1
|
Dong W, Liu S, Li S, Wang Z. Cell reprogramming therapy for Parkinson's disease. Neural Regen Res 2024; 19:2444-2455. [PMID: 38526281 PMCID: PMC11090434 DOI: 10.4103/1673-5374.390965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 10/08/2023] [Indexed: 03/26/2024] Open
Abstract
Parkinson's disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson's disease. The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson's disease, which could substantially alleviate the symptoms of Parkinson's disease in clinical practice. However, ethical issues and tumor formation were limitations of its clinical application. Induced pluripotent stem cells can be acquired without sacrificing human embryos, which eliminates the huge ethical barriers of human stem cell therapy. Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons, without the need for intermediate proliferation states, thus avoiding issues of immune rejection and tumor formation. Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson's disease. However, there are also ethical concerns and the risk of tumor formation that need to be addressed. This review highlights the current application status of cell reprogramming in the treatment of Parkinson's disease, focusing on the use of induced pluripotent stem cells in cell replacement therapy, including preclinical animal models and progress in clinical research. The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson's disease, as well as the controversy surrounding in vivo reprogramming. These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson's disease.
Collapse
Affiliation(s)
- Wenjing Dong
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shuyi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shangang Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| |
Collapse
|
2
|
Beaudreault CP, Wang R, Muh CR, Rosenberg A, Funari A, McGoldrick PE, Wolf SM, Sacknovitz A, Chung S. Overcoming Graft Rejection in Induced Pluripotent Stem Cell-Derived Inhibitory Interneurons for Drug-Resistant Epilepsy. Brain Sci 2024; 14:1027. [PMID: 39452039 PMCID: PMC11506040 DOI: 10.3390/brainsci14101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Cell-based therapies for drug-resistant epilepsy using induced pluripotent stem cell-derived inhibitory interneurons are now in early-phase clinical trials, building on findings from trials in Parkinson's disease (PD) and Huntington's disease (HD). Graft rejection and the need for immunosuppressive therapy post-transplantation pose potential barriers to more epilepsy patients becoming potential candidates for inhibitory interneurons transplantation surgery. OBJECTIVES The present literature review weighs the evidence for and against human leukocyte antigen (HLA)-mediated graft rejection in PD and HD and examines the potential advantages and drawbacks to five broad approaches to cell-based therapies, including autologous cell culture and transplantation, in vivo reprogramming of glial cells using viral vectors, allogeneic transplantation using off-the-shelf cell lines, transplantation using inhibitory interneurons cultured from HLA-matched cell lines, and the use of hypoimmunogenic-induced pluripotent stem cell-derived inhibitory interneurons. The impact of surgical technique and associated needle trauma on graft rejection is also discussed. METHODS Non-systematic literature review. RESULTS While cell-based therapies have enjoyed early successes in treating a host of central nervous system disorders, the immunologic reaction against surgical procedures and implanted materials has remained a major obstacle. CONCLUSIONS Adapting cell-based therapies using iPSC-derived inhibitory interneurons for epilepsy surgery will similarly require surmounting the challenge of immunogenicity.
Collapse
Affiliation(s)
- Cameron P. Beaudreault
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (C.P.B.); (R.W.); (A.R.); (A.S.)
| | - Richard Wang
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (C.P.B.); (R.W.); (A.R.); (A.S.)
| | - Carrie Rebecca Muh
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY 10595, USA
| | - Ashley Rosenberg
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (C.P.B.); (R.W.); (A.R.); (A.S.)
| | - Abigail Funari
- Department of Neurosurgery, SUNY Upstate Medical Center, Syracuse, NY 13210, USA
| | - Patty E. McGoldrick
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (C.P.B.); (R.W.); (A.R.); (A.S.)
- Division of Pediatric Neurology, Maria Fareri Children’s Hospital, Valhalla, NY 10595, USA
- Division of Pediatric Neurology, Boston Children’s Health Physicians, Hawthorne, NY 10532, USA
| | - Steven M. Wolf
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (C.P.B.); (R.W.); (A.R.); (A.S.)
- Division of Pediatric Neurology, Maria Fareri Children’s Hospital, Valhalla, NY 10595, USA
- Division of Pediatric Neurology, Boston Children’s Health Physicians, Hawthorne, NY 10532, USA
| | - Ariel Sacknovitz
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (C.P.B.); (R.W.); (A.R.); (A.S.)
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY 10595, USA
| | - Sangmi Chung
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
- Department of Neurosurgery, Brain Health Institute, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Svendsen SP, Svendsen CN. Cell therapy for neurological disorders. Nat Med 2024; 30:2756-2770. [PMID: 39407034 DOI: 10.1038/s41591-024-03281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 10/18/2024]
Abstract
Cell therapies for neurological disorders are entering the clinic and present unique challenges and opportunities compared with conventional medicines. They have the potential to replace damaged nervous tissue and integrate into the brain or spinal cord to produce functional effects for the lifetime of the patient, which could revolutionize the way clinicians treat debilitating neurological disorders. The major challenge has been cell sourcing, which historically relied mainly on fetal brain tissue. This has largely been overcome with the advent of pluripotent stem cell technology and the ability to make almost any cell of the nervous system at scale. Furthermore, advances in gene editing now allow the generation of genetically modified cells that could perform better and evade the immune system. With all the remarkable new approaches to treat neurological disorders, we take a critical look at the state of current clinical trials and how challenges may be overcome with the evolving technology and innovation occurring in the stem cell field.
Collapse
Affiliation(s)
- Soshana P Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - Clive N Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Shimizu D, Miura A, Mori M. The perspective for next-generation lung replacement therapies: functional whole lung generation by blastocyst complementation. Curr Opin Organ Transplant 2024; 29:340-348. [PMID: 39150364 DOI: 10.1097/mot.0000000000001169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
PURPOSE OF REVIEW Blastocyst complementation represents a promising frontier in next-generation lung replacement therapies. This review aims to elucidate the future prospects of lung blastocyst complementation within clinical settings, summarizing the latest studies on generating functional lungs through this technique. It also explores and discusses host animal selection relevant to interspecific chimera formation, a challenge integral to creating functional human lungs via blastocyst complementation. RECENT FINDINGS Various gene mutations have been utilized to create vacant lung niches, enhancing the efficacy of donor cell contribution to the complemented lungs in rodent models. By controlling the lineage to induce gene mutations, chimerism in both the lung epithelium and mesenchyme has been improved. Interspecific blastocyst complementation underscores the complexity of developmental programs across species, with several genes identified that enhance chimera formation between humans and other mammals. SUMMARY While functional lungs have been generated via intraspecies blastocyst complementation, the generation of functional interspecific lungs remains unrealized. Addressing the challenges of controlling the host lung niche and selecting host animals relevant to interspecific barriers between donor human and host cells is critical to enabling the generation of functional humanized or entire human lungs in large animals.
Collapse
Affiliation(s)
- Dai Shimizu
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Miura
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Munemasa Mori
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
5
|
Shah S, Mansour HM, Aguilar TM, Lucke-Wold B. Mesenchymal Stem Cell-Derived Exosomes as a Neuroregeneration Treatment for Alzheimer's Disease. Biomedicines 2024; 12:2113. [PMID: 39335626 PMCID: PMC11428860 DOI: 10.3390/biomedicines12092113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent kind of dementia and is a long-term degenerative disease. Pathologically, it is defined by the development of extracellular amyloid-β plaques and intracellular neurofibrillary tangles made up of hyperphosphorylated tau protein. This causes neuronal death, particularly in the hippocampus and cortex. Mesenchymal stem cell (MSC)-derived exosomes have been identified as possibly therapeutic and have promise for Alzheimer's disease due to their regenerative characteristics. METHODS A systematic retrieval of information was performed on PubMed. A total of 60 articles were found in a search on mesenchymal stem cells, exosomes, and Alzheimer's disease. A total of 16 ongoing clinical trials were searched and added from clinicaltrials.gov. We added 23 supporting articles to help provide information for certain sections. In total, we included 99 articles in this manuscript: 50 are review articles, 13 are preclinical studies, 16 are clinical studies, 16 are ongoing clinical trials, and 4 are observational studies. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. The clinical trials on mesenchymal stem cell exosomes for Alzheimer's disease were searched on clinicaltrials.gov. RESULTS Several experimental investigations have shown that MSC-Exo improves cognitive impairment in rats. In this review paper, we summarized existing understanding regarding the molecular and cellular pathways behind MSC-Exo-based cognitive function restoration, with a focus on MSC-Exo's therapeutic potential in the treatment of Alzheimer's disease. CONCLUSION AD is a significant health issue in our culture and is linked to several important neuropathological characteristics. Exosomes generated from stem cells, such as mesenchymal stem cells (MSCs) or neural stem cells (NSCs), have been examined more and more in a variety of AD models, indicating that they may be viable therapeutic agents for the treatment of diverse disorders. Exosome yields may be increased, and their therapeutic efficacy can be improved using a range of tailored techniques and culture conditions. It is necessary to provide standardized guidelines for exosome manufacture to carry out excellent preclinical and clinical research.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Hadeel M Mansour
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Tania M Aguilar
- College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
6
|
Clark BJ, Lelos MJ, Loring JF. Advancing Parkinson's disease treatment: cell replacement therapy with neurons derived from pluripotent stem cells. Stem Cells 2024; 42:781-790. [PMID: 38902932 DOI: 10.1093/stmcls/sxae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
The motor symptoms of Parkinson's disease (PD) are caused by the progressive loss of dopamine neurons from the substantia nigra. There are currently no treatments that can slow or reverse the neurodegeneration. To restore the lost neurons, international groups have initiated clinical trials using human embryonic or induced pluripotent stem cells (PSCs) to derive dopamine neuron precursors that are used as transplants to replace the lost neurons. Proof-of-principle experiments in the 1980s and 1990s showed that grafts of fetal ventral mesencephalon, which contains the precursors of the substantial nigra, could, under rare circumstances, reverse symptoms of the disease. Improvements in PSC technology and genomics have inspired researchers to design clinical trials using PSC-derived dopamine neuron precursors as cell replacement therapy for PD. We focus here on 4 such first-in-human clinical trials that have begun in the US, Europe, and Japan. We provide an overview of the sources of PSCs and the methods used to generate cells for transplantation. We discuss pros and cons of strategies for allogeneic, immune-matched, and autologous approaches and novel methods for overcoming rejection by the immune system. We consider challenges for safety and efficacy of the cells for durable engraftment, focusing on the genomics-based quality control methods to assure that the cells will not become cancerous. Finally, since clinical trials like these have never been undertaken before, we comment on the value of cooperation among rivals to contribute to advancements that will finally provide relief for the millions suffering from the symptoms of PD.
Collapse
Affiliation(s)
- Branden J Clark
- Department of Biomedical Engineering, UC Irvine, Irvine, CA 92697, United States
| | - Mariah J Lelos
- School of Biosciences, Museum Avenue, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| | - Jeanne F Loring
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92030, United States
| |
Collapse
|
7
|
Konno H, Miyamae J, Kataoka H, Akai M, Miida H, Tsuchiya Y. Dog leukocyte antigen genotyping across class I and class II genes in beagle dogs as laboratory animals. Immunogenetics 2024; 76:261-270. [PMID: 38922357 DOI: 10.1007/s00251-024-01344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Dog leukocyte antigen (DLA) polymorphisms have been found to be associated with inter-individual variations in the risk, susceptibility, and severity of immune-related phenomena. While DLA class II genes have been extensively studied, less research has been performed on the polymorphisms of DLA class I genes, especially in beagle dogs commonly used as laboratory animals for safety evaluations in drug development. We genotyped four DLA class I genes and four DLA class II genes by locus-specific Sanger sequencing using 93 laboratory beagle dogs derived from two different strains: TOYO and Marshall. The results showed that, for DLA class I genes, 11, 4, 1, and 2 alleles, including a novel allele, were detected in DLA-88, DLA-12/88L, DLA-64, and DLA-79, while, for DLA class II genes, 1, 10, 6, and 7 alleles were detected in DLA-DRA, DLA-DRB1, DLA-DQA1, and DLA-DQB1, respectively. It was estimated that there were 14 DLA haplotypes, six of which had a frequency of ≥ 5%. Furthermore, when comparing the DLA diversity between TOYO and Marshall strains, the most common alleles and haplotypes differed between them. This is the first study to genotype all DLA loci and determine DLA haplotypes including all DLA class I and class II genes in dogs. Integrating information on the DLA diversity of laboratory beagle dogs should reinforce their benefit as an animal model for understanding various diseases associated with a specific DLA type.
Collapse
Affiliation(s)
- Hiroya Konno
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan.
| | - Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Japan
| | - Hiroko Kataoka
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Makoto Akai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Hiroaki Miida
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Yoshimi Tsuchiya
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan
| |
Collapse
|
8
|
Park TY, Jeon J, Cha Y, Kim KS. Past, present, and future of cell replacement therapy for parkinson's disease: a novel emphasis on host immune responses. Cell Res 2024; 34:479-492. [PMID: 38777859 PMCID: PMC11217403 DOI: 10.1038/s41422-024-00971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Parkinson's disease (PD) stands as the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence continues to rise with the aging global population. Central to the pathophysiology of PD is the specific degeneration of midbrain dopamine neurons (mDANs) in the substantia nigra. Consequently, cell replacement therapy (CRT) has emerged as a promising treatment approach, initially supported by various open-label clinical studies employing fetal ventral mesencephalic (fVM) cells. Despite the initial favorable results, fVM cell therapy has intrinsic and logistical limitations that hinder its transition to a standard treatment for PD. Recent efforts in the field of cell therapy have shifted its focus towards the utilization of human pluripotent stem cells, including human embryonic stem cells and induced pluripotent stem cells, to surmount existing challenges. However, regardless of the transplantable cell sources (e.g., xenogeneic, allogeneic, or autologous), the poor and variable survival of implanted dopamine cells remains a major obstacle. Emerging evidence highlights the pivotal role of host immune responses following transplantation in influencing the survival of implanted mDANs, underscoring an important area for further research. In this comprehensive review, building upon insights derived from previous fVM transplantation studies, we delve into the functional ramifications of host immune responses on the survival and efficacy of grafted dopamine cells. Furthermore, we explore potential strategic approaches to modulate the host immune response, ultimately aiming for optimal outcomes in future clinical applications of CRT for PD.
Collapse
Affiliation(s)
- Tae-Yoon Park
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jeha Jeon
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Young Cha
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA.
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
9
|
Goto T, Nakamura Y, Ito Y, Miyagawa S. Regenerative medicine in cardiovascular disease. Regen Ther 2024; 26:859-866. [PMID: 39430582 PMCID: PMC11490749 DOI: 10.1016/j.reth.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024] Open
Abstract
Owing to the rapid increase in the number of people with severe heart failure, regenerative medicine is anticipated to play a role in overcoming the limitations inherent in existing surgical interventions. There are essentially two types of cardiac regenerative therapies for a failing heart. Cellular regenerative therapies using various stem cells improve the functional recovery of the heart mainly by cytokine paracrine effects. The implantation of induced pluripotent stem cell-derived cardiomyocytes can contribute not only to the inhibition of adverse heart remodeling by paracrine effects but also to the supply of newly born functional myocytes with the recipient myocardium as "mechanically working cells." Cell transplantation, including autologous myoblast transplantation, reduces heart failure exacerbations and benefits patients without the need for other treatment options. Although cellular therapy is currently the mainstream approach, it requires an in-house cell-processing center with an aseptic environment. In addition, these stem cells are usually introduced via several invasive delivery methods, including intracoronary administration, and cellular sheet implantation. Simplifying the culture methods for these cells is a crucial problem that needs to be resolved. Drug-induced regenerative therapy is another option that enhances self-endogenous regenerative systems in the human body and does not require invasive methods or cell cultures. Therefore, drug-induced regenerative therapies may overcome the disadvantages of these cellular therapies. The purpose of this report is to summarize cell transplantation therapy in the cardiovascular system and regenerative therapy for heart failure using an autologous endogenous regenerative system.
Collapse
Affiliation(s)
- Takasumi Goto
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Cardiovascular Surgery, Toyonaka Municipal Hospital, Osaka, Japan
| | - Yuki Nakamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshito Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
10
|
Kawabori M, Kuroda S, Shichinohe H, Kahata K, Shiratori S, Ikeda S, Harada T, Hirata K, Tha KK, Aragaki M, Terasaka S, Ito YM, Nishimoto N, Ohnishi S, Yabe I, Kudo K, Houkin K, Fujimura M. Intracerebral transplantation of MRI-trackable autologous bone marrow stromal cells for patients with subacute ischemic stroke. MED 2024; 5:432-444.e4. [PMID: 38547868 DOI: 10.1016/j.medj.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/19/2023] [Accepted: 02/26/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Ischemic stroke is one of the leading causes of death and neurological disability worldwide, and stem cell therapy is highly expected to reverse the sequelae. This phase 1/2, first-in-human study evaluated the safety, feasibility, and monitoring of an intracerebral-transplanted magnetic resonance imaging (MRI)-trackable autologous bone marrow stromal cell (HUNS001-01) for patients with subacute ischemic stroke. METHODS The study included adults with severe disability due to ischemic stroke. HUNS001-01 cultured with human platelet lysates and labeled with superparamagnetic iron oxide was stereotactically transplanted into the peri-infarct area 47-64 days after ischemic stroke onset (dose: 2 or 5 × 107 cells). Neurological and radiographic evaluations were performed throughout 1 year after cell transplantation. The trial was registered at UMIN Clinical Trial Registry (number UMIN000026130). FINDINGS All seven patients who met the inclusion criteria successfully achieved cell expansion, underwent intracerebral transplantation, and completed 1 year of follow-up. No product-related adverse events were observed. The median National Institutes of Health Stroke Scale and modified Rankin scale scores before transplantation were 13 and 4, which showed improvements of 1-8 and 0-2, respectively. Cell tracking proved that the engrafted cells migrated toward the infarction border area 1-6 months after transplantation, and the quantitative susceptibility mapping revealed that cell signals at the migrated area constantly increased throughout the follow-up period up to 34% of that of the initial transplanted site. CONCLUSIONS Intracerebral transplantation of HUNS001-01 was safe and well tolerated. Cell tracking shed light on the therapeutic mechanisms of intracerebral transplantation. FUNDING This work was supported by the Japan Agency for Medical Research and Development (AMED; JP17bk0104045 and JP20bk0104011).
Collapse
Affiliation(s)
- Masahito Kawabori
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan.
| | - Satoshi Kuroda
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Hideo Shichinohe
- Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Hokkaido 060-8638, Japan
| | - Kaoru Kahata
- Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Hokkaido 060-8638, Japan
| | - Souichi Shiratori
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Satoshi Ikeda
- Department of Rehabilitation, Hokkaido University Hospital, Sapporo, Hokkaido 060-8638, Japan
| | - Taisuke Harada
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Khin Khin Tha
- Global Center for Biomedical Science and Engineering, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Masato Aragaki
- Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Hokkaido 060-8638, Japan
| | - Shunsuke Terasaka
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Yoichi M Ito
- Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Hokkaido 060-8638, Japan
| | - Naoki Nishimoto
- Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Hokkaido 060-8638, Japan
| | - Shunsuke Ohnishi
- Laboratory of Molecular and Cellular Medicine, Hokkaido University Graduate School of Pharmacology, Sapporo, Hokkaido 060-8638, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
11
|
Gu R, Pan J, Awan MUN, Sun X, Yan F, Bai L, Bai J. The major histocompatibility complex participates in Parkinson's disease. Pharmacol Res 2024; 203:107168. [PMID: 38583689 DOI: 10.1016/j.phrs.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra and the aggregation of alpha-synuclein (α-syn). The central nervous system (CNS) has previously been considered as an immune-privileged area. However, studies have shown that the immune responses are involved in PD. The major histocompatibility complex (MHC) presents antigens from antigen-presenting cells (APCs) to T lymphocytes, immune responses will be induced. MHCs are expressed in microglia, astrocytes, and dopaminergic neurons. Single nucleotide polymorphisms in MHC are related to the risk of PD. The aggregated α-syn triggers the expression of MHCs by activating glia cells. CD4+ and CD8+ T lymphocytes responses and microglia activation are detected in brains of PD patients. In addiction immune responses further increase blood-brain barrier (BBB) permeability and T cell infiltration in PD. Thus, MHCs are involved in PD through participating in immune and inflammatory responses.
Collapse
Affiliation(s)
- Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianyu Pan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Maher Un Nisa Awan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; Department of Neurology, The Affiliated Hospital of Yunnan University, Kunming 650500, China
| | - Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Fang Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
12
|
Tręda C, Włodarczyk A, Rieske P. The hope, hype and obstacles surrounding cell therapy. J Cell Mol Med 2024; 28:e18359. [PMID: 38770886 PMCID: PMC11107145 DOI: 10.1111/jcmm.18359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Cell therapy offers hope, but it also presents challenges, most particularly the limited ability of human organs and tissues to regenerate. Since many diseases are associated with irreversible pathophysiological or traumatic changes, stem cells and their derivatives are unable to secure healing. Although regenerative medicine offers chances for improvements in many diseases, such as type one diabetes and Parkinson's disease, it cannot eliminate the primary cause of many of them. While successes can be expected for diseases such as sickle cell disease, this is not the case for hereditary diseases with varied mutation types or for ciliopathies, which start in embryogenesis. In this complicated medical environment, synthetic biology offers some solutions, but their implementation will take many years. Still, positive examples such as CAR-T therapy offer hope.
Collapse
Affiliation(s)
- Cezary Tręda
- Department of Tumor BiologyMedical University of LodzLodzPoland
| | | | - Piotr Rieske
- Department of Tumor BiologyMedical University of LodzLodzPoland
| |
Collapse
|
13
|
Ho BX, Teo AKK, Ng NHJ. Innovations in bio-engineering and cell-based approaches to address immunological challenges in islet transplantation. Front Immunol 2024; 15:1375177. [PMID: 38650946 PMCID: PMC11033429 DOI: 10.3389/fimmu.2024.1375177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 04/25/2024] Open
Abstract
Human allogeneic pancreatic islet transplantation is a life-changing treatment for patients with severe Type 1 Diabetes (T1D) who suffer from hypoglycemia unawareness and high risk of severe hypoglycemia. However, intensive immunosuppression is required to prevent immune rejection of the graft, that may in turn lead to undesirable side effects such as toxicity to the islet cells, kidney toxicity, occurrence of opportunistic infections, and malignancies. The shortage of cadaveric human islet donors further limits islet transplantation as a treatment option for widespread adoption. Alternatively, porcine islets have been considered as another source of insulin-secreting cells for transplantation in T1D patients, though xeno-transplants raise concerns over the risk of endogenous retrovirus transmission and immunological incompatibility. As a result, technological advancements have been made to protect transplanted islets from immune rejection and inflammation, ideally in the absence of chronic immunosuppression, to improve the outcomes and accessibility of allogeneic islet cell replacement therapies. These include the use of microencapsulation or macroencapsulation devices designed to provide an immunoprotective environment using a cell-impermeable layer, preventing immune cell attack of the transplanted cells. Other up and coming advancements are based on the use of stem cells as the starting source material for generating islet cells 'on-demand'. These starting stem cell sources include human induced pluripotent stem cells (hiPSCs) that have been genetically engineered to avoid the host immune response, curated HLA-selected donor hiPSCs that can be matched with recipients within a given population, and multipotent stem cells with natural immune privilege properties. These strategies are developed to provide an immune-evasive cell resource for allogeneic cell therapy. This review will summarize the immunological challenges facing islet transplantation and highlight recent bio-engineering and cell-based approaches aimed at avoiding immune rejection, to improve the accessibility of islet cell therapy and enhance treatment outcomes. Better understanding of the different approaches and their limitations can guide future research endeavors towards developing more comprehensive and targeted strategies for creating a more tolerogenic microenvironment, and improve the effectiveness and sustainability of islet transplantation to benefit more patients.
Collapse
Affiliation(s)
- Beatrice Xuan Ho
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- BetaLife Pte Ltd, Singapore, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Natasha Hui Jin Ng
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
14
|
Feng S, Zhang T, He Z, Zhang W, Chen Y, Yue C, Jing N. Continuous immunosuppression is required for suppressing immune responses to xenografts in non-human primate brains. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:8. [PMID: 38583099 PMCID: PMC10999398 DOI: 10.1186/s13619-024-00191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Continuous immunosuppression has been widely used in xenografts into non-human primate brains. However, how immune responses change after transplantation in host brains under continuous immunosuppressive administration and whether immunosuppression can be withdrawn to mitigate side effects remain unclear. Human induced neural stem/progenitor cells (iNPCs) have shown long-term survival and efficient neuronal differentiation in primate brains. Here, we evaluate the immune responses in primate brains triggered by human grafts. The results show that the immune responses, including the evident activation of microglia and the strong infiltration of lymphocytes (both T- and B-cells), are caused by xenografts at 4 months post transplantation (p.t.), but significantly reduced at 8 months p.t. under continuous administration of immunosuppressant Cyclosporin A. However, early immunosuppressant withdrawal at 5 months p.t. results in severe immune responses at 10 months p.t. These results suggest that continuous long-term immunosuppression is required for suppressing immune responses to xenografts in primate brains.
Collapse
Affiliation(s)
- Su Feng
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Ting Zhang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Disease, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China
| | - Zhengxiao He
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | | | - Yingying Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Chunmei Yue
- Suzhou Yuanzhan Biotechs, Suzhou, 215000, China
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
15
|
Li Y, Li P, Tao Q, Abuqeis IJA, Xiyang Y. Role and limitation of cell therapy in treating neurological diseases. IBRAIN 2024; 10:93-105. [PMID: 38682022 PMCID: PMC11045202 DOI: 10.1002/ibra.12152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 05/01/2024]
Abstract
The central role of the brain in governing systemic functions within human physiology underscores its paramount significance as the focal point of physiological regulation. The brain, a highly sophisticated organ, orchestrates a diverse array of physiological processes encompassing motor control, sensory perception, cognition, emotion, and the regulation of vital functions, such as heartbeat, respiration, and hormonal equilibrium. A notable attribute of neurological diseases manifests as the depletion of neurons and the occurrence of tissue necrosis subsequent to injury. The transplantation of neural stem cells (NSCs) into the brain exhibits the potential for the replacement of lost neurons and the reconstruction of neural circuits. Furthermore, the transplantation of other types of cells in alternative locations can secrete nutritional factors that indirectly contribute to the restoration of nervous system equilibrium and the mitigation of neural inflammation. This review summarized a comprehensive investigation into the role of NSCs, hematopoietic stem cells, mesenchymal stem cells, and support cells like astrocytes and microglia in alleviating neurological deficits after cell infusion. Moreover, a thorough assessment was undertaken to discuss extant constraints in cellular transplantation therapies, concurrently delineating indispensable model-based methodologies, specifically on organoids, which were essential for guiding prospective research initiatives in this specialized field.
Collapse
Affiliation(s)
- Yu‐Qi Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Peng‐Fei Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Qian Tao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | | | - Yan‐Bin Xiyang
- School of Basic MedicineKunming Medical UniversityKunmingChina
- Department of Pharmacology and Toxicology, College of PharmacologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
16
|
Gima S, Oe K, Nishimura K, Ohgita T, Ito H, Kimura H, Saito H, Takata K. Host-to-graft propagation of inoculated α-synuclein into transplanted human induced pluripotent stem cell-derived midbrain dopaminergic neurons. Regen Ther 2024; 25:229-237. [PMID: 38283940 PMCID: PMC10818157 DOI: 10.1016/j.reth.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Cell therapeutic clinical trials using fetal mesencephalic tissue provided a proof-of-concept for regenerative therapy in patients with Parkinson's disease. Postmortem studies of patients with fetal grafts revealed that α-synuclein+ Lewy body (LB)-like inclusions emerged in long-term transplantation and might worsen clinical outcomes even if the grafts survived and innervated in the recipients. Various studies aimed at addressing whether host-derived α-synuclein could be transferred to the grafted neurons to assess α-synuclein+ inclusion appearance in the grafts. However, determining whether α-synuclein in the grafted neurons has been propagated from the host is difficult due to the intrinsic α-synuclein expression. Methods We induced midbrain dopaminergic (mDA) neurons from human induced pluripotent stem cells (hiPSCs) and transplanted them into the striatum of immunodeficient rats. The recombinant human α-synuclein preformed fibrils (PFFs) were inoculated into the cerebral cortex after transplantation of SNCA-/- hiPSC-derived mDA neural progenitors into the striatum of immunodeficient rats to evaluate the host-to-graft propagation of human α-synuclein PFFs. Additionally, we examined the incorporation of human α-synuclein PFFs into SNCA-/- hiPSC-derived mDA neurons using in vitro culture system. Results We detected human α-synuclein-immunoreactivity in SNCA-/- hiPSC-derived mDA neurons that lacked endogenous α-synuclein expression in vitro. Additionally, we observed host-to-graft α-synuclein propagation into the grafted SNCA-/- hiPSC-derived mDA neurons. Conclusion We have successfully proven that intracerebral inoculated α-synuclein PFFs are propagated and incorporated from the host into grafted SNCA-/- hiPSC-derived mDA neurons. Our results contribute toward the basic understanding of the molecular mechanisms related to LB-like α-synuclein deposit formation in grafted mDA neurons.
Collapse
Affiliation(s)
- Serina Gima
- Joint Research Laboratory, Division of Integrated Pharmaceutical Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Kazuya Oe
- Joint Research Laboratory, Division of Integrated Pharmaceutical Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Kaneyasu Nishimura
- Joint Research Laboratory, Division of Integrated Pharmaceutical Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
- Laboratory of Functional Brain Circuit Construction, Graduate School of Brain Science, Doshisha University, Kyotanabe 610-0394, Japan
| | - Takashi Ohgita
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Haruka Ito
- Joint Research Laboratory, Division of Integrated Pharmaceutical Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
- Division of Probe Chemistry for Disease Analysis/Central Institute for Radioisotope Science, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa 920-8640, Japan
| | - Hiroyuki Saito
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Kazuyuki Takata
- Joint Research Laboratory, Division of Integrated Pharmaceutical Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| |
Collapse
|
17
|
Lee JS, Lee JE, Yu SH, Chun T, Chang MY, Lee DR, Park CH. Expression of Major Histocompatibility Complex during Neuronal Differentiation of Somatic Cell Nuclear Transfer-Human Embryonic Stem Cells. Int J Stem Cells 2024; 17:59-69. [PMID: 37879852 PMCID: PMC10899886 DOI: 10.15283/ijsc23037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 10/27/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) such as human embryonic stem cells (hESCs), induced pluripotent stem cells, and somatic cell nuclear transfer (SCNT)-hESCs can permanently self-renew while maintaining their capacity to differentiate into any type of somatic cells, thereby serving as an important cell source for cell therapy. However, there are persistent challenges in the application of hPSCs in clinical trials, where one of the most significant is graft rejection by the patient immune system in response to human leukocyte antigen (HLA) mismatch when transplants are obtained from an allogeneic (non-self) cell source. Homozygous SCNT-hESCs (homo-SCNT-hESCs) were used to simplify the clinical application and to reduce HLA mismatch. Here, we present a xeno-free protocol that confirms the efficient generation of neural precursor cells in hPSCs and also the differentiation of dopaminergic neurons. Additionally, there was no difference when comparing the HLA expression patterns of hESC, homo-SCNT-hESCs and hetero-SCNT-hESCs. We propose that there are no differences in the differentiation capacity and HLA expression among hPSCs that can be cultured in vitro. Thus, it is expected that homo-SCNT-hESCs will possess a wider range of applications when transplanted with neural precursor cells in the context of clinical trials.
Collapse
Affiliation(s)
- Jin Saem Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Jeoung Eun Lee
- CHA Advanced Research Institute, CHA University, Seongnam, Korea
| | - Shin-Hye Yu
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Paeanbiotechnology, Seoul, Korea
| | - Taehoon Chun
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Mi-Yoon Chang
- Department of Premedicine, College of Medicine, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Dong Ryul Lee
- CHA Advanced Research Institute, CHA University, Seongnam, Korea
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | - Chang-Hwan Park
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Korea
| |
Collapse
|
18
|
Wu Y, Meng X, Cheng WY, Yan Z, Li K, Wang J, Jiang T, Zhou F, Wong KH, Zhong C, Dong Y, Gao S. Can pluripotent/multipotent stem cells reverse Parkinson's disease progression? Front Neurosci 2024; 18:1210447. [PMID: 38356648 PMCID: PMC10864507 DOI: 10.3389/fnins.2024.1210447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by continuous and selective degeneration or death of dopamine neurons in the midbrain, leading to dysfunction of the nigrostriatal neural circuits. Current clinical treatments for PD include drug treatment and surgery, which provide short-term relief of symptoms but are associated with many side effects and cannot reverse the progression of PD. Pluripotent/multipotent stem cells possess a self-renewal capacity and the potential to differentiate into dopaminergic neurons. Transplantation of pluripotent/multipotent stem cells or dopaminergic neurons derived from these cells is a promising strategy for the complete repair of damaged neural circuits in PD. This article reviews and summarizes the current preclinical/clinical treatments for PD, their efficacies, and the advantages/disadvantages of various stem cells, including pluripotent and multipotent stem cells, to provide a detailed overview of how these cells can be applied in the treatment of PD, as well as the challenges and bottlenecks that need to be overcome in future translational studies.
Collapse
Affiliation(s)
- Yongkang Wu
- Key Laboratory of Adolescent Health Evaluation and Sports Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Xiangtian Meng
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wai-Yin Cheng
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Zhichao Yan
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keqin Li
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Wang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianfang Jiang
- Department of Neurology, Shanghai Eighth People’s Hospital Affiliated to Jiangsu University, Shanghai, China
| | - Fei Zhou
- Department of Neurology, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Ka-Hing Wong
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Dong
- Key Laboratory of Adolescent Health Evaluation and Sports Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Shane Gao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
19
|
Bruno A, Milillo C, Anaclerio F, Buccolini C, Dell’Elice A, Angilletta I, Gatta M, Ballerini P, Antonucci I. Perinatal Tissue-Derived Stem Cells: An Emerging Therapeutic Strategy for Challenging Neurodegenerative Diseases. Int J Mol Sci 2024; 25:976. [PMID: 38256050 PMCID: PMC10815412 DOI: 10.3390/ijms25020976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Over the past 20 years, stem cell therapy has been considered a promising option for treating numerous disorders, in particular, neurodegenerative disorders. Stem cells exert neuroprotective and neurodegenerative benefits through different mechanisms, such as the secretion of neurotrophic factors, cell replacement, the activation of endogenous stem cells, and decreased neuroinflammation. Several sources of stem cells have been proposed for transplantation and the restoration of damaged tissue. Over recent decades, intensive research has focused on gestational stem cells considered a novel resource for cell transplantation therapy. The present review provides an update on the recent preclinical/clinical applications of gestational stem cells for the treatment of protein-misfolding diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). However, further studies should be encouraged to translate this promising therapeutic approach into the clinical setting.
Collapse
Affiliation(s)
- Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cristina Milillo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Federico Anaclerio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlotta Buccolini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Anastasia Dell’Elice
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ilaria Angilletta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Gatta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ivana Antonucci
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
20
|
Widner H. Immunology of cell and gene therapy approaches for neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:135-144. [PMID: 39341650 DOI: 10.1016/b978-0-323-90120-8.00018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Repair and replacement strategies using cell replacement or viral gene transfer for neurologic diseases are becoming increasingly efficacious with clinically meaningful benefits in several conditions. An increased understanding of disease processes opens up opportunities for genetic therapies and precision medicine methods aiming at disease modification or repair of lesioned neurologic structures. However, such therapeutic effects may be limited or rendered ineffective by immune responses against gene products or cells used for the intended treatments. When introducing therapeutic agents into the nervous system, a set of biologic responses are inevitably triggered, which may lead to host responses that limit the intended therapeutic goals. Factors of importance include the type of vector used and origin of cells, the mode of introduction, the degree of host immunization, and any prior exposure to the agents used. It is possible to apply specific treatments that interfere with many of these steps and factors in order to limit host immunization and to reduce or eliminate host effector reactions against the therapeutic agents. This includes immune-evading design measures of the advanced therapeutic medicinal products and various immunosuppressive processes. Limited duration of specific immune modulations may be possible under carefully monitored programs.
Collapse
Affiliation(s)
- Håkan Widner
- Department of Neurology, Skåne University Hospital, Lund, Sweden; Section for Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
21
|
Pappolla MA, Wu P, Fang X, Poeggeler B, Sambamurti K, Wisniewski T, Perry G. Stem Cell Interventions in Neurology: From Bench to Bedside. J Alzheimers Dis 2024; 101:S395-S416. [PMID: 39422938 DOI: 10.3233/jad-230897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Stem cell therapies are progressively redefining the treatment landscape for a spectrum of neurological and age-related disorders. This review discusses the molecular and functional attributes of stem cells, emphasizing the roles of neural stem cells and mesenchymal stem cells in the context of neurological diseases such as stroke, multiple sclerosis, amyotrophic lateral sclerosis, traumatic brain injury, Parkinson's disease, and Alzheimer's disease. The review also explores the potential of stem cells in addressing the aging process. The paper analyzes stem cells' intrinsic properties of self-renewal, differentiation, and paracrine effects, alongside the importance of laboratory-modified stem cells like induced pluripotent stem cells and transgenic stem cells. Insights into disease-specific stem cell treatments are offered, reviewing both successes and challenges in the field. This includes the translational difficulties from rodent studies to human trials. The review concludes by acknowledging the uncharted territories that warrant further investigation, emphasizing the potential roles of stem cell-derived exosomes and indole-related molecules, and aiming at providing a basic understanding of stem cell therapies.
Collapse
Affiliation(s)
- Miguel A Pappolla
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ping Wu
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Burkhard Poeggeler
- Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Faculty of Biology and Psychology, Georg August University Göttingen, Gütersloh, Germany
| | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology, and Psychiatry, New York University Alzheimer's Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
22
|
Emborg ME, Gambardella JC, Zhang A, Federoff HJ. Autologous vs heterologous cell replacement strategies for Parkinson disease and other neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:41-56. [PMID: 39341662 DOI: 10.1016/b978-0-323-90120-8.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Successful cell replacement strategies for brain repair depend on graft integration into the neural network, which is affected by the immune response to the grafted cells. Using Parkinson disease as an example, in this chapter, we consider the immune system interaction and its role in autologous vs heterologous graft survival and integration, as well as past and emerging strategies to overcome the immunologic response. We also reflect on the role of nonhuman primate research to assess novel approaches and consider the role of different stakeholders on advancing the most promising new approaches into the clinic.
Collapse
Affiliation(s)
- Marina E Emborg
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States.
| | - Julia C Gambardella
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Ai Zhang
- Aspen Neuroscience, San Diego, CA, United States
| | - Howard J Federoff
- Kenai Therapeutics, San Diego, CA, United States; Georgetown University Medical Center, Georgetown, Washington, DC, United States
| |
Collapse
|
23
|
Qi L, Wang F, Sun X, Li H, Zhang K, Li J. Recent advances in tissue repair of the blood-brain barrier after stroke. J Tissue Eng 2024; 15:20417314241226551. [PMID: 38304736 PMCID: PMC10832427 DOI: 10.1177/20417314241226551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/31/2023] [Indexed: 02/03/2024] Open
Abstract
The selective permeability of the blood-brain barrier (BBB) enables the necessary exchange of substances between the brain parenchyma and circulating blood and is important for the normal functioning of the central nervous system. Ischemic stroke inflicts damage upon the BBB, triggering adverse stroke outcomes such as cerebral edema, hemorrhagic transformation, and aggravated neuroinflammation. Therefore, effective repair of the damaged BBB after stroke and neovascularization that allows for the unique selective transfer of substances from the BBB after stroke is necessary and important for the recovery of brain function. This review focuses on four important therapies that have effects of BBB tissue repair after stroke in the last seven years. Most of these new therapies show increased expression of BBB tight-junction proteins, and some show beneficial results in terms of enhanced pericyte coverage at the injured vessels. This review also briefly outlines three effective classes of approaches and their mechanisms for promoting neoangiogenesis following a stroke.
Collapse
Affiliation(s)
- Liujie Qi
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Fei Wang
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Xiaojing Sun
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Hang Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, PR China
| | - Jingan Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
24
|
Maheshwari S, Akram H, Bulstrode H, Kalia SK, Morizane A, Takahashi J, Natalwala A. Dopaminergic Cell Replacement for Parkinson's Disease: Addressing the Intracranial Delivery Hurdle. JOURNAL OF PARKINSON'S DISEASE 2024; 14:415-435. [PMID: 38457149 DOI: 10.3233/jpd-230328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Parkinson's disease (PD) is an increasingly prevalent neurological disorder, affecting more than 8.5 million individuals worldwide. α-Synucleinopathy in PD is considered to cause dopaminergic neuronal loss in the substantia nigra, resulting in characteristic motor dysfunction that is the target for current medical and surgical therapies. Standard treatment for PD has remained unchanged for several decades and does not alter disease progression. Furthermore, symptomatic therapies for PD are limited by issues surrounding long-term efficacy and side effects. Cell replacement therapy (CRT) presents an alternative approach that has the potential to restore striatal dopaminergic input and ameliorate debilitating motor symptoms in PD. Despite promising pre-clinical data, CRT has demonstrated mixed success clinically. Recent advances in graft biology have renewed interest in the field, resulting in several worldwide ongoing clinical trials. However, factors surrounding the effective neurosurgical delivery of cell grafts have remained under-studied, despite their significant potential to influence therapeutic outcomes. Here, we focus on the key neurosurgical factors to consider for the clinical translation of CRT. We review the instruments that have been used for cell graft delivery, highlighting current features and limitations, while discussing how future devices could address these challenges. Finally, we review other novel developments that may enhance graft accessibility, delivery, and efficacy. Challenges surrounding neurosurgical delivery may critically contribute to the success of CRT, so it is crucial that we address these issues to ensure that CRT does not falter at the final hurdle.
Collapse
Affiliation(s)
- Saumya Maheshwari
- The Medical School, University of Edinburgh, Edinburgh BioQuarter, UK
| | - Harith Akram
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Harry Bulstrode
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, Division of Academic Neurosurgery, University of Cambridge, Cambridge, UK
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Regenerative Medicine, Center for Clinical Research and Innovation, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ammar Natalwala
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
- Department for Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| |
Collapse
|
25
|
Parmar M, Perrier AL. Introduction to stem cell biology and its role in treating neurologic disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:3-14. [PMID: 39341661 DOI: 10.1016/b978-0-323-90120-8.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Regenerative medicine is an emerging and rapidly evolving field of research and therapeutics aimed to restore, maintain, and improve body functions. In the adult mammalian brain, very few neurons, if any, are generated after disease onset or an injury, and its ability to self-repair is therefore limited. Replacing neurons that are lost during neurodegenerative diseases or due to injury therefore represents one of the major challenges to modern medicine. In this introductory chapter, we describe the basic biology of stem cells and outline how stem cells and cell reprogramming can be utilized to create new neurons for therapeutic purposes that are discussed in detail in other chapters in this handbook.
Collapse
Affiliation(s)
- Malin Parmar
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Anselme L Perrier
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives: mécanismes, thérapies, imagerie, Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, Fontenay-aux-Roses, France
| |
Collapse
|
26
|
Xiao B, Tan EK. Cell replacement for Parkinson's disease: advances and challenges. Neural Regen Res 2023; 18:2693-2694. [PMID: 37449626 DOI: 10.4103/1673-5374.373710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Affiliation(s)
- Bin Xiao
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute; Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
27
|
Chang SH, Park CG. Comparing the Benefits and Drawbacks of Stem Cell Therapy Based on the Cell Origin or Manipulation Process: Addressing Immunogenicity. Immune Netw 2023; 23:e44. [PMID: 38188600 PMCID: PMC10767552 DOI: 10.4110/in.2023.23.e44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/12/2023] [Indexed: 01/09/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are effective in treating autoimmune diseases and managing various conditions, such as engraftment of allogeneic islets. Additionally, autologous and HLA-matched allogeneic MSCs can aid in the engraftment of human allogeneic kidneys with or without low doses of tacrolimus, respectively. However, HLA alloantigens are problematic because cell therapy uses more HLA-mismatched allogeneic cells than autologous for convenience and standardization. In particular, HLA-mismatched MSCs showed increased Ag-specific T/B cells and reduced viability faster than HLA-matched MSCs. In CRISPR/Cas9-based cell therapy, Cas9 induce T cell activation in the recipient's immune system. Interestingly, despite their immunogenicity being limited to the cells with foreign Ags, the accumulation of HLA alloantigen-sensitized T/B cells may lead to allograft rejection, suggesting that alloantigens may have a greater scope of adverse effects than foreign Ags. To avoid alloantigen recognition, the β2-microglobulin knockout (B2MKO) system, eliminating class-I MHC, was able to avoid rejection by alloreactive CD8 T cells compared to controls. Moreover, universal donor cells in which both B2M and Class II MHC transactivator (CIITA) were knocked out was more effective in avoiding immune rejection than single KO. However, B2MKO and CIITA KO system remain to be controlled and validated for adverse effects such as the development of tumorigenicity due to deficient Ag recognition by CD8 T and CD4 T cells, respectively. Overall, better HLA-matching or depletion of HLA alloantigens prior to cell therapy can reduce repetitive transplantation through the long-term survival of allogeneic cell therapy, which may be especially important for patients seeking allogeneic transplantation.
Collapse
Affiliation(s)
- Sung-Ho Chang
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea
| | - Chung Gyu Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Transplantation Research Institute, Medical Research center, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
28
|
Marei HE, Khan MUA, Hasan A. Potential use of iPSCs for disease modeling, drug screening, and cell-based therapy for Alzheimer's disease. Cell Mol Biol Lett 2023; 28:98. [PMID: 38031028 PMCID: PMC10687886 DOI: 10.1186/s11658-023-00504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic illness marked by increasing cognitive decline and nervous system deterioration. At this time, there is no known medication that will stop the course of Alzheimer's disease; instead, most symptoms are treated. Clinical trial failure rates for new drugs remain high, highlighting the urgent need for improved AD modeling for improving understanding of the underlying pathophysiology of disease and improving drug development. The development of induced pluripotent stem cells (iPSCs) has made it possible to model neurological diseases like AD, giving access to an infinite number of patient-derived cells capable of differentiating neuronal fates. This advance will accelerate Alzheimer's disease research and provide an opportunity to create more accurate patient-specific models of Alzheimer's disease to support pathophysiological research, drug development, and the potential application of stem cell-based therapeutics. This review article provides a complete summary of research done to date on the potential use of iPSCs from AD patients for disease modeling, drug discovery, and cell-based therapeutics. Current technological developments in AD research including 3D modeling, genome editing, gene therapy for AD, and research on familial (FAD) and sporadic (SAD) forms of the disease are discussed. Finally, we outline the issues that need to be elucidated and future directions for iPSC modeling in AD.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Muhammad Umar Aslam Khan
- Biomedical Research Center, Qatar University, 2713, Doha, Qatar
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
29
|
Gravina A, Tediashvili G, Zheng Y, Iwabuchi KA, Peyrot SM, Roodsari SZ, Gargiulo L, Kaneko S, Osawa M, Schrepfer S, Deuse T. Synthetic immune checkpoint engagers protect HLA-deficient iPSCs and derivatives from innate immune cell cytotoxicity. Cell Stem Cell 2023; 30:1538-1548.e4. [PMID: 37922880 DOI: 10.1016/j.stem.2023.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/23/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Immune rejection of allogeneic cell therapeutics remains a major problem for immuno-oncology and regenerative medicine. Allogeneic cell products so far have inferior persistence and efficacy when compared with autologous alternatives. Engineering of hypoimmune cells may greatly improve their therapeutic benefit. We present a new class of agonistic immune checkpoint engagers that protect human leukocyte antigen (HLA)-depleted induced pluripotent stem cell-derived endothelial cells (iECs) from innate immune cells. Engagers with agonistic functionality to their inhibitory receptors TIM3 and SIRPα effectively protect engineered iECs from natural killer (NK) cell and macrophage killing. The SIRPα engager can be combined with truncated CD64 to generate fully immune evasive iECs capable of escaping allogeneic cellular and immunoglobulin G (IgG) antibody-mediated rejection. Synthetic immune checkpoint engagers have high target specificity and lack retrograde signaling in the engineered cells. This modular design allows for the exploitation of more inhibitory immune pathways for immune evasion and could contribute to the advancement of allogeneic cell therapeutics.
Collapse
Affiliation(s)
- Alessia Gravina
- Transplant and Stem Cell Immunobiology (TSI)-Lab, Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Grigol Tediashvili
- Transplant and Stem Cell Immunobiology (TSI)-Lab, Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Yueting Zheng
- Shinobi Therapeutics, 2 Tower Place, South San Francisco, CA 94080, USA
| | - Kumiko A Iwabuchi
- Shinobi Therapeutics, 2 Tower Place, South San Francisco, CA 94080, USA
| | - Sara M Peyrot
- Shinobi Therapeutics, 2 Tower Place, South San Francisco, CA 94080, USA
| | - Susan Z Roodsari
- Shinobi Therapeutics, 2 Tower Place, South San Francisco, CA 94080, USA
| | - Lauren Gargiulo
- Shinobi Therapeutics, 2 Tower Place, South San Francisco, CA 94080, USA
| | - Shin Kaneko
- Laboratory of Regenerative Immunotherapy, Department of Cell Growth and Differentiation, Center for iPS cell Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mitsujiro Osawa
- Shinobi Therapeutics, Med-Pharm Collaboration Building 46-29, Yoshida-Shimo-Adachi-Cho, Sakyo-Ku, Kyoto, Japan
| | - Sonja Schrepfer
- Transplant and Stem Cell Immunobiology (TSI)-Lab, Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Tobias Deuse
- Transplant and Stem Cell Immunobiology (TSI)-Lab, Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
30
|
Moon H, Kim B, Kwon I, Oh Y. Challenges involved in cell therapy for Parkinson's disease using human pluripotent stem cells. Front Cell Dev Biol 2023; 11:1288168. [PMID: 37886394 PMCID: PMC10598731 DOI: 10.3389/fcell.2023.1288168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Neurons derived from human pluripotent stem cells (hPSCs) provide a valuable tool for studying human neural development and neurodegenerative diseases. The investigation of hPSC-based cell therapy, involving the differentiation of hPSCs into target cells and their transplantation into affected regions, is of particular interest. One neurodegenerative disease that is being extensively studied for hPSC-based cell therapy is Parkinson's disease (PD), the second most common among humans. Various research groups are focused on differentiating hPSCs into ventral midbrain dopaminergic (vmDA) progenitors, which have the potential to further differentiate into neurons closely resembling DA neurons found in the substantia nigra pars compacta (SNpc) after transplantation, providing a promising treatment option for PD. In vivo experiments, where hPSC-derived vmDA progenitor cells were transplanted into the striatum or SNpc of animal PD models, the transplanted cells demonstrated stable engraftment and resulted in behavioral recovery in the transplanted animals. Several differentiation protocols have been developed for this specific cell therapy. However, the lack of a reliable live-cell lineage identification method presents a significant obstacle in confirming the precise lineage of the differentiated cells intended for transplantation, as well as identifying potential contamination by non-vmDA progenitors. This deficiency increases the risk of adverse effects such as dyskinesias and tumorigenicity, highlighting the importance of addressing this issue before proceeding with transplantation. Ensuring the differentiation of hPSCs into the target cell lineage is a crucial step to guarantee precise therapeutic effects in cell therapy. To underscore the significance of lineage identification, this review focuses on the differentiation protocols of hPSC-derived vmDA progenitors developed by various research groups for PD treatment. Moreover, in vivo experimental results following transplantation were carefully analyzed. The encouraging outcomes from these experiments demonstrate the potential efficacy and safety of hPSC-derived vmDA progenitors for PD cell therapy. Additionally, the results of clinical trials involving the use of hPSC-derived vmDA progenitors for PD treatment were briefly reviewed, shedding light on the progress and challenges faced in translating this promising therapy into clinical practice.
Collapse
Affiliation(s)
- Heechang Moon
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Bokwang Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Inbeom Kwon
- Department of Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Yohan Oh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Murata T, Hama N, Kamatani T, Mori A, Otsuka R, Wada H, Seino KI. Induced pluripotent stem cell-derived hematopoietic stem and progenitor cells induce mixed chimerism and donor-specific allograft tolerance. Am J Transplant 2023; 23:1331-1344. [PMID: 37244443 DOI: 10.1016/j.ajt.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
In transplantation using allogeneic induced pluripotent stem cells (iPSCs), strategies focused on major histocompatibility complexes were adopted to avoid immune rejection. We showed that minor antigen mismatches are a risk factor for graft rejection, indicating that immune regulation remains one of the most important issues. In organ transplantation, it has been known that mixed chimerism using donor-derived hematopoietic stem/progenitor cells (HSPCs) can induce donor-specific tolerance. However, it is unclear whether iPSC-derived HSPCs (iHSPCs) can induce allograft tolerance. We showed that 2 hematopoietic transcription factors, Hoxb4 and Lhx2, can efficiently expand iHSPCs with a c-Kit+Sca-1+Lineage- phenotype, which possesses long-term hematopoietic repopulating potential. We also demonstrated that these iHSPCs can form hematopoietic chimeras in allogeneic recipients and induce allograft tolerance in murine skin and iPSC transplantation. With mechanistic analyses, both central and peripheral mechanisms were suggested. We demonstrated the basic concept of tolerance induction using iHSPCs in allogeneic iPSC-based transplantation.
Collapse
Affiliation(s)
- Tomoki Murata
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naoki Hama
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomoki Kamatani
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akihiro Mori
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryo Otsuka
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
32
|
Voisin A, Pénaguin A, Gaillard A, Leveziel N. Stem cell therapy in retinal diseases. Neural Regen Res 2023; 18:1478-1485. [PMID: 36571345 PMCID: PMC10075102 DOI: 10.4103/1673-5374.361537] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alteration of the outer retina leads to various diseases such as age-related macular degeneration or retinitis pigmentosa characterized by decreased visual acuity and ultimately blindness. Despite intensive research in the field of retinal disorders, there is currently no curative treatment. Several therapeutic approaches such as cell-based replacement and gene therapies are currently in development. In the context of cell-based therapies, different cell sources such as embryonic stem cells, induced pluripotent stem cells, or multipotent stem cells can be used for transplantation. In the vast majority of human clinical trials, retinal pigment epithelial cells and photoreceptors are the cell types considered for replacement cell therapies. In this review, we summarize the progress made in stem cell therapies ranging from the pre-clinical studies to clinical trials for retinal disease.
Collapse
Affiliation(s)
- Audrey Voisin
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084; Department of Ophthalmology, CHU Poitiers, Poitiers, France
| | - Amaury Pénaguin
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, Poitiers; Laboratoires Thea, Clermont-Ferrand, France
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, Poitiers, France
| | - Nicolas Leveziel
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084; Department of Ophthalmology, CHU Poitiers, Poitiers, France
| |
Collapse
|
33
|
Park TY, Jeon J, Lee N, Kim J, Song B, Kim JH, Lee SK, Liu D, Cha Y, Kim M, Leblanc P, Herrington TM, Carter BS, Schweitzer JS, Kim KS. Co-transplantation of autologous T reg cells in a cell therapy for Parkinson's disease. Nature 2023; 619:606-615. [PMID: 37438521 DOI: 10.1038/s41586-023-06300-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Tae-Yoon Park
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jeha Jeon
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Nayeon Lee
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jisun Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Bin Song
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jung-Ho Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sang-Kyou Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Good T Cells, Inc., Seoul, Republic of Korea
| | - Dongxin Liu
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Young Cha
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Minseon Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Pierre Leblanc
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Todd M Herrington
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey S Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA.
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
34
|
Rájová J, Davidsson M, Avallone M, Hartnor M, Aldrin-Kirk P, Cardoso T, Nolbrant S, Mollbrink A, Storm P, Heuer A, Parmar M, Björklund T. Deconvolution of spatial sequencing provides accurate characterization of hESC-derived DA transplants in vivo. Mol Ther Methods Clin Dev 2023; 29:381-394. [PMID: 37251982 PMCID: PMC10209706 DOI: 10.1016/j.omtm.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Cell therapy for Parkinson's disease has experienced substantial growth in the past decades with several ongoing clinical trials. Despite increasing refinement of differentiation protocols and standardization of the transplanted neural precursors, the transcriptomic analysis of cells in the transplant after its full maturation in vivo has not been thoroughly investigated. Here, we present spatial transcriptomics analysis of fully differentiated grafts in their host tissue. Unlike earlier transcriptomics analyses using single-cell technologies, we observe that cells derived from human embryonic stem cells (hESCs) in the grafts adopt mature dopaminergic signatures. We show that the presence of phenotypic dopaminergic genes, which were found to be differentially expressed in the transplants, is concentrated toward the edges of the grafts, in agreement with the immunohistochemical analyses. Deconvolution shows dopamine neurons being the dominating cell type in many features beneath the graft area. These findings further support the preferred environmental niche of TH-positive cells and confirm their dopaminergic phenotype through the presence of multiple dopaminergic markers.
Collapse
Affiliation(s)
- Jana Rájová
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Marcus Davidsson
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Martino Avallone
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Morgan Hartnor
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Patrick Aldrin-Kirk
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Tiago Cardoso
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Sara Nolbrant
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Annelie Mollbrink
- Science for Life Laboratory, Division of Gene Technology, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Petter Storm
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Andreas Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
35
|
Hu XH, Chen L, Wu H, Tang YB, Zheng QM, Wei XY, Wei Q, Huang Q, Chen J, Xu X. Cell therapy in end-stage liver disease: replace and remodel. Stem Cell Res Ther 2023; 14:141. [PMID: 37231461 DOI: 10.1186/s13287-023-03370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Liver disease is prevalent worldwide. When it reaches the end stage, mortality rises to 50% or more. Although liver transplantation has emerged as the most efficient treatment for end-stage liver disease, its application has been limited by the scarcity of donor livers. The lack of acceptable donor organs implies that patients are at high risk while waiting for suitable livers. In this scenario, cell therapy has emerged as a promising treatment approach. Most of the time, transplanted cells can replace host hepatocytes and remodel the hepatic microenvironment. For instance, hepatocytes derived from donor livers or stem cells colonize and proliferate in the liver, can replace host hepatocytes, and restore liver function. Other cellular therapy candidates, such as macrophages and mesenchymal stem cells, can remodel the hepatic microenvironment, thereby repairing the damaged liver. In recent years, cell therapy has transitioned from animal research to early human studies. In this review, we will discuss cell therapy in end-stage liver disease treatment, especially focusing on various cell types utilized for cell transplantation, and elucidate the processes involved. Furthermore, we will also summarize the practical obstacles of cell therapy and offer potential solutions.
Collapse
Affiliation(s)
- Xin-Hao Hu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lan Chen
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hao Wu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yang-Bo Tang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Qiu-Min Zheng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Yong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qiang Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qi Huang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xiao Xu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
36
|
Chang Y, Cai X, Syahirah R, Yao Y, Xu Y, Jin G, Bhute VJ, Torregrosa-Allen S, Elzey BD, Won YY, Deng Q, Lian XL, Wang X, Eniola-Adefeso O, Bao X. CAR-neutrophil mediated delivery of tumor-microenvironment responsive nanodrugs for glioblastoma chemo-immunotherapy. Nat Commun 2023; 14:2266. [PMID: 37080958 PMCID: PMC10119091 DOI: 10.1038/s41467-023-37872-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive and lethal solid tumors in human. While efficacious therapeutics, such as emerging chimeric antigen receptor (CAR)-T cells and chemotherapeutics, have been developed to treat various cancers, their effectiveness in GBM treatment has been hindered largely by the blood-brain barrier and blood-brain-tumor barriers. Human neutrophils effectively cross physiological barriers and display effector immunity against pathogens but the short lifespan and resistance to genome editing of primary neutrophils have limited their broad application in immunotherapy. Here we genetically engineer human pluripotent stem cells with CRISPR/Cas9-mediated gene knock-in to express various anti-GBM CAR constructs with T-specific CD3ζ or neutrophil-specific γ-signaling domains. CAR-neutrophils with the best anti-tumor activity are produced to specifically and noninvasively deliver and release tumor microenvironment-responsive nanodrugs to target GBM without the need to induce additional inflammation at the tumor sites. This combinatory chemo-immunotherapy exhibits superior and specific anti-GBM activities, reduces off-target drug delivery and prolongs lifespan in female tumor-bearing mice. Together, this biomimetic CAR-neutrophil drug delivery system is a safe, potent and versatile platform for treating GBM and possibly other devastating diseases.
Collapse
Affiliation(s)
- Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Xuechao Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Gyuhyung Jin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Vijesh J Bhute
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | | | - Bennett D Elzey
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Qing Deng
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.
- Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA.
| | | | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA.
| |
Collapse
|
37
|
Baik J, Ortiz-Cordero C, Magli A, Azzag K, Crist SB, Yamashita A, Kiley J, Selvaraj S, Mondragon-Gonzalez R, Perrin E, Maufort JP, Janecek JL, Lee RM, Stone LH, Rangarajan P, Ramachandran S, Graham ML, Perlingeiro RCR. Establishment of Skeletal Myogenic Progenitors from Non-Human Primate Induced Pluripotent Stem Cells. Cells 2023; 12:1147. [PMID: 37190056 PMCID: PMC10137227 DOI: 10.3390/cells12081147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Pluripotent stem (PS) cells enable the scalable production of tissue-specific derivatives with therapeutic potential for various clinical applications, including muscular dystrophies. Given the similarity to human counterparts, the non-human primate (NHP) is an ideal preclinical model to evaluate several questions, including delivery, biodistribution, and immune response. While the generation of human-induced PS (iPS)-cell-derived myogenic progenitors is well established, there have been no data for NHP counterparts, probably due to the lack of an efficient system to differentiate NHP iPS cells towards the skeletal muscle lineage. Here, we report the generation of three independent Macaca fascicularis iPS cell lines and their myogenic differentiation using PAX7 conditional expression. The whole-transcriptome analysis confirmed the successful sequential induction of mesoderm, paraxial mesoderm, and myogenic lineages. NHP myogenic progenitors efficiently gave rise to myotubes under appropriate in vitro differentiation conditions and engrafted in vivo into the TA muscles of NSG and FKRP-NSG mice. Lastly, we explored the preclinical potential of these NHP myogenic progenitors in a single wild-type NHP recipient, demonstrating engraftment and characterizing the interaction with the host immune response. These studies establish an NHP model system through which iPS-cell-derived myogenic progenitors can be studied.
Collapse
Affiliation(s)
- June Baik
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Alessandro Magli
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Karim Azzag
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah B. Crist
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aline Yamashita
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - James Kiley
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sridhar Selvaraj
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Elizabeth Perrin
- Stem Cell Resources and the Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - John P. Maufort
- Stem Cell Resources and the Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Jody L. Janecek
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rachael M. Lee
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laura Hocum Stone
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Melanie L. Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
38
|
Cecerska-Heryć E, Pękała M, Serwin N, Gliźniewicz M, Grygorcewicz B, Michalczyk A, Heryć R, Budkowska M, Dołęgowska B. The Use of Stem Cells as a Potential Treatment Method for Selected Neurodegenerative Diseases: Review. Cell Mol Neurobiol 2023:10.1007/s10571-023-01344-6. [PMID: 37027074 DOI: 10.1007/s10571-023-01344-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Stem cells have been the subject of research for years due to their enormous therapeutic potential. Most neurological diseases such as multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) are incurable or very difficult to treat. Therefore new therapies are sought in which autologous stem cells are used. They are often the patient's only hope for recovery or slowing down the progress of the disease symptoms. The most important conclusions arise after analyzing the literature on the use of stem cells in neurodegenerative diseases. The effectiveness of MSC cell therapy has been confirmed in ALS and HD therapy. MSC cells slow down ALS progression and show early promising signs of efficacy. In HD, they reduced huntingtin (Htt) aggregation and stimulation of endogenous neurogenesis. MS therapy with hematopoietic stem cells (HSCs) inducted significant recalibration of pro-inflammatory and immunoregulatory components of the immune system. iPSC cells allow for accurate PD modeling. They are patient-specific and therefore minimize the risk of immune rejection and, in long-term observation, did not form any tumors in the brain. Extracellular vesicles derived from bone marrow mesenchymal stromal cells (BM-MSC-EVs) and Human adipose-derived stromal/stem cells (hASCs) cells are widely used to treat AD. Due to the reduction of Aβ42 deposits and increasing the survival of neurons, they improve memory and learning abilities. Despite many animal models and clinical trial studies, cell therapy still needs to be refined to increase its effectiveness in the human body.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland.
| | - Maja Pękała
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Marta Gliźniewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, Broniewskiego 26, 71-460, Szczecin, Poland
| | - Rafał Heryć
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
39
|
Skidmore S, Barker RA. Challenges in the clinical advancement of cell therapies for Parkinson's disease. Nat Biomed Eng 2023; 7:370-386. [PMID: 36635420 PMCID: PMC7615223 DOI: 10.1038/s41551-022-00987-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/04/2022] [Indexed: 01/14/2023]
Abstract
Cell therapies as potential treatments for Parkinson's disease first gained traction in the 1980s, owing to the clinical success of trials that used transplants of foetal midbrain dopaminergic tissue. However, the poor standardization of the tissue for grafting, and constraints on its availability and ethical use, have hindered this treatment strategy. Recent advances in stem-cell technologies and in the understanding of the development of dopaminergic neurons have enabled preclinical advancements of promising stem-cell therapies. To move these therapies to the clinic, appropriate levels of safety screening, as well as optimization of the cell products and the scalability of their manufacturing, will be required. In this Review, we discuss how challenges pertaining to cell sources, functional and safety testing, manufacturing and storage, and clinical-trial design are being addressed to advance the translational and clinical development of cell therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Sophie Skidmore
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK
| | - Roger A Barker
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK.
- John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, For vie Site, Cambridge, UK.
| |
Collapse
|
40
|
Abstract
The midbrain dopamine (mDA) system is composed of molecularly and functionally distinct neuron subtypes that mediate specific behaviours and are linked to various brain diseases. Considerable progress has been made in identifying mDA neuron subtypes, and recent work has begun to unveil how these neuronal subtypes develop and organize into functional brain structures. This progress is important for further understanding the disparate physiological functions of mDA neurons and their selective vulnerability in disease, and will ultimately accelerate therapy development. This Review discusses recent advances in our understanding of molecularly defined mDA neuron subtypes and their circuits, ranging from early developmental events, such as neuron migration and axon guidance, to their wiring and function, and future implications for therapeutic strategies.
Collapse
|
41
|
Morizane A. Cell therapy for Parkinson's disease with induced pluripotent stem cells. Inflamm Regen 2023; 43:16. [PMID: 36843101 PMCID: PMC9969678 DOI: 10.1186/s41232-023-00269-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/20/2023] [Indexed: 02/28/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and a prime target of cell therapies. In fact, aborted fetal tissue has been used as donor material for such therapies since the 1980s. These cell therapies, however, suffer from several problems, such as a short supply of donor materials, quality instability of the tissues, and ethical restrictions. The advancement of stem cell technologies has enabled the production of donor cells from pluripotent stem cells with unlimited scale, stable quality, and less ethical problems. Several research groups have established protocols to induce dopamine neural progenitors from pluripotent stem cells in a clinically compatible manner and confirmed efficacy and safety in non-clinical studies. Based on the results from these non-clinical studies, several clinical trials of pluripotent stem cell-based therapies for PD have begun. In the context of immune rejection, there are several modes of stem cell-based therapies: autologous transplantation, allogeneic transplantation without human leukocyte antigen-matching, and allogeneic transplantation with matching. In this mini-review, several practical points of stem cell-based therapies for PD are discussed.
Collapse
Affiliation(s)
- Asuka Morizane
- Department of Regenerative Medicine, Center for Clinical Research and Innovation, Kobe City Medical Center General Hospital, Kobe, Japan. .,Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| |
Collapse
|
42
|
Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect. Nat Commun 2023; 14:804. [PMID: 36808132 PMCID: PMC9941131 DOI: 10.1038/s41467-023-36408-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are a promising resource for allogeneic cartilage transplantation to treat articular cartilage defects that do not heal spontaneously and often progress to debilitating conditions, such as osteoarthritis. However, to the best of our knowledge, allogeneic cartilage transplantation into primate models has never been assessed. Here, we show that allogeneic iPSC-derived cartilage organoids survive and integrate as well as are remodeled as articular cartilage in a primate model of chondral defects in the knee joints. Histological analysis revealed that allogeneic iPSC-derived cartilage organoids in chondral defects elicited no immune reaction and directly contributed to tissue repair for at least four months. iPSC-derived cartilage organoids integrated with the host native articular cartilage and prevented degeneration of the surrounding cartilage. Single-cell RNA-sequence analysis indicated that iPSC-derived cartilage organoids differentiated after transplantation, acquiring expression of PRG4 crucial for joint lubrication. Pathway analysis suggested the involvement of SIK3 inactivation. Our study outcomes suggest that allogeneic transplantation of iPSC-derived cartilage organoids may be clinically applicable for the treatment of patients with chondral defects of the articular cartilage; however further assessment of functional recovery long term after load bearing injuries is required.
Collapse
|
43
|
Sarmah H, Sawada A, Hwang Y, Miura A, Shimamura Y, Tanaka J, Yamada K, Mori M. Towards human organ generation using interspecies blastocyst complementation: Challenges and perspectives for therapy. Front Cell Dev Biol 2023; 11:1070560. [PMID: 36743411 PMCID: PMC9893295 DOI: 10.3389/fcell.2023.1070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Millions of people suffer from end-stage refractory diseases. The ideal treatment option for terminally ill patients is organ transplantation. However, donor organs are in absolute shortage, and sadly, most patients die while waiting for a donor organ. To date, no technology has achieved long-term sustainable patient-derived organ generation. In this regard, emerging technologies of chimeric human organ production via blastocyst complementation (BC) holds great promise. To take human organ generation via BC and transplantation to the next step, we reviewed current emerging organ generation technologies and the associated efficiency of chimera formation in human cells from the standpoint of developmental biology.
Collapse
Affiliation(s)
- Hemanta Sarmah
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Anri Sawada
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Youngmin Hwang
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Akihiro Miura
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Yuko Shimamura
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Junichi Tanaka
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Kazuhiko Yamada
- Department of Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Munemasa Mori
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
44
|
Yoshida S, Kato TM, Sato Y, Umekage M, Ichisaka T, Tsukahara M, Takasu N, Yamanaka S. A clinical-grade HLA haplobank of human induced pluripotent stem cells matching approximately 40% of the Japanese population. MED 2023; 4:51-66.e10. [PMID: 36395757 DOI: 10.1016/j.medj.2022.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/02/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Human induced pluripotent stem cells (iPSCs) are expected to be useful for regenerative medicine for many diseases. Many researchers have focused on and enabled the generation of differentiated cells or tissue-like structures, including organoids, which help to ameliorate target diseases. To promote such cell therapies, we established a clinically applicable iPSC haplobank matching as many people as possible in Japan. METHODS Through cooperation with several organizations, we recruited donors whose human leukocyte antigens (HLAs) involved in immunorejection were homozygous. The peripheral or umbilical cord blood collected from the donors was used for iPSC production by electroporation of episomal vectors. These iPSC lines were then subjected to testing, including genome analyses and sterility, to maximize safety. FINDINGS We constructed a clinical-grade haplobank of 27 iPSC lines from 7 donors according to good manufacturing practice regulations. However, reasons to avoid using iPSC lines include the presence of residual episomal vectors or genetic mutations in cancer-related genes. CONCLUSIONS This haplobank provides HLA-matched iPSC lines for approximately 40% of the Japanese population. Since the haplobank's release in 2015, these iPSC lines have been used in more than 10 clinical trials. The establishment of this haplobank is an important step toward the clinical application of iPSCs in cell therapies. FUNDING This study was supported by a research center network for the realization of regenerative medicine of the Japan Agency for Medical Research and Development (AMED) under grant number JP20bm0104001h0108.
Collapse
Affiliation(s)
- Shinsuke Yoshida
- CiRA Foundation, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Tomoaki M Kato
- CiRA Foundation, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Yoshiko Sato
- Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masafumi Umekage
- CiRA Foundation, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Tomoko Ichisaka
- CiRA Foundation, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | | | - Naoko Takasu
- CiRA Foundation, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Shinya Yamanaka
- CiRA Foundation, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan; Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA.
| |
Collapse
|
45
|
Ouchi R, Koike H. Modeling human liver organ development and diseases with pluripotent stem cell-derived organoids. Front Cell Dev Biol 2023; 11:1133534. [PMID: 36875751 PMCID: PMC9974642 DOI: 10.3389/fcell.2023.1133534] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
The discoveries of human pluripotent stem cells (PSCs) including embryonic stem cells and induced pluripotent stem cells (iPSCs) has led to dramatic advances in our understanding of basic human developmental and cell biology and has also been applied to research aimed at drug discovery and development of disease treatments. Research using human PSCs has been largely dominated by studies using two-dimensional cultures. In the past decade, however, ex vivo tissue "organoids," which have a complex and functional three-dimensional structure similar to human organs, have been created from PSCs and are now being used in various fields. Organoids created from PSCs are composed of multiple cell types and are valuable models with which it is better to reproduce the complex structures of living organs and study organogenesis through niche reproduction and pathological modeling through cell-cell interactions. Organoids derived from iPSCs, which inherit the genetic background of the donor, are helpful for disease modeling, elucidation of pathophysiology, and drug screening. Moreover, it is anticipated that iPSC-derived organoids will contribute significantly to regenerative medicine by providing treatment alternatives to organ transplantation with which the risk of immune rejection is low. This review summarizes how PSC-derived organoids are used in developmental biology, disease modeling, drug discovery, and regenerative medicine. Highlighted is the liver, an organ that play crucial roles in metabolic regulation and is composed of diverse cell types.
Collapse
Affiliation(s)
- Rie Ouchi
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroyuki Koike
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
46
|
Xue J, Wu Y, Bao Y, Zhao M, Li F, Sun J, Sun Y, Wang J, Chen L, Mao Y, Schweitzer JS, Song B. Clinical considerations in Parkinson's disease cell therapy. Ageing Res Rev 2023; 83:101792. [PMID: 36402405 DOI: 10.1016/j.arr.2022.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Cell replacement therapy is an area of increasing interest for treating Parkinson's disease (PD). However, to become a clinically practical option for PD patients, it must first overcome significant barriers, including establishment of safe and standardized surgical procedures, determination of appropriate perioperative medication regimens, demonstration of long-term graft survival and incorporation, and standardized, clinically meaningful follow-up measures. In this review, we will describe the current status of cell therapy for PD with special attention to these critical requirements, to define guideposts on the road to bring the benefit of this therapy to the Parkinson's clinic.
Collapse
Affiliation(s)
- Jun Xue
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Yifan Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Yuting Bao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Minglai Zhao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Fangzhou Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Jing Sun
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yimin Sun
- Institute of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jian Wang
- Institute of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China.
| | - Jeffrey S Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Bin Song
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
47
|
Zeng XX, Zeng JB. Systems Medicine as a Strategy to Deal with Alzheimer's Disease. J Alzheimers Dis 2023; 96:1411-1426. [PMID: 37980671 DOI: 10.3233/jad-230739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The traits of Alzheimer's disease (AD) include amyloid plaques made of Aβ1-40 and Aβ1-42, and neurofibrillary tangles by the hyperphosphorylation of tau protein. AD is a complex disorder that is heterogenous in genetical, neuropathological, and clinical contexts. Current available therapeutics are unable to cure AD. Systems medicine is a strategy by viewing the body as a whole system, taking into account each individual's unique health profile, provide treatment and associated nursing care clinically for the patient, aiming for precision. Since the onset of AD can lead towards cognitive impairment, it is vital to intervene and diagnose early and prevent further progressive loss of neurons. Moreover, as the individual's brain functions are impaired due to neurodegeneration in AD, it is essential to reconstruct the neurons or brain cells to enable normal brain functions. Although there are different subtypes of AD due to varied pathological lesions, in the majority cases of AD, neurodegeneration and severe brain atrophy develop at the chronic stage. Novel approaches including RNA based gene therapy, stem cell based technology, bioprinting technology, synthetic biology for brain tissue reconstruction are researched in recent decades in the hope to decrease neuroinflammation and restore normal brain function in individuals of AD. Systems medicine include the prevention of disease, diagnosis and treatment by viewing the individual's body as a whole system, along with systems medicine based nursing as a strategy against AD that should be researched further.
Collapse
Affiliation(s)
- Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Lishui Town, Nanhai District, Foshan City, Guangdong Province, P.R. China
| | - Jie Bangzhe Zeng
- Benjoe Institute of Systems Bio-Engineering, High Technology Park, Xinbei District, Changzhou City, Jiangsu Province, P.R. China
| |
Collapse
|
48
|
Abstract
The trabecular meshwork (TM) of the eye serves as an essential tissue in controlling aqueous humor (AH) outflow and intraocular pressure (IOP) homeostasis. However, dysfunctional TM cells and/or decreased TM cellularity is become a critical pathogenic cause for primary open-angle glaucoma (POAG). Consequently, it is particularly valuable to investigate TM characteristics, which, in turn, facilitates the development of new treatments for POAG. Since 2006, the advancement in induced pluripotent stem cells (iPSCs) provides a new tool to (1) model the TM in vitro and (2) regenerate degenerative TM in POAG. In this context, we first summarize the current approaches to induce the differentiation of TM-like cells from iPSCs and compare iPSC-derived TM models to the conventional in vitro TM models. The efficacy of iPSC-derived TM cells for TM regeneration in POAG models is also discussed. Through these approaches, iPSCs are becoming essential tools in glaucoma modeling and for developing personalized treatments for TM regeneration.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, China.
| | - Xiaoyan Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, China
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, China
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| |
Collapse
|
49
|
Var SR, Strell P, Johnson ST, Roman A, Vasilakos Z, Low WC. Transplanting Microglia for Treating CNS Injuries and Neurological Diseases and Disorders, and Prospects for Generating Exogenic Microglia. Cell Transplant 2023; 32:9636897231171001. [PMID: 37254858 PMCID: PMC10236244 DOI: 10.1177/09636897231171001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023] Open
Abstract
Microglia are associated with a wide range of both neuroprotective and neuroinflammatory functions in the central nervous system (CNS) during development and throughout lifespan. Chronically activated and dysfunctional microglia are found in many diseases and disorders, such as Alzheimer's disease, Parkinson's disease, and CNS-related injuries, and can accelerate or worsen the condition. Transplantation studies designed to replace and supplement dysfunctional microglia with healthy microglia offer a promising strategy for addressing microglia-mediated neuroinflammation and pathologies. This review will cover microglial involvement in neurological diseases and disorders and CNS-related injuries, current microglial transplantation strategies, and different approaches and considerations for generating exogenic microglia.
Collapse
Affiliation(s)
- Susanna R. Var
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Phoebe Strell
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sether T. Johnson
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Alex Roman
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Zoey Vasilakos
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
50
|
Torrents S, Grau-Vorster M, Vives J. Illustrative Potency Assay Examples from Approved Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:139-149. [PMID: 37258788 DOI: 10.1007/978-3-031-30040-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Advanced therapy medicinal products (ATMP) encompass a new type of drugs resulting from the manipulation of genes, cells, and tissues to generate innovative medicinal entities with tailored pharmaceutical activity. Definition of suitable potency tests for product release are challenging in this context, in which the active ingredient is composed of living cells and the mechanism of action often is poorly understood. In this chapter, we present and discuss actual potency assays used for the release of representative commercial ATMP from each category of products (namely, KYMRIAH® (tisagenlecleucel), Holoclar® (limbal epithelial stem cells), and PROCHYMAL®/RYONCIL™ (remestemcel-L)). We also examine concerns related to the biological relevance of selected potency assays and challenges ahead for harmonization and broader implementation in compliance with current quality standards and regulatory guidelines.
Collapse
Affiliation(s)
- Sílvia Torrents
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
- Transfusion Medicine group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Grau-Vorster
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
- Transfusion Medicine group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquim Vives
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain.
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|