Presence of behavioural and epileptic problems did not contribute to the diagnostic yield. However, in the presence of macrocephaly, the contribution to diagnostic yield was statistically significant particularly in NSDD group. The most common pathogenic CNVs involved chromosomes 16, 15 and X. Lastly, we propose a Xq21.32q22.1 deletion as likely pathogenic in a child with isolated language delay and accompanying seizures. CONCLUSIONS Particularly in neurodevelopmental diseases, microarrays are useful for establishing the diagnosis and detecting novel susceptibility regions. Future studies would accurately classify the herein presented variants of uncertain significance CNVs as pathogenic or benign.
Collapse
Affiliation(s)
- S Oğuz
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - U E Arslan
- Department of Health Research, Public Health Institute, Ankara, Turkey
| | - P Ö Ş Kiper
- Department of Pediatrics, Department of Pediatric Genetics, Faculty of Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - M Alikaşifoğlu
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Department of Pediatric Genetics, Faculty of Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - K Boduroğlu
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Department of Pediatric Genetics, Faculty of Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - G E Utine
- Department of Pediatrics, Department of Pediatric Genetics, Faculty of Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
21
|
Steinberg DJ, Aqeilan RI. WWOX-Related Neurodevelopmental Disorders: Models and Future Perspectives. Cells 2021; 10:cells10113082. [PMID: 34831305 PMCID: PMC8623516 DOI: 10.3390/cells10113082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The WW domain-containing oxidoreductase (WWOX) gene was originally discovered as a putative tumor suppressor spanning the common fragile site FRA16D, but as time has progressed the extent of its pleiotropic function has become apparent. At present, WWOX is a major source of interest in the context of neurological disorders, and more specifically developmental and epileptic encephalopathies (DEEs). This review article aims to introduce the many model systems used through the years to study its function and roles in neuropathies. Similarities and fundamental differences between rodent and human models are discussed. Finally, future perspectives and promising research avenues are suggested.
Collapse
|
22
|
Steinberg DJ, Repudi S, Saleem A, Kustanovich I, Viukov S, Abudiab B, Banne E, Mahajnah M, Hanna JH, Stern S, Carlen PL, Aqeilan RI. Modeling genetic epileptic encephalopathies using brain organoids. EMBO Mol Med 2021; 13:e13610. [PMID: 34268881 PMCID: PMC8350905 DOI: 10.15252/emmm.202013610] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/09/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEE) are a group of disorders associated with intractable seizures, brain development, and functional abnormalities, and in some cases, premature death. Pathogenic human germline biallelic mutations in tumor suppressor WW domain-containing oxidoreductase (WWOX) are associated with a relatively mild autosomal recessive spinocerebellar ataxia-12 (SCAR12) and a more severe early infantile WWOX-related epileptic encephalopathy (WOREE). In this study, we generated an in vitro model for DEEs, using the devastating WOREE syndrome as a prototype, by establishing brain organoids from CRISPR-engineered human ES cells and from patient-derived iPSCs. Using these models, we discovered dramatic cellular and molecular CNS abnormalities, including neural population changes, cortical differentiation malfunctions, and Wnt pathway and DNA damage response impairment. Furthermore, we provide a proof of concept that ectopic WWOX expression could potentially rescue these phenotypes. Our findings underscore the utility of modeling childhood epileptic encephalopathies using brain organoids and their use as a unique platform to test possible therapeutic intervention strategies.
