1
|
Jacob AG, Moutsopoulos I, Petchey A, Kollyfas R, Knight-Schrijver VR, Mohorianu I, Sinha S, Smith CWJ. RNA binding protein with multiple splicing (RBPMS) promotes contractile phenotype splicing in human embryonic stem cell-derived vascular smooth muscle cells. Cardiovasc Res 2024; 120:2104-2116. [PMID: 39248180 PMCID: PMC11646123 DOI: 10.1093/cvr/cvae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/12/2024] [Accepted: 07/14/2024] [Indexed: 09/10/2024] Open
Abstract
AIMS Differentiated vascular smooth muscle cells (VSMCs) express a unique network of mRNA isoforms via smooth muscle-specific alternative pre-mRNA splicing (SM-AS) in functionally critical genes, including those comprising the contractile machinery. We previously described RNA Binding Protein with Multiple Splicing (RBPMS) as a potent driver of differentiated SM-AS in the rat PAC1 VSMC cell line. What is unknown is how RBPMS affects VSMC phenotype and behaviour. Here, we aimed to dissect the role of RBPMS in SM-AS in human cells and determine the impact on VSMC phenotypic properties. METHODS AND RESULTS We used human embryonic stem cell-derived VSMCs (hESC-VSMCs) as our platform. hESC-VSMCs are inherently immature, and we found that they display only partially differentiated SM-AS patterns while RBPMS protein levels are low. We found that RBPMS over-expression induces SM-AS patterns in hESC-VSMCs akin to the contractile tissue VSMC splicing patterns. We present in silico and experimental findings that support RBPMS' splicing activity as mediated through direct binding and via functional cooperativity with splicing factor RBFOX2 on a significant subset of targets. We also demonstrate that RBPMS can alter the motility and the proliferative properties of hESC-VSMCs to mimic a more differentiated state. CONCLUSION Overall, this study emphasizes a critical role for RBPMS in establishing the contractile phenotype splicing programme of human VSMCs.
Collapse
Affiliation(s)
- Aishwarya G Jacob
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
- MRC-Wellcome Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | | | - Alex Petchey
- MRC-Wellcome Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | - Rafael Kollyfas
- MRC-Wellcome Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | | | - Irina Mohorianu
- MRC-Wellcome Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | - Sanjay Sinha
- MRC-Wellcome Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | | |
Collapse
|
2
|
Maegdefessel L, Fasolo F. Long Noncoding RNA Function in Smooth Muscle Cell Plasticity and Atherosclerosis. Arterioscler Thromb Vasc Biol 2024. [PMID: 39633574 DOI: 10.1161/atvbaha.124.320393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
In the healthy mature artery, vascular cells, including endothelial cells, smooth muscle cells (SMCs), and fibroblasts are organized in different layers, performing specific functions. SMCs located in the media are in a differentiated state and exhibit a contractile phenotype. However, in response to vascular injury within the intima, stimuli from activated endothelial cells and recruited inflammatory cells reach SMCs and induce a series of remodeling events in them, known as phenotypic switching. Indeed, SMCs retain a certain degree of plasticity and are able to transdifferentiate into other cell types that are crucial for both the formation and development of atherosclerotic lesions. Because of their highly cell-specific expression profiles and their widely recognized contribution to physiological and disease-related biological processes, long noncoding RNAs have received increasing attention in atherosclerosis research. Dynamic fluctuations in their expression have been implicated in the regulation of SMC identity. Sophisticated technologies are now available to allow researchers to access single-cell transcriptomes and study long noncoding RNA function with unprecedented precision. Here, we discuss the state of the art of long noncoding RNAs regulation of SMC phenotypic switching, describing the methodologies used to approach this issue and evaluating the therapeutic perspectives of exploiting long noncoding RNAs as targets in atherosclerosis.
Collapse
Affiliation(s)
- Lars Maegdefessel
- Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University Munich, Germany (L.M., F.F.)
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany (L.M., F.F.)
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden (L.M.)
| | - Francesca Fasolo
- Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University Munich, Germany (L.M., F.F.)
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany (L.M., F.F.)
| |
Collapse
|
3
|
Larsen JH, Hegelund JS, Pedersen MK, Andersson CM, Lindegaard CA, Hansen DR, Stubbe J, Lindholt JS, Hansen CS, Grentzmann A, Bloksgaard M, Jensen BL, Rodriguez-Díez RR, Ruiz-Ortega M, Albinsson S, Pasterkamp G, Mokry M, Leask A, Goldschmeding R, Pilecki B, Sorensen GL, Pyke C, Overgaard M, Beck HC, Ketelhuth DFJ, Rasmussen LM, Steffensen LB. Smooth muscle-specific deletion of cellular communication network factor 2 causes severe aorta malformation and atherosclerosis. Cardiovasc Res 2024; 120:1851-1868. [PMID: 39167826 PMCID: PMC11630017 DOI: 10.1093/cvr/cvae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/10/2024] [Accepted: 06/22/2024] [Indexed: 08/23/2024] Open
Abstract
AIMS Cellular communication network factor 2 (CCN2) is a matricellular protein implicated in fibrotic diseases, with ongoing clinical trials evaluating anti-CCN2-based therapies. By uncovering CCN2 as abundantly expressed in non-diseased artery tissue, this study aimed to investigate the hypothesis that CCN2 plays a pivotal role in maintaining smooth muscle cell (SMC) phenotype and protection against atherosclerosis. METHODS AND RESULTS Global- and SMC-specific Ccn2 knockout mouse models were employed to demonstrate that Ccn2 deficiency leads to SMC de-differentiation, medial thickening, and aorta elongation under normolipidaemic conditions. Inducing hyperlipidaemia in both models resulted in severe aorta malformation and a 17-fold increase in atherosclerosis formation. Lipid-rich lesions developed at sites of the vasculature typically protected from atherosclerosis development by laminar blood flow, covering 90% of aortas and extending to other vessels, including coronary arteries. Evaluation at earlier time points revealed medial lipid accumulation as a lesion-initiating event. Fluorescently labelled LDL injection followed by confocal microscopy showed increased LDL retention in the medial layer of Ccn2 knockout aortas, likely attributed to marked proteoglycan enrichment of the medial extracellular matrix. Analyses leveraging data from the Athero-Express study cohort indicated the relevance of CCN2 in established human lesions, as CCN2 correlated with SMC marker transcripts across 654 transcriptomically profiled carotid plaques. These findings were substantiated through in situ hybridization showing CCN2 expression predominantly in the fibrous cap. CONCLUSION This study identifies CCN2 as a major constituent of the normal artery wall, critical in regulating SMC differentiation and aorta integrity and possessing a protective role against atherosclerosis development. These findings underscore the need for further investigation into the potential effects of anti-CCN2-based therapies on the vasculature.
Collapse
MESH Headings
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Aorta/metabolism
- Aorta/pathology
- Disease Models, Animal
- Connective Tissue Growth Factor/metabolism
- Connective Tissue Growth Factor/genetics
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Humans
- Phenotype
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Aortic Diseases/prevention & control
- Vascular Malformations/genetics
- Vascular Malformations/metabolism
- Vascular Malformations/pathology
- Plaque, Atherosclerotic
- Mice, Inbred C57BL
- Genetic Predisposition to Disease
- Male
- Signal Transduction
- Lipoproteins, LDL/metabolism
Collapse
Affiliation(s)
- Jannik H Larsen
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
- Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, J. B. Winsløws Vej 4, DK-5000 Odense C, Denmark
| | - Julie S Hegelund
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Matilde K Pedersen
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Cecilie M Andersson
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Caroline A Lindegaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Didde R Hansen
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jane Stubbe
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jes S Lindholt
- Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, J. B. Winsløws Vej 4, DK-5000 Odense C, Denmark
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Camilla S Hansen
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Andrietta Grentzmann
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Maria Bloksgaard
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Boye L Jensen
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Raúl R Rodriguez-Díez
- Department of Cell Biology, Complutense University School of Medicine, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Sebastian Albinsson
- Department of Experimental Medical Science, Vascular Physiology Environment, Lund University, Lund, Sweden
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry and Haematology, University Medical Center, Heidelberglaan 100, Utrecht, The Netherlands
| | - Michal Mokry
- Laboratory of Clinical Chemistry and Haematology, University Medical Center, Heidelberglaan 100, Utrecht, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| | - Andrew Leask
- College of Dentistry, University of Saskatoon, Saskatoon, SK, Canada
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bartosz Pilecki
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Grith L Sorensen
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Charles Pyke
- Research and Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - Martin Overgaard
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Hans C Beck
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Daniel F J Ketelhuth
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Lars M Rasmussen
- Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, J. B. Winsløws Vej 4, DK-5000 Odense C, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Lasse B Steffensen
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
- Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, J. B. Winsløws Vej 4, DK-5000 Odense C, Denmark
| |
Collapse
|
4
|
Rudman-Melnick V, Vanhoutte D, Stowers K, Sargent M, Adam M, Ma Q, Perl AKT, Miethke AG, Burg A, Shi T, Hildeman DA, Woodle ESS, Kofron JM, Devarajan P. Gucy1α1 specifically marks kidney, heart, lung and liver fibroblasts. Sci Rep 2024; 14:29307. [PMID: 39592775 PMCID: PMC11599588 DOI: 10.1038/s41598-024-80930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024] Open
Abstract
Fibrosis is a common outcome of numerous pathologies, including chronic kidney disease (CKD), a progressive renal function deterioration. Current approaches to target activated fibroblasts, key effector contributors to fibrotic tissue remodeling, lack specificity. Here, we report Gucy1α1 as a specific kidney fibroblast marker. Gucy1α1 levels significantly increased over the course of two clinically relevant murine CKD models and directly correlated with established fibrosis markers. Immunofluorescent (IF) imaging showed that Gucy1α1 comprehensively labelled cortical and medullary quiescent and activated fibroblasts in the control kidney and throughout injury progression, respectively. Unlike traditionally used markers platelet derived growth factor receptor beta (Pdgfrβ) and vimentin (Vim), Gucy1α1 did not overlap with off-target populations such as podocytes. Notably, Gucy1α1 labelled kidney fibroblasts in both male and female mice. Furthermore, we observed elevated GUCY1α1 expression in the human fibrotic kidney and lung. Studies in the murine models of cardiac and liver fibrosis revealed Gucy1α1 elevation in activated Pdgfrβ-, Vim- and alpha smooth muscle actin (αSma)-expressing fibroblasts paralleling injury progression and resolution. Overall, we demonstrate Gucy1α1 as an exclusive fibroblast marker in both sexes. Due to its multiorgan translational potential, GUCY1α1 might provide a novel promising strategy to specifically target and mechanistically examine fibroblasts.
Collapse
Affiliation(s)
- Valeria Rudman-Melnick
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 268-280 Albert Sabin Way, location T, floor 6, suite 272, Cincinnati, OH, 45229, USA
| | - Davy Vanhoutte
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kaitlynn Stowers
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 268-280 Albert Sabin Way, location T, floor 6, suite 272, Cincinnati, OH, 45229, USA
| | - Michelle Sargent
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mike Adam
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Qing Ma
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 268-280 Albert Sabin Way, location T, floor 6, suite 272, Cincinnati, OH, 45229, USA
| | - Anne Karina T Perl
- Division of Neonatology and Pulmonary biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alexander G Miethke
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ashley Burg
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tiffany Shi
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - E Steve S Woodle
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - J Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 268-280 Albert Sabin Way, location T, floor 6, suite 272, Cincinnati, OH, 45229, USA.
| |
Collapse
|
5
|
Yu Y, Cai Y, Yang F, Yang Y, Cui Z, Shi D, Bai R. Vascular smooth muscle cell phenotypic switching in atherosclerosis. Heliyon 2024; 10:e37727. [PMID: 39309965 PMCID: PMC11416558 DOI: 10.1016/j.heliyon.2024.e37727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Atherosclerosis (AS) is a complex pathology process involving intricate interactions among various cells and biological processes. Vascular smooth muscle cells (VSMCs) are the predominant cell type in normal arteries, and under atherosclerotic stimuli, VSMCs respond to altered blood flow and microenvironment changes by downregulating contractile markers and switching their phenotype. This review overviews the diverse phenotypes of VSMCs, including the canonical contractile VSMCs, synthetic VSMCs, and phenotypes resembling macrophages, foam cells, myofibroblasts, osteoblasts/chondrocytes, and mesenchymal stem cells. We summarize their presumed protective and pro-atherosclerotic roles in AS development. Additionally, we underscore the molecular mechanisms and regulatory pathways governing VSMC phenotypic switching, encompassing transcriptional regulation, biochemical factors, plaque microenvironment, epigenetics, miRNAs, and the cytoskeleton, emphasizing their significance in AS development. Finally, we outline probable future research directions targeting VSMCs, offering insights into potential therapeutic strategies for AS management.
