1
|
Scachetti GC, Forato J, Claro IM, Hua X, Salgado BB, Vieira A, Simeoni CL, Barbosa ARC, Rosa IL, de Souza GF, Fernandes LCN, de Sena ACH, Oliveira SC, Singh CML, de Lima STS, de Jesus R, Costa MA, Kato RB, Rocha JF, Santos LC, Rodrigues JT, Cunha MP, Sabino EC, Faria NR, Weaver SC, Romano CM, Lalwani P, Proenca-Modena JL, de Souza WM. Re-emergence of Oropouche virus between 2023 and 2024 in Brazil: an observational epidemiological study. THE LANCET. INFECTIOUS DISEASES 2024:S1473-3099(24)00619-4. [PMID: 39423838 DOI: 10.1016/s1473-3099(24)00619-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Oropouche virus is an arthropod-borne virus that has caused outbreaks of Oropouche fever in central and South America since the 1950s. This study investigates virological factors contributing to the re-emergence of Oropouche fever in Brazil between 2023 and 2024. METHODS In this observational epidemiological study, we combined multiple data sources for Oropouche virus infections in Brazil and conducted in-vitro and in-vivo characterisation. We collected serum samples obtained in Manaus City, Amazonas state, Brazil, from patients with acute febrile illnesses aged 18 years or older who tested negative for malaria and samples from people with previous Oropouche virus infection from Coari municipality, Amazonas state, Brazil. Basic clinical and demographic data were collected from the Brazilian Laboratory Environment Management System. We calculated the incidence of Oropouche fever cases with data from the Brazilian Ministry of Health and the 2022 Brazilian population census and conducted age-sex analyses. We used reverse transcription quantitative PCR to test for Oropouche virus RNA in samples and subsequently performed sequencing and phylogenetic analysis of viral isolates. We compared the phenotype of the 2023-24 epidemic isolate (AM0088) with the historical prototype strain BeAn19991 through assessment of titre, plaque number, and plaque size. We used a plaque reduction neutralisation test (PRNT50) to assess the susceptibility of the novel isolate and BeAn19991 isolate to antibody neutralisation, both in serum samples from people previously infected with Oropouche virus and in blood collected from mice that were inoculated with either of the strains. FINDINGS 8639 (81·8%) of 10 557 laboratory-confirmed Oropouche fever cases from Jan 4, 2015, to Aug 10, 2024, occurred in 2024, which is 58·8 times the annual median of 147 cases (IQR 73-325). Oropouche virus infections were reported in all 27 federal units, with 8182 (77·5%) of 10 557 infections occurring in North Brazil. We detected Oropouche virus RNA in ten (11%) of 93 patients with acute febrile illness between Jan 1 and Feb 4, 2024, in Amazonas state. AM0088 had a significantly higher replication at 12 h and 24 h after infection in mammalian cells than the prototype strain. AM0088 had a more virulent phenotype than the prototype in mammalian cells, characterised by earlier plaque formation, between 27% and 65% increase in plaque number, and plaques between 2·4-times and 2·6-times larger. Furthermore, serum collected on May 2 and May 20, 2016, from individuals previously infected with Oropouche virus showed at least a 32-fold reduction in neutralising capacity (ie, median PRNT50 titre of 640 [IQR 320-640] for BeAn19991 vs <20 [ie, below the limit of detection] for AM0088) against the reassortant strain compared with the prototype. INTERPRETATION These findings provide a comprehensive assessment of Oropouche fever in Brazil and contribute to an improved understanding of the 2023-24 Oropouche virus re-emergence. Our exploratory in-vitro data suggest that the increased incidence might be related to a higher replication efficiency of a new Oropouche virus reassortant for which previous immunity shows lower neutralising capacity. FUNDING São Paulo Research Foundation, Burroughs Wellcome Fund, Wellcome Trust, US National Institutes of Health, and Brazilian National Council for Scientific and Technological Development. TRANSLATION For the Portuguese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Gabriel C Scachetti
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Julia Forato
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Ingra M Claro
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Xinyi Hua
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bárbara B Salgado
- Laboratory for Diagnosis and Control of Infectious Diseases in the Amazon, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil; Laboratory of Infectious Diseases and Immunology, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil; Programa de Pós-Graduação Stricto Sensu em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil
| | - Aline Vieira
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Camila L Simeoni
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Aguyda R C Barbosa
- Laboratory for Diagnosis and Control of Infectious Diseases in the Amazon, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil; Laboratory of Infectious Diseases and Immunology, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil; Programa de Pós-Graduação Stricto Sensu em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil
| | - Italo L Rosa
- Laboratory for Diagnosis and Control of Infectious Diseases in the Amazon, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil; Laboratory of Infectious Diseases and Immunology, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil; Programa de Pós-Graduação Stricto Sensu em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil
| | - Gabriela F de Souza
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Luana C N Fernandes
- Laboratory for Diagnosis and Control of Infectious Diseases in the Amazon, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
| | - Ana Carla H de Sena
- Laboratory for Diagnosis and Control of Infectious Diseases in the Amazon, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil; Universidade Federal do Amazonas, Manaus, Brazil
| | - Stephanne C Oliveira
- Laboratory for Diagnosis and Control of Infectious Diseases in the Amazon, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil; Laboratory of Infectious Diseases and Immunology, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil; Programa de Pós-Graduação Stricto Sensu em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil
| | - Carolina M L Singh
- Laboratory for Diagnosis and Control of Infectious Diseases in the Amazon, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil; Laboratory of Infectious Diseases and Immunology, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil; Programa de Pós-Graduação Stricto Sensu em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil
| | - Shirlene T S de Lima
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil; Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA; Laboratório Central de Saúde Pública do Ceará, Fortaleza, Brazil
| | - Ronaldo de Jesus
- Centro Nacional de Inteligência Epidemiológica, Secretária de Vigilância em Saúde, Ministério da Saúde, Brasília, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana A Costa
- Laboratório Central de Saúde Pública do Acre, Rio Branco, Brazil
| | - Rodrigo B Kato
- Centro Nacional de Inteligência Epidemiológica, Secretária de Vigilância em Saúde, Ministério da Saúde, Brasília, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Josilene F Rocha
- Laboratório Central de Saúde Pública do Acre, Rio Branco, Brazil
| | - Leandro C Santos
- Laboratório Central de Saúde Pública do Acre, Rio Branco, Brazil
| | | | - Marielton P Cunha
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Ester C Sabino
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Nuno R Faria
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; Department of Zoology, University of Oxford, Oxford, UK
| | - Scott C Weaver
- Department of Microbiology and Immunology and World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Camila M Romano
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Pritesh Lalwani
- Laboratory for Diagnosis and Control of Infectious Diseases in the Amazon, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil; Laboratory of Infectious Diseases and Immunology, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil; Programa de Pós-Graduação Stricto Sensu em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil.
| | - José Luiz Proenca-Modena
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.
| | - William M de Souza
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Wernike K, Beer M. More than a decade of research on Schmallenberg virus-Knowns and unknowns. Adv Virus Res 2024; 120:77-98. [PMID: 39455169 DOI: 10.1016/bs.aivir.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Schmallenberg virus, an arbovirus of the Orthobunyavirus genus that primarily infects ruminants, emerged in 2011 near the Dutch-German border region and subsequently caused a large number of abortions and the births of severely malformed newborns in the European livestock population. Immediate intensive research led to the development of reliable diagnostic tests, the identification of competent Culicoides vector species, and the elucidation of the pathogenesis in infected vertebrate hosts. In addition, the structure of the major antigenic domain has been elucidated in great detail, leading to the development of effective marker vaccine candidates. The knowledge gained over the last decade on the biology and pathogenesis of SBV and the experience acquired in its control will be of great value in the future for the control of any similar emerging pathogen of veterinary or public health importance such as Shuni or Oropouche virus. However, some important knowledge gaps remain, for example, the factors contributing to the highly variable transmission rate from dam to fetus or the viral factors responsible for the vector competence of Culicoides midges are largely unknown. Thus, questions still remain for the next decade of research on SBV and related viruses.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
3
|
Wang F, Liu T, Liao L, Chai Y, Qi J, Gao F, Liang M, Gao GF, Wu