1
|
Xia Y, Lan J, Yang J, Yuan S, Xie X, Du Q, Du H, Nie W, Jiang B, Zhao L, Cai Z, Zhang X, Xiong Y, Li Y, He R, Tao J. Saturated fatty acid-induced neutrophil extracellular traps contribute to exacerbation and biologic therapy resistance in obesity-related psoriasis. Cell Mol Immunol 2025:10.1038/s41423-025-01278-7. [PMID: 40169704 DOI: 10.1038/s41423-025-01278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/06/2025] [Indexed: 04/03/2025] Open
Abstract
Psoriasis patients who are obese tend to have serious clinical manifestations and poor responses to various biological agents in most cases. However, the mechanisms by which obesity exacerbates psoriasis remain enigmatic. In this study, we found that the abundance of systemic and localized cutaneous neutrophil extracellular traps (NETs) associated with the obesity-induced aggravation of psoriasis was positively correlated with disease severity and that the inhibition of NETs alleviated psoriatic dermatitis in obese mice. Mechanistically, we found that changes in fatty acid composition in obese subjects resulted in the deposition of saturated fatty acids (SFAs), which promoted the release of NETs via the TLR4-MD2/ROS signaling pathway. We further revealed that NETs potentiate IL-17 inflammation, especially γδT17-mediated immune responses, in obesity-exacerbated psoriasis patients. Moreover, SFAs induced a decreased response to anti-IL17A treatment in psoriasis-like mice, whereas the inhibition of NETs improved the beneficial effects of anti-IL17A in psoriasis-like mice with lipid metabolism disorders. Our findings collectively suggest that SFA-induced NETs play a critical role in the exacerbation of obesity-related psoriasis and provide potential new strategies for the clinical treatment of refractory psoriasis patients with lipid metabolism disorders.
Collapse
Affiliation(s)
- Yuting Xia
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Lan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Jing Yang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Shijie Yuan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaorong Xie
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyang Du
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyao Du
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Wenjia Nie
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Biling Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Liang Zhao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Zhen Cai
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Xin Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Yan Xiong
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Yan Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Ran He
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Jia G, Song E, Huang Q, Chen M, Liu G. Mitochondrial fusion protein: a new therapeutic target for lung injury diseases. Front Physiol 2025; 16:1500247. [PMID: 40177356 PMCID: PMC11962016 DOI: 10.3389/fphys.2025.1500247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Mitochondria are essential organelles responsible for cellular energy supply. The maintenance of mitochondrial structure and function relies heavily on quality control systems, including biogenesis, fission, and fusion. Mitochondrial fusion refers to the interconnection of two similar mitochondria, facilitating the exchange of mitochondrial DNA, metabolic substrates, proteins, and other components. This process is crucial for rescuing damaged mitochondria and maintaining their normal function. In mammals, mitochondrial fusion involves two sequential steps: outer membrane fusion, regulated by mitofusin 1 and 2 (MFN1/2), and inner membrane fusion, mediated by optic atrophy 1 (OPA1). Dysfunction in mitochondrial fusion has been implicated in the development of various acute and chronic lung injuries. Regulating mitochondrial fusion, maintaining mitochondrial dynamics, and improving mitochondrial function are effective strategies for mitigating lung tissue and cellular damage. This study reviews the expression and regulatory mechanisms of mitochondrial fusion proteins in lung injuries of different etiologies, explores their relationship with lung injury diseases, and offers a theoretical foundation for developing novel therapeutic approaches targeting mitochondrial fusion proteins in lung injury.
Collapse
Affiliation(s)
- Guiyang Jia
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Erqin Song
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qianxia Huang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guoyue Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Pesenti L, de Oliveira Formiga R, Tamassia N, Gardiman E, Chable de la Héronnière F, Gasperini S, Chicher J, Kuhn L, Hammann P, Le Gall M, Saraceni-Tasso G, Martin C, Hosmalin A, Breckler M, Hervé R, Decker P, Ladjemi MZ, Pène F, Burgel PR, Cassatella MA, Witko-Sarsat V. Neutrophils Display Novel Partners of Cytosolic Proliferating Cell Nuclear Antigen Involved in Interferon Response in COVID-19 Patients. J Innate Immun 2025; 17:154-175. [PMID: 40015257 PMCID: PMC11867639 DOI: 10.1159/000543633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 03/01/2025] Open
Abstract
INTRODUCTION Neutrophils are key players in the hyperinflammatory response during SARS-CoV-2 infection. The cytosolic proliferating cell nuclear antigen (PCNA) is a scaffolding protein highly dependent on the microenvironment status and known to interact with numerous proteins that regulate neutrophil functions. This study aimed to examine the cytosolic protein content and PCNA interactome in neutrophils from COVID-19 patients. METHODS Proteomic analyses were performed on neutrophil cytosols from healthy donors and patients with severe or critical COVID-19. In vitro approaches were used to explore the biological significance of the COVID-19-specific PCNA interactome. RESULTS Neutrophil cytosol analysis revealed a strong interferon (IFN) protein signature, with variations according to disease severity. Interactome analysis identified associations of PCNA with proteins involved in interferon signaling, cytoskeletal organization, and neutrophil extracellular trap (NET) formation, such as protein arginine deiminase type-4 (PADI4) and histone H3, particularly in critical patients. Functional studies of interferon signaling showed that T2AA, a PCNA scaffold inhibitor, downregulated IFN-related genes, including STAT1, MX1, IFIT1, and IFIT2 in neutrophils. Additionally, T2AA specifically inhibited the secretion of CXCL10, an IFN-dependent cytokine. PCNA was also found to interact with key effector proteins implicated in NET formation, such as histone H3, especially in critical COVID-19 cases. CONCLUSION The analysis of the PCNA interactome has unveiled new protein partners that enhance the interferon pathway, thereby modulating immune responses and contributing to hyperinflammation in COVID-19. These findings provide valuable insights into interferon dysregulation in other immune-related conditions. INTRODUCTION Neutrophils are key players in the hyperinflammatory response during SARS-CoV-2 infection. The cytosolic proliferating cell nuclear antigen (PCNA) is a scaffolding protein highly dependent on the microenvironment status and known to interact with numerous proteins that regulate neutrophil functions. This study aimed to examine the cytosolic protein content and PCNA interactome in neutrophils from COVID-19 patients. METHODS Proteomic analyses were performed on neutrophil cytosols from healthy donors and patients with severe or critical COVID-19. In vitro approaches were used to explore the biological significance of the COVID-19-specific PCNA interactome. RESULTS Neutrophil cytosol analysis revealed a strong interferon (IFN) protein signature, with variations according to disease severity. Interactome analysis identified associations of PCNA with proteins involved in interferon signaling, cytoskeletal organization, and neutrophil extracellular trap (NET) formation, such as protein arginine deiminase type-4 (PADI4) and histone H3, particularly in critical patients. Functional studies of interferon signaling showed that T2AA, a PCNA scaffold inhibitor, downregulated IFN-related genes, including STAT1, MX1, IFIT1, and IFIT2 in neutrophils. Additionally, T2AA specifically inhibited the secretion of CXCL10, an IFN-dependent cytokine. PCNA was also found to interact with key effector proteins implicated in NET formation, such as histone H3, especially in critical COVID-19 cases. CONCLUSION The analysis of the PCNA interactome has unveiled new protein partners that enhance the interferon pathway, thereby modulating immune responses and contributing to hyperinflammation in COVID-19. These findings provide valuable insights into interferon dysregulation in other immune-related conditions.
Collapse
Affiliation(s)
- Lucie Pesenti
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | | | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Johana Chicher
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Morgane Le Gall
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | | | - Clémence Martin
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Respiratory Medicine, AP-HP, Cochin Hospital, Paris, France
| | - Anne Hosmalin
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | - Magali Breckler
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Roxane Hervé
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Patrice Decker
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Maha Zohra Ladjemi
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | - Frédéric Pène
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Intensive Medicine and Reanimation, AP-HP, Cochin Hospital, Paris, France
| | - Pierre-Régis Burgel
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Respiratory Medicine, AP-HP, Cochin Hospital, Paris, France
| | - Marco A. Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | |
Collapse
|
4
|
Pohl KA, Zhang X, Ji JJ, Stiles L, Sadun AA, Yang XJ. Derivation and Characterization of Isogenic OPA1 Mutant and Control Human Pluripotent Stem Cell Lines. Cells 2025; 14:137. [PMID: 39851566 PMCID: PMC11764107 DOI: 10.3390/cells14020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Dominant optic atrophy (DOA) is the most commonly inherited optic neuropathy. The majority of DOA is caused by mutations in the OPA1 gene, which encodes a dynamin-related GTPase located to the mitochondrion. OPA1 has been shown to regulate mitochondrial dynamics and promote fusion. Within the mitochondrion, proteolytically processed OPA1 proteins form complexes to maintain membrane integrity and the respiratory chain complexity. Although OPA1 is broadly expressed, human OPA1 mutations predominantly affect retinal ganglion cells (RGCs) that are responsible for transmitting visual information from the retina to the brain. Due to the scarcity of human RGCs, DOA has not been studied in depth using the disease affected neurons. To enable studies of DOA using stem-cell-derived human RGCs, we performed CRISPR-Cas9 gene editing to generate OPA1 mutant pluripotent stem cell (PSC) lines with corresponding isogenic controls. CRISPR-Cas9 gene editing yielded both OPA1 homozygous and heterozygous mutant ESC lines from a parental control ESC line. In addition, CRISPR-mediated homology-directed repair (HDR) successfully corrected the OPA1 mutation in a DOA patient's iPSCs. In comparison to the isogenic controls, the heterozygous mutant PSCs expressed the same OPA1 protein isoforms but at reduced levels; whereas the homozygous mutant PSCs showed a loss of OPA1 protein and altered mitochondrial morphology. Furthermore, OPA1 mutant PSCs exhibited reduced rates of oxygen consumption and ATP production associated with mitochondria. These isogenic PSC lines will be valuable tools for establishing OPA1-DOA disease models in vitro and developing treatments for mitochondrial deficiency associated neurodegeneration.
Collapse
Affiliation(s)
- Katherine A. Pohl
- Jules Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (K.A.P.); (X.Z.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiangmei Zhang
- Jules Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (K.A.P.); (X.Z.)
| | - Johnny Jeonghyun Ji
- Jules Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (K.A.P.); (X.Z.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Linsey Stiles
- Department of Molecular and Medical Pharmacology, Davide Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Alfredo A. Sadun
- Doheny Eye Center, Department of Ophthalmology, University of California, Los Angeles, CA 91103, USA;
| | - Xian-Jie Yang
- Jules Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (K.A.P.); (X.Z.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Wang Z, Saxena A, Yan W, Uriarte SM, Siqueira R, Li X. The impact of aging on neutrophil functions and the contribution to periodontitis. Int J Oral Sci 2025; 17:10. [PMID: 39819982 PMCID: PMC11739572 DOI: 10.1038/s41368-024-00332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/21/2024] [Accepted: 10/21/2024] [Indexed: 01/19/2025] Open
Abstract
The increasing aging population and aging-associated diseases have become a global issue for decades. People over 65 show an increased prevalence and greater severity of periodontitis, which poses threats to overall health. Studies have demonstrated a significant association between aging and the dysfunction of neutrophils, critical cells in the early stages of periodontitis, and their crosstalk with macrophages and T and B lymphocytes to establish the periodontal lesion. Neutrophils differentiate and mature in the bone marrow before entering the circulation; during an infection, they are recruited to infected tissues guided by the signal from chemokines and cytokines to eliminate invading pathogens. Neutrophils are crucial in maintaining a balanced response between host and microbes to prevent periodontal diseases in periodontal tissues. The impacts of aging on neutrophils' chemotaxis, anti-microbial function, cell activation, and lifespan result in impaired neutrophil functions and excessive neutrophil activation, which could influence periodontitis course. We summarize the roles of neutrophils in periodontal diseases and the aging-related impacts on neutrophil functional responses. We also explore the underlying mechanisms that can contribute to periodontitis manifestation in aging. This review could help us better understand the pathogenesis of periodontitis, which could offer novel therapeutic targets for periodontitis.