Collapse
Affiliation(s)
- Daniel J Steinberg
- The Concern Foundation LaboratoriesDepartment of Immunology and Cancer Research‐IMRICThe Lautenberg Center for Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Srinivasarao Repudi
- The Concern Foundation LaboratoriesDepartment of Immunology and Cancer Research‐IMRICThe Lautenberg Center for Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Afifa Saleem
- Biomedical EngineeringUniversity of TorontoTorontoONCanada
- Krembil Research InstituteUniversity Health NetworkTorontoONCanada
| | | | - Sergey Viukov
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Baraa Abudiab
- The Concern Foundation LaboratoriesDepartment of Immunology and Cancer Research‐IMRICThe Lautenberg Center for Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Ehud Banne
- Genetics InstituteKaplan Medical CenterHebrew University‐Hadassah Medical SchoolRehovotIsrael
- The Rina Mor Genetic InstituteWolfson Medical CenterHolonIsrael
| | - Muhammad Mahajnah
- Paediatric Neurology and Child Developmental CenterHillel Yaffe Medical CenterHaderaIsrael
- Rappaport Faculty of MedicineThe TechnionHaifaIsrael
| | - Jacob H Hanna
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Shani Stern
- Sagol Department of NeurobiologyUniversity of HaifaHaifaIsrael
| | - Peter L Carlen
- Biomedical EngineeringUniversity of TorontoTorontoONCanada
- Krembil Research InstituteUniversity Health NetworkTorontoONCanada
- Departments of Medicine and PhysiologyUniversity of TorontoTorontoONCanada
| | - Rami I Aqeilan
- The Concern Foundation LaboratoriesDepartment of Immunology and Cancer Research‐IMRICThe Lautenberg Center for Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| |
Collapse
|
23
|
Molecular Biology of the WWOX Gene That Spans Chromosomal Fragile Site FRA16D. Cells 2021; 10:cells10071637. [PMID: 34210081 PMCID: PMC8305172 DOI: 10.3390/cells10071637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
It is now more than 20 years since the FRA16D common chromosomal fragile site was characterised and the WWOX gene spanning this site was identified. In this time, much information has been discovered about its contribution to disease; however, the normal biological role of WWOX is not yet clear. Experiments leading to the identification of the WWOX gene are recounted, revealing enigmatic relationships between the fragile site, its gene and the encoded protein. We also highlight research mainly using the genetically tractable model organism Drosophila melanogaster that has shed light on the integral role of WWOX in metabolism. In addition to this role, there are some particularly outstanding questions that remain regarding WWOX, its gene and its chromosomal location. This review, therefore, also aims to highlight two unanswered questions. Firstly, what is the biological relationship between the WWOX gene and the FRA16D common chromosomal fragile site that is located within one of its very large introns? Secondly, what is the actual substrate and product of the WWOX enzyme activity? It is likely that understanding the normal role of WWOX and its relationship to chromosomal fragility are necessary in order to understand how the perturbation of these normal roles results in disease.
Collapse
|
24
|
Normal cells repel WWOX-negative or -dysfunctional cancer cells via WWOX cell surface epitope 286-299. Commun Biol 2021; 4:753. [PMID: 34140629 PMCID: PMC8211909 DOI: 10.1038/s42003-021-02271-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Metastatic cancer cells are frequently deficient in WWOX protein or express dysfunctional WWOX (designated WWOXd). Here, we determined that functional WWOX-expressing (WWOXf) cells migrate collectively and expel the individually migrating WWOXd cells. For return, WWOXd cells induces apoptosis of WWOXf cells from a remote distance. Survival of WWOXd from the cell-to-cell encounter is due to activation of the survival IκBα/ERK/WWOX signaling. Mechanistically, cell surface epitope WWOX286-299 (repl) in WWOXf repels the invading WWOXd to undergo retrograde migration. However, when epitope WWOX7-21 (gre) is exposed, WWOXf greets WWOXd to migrate forward for merge. WWOX binds membrane type II TGFβ receptor (TβRII), and TβRII IgG-pretreated WWOXf greet WWOXd to migrate forward and merge with each other. In contrast, TβRII IgG-pretreated WWOXd loses recognition by WWOXf, and WWOXf mediates apoptosis of WWOXd. The observatons suggest that normal cells can be activated to attack metastatic cancer cells. WWOXd cells are less efficient in generating Ca2+ influx and undergo non-apoptotic explosion in response to UV irradiation in room temperature. WWOXf cells exhibit bubbling cell death and Ca2+ influx effectively caused by UV or apoptotic stress. Together, membrane WWOX/TβRII complex is needed for cell-to-cell recognition, maintaining the efficacy of Ca2+ influx, and control of cell invasiveness.
Collapse
|
25
|
Havali C, Ekici A, Dorum S, Görükmez Ö, Topak A. Recently defined epileptic encephalopathy related to WWOX gene mutation: six patients and new mutations. Neurol Res 2021; 43:744-750. [PMID: 34034642 DOI: 10.1080/01616412.2021.1932173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: Pathogenic variants of the WWOX gene have been linked to sexual differentiation disorders, spinocerebellar ataxia, and epileptic encephalopathy (EE). We evaluated the clinical and molecular data from six newly diagnosed patients with WWOX-related EE.Methods: Clinical and molecular findings in six patients with EE were investigated, and biallelic pathogenic variants in the WWOX gene were identified. Clinical exome sequencing and Sanger sequencing were performed.Results: Three variations, as well as two novel mutations, in the WWOX gene were detected.Conclusion: Pathogenic WWOX mutations are associated with early-onset EE. Here, we report the case of six children with WWOX-related EE.