Collapse
Affiliation(s)
- Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Yankai Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuorui Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| |
Collapse
|
6
|
Zhang F, Huang K, Chen R, Liu Z, Zhao Q, Hou S, Ma W, Li Y, Peng Y, Chen J, Wang DO, Wei W, Li X. starTracer is an accelerated approach for precise marker gene identification in single-cell RNA-Seq analysis. Commun Biol 2024; 7:1128. [PMID: 39266658 PMCID: PMC11393126 DOI: 10.1038/s42003-024-06790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Revealing the heterogeneity among tissues is the greatest advantage of single-cell-sequencing. Marker genes not only act as the key to correctly identify cell types, but also the bio-markers for cell-status under certain experimental imputations. Current analysis methods such as Seurat and Monocle employ algorithms which compares one cluster to all the rest and select markers according to statistical tests. This pattern brings redundant calculations and thus, results in low calculation efficiency, specificity and accuracy. To address these issues, we introduce starTracer, a novel algorithm designed to enhance the efficiency, specificity and accuracy of marker gene identification in single-cell RNA-seq data analysis. starTracer operates as an independent pipeline, which exhibits great flexibility by accepting multiple input file types. The primary output is a marker matrix, where genes are sorted by the potential to function as markers, with those exhibiting the greatest potential positioned at the top. The speed improvement ranges by 2 ~ 3 orders of magnitude compared to Seurat, as observed across three independent datasets with lower false positive rate as observed in a simulated testing dataset with ground-truth. It's worth noting that starTracer exhibits increasing speed improvement with larger data volumes. It also excels in identifying markers in smaller clusters. These advantages solidify starTracer as an important tool for single-cell RNA-seq data, merging robust accuracy with exceptional speed.
Collapse
Affiliation(s)
- Feiyang Zhang
- Brain Research Center, Zhongnan Hospital, Second Clinical School, Wuhan University, Wuhan, China
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaixin Huang
- Brain Research Center, Zhongnan Hospital, Second Clinical School, Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ruixi Chen
- Brain Research Center, Zhongnan Hospital, Second Clinical School, Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zechen Liu
- Totem Laboratory, School of Computer Science, Wuhan University, Wuhan, China
| | - Qiongyi Zhao
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Shengqun Hou
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Wenhao Ma
- Brain Research Center, Zhongnan Hospital, Second Clinical School, Wuhan University, Wuhan, China
| | | | | | - Jincao Chen
- Brain Research Center, Zhongnan Hospital, Second Clinical School, Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Ohtan Wang
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital, Second Clinical School, Wuhan University, Wuhan, China.
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital, Second Clinical School, Wuhan University, Wuhan, China.
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
- Medical Research Institute, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan, China.
- Sino-Italian Ascula Brain science Joint Laboratory, Wuhan, China.
| |
Collapse
|
7
|
Zhao Q, Pedroza A, Sharma D, Gu W, Dalal A, Weldy C, Jackson W, Li DY, Ryan Y, Nguyen T, Shad R, Palmisano BT, Monteiro JP, Worssam M, Berezwitz A, Iyer M, Shi H, Kundu R, Limbu L, Kim JB, Kundaje A, Fischbein M, Wirka R, Quertermous T, Cheng P. A cell and transcriptome atlas of the human arterial vasculature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612293. [PMID: 39314359 PMCID: PMC11419041 DOI: 10.1101/2024.09.10.612293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Vascular beds show different propensities for different vascular pathologies, yet mechanisms explaining these fundamental differences remain unknown. We sought to build a transcriptomic, cellular, and spatial atlas of human arterial cells across multiple different arterial segments to understand this phenomenon. We found significant cell type-specific segmental heterogeneity. Determinants of arterial identity are predominantly encoded in fibroblasts and smooth muscle cells, and their differentially expressed genes are particularly enriched for vascular disease-associated loci and genes. Adventitial fibroblast-specific heterogeneity in gene expression coincides with numerous vascular disease risk genes, suggesting a previously unrecognized role for this cell type in disease risk. Adult arterial cells from different segments cluster not by anatomical proximity but by embryonic origin, with differentially regulated genes heavily influenced by developmental master regulators. Non-coding transcriptomes across arterial cells contain extensive variation in lnc-RNAs expressed in cell type- and segment-specific patterns, rivaling heterogeneity in protein coding transcriptomes, and show enrichment for non-coding genetic signals for vascular diseases.
Collapse
|
8
|
Jia K, Luo X, Yi J, Zhang C. Hormonal influence: unraveling the impact of sex hormones on vascular smooth muscle cells. Biol Res 2024; 57:61. [PMID: 39227995 PMCID: PMC11373308 DOI: 10.1186/s40659-024-00542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Sex hormones play a pivotal role as endocrine hormones that exert profound effects on the biological characteristics and vascular function of vascular smooth muscle cells (VSMCs). By modulating intracellular signaling pathways, activating nuclear receptors, and regulating gene expression, sex hormones intricately influence the morphology, function, and physiological state of VSMCs, thereby impacting the biological properties of vascular contraction, relaxation, and growth. Increasing evidence suggests that abnormal phenotypic changes in VSMCs contribute to the initiation of vascular diseases, including atherosclerosis. Therefore, understanding the factors governing phenotypic alterations in VSMCs and elucidating the underlying mechanisms can provide crucial insights for refining interventions targeted at vascular diseases. Additionally, the varying levels of different types of sex hormones in the human body, influenced by sex and age, may also affect the phenotypic conversion of VSMCs. This review aims to explore the influence of sex hormones on the phenotypic switching of VSMCs and the development of associated vascular diseases in the human body.
Collapse
Affiliation(s)
- Keran Jia
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xin Luo
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
9
|
Rudman-Melnick V, Vanhoutte D, Stowers K, Sargent M, Adam M, Ma Q, Perl AKT, Miethke AG, Burg A, Shi T, Hildeman DA, Woodle ESS, Kofron JM, Devarajan P. Gucy1α1 specifically marks kidney, heart, lung and liver fibroblasts. RESEARCH SQUARE 2024:rs.3.rs-4746078. [PMID: 39184103 PMCID: PMC11343171 DOI: 10.21203/rs.3.rs-4746078/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Fibrosis is a common outcome of numerous pathologies, including chronic kidney disease (CKD), a progressive renal function deterioration. Current approaches to target activated fibroblasts, key effector contributors to fibrotic tissue remodeling, lack specificity. Here, we report Gucy1α1 as a specific kidney fibroblast marker. Gucy1α1 levels significantly increased over the course of two clinically relevant murine CKD models and directly correlated with established fibrosis markers. Immunofluorescent (IF) imaging showed that Gucy1α1 comprehensively labelled cortical and medullary quiescent and activated fibroblasts in the control kidney and throughout injury progression, respectively. Unlike traditionally used markers platelet derived growth factor receptor beta (Pdgfrβ) and vimentin (Vim), Gucy1α1 did not overlap with off-target populations such as podocytes. Notably, Gucy1α1 labelled kidney fibroblasts in both male and female mice. Furthermore, we observed elevated GUCY1α1 expression in the human fibrotic kidney and lung. Studies in the murine models of cardiac and liver fibrosis revealed Gucy1α1 elevation in activated Pdgfrβ-, Vim- and alpha smooth muscle actin (αSma)-expressing fibroblasts paralleling injury progression and resolution. Overall, we demonstrate Gucy1α1 as an exclusive fibroblast marker in both sexes. Due to its multiorgan translational potential, GUCY1α1 might provide a novel promising strategy to specifically target and mechanistically examine fibroblasts.
Collapse
|
10
|
Su X, Zhang M, Yang G, Cui X, Yuan X, Du L, Pei Y. Bioinformatics and machine learning approaches reveal key genes and underlying molecular mechanisms of atherosclerosis: A review. Medicine (Baltimore) 2024; 103:e38744. [PMID: 39093811 PMCID: PMC11296484 DOI: 10.1097/md.0000000000038744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/07/2024] [Indexed: 08/04/2024] Open
Abstract
Atherosclerosis (AS) causes thickening and hardening of the arterial wall due to accumulation of extracellular matrix, cholesterol, and cells. In this study, we used comprehensive bioinformatics tools and machine learning approaches to explore key genes and molecular network mechanisms underlying AS in multiple data sets. Next, we analyzed the correlation between AS and immune fine cell infiltration, and finally performed drug prediction for the disease. We downloaded GSE20129 and GSE90074 datasets from the Gene expression Omnibus database, then employed the Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts algorithm to analyze 22 immune cells. To enrich for functional characteristics, the black module correlated most strongly with T cells was screened with weighted gene co-expression networks analysis. Functional enrichment analysis revealed that the genes were mainly enriched in cell adhesion and T-cell-related pathways, as well as NF-κ B signaling. We employed the Lasso regression and random forest algorithms to screen out 5 intersection genes (CCDC106, RASL11A, RIC3, SPON1, and TMEM144). Pathway analysis in gene set variation analysis and gene set enrichment analysis revealed that the key genes were mainly enriched in inflammation, and immunity, among others. The selected key genes were analyzed by single-cell RNA sequencing technology. We also analyzed differential expression between these 5 key genes and those involved in iron death. We found that ferroptosis genes ACSL4, CBS, FTH1 and TFRC were differentially expressed between AS and the control groups, RIC3 and FTH1 were significantly negatively correlated, whereas SPON1 and VDAC3 were significantly positively correlated. Finally, we used the Connectivity Map database for drug prediction. These results provide new insights into AS genetic regulation.
Collapse
Affiliation(s)
- Xiaoxue Su
- Vascular Surgery Department of Weifang Yidu Central Hospital, Weifang, Shandong, China
| | - Meng Zhang
- Vascular Surgery Department of Weifang Yidu Central Hospital, Weifang, Shandong, China
| | - Guinan Yang
- Department of Urology, People’s Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Xuebin Cui
- Vascular Surgery Department of Weifang Yidu Central Hospital, Weifang, Shandong, China
| | | | | | - Yuanmin Pei
- Vascular Surgery Department of Weifang Yidu Central Hospital, Weifang, Shandong, China
| |
Collapse
|
11
|
Quelquejay H, Al-Rifai R, Silvestro M, Vandestienne M, Ferreira I, Mirault T, Henrion D, Zhong X, Santos-Zas I, Goudot G, Alayrac P, Robidel E, Autret G, Balvay D, Taleb S, Tedgui A, Boulanger CM, Zernecke A, Saliba AE, Hadchouel J, Ramkhelawon B, Cochain C, Bergaya S, Jeunemaitre X, Ait-Oufella H. L-Wnk1 Deletion in Smooth Muscle Cells Causes Aortitis and Inflammatory Shift. Circ Res 2024; 135:488-502. [PMID: 38979610 DOI: 10.1161/circresaha.124.324366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The long isoform of the Wnk1 (with-no-lysine [K] kinase 1) is a ubiquitous serine/threonine kinase, but its role in vascular smooth muscle cells (VSMCs) pathophysiology remains unknown. METHODS AngII (angiotensin II) was infused in Apoe-/- to induce experimental aortic aneurysm. Mice carrying an Sm22-Cre allele were cross-bred with mice carrying a floxed Wnk1 allele to specifically investigate the functional role of Wnk1 in VSMCs. RESULTS Single-cell RNA-sequencing of the aneurysmal abdominal aorta from AngII-infused Apoe-/- mice revealed that VSMCs that did not express Wnk1 showed lower expression of contractile phenotype markers and increased inflammatory activity. Interestingly, WNK1 gene expression in VSMCs was decreased in human abdominal aortic aneurysm. Wnk1-deficient VSMCs lost their contractile function and exhibited a proinflammatory phenotype, characterized by the production of matrix metalloproteases, as well as cytokines and chemokines, which contributed to local accumulation of inflammatory macrophages, Ly6Chi monocytes, and γδ T cells. Sm22Cre+Wnk1lox/lox mice spontaneously developed aortitis in the infrarenal abdominal aorta, which extended to the thoracic area over time without any negative effect on long-term survival. AngII infusion in Sm22Cre+Wnk1lox/lox mice aggravated the aortic disease, with the formation of lethal abdominal aortic aneurysms. Pharmacological blockade of γδ T-cell recruitment using neutralizing anti-CXCL9 (anti-CXC motif chemokine ligand 9) antibody treatment, or of monocyte/macrophage using Ki20227, a selective inhibitor of CSF1 receptor, attenuated aortitis. Wnk1 deletion in VSMCs led to aortic wall remodeling with destruction of elastin layers, increased collagen content, and enhanced local TGF-β (transforming growth factor-beta) 1 expression. Finally, in vivo TGF-β blockade using neutralizing anti-TGF-β antibody promoted saccular aneurysm formation and aorta rupture in Sm22 Cre+ Wnk1lox/lox mice but not in control animals. CONCLUSION Wnk1 is a key regulator of VSMC function. Wnk1 deletion promotes VSMC phenotype switch toward a pathogenic proinflammatory phenotype, orchestrating deleterious vascular remodeling and spontaneous severe aortitis in mice.
Collapse
MESH Headings
- Animals
- Aortitis/genetics
- Aortitis/metabolism
- Aortitis/pathology
- Mice
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Angiotensin II
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Humans
- WNK Lysine-Deficient Protein Kinase 1/genetics
- WNK Lysine-Deficient Protein Kinase 1/metabolism
- Mice, Inbred C57BL
- Male
- Cells, Cultured
- Mice, Knockout, ApoE
- Disease Models, Animal
- Inflammation/metabolism
- Inflammation/genetics
- Inflammation/pathology
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
Collapse
Affiliation(s)
- Helene Quelquejay
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Rida Al-Rifai
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Michele Silvestro
- Division of Vascular and Endovascular Surgery, Department of Surgery and Department of Cell Biology, New York University Langone Medical Center (M.S., B.R.)
| | - Marie Vandestienne
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Irmine Ferreira
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Tristan Mirault
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Daniel Henrion
- MITOVASC Department, Team 2 (CarMe), ICAT SFR (Interactions Cellulaires et Applications Thérapeutiques Structure Fédérale de Recherche), University of Angers, Inserm U1083, France (D.H.)
| | - Xiaodan Zhong
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Icia Santos-Zas
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
- Laboratorio de Endocrinología Celular, Área de Endocrinología Molecular y Celular Instituto de Investigación Sanitaria de Santiago, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain (I.S.-Z.)
| | - Guillaume Goudot
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Paul Alayrac
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Estelle Robidel
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Gwennhael Autret
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Daniel Balvay
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Soraya Taleb
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Alain Tedgui
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Chantal M Boulanger
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany (A.Z., C.C.)