Collapse
Affiliation(s)
- Zi Wang
- Department of Plastic Surgery, Maxillofacial & Oral Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anish Saxena
- Molecular Pathobiology Department, New York University College of Dentistry, New York, NY, USA
| | - Wenbo Yan
- Department of Plastic Surgery, Maxillofacial & Oral Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Rafael Siqueira
- Department of Periodontics, Virginia Commonwealth University School of Dentistry, Richmond, VA, USA
| | - Xin Li
- Department of Plastic Surgery, Maxillofacial & Oral Health, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Molecular Pathobiology Department, New York University College of Dentistry, New York, NY, USA.
- Comprehensive Cancer Center, University of Virginia, Charlottesville, USA.
| |
Collapse
|
6
|
Wang Y, Guo J, Zhang D, Shi C, Zhang X, Gong Z. IDH1/MDH1 deacetylation promotes NETosis by regulating OPA1 and autophagy. Int Immunopharmacol 2024; 143:113270. [PMID: 39353390 DOI: 10.1016/j.intimp.2024.113270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND As a heterogeneous and life-threatening disease, the pathogenesis of acute liver failure (ALF) is complex. Our previous study has shown that IDH1/MDH1 deacetylation promotes ALF by regulating NETosis (a novel mode of cell death). In this article, we explore the manners of IDH1/MDH1 deacetylation regulates NETosis. METHODS In vitro experiments, the formation of NETs was detected by immunofluorescence staining and Western blotting. LC3 fluorescence staining was used to detect autophagosome formation. To observe mitochondrial morphology, cells were stained by Mito-Tracker Red. Western blotting was used to detect the levels of autophagy protein and mitochondrial dynamin. In vivo experiments, the ALF model in mouse was established with LPS/D-gal, and the formation of NETs was detected by immunofluorescence staining and Western blotting. The autophagy levels were detected by Western blotting in liver samples. RESULTS In dHL-60 cells, Western blotting results showed that the expression of OPA1 was higher in the IDH1/MDH1 deacetylated group compared with the IDH1/MDH1 WT group. And histone deacetylase inhibitor 6 (HDAC6i, ACY1215) decreased the expression level of OPA1 in IDH1/MDH1 deacetylated group. IDH1/MDH1 deacetylation increased the expression levels of both LC3B-II and Beclin 1, while decreasing the expression level of P62. It was reversed by ACY1215. Combined with our previous experiments, IDH1/MDH1 deacetylation upregulated autophagy concomitant with the increased expression of the markers of NETs formation. In a mouse model of ALF, ACY1215 further decreased the expression levels of LC3B-II and Beclin 1, while increasing the expression level of P62 in IDH1/MDH1 deacetylated mice. CONCLUSIONS IDH1/MDH1 deacetylation promoted NETosis by regulating autophagy and OPA1 in vitro. The regulation of neutrophil autophagy on NETosis during IDH1/MDH1 deacetylation might be masked in mice. ACY1215 might attenuate NETosis by regulating neutrophil autophagy, which alleviated ALF aggravated by IDH1/MDH1 deacetylation.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Xiaoya Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China.
| |
Collapse
|
7
|
Lika J, Fan J. Carbohydrate metabolism in supporting and regulating neutrophil effector functions. Curr Opin Immunol 2024; 91:102497. [PMID: 39366310 PMCID: PMC11609006 DOI: 10.1016/j.coi.2024.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Neutrophils, the first responders of the innate immune system, can turn on a range of effector functions upon activation. Emerging research shows activated neutrophils undergo highly dynamic metabolic rewiring. This metabolic rewiring provides energy and reducing power to fuel effector functions and modulate signaling molecules to regulate neutrophil functions. Here, we review the current understanding of the specific metabolic requirements and regulators of neutrophil migration, neutrophil extracellular traps release, and pathogen killing. Particularly, we discuss how major carbohydrate metabolic pathways, including glycolysis, glycogen cycling, pentose phosphate pathway, and TCA cycle, are rewired upon neutrophil activation to support these functions. Continued investigation into the metabolic regulators of neutrophil functions can lead to therapeutic opportunities in various diseases.
Collapse
Affiliation(s)
- Jorgo Lika
- Morgridge Institute for Research, Madison, WI, USA; Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Cao Z, Jiang X, He Y, Zheng X. Metabolic landscape in venous thrombosis: insights into molecular biology and therapeutic implications. Ann Med 2024; 56:2401112. [PMID: 39297312 DOI: 10.1080/07853890.2024.2401112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/20/2024] [Accepted: 05/12/2024] [Indexed: 09/21/2024] Open
Abstract
The findings of the last decade suggest a complex link between inflammatory cells, coagulation, and the activation of platelets and their synergistic interaction to promote venous thrombosis. Inflammation is present throughout the process of venous thrombosis, and various metabolic pathways of erythrocytes, endothelial cells, and immune cells involved in venous thrombosis, including glucose metabolism, lipid metabolism, homocysteine metabolism, and oxidative stress, are associated with inflammation. While the metabolic microenvironment has been identified as a marker of malignancy, recent studies have revealed that for cancer thrombosis, alterations in the metabolic microenvironment appear to also be a potential risk. In this review, we discuss how the synergy between metabolism and thrombosis drives thrombotic disease. We also explore the great potential of anti-inflammatory strategies targeting venous thrombosis and the complex link between anti-inflammation and metabolism. Furthermore, we suggest how we can use our existing knowledge to reduce the risk of venous thrombosis.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiyu He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoxin Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Buckley NA, Craxton A, Sun XM, Panatta E, Pinon LG, Beier S, Kalmar L, Llodrá J, Morone N, Amelio I, Melino G, Martins LM, MacFarlane M. TAp73 regulates mitochondrial dynamics and multiciliated cell homeostasis through an OPA1 axis. Cell Death Dis 2024; 15:807. [PMID: 39516459 PMCID: PMC11549358 DOI: 10.1038/s41419-024-07130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Dysregulated mitochondrial fusion and fission has been implicated in the pathogenesis of numerous diseases. We have identified a novel function of the p53 family protein TAp73 in regulating mitochondrial dynamics. TAp73 regulates the expression of Optic Atrophy 1 (OPA1), a protein responsible for controlling mitochondrial fusion, cristae biogenesis and electron transport chain function. Disruption of this axis results in a fragmented mitochondrial network and an impaired capacity for energy production via oxidative phosphorylation. Owing to the role of OPA1 in modulating cytochrome c release, TAp73-/- cells display an increased sensitivity to apoptotic cell death, e.g., via BH3-mimetics. We additionally show that the TAp73/OPA1 axis has functional relevance in the upper airway, where TAp73 expression is essential for multiciliated cell differentiation and function. Consistently, ciliated epithelial cells of Trp73-/- (global p73 knock-out) mice display decreased expression of OPA1 and perturbations of the mitochondrial network, which may drive multiciliated cell loss. In support of this, Trp73 and OPA1 gene expression is decreased in chronic obstructive pulmonary disease (COPD) patients, a disease characterised by alterations in mitochondrial dynamics. We therefore highlight a potential mechanism involving the loss of p73 in COPD pathogenesis. Our findings also add to the growing body of evidence for growth-promoting roles of TAp73 isoforms.
Collapse
Affiliation(s)
- Niall A Buckley
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Andrew Craxton
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Xiao-Ming Sun
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Emanuele Panatta
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Sina Beier
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Lajos Kalmar
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Jaime Llodrá
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Ivano Amelio
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Division for Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gerry Melino
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | | |
Collapse
|
10
|
Huo R, Sun Q, Lv Q, Wang Y, Qi W, Zhang M, Li L, Wang X. Simvastatin ameliorates adverse pregnancy by inhibiting glycolysis-related NETs in obstetrical antiphospholipid syndrome. Life Sci 2024; 359:123215. [PMID: 39505298 DOI: 10.1016/j.lfs.2024.123215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
AIMS Some patients with Obstetric Antiphospholipid Syndrome (OAPS) still experience miscarriage and placental dysfunction after routine treatment, which is related to an abnormal increase in neutrophil extracellular traps (NETs). The labeling of statins has been revised to remove the contraindication for use during pregnancy. Our aim is to investigate the effect of Simvastatin on pregnancy outcomes in OAPS and its correlation mechanisms with NETs. MAIN METHODS The effect of Simvastatin on pregnancy outcomes was observed. The effect of simvastatin on the function and apoptosis of neutrophils has evaluated. The effect of Simvastatin to NETs and the changes in oxidative stress levels were observed. Different groups of NETs were extracted to intervene the HTR8-Svneo.RNA-seq analysis of the mechanism of which Simvastatin reduces NETs. Seahorse experiment detected the effect of Simvastatin on neutrophil glycolysis levels. Fluorescence co-localization and flow cytometry and Co-IP were used to verify relevant mechanisms. KEY FINDINGS In the OAPS mice, Simvastatin can reduce embryo absorption rate, reshape placental blood flow perfusion. Simultaneously reducing the production of NETs both in vivo and vitro, remolding oxidative stress. Simvastatin can improve neutrophil dysfunction caused by aPL-IgG. The reduction of NETs improved HTR8-Svneo's dysfunction. The intervention of Simvastatin on neutrophils under the stimulation of aPL-IgG showed a signature in glycolytic. The key rate limiting enzyme PKM2 in glycolysis interacts with Cit-H2b and PI3K/AKT signaling pathway. SIGNIFICANCE Our study providing basic theoretical support for the treatment of OAPS with Simvastatin.
Collapse
Affiliation(s)
- Ruiheng Huo
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China; Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, People's Republic of China
| | - Qipeng Sun
- School of Clinical and Basic Medicine (Institute of Basic Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, People's Republic of China
| | - Qingfeng Lv
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China; Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, People's Republic of China
| | - Yuan Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Weiyi Qi
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, People's Republic of China
| | - Lei Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China; Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, People's Republic of China.
| | - Xietong Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China; Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, People's Republic of China; School of Clinical and Basic Medicine (Institute of Basic Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, People's Republic of China; Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, People's Republic of China.
| |
Collapse
|
11
|
Lv X, Han Y, Li Y, Wang X, Zhang T, Wang X, Zhang Q, Yang D, Zhao J. Nonylphenol displays immunotoxicity by triggering hemocyte extracellular traps in Manila clam via ROS burst, ERK pathway and glycolysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117145. [PMID: 39357378 DOI: 10.1016/j.ecoenv.2024.117145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Nonylphenol (NP), an endocrine disruptor, has been demonstrated to be a harmful environmental contaminant and toxic to organisms. In this study, to address concerns regarding the immunotoxicity of NP, we treated clam Ruditapes philippinarum hemocytes with NP in vitro and explored the underlying mechanisms of NP-induced extracellular traps (ETs). NP could induce the formation of hemocytes ETs in a dose-dependent manner. Transcriptomics analysis revealed changes of signaling pathway involved in immunity and energy metabolism in hemocytes after NP stimulation. In this process, both reactive oxygen species (ROS) and myeloperoxidase (MPO) were up-regulated. Moreover, mitogen-activated protein kinase (MAPK) signaling pathway was proved to be activated in the formation of NP-induced ETs, manifested as enhanced phosphorylation of extracellular signal-regulated kinase (ERK) but not p38 or c-Jun N-terminal kinase (JNK). In the presence of U0126, an ERK phosphorylation inhibitor, the NP-induced expression of NADPH oxidase enzyme (NOX) was significantly decreased, which further alleviated the ROS production and ultimately limited the release of ETs. NP exposure increased glucose uptake, along with enhanced activities of glycolysis-related enzymes such as hexokinase (HK) and pyruvate kinase (PK). After inhibiting glycolysis by the inhibitor 2-DG, the formation of NP-induced ETs was significantly suppressed. ERK could regulate mTOR signaling and the PI3K/AKT pathway, potentially directing ETs formation by orchestrating the glycolysis through the activation of key transcription factors c-Myc and HIF-1α. Collectively, the results preliminary confirm that the ERK-NOX-ROS axis and glycolysis are involved in NP-induced ETs formation, contributing to the cellular immunotoxicity in clam.