Collapse
Affiliation(s)
- Cengiz Havali
- Department of Pediatrics, Division of Neurology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Arzu Ekici
- Department of Pediatrics, Division of Neurology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Sevil Dorum
- Department of Pediatrics, Division of Pediatric Metabolic Disorders, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Özlem Görükmez
- Department of Medical Genetics, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Ali Topak
- Department of Medical Genetics, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| |
Collapse
|
26
|
Taouis K, Driouch K, Lidereau R, Lallemand F. Molecular Functions of WWOX Potentially Involved in Cancer Development. Cells 2021; 10:cells10051051. [PMID: 33946771 PMCID: PMC8145924 DOI: 10.3390/cells10051051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
The WW domain-containing oxidoreductase gene (WWOX) was cloned 21 years ago as a putative tumor suppressor gene mapping to chromosomal fragile site FRA16D. The localization of WWOX in a chromosomal region frequently altered in human cancers has initiated multiple current studies to establish its role in this disease. All of this work suggests that WWOX, due to its ability to interact with a large number of partners, exerts its tumor suppressive activity through a wide variety of molecular actions that are mostly cell specific.
Collapse
|
27
|
Repudi S, Steinberg DJ, Elazar N, Breton VL, Aquilino MS, Saleem A, Abu-Swai S, Vainshtein A, Eshed-Eisenbach Y, Vijayaragavan B, Behar O, Hanna JJ, Peles E, Carlen PL, Aqeilan RI. Neuronal deletion of Wwox, associated with WOREE syndrome, causes epilepsy and myelin defects. Brain 2021; 144:3061-3077. [PMID: 33914858 DOI: 10.1093/brain/awab174] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/21/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
WOREE syndrome caused by human germline biallelic mutations in WWOX is a neurodevelopmental disorder characterized by intractable epilepsy, severe developmental delay, ataxia and premature death at the age of 2-4 years. The underlying mechanisms of WWOX actions are poorly understood. In the current study, we show that specific neuronal deletion of murine Wwox produces phenotypes typical of the Wwox-null mutation leading to brain hyperexcitability, intractable epilepsy, ataxia and postnatal lethality. A significant decrease in transcript levels of genes involved in myelination was observed in mouse cortex and hippocampus. Wwox-mutant mice exhibited reduced maturation of oligodendrocytes, reduced myelinated axons and impaired axonal conductivity. Brain hyperexcitability and hypomyelination were also revealed in human brain organoids with a WWOX deletion. These findings provide cellular and molecular evidence for myelination defects and hyperexcitability in the WOREE syndrome linked to neuronal function of WWOX.
Collapse
Affiliation(s)
- Srinivasarao Repudi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Daniel J Steinberg
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Nimrod Elazar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vanessa L Breton
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Mark S Aquilino
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Afifa Saleem
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Sara Abu-Swai
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Anna Vainshtein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Bharath Vijayaragavan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Oded Behar
- Department of Developmental Biology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Jacob J Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Peter L Carlen
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
28
|
Genetic Neonatal-Onset Epilepsies and Developmental/Epileptic Encephalopathies with Movement Disorders: A Systematic Review. Int J Mol Sci 2021; 22:ijms22084202. [PMID: 33919646 PMCID: PMC8072943 DOI: 10.3390/ijms22084202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Despite expanding next generation sequencing technologies and increasing clinical interest into complex neurologic phenotypes associating epilepsies and developmental/epileptic encephalopathies (DE/EE) with movement disorders (MD), these monogenic conditions have been less extensively investigated in the neonatal period compared to infancy. We reviewed the medical literature in the study period 2000–2020 to report on monogenic conditions characterized by neonatal onset epilepsy and/or DE/EE and development of an MD, and described their electroclinical, genetic and neuroimaging spectra. In accordance with a PRISMA statement, we created a data collection sheet and a protocol specifying inclusion and exclusion criteria. A total of 28 different genes (from 49 papers) leading to neonatal-onset DE/EE with multiple seizure types, mainly featuring tonic and myoclonic, but also focal motor seizures and a hyperkinetic MD in 89% of conditions, with neonatal onset in 22%, were identified. Neonatal seizure semiology, or MD age of onset, were not always available. The rate of hypokinetic MD was low, and was described from the neonatal period only, with WW domain containing oxidoreductase (WWOX) pathogenic variants. The outcome is characterized by high rates of associated neurodevelopmental disorders and microcephaly. Brain MRI findings are either normal or nonspecific in most conditions, but serial imaging can be necessary in order to detect progressive abnormalities. We found high genetic heterogeneity and low numbers of described patients. Neurological phenotypes are complex, reflecting the involvement of genes necessary for early brain development. Future studies should focus on accurate neonatal epileptic phenotyping, and detailed description of semiology and time-course, of the associated MD, especially for the rarest conditions.