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany (A.-E.S.)
| | - Juliette Hadchouel
- Inserm UMRS 1155, Tenon Hospital (J.H.), Sorbonne Université, Paris, France
| | - Bhama Ramkhelawon
- Division of Vascular and Endovascular Surgery, Department of Surgery and Department of Cell Biology, New York University Langone Medical Center (M.S., B.R.)
| | - Clement Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany (A.Z., C.C.)
| | - Sonia Bergaya
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Xavier Jeunemaitre
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Hafid Ait-Oufella
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
- Medical Intensive Care Unit, Hôpital Saint-Antoine, AP-HP (Assistance Publique- Hôpitaux de Paris) (H.A.-O.), Sorbonne Université, Paris, France
| |
Collapse
|
12
|
Liang G, Lv XF, Huang W, Jin YJ, Roquid KA, Kawase H, Offermanns S. Loss of Smooth Muscle Tenascin-X Inhibits Vascular Remodeling Through Increased TGF-β Signaling. Arterioscler Thromb Vasc Biol 2024; 44:1748-1763. [PMID: 38934115 DOI: 10.1161/atvbaha.123.321067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Vascular smooth muscle cells (VSMCs) are highly plastic. Vessel injury induces a phenotypic transformation from differentiated to dedifferentiated VSMCs, which involves reduced expression of contractile proteins and increased production of extracellular matrix and inflammatory cytokines. This transition plays an important role in several cardiovascular diseases such as atherosclerosis, hypertension, and aortic aneurysm. TGF-β (transforming growth factor-β) is critical for VSMC differentiation and to counterbalance the effect of dedifferentiating factors. However, the mechanisms controlling TGF-β activity and VSMC phenotypic regulation under in vivo conditions are poorly understood. The extracellular matrix protein TN-X (tenascin-X) has recently been shown to bind TGF-β and to prevent it from activating its receptor. METHODS We studied the role of TN-X in VSMCs in various murine disease models using tamoxifen-inducible SMC-specific knockout and adeno-associated virus-mediated knockdown. RESULTS In hypertensive and high-fat diet-fed mice, after carotid artery ligation as well as in human aneurysmal aortae, expression of Tnxb, the gene encoding TN-X, was increased in VSMCs. Mice with smooth muscle cell-specific loss of TN-X (SMC-Tnxb-KO) showed increased TGF-β signaling in VSMCs, as well as upregulated expression of VSMC differentiation marker genes during vascular remodeling compared with controls. SMC-specific TN-X deficiency decreased neointima formation after carotid artery ligation and reduced vessel wall thickening during Ang II (angiotensin II)-induced hypertension. SMC-Tnxb-KO mice lacking ApoE showed reduced atherosclerosis and Ang II-induced aneurysm formation under high-fat diet. Adeno-associated virus-mediated SMC-specific expression of short hairpin RNA against Tnxb showed similar beneficial effects. Treatment with an anti-TGF-β antibody or additional SMC-specific loss of the TGF-β receptor reverted the effects of SMC-specific TN-X deficiency. CONCLUSIONS In summary, TN-X critically regulates VSMC plasticity during vascular injury by inhibiting TGF-β signaling. Our data indicate that inhibition of vascular smooth muscle TN-X may represent a strategy to prevent and treat pathological vascular remodeling.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Angiotensin II
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/pathology
- Aortic Aneurysm/genetics
- Aortic Aneurysm/prevention & control
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/genetics
- Cells, Cultured
- Diet, High-Fat
- Disease Models, Animal
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/physiopathology
- Hypertension/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima
- Phenotype
- Signal Transduction
- Tenascin/metabolism
- Tenascin/genetics
- Tenascin/deficiency
- Transforming Growth Factor beta/metabolism
- Vascular Remodeling
Collapse
Affiliation(s)
- Guozheng Liang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (G.L., X.-F.L., W.H., Y.-J.J., K.A.R., H.K., S.O.)
| | - Xiao-Fei Lv
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (G.L., X.-F.L., W.H., Y.-J.J., K.A.R., H.K., S.O.)
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (X.-F.L.)
| | - Wei Huang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (G.L., X.-F.L., W.H., Y.-J.J., K.A.R., H.K., S.O.)
| | - Young-June Jin
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (G.L., X.-F.L., W.H., Y.-J.J., K.A.R., H.K., S.O.)
| | - Kenneth Anthony Roquid
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (G.L., X.-F.L., W.H., Y.-J.J., K.A.R., H.K., S.O.)
| | - Haruya Kawase
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (G.L., X.-F.L., W.H., Y.-J.J., K.A.R., H.K., S.O.)
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (G.L., X.-F.L., W.H., Y.-J.J., K.A.R., H.K., S.O.)
- Center for Molecular Medicine, Goethe University Frankfurt, Germany (S.O.)
- Cardiopulmonary Institute, Bad Nauheim, Germany (S.O.)
- German Center for Cardiovascular Research, Bad Nauheim, Germany (S.O.)
| |
Collapse
|
13
|
Totoń-Żurańska J, Mikolajczyk TP, Saju B, Guzik TJ. Vascular remodelling in cardiovascular diseases: hypertension, oxidation, and inflammation. Clin Sci (Lond) 2024; 138:817-850. [PMID: 38920058 DOI: 10.1042/cs20220797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Optimal vascular structure and function are essential for maintaining the physiological functions of the cardiovascular system. Vascular remodelling involves changes in vessel structure, including its size, shape, cellular and molecular composition. These changes result from multiple risk factors and may be compensatory adaptations to sustain blood vessel function. They occur in diverse cardiovascular pathologies, from hypertension to heart failure and atherosclerosis. Dynamic changes in the endothelium, fibroblasts, smooth muscle cells, pericytes or other vascular wall cells underlie remodelling. In addition, immune cells, including macrophages and lymphocytes, may infiltrate vessels and initiate inflammatory signalling. They contribute to a dynamic interplay between cell proliferation, apoptosis, migration, inflammation, and extracellular matrix reorganisation, all critical mechanisms of vascular remodelling. Molecular pathways underlying these processes include growth factors (e.g., vascular endothelial growth factor and platelet-derived growth factor), inflammatory cytokines (e.g., interleukin-1β and tumour necrosis factor-α), reactive oxygen species, and signalling pathways, such as Rho/ROCK, MAPK, and TGF-β/Smad, related to nitric oxide and superoxide biology. MicroRNAs and long noncoding RNAs are crucial epigenetic regulators of gene expression in vascular remodelling. We evaluate these pathways for potential therapeutic targeting from a clinical translational perspective. In summary, vascular remodelling, a coordinated modification of vascular structure and function, is crucial in cardiovascular disease pathology.
Collapse
Affiliation(s)
- Justyna Totoń-Żurańska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz P Mikolajczyk
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Blessy Saju
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| | - Tomasz J Guzik
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
14
|
Matic L, Chemaly M, Jørgensen HF. NOT lost in translation: translatome mapping as a novel approach to identify regulators of atherosclerosis. Cardiovasc Res 2024; 120:811-813. [PMID: 38651335 DOI: 10.1093/cvr/cvae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Affiliation(s)
- Ljubica Matic
- Translational Vascular Medicine group, Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Melody Chemaly
- Translational Vascular Medicine group, Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Helle F Jørgensen
- Section of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge CB2 0BB, UK
| |
Collapse
|
15
|
Lin J, Gu M, Wang X, Chen Y, Chau NV, Li J, Chu Q, Qing L, Wu W. Huanglian Jiedu decoction inhibits vascular smooth muscle cell-derived foam cell formation by activating autophagy via suppressing P2RY12. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118125. [PMID: 38561055 DOI: 10.1016/j.jep.2024.118125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huanglian Jiedu Decoction (HLJDD) is a Chinese medicine with a long history of therapeutic application. It is widely used in treating atherosclerosis (AS) in Chinese medicine theory and clinical practice. However, the mechanism of HLJDD in treating AS remains unclear. AIM OF THE STUDY To investigate the efficacy and mechanism of HLJDD in treating AS. MATERIALS AND METHODS AS was induced on high-fat diet-fed ApoE-/- mice, with the aorta pathological changes evaluated with lipid content and plaque progression. In vitro, foam cells were induced by subjecting primary mouse aortic vascular smooth muscle cells (VSMCs) to oxLDL incubation. After HLJDD intervention, VSMCs were assessed with lipid stack, apoptosis, oxidative stress, and the expression of foam cell markers. The effects of P2RY12 were tested by adopting clopidogrel hydrogen sulfate (CDL) in vivo and transfecting P2RY12 over-expressive plasmid in vitro. Autophagy was inhibited by Chloroquine or transfecting siRNA targeting ATG7 (siATG7). The mechanism of HLJDD treating atherosclerosis was explored using network pharmacology and validated with molecular docking and co-immunoprecipitation. RESULTS HLJDD exhibited a dose-dependent reduction in lipid deposition, collagen loss, and necrosis within plaques. It also reversed lipid accumulation and down-regulated the expression of foam cell markers. P2RY12 inhibition alleviated AS, while P2RY12 overexpression enhanced foam cell formation and blocked the therapeutic effects of HLJDD. Network pharmacological analysis suggested that HLJDD might mediate PI3K/AKT signaling pathway-induced autophagy. P2RY12 overexpression also impaired autophagy. Similarly, inhibiting autophagy counteracted the effect of CDL, exacerbated AS in vivo, and promoted foam cell formation in vitro. However, HLJDD treatment mitigated these detrimental effects by suppressing the PI3K/AKT signaling pathway. Immunofluorescence and molecular docking revealed a high affinity between P2RY12 and PIK3CB, while co-immunoprecipitation assays illustrated their interaction. CONCLUSIONS HLJDD inhibited AS in vivo and foam cell formation in vitro by restoring P2RY12/PI3K/AKT signaling pathway-suppressed autophagy. This study is the first to reveal an interaction between P2RY12 and PI3K3CB.
Collapse
Affiliation(s)
- Jinhai Lin
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, Guangdong, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, Guangdong, China.
| | - Mingyang Gu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, Guangdong, China.
| | - Xiaolong Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, Guangdong, China.
| | - Yuanyuan Chen
- Qinchengda Community Health Service Center, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, No. 225, Block 10A, Qinchengda Yueyuan Commercial and Residential Building, Shenzhen, 518100, Guangdong, China.
| | - Nhi Van Chau
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, Guangdong, China; Traditional Medicine Department, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, An Khanh, Ninh Kieu, Can Tho, 94000, Viet Nam.
| | - Junlong Li
- The Department of Cardiology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Guangzhou, 510405, Guangdong, China.
| | - Qingmin Chu
- The Department of Cardiology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Guangzhou, 510405, Guangdong, China.
| | - Lijin Qing
- The Department of Cardiology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Guangzhou, 510405, Guangdong, China.
| | - Wei Wu
- The Department of Cardiology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Guangzhou, 510405, Guangdong, China.
| |
Collapse
|
16
|
Johnson RT, Solanki R, Wostear F, Ahmed S, Taylor JCK, Rees J, Abel G, McColl J, Jørgensen HF, Morris CJ, Bidula S, Warren DT. Piezo1-mediated regulation of smooth muscle cell volume in response to enhanced extracellular matrix rigidity. Br J Pharmacol 2024; 181:1576-1595. [PMID: 38044463 DOI: 10.1111/bph.16294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/06/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Decreased aortic compliance is a precursor to numerous cardiovascular diseases. Compliance is regulated by the rigidity of the aortic wall and the vascular smooth muscle cells (VSMCs). Extracellular matrix stiffening, observed during ageing, reduces compliance. In response to increased rigidity, VSMCs generate enhanced contractile forces that result in VSMC stiffening and a further reduction in compliance. Mechanisms driving VSMC response to matrix rigidity remain poorly defined. EXPERIMENTAL APPROACH Human aortic-VSMCs were seeded onto polyacrylamide hydrogels whose rigidity mimicked either healthy (12 kPa) or aged/diseased (72 kPa) aortae. VSMCs were treated with pharmacological agents prior to agonist stimulation to identify regulators of VSMC volume regulation. KEY RESULTS On pliable matrices, VSMCs contracted and decreased in cell area. Meanwhile, on rigid matrices VSMCs displayed a hypertrophic-like response, increasing in area and volume. Piezo1 activation stimulated increased VSMC volume by promoting calcium ion influx and subsequent activation of PKC and aquaporin-1. Pharmacological blockade of this pathway prevented the enhanced VSMC volume response on rigid matrices whilst maintaining contractility on pliable matrices. Importantly, both piezo1 and aquaporin-1 gene expression were up-regulated during VSMC phenotypic modulation in atherosclerosis and after carotid ligation. CONCLUSIONS AND IMPLICATIONS In response to extracellular matrix rigidity, VSMC volume is increased by a piezo1/PKC/aquaporin-1 mediated pathway. Pharmacological targeting of this pathway specifically blocks the matrix rigidity enhanced VSMC volume response, leaving VSMC contractility on healthy mimicking matrices intact. Importantly, upregulation of both piezo1 and aquaporin-1 gene expression is observed in disease relevant VSMC phenotypes.