Collapse
Affiliation(s)
- Xiaojing Lv
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yijing Han
- School of Fisheries, Ludong University, Yantai 264025, PR China
| | - Yongxue Li
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xin Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Tianyu Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xiaodan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qianqian Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Dinglong Yang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
12
|
Cui D, Yu T. Unveiling the glycolysis in sepsis: Integrated bioinformatics and machine learning analysis identifies crucial roles for IER3, DSC2, and PPARG in disease pathogenesis. Medicine (Baltimore) 2024; 103:e39867. [PMID: 39331858 PMCID: PMC11441936 DOI: 10.1097/md.0000000000039867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/26/2024] [Indexed: 09/29/2024] Open
Abstract
Sepsis, a multifaceted syndrome driven by an imbalanced host response to infection, remains a significant medical challenge. At its core lies the pivotal role of glycolysis, orchestrating immune responses especially in severe sepsis. The intertwined dynamics between glycolysis, sepsis, and immunity, however, have gaps in knowledge with several Crucial genes still shrouded in ambiguity. We harvested transcriptomic profiles from the peripheral blood of 107 septic patients juxtaposed against 29 healthy controls. Delving into this dataset, differential expression analysis shed light on genes distinctly linked to glycolysis in both cohorts. Harnessing the prowess of LASSO regression and SVM-RFE, we isolated Crucial genes, paving the way for a sepsis risk prediction model, subsequently vetted via Calibration and decision curve analysis. Using the CIBERSORT algorithm, we further mapped 22 immune cell subtypes within the septic samples, establishing potential interactions with the delineated Crucial genes. Our efforts unveiled 21 genes intricately tied to glycolysis that exhibited differential expression patterns. Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses offered insights, spotlighting pathways predominantly associated with oxidative phosphorylation, PPAR signaling pathway, Glycolysis/Gluconeogenesis and HIF-1 signaling pathway. Among the myriad genes, IER3, DSC2, and PPARG emerged as linchpins, their prominence in sepsis further validated through ROC analytics. These sentinel genes demonstrated profound affiliations with various immune cell facets, bridging the complex terrain of glycolysis, sepsis, and immune responses. In line with our endeavor to "unveil the glycolysis in sepsis," the discovery of IER3, DSC2, and PPARG reinforces their cardinal roles in sepsis pathogenesis. These revelations accentuate the intricate dance between glycolysis and immunological shifts in septic conditions, offering novel avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Dongqing Cui
- Emergency Department, Beijing Sixth Hospital, Beijing, China
| | - Tian Yu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Britt EC, Qing X, Votava JA, Lika J, Wagner AS, Shen S, Arp NL, Khan H, Schieke SM, Fletcher CD, Huttenlocher A, Fan J. Activation induces shift in nutrient utilization that differentially impacts cell functions in human neutrophils. Proc Natl Acad Sci U S A 2024; 121:e2321212121. [PMID: 39284072 PMCID: PMC11441510 DOI: 10.1073/pnas.2321212121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/29/2024] [Indexed: 09/25/2024] Open
Abstract
Neutrophils utilize a variety of metabolic sources to support their crucial functions as the first responders in innate immunity. Here, through in vivo and ex vivo isotopic tracing, we examined the contributions of different nutrients to neutrophil metabolism under specific conditions. Human peripheral blood neutrophils, in contrast to a neutrophil-like cell line, rely on glycogen storage as a major metabolic source under resting state but rapidly switch to primarily using extracellular glucose upon activation with various stimuli. This shift is driven by a substantial increase in glucose uptake, enabled by rapidly increased GLUT1 on cell membrane, that dominates the simultaneous increase in gross glycogen cycling capacity. Shifts in nutrient utilization impact neutrophil functions in a function-specific manner: oxidative burst depends on glucose utilization, whereas NETosis and phagocytosis can be flexibly supported by either glucose or glycogen, and neutrophil migration and fungal control are enhanced by the shift from glycogen utilization to glucose utilization. This work provides a quantitative and dynamic understanding of fundamental features in neutrophil metabolism and elucidates how metabolic remodeling shapes neutrophil functions, which has broad health relevance.
Collapse
Affiliation(s)
- Emily C. Britt
- Morgridge Institute for Research, Madison, WI53715
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI53706
| | - Xin Qing
- Morgridge Institute for Research, Madison, WI53715
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI53706
| | | | - Jorgo Lika
- Morgridge Institute for Research, Madison, WI53715
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI53792
| | - Andrew S. Wagner
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Simone Shen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Nicholas L. Arp
- Morgridge Institute for Research, Madison, WI53715
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI53792
| | - Hamidullah Khan
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI53715
- Department of Dermatology, Georgetown University Medical Center Washington DC VA Medical Center, Washington, DC20036
| | - Stefan M. Schieke
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI53715
- Department of Dermatology, Georgetown University Medical Center Washington DC VA Medical Center, Washington, DC20036
| | | | - Anna Huttenlocher
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI53792
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Carbone Cancer Center, Madison, WI53792
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI53792
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI53715
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI53792
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Carbone Cancer Center, Madison, WI53792
| |
Collapse
|
14
|
Ettel P, Weichhart T. Not just sugar: metabolic control of neutrophil development and effector functions. J Leukoc Biol 2024; 116:487-510. [PMID: 38450755 PMCID: PMC7617515 DOI: 10.1093/jleuko/qiae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
The mammalian immune system is constantly surveying our tissues to clear pathogens and maintain tissue homeostasis. In order to fulfill these tasks, immune cells take up nutrients to supply energy for survival and for directly regulating effector functions via their cellular metabolism, a process now known as immunometabolism. Neutrophilic granulocytes, the most abundant leukocytes in the human body, have a short half-life and are permanently needed in the defense against pathogens. According to a long-standing view, neutrophils were thought to primarily fuel their metabolic demands via glycolysis. Yet, this view has been challenged, as other metabolic pathways recently emerged to contribute to neutrophil homeostasis and effector functions. In particular during neutrophilic development, the pentose phosphate pathway, glycogen synthesis, oxidative phosphorylation, and fatty acid oxidation crucially promote neutrophil maturation. At steady state, both glucose and lipid metabolism sustain neutrophil survival and maintain the intracellular redox balance. This review aims to comprehensively discuss how neutrophilic metabolism adapts during development, which metabolic pathways fuel their functionality, and how these processes are reconfigured in case of various diseases. We provide several examples of hereditary diseases, in which mutations in metabolic enzymes validate their critical role for neutrophil function.
Collapse
Affiliation(s)
- Paul Ettel
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090Vienna, Austria
| | - Thomas Weichhart
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090Vienna, Austria
| |
Collapse
|
15
|
Leblanc PO, Bourgoin SG, Poubelle PE, Tessier PA, Pelletier M. Metabolic regulation of neutrophil functions in homeostasis and diseases. J Leukoc Biol 2024; 116:456-468. [PMID: 38452242 DOI: 10.1093/jleuko/qiae025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 03/09/2024] Open
Abstract
Neutrophils are the most abundant leukocytes in humans and play a role in the innate immune response by being the first cells attracted to the site of infection. While early studies presented neutrophils as almost exclusively glycolytic cells, recent advances show that these cells use several metabolic pathways other than glycolysis, such as the pentose phosphate pathway, oxidative phosphorylation, fatty acid oxidation, and glutaminolysis, which they modulate to perform their functions. Metabolism shifts from fatty acid oxidation-mediated mitochondrial respiration in immature neutrophils to glycolysis in mature neutrophils. Tissue environments largely influence neutrophil metabolism according to nutrient sources, inflammatory mediators, and oxygen availability. Inhibition of metabolic pathways in neutrophils results in impairment of certain effector functions, such as NETosis, chemotaxis, degranulation, and reactive oxygen species generation. Alteration of these neutrophil functions is implicated in certain human diseases, such as antiphospholipid syndrome, coronavirus disease 2019, and bronchiectasis. Metabolic regulators such as AMPK, HIF-1α, mTOR, and Arf6 are linked to neutrophil metabolism and function and could potentially be targeted for the treatment of diseases associated with neutrophil dysfunction. This review details the effects of alterations in neutrophil metabolism on the effector functions of these cells.
Collapse
Affiliation(s)
- Pier-Olivier Leblanc
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
| | - Sylvain G Bourgoin
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Patrice E Poubelle
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Medicine, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Philippe A Tessier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| |
Collapse
|
16
|
Yu Y, Zhang C, Dong B, Zhang Z, Li X, Huang S, Tang D, Jing X, Yu S, Zheng T, Wu D, Tai S. Neutrophil extracellular traps promote immune escape in hepatocellular carcinoma by up-regulating CD73 through Notch2. Cancer Lett 2024; 598:217098. [PMID: 38969159 DOI: 10.1016/j.canlet.2024.217098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Immune escape is the main reason that immunotherapy is ineffective in hepatocellular carcinoma (HCC). Here, this study illustrates a pathway mediated by neutrophil extracellular traps (NETs) that can promote immune escape of HCC. Mechanistically, we demonstrated that NETs up-regulated CD73 expression through activating Notch2 mediated nuclear factor kappa B (NF-κB) pathway, promoting regulatory T cells (Tregs) infiltration to mediate immune escape of HCC. In addition, we found the similar results in mouse HCC models by hydrodynamic plasmid transfection. The treatment of deoxyribonuclease I (DNase I) could inhibit the action of NETs and improve the therapeutic effect of anti-programmed cell death protein 1 (PD-1). In summary, our results revealed that targeting of NETs was a promising treatment to improve the therapeutic effect of anti-PD-1.
Collapse
Affiliation(s)
- Yang Yu
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Congyi Zhang
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Bowen Dong
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Zhihua Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiaoqing Li
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Shizhuan Huang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Daowei Tang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiaowei Jing
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| | - Tongsen Zheng
- Heilongjiang Province Key Laboratory of Molecular Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| | - Dehai Wu
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| | - Sheng Tai
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| |
Collapse
|
17
|
Thind MK, Miraglia E, Ling C, Khan MA, Glembocki A, Bourdon C, ChenMi Y, Palaniyar N, Glogauer M, Bandsma RHJ, Farooqui A. Mitochondrial perturbations in low-protein-diet-fed mice are associated with altered neutrophil development and effector functions. Cell Rep 2024; 43:114493. [PMID: 39028622 PMCID: PMC11372442 DOI: 10.1016/j.celrep.2024.114493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024] Open
Abstract
Severe malnutrition is associated with infections, namely lower respiratory tract infections (LRTIs), diarrhea, and sepsis, and underlies the high risk of morbidity and mortality in children under 5 years of age. Dysregulations in neutrophil responses in the acute phase of infection are speculated to underlie these severe adverse outcomes; however, very little is known about their biology in this context. Here, in a lipopolysaccharide-challenged low-protein diet (LPD) mouse model, as a model of malnutrition, we show that protein deficiency disrupts neutrophil mitochondrial dynamics and ATP generation to obstruct the neutrophil differentiation cascade. This promotes the accumulation of atypical immature neutrophils that are incapable of optimal antimicrobial response and, in turn, exacerbate systemic pathogen spread and the permeability of the alveolocapillary membrane with the resultant lung damage. Thus, this perturbed response may contribute to higher mortality risk in malnutrition. We also offer a nutritional therapeutic strategy, nicotinamide, to boost neutrophil-mediated immunity in LPD-fed mice.