Collapse
|
29
|
Banne E, Abudiab B, Abu-Swai S, Repudi SR, Steinberg DJ, Shatleh D, Alshammery S, Lisowski L, Gold W, Carlen PL, Aqeilan RI. Neurological Disorders Associated with WWOX Germline Mutations-A Comprehensive Overview. Cells 2021; 10:824. [PMID: 33916893 PMCID: PMC8067556 DOI: 10.3390/cells10040824] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
The transcriptional regulator WW domain-containing oxidoreductase (WWOX) is a key player in a number of cellular and biological processes including tumor suppression. Recent evidence has emerged associating WWOX with non-cancer disorders. Patients harboring pathogenic germline bi-allelic WWOX variants have been described with the rare devastating neurological syndromes autosomal recessive spinocerebellar ataxia 12 (SCAR12) (6 patients) and WWOX-related epileptic encephalopathy (DEE28 or WOREE syndrome) (56 patients). Individuals with these syndromes present with a highly heterogenous clinical spectrum, the most common clinical symptoms being severe epileptic encephalopathy and profound global developmental delay. Knowledge of the underlying pathophysiology of these syndromes, the range of variants of the WWOX gene and its genotype-phenotype correlations is limited, hampering therapeutic efforts. Therefore, there is a critical need to identify and consolidate all the reported variants in WWOX to distinguish between disease-causing alleles and their associated severity, and benign variants, with the aim of improving diagnosis and increasing therapeutic efforts. Here, we provide a comprehensive review of the literature on WWOX, and analyze the pathogenic variants from published and unpublished reports by collecting entries from the ClinVar, DECIPHER, VarSome, and PubMed databases to generate the largest dataset of WWOX pathogenic variants. We estimate the correlation between variant type and patient phenotype, and delineate the impact of each variant, and used GnomAD to cross reference these variants found in the general population. From these searches, we generated the largest published cohort of WWOX individuals. We conclude with a discussion on potential personalized medicine approaches to tackle the devastating disorders associated with WWOX mutations.
Collapse
Affiliation(s)
- Ehud Banne
- The Genetic Institute, Kaplan Medical Center, Hebrew University-Hadassah Medical School, Rehovot 76100, Israel;
- The Rina Mor Genetic Institute, Wolfson Medical Center, Holon 58100, Israel
| | - Baraa Abudiab
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Sara Abu-Swai
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Srinivasa Rao Repudi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Daniel J. Steinberg
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Diala Shatleh
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Sarah Alshammery
- Faculty of Medicine and Health, School of Medical Sciences and Discipline of Child and Adolescent Health, The University of Sydney, Westmead 2145, NSW, Australia; (S.A.); (W.G.)
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, The University of Sydney, Westmead 2145, NSW, Australia;
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Wendy Gold
- Faculty of Medicine and Health, School of Medical Sciences and Discipline of Child and Adolescent Health, The University of Sydney, Westmead 2145, NSW, Australia; (S.A.); (W.G.)