Collapse
Affiliation(s)
| | - Reesha Solanki
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - Finn Wostear
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - Sultan Ahmed
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - James C K Taylor
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart and Lung Research Institute, Cambridge, UK
| | - Jasmine Rees
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - Geraad Abel
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - James McColl
- Henry Wellcome Laboratory for Cell Imaging, University of East Anglia, Norfolk, UK
| | - Helle F Jørgensen
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart and Lung Research Institute, Cambridge, UK
| | - Chris J Morris
- School of Pharmacy, University College London, London, UK
| | - Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - Derek T Warren
- School of Pharmacy, University of East Anglia, Norwich, UK
| |
Collapse
|
17
|
Lambert J, Oc S, Worssam MD, Häußler D, Solomon CU, Figg NL, Baxter R, Imaz M, Taylor JCK, Foote K, Finigan A, Mahbubani KT, Webb TR, Ye S, Bennett MR, Krüger A, Spivakov M, Jørgensen HF. Network-based prioritization and validation of regulators of vascular smooth muscle cell proliferation in disease. NATURE CARDIOVASCULAR RESEARCH 2024; 3:714-733. [PMID: 39215134 PMCID: PMC11182749 DOI: 10.1038/s44161-024-00474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 04/18/2024] [Indexed: 06/21/2024]
Abstract
Aberrant vascular smooth muscle cell (VSMC) homeostasis and proliferation characterize vascular diseases causing heart attack and stroke. Here we elucidate molecular determinants governing VSMC proliferation by reconstructing gene regulatory networks from single-cell transcriptomics and epigenetic profiling. We detect widespread activation of enhancers at disease-relevant loci in proliferation-predisposed VSMCs. We compared gene regulatory network rewiring between injury-responsive and nonresponsive VSMCs, which suggested shared transcription factors but differing target loci between VSMC states. Through in silico perturbation analysis, we identified and prioritized previously unrecognized regulators of proliferation, including RUNX1 and TIMP1. Moreover, we showed that the pioneer transcription factor RUNX1 increased VSMC responsiveness and that TIMP1 feeds back to promote VSMC proliferation through CD74-mediated STAT3 signaling. Both RUNX1 and the TIMP1-CD74 axis were expressed in human VSMCs, showing low levels in normal arteries and increased expression in disease, suggesting clinical relevance and potential as vascular disease targets.
Collapse
MESH Headings
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Humans
- Cell Proliferation/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Gene Regulatory Networks
- Tissue Inhibitor of Metalloproteinase-1/metabolism
- Tissue Inhibitor of Metalloproteinase-1/genetics
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- Signal Transduction/genetics
- Cells, Cultured
- Single-Cell Analysis
- Epigenesis, Genetic
- Transcriptome
- Animals
- Core Binding Factor Alpha 2 Subunit
Collapse
Affiliation(s)
- Jordi Lambert
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Sebnem Oc
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Functional Gene Control Group, MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Matthew D Worssam
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Häußler
- TUM School of Medicine and Health, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, Munich, Germany
| | - Charles U Solomon
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
| | - Nichola L Figg
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Ruby Baxter
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Maria Imaz
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - James C K Taylor
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Kirsty Foote
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Alison Finigan
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Krishnaa T Mahbubani
- Collaborative Biorepository for Translational Medicine, Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Tom R Webb
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
| | - Shu Ye
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
- Shantou University Medical College, Shantou, China
- Cardiovascular and Metabolic Disease Translational Research Programme, National University of Singapore, Singapore, Singapore
| | - Martin R Bennett
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Achim Krüger
- TUM School of Medicine and Health, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, Munich, Germany
| | - Mikhail Spivakov
- Functional Gene Control Group, MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Helle F Jørgensen
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Rudman-Melnick V, Vanhoutte D, Stowers K, Sargent M, Adam M, Ma Q, Perl AKT, Miethke AG, Burg A, Shi T, Hildeman DA, Woodle ESS, Kofron JM, Devarajan P. Gucy1α1 specifically marks kidney, heart, lung and liver fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594404. [PMID: 38798483 PMCID: PMC11118280 DOI: 10.1101/2024.05.15.594404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Fibrosis is a common outcome of numerous pathologies, including chronic kidney disease (CKD), a progressive renal function deterioration. Current approaches to target activated fibroblasts, key effector contributors to fibrotic tissue remodeling, lack specificity. Here, we report Gucy1α1 as a specific kidney fibroblast marker. Gucy1α1 levels significantly increased over the course of two clinically relevant murine CKD models and directly correlated with established fibrosis markers. Immunofluorescent (IF) imaging showed that Gucy1α1 comprehensively labelled cortical and medullary quiescent and activated fibroblasts in the control kidney and throughout injury progression, respectively. Unlike traditionally used markers platelet derived growth factor receptor beta (Pdgfrβ) and vimentin (Vim), Gucy1α1 did not overlap with off-target populations such as podocytes. Notably, Gucy1α1 labelled kidney fibroblasts in both male and female mice. Furthermore, we observed elevated GUCY1α1 expression in the human fibrotic kidney and lung. Studies in the murine models of cardiac and liver fibrosis revealed Gucy1α1 elevation in activated Pdgfrβ-, Vim- and alpha smooth muscle actin (αSma)-expressing fibroblasts paralleling injury progression and resolution. Overall, we demonstrate Gucy1α1 as an exclusive fibroblast marker in both sexes. Due to its multiorgan translational potential, GUCY1α1 might provide a novel promising strategy to specifically target and mechanistically examine fibroblasts.
Collapse
|
19
|
Yang Y, Feng H, Tang Y, Wang Z, Qiu P, Huang X, Chang L, Zhang J, Chen YE, Mizrak D, Yang B. Bioengineered vascular grafts with a pathogenic TGFBR1 variant model aneurysm formation in vivo and reveal underlying collagen defects. Sci Transl Med 2024; 16:eadg6298. [PMID: 38718134 PMCID: PMC11193908 DOI: 10.1126/scitranslmed.adg6298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Thoracic aortic aneurysm (TAA) is a life-threatening vascular disease frequently associated with underlying genetic causes. An inadequate understanding of human TAA pathogenesis highlights the need for better disease models. Here, we established a functional human TAA model in an animal host by combining human induced pluripotent stem cells (hiPSCs), bioengineered vascular grafts (BVGs), and gene editing. We generated BVGs from isogenic control hiPSC-derived vascular smooth muscle cells (SMCs) and mutant SMCs gene-edited to carry a Loeys-Dietz syndrome (LDS)-associated pathogenic variant (TGFBR1A230T). We also generated hiPSC-derived BVGs using cells from a patient with LDS (PatientA230T/+) and using genetically corrected cells (Patient+/+). Control and experimental BVGs were then implanted into the common carotid arteries of nude rats. The TGFBR1A230T variant led to impaired mechanical properties of BVGs, resulting in lower burst pressure and suture retention strength. BVGs carrying the variant dilated over time in vivo, resembling human TAA formation. Spatial transcriptomics profiling revealed defective expression of extracellular matrix (ECM) formation genes in PatientA230T/+ BVGs compared with Patient+/+ BVGs. Histological analysis and protein assays validated quantitative and qualitative ECM defects in PatientA230T/+ BVGs and patient tissue, including decreased collagen hydroxylation. SMC organization was also impaired in PatientA230T/+ BVGs as confirmed by vascular contraction testing. Silencing of collagen-modifying enzymes with small interfering RNAs reduced collagen proline hydroxylation in SMC-derived tissue constructs. These studies demonstrated the utility of BVGs to model human TAA formation in an animal host and highlighted the role of reduced collagen modifying enzyme activity in human TAA formation.
Collapse
MESH Headings
- Animals
- Humans
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Induced Pluripotent Stem Cells/metabolism
- Collagen/metabolism
- Blood Vessel Prosthesis
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats, Nude
- Disease Models, Animal
- Rats
- Bioengineering
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Gene Editing
- Loeys-Dietz Syndrome/genetics
- Loeys-Dietz Syndrome/pathology
- Male
Collapse
Affiliation(s)
- Ying Yang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hao Feng
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ying Tang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhenguo Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping Qiu
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xihua Huang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lin Chang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuqing Eugene Chen
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dogukan Mizrak
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Mickiewicz L, Zahreddine R, Cormier K, Peries S, Del Bello A, Laffargue M, Smirnova NF. A minor tweak in transplant surgery protocols alters the cellular landscape of the arterial wall during transplant vasculopathy. FRONTIERS IN TRANSPLANTATION 2024; 3:1260125. [PMID: 38993774 PMCID: PMC11235260 DOI: 10.3389/frtra.2024.1260125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/02/2024] [Indexed: 07/13/2024]
Abstract
Introduction Transplant vasculopathy (TV) is a major complication after solid organ transplantation, distinguished by an arterial intimal thickening that obstructs the vascular lumen and leads to organ rejection. To date, TV remains largely untreatable, mainly because the processes involved in its development remain unclear. Aortic transplantation in mice, used to mimic TV, relies on highly variable experimental protocols, particularly regarding the type of anastomosis used to connect the donor aorta to the recipient. While the amount of trauma undergone by a vessel can dramatically affect the resulting pathology, the impact of the type of anastomosis on TV in mice has not been investigated in detail. Methods In this study, we compare the cellular composition of aortic grafts from BALB/C donor mice transplanted into C57BL/6J recipient mice using two different anastomosis strategies: sleeve and cuff. Results While both models recapitulated some aspects of human TV, there were striking differences in the cellular composition of the grafts. Indeed, aortic grafts from the cuff group displayed a larger coverage of the neointimal area by vascular smooth muscle cells compared to the sleeve group. Aortic grafts from the sleeve group contained higher amounts of T cells, while the cuff group displayed larger B-cell infiltrates. Discussion Together, these data indicate that a seemingly minor technical difference in transplant surgery protocols can largely impact the cellular composition of the graft, and thus the mechanisms underlying TV after aortic transplantation in mice.
Collapse
Affiliation(s)
- Laura Mickiewicz
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Rana Zahreddine
- CREFRE-Anexplo, Services Phénotypage et Microchirurgie, UMS006, INSERM, Université de Toulouse, UT3, ENVT, Toulouse, France
| | - Kévin Cormier
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Sophie Peries
- Center for Biological Ressources (Centres de Ressources Biologiques, CRB), IUCT Oncopole, Toulouse University Hospital (CHU de Toulouse), Toulouse, France
| | - Arnaud Del Bello
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
- Department of Nephrology and Organ Transplantation, Toulouse University Hospital (CHU de Toulouse), Toulouse, France
| | - Muriel Laffargue
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Natalia F Smirnova
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| |
Collapse
|
21
|
Liu S, Zhou H, Han D, Song H, Li Y, He S, Du Y, Wang K, Huang X, Li X, Huang Z. LncRNA CARMN inhibits abdominal aortic aneurysm formation and vascular smooth muscle cell phenotypic transformation by interacting with SRF. Cell Mol Life Sci 2024; 81:175. [PMID: 38597937 PMCID: PMC11006735 DOI: 10.1007/s00018-024-05193-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/11/2024]
Abstract
Phenotypic transformation of vascular smooth muscle cells (VSMCs) plays a crucial role in abdominal aortic aneurysm (AAA) formation. CARMN, a highly conserved, VSMC-enriched long noncoding RNA (lncRNA), is integral in orchestrating various vascular pathologies by modulating the phenotypic dynamics of VSMCs. The influence of CARMN on AAA formation, particularly its mechanisms, remains enigmatic. Our research, employing single-cell and bulk RNA sequencing, has uncovered a significant suppression of CARMN in AAA specimens, which correlates strongly with the contractile function of VSMCs. This reduced expression of CARMN was consistent in both 7- and 14-day porcine pancreatic elastase (PPE)-induced mouse models of AAA and in human clinical cases. Functional analyses disclosed that the diminution of CARMN exacerbated PPE-precipitated AAA formation, whereas its augmentation conferred protection against such formation. Mechanistically, we found CARMN's capacity to bind with SRF, thereby amplifying its role in driving the transcription of VSMC marker genes. In addition, our findings indicate an enhancement in CAMRN transcription, facilitated by the binding of NRF2 to its promoter region. Our study indicated that CARMN plays a protective role in preventing AAA formation and restrains the phenotypic transformation of VSMC through its interaction with SRF. Additionally, we observed that the expression of CARMN is augmented by NRF2 binding to its promoter region. These findings suggest the potential of CARMN as a viable therapeutic target in the treatment of AAA.
Collapse
Affiliation(s)
- Shenrong Liu
- Department of Cardiology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Haobin Zhou
- Department of Cardiology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Dunzheng Han
- Department of Cardiology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Haoyu Song
- Wards of Cadres, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, China
| | - Yuanqing Li
- Department of Cardiology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Shangfei He
- Department of Cardiology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yipeng Du
- Department of Cardiology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Kai Wang
- Department of Cardiovascular Surgery, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, 510120, China
| | - Xingfu Huang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510400, Guangdong, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510400, Guangdong, China.
| | - Zheng Huang
- Department of Cardiology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
22
|
Mahajan A, Hong J, Krukovets I, Shin J, Tkachenko S, Espinosa-Diez C, Owens GK, Cherepanova OA. Integrative analysis of the lncRNA-miRNA-mRNA interactions in smooth muscle cell phenotypic transitions. Front Genet 2024; 15:1356558. [PMID: 38660676 PMCID: PMC11039880 DOI: 10.3389/fgene.2024.1356558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Objectives: We previously found that the pluripotency factor OCT4 is reactivated in smooth muscle cells (SMC) in human and mouse atherosclerotic plaques and plays an atheroprotective role. Loss of OCT4 in SMC in vitro was associated with decreases in SMC migration. However, molecular mechanisms responsible for atheroprotective SMC-OCT4-dependent effects remain unknown. Methods: Since studies in embryonic stem cells demonstrated that OCT4 regulates long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), making them candidates for OCT4 effect mediators, we applied an in vitro approach to investigate the interactions between OCT4-regulated lncRNAs, mRNAs, and miRNAs in SMC. We used OCT4 deficient mouse aortic SMC (MASMC) treated with the pro-atherogenic oxidized phospholipid POVPC, which, as we previously demonstrated, suppresses SMC contractile markers and induces SMC migration. Differential expression of lncRNAs, mRNAs, and miRNAs was obtained by lncRNA/mRNA expression array and small-RNA microarray. Long non-coding RNA to mRNA associations were predicted based on their genomic proximity and association with vascular diseases. Given a recently discovered crosstalk between miRNA and lncRNA, we also investigated the association of miRNAs with upregulated/downregulated lncRNA-mRNA pairs. Results: POVPC treatment in SMC resulted in upregulating genes related to the axon guidance and focal adhesion pathways. Knockdown of Oct4 resulted in differential regulation of pathways associated with phagocytosis. Importantly, these results were consistent with our data showing that OCT4 deficiency attenuated POVPC-induced SMC migration and led to increased phagocytosis. Next, we identified several up- or downregulated lncRNA associated with upregulation of the specific mRNA unique for the OCT4 deficient SMC, including upregulation of ENSMUST00000140952-Hoxb5/6 and ENSMUST00000155531-Zfp652 along with downregulation of ENSMUST00000173605-Parp9 and, ENSMUST00000137236-Zmym1. Finally, we found that many of the downregulated miRNAs were associated with cell migration, including miR-196a-1 and miR-10a, targets of upregulated ENSMUST00000140952, and miR-155 and miR-122, targets of upregulated ENSMUST00000155531. Oppositely, the upregulated miRNAs were anti-migratory and pro-phagocytic, such as miR-10a/b and miR-15a/b, targets of downregulated ENSMUST00000173605, and miR-146a/b and miR-15b targets of ENSMUST00000137236. Conclusion: Our integrative analyses of the lncRNA-miRNA-mRNA interactions in SMC indicated novel potential OCT4-dependent mechanisms that may play a role in SMC phenotypic transitions.
Collapse
Affiliation(s)
- Aatish Mahajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Junyoung Hong
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Irene Krukovets
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Junchul Shin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Svyatoslav Tkachenko
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Cristina Espinosa-Diez
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Olga A. Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
23
|
Bashore AC, Yan H, Xue C, Zhu LY, Kim E, Mawson T, Coronel J, Chung A, Sachs N, Ho S, Ross LS, Kissner M, Passegué E, Bauer RC, Maegdefessel L, Li M, Reilly MP. High-Dimensional Single-Cell Multimodal Landscape of Human Carotid Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:930-945. [PMID: 38385291 PMCID: PMC10978277 DOI: 10.1161/atvbaha.123.320524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, our understanding of the comprehensive transcriptional and phenotypic landscape of the cells within these lesions is limited. METHODS To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing and single-cell RNA sequencing to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. RESULTS We identified 25 cell populations, each with a unique multiomic signature, including macrophages, T cells, NK (natural killer) cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Among the macrophages, we identified 2 proinflammatory subsets enriched in IL-1B (interleukin-1B) or C1Q expression, 2 TREM2-positive foam cells (1 expressing inflammatory genes), and subpopulations with a proliferative gene signature and SMC-specific gene signature with fibrotic pathways upregulated. Further characterization revealed various subsets of SMCs and fibroblasts, including SMC-derived foam cells. These foamy SMCs were localized in the deep intima of coronary atherosclerotic lesions. Utilizing cellular indexing of transcriptomes and epitopes by sequencing data, we developed a flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Lastly, we observed reduced proportions of efferocytotic macrophages, classically activated endothelial cells, and contractile and modulated SMC-derived cells, while inflammatory SMCs were enriched in plaques of clinically symptomatic versus asymptomatic patients. CONCLUSIONS Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. These findings facilitate both the mapping of cardiovascular disease susceptibility loci to specific cell types and the identification of novel molecular and cellular therapeutic targets for the treatment of the disease.
Collapse
Affiliation(s)
- Alexander C Bashore
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Hanying Yan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (H.Y., M.L.)
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Lucie Y Zhu
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Eunyoung Kim
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Thomas Mawson
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Johana Coronel
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Allen Chung
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Nadja Sachs
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (N.S., L.M.)
| | - Sebastian Ho
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Leila S Ross
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Michael Kissner
- Columbia Stem Cell Initiative, Department of Genetics and Development (M.K., E.P.), Columbia University Irving Medical Center, New York, NY
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development (M.K., E.P.), Columbia University Irving Medical Center, New York, NY
| | - Robert C Bauer
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (N.S., L.M.)
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance (L.M.)
- Department of Medicine, Karolinksa Institute, Stockholm, Sweden (L.M.)
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (H.Y., M.L.)
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
- Irving Institute for Clinical and Translational Research (M.P.R.), Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
24
|
Stroope C, Nettersheim FS, Coon B, Finney AC, Schwartz MA, Ley K, Rom O, Yurdagul A. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metab 2024; 6:617-638. [PMID: 38532071 PMCID: PMC11055680 DOI: 10.1038/s42255-024-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.
Collapse
Affiliation(s)
- Chad Stroope
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Felix Sebastian Nettersheim
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Brian Coon
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cardiovascular Biology Research Program, OMRF, Oklahoma City, OK, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Immunology Center of Georgia (IMMCG), Augusta University Immunology Center of Georgia, Augusta, GA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
25
|
Ahmed IA, Liu M, Gomez D. Nuclear Control of Vascular Smooth Muscle Cell Plasticity during Vascular Remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:525-538. [PMID: 37820925 PMCID: PMC10988766 DOI: 10.1016/j.ajpath.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Control of vascular smooth muscle cell (SMC) gene expression is an essential process for establishing and maintaining lineage identity, contractility, and plasticity. Most mechanisms (epigenetic, transcriptional, and post-transcriptional) implicated in gene regulation occur in the nucleus. Still, intranuclear pathways are directly impacted by modifications in the extracellular environment in conditions of adaptive or maladaptive remodeling. Integration of extracellular, cellular, and genomic information into the nucleus through epigenetic and transcriptional control of genome organization plays a major role in regulating SMC functions and phenotypic transitions during vascular remodeling and diseases. This review aims to provide a comprehensive update on nuclear mechanisms, their interactions, and their integration in controlling SMC homeostasis and dysfunction. It summarizes and discusses the main nuclear mechanisms preponderant in SMCs in the context of vascular disease, such as atherosclerosis, with an emphasis on studies employing in vivo cell-specific loss-of-function and single-cell omics approaches.
Collapse
Affiliation(s)
- Ibrahim A Ahmed
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mingjun Liu
- Department of Pathology, New York University, New York, New York
| | - Delphine Gomez
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
26
|
Sun X, Yang Y, Zhao W, Wang M, Chen Y, Wang J, Yang D, Yang Y. MTMR7 suppresses the phenotypic switching of vascular smooth muscle cell and vascular intimal hyperplasia after injury via regulating p62/mTORC1-mediated glucose metabolism. Atherosclerosis 2024; 390:117470. [PMID: 38342025 DOI: 10.1016/j.atherosclerosis.2024.117470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/24/2023] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND AND AIMS Myotubularin-related protein 7 (MTMR7) suppresses proliferation in various cell types and is associated with cardiovascular and cerebrovascular diseases. However, whether MTMR7 regulates vascular smooth muscle cell (VSMC) and vascular intimal hyperplasia remains unclear. We explored the role of MTMR7 in phenotypic switching of VSMC and vascular intimal hyperplasia after injury. METHODS AND RESULTS MTMR7 expression was significantly downregulated in injured arteries. Compared to wild type (WT) mice, Mtmr7-transgenic (Mtmr7-Tg) mice showed reduced intima/media ratio, decreased percentage of Ki-67-positive cells within neointima, and increased Calponin expression in injured artery. In vitro, upregulating MTMR7 by Len-Mtmr7 transfection inhibited platelet derived growth factor (PDGF)-BB-induced proliferation, migration of VSMC and reversed PDGF-BB-induced decrease in expression of Calponin and SM-MHC. Microarray, single cell sequence, and other bioinformatics analysis revealed that MTMR7 is highly related to glucose metabolism and mammalian target of rapamycin complex 1 (mTORC1). Further experiments confirmed that MTMR7 markedly repressed glycolysis and mTORC1 activity in PDGF-BB-challenged VSMC in vitro. Restoring mTORC1 activity abolished MTMR7-mediated suppression of glycolysis, phenotypic shift in VSMC in vitro and protection against vascular intimal hyperplasia in vivo. Furthermore, upregulating MTMR7 in vitro led to dephosphorylation and dissociation of p62 from mTORC1 in VSMC. External expression of p62 in vitro also abrogated the inhibitory effects of MTMR7 on glycolysis and phenotypic switching in PDGF-BB-stimulated VSMC. CONCLUSIONS Our study demonstrates that MTMR7 inhibits injury-induced vascular intimal hyperplasia and phenotypic switching of VSMC. Mechanistically, the beneficial effects of MTMR7 are conducted via suppressing p62/mTORC1-mediated glycolysis.
Collapse
Affiliation(s)
- Xiongshan Sun
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yao Yang
- From the Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Weiwei Zhao
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Mingliang Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yingmei Chen
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Jia Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Dachun Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China.
| | - Yongjian Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China.
| |
Collapse
|
27
|
Lin A, Ramaswamy Y, Misra A. Developmental heterogeneity of vascular cells: Insights into cellular plasticity in atherosclerosis? Semin Cell Dev Biol 2024; 155:3-15. [PMID: 37316416 DOI: 10.1016/j.semcdb.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Smooth muscle cells, endothelial cells and macrophages display remarkable heterogeneity within the healthy vasculature and under pathological conditions. During development, these cells arise from numerous embryological origins, which confound with different microenvironments to generate postnatal vascular cell diversity. In the atherosclerotic plaque milieu, all these cell types exhibit astonishing plasticity, generating a variety of plaque burdening or plaque stabilizing phenotypes. And yet how developmental origin influences intraplaque cell plasticity remains largely unexplored despite evidence suggesting this may be the case. Uncovering the diversity and plasticity of vascular cells is being revolutionized by unbiased single cell whole transcriptome analysis techniques that will likely continue to pave the way for therapeutic research. Cellular plasticity is only just emerging as a target for future therapeutics, and uncovering how intraplaque plasticity differs across vascular beds may provide key insights into why different plaques behave differently and may confer different risks of subsequent cardiovascular events.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, NSW, Australia; School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Ashish Misra
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, NSW, Australia; Heart Research Institute, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
28
|
Khan SU, Huang Y, Ali H, Ali I, Ahmad S, Khan SU, Hussain T, Ullah M, Lu K. Single-cell RNA Sequencing (scRNA-seq): Advances and Challenges for Cardiovascular Diseases (CVDs). Curr Probl Cardiol 2024; 49:102202. [PMID: 37967800 DOI: 10.1016/j.cpcardiol.2023.102202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
Implementing Single-cell RNA sequencing (scRNA-seq) has significantly enhanced our comprehension of cardiovascular diseases (CVDs), providing new opportunities to strengthen the prevention of CVDs progression. Cardiovascular diseases continue to be the primary cause of death worldwide. Improving treatment strategies and patient risk assessment requires a deeper understanding of the fundamental mechanisms underlying these disorders. The advanced and widespread use of Single-cell RNA sequencing enables a comprehensive investigation of the complex cellular makeup of the heart, surpassing essential descriptive aspects. This enhances our understanding of disease causes and directs functional research. The significant advancement in understanding cellular phenotypes has enhanced the study of fundamental cardiovascular science. scRNA-seq enables the identification of discrete cellular subgroups, unveiling previously unknown cell types in the heart and vascular systems that may have relevance to different disease pathologies. Moreover, scRNA-seq has revealed significant heterogeneity in phenotypes among distinct cell subtypes. Finally, we will examine current and upcoming scRNA-seq studies about various aspects of the cardiovascular system, assessing their potential impact on our understanding of the cardiovascular system and offering insight into how these technologies may revolutionise the diagnosis and treatment of cardiac conditions.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China; Women Medical and Dental College, Khyber Medical University, Peshawar, KPK, 22020, Pakistan
| | - Yuqing Huang
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad-44000
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally 32093, Kuwait
| | - Saleem Ahmad
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans 70112 LA, USA
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Talib Hussain
- Women Dental College Abbottabad, KPK, 22020, Pakistan
| | - Muneeb Ullah
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
29
|
Carramolino L, Albarrán-Juárez J, Markov A, Hernández-SanMiguel E, Sharysh D, Cumbicus V, Morales-Cano D, Labrador-Cantarero V, Møller PL, Nogales P, Benguria A, Dopazo A, Sanchez-Cabo F, Torroja C, Bentzon JF. Cholesterol lowering depletes atherosclerotic lesions of smooth muscle cell-derived fibromyocytes and chondromyocytes. NATURE CARDIOVASCULAR RESEARCH 2024; 3:203-220. [PMID: 39196190 DOI: 10.1038/s44161-023-00412-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/14/2023] [Indexed: 08/29/2024]
Abstract
Drugs that lower plasma apolipoprotein B (ApoB)-containing lipoproteins are central to treating advanced atherosclerosis and provide partial protection against clinical events. Previous research showed that lowering ApoB-containing lipoproteins stops plaque inflammation, but how these drugs affect the heterogeneous population of plaque cells derived from smooth muscle cells (SMCs) is unknown. SMC-derived cells are the main cellular component of atherosclerotic lesions and the source of structural components that determine the size of plaques and their propensity to rupture and trigger thrombosis, the proximate cause of heart attack and stroke. Using lineage tracing and single-cell techniques to investigate the full SMC-derived cellular compartment in progressing and regressing plaques in mice, here we show that lowering ApoB-containing lipoproteins reduces nuclear factor kappa-light-chain-enhancer of activated B cells signaling in SMC-derived fibromyocytes and chondromyocytes and leads to depletion of these abundant cell types from plaques. These results uncover an important mechanism through which cholesterol-lowering drugs can achieve plaque regression.
Collapse
MESH Headings
- Animals
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/drug therapy
- Atherosclerosis/metabolism
- Disease Models, Animal
- Chondrocytes/drug effects
- Chondrocytes/pathology
- Chondrocytes/metabolism
- Signal Transduction/drug effects
- Mice, Inbred C57BL
- Anticholesteremic Agents/pharmacology
- Anticholesteremic Agents/therapeutic use
- Male
- Cholesterol/metabolism
- Cholesterol/blood
- Mice
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Single-Cell Analysis
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- NF-kappa B/metabolism
Collapse
Affiliation(s)
| | - Julián Albarrán-Juárez
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anton Markov
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Diana Sharysh
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Vanessa Cumbicus
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Daniel Morales-Cano
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Paula Nogales
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alberto Benguria
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | | | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jacob F Bentzon
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
30
|
Raghavan A, Pirruccello JP, Ellinor PT, Lindsay ME. Using Genomics to Identify Novel Therapeutic Targets for Aortic Disease. Arterioscler Thromb Vasc Biol 2024; 44:334-351. [PMID: 38095107 PMCID: PMC10843699 DOI: 10.1161/atvbaha.123.318771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/21/2023] [Indexed: 01/04/2024]
Abstract
Aortic disease, including dissection, aneurysm, and rupture, carries significant morbidity and mortality and is a notable cause of sudden cardiac death. Much of our knowledge regarding the genetic basis of aortic disease has relied on the study of individuals with Mendelian aortopathies and, until recently, the genetic determinants of population-level variance in aortic phenotypes remained unclear. However, the application of machine learning methodologies to large imaging datasets has enabled researchers to rapidly define aortic traits and mine dozens of novel genetic associations for phenotypes such as aortic diameter and distensibility. In this review, we highlight the emerging potential of genomics for identifying causal genes and candidate drug targets for aortic disease. We describe how deep learning technologies have accelerated the pace of genetic discovery in this field. We then provide a blueprint for translating genetic associations to biological insights, reviewing techniques for locus and cell type prioritization, high-throughput functional screening, and disease modeling using cellular and animal models of aortic disease.
Collapse
Affiliation(s)
- Avanthi Raghavan
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - James P. Pirruccello
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Patrick T. Ellinor
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Mark E. Lindsay
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Miteva K. On target inhibition of vascular smooth muscle cell phenotypic transition underpins TNF-OXPHOS-AP-1 as a promising avenue for anti-remodelling interventions in aortic dissection and rupture. Eur Heart J 2024; 45:306-308. [PMID: 37997934 DOI: 10.1093/eurheartj/ehad679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Affiliation(s)
- Kapka Miteva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland
| |
Collapse
|
32
|
Lin H, Zhang M, Hu M, Zhang Y, Jiang W, Tang W, Ouyang Y, Jiang L, Mi Y, Chen Z, He P, Zhao G, Ouyang X. Emerging applications of single-cell profiling in precision medicine of atherosclerosis. J Transl Med 2024; 22:97. [PMID: 38263066 PMCID: PMC10804726 DOI: 10.1186/s12967-023-04629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/14/2023] [Indexed: 01/25/2024] Open
Abstract
Atherosclerosis is a chronic, progressive, inflammatory disease that occurs in the arterial wall. Despite recent advancements in treatment aimed at improving efficacy and prolonging survival, atherosclerosis remains largely incurable. In this review, we discuss emerging single-cell sequencing techniques and their novel insights into atherosclerosis. We provide examples of single-cell profiling studies that reveal phenotypic characteristics of atherosclerosis plaques, blood, liver, and the intestinal tract. Additionally, we highlight the potential clinical applications of single-cell analysis and propose that combining this approach with other techniques can facilitate early diagnosis and treatment, leading to more accurate medical interventions.
Collapse
Affiliation(s)
- Huiling Lin
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
- Department of Physiology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ming Zhang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China
| | - Mi Hu
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - Yangkai Zhang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - WeiWei Jiang
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanying Tang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - Yuxin Ouyang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - Liping Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yali Mi
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China
| | - Zhi Chen
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Pingping He
- Department of Nursing, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China.
| | - Xinping Ouyang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China.
- Department of Physiology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China.
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 410081, Hunan, Changsha, China.
- The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, 410081, Hunan, Changsha, China.
| |
Collapse
|
33
|
Rudman-Melnick V, Adam M, Stowers K, Potter A, Ma Q, Chokshi SM, Vanhoutte D, Valiente-Alandi I, Lindquist DM, Nieman ML, Kofron JM, Chung E, Park JS, Potter SS, Devarajan P. Single-cell sequencing dissects the transcriptional identity of activated fibroblasts and identifies novel persistent distal tubular injury patterns in kidney fibrosis. Sci Rep 2024; 14:439. [PMID: 38172172 PMCID: PMC10764314 DOI: 10.1038/s41598-023-50195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
Examining kidney fibrosis is crucial for mechanistic understanding and developing targeted strategies against chronic kidney disease (CKD). Persistent fibroblast activation and tubular epithelial cell (TEC) injury are key CKD contributors. However, cellular and transcriptional landscapes of CKD and specific activated kidney fibroblast clusters remain elusive. Here, we analyzed single cell transcriptomic profiles of two clinically relevant kidney fibrosis models which induced robust kidney parenchymal remodeling. We dissected the molecular and cellular landscapes of kidney stroma and newly identified three distinctive fibroblast clusters with "secretory", "contractile" and "vascular" transcriptional enrichments. Also, both injuries generated failed repair TECs (frTECs) characterized by decline of mature epithelial markers and elevation of stromal and injury markers. Notably, frTECs shared transcriptional identity with distal nephron segments of the embryonic kidney. Moreover, we identified that both models exhibited robust and previously unrecognized distal spatial pattern of TEC injury, outlined by persistent elevation of renal TEC injury markers including Krt8 and Vcam1, while the surviving proximal tubules (PTs) showed restored transcriptional signature. We also found that long-term kidney injuries activated a prominent nephrogenic signature, including Sox4 and Hox gene elevation, which prevailed in the distal tubular segments. Our findings might advance understanding of and targeted intervention in fibrotic kidney disease.
Collapse
Affiliation(s)
- Valeria Rudman-Melnick
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Mike Adam
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kaitlynn Stowers
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew Potter
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Qing Ma
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Saagar M Chokshi
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Davy Vanhoutte
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | | | - Diana M Lindquist
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati, Cincinnati, OH, USA
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michelle L Nieman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - J Matthew Kofron
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Eunah Chung
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - Joo-Seop Park
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - S Steven Potter
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
34
|
Lin A, Brittan M, Baker AH, Dimmeler S, Fisher EA, Sluimer JC, Misra A. Clonal Expansion in Cardiovascular Pathology. JACC Basic Transl Sci 2024; 9:120-144. [PMID: 38362345 PMCID: PMC10864919 DOI: 10.1016/j.jacbts.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 02/17/2024]
Abstract
Clonal expansion refers to the proliferation and selection of advantageous "clones" that are better suited for survival in a Darwinian manner. In recent years, we have greatly enhanced our understanding of cell clonality in the cardiovascular context. However, our knowledge of the underlying mechanisms behind this clonal selection is still severely limited. There is a transpiring pattern of clonal expansion of smooth muscle cells and endothelial cells-and, in some cases, macrophages-in numerous cardiovascular diseases irrespective of their differing microenvironments. These findings indirectly suggest the possible existence of stem-like vascular cells which are primed to respond during disease. Subsequent clones may undergo further phenotypic changes to adopt either protective or detrimental roles. By investigating these clone-forming vascular cells, we may be able to harness this inherent clonal nature for future therapeutic intervention. This review comprehensively discusses what is currently known about clonal expansion across the cardiovascular field. Comparisons of the clonal nature of vascular cells in atherosclerosis (including clonal hematopoiesis of indeterminate potential), pulmonary hypertension, aneurysm, blood vessel injury, ischemia- and tumor-induced angiogenesis, and cerebral cavernous malformations are evaluated. Finally, we discuss the potential clinical implications of these findings and propose that proper understanding and specific targeting of these clonal cells may provide unique therapeutic options for the treatment of these cardiovascular conditions.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew H. Baker
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- CARIM School for Cardiovascular Sciences, Department of Pathology, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), partner site Frankfurt Rhine-Main, Berlin, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Edward A. Fisher
- Department of Medicine/Division of Cardiology, New York University Grossman School of Medicine, New York, New York, USA
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Judith C. Sluimer
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- CARIM School for Cardiovascular Sciences, Department of Pathology, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Ashish Misra
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Zhang H, Wu JC. Deciphering Congenital Heart Disease Using Human Induced Pluripotent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:239-252. [PMID: 38884715 DOI: 10.1007/978-3-031-44087-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Congenital heart disease (CHD) is a leading cause of birth defect-related death. Despite significant advances, the mechanisms underlying the development of CHD are complex and remain elusive due to a lack of efficient, reproducible, and translational model systems. Investigations relied on animal models have inherent limitations due to interspecies differences. Human induced pluripotent stem cells (iPSCs) have emerged as an effective platform for disease modeling. iPSCs allow for the production of a limitless supply of patient-specific somatic cells that enable advancement in cardiovascular precision medicine. Over the past decade, researchers have developed protocols to differentiate iPSCs to multiple cardiovascular lineages, as well as to enhance the maturity and functionality of these cells. With the development of physiologic three-dimensional cardiac organoids, iPSCs represent a powerful platform to mechanistically dissect CHD and serve as a foundation for future translational research.
Collapse
Affiliation(s)
- Hao Zhang
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
36
|
Corcoran E, Olayinka A, di Luca M, Gusti Y, Hakimjavadi R, O'Connor B, Redmond EM, Cahill PA. N-Glycans on the extracellular domain of the Notch1 receptor control Jagged-1 induced Notch signalling and myogenic differentiation of S100β resident vascular stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567576. [PMID: 38014317 PMCID: PMC10680845 DOI: 10.1101/2023.11.17.567576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Notch signalling, critical for development and postnatal homeostasis of the vascular system, is highly regulated by several mechanisms including glycosylation. While the importance of O-linked glycosylation is widely accepted, the structure and function of N-glycans has yet to be defined. Here, we take advantage of lectin binding assays in combination with pharmacological, molecular, and site-directed mutagenetic approaches to study N-glycosylation of the Notch1 receptor. We find that several key oligosaccharides containing bisecting or core fucosylated structures decorate the receptor, control expression and receptor trafficking, and dictate Jagged-1 activation of Notch target genes and myogenic differentiation of multipotent S100β vascular stem cells. N-glycans at asparagine (N) 1241 and 1587 protect the receptor from accelerated degradation, while the oligosaccharide at N888 directly affects signal transduction. Conversely, N-linked glycans at N959, N1179, N1489 do not impact canonical signalling but inhibit differentiation. Our work highlights a novel functional role for N-glycans in controlling Notch1 signalling and differentiation of vascular stem cells.
Collapse
Affiliation(s)
- Eoin Corcoran
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Abidemi Olayinka
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Mariana di Luca
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Yusof Gusti
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Roya Hakimjavadi
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Brendan O'Connor
- School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Eileen M Redmond
- Department of Surgery, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Paul A Cahill
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| |
Collapse
|
37
|
Pløen GG, Sørensen CB, Bentzon JF. Severe arterial injury heals with a complex clonal structure involving a large fraction of surviving smooth muscle cells. Atherosclerosis 2023; 387:117341. [PMID: 37940399 DOI: 10.1016/j.atherosclerosis.2023.117341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND AND AIMS Smooth muscle cell (SMC) lineage cells in atherosclerosis and flow cessation-induced neointima are oligoclonal, being recruited from a tiny fraction of medial SMCs that modulate and proliferate. The present study aimed to investigate the clonal structure of SMC lineage cells healing more severe arterial injury. METHODS Arterial injury (wire, stretch, and partial ligation) was inflicted on the right carotid artery in mice with homozygous, SMC-restricted, stochastically recombining reporter transgenes that produced mosaic expression of 10 distinguishable fluorescent phenotypes for clonal tracking. Healed arteries and contra-lateral controls were analyzed after 3 weeks. Additional analysis of cell death and proliferation after injury was performed in wildtype mice. RESULTS The total number of SMC lineage cells in healed arteries was comparable to normal arteries but comprised significantly fewer fluorescent phenotypes. The population had a complex, intermixed, clonal structure. By statistical analysis of expected versus observed fractions of fluorescent phenotypes and visual inspection of coherent groups of same-colored cells, we concluded that >98% of SMC lineage cells in healed arteries belonged to a detectable clone, indicating that nearly all surviving SMCs after severe injury at some point undergo proliferation. This was consistent with serial observations in the first week after injury, which showed severe loss of medial cells followed by widespread proliferation. CONCLUSIONS After severe arterial injury, many surviving SMCs proliferate to repair the media and form a neointima. This indicates that the fraction of medial SMCs that are mobilized to repair arteries increases with the level of injury.
Collapse
Affiliation(s)
| | | | - Jacob Fog Bentzon
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| |
Collapse
|
38
|
Cho MJ, Lee MR, Park JG. Aortic aneurysms: current pathogenesis and therapeutic targets. Exp Mol Med 2023; 55:2519-2530. [PMID: 38036736 PMCID: PMC10766996 DOI: 10.1038/s12276-023-01130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 12/02/2023] Open
Abstract
Aortic aneurysm is a chronic disease characterized by localized expansion of the aorta, including the ascending aorta, arch, descending aorta, and abdominal aorta. Although aortic aneurysms are generally asymptomatic, they can threaten human health by sudden death due to aortic rupture. Aortic aneurysms are estimated to lead to 150,000 ~ 200,000 deaths per year worldwide. Currently, there are no effective drugs to prevent the growth or rupture of aortic aneurysms; surgical repair or endovascular repair is the only option for treating this condition. The pathogenic mechanisms and therapeutic targets for aortic aneurysms have been examined over the past decade; however, there are unknown pathogenic mechanisms involved in cellular heterogeneity and plasticity, the complexity of the transforming growth factor-β signaling pathway, inflammation, cell death, intramural neovascularization, and intercellular communication. This review summarizes the latest research findings and current pathogenic mechanisms of aortic aneurysms, which may enhance our understanding of aortic aneurysms.
Collapse
Affiliation(s)
- Min Ji Cho
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mi-Ran Lee
- Department of Biomedical Laboratory Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 28024, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
39
|
Scipione CA, Hyduk SJ, Polenz CK, Cybulsky MI. Unveiling the Hidden Landscape of Arterial Diseases at Single-Cell Resolution. Can J Cardiol 2023; 39:1781-1794. [PMID: 37716639 DOI: 10.1016/j.cjca.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023] Open
Abstract
High-resolution single-cell technologies have shed light on the pathogenesis of cardiovascular diseases by enabling the discovery of novel cellular and transcriptomic signatures associated with various conditions, and uncovering new contributions of inflammatory processes, immunity, metabolic stress, and risk factors. We review the information obtained from studies using single-cell technologies in tissues with atherosclerosis and aortic aneurysms. Insights are provided on the biology of endothelial, smooth muscle, and immune cells in the arterial intima and media. In addition to cellular diversity, numerous examples of plasticity and phenotype switching are highlighted and presented in the context of normal cell functions.
Collapse
Affiliation(s)
- Corey A Scipione
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada.
| | - Sharon J Hyduk
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Chanele K Polenz
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Myron I Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
40
|
Ito S, Amioka N, Franklin MK, Wang P, Liang CL, Katsumata Y, Cai L, Temel RE, Daugherty A, Lu HS, Sawada H. Association of NOTCH3 With Elastic Fiber Dispersion in the Infrarenal Abdominal Aorta of Cynomolgus Monkeys. Arterioscler Thromb Vasc Biol 2023; 43:2301-2311. [PMID: 37855127 PMCID: PMC10843096 DOI: 10.1161/atvbaha.123.319244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The regional heterogeneity of vascular components and transcriptomes is an important determinant of aortic biology. This notion has been explored in multiple mouse studies. In the present study, we examined the regional heterogeneity of aortas in nonhuman primates. METHODS Aortic samples were harvested from the ascending, descending thoracic, suprarenal, and infrarenal regions of young control monkeys and adult monkeys with high fructose consumption for 3 years. The regional heterogeneity of aortic structure and transcriptomes was examined by histological and bulk RNA sequencing analyses, respectively. RESULTS Immunostaining of CD31 and αSMA (alpha-smooth muscle actin) revealed that endothelial and smooth muscle cells were distributed homogeneously across the aortic regions. In contrast, elastic fibers were less abundant and dispersed in the infrarenal aorta compared with other regions and associated with collagen deposition. Bulk RNA sequencing identified a distinct transcriptome related to the Notch signaling pathway in the infrarenal aorta with significantly increased NOTCH3 mRNA compared with other regions. Immunostaining revealed that NOTCH3 protein was increased in the media of the infrarenal aorta. The abundance of medial NOTCH3 was positively correlated with the dispersion of elastic fibers. Adult cynomolgus monkeys with high fructose consumption displayed vascular wall remodeling, such as smooth muscle cell loss and elastic fiber disruption, predominantly in the infrarenal region. The correlation between NOTCH3 and elastic fiber dispersion was enhanced in these monkeys. CONCLUSIONS Aortas of young cynomolgus monkeys display regional heterogeneity of their transcriptome and the structure of elastin and collagens. Elastic fibers in the infrarenal aorta are dispersed along with upregulation of medial NOTCH3.
Collapse
Affiliation(s)
- Sohei Ito
- Saha Cardiovascular Research Center, College of Medicine
| | - Naofumi Amioka
- Saha Cardiovascular Research Center, College of Medicine
| | | | - Pengjun Wang
- Saha Cardiovascular Research Center, College of Medicine
| | | | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, University of Kentucky, KY
- Sanders-Brown Center on Aging, University of Kentucky, KY
| | - Lei Cai
- Saha Cardiovascular Research Center, College of Medicine
| | - Ryan E. Temel
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| |
Collapse
|
41
|
Mosquera JV, Auguste G, Wong D, Turner AW, Hodonsky CJ, Alvarez-Yela AC, Song Y, Cheng Q, Lino Cardenas CL, Theofilatos K, Bos M, Kavousi M, Peyser PA, Mayr M, Kovacic JC, Björkegren JLM, Malhotra R, Stukenberg PT, Finn AV, van der Laan SW, Zang C, Sheffield NC, Miller CL. Integrative single-cell meta-analysis reveals disease-relevant vascular cell states and markers in human atherosclerosis. Cell Rep 2023; 42:113380. [PMID: 37950869 DOI: 10.1016/j.celrep.2023.113380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 11/13/2023] Open
Abstract
Coronary artery disease (CAD) is characterized by atherosclerotic plaque formation in the arterial wall. CAD progression involves complex interactions and phenotypic plasticity among vascular and immune cell lineages. Single-cell RNA-seq (scRNA-seq) studies have highlighted lineage-specific transcriptomic signatures, but human cell phenotypes remain controversial. Here, we perform an integrated meta-analysis of 22 scRNA-seq libraries to generate a comprehensive map of human atherosclerosis with 118,578 cells. Besides characterizing granular cell-type diversity and communication, we leverage this atlas to provide insights into smooth muscle cell (SMC) modulation. We integrate genome-wide association study data and uncover a critical role for modulated SMC phenotypes in CAD, myocardial infarction, and coronary calcification. Finally, we identify fibromyocyte/fibrochondrogenic SMC markers (LTBP1 and CRTAC1) as proxies of atherosclerosis progression and validate these through omics and spatial imaging analyses. Altogether, we create a unified atlas of human atherosclerosis informing cell state-specific mechanistic and translational studies of cardiovascular diseases.
Collapse
Affiliation(s)
- Jose Verdezoto Mosquera
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Doris Wong
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Yipei Song
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Computer Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Qi Cheng
- CVPath Institute, Gaithersburg, MD 20878, USA
| | - Christian L Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | | - Maxime Bos
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48019, USA
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London WC2R 2LS, UK; National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Chongzhi Zang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Nathan C Sheffield
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Clint L Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
42
|
Luo L, Fu C, Bell CF, Wang Y, Leeper NJ. Role of vascular smooth muscle cell clonality in atherosclerosis. Front Cardiovasc Med 2023; 10:1273596. [PMID: 38089777 PMCID: PMC10713728 DOI: 10.3389/fcvm.2023.1273596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/24/2023] [Indexed: 02/01/2024] Open
Abstract
Atherosclerotic cardiovascular disease remains the leading cause of death worldwide. While many cell types contribute to the growing atherosclerotic plaque, the vascular smooth muscle cell (SMC) is a major contributor due in part to its remarkable plasticity and ability to undergo phenotype switching in response to injury. SMCs can migrate into the fibrous cap, presumably stabilizing the plaque, or accumulate within the lesional core, possibly accelerating vascular inflammation. How SMCs expand and react to disease stimuli has been a controversial topic for many decades. While early studies relying on X-chromosome inactivation were inconclusive due to low resolution and sensitivity, recent advances in multi-color lineage tracing models have revitalized the concept that SMCs likely expand in an oligoclonal fashion during atherogenesis. Current efforts are focused on determining whether all SMCs have equal capacity for clonal expansion or if a "stem-like" progenitor cell may exist, and to understand how constituents of the clone decide which phenotype they will ultimately adopt as the disease progresses. Mechanistic studies are also beginning to dissect the processes which confer cells with their overall survival advantage, test whether these properties are attributable to intrinsic features of the expanding clone, and define the role of cross-talk between proliferating SMCs and other plaque constituents such as neighboring macrophages. In this review, we aim to summarize the historical perspectives on SMC clonality, highlight unanswered questions, and identify translational issues which may need to be considered as therapeutics directed against SMC clonality are developed as a novel approach to targeting atherosclerosis.
Collapse
Affiliation(s)
- Lingfeng Luo
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Changhao Fu
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Caitlin F. Bell
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ying Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nicholas J. Leeper
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
43
|
Jiang N, Li W, Jiang S, Xie M, Liu R. Acetylation in pathogenesis: Revealing emerging mechanisms and therapeutic prospects. Biomed Pharmacother 2023; 167:115519. [PMID: 37729729 DOI: 10.1016/j.biopha.2023.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Protein acetylation modifications play a central and pivotal role in a myriad of biological processes, spanning cellular metabolism, proliferation, differentiation, apoptosis, and beyond, by effectively reshaping protein structure and function. The metabolic state of cells is intricately connected to epigenetic modifications, which in turn influence chromatin status and gene expression patterns. Notably, pathological alterations in protein acetylation modifications are frequently observed in diseases such as metabolic syndrome, cardiovascular disorders, and cancer. Such abnormalities can result in altered protein properties and loss of function, which are closely associated with developing and progressing related diseases. In recent years, the advancement of precision medicine has highlighted the potential value of protein acetylation in disease diagnosis, treatment, and prevention. This review includes provocative and thought-provoking papers outlining recent breakthroughs in acetylation modifications as they relate to cardiovascular disease, mitochondrial metabolic regulation, liver health, neurological health, obesity, diabetes, and cancer. Additionally, it covers the molecular mechanisms and research challenges in understanding the role of acetylation in disease regulation. By summarizing novel targets and prognostic markers for the treatment of related diseases, we aim to contribute to the field. Furthermore, we discuss current hot topics in acetylation research related to health regulation, including N4-acetylcytidine and liquid-liquid phase separation. The primary objective of this review is to provide insights into the functional diversity and underlying mechanisms by which acetylation regulates proteins in disease contexts.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu 062550, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
44
|
Pedroza AJ, Cheng P, Dalal AR, Baeumler K, Kino A, Tognozzi E, Shad R, Yokoyama N, Nakamura K, Mitchel O, Hiesinger W, MacFarlane EG, Fleischmann D, Woo YJ, Quertermous T, Fischbein MP. Early clinical outcomes and molecular smooth muscle cell phenotyping using a prophylactic aortic arch replacement strategy in Loeys-Dietz syndrome. J Thorac Cardiovasc Surg 2023; 166:e332-e376. [PMID: 37500053 DOI: 10.1016/j.jtcvs.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES Patients with Loeys-Dietz syndrome demonstrate a heightened risk of distal thoracic aortic events after valve-sparing aortic root replacement. This study assesses the clinical risks and hemodynamic consequences of a prophylactic aortic arch replacement strategy in Loeys-Dietz syndrome and characterizes smooth muscle cell phenotype in Loeys-Dietz syndrome aneurysmal and normal-sized downstream aorta. METHODS Patients with genetically confirmed Loeys-Dietz syndrome (n = 8) underwent prophylactic aortic arch replacement during valve-sparing aortic root replacement. Four-dimensional flow magnetic resonance imaging studies were performed in 4 patients with Loeys-Dietz syndrome (valve-sparing aortic root replacement + arch) and compared with patients with contemporary Marfan syndrome (valve-sparing aortic root replacement only, n = 5) and control patients (without aortopathy, n = 5). Aortic tissues from 4 patients with Loeys-Dietz syndrome and 2 organ donors were processed for anatomically segmented single-cell RNA sequencing and histologic assessment. RESULTS Patients with Loeys-Dietz syndrome valve-sparing aortic root replacement + arch had no deaths, major morbidity, or aortic events in a median of 2 years follow-up. Four-dimensional magnetic resonance imaging demonstrated altered flow parameters in patients with postoperative aortopathy relative to controls, but no clear deleterious changes due to arch replacement. Integrated analysis of aortic single-cell RNA sequencing data (>49,000 cells) identified a continuum of abnormal smooth muscle cell phenotypic modulation in Loeys-Dietz syndrome defined by reduced contractility and enriched extracellular matrix synthesis, adhesion receptors, and transforming growth factor-beta signaling. These modulated smooth muscle cells populated the Loeys-Dietz syndrome tunica media with gradually reduced density from the overtly aneurysmal root to the nondilated arch. CONCLUSIONS Patients with Loeys-Dietz syndrome demonstrated excellent surgical outcomes without overt downstream flow or shear stress disturbances after concomitant valve-sparing aortic root replacement + arch operations. Abnormal smooth muscle cell-mediated aortic remodeling occurs within the normal diameter, clinically at-risk Loeys-Dietz syndrome arch segment. These initial clinical and pathophysiologic findings support concomitant arch replacement in Loeys-Dietz syndrome.
Collapse
Affiliation(s)
- Albert J Pedroza
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Paul Cheng
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Alex R Dalal
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Kathrin Baeumler
- Department of Radiology, Stanford University School of Medicine, Stanford, Calif
| | - Aya Kino
- Department of Radiology, Stanford University School of Medicine, Stanford, Calif
| | - Emily Tognozzi
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Rohan Shad
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Nobu Yokoyama
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Ken Nakamura
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Olivia Mitchel
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Elena Gallo MacFarlane
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Dominik Fleischmann
- Department of Radiology, Stanford University School of Medicine, Stanford, Calif
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Michael P Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
45
|
Hutton M, Frazer M, Lin A, Patel S, Misra A. New Targets in Atherosclerosis: Vascular Smooth Muscle Cell Plasticity and Macrophage Polarity. Clin Ther 2023; 45:1047-1054. [PMID: 37709601 DOI: 10.1016/j.clinthera.2023.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE Despite an increase in treatment options, and substantial reductions in cardiovascular mortality over the past half-century, atherosclerosis remains the most prevalent cause of premature mortality worldwide. The development of innovative new therapies is crucial to further minimize atherosclerosis-related deaths. The diverse array of cell phenotypes derived from vascular smooth muscle cells (SMCs) and macrophages within atherosclerotic plaques are increasingly becoming recognized for their beneficial and detrimental roles in plaque stability and disease burden. This review explores how contemporary transcriptomics and fate-mapping studies have revealed vascular cell plasticity as a relatively unexplored target for therapeutic intervention. METHODS Recent literature for this narrative review was obtained by searching electronic databases (ie, Google Scholar, PubMed). Additional studies were sourced from reference lists and the authors' personal databases. FINDINGS The lipid-rich and inflammatory plaque milieu induces SMC phenotypic switching to both beneficial and detrimental phenotypes. Likewise, macrophage heterogeneity increases with disease burden to a variety of pro-inflammatory and anti-inflammatory activation states. These vascular cell phenotypes are determinants of plaque structure stability, and it is therefore highly likely that they influence clinical outcomes. Development of clinical treatments targeting deleterious phenotypes or promoting pro-healing phenotypes remains in its infancy. However, existing treatments (statins) have shown beneficial effects toward macrophage polarization, providing a rationale for more targeted approaches. In contrast, beneficial SMC phenotypic modulation with these pharmacologic agents has yet to be achieved. The range of modulated vascular cell phenotypes provides a multitude of novel targets and the potential to reduce future adverse events. IMPLICATIONS Vascular cell phenotypic heterogeneity must continue to be explored to lower cardiovascular events in the future. The rapidly increasing weight of evidence surrounding the role of SMC plasticity and macrophage polarity in plaque vulnerability provides a strong foundation upon which development of new therapeutics must follow. This approach may prove to be crucial in reducing cardiovascular events and improving patient benefit in the future.
Collapse
Affiliation(s)
- Michael Hutton
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
| | - Madeleine Frazer
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
| | - Alexander Lin
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia; School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Sanjay Patel
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Royal Prince Alfred Hospital, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ashish Misra
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia; Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
46
|
Shin J, Tkachenko S, Gomez D, Tripathi R, Owens GK, Cherepanova OA. Smooth muscle cells-specific loss of OCT4 accelerates neointima formation after acute vascular injury. Front Cardiovasc Med 2023; 10:1276945. [PMID: 37942066 PMCID: PMC10627795 DOI: 10.3389/fcvm.2023.1276945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction There is growing evidence that smooth muscle cell (SMC) phenotypic transitions play critical roles during normal developmental and tissue recovery processes and in pathological conditions such as atherosclerosis. However, the molecular mechanisms responsible for these transitions are not well understood. Recently, we found that the embryonic stem cell/induced pluripotent stem cell (iPSC) factor OCT4, which was believed to be silenced in somatic cells, plays an atheroprotective role in SMC, and regulates angiogenesis after corneal alkali burn and hindlimb ischemia by mediating microvascular SMC and pericyte migration. However, the kinetics of OCT4 activation in arterial SMC and its role in acute pathological conditions are still unknown. Methods and Results Here, using an Oct4-IRES-GFP reporter mouse model, we found that OCT4 is reactivated in the carotid artery 18 hours post-acute ligation-induced injury, a common in vivo model of the SMC phenotypic transitions. Next, using a tamoxifen-inducible Myh11-CreERT2 Oct4 knockout mouse model, we found that the loss of OCT4, specifically in SMC, led to accelerated neointima formation and increased tunica media following carotid artery ligation, at least in part by increasing SMC proliferation within the media. Bulk RNA sequencing analysis on the cultured SMC revealed significant down-regulation of the SMC contractile markers and dysregulation of the genes belonging to the regulation of cell proliferation and, positive and negative regulation for cell migration ontological groups following genetic inactivation of Oct4. We also found that loss of Oct4 resulted in suppression of contractile SMC markers after the injury and in cultured aortic SMC. Further mechanistic studies revealed that OCT4 regulates SMC contractile genes, ACTA2 and TAGLN, at least in part by direct binding to the promoters of these genes. Conclusion These results demonstrate that the pluripotency factor OCT4 is quickly activated in SMC after the acute vascular injury and inhibits SMC hyperproliferation, which may be protective in preventing excessive neointima formation.
Collapse
Affiliation(s)
- Junchul Shin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Svyatoslav Tkachenko
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Delphine Gomez
- Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rupande Tripathi
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Olga A. Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
47
|
Abstract
The medial layer of the arterial wall is composed mainly of vascular smooth muscle cells (VSMCs). Under physiological conditions, VSMCs assume a contractile phenotype, and their primary function is to regulate vascular tone. In contrast with terminally differentiated cells, VSMCs possess phenotypic plasticity, capable of transitioning into other cellular phenotypes in response to changes in the vascular environment. Recent research has shown that VSMC phenotypic switching participates in the pathogenesis of atherosclerosis, where the various types of dedifferentiated VSMCs accumulate in the atherosclerotic lesion and participate in the associated vascular remodeling by secreting extracellular matrix proteins and proteases. This review article discusses the 9 VSMC phenotypes that have been reported in atherosclerotic lesions and classifies them into differentiated VSMCs, intermediately dedifferentiated VSMCs, and dedifferentiated VSMCs. It also provides an overview of several methodologies that have been developed for studying VSMC phenotypic switching and discusses their respective advantages and limitations.
Collapse
Affiliation(s)
- Runji Chen
- Shantou University Medical CollegeShantouChina
| | - David G. McVey
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUnited Kingdom
| | - Daifei Shen
- Research Center for Translational MedicineThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | | | - Shu Ye
- Shantou University Medical CollegeShantouChina
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUnited Kingdom
- Cardiovascular‐Metabolic Disease Translational Research ProgrammeNational University of SingaporeSingapore
| |
Collapse
|
48
|
Yang Y, Lee GC, Nakagaki-Silva E, Huang Y, Peacey M, Partridge R, Gooding C, Smith CJ. Cell-type specific regulator RBPMS switches alternative splicing via higher-order oligomerization and heterotypic interactions with other splicing regulators. Nucleic Acids Res 2023; 51:9961-9982. [PMID: 37548402 PMCID: PMC10570038 DOI: 10.1093/nar/gkad652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/28/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Alternative pre-mRNA splicing decisions are regulated by RNA binding proteins (RBPs) that can activate or repress regulated splice sites. Repressive RBPs typically harness multivalent interactions to bind stably to target RNAs. Multivalency can be achieved by homomeric oligomerization and heteromeric interactions with other RBPs, often mediated by intrinsically disordered regions (IDRs), and by possessing multiple RNA binding domains. Cell-specific splicing decisions often involve the action of widely expressed RBPs, which are able to bind multivalently around target exons, but without effect in the absence of a cell-specific regulator. To address how cell-specific regulators can collaborate with constitutive RBPs in alternative splicing regulation, we used the smooth-muscle specific regulator RBPMS. Recombinant RBPMS is sufficient to confer smooth muscle cell specific alternative splicing of Tpm1 exon 3 in cell-free assays by preventing assembly of ATP-dependent splicing complexes. This activity depends upon a C-terminal IDR that facilitates dynamic higher-order self-assembly, cooperative binding to multivalent RNA and interactions with widely expressed splicing co-regulators, including MBNL1 and RBFOX2, allowing cooperative assembly of stable cell-specific regulatory complexes.
Collapse
Affiliation(s)
- Yi Yang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Giselle C Lee
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | - Yuling Huang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Matthew Peacey
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Ruth Partridge
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Clare Gooding
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | |
Collapse
|
49
|
Li W, Lin A, Hutton M, Dhaliwal H, Nadel J, Rodor J, Tumanov S, Örd T, Hadden M, Mokry M, Mol BM, Pasterkamp G, Padula MP, Geczy CL, Ramaswamy Y, Sluimer JC, Kaikkonen MU, Stocker R, Baker AH, Fisher EA, Patel S, Misra A. Colchicine promotes atherosclerotic plaque stability independently of inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560632. [PMID: 37873248 PMCID: PMC10592948 DOI: 10.1101/2023.10.03.560632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease which is driven in part by the aberrant trans -differentiation of vascular smooth muscle cells (SMCs). No therapeutic drug has been shown to reverse detrimental SMC-derived cell phenotypes into protective phenotypes, a hypothesized enabler of plaque regression and improved patient outcome. Herein, we describe a novel function of colchicine in the beneficial modulation of SMC-derived cell phenotype, independent of its conventional anti-inflammatory effects. Using SMC fate mapping in an advanced atherosclerotic lesion model, colchicine induced plaque regression by converting pathogenic SMC-derived macrophage-like and osteoblast-like cells into protective myofibroblast-like cells which thickened, and thereby stabilized, the fibrous cap. This was dependent on Notch3 signaling in SMC-derived plaque cells. These findings may help explain the success of colchicine in clinical trials relative to other anti-inflammatory drugs. Thus, we demonstrate the potential of regulating SMC phenotype in advanced plaque regression through Notch3 signaling, in addition to the canonical anti-inflammatory actions of drugs to treat atherosclerosis.
Collapse
|
50
|
Francis GA. The Greatly Under-Represented Role of Smooth Muscle Cells in Atherosclerosis. Curr Atheroscler Rep 2023; 25:741-749. [PMID: 37665492 PMCID: PMC10564813 DOI: 10.1007/s11883-023-01145-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE OF REVIEW This article summarizes previous and recent research on the fundamental role of arterial smooth muscle cells (SMCs) as drivers of initial and, along with macrophages, later stages of human atherosclerosis. RECENT FINDINGS Studies using human tissues and SMC lineage-tracing mice have reinforced earlier observations that SMCs drive initial atherogenesis in humans and contribute a multitude of phenotypes including foam cell formation hitherto attributed primarily to macrophages in atherosclerosis. Arterial smooth muscle cells (SMCs) are the primary cell type in human pre-atherosclerotic intima and are responsible for the retention of lipoproteins that drive the development of atherosclerosis. Despite this, images of atherogenesis still depict the process as initially devoid of SMCs, primarily macrophage driven, and indicate only relatively minor roles such as fibrous cap formation to intimal SMCs. This review summarizes historical and recent observations regarding the importance of SMCs in the formation of a pre-atherosclerotic intima, initial and later foam cell formation, and the phenotypic changes that give rise to multiple different roles for SMCs in human and mouse lesions. Potential SMC-specific therapies in atherosclerosis are presented.
Collapse
Affiliation(s)
- Gordon A Francis
- Centre for Heart Lung Innovation, Providence Research, St. Paul's Hospital, University of British Columbia, Vancouver, Canada.
| |
Collapse
|