Collapse
Affiliation(s)
- Mehakpreet K Thind
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Emiliano Miraglia
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Catriona Ling
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Meraj A Khan
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aida Glembocki
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Celine Bourdon
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - YueYing ChenMi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Robert H J Bandsma
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya.
| | - Amber Farooqui
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya.
| |
Collapse
|
18
|
Zhang J, Feng Y, Shi D. NETosis of psoriasis: a critical step in amplifying the inflammatory response. Front Immunol 2024; 15:1374934. [PMID: 39148738 PMCID: PMC11324545 DOI: 10.3389/fimmu.2024.1374934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
NETosis, a regulated form of neutrophil death, is crucial for host defense against pathogens. However, the release of neutrophil extracellular traps (NETs) during NETosis can have detrimental effects on surrounding tissues and contribute to the pro-inflammatory response, in addition to their role in controlling microbes. Although it is well-established that the IL-23-Th17 axis plays a key role in the pathogenesis of psoriasis, emerging evidence suggests that psoriasis, as an autoinflammatory disease, is also associated with NETosis. The purpose of this review is to provide a comprehensive understanding of the mechanisms underlying NETosis in psoriasis. It will cover topics such as the formation of NETs, immune cells involved in NETosis, and potential biomarkers as prognostic/predicting factors in psoriasis. By analyzing the intricate relationship between NETosis and psoriasis, this review also aims to identify novel possibilities targeting NETosis for the treatment of psoriasis.
Collapse
Affiliation(s)
- Jinke Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yahui Feng
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Dongmei Shi
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong, China
- Department of Dermatology, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
19
|
Li X, Xu B, Long L, Li Y, Xiao X, Qiu S, Xu J, Tian LW, Wang H. Phelligridimer A enhances the expression of mitofusin 2 and protects against cerebral ischemia/reperfusion injury. Chem Biol Interact 2024; 398:111090. [PMID: 38825057 DOI: 10.1016/j.cbi.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Mitochondrial dysfunction and endoplasmic reticulum (ER) stress play pivotal roles in the pathology of cerebral ischemia. In this study, we investigated whether phelligridimer A (PA), an active compound isolated from the medicinal and edible fungus Phellinus igniarius, ameliorates ischemic cerebral injury by restoring mitochondrial function and restricting ER stress. An in vitro cellular model of ischemic stroke-induced neuronal damage was established by exposing HT-22 neuronal cells to oxygen-glucose deprivation/reoxygenation (OGD/R). An in vivo animal model was established in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). The results showed that PA (1-10 μM) dose-dependently increased HT-22 cell viability, reduced OGD/R-induced lactate dehydrogenase release, and reversed OGD/R-induced apoptosis. PA reduced OGD/R-induced accumulation of reactive oxygen species, restored mitochondrial membrane potential, and increased ATP levels. Additionally, PA reduced the expression of the 78-kDa glucose-regulated protein (GRP78) and the phosphorylation of inositol-requiring enzyme-1α (p-IRE1α) and eukaryotic translation-initiation factor 2α (p-eIF2α). PA also inhibited the activation of the mitogen-activated protein kinase (MAPK) pathway in the OGD/R model. Moreover, treatment with PA restored the expression of mitofusin 2 (Mfn-2), a protein linking mitochondria and ER. The silencing of Mfn-2 abolished the protective effects of PA. The results from the animal study showed that PA (3-10 mg/kg) significantly reduced the volume of cerebral infarction and neurological deficits, which were accompanied by an increased level of Mfn-2, and decreased activation of the ER stress in the penumbra of the ipsilateral side after MCAO/R in rats. Taken together, these results indicate that PA counteracts cerebral ischemia-induced injury by restoring mitochondrial function and reducing ER stress. Therefore, PA might be a novel protective agent to prevent ischemia stroke-induced neuronal injury.
Collapse
Affiliation(s)
- Xing Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingtian Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lu Long
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuting Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xuan Xiao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuqin Qiu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiangping Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China
| | - Li-Wen Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Haitao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Chen D, Liang H, Huang L, Zhou H, Wang Z. Liraglutide enhances the effect of checkpoint blockade in lung and liver cancers through the inhibition of neutrophil extracellular traps. FEBS Open Bio 2024; 14:1365-1377. [PMID: 36271684 PMCID: PMC11301266 DOI: 10.1002/2211-5463.13499] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) regulates glycemic excursions by augmenting insulin production and inhibiting glucagon secretion. Liraglutide, a long-acting GLP-1 analog, can improve glycemic control for treating type 2 diabetes and prevent neutrophil extravasation in inflammation. Here, we explored the role of liraglutide in the development and therapy of murine lung and liver cancers. In this study, liraglutide substantially decreased circulating neutrophil extracellular trap (NET) markers myeloperoxidase, elastase, and dsDNA in Lewis lung cancer (LLC) and Hepa1-6 tumor-bearing mice. Furthermore, liraglutide downregulated NETs and reactive oxygen species (ROS) of neutrophils in the tumor microenvironment. Functionally, in vitro experiments showed that liraglutide reduced NET formation by inhibiting ROS. In addition, we showed that liraglutide enhanced the anti-tumoral efficiency of programmed cell death-1 (PD-1) inhibition in LLC and Hepa1-6 tumor-bearing C57BL/6 mice. However, the removal of NETs significantly weakened the antitumor efficiency of liraglutide. We further demonstrated that the long-term antitumor CD8+ T cell responses induced by the combination therapy rejected rechallenges by respective tumor cell lines. Taken together, our findings suggest that liraglutide may promote the anti-tumoral efficiency of PD-1 inhibition by reducing NETs in lung and liver cancers.
Collapse
Affiliation(s)
- Duo Chen
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Hongxin Liang
- Department of Thoracic Surgery, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Luyu Huang
- Department of Surgery, Competence Center of Thoracic SurgeryCharité Universitätsmedizin BerlinGermany
| | - Haiyu Zhou
- Department of Thoracic Surgery, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Zheng Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
21
|
Fleetwood AJ, Noonan J, La Gruta N, Kallies A, Murphy AJ. Immunometabolism in atherosclerotic disorders. NATURE CARDIOVASCULAR RESEARCH 2024; 3:637-650. [PMID: 39196223 DOI: 10.1038/s44161-024-00473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 04/11/2024] [Indexed: 08/29/2024]
Abstract
Cardiovascular diseases (CVDs), including atherosclerosis, myocardial infarction and heart failure, are the leading causes of morbidity and mortality worldwide. Emerging evidence suggests a crucial role for immune cell dysfunction and inflammation in the progression of this complex set of diseases. Recent advances demonstrate that immune cells, tightly linked to CVD pathogenesis, are sensitive to environmental signals and respond by engaging immunometabolic networks that shape their behavior. Inflammatory cues and altered nutrient availability within atherosclerotic plaques or following ischemia synergize to elicit metabolic shifts in immune cells that influence the course of disease pathology. Understanding these metabolic adaptations and how they contribute to cellular dysfunction may reveal novel therapeutic approaches for the treatment of CVD. Here we provide a comprehensive summary of the metabolic reprogramming that occurs in immune cells and their progenitors during CVD, offering insights into the potential therapeutic interventions to mitigate disease progression.
Collapse
Affiliation(s)
- Andrew J Fleetwood
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Jonathan Noonan
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Nicole La Gruta
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Axel Kallies
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
22
|
ShilinLi, Hu Y. Identification of four mitochondria-related genes in sepsis based on RNA sequencing technology. BMC Immunol 2024; 25:32. [PMID: 38755528 PMCID: PMC11097488 DOI: 10.1186/s12865-024-00623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVES The purpose of this study was to identify and analyze the mitochondrial genes associated with sepsis patients in order to elucidate the underlying mechanism of sepsis immunity and provide new ideas for the clinical treatment of sepsis. METHODS The hospitalized cases of sepsis (n = 20) and systemic inflammatory response syndrome (SIRS) (n = 12) admitted to the Emergency Intensive Care Unit (EICU) of the Affiliated Hospital of Southwest Medical University from January 2019 to December 2019 were collected consecutively. RNA-seq was used to sequence the RNA (mRNA) of peripheral blood cells. Bioinformatics techniques were used to screen and identify differentially expressed RNAs, with an absolute value of fold change (FC) greater than or equal to 1.2 and a false discovery rate (FDR) less than 0.05. At the same time, mitochondrial genes were obtained from the MitoCarta 3.0 database. Differential genes were then intersected with mitochondrial genes. The resulting crossover genes were subjected to GO, KEGG, and PPI analysis. Subsequently, the GSE65682 dataset was downloaded from the GEO database for survival analysis to assess the prognostic value of core genes, and GSE67652 was downloaded for ROC curve analysis to validate the diagnostic value of core genes. Finally, the localization of core genes was clarified through 10X single-cell sequencing. RESULTS The crossing of 314 sepsis differential genes and 1136 mitochondrial genes yielded 28 genes. GO and KEGG analysis showed that the crossover genes were mainly involved in the mitochondrion, mitochondrial matrix, and mitochondrial inner membrane. Survival analysis screened four genes that were significantly negatively associated with the prognosis of sepsis, namely FIS1, FKBP8, GLRX5, and GUK1. A comparison of peripheral blood RNA-seq results between the sepsis group and the SIRS group showed that the expression levels of these four genes were significantly decreased in the sepsis group compared to the SIRS group. ROC curve analysis based on GSE67652 indicates these four genes' high sensitivity and specificity for sepsis detection. Additionally, single-cell RNA sequencing found that the core genes were mainly expressed in macrophages, T cells, and B cells. CONCLUSIONS Mitochondria-related genes (FIS1, FKBP8, GLRX5, GUK1) were underexpressed in the sepsis group, negatively correlated with survival, and mainly distributed in immune cells. This finding may guide studying the immune-related mechanisms of sepsis. This study protocol was reviewed by the Ethics Committee of the Affiliated Hospital of Southwest Medical University (ethics number: KY2018029), the clinical trial registration number is ChiCTR1900021261, and the registration date is February 4, 2019.
Collapse
Affiliation(s)
- ShilinLi
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, China
| | - Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, China.
| |
Collapse
|
23
|
Gigon L, Müller P, Haenni B, Iacovache I, Barbo M, Gosheva G, Yousefi S, Soragni A, von Ballmoos C, Zuber B, Simon HU. Membrane damage by MBP-1 is mediated by pore formation and amplified by mtDNA. Cell Rep 2024; 43:114084. [PMID: 38583154 DOI: 10.1016/j.celrep.2024.114084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/28/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Eosinophils play a crucial role in host defense while also contributing to immunopathology through the release of inflammatory mediators. Characterized by distinctive cytoplasmic granules, eosinophils securely store and rapidly release various proteins exhibiting high toxicity upon extracellular release. Among these, major basic protein 1 (MBP-1) emerges as an important mediator in eosinophil function against pathogens and in eosinophil-associated diseases. While MBP-1 targets both microorganisms and host cells, its precise mechanism remains elusive. We demonstrate that formation of small pores by MBP-1 in lipid bilayers induces membrane permeabilization and disrupts potassium balance. Additionally, we reveal that mitochondrial DNA (mtDNA) present in eosinophil extracellular traps (EETs) amplifies MBP-1 toxic effects, underscoring the pivotal role of mtDNA in EETs. Furthermore, we present evidence indicating that absence of CpG methylation in mtDNA contributes to the regulation of MBP-1-mediated toxicity. Taken together, our data suggest that the mtDNA scaffold within extracellular traps promotes MBP-1 toxicity.
Collapse
Affiliation(s)
- Lea Gigon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Philipp Müller
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Beat Haenni
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Ioan Iacovache
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Maruša Barbo
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Gordana Gosheva
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Alice Soragni
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christoph von Ballmoos
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, 16816 Neuruppin, Germany.
| |
Collapse
|
24
|
Manda-Handzlik A, Stojkov D, Wachowska M, Surmiak M. Editorial: Neutrophil extracellular traps: mechanistic and functional insight. Front Immunol 2024; 15:1407232. [PMID: 38698859 PMCID: PMC11063356 DOI: 10.3389/fimmu.2024.1407232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Affiliation(s)
- Aneta Manda-Handzlik
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Malgorzata Wachowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
25
|
Zhou M, Liu YWY, He YH, Zhang JY, Guo H, Wang H, Ren JK, Su YX, Yang T, Li JB, He WH, Ma PJ, Mi MT, Dai SS. FOXO1 reshapes neutrophils to aggravate acute brain damage and promote late depression after traumatic brain injury. Mil Med Res 2024; 11:20. [PMID: 38556884 PMCID: PMC10981823 DOI: 10.1186/s40779-024-00523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Neutrophils are traditionally viewed as first responders but have a short onset of action in response to traumatic brain injury (TBI). However, the heterogeneity, multifunctionality, and time-dependent modulation of brain damage and outcome mediated by neutrophils after TBI remain poorly understood. METHODS Using the combined single-cell transcriptomics, metabolomics, and proteomics analysis from TBI patients and the TBI mouse model, we investigate a novel neutrophil phenotype and its associated effects on TBI outcome by neurological deficit scoring and behavioral tests. We also characterized the underlying mechanisms both in vitro and in vivo through molecular simulations, signaling detections, gene expression regulation assessments [including dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays], primary cultures or co-cultures of neutrophils and oligodendrocytes, intracellular iron, and lipid hydroperoxide concentration measurements, as well as forkhead box protein O1 (FOXO1) conditional knockout mice. RESULTS We identified that high expression of the FOXO1 protein was induced in neutrophils after TBI both in TBI patients and the TBI mouse model. Infiltration of these FOXO1high neutrophils in the brain was detected not only in the acute phase but also in the chronic phase post-TBI, aggravating acute brain inflammatory damage and promoting late TBI-induced depression. In the acute stage, FOXO1 upregulated cytoplasmic Versican (VCAN) to interact with the apoptosis regulator B-cell lymphoma-2 (BCL-2)-associated X protein (BAX), suppressing the mitochondrial translocation of BAX, which mediated the antiapoptotic effect companied with enhancing interleukin-6 (IL-6) production of FOXO1high neutrophils. In the chronic stage, the "FOXO1-transferrin receptor (TFRC)" mechanism contributes to FOXO1high neutrophil ferroptosis, disturbing the iron homeostasis of oligodendrocytes and inducing a reduction in myelin basic protein, which contributes to the progression of late depression after TBI. CONCLUSIONS FOXO1high neutrophils represent a novel neutrophil phenotype that emerges in response to acute and chronic TBI, which provides insight into the heterogeneity, reprogramming activity, and versatility of neutrophils in TBI.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Yang-Wu-Yue Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Yu-Hang He
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Health, Institute of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Jing-Yu Zhang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hao Guo
- Department of Trauma and Emergency, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Hao Wang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jia-Kui Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Yi-Xun Su
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Suyixun Laboratory of Chongqing Education Commission, Army Medical University, Chongqing, 400038, China
- Research Center, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Teng Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Jia-Bo Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Wen-Hui He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Peng-Jiao Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Man-Tian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Health, Institute of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
26
|
Wang Y, Du C, Zhang Y, Zhu L. Composition and Function of Neutrophil Extracellular Traps. Biomolecules 2024; 14:416. [PMID: 38672433 PMCID: PMC11048602 DOI: 10.3390/biom14040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate fibrous structures released by neutrophils in response to specific stimuli. These structures are composed of depolymerized chromatin adorned with histones, granule proteins, and cytosolic proteins. NETs are formed via two distinct pathways known as suicidal NETosis, which involves NADPH oxidase (NOX), and vital NETosis, which is independent of NOX. Certain proteins found within NETs exhibit strong cytotoxic effects against both pathogens and nearby host cells. While NETs play a defensive role against pathogens, they can also contribute to tissue damage and worsen inflammation. Despite extensive research on the pathophysiological role of NETs, less attention has been paid to their components, which form a unique structure containing various proteins that have significant implications in a wide range of diseases. This review aims to elucidate the components of NETs and provide an overview of their impact on host defense against invasive pathogens, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Yijie Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Chunjing Du
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Liuluan Zhu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
27
|
Li C, Wu C, Li F, Xu W, Zhang X, Huang Y, Xia D. Targeting Neutrophil Extracellular Traps in Gouty Arthritis: Insights into Pathogenesis and Therapeutic Potential. J Inflamm Res 2024; 17:1735-1763. [PMID: 38523684 PMCID: PMC10960513 DOI: 10.2147/jir.s460333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Gouty arthritis (GA) is an immune-mediated disorder characterized by severe inflammation due to the deposition of monosodium urate (MSU) crystals in the joints. The pathophysiological mechanisms of GA are not yet fully understood, and therefore, the identification of effective therapeutic targets is of paramount importance. Neutrophil extracellular traps (NETs), an intricate structure of DNA scaffold, encompassing myeloperoxidase, histones, and elastases - have gained significant attention as a prospective therapeutic target for gouty arthritis, due to their innate antimicrobial and immunomodulatory properties. Hence, exploring the therapeutic potential of NETs in gouty arthritis remains an enticing avenue for further investigation. During the process of gouty arthritis, the formation of NETs triggers the release of inflammatory cytokines, thereby contributing to the inflammatory response, while MSU crystals and cytokines are sequestered and degraded by the aggregation of NETs. Here, we provide a concise summary of the inflammatory processes underlying the initiation and resolution of gouty arthritis mediated by NETs. Furthermore, this review presents an overview of the current pharmacological approaches for treating gouty arthritis and summarizes the potential of natural and synthetic product-based inhibitors that target NET formation as novel therapeutic options, alongside elucidating the intrinsic challenges of these inhibitors in NETs research. Lastly, the limitations of HL-60 cell as a suitable substitute of neutrophils in NETs research are summarized and discussed. Series of recommendations are provided, strategically oriented towards guiding future investigations to effectively address these concerns. These findings will contribute to an enhanced comprehension of the interplay between NETs and GA, facilitating the proposition of innovative therapeutic strategies and novel approaches for the management of GA.
Collapse
Affiliation(s)
- Cantao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenjing Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoxi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
28
|
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, Zhang J. Neutrophil Extracellular Traps in Tumors and Potential Use of Traditional Herbal Medicine Formulations for Its Regulation. Int J Nanomedicine 2024; 19:2851-2877. [PMID: 38529365 PMCID: PMC10961241 DOI: 10.2147/ijn.s449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibers composed of deoxyribonucleic acid (DNA) and decorated proteins produced by neutrophils. Recently, NETs have been associated with the development of many diseases, including tumors. Herein, we reviewed the correlation between NETs and tumors. In addition, we detailed active compounds from traditional herbal medicine formulations that inhibit NETs, related nanodrug delivery systems, and antibodies that serve as "guiding moieties" to ensure targeted delivery to NETs. Furthermore, we discussed the strategies used by pathogenic microorganisms to evade NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
29
|
Trinchese G, Cimmino F, Catapano A, Cavaliere G, Mollica MP. Mitochondria: the gatekeepers between metabolism and immunity. Front Immunol 2024; 15:1334006. [PMID: 38464536 PMCID: PMC10920337 DOI: 10.3389/fimmu.2024.1334006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Metabolism and immunity are crucial monitors of the whole-body homeodynamics. All cells require energy to perform their basic functions. One of the most important metabolic skills of the cell is the ability to optimally adapt metabolism according to demand or availability, known as metabolic flexibility. The immune cells, first line of host defense that circulate in the body and migrate between tissues, need to function also in environments in which nutrients are not always available. The resilience of immune cells consists precisely in their high adaptive capacity, a challenge that arises especially in the framework of sustained immune responses. Pubmed and Scopus databases were consulted to construct the extensive background explored in this review, from the Kennedy and Lehninger studies on mitochondrial biochemistry of the 1950s to the most recent findings on immunometabolism. In detail, we first focus on how metabolic reconfiguration influences the action steps of the immune system and modulates immune cell fate and function. Then, we highlighted the evidence for considering mitochondria, besides conventional cellular energy suppliers, as the powerhouses of immunometabolism. Finally, we explored the main immunometabolic hubs in the organism emphasizing in them the reciprocal impact between metabolic and immune components in both physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
30
|
Risbud M, Madhu V, Hernandez-Meadows M, Coleman A, Sao K, Inguito K, Haslam O, Boneski P, Sesaki H, Collins J. The loss of OPA1 accelerates intervertebral disc degeneration and osteoarthritis in aged mice. RESEARCH SQUARE 2024:rs.3.rs-3950044. [PMID: 38464287 PMCID: PMC10925423 DOI: 10.21203/rs.3.rs-3950044/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
NP cells of the intervertebral disc and articular chondrocytes reside in avascular and hypoxic tissue niches. As a consequence of these environmental constraints the cells are primarily glycolytic in nature and were long thought to have a minimal reliance on mitochondrial function. Recent studies have challenged this long-held view and highlighted the increasingly important role of mitochondria in the physiology of these tissues. However, the foundational understanding of mechanisms governing mitochondrial dynamics and function in these tissues is lacking. We investigated the role of mitochondrial fusion protein OPA1 in maintaining the spine and knee joint health in mice. OPA1 knockdown in NP cells altered mitochondrial size and cristae shape and increased the oxygen consumption rate without affecting ATP synthesis. OPA1 governed the morphology of multiple organelles, including peroxisomes, early endosomes and cis-Golgi and its loss resulted in the dysregulation of NP cell autophagy. Metabolic profiling and 13C-flux analyses revealed TCA cycle anaplerosis and altered metabolism in OPA1-deficient NP cells. Noteworthy, Opa1AcanCreERT2 mice with Opa1 deletion in disc and cartilage showed age-dependent disc degeneration, osteoarthritis, and vertebral osteopenia. Our findings underscore that OPA1 regulation of mitochondrial dynamics and multi-organelle interactions is critical in preserving metabolic homeostasis of disc and cartilage.
Collapse
|
31
|
Du C, Xu C, Jia P, Cai N, Zhang Z, Meng W, Chen L, Zhou Z, Wang Q, Feng R, Li J, Meng X, Huang C, Ma T. PSTPIP2 ameliorates aristolochic acid nephropathy by suppressing interleukin-19-mediated neutrophil extracellular trap formation. eLife 2024; 13:e89740. [PMID: 38314821 PMCID: PMC10906995 DOI: 10.7554/elife.89740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 02/04/2024] [Indexed: 02/07/2024] Open
Abstract
Aristolochic acid nephropathy (AAN) is a progressive kidney disease caused by herbal medicines. Proline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2) and neutrophil extracellular traps (NETs) play important roles in kidney injury and immune defense, respectively, but the mechanism underlying AAN regulation by PSTPIP2 and NETs remains unclear. We found that renal tubular epithelial cell (RTEC) apoptosis, neutrophil infiltration, inflammatory factor, and NET production were increased in a mouse model of AAN, while PSTPIP2 expression was low. Conditional knock-in of Pstpip2 in mouse kidneys inhibited cell apoptosis, reduced neutrophil infiltration, suppressed the production of inflammatory factors and NETs, and ameliorated renal dysfunction. Conversely, downregulation of Pstpip2 expression promoted kidney injury. In vivo, the use of Ly6G-neutralizing antibody to remove neutrophils and peptidyl arginine deiminase 4 (PAD4) inhibitors to prevent NET formation reduced apoptosis, alleviating kidney injury. In vitro, damaged RTECs released interleukin-19 (IL-19) via the PSTPIP2/nuclear factor (NF)-κB pathway and induced NET formation via the IL-20Rβ receptor. Concurrently, NETs promoted apoptosis of damaged RTECs. PSTPIP2 affected NET formation by regulating IL-19 expression via inhibition of NF-κB pathway activation in RTECs, inhibiting RTEC apoptosis, and reducing kidney damage. Our findings indicated that neutrophils and NETs play a key role in AAN and therapeutic targeting of PSTPIP2/NF-κB/IL-19/IL-20Rβ might extend novel strategies to minimize Aristolochic acid I-mediated acute kidney injury and apoptosis.
Collapse
Affiliation(s)
- Changlin Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Chuanting Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Pengcheng Jia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Na Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Zhenming Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Wenna Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Lu Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Zhongnan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Qi Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Rui Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Xiaoming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| |
Collapse
|
32
|
Madhu V, Hernandaz-Meadows M, Coleman A, Sao K, Inguito K, Haslam O, Boneski PK, Sesaki H, Collins JA, Risbud MV. OPA1 protects intervertebral disc and knee joint health in aged mice by maintaining the structure and metabolic functions of mitochondria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576115. [PMID: 38293153 PMCID: PMC10827164 DOI: 10.1101/2024.01.17.576115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Due to their glycolytic nature and limited vascularity, nucleus pulposus (NP) cells of the intervertebral disc and articular chondrocytes were long thought to have minimal reliance on mitochondrial function. Recent studies have challenged this long-held view and highlighted the increasingly important role of mitochondria in the physiology of these tissues. We investigated the role of mitochondrial fusion protein OPA1 in maintaining the spine and knee joint health in aging mice. OPA1 knockdown in NP cells altered mitochondrial size and cristae shape and increased the oxygen consumption rate without affecting ATP synthesis. OPA1 governed the morphology of multiple organelles, and its loss resulted in the dysregulation of NP cell autophagy. Metabolic profiling and 13 C-flux analyses revealed TCA cycle anaplerosis and altered metabolism in OPA1-deficient NP cells. Noteworthy, Opa1 AcanCreERT2 mice showed age- dependent disc, and cartilage degeneration and vertebral osteopenia. Our findings suggest that OPA1 regulation of mitochondrial dynamics and multi-organelle interactions is critical in preserving metabolic homeostasis of disc and cartilage. Teaser OPA1 is necessary for the maintenance of intervertebral disc and knee joint health in aging mice.
Collapse
|
33
|
Thind MK, Uhlig HH, Glogauer M, Palaniyar N, Bourdon C, Gwela A, Lancioni CL, Berkley JA, Bandsma RHJ, Farooqui A. A metabolic perspective of the neutrophil life cycle: new avenues in immunometabolism. Front Immunol 2024; 14:1334205. [PMID: 38259490 PMCID: PMC10800387 DOI: 10.3389/fimmu.2023.1334205] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Neutrophils are the most abundant innate immune cells. Multiple mechanisms allow them to engage a wide range of metabolic pathways for biosynthesis and bioenergetics for mediating biological processes such as development in the bone marrow and antimicrobial activity such as ROS production and NET formation, inflammation and tissue repair. We first discuss recent work on neutrophil development and functions and the metabolic processes to regulate granulopoiesis, neutrophil migration and trafficking as well as effector functions. We then discuss metabolic syndromes with impaired neutrophil functions that are influenced by genetic and environmental factors of nutrient availability and usage. Here, we particularly focus on the role of specific macronutrients, such as glucose, fatty acids, and protein, as well as micronutrients such as vitamin B3, in regulating neutrophil biology and how this regulation impacts host health. A special section of this review primarily discusses that the ways nutrient deficiencies could impact neutrophil biology and increase infection susceptibility. We emphasize biochemical approaches to explore neutrophil metabolism in relation to development and functions. Lastly, we discuss opportunities and challenges to neutrophil-centered therapeutic approaches in immune-driven diseases and highlight unanswered questions to guide future discoveries.
Collapse
Affiliation(s)
- Mehakpreet K Thind
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Celine Bourdon
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Agnes Gwela
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Christina L Lancioni
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - James A Berkley
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Robert H J Bandsma
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - Amber Farooqui
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Omega Laboratories Inc, Mississauga, ON, Canada
| |
Collapse
|
34
|
Zhu W, Fan C, Dong S, Li X, Chen H, Zhou W. Neutrophil extracellular traps regulating tumorimmunity in hepatocellular carcinoma. Front Immunol 2023; 14:1253964. [PMID: 38173719 PMCID: PMC10764195 DOI: 10.3389/fimmu.2023.1253964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
As a component of the innate immune system, there is emerging evidence to suggest that neutrophils may play a critical role in the initiation and progression of hepatocellular carcinoma (HCC). Neutrophil extracellular traps (NETs) are web-like chromatin structures that protrude from the membranes during neutrophil activation. Recent research has shown that NETs, which are at the forefront of the renewed interest in neutrophil studies, are increasingly intertwined with HCC. By exploring the mechanisms of NETs in HCC, we aim to improve our understanding of the role of NETs and gain deeper insights into neutrophil biology. Therefore, this article provides a summary of key findings and discusses the emerging field of NETs in HCC.
Collapse
Affiliation(s)
- Weixiong Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chuanlei Fan
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shi Dong
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xin Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haofei Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
35
|
Xu C, Ye Z, Jiang W, Wang S, Zhang H. Cyclosporine A alleviates colitis by inhibiting the formation of neutrophil extracellular traps via the regulating pentose phosphate pathway. Mol Med 2023; 29:169. [PMID: 38093197 PMCID: PMC10720086 DOI: 10.1186/s10020-023-00758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The aberrant formation of neutrophil extracellular traps (NETs) has been implicated in ulcerative colitis (UC), a chronic recurrent intestinal inflammation. Cyclosporine A (CsA) is now applied as rescue therapy for acute severe UC. In addition, it has been certained that CsA inhibits the formation of NETs in vitro and the mechanism of which was still vague. The study aimed to explore the mechanism CsA inhibits the NETs formation of colitis in vivo and in vitro. METHODS NETs enrichment in clinical samples was analyzed using databases from Gene Expression Omnibus and verified in our center. Dextran sulfate sodium (DSS)-induced acute colitis mice model was used to investigate the effect of CsA on NETs of colonic tissue expression. To clarify the mechanism, intracellular energy metabolites were examined by Liquid Chromatograph Mass Spectrometer, and reactive oxygen species (ROS) levels were examined by fluorescence intensity in neutrophils treated with CsA after LPS stimulation. The transcriptional level and activity of G6PD of neutrophils were also assessed using qRT-PCR and WST-8. RNA Sequencing was used to detect differentially expressed genes of neutrophils stimulated by LPS with or without CsA. The expression levels of related proteins were detected by western blot. RESULTS NETs enrichment was especially elevated in moderate-to-severe UC patients compared to HC. NETs expression in the colon from DSS colitis was decreased after CsA treatment. Compared with neutrophils stimulated by LPS, NETs formation and cellular ROS levels were decreased in LPS + CsA group. Cellular ribulose 5-phosphate and NADPH/NADP + related to the pentose phosphate pathway (PPP) were reduced in LPS + CsA group. In addition, CsA could decrease G6PD activity in neutrophils stimulated with LPS, and the results were further verified by inhibiting G6PD activity. At last, P53 protein was highly expressed in LPS + CsA group compared with the LPS group. Intracellular G6PD activity, ROS level and NETs formation, which were downregulated by CsA, could be reversed by a P53 inhibitor. CONCLUSION Our results indicated CsA could alleviate the severity of colitis by decreasing the formation of NETs in vivo. In vitro, CsA reduced ROS-dependent NETs release via downregulating PPP and cellular ROS levels by decreasing G6PD activity directly by activating the P53 protein.
Collapse
Affiliation(s)
- Chenjing Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ziping Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenyu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongjie Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
36
|
Gong YT, Zhang LJ, Liu YC, Tang M, Lin JY, Chen XY, Chen YX, Yan Y, Zhang WD, Jin JM, Luan X. Neutrophils as potential therapeutic targets for breast cancer. Pharmacol Res 2023; 198:106996. [PMID: 37972723 DOI: 10.1016/j.phrs.2023.106996] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Breast cancer (BC) remains the foremost cause of cancer mortality globally, with neutrophils playing a critical role in its pathogenesis. As an essential tumor microenvironment (TME) component, neutrophils are emerging as pivotal factors in BC progression. Growing evidence has proved that neutrophils play a Janus- role in BC by polarizing into the anti-tumor (N1) or pro-tumor (N2) phenotype. Clinical trials are evaluating neutrophil-targeted therapies, including Reparixin (NCT02370238) and Tigatuzumab (NCT01307891); however, their clinical efficacy remains suboptimal. This review summarizes the evidence regarding the close relationship between neutrophils and BC, emphasizing the critical roles of neutrophils in regulating metabolic and immune pathways. Additionally, we summarize the existing therapeutic approaches that target neutrophils, highlighting the challenges, and affirming the rationale for continuing to explore neutrophils as a viable therapeutic target in BC management.
Collapse
Affiliation(s)
- Yi-Ting Gong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Chen Liu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min Tang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Yi Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Xu Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Yan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Second Military Medical University, Shanghai 201203, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
37
|
Britt EC, Qing X, Votava JA, Lika J, Wagner A, Shen S, Arp NL, Khan H, Schieke SM, Fletcher CD, Huttenlocher A, Fan J. Activation induces shift in nutrient utilization that differentially impacts cell functions in human neutrophils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559385. [PMID: 37808750 PMCID: PMC10557599 DOI: 10.1101/2023.09.25.559385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Neutrophils - the first responders in innate immunity - perform a variety of effector functions associated with specific metabolic demand. To maintain fitness and support functions, neutrophils have been found to utilize extracellular glucose, intracellular glycogen, and other alternative substrates. However, the quantitative contribution of these nutrients under specific conditions and the relative dependence of various cell functions on specific nutrients remain unclear. Here, using ex vivo and in vivo isotopic tracing, we reveal that under resting condition, human peripheral blood neutrophils, in contrast to in vitro cultured human neutrophil-like cell lines, rely on glycogen as a major direct source of glycolysis and pentose phosphate pathway. Upon activation with a diversity of stimuli, neutrophils undergo a significant and often rapid nutrient preference shift, with glucose becoming the dominant metabolic source thanks to a multi-fold increase in glucose uptake mechanistically mediated by the phosphorylation and translocation of GLUT1. At the same time, cycling between gross glycogenesis and glycogenolysis is also substantially increased, while the net flux favors sustained or increased glycogen storage. The shift in nutrient utilization impacts neutrophil functions in a function-specific manner. The activation of oxidative burst specifically depends on the utilization of extracellular glucose rather than glycogen. In contrast, the release of neutrophil traps can be flexibly supported by either glucose or glycogen. Neutrophil migration and fungal control is promoted by the shift away from glycogen utilization. Together, these results quantitatively characterize fundamental features of neutrophil metabolism and elucidate how metabolic remodeling shapes neutrophil functions upon activation.
Collapse
Affiliation(s)
- Emily C. Britt
- Morgridge Institute for Research, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Xin Qing
- Morgridge Institute for Research, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | | | - Jorgo Lika
- Morgridge Institute for Research, Madison, WI, USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Andrew Wagner
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Simone Shen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas L. Arp
- Morgridge Institute for Research, Madison, WI, USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Hamidullah Khan
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA. Department of Dermatology, Georgetown University Medical Center and Washington DC VA Medical Center, Washington, D.C., USA
| | - Stefan M. Schieke
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA. Department of Dermatology, Georgetown University Medical Center and Washington DC VA Medical Center, Washington, D.C., USA
| | | | - Anna Huttenlocher
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, WI, USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| |
Collapse
|
38
|
Bassani B, Cucchiara M, Butera A, Kayali O, Chiesa A, Palano MT, Olmeo F, Gallazzi M, Dellavia CPB, Mortara L, Parisi L, Bruno A. Neutrophils' Contribution to Periodontitis and Periodontitis-Associated Cardiovascular Diseases. Int J Mol Sci 2023; 24:15370. [PMID: 37895050 PMCID: PMC10607037 DOI: 10.3390/ijms242015370] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Neutrophils represent the primary defense against microbial threats playing a pivotal role in maintaining tissue homeostasis. This review examines the multifaceted involvement of neutrophils in periodontitis, a chronic inflammatory condition affecting the supporting structures of teeth summarizing the contribution of neutrophil dysfunction in periodontitis and periodontal-related comorbidities. Periodontitis, a pathological condition promoted by dysbiosis of the oral microbiota, is characterized by the chronic inflammation of the gingiva and subsequent tissue destruction. Neutrophils are among the first immune cells recruited to the site of infection, releasing antimicrobial peptides, enzymes, and reactive oxygen species to eliminate pathogens. The persistent inflammatory state in periodontitis can lead to aberrant neutrophil activation and a sustained release of proinflammatory mediators, finally resulting in tissue damage, bone resorption, and disease progression. Growing evidence now points to the correlation between periodontitis and systemic comorbidities. Indeed, the release of inflammatory mediators, immune complexes, and oxidative stress by neutrophils, bridge the gap between local and systemic immunity, thus highlighting neutrophils as key players in linking periodontal inflammation to chronic conditions, including cardiovascular diseases, diabetes mellitus, and rheumatoid arthritis. This review underscores the crucial role of neutrophils in the pathogenesis of periodontitis and the complex link between neutrophil dysfunction, local inflammation, and systemic comorbidities. A comprehensive understanding of neutrophil contribution to periodontitis development and their impact on periodontal comorbidities holds significant implications for the management of oral health. Furthermore, it highlights the need for the development of novel approaches aimed at limiting the persistent recruitment and activation of neutrophils, also reducing the impact of periodontal inflammation on broader health contexts, offering promising avenues for improved disease management and patient care.
Collapse
Affiliation(s)
- Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
| | - Martina Cucchiara
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Andrea Butera
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.B.); (A.C.)
| | - Omar Kayali
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
| | - Alessandro Chiesa
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.B.); (A.C.)
| | - Maria Teresa Palano
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
| | - Francesca Olmeo
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
| | - Matteo Gallazzi
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
| | | | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Luca Parisi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy;
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
39
|
Gigon L, Fettrelet T, Miholic M, McLeish KR, Yousefi S, Stojkov D, Simon HU. Syntaxin-4 and SNAP23 are involved in neutrophil degranulation, but not in the release of mitochondrial DNA during NET formation. Front Immunol 2023; 14:1272699. [PMID: 37885878 PMCID: PMC10599146 DOI: 10.3389/fimmu.2023.1272699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Neutrophils are a specialized subset of white blood cells, which have the ability to store pre-formed mediators in their cytoplasmic granules. Neutrophils are well-known effector cells involved in host protection against pathogens through diverse mechanisms such as phagocytosis, degranulation, extracellular traps, and oxidative burst. In this study, we provide evidence highlighting the significance of the SNARE proteins syntaxin-4 and synaptosomal-associated protein (SNAP) 23 in the release of azurophilic granules, specific granules, and the production of reactive oxygen species in human neutrophils. In contrast, the specific blockade of either syntaxin-4 or SNAP23 did not prevent the release of mitochondrial dsDNA in the process of neutrophil extracellular trap (NET) formation. These findings imply that degranulation and the release of mitochondrial dsDNA involve at least partially distinct molecular pathways in neutrophils.
Collapse
Affiliation(s)
- Lea Gigon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | - Marta Miholic
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| |
Collapse
|
40
|
Du C, Cai N, Dong J, Xu C, Wang Q, Zhang Z, Li J, Huang C, Ma T. Uncovering the role of cytoskeleton proteins in the formation of neutrophil extracellular traps. Int Immunopharmacol 2023; 123:110607. [PMID: 37506501 DOI: 10.1016/j.intimp.2023.110607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Neutrophils are a type of lymphocyte involved in innate immune defense. In response to specific stimuli, these phagocytic cells undergo a unique form of cell death, NETosis, during which they release neutrophil extracellular traps (NETs) composed of modified chromatin structures decorated with cytoplasmic and granular proteins. Multiple proteins and pathways have been implicated in the formation of NETs. The cytoskeleton, an interconnected network of filamentous polymers and regulatory proteins, plays a crucial role in resisting deformation, transporting intracellular cargo, and changing shape during movement of eukaryotic cells. It may also have evolved to defend eukaryotic organisms against infection. Recent research focuses on understanding the mechanisms underlying NETs formation and how cytoskeletal networks contribute to this process, by identifying enzymes that trigger NETosis or interact with NETs and influence cellular behavior through cytoskeletal dynamics. An enhanced understanding of the complex relationship between the cytoskeleton and NET formation will provide a framework for future research and the development of targeted therapeutic strategies, and supports the notion that the long-lived cytoskeleton structures may have a lasting impact on this area of research.
Collapse
Affiliation(s)
- Changlin Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Na Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jiahui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chuanting Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qi Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhenming Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
41
|
Shafqat A, Omer MH, Albalkhi I, Alabdul Razzak G, Abdulkader H, Abdul Rab S, Sabbah BN, Alkattan K, Yaqinuddin A. Neutrophil extracellular traps and long COVID. Front Immunol 2023; 14:1254310. [PMID: 37828990 PMCID: PMC10565006 DOI: 10.3389/fimmu.2023.1254310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Post-acute COVID-19 sequelae, commonly known as long COVID, encompasses a range of systemic symptoms experienced by a significant number of COVID-19 survivors. The underlying pathophysiology of long COVID has become a topic of intense research discussion. While chronic inflammation in long COVID has received considerable attention, the role of neutrophils, which are the most abundant of all immune cells and primary responders to inflammation, has been unfortunately overlooked, perhaps due to their short lifespan. In this review, we discuss the emerging role of neutrophil extracellular traps (NETs) in the persistent inflammatory response observed in long COVID patients. We present early evidence linking the persistence of NETs to pulmonary fibrosis, cardiovascular abnormalities, and neurological dysfunction in long COVID. Several uncertainties require investigation in future studies. These include the mechanisms by which SARS-CoV-2 brings about sustained neutrophil activation phenotypes after infection resolution; whether the heterogeneity of neutrophils seen in acute SARS-CoV-2 infection persists into the chronic phase; whether the presence of autoantibodies in long COVID can induce NETs and protect them from degradation; whether NETs exert differential, organ-specific effects; specifically which NET components contribute to organ-specific pathologies, such as pulmonary fibrosis; and whether senescent cells can drive NET formation through their pro-inflammatory secretome in long COVID. Answering these questions may pave the way for the development of clinically applicable strategies targeting NETs, providing relief for this emerging health crisis.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
42
|
Huang MYY, Lippuner C, Schiff M, Book M, Stueber F. Neutrophil extracellular trap formation during surgical procedures: a pilot study. Sci Rep 2023; 13:15217. [PMID: 37709941 PMCID: PMC10502064 DOI: 10.1038/s41598-023-42565-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Neutrophils can release neutrophil extracellular traps (NETs) containing DNA fibres and antimicrobial peptides to immobilize invading pathogens. NET formation (NETosis) plays a vital role in inflammation and immune responses. In this study we investigated the impact of surgical trauma on NETosis of neutrophils. Nine patients undergoing "Transcatheter/percutaneous aortic valve implantation" (TAVI/PAVI, mild surgical trauma), and ten undergoing "Aortocoronary bypass" (ACB, severe surgical trauma) were included in our pilot study. Peripheral blood was collected before, end of, and after surgery (24 h and 48 h). Neutrophilic granulocytes were isolated and stimulated in vitro with Phorbol-12-myristate-13-acetate (PMA). NETosis rate was examined by microscopy. In addition, HLA-DR surface expression on circulating monocytes was analysed by flow-cytometry as a prognostic marker of the immune status. Both surgical procedures led to significant down regulation of monocytic HLA-DR surface expression, albeit more pronounced in ACB patients, and there was a similar trend in NETosis regulation over the surgical 24H course. Upon PMA stimulation, no significant difference in NETosis was observed over time in TAVI/PAVI group; however, a decreasing NETosis trend with a significant drop upon ACB surgery was evident. The reduced PMA-induced NETosis in ACB group suggests that the inducibility of neutrophils to form NETs following severe surgical trauma may be compromised. Moreover, the decreased monocytic HLA-DR expression suggests a post-operative immunosuppressed status in all patients, with a bigger impact by ACB, which might be attributed to the extracorporeal circulation or tissue damage occurring during surgery.
Collapse
Affiliation(s)
- Melody Ying-Yu Huang
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.
| | - Christoph Lippuner
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Marcel Schiff
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Universitätsklinikum Freiburg, Freiburg, Germany
| | - Malte Book
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Universitätsklinik für Anästhesiologie/Intensiv-/Notfallmedizin/Schmerztherapie, Oldenburg, Germany
| | - Frank Stueber
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
43
|
Suga S, Nakamura K, Nakanishi Y, Humbel BM, Kawai H, Hirabayashi Y. An interactive deep learning-based approach reveals mitochondrial cristae topologies. PLoS Biol 2023; 21:e3002246. [PMID: 37651352 PMCID: PMC10470929 DOI: 10.1371/journal.pbio.3002246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 07/12/2023] [Indexed: 09/02/2023] Open
Abstract
The convolution of membranes called cristae is a critical structural and functional feature of mitochondria. Crista structure is highly diverse between different cell types, reflecting their role in metabolic adaptation. However, their precise three-dimensional (3D) arrangement requires volumetric analysis of serial electron microscopy and has therefore been limiting for unbiased quantitative assessment. Here, we developed a novel, publicly available, deep learning (DL)-based image analysis platform called Python-based human-in-the-loop workflow (PHILOW) implemented with a human-in-the-loop (HITL) algorithm. Analysis of dense, large, and isotropic volumes of focused ion beam-scanning electron microscopy (FIB-SEM) using PHILOW reveals the complex 3D nanostructure of both inner and outer mitochondrial membranes and provides deep, quantitative, structural features of cristae in a large number of individual mitochondria. This nanometer-scale analysis in micrometer-scale cellular contexts uncovers fundamental parameters of cristae, such as total surface area, orientation, tubular/lamellar cristae ratio, and crista junction density in individual mitochondria. Unbiased clustering analysis of our structural data unraveled a new function for the dynamin-related GTPase Optic Atrophy 1 (OPA1) in regulating the balance between lamellar versus tubular cristae subdomains.
Collapse
Affiliation(s)
- Shogo Suga
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Koki Nakamura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yu Nakanishi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Bruno M. Humbel
- Imaging Section, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroki Kawai
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Melbouci D, Haidar Ahmad A, Decker P. Neutrophil extracellular traps (NET): not only antimicrobial but also modulators of innate and adaptive immunities in inflammatory autoimmune diseases. RMD Open 2023; 9:e003104. [PMID: 37562857 PMCID: PMC10423839 DOI: 10.1136/rmdopen-2023-003104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/14/2023] [Indexed: 08/12/2023] Open
Abstract
Polymorphonuclear neutrophils (PMN) represent one of the first lines of defence against invading pathogens and are the most abundant leucocytes in the circulation. Generally described as pro-inflammatory cells, recent data suggest that PMN also have immunomodulatory capacities. In response to certain stimuli, activated PMN expel neutrophil extracellular traps (NET), structures made of DNA and associated proteins. Although originally described as an innate immune mechanism fighting bacterial infection, NET formation (or probably rather an excess of NET together with impaired clearance of NET) may be deleterious. Indeed, NET have been implicated in the development of several inflammatory and autoimmune diseases as rheumatoid arthritis or systemic lupus erythematosus, as well as fibrosis or cancer. They have been suggested as a source of (neo)autoantigens or regulatory proteins like proteases or to act as a physical barrier. Different mechanisms of NET formation have been described, leading to PMN death or not, depending on the stimulus. Interestingly, NET may be both pro-inflammatory and anti-inflammatory and this probably partly depends on the mechanism, and thus the stimuli, triggering NET formation. Within this review, we will describe the pro-inflammatory and anti-inflammatory activities of NET and especially how NET may modulate immune responses.
Collapse
Affiliation(s)
- Dyhia Melbouci
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| | - Ahmad Haidar Ahmad
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| | - Patrice Decker
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| |
Collapse
|
45
|
Zhu H, Chen S, Li R, Cheng Y, Song H, Wu S, Zhong Y, Liu Y, Cao C. Selenium-rich yeast counteracts the inhibitory effect of nanoaluminum on the formation of porcine neutrophil extracellular traps. Res Vet Sci 2023; 161:138-144. [PMID: 37384972 DOI: 10.1016/j.rvsc.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Aluminum is widely used in daily life due to its excellent properties. However, aluminum exposure to the environment severely threatens animal and human health. Conversely, selenium (Se) contributes to maintaining the balance of the immune system. Neutrophils exert immune actions in several ways, including neutrophil extracellular traps (NETs) that localize and capture exogenous substances. Despite the recent investigations on the toxic effects of aluminum and its molecular mechanisms, the immunotoxicity of aluminum nanoparticles on pigs and the antagonistic effect of selenium on aluminum toxicity are poorly understood. Here, we treated porcine peripheral blood neutrophils with zymosan for 3 h to induce NETs formation. Then, we investigated the effect of nanoaluminum on NETs formation in pigs and its possible molecular mechanisms. Microscopy observations revealed that NETs formation was inhibited by nanoaluminum. Using a multifunctional microplate reader, the production of extracellular DNA and the burst of reactive oxygen species (ROS) in porcine neutrophils were inhibited by nanoaluminum. Western blot analyses showed that nanoaluminum caused changes in amounts of cellular selenoproteins. After Se supplementation, the production of porcine NETs, the burst of ROS, and selenoprotein levels were restored. This study indicated that nanoaluminum inhibited the zymosan-induced burst of ROS and release of NETs from porcine neutrophils, possibly through the selenoprotein signaling pathway. In contrast, Se supplementation reduced the toxic effects of nanoaluminum and restored NETs formation.
Collapse
Affiliation(s)
- Huquan Zhu
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Siqiiu Chen
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Ruobin Li
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Yun Cheng
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Huanni Song
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Shuiling Wu
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Yueyao Zhong
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University/Quality Control Technical Center (Foshan) of National Famous and Special Agricultural Products (CAQS-GAP-KZZX043)/South China Food Safety Research Center, Foshan 528225, Guangdong Province, China
| | - Changyu Cao
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China; Foshan University Veterinary Teaching Hospital, Foshan 528225, Guangdong Province, China.
| |
Collapse
|
46
|
Guha L, Singh N, Kumar H. Different Ways to Die: Cell Death Pathways and Their Association With Spinal Cord Injury. Neurospine 2023; 20:430-448. [PMID: 37401061 PMCID: PMC10323345 DOI: 10.14245/ns.2244976.488] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 07/22/2023] Open
Abstract
Cell death is a systematic/nonsystematic process of cessation of normal morphology and functional properties of the cell to replace and recycle old cells with new also promoting inflammation in some cases. It is a complicated process comprising multiple pathways. Some are well-explored, and others have just begun to be. The research on appropriate control of cell death pathways after acute and chronic damage of neuronal cells is being widely researched today due to the lack of regeneration and recovering potential of a neuronal cell after sustaining damage and the inability to control the direction of neuronal growth. In the progression and onset of various neurological diseases, impairments in programmed cell death signaling processes, like necroptosis, apoptosis, ferroptosis, pyroptosis, and pathways directly or indirectly linked, like autophagy as in nonprogrammed necrosis, are observed. Spinal cord injury (SCI) involves the temporary or permanent disruption of motor activities due to the death of a neuronal and glial cell in the spinal cord accompanied by axonal degeneration. Recent years have seen a significant increase in research on the intricate biochemical interactions that occur after a SCI. Different cell death pathways may significantly impact the subsequent damage processes that lead to the eventual neurological deficiency after an injury to the spinal cord. A better knowledge of the molecular basis of the involved cell death pathways might help enhance neuronal and glial survival and neurological deficits, promoting a curative path for SCI.
Collapse
Affiliation(s)
- Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Nidhi Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
47
|
Ovadia S, Özcan A, Hidalgo A. The circadian neutrophil, inside-out. J Leukoc Biol 2023; 113:555-566. [PMID: 36999376 PMCID: PMC10583762 DOI: 10.1093/jleuko/qiad038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
The circadian clock has sway on a myriad of physiological targets, among which the immune and inflammatory systems are particularly prominent. In this review, we discuss how neutrophils, the wildcard of the immune system, are regulated by circadian oscillations. We describe cell-intrinsic and extrinsic diurnal mechanisms governing the general physiology and function of these cells, from purely immune to homeostatic. Repurposing the concepts discovered in other cell types, we then speculate on various uncharted avenues of neutrophil-circadian relationships, such as topology, metabolism, and the regulation of tissue clocks, with the hope of identifying exciting new avenues of work in the context of circadian immunity.
Collapse
Affiliation(s)
- Samuel Ovadia
- Department of Immunobiology and Program of Vascular Biology and Therapeutics, Yale University, 10 Amistad Street, New Haven, CT 06519, United States
| | - Alaz Özcan
- Department of Immunobiology and Program of Vascular Biology and Therapeutics, Yale University, 10 Amistad Street, New Haven, CT 06519, United States
| | - Andrés Hidalgo
- Department of Immunobiology and Program of Vascular Biology and Therapeutics, Yale University, 10 Amistad Street, New Haven, CT 06519, United States
- Program of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernandez Almagro 3, Madrid 28029, Spain
| |
Collapse
|
48
|
Yang C, Wang G, Zhan W, Wang Y, Feng J. The identification of metabolism-related subtypes and potential treatments for idiopathic pulmonary fibrosis. Front Pharmacol 2023; 14:1173961. [PMID: 37274115 PMCID: PMC10232787 DOI: 10.3389/fphar.2023.1173961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is caused by aberrant repair because of alveolar epithelial injury and can only be effectively treated with several compounds. Several metabolism-related biomolecular processes were found to be involved in IPF. We aimed to identify IPF subtypes based on metabolism-related pathways and explore potential drugs for each subtype. Methods: Gene profiles and clinical information were obtained from the Gene Expression Omnibus (GEO) database (GSE70867 and GSE93606). The enrichment scores for 41 metabolism-related pathways, immune cells, and immune pathways were calculated using the Gene Set Variation Analysis (GSVA) package. The ConsensusClusterPlus package was used to cluster samples. Novel modules and hub genes were identified using weighted correlation network analysis (WGCNA). Receiver operating characteristic (ROC) and calibration curves were plotted, and decision curve analysis (DCA) were performed to evaluate the model in the training and validation cohorts. A connectivity map was used as a drug probe. Results: Two subtypes with significant differences in prognosis were identified based on the metabolism-related pathways. Subtype C1 had a poor prognosis, low metabolic levels, and a unique immune signature. CDS2, LCLAT1, GPD1L, AGPAT1, ALDH3A1, LAP3, ADH5, AHCYL2, and MDH1 were used to distinguish between the two subtypes. Finally, subtype-specific drugs, which can potentially treat IPF, were identified. Conclusion: The aberrant activation of metabolism-related pathways contributes to differential prognoses in patients with IPF. Collectively, our findings provide novel mechanistic insights into subtyping IPF based on the metabolism-related pathway and potential treatments, which would help clinicians provide subtype-specific individualized therapeutic management to patients.
Collapse
Affiliation(s)
- Changqing Yang
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Guixin Wang
- Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wenyu Zhan
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Yubao Wang
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Feng
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
49
|
Fang J, Chen W, Hou P, Liu Z, Zuo M, Liu S, Feng C, Han Y, Li P, Shi Y, Shao C. NAD + metabolism-based immunoregulation and therapeutic potential. Cell Biosci 2023; 13:81. [PMID: 37165408 PMCID: PMC10171153 DOI: 10.1186/s13578-023-01031-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a critical metabolite that acts as a cofactor in energy metabolism, and serves as a cosubstrate for non-redox NAD+-dependent enzymes, including sirtuins, CD38 and poly(ADP-ribose) polymerases. NAD+ metabolism can regulate functionality attributes of innate and adaptive immune cells and contribute to inflammatory responses. Thus, the manipulation of NAD+ bioavailability can reshape the courses of immunological diseases. Here, we review the basics of NAD+ biochemistry and its roles in the immune response, and discuss current challenges and the future translational potential of NAD+ research in the development of therapeutics for inflammatory diseases, such as COVID-19.
Collapse
Affiliation(s)
- Jiankai Fang
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Wangwang Chen
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Pengbo Hou
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Zhanhong Liu
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Muqiu Zuo
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Shisong Liu
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chao Feng
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Yuyi Han
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Peishan Li
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
| | - Yufang Shi
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
50
|
Quiroga J, Alarcón P, Ramírez MF, Manosalva C, Teuber S, Carretta MD, Burgos RA. d-lactate-induced ETosis in cattle polymorphonuclear leucocytes is dependent on the release of mitochondrial reactive oxygen species and the PI3K/Akt/HIF-1 and GSK-3β pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104728. [PMID: 37164278 DOI: 10.1016/j.dci.2023.104728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
d-lactate is a metabolite originating from bacterial metabolism that accumulates as a result of dietary disturbances in cattle, leading to ruminal acidosis. d-lactate exerts functions as a metabolic signal inducing metabolic reprogramming and extracellular trap (ET) release in polymorphonuclear leucocytes (PMNs). We previously demonstrated that d-lactate induces metabolic reprogramming via hypoxia-induced factor 1 alpha (HIF-1α) stabilization in bovine fibroblast-like synoviocytes (FLSs). In the present study, the role of HIF-1 in ET formation induced by d-lactate was assessed. HIF-1α stabilization in PMNs was controlled by mitochondrial reactive oxygen species (mtROS) release. Furthermore, inhibition of mitochondrial complex I and scavenging of mtROS decreased d-lactate-triggered ETosis. d-lactate-enhanced HIF-1α accumulation was dependent on the PI3K/Akt pathway but independent of GSK-3β activity. Pharmacological blockade of the PI3K/Akt/HIF-1 and GSK-3β axes inhibited d-lactate-triggered ETosis and downregulated PDK1 and LDHA expression. However, only GSK-3β inhibition decreased the expression of glycogen metabolism enzymes and prevented the decline in glycogen stores induced by d-lactate exposure. The results of this study suggest that mtROS, PI3K/Akt/HIF-1 and GSK-3β axes regulate carbohydrate metabolism adaptations that support d-lactate-induced ET formation in cattle.
Collapse
Affiliation(s)
- John Quiroga
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - María Fernanda Ramírez
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Stefanie Teuber
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - María Daniella Carretta
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|