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Hospital at Westmead and The Children’s Medical Research Institute, Westmead 2145, NSW, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead 2145, NSW, Australia
| | - Peter L. Carlen
- Krembil Research Institute, University Health Network and Department of Medicine, Physiology and BME, University of Toronto, Toronto, ON M5T 1M8, Canada;
| | - Rami I. Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| |
Collapse
|
30
|
Williamson SL, Rasanayagam CN, Glover KJ, Baptista J, Naik S, Satodia P, Gowda H. Rapid exome sequencing: revolutionises the management of acutely unwell neonates. Eur J Pediatr 2021; 180:3587-3591. [PMID: 34143244 PMCID: PMC8212268 DOI: 10.1007/s00431-021-04115-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022]
Abstract
Diagnosing acutely unwell infants with a potential genetic diagnosis can be challenging for healthcare professionals. Evidence suggests that up to 13% of critically unwell infants on the neonatal intensive care unit (NICU) have an underlying molecular diagnosis and when identified directly affects treatment decisions in 83%. On 1st October 2019, the National Health Service England (NHSE) launched a nationally commissioned service so that rapid whole-exome sequencing can be offered to critically unwell babies and children with a likely monogenic disorder who are admitted to NICU and paediatric intensive care unit (PICU). We present 7 cases from two neonatal units in the West Midlands (UK), where rapid exome sequencing has revealed a genetic diagnosis. Early genetic diagnosis in this cohort has influenced management in all (100%) cases, and in 57% (4 in 7 cases), it has helped in the decision to reorientate care. In some cases, early diagnosis has reduced the need for invasive and unnecessary investigations and avoided the need for post-mortem investigations. The genetic diagnosis has helped in counselling the families regarding the recurrence risk for future pregnancies. In some cases, this has provided parents with the reassurance of a low recurrence. In others, it has resulted in the offer of prenatal diagnosis or assisted conception technologies. What is Known: • Rapid whole-exome sequencing was commissioned in the UK in October 2019. • It is available for critically unwell babies with a likely monogenic aetiology. What is New: • It helps management planning for rare genetic disorders and future pregnancies counselling. • It can reduce the need for invasive investigations and overall intensive care costs.
Collapse
Affiliation(s)
- Sarah L Williamson
- Birmingham Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| | - Christina N Rasanayagam
- Birmingham Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Kate J Glover
- Birmingham Women’s and Children’s Hospital NHS Trust, Birmingham, UK
| | - Julia Baptista
- Royal Devon & Exeter NHS Foundation Trust, Exeter, UK ,University of Exeter, Exeter, UK
| | - Swati Naik
- Birmingham Women’s and Children’s Hospital NHS Trust, Birmingham, UK
| | - Prakash Satodia
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK ,University of Warwick, Coventry, UK
| | - Harsha Gowda
- Birmingham Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
31
|
Aldaz CM, Hussain T. WWOX Loss of Function in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:E8922. [PMID: 33255508 PMCID: PMC7727818 DOI: 10.3390/ijms21238922] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 01/13/2023] Open
Abstract
The WWOX gene was initially discovered as a putative tumor suppressor. More recently, its association with multiple central nervous system (CNS) pathologies has been recognized. WWOX biallelic germline pathogenic variants have been implicated in spinocerebellar ataxia type 12 (SCAR12; MIM:614322) and in early infantile epileptic encephalopathy (EIEE28; MIM:616211). WWOX germline copy number variants have also been associated with autism spectrum disorder (ASD). All identified germline genomic variants lead to partial or complete loss of WWOX function. Importantly, large-scale genome-wide association studies have also identified WWOX as a risk gene for common neurodegenerative conditions such as Alzheimer's disease (AD) and multiple sclerosis (MS). Thus, the spectrum of CNS disorders associated with WWOX is broad and heterogeneous, and there is little understanding of potential mechanisms at play. Exploration of gene expression databases indicates that WWOX expression is comparatively higher in the human cerebellar cortex than in other CNS structures. However, RNA in-situ hybridization data from the Allen Mouse Brain Atlas show that specific regions of the basolateral amygdala (BLA), the medial entorhinal cortex (EC), and deep layers of the isocortex can be singled out as brain regions with specific higher levels of Wwox expression. These observations are in close agreement with single-cell RNA-seq data which indicate that neurons from the medial entorhinal cortex, Layer 5 from the frontal cortex as well as GABAergic basket cells and granule cells from cerebellar cortex are the specific neuronal subtypes that display the highest Wwox expression levels. Importantly, the brain regions and cell types in which WWOX is most abundantly expressed, such as the EC and BLA, are intimately linked to pathologies and syndromic conditions in turn associated with this gene, such as epilepsy, intellectual disability, ASD, and AD. Higher Wwox expression in interneurons and granule cells from cerebellum points to a direct link to the described cerebellar ataxia in cases of WWOX loss of function. We now know that total or partial impairment of WWOX function results in a wide and heterogeneous variety of neurodegenerative conditions for which the specific molecular mechanisms remain to be deciphered. Nevertheless, these observations indicate an important functional role for WWOX in normal development and function of the CNS. Evidence also indicates that disruption of WWOX expression at the gene or protein level in CNS has significant deleterious consequences.
Collapse
Affiliation(s)
- C. Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA;
| | | |
Collapse
|
32
|
Iacomino M, Baldassari S, Tochigi Y, Kośla K, Buffelli F, Torella A, Severino M, Paladini D, Mandarà L, Riva A, Scala M, Balagura G, Accogli A, Nigro V, Minetti C, Fulcheri E, Zara F, Bednarek AK, Striano P, Suzuki H, Salpietro V. Loss of Wwox Perturbs Neuronal Migration and Impairs Early Cortical Development. Front Neurosci 2020; 14:644. [PMID: 32581702 PMCID: PMC7300205 DOI: 10.3389/fnins.2020.00644] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Mutations in the WWOX gene cause a broad range of ultra-rare neurodevelopmental and brain degenerative disorders, associated with a high likelihood of premature death in animal models as well as in humans. The encoded Wwox protein is a WW domain-containing oxidoreductase that participates in crucial biological processes including tumor suppression, cell growth/differentiation and regulation of steroid metabolism, while its role in neural development is less understood. We analyzed the exomes of a family affected with multiple pre- and postnatal anomalies, including cerebellar vermis hypoplasia, severe neurodevelopmental impairment and refractory epilepsy, and identified a segregating homozygous WWOX mutation leading to a premature stop codon. Abnormal cerebral cortex development due to a defective architecture of granular and molecular cell layers was found in the developing brain of a WWOX-deficient human fetus from this family. A similar disorganization of cortical layers was identified in lde/lde rats (carrying a homozygous truncating mutation which disrupts the active Wwox C-terminal domain) investigated at perinatal stages. Transcriptomic analyses of Wwox-depleted human neural progenitor cells showed an impaired expression of a number of neuronal migration-related genes encoding for tubulins, kinesins and associated proteins. These findings indicate that loss of Wwox may affect different cytoskeleton components and alter prenatal cortical development, highlighting a regulatory role of the WWOX gene in migrating neurons across different species.
Collapse
Affiliation(s)
- Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Yuki Tochigi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashinoi, Japan
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Łódź, Łódź, Poland
| | - Francesca Buffelli
- Fetal and Perinatal Pathology Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | | | - Dario Paladini
- Fetal Medicine and Surgery Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Luana Mandarà
- Medical Genetics Unit, Maria Paternò Arezzo Hospital, Ragusa, Italy
| | - Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Marcello Scala
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Ganna Balagura
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Andrea Accogli
- Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Carlo Minetti
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Ezio Fulcheri
- Fetal and Perinatal Pathology Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics (DISC), Pathology Division of Anatomic Pathology, University of Genoa, Genoa, Italy
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Łódź, Łódź, Poland
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Hiroetsu Suzuki
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashinoi, Japan
| | - Vincenzo Salpietro
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
33
|
Abstract
Shortly after its discovery in 2000, WWOX was hailed as a tumor suppressor gene. In subsequent years of research, this function was confirmed indisputably. Majority of tumors show high rate of loss of heterozygosity and decreased expression of WWOX. Nevertheless, over the years, the range of its known functions, at the cellular, organ and system levels, has expanded to include metabolism and endocrine system control and CNS differentiation and functioning. Despite of its function as a tumor suppressor gene, WWOX genetic alternations were found in a number of metabolic and neural diseases. A lack of WWOX protein as a consequence of germline mutations results in brain development disturbances and malfunctions.
Collapse
Affiliation(s)
- K Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Poland
| | - Ż Kałuzińska
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Poland
| | - A K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Poland
| |
Collapse
|
34
|
Burgess R, Wang S, McTague A, Boysen KE, Yang X, Zeng Q, Myers KA, Rochtus A, Trivisano M, Gill D, Sadleir LG, Specchio N, Guerrini R, Marini C, Zhang YH, Mefford HC, Kurian MA, Poduri AH, Scheffer IE. The Genetic Landscape of Epilepsy of Infancy with Migrating Focal Seizures. Ann Neurol 2020; 86:821-831. [PMID: 31618474 DOI: 10.1002/ana.25619] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/30/2019] [Accepted: 10/06/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the most severe developmental and epileptic encephalopathies. We delineate the genetic causes and genotype-phenotype correlations of a large EIMFS cohort. METHODS Phenotypic and molecular data were analyzed on patients recruited through an international collaborative study. RESULTS We ascertained 135 patients from 128 unrelated families. Ninety-three of 135 (69%) had causative variants (42/55 previously reported) across 23 genes, including 9 novel EIMFS genes: de novo dominant GABRA1, GABRB1, ATP1A3; X-linked CDKL5, PIGA; and recessive ITPA, AIMP1, KARS, WWOX. The most frequently implicated genes were KCNT1 (36/135, 27%) and SCN2A (10/135, 7%). Mosaicism occurred in 2 probands (SCN2A, GABRB3) and 3 unaffected mothers (KCNT1). Median age at seizure onset was 4 weeks, with earlier onset in the SCN2A, KCNQ2, and BRAT1 groups. Epileptic spasms occurred in 22% patients. A total of 127 patients had severe to profound developmental impairment. All but 7 patients had ongoing seizures. Additional features included microcephaly, movement disorders, spasticity, and scoliosis. Mortality occurred in 33% at median age 2 years 7 months. INTERPRETATION We identified a genetic cause in 69% of patients with EIMFS. We highlight the genetic heterogeneity of EIMFS with 9 newly implicated genes, bringing the total number to 33. Mosaicism was observed in probands and parents, carrying critical implications for recurrence risk. EIMFS pathophysiology involves diverse molecular processes from gene and protein regulation to ion channel function and solute trafficking. ANN NEUROL 2019;86:821-831.
Collapse
Affiliation(s)
- Rosemary Burgess
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Shuyu Wang
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia.,School of Clinical Sciences, Monash University, Monash Health, Melbourne, Victoria, Australia
| | - Amy McTague
- Molecular Neurosciences, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Katja E Boysen
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Xiaoling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Qi Zeng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Kenneth A Myers
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia.,Research Institute of the McGill University Health Centre; Montreal, Quebec, Canada.,Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Anne Rochtus
- Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA
| | - Marina Trivisano
- Rare and Complex Epilepsies Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, Scientific Institute for Research and Health Care, Rome, Italy
| | - Deepak Gill
- T. Y. Nelson Department of Neurology and Neurosurgery, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | | | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington, New Zealand
| | - Nicola Specchio
- Rare and Complex Epilepsies Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, Scientific Institute for Research and Health Care, Rome, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Carla Marini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Yue-Hua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom
| | - Annapurna H Poduri
- Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA.,Department of Neurology, Harvard Medical School, Boston, MA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia.,Florey Institute for Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Department of Neurology, Royal Children's Hospital, Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Su T, Yan Y, Xu S, Zhang K, Xu S. Early onset epileptic encephalopathy caused by novel compound heterozygous mutation of WWOX gene. Int J Dev Neurosci 2020; 80:157-161. [PMID: 32037574 DOI: 10.1002/jdn.10013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
The human WW domain containing oxidoreductase (WWOX) gene has been identified as a tumor suppressor gene. However, recent reports have demonstrated its dominant role in autosomal recessive disorders of the central nervous system, especially in early onset epileptic encephalopathy. Here, we report a Chinese case with novel compound heterozygous mutation of WWOX gene (c.229_230+2del mutation originated from her mother and c.1065dup (p.Ala356Serfs*173) variation from her father), and compare them to previously reported 59 WWOX-related epileptic encephalopathy (WOREE). Early onset and frequent epileptic seizures in the postnatal period, hypsarrhythmia patterns in EEG background and retarded development are the most important characteristics of WOREE in infants. Although the seizures in our case can be controlled by phenobarbital and topiramate, the prognosis of WOREE is poor.
Collapse
Affiliation(s)
- Tangfeng Su
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Yan
- Department of Neurology, People's Hospital of Dongxihu District, Wuhan, China
| | - Shuang Xu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sanqing Xu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Novel compound heterozygous mutations in the WWOX gene cause early infantile epileptic encephalopathy. Int J Dev Neurosci 2019; 79:45-48. [PMID: 31669195 DOI: 10.1016/j.ijdevneu.2019.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Defects of WW domain-containing oxidoreductase (WWOX) has been associated with autosomal recessive spinocerebellar ataxia type 12 (SCAR12) and severe early-onset epileptic encephalopathy. The mutations in this gene can lead to global developmental delay, acquired microcephaly, and epilepsy. We report an infant with an autosomal recessive severe early-onset epileptic encephalopathy. Whole exome sequencing analysis was applied to the patient. Novel compound heterozygous mutations in the WWOX gene, c.173-2A > G and c.775 T > C (p.Ser259Pro), were identified. The present study expands our knowledge of WWOX mutations and related phenotypes, and provides new information on the genetic defects associated with this disease for clinical diagnosis.
Collapse
|
37
|
Kośla K, Płuciennik E, Styczeń-Binkowska E, Nowakowska M, Orzechowska M, Bednarek AK. The WWOX Gene Influences Cellular Pathways in the Neuronal Differentiation of Human Neural Progenitor Cells. Front Cell Neurosci 2019; 13:391. [PMID: 31543760 PMCID: PMC6730490 DOI: 10.3389/fncel.2019.00391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/08/2019] [Indexed: 11/13/2022] Open
Abstract
The brain is the most functionally organized structure of all organs. It manages behavior, perception and higher cognitive functions. The WWOX gene is non-classical tumor suppressor gene, which has been shown to have an impact on proliferation, apoptosis and migration processes. Moreover, genetic aberrations in WWOX induce severe neuropathological phenotypes in humans and rodents. The aim of the present study was to investigate in detail the impact of WWOX on human neural progenitor cell (hNPC) maintenance and how depletion of WWOX disturbs signaling pathways playing a pivotal role in neuronal differentiation and central nervous system (CNS) organogenesis. hNPC with a silenced WWOX gene exhibited lowered mitochondrial redox potential, enhanced adhesion to fibronectin and extracellular matrix protein mixture, downregulation of MMP2/9 expression and impaired 3D growth. Global transcriptome analysis using cap analysis of gene expression (CAGE) found that WWOX downregulation significantly changes the expression of multiple genes engaged in cytoskeleton organization, adhesion, cell signaling and chromatin remodeling. The massive changes in gene expression caused by WWOX silencing may strongly affect the differentiation and migration of neurons in organogenesis, brain injury, cancerogenesis or neurodifferentiation. WWOX gene appears to be an important regulator of neural tissue architecture and function.
Collapse
Affiliation(s)
- Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Łódź, Łódź, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Łódź, Łódź, Poland
| | | | - Magdalena Nowakowska
- Department of Molecular Carcinogenesis, Medical University of Łódź, Łódź, Poland
| | | | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
38
|
Tochigi Y, Takamatsu Y, Nakane J, Nakai R, Katayama K, Suzuki H. Loss of Wwox Causes Defective Development of Cerebral Cortex with Hypomyelination in a Rat Model of Lethal Dwarfism with Epilepsy. Int J Mol Sci 2019; 20:ijms20143596. [PMID: 31340538 PMCID: PMC6678113 DOI: 10.3390/ijms20143596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
WW domain-containing oxidoreductase (Wwox) is a putative tumor suppressor. Several germline mutations of Wwox have been associated with infant neurological disorders characterized by epilepsy, growth retardation, and early death. Less is known, however, about the pathological link between Wwox mutations and these disorders or the physiological role of Wwox in brain development. In this study, we examined age-related expression and histological localization of Wwox in forebrains as well as the effects of loss of function mutations in the Wwox gene in the immature cortex of a rat model of lethal dwarfism with epilepsy (lde/lde). Immunostaining revealed that Wwox is expressed in neurons, astrocytes, and oligodendrocytes. lde/lde cortices were characterized by a reduction in neurite growth without a reduced number of neurons, severe reduction in myelination with a reduced number of mature oligodendrocytes, and a reduction in cell populations of astrocytes and microglia. These results indicate that Wwox is essential for normal development of neurons and glial cells in the cerebral cortex.
Collapse
Affiliation(s)
- Yuki Tochigi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Yutaka Takamatsu
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Jun Nakane
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Rika Nakai
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Kentaro Katayama
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Hiroetsu Suzuki
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan.
| |
Collapse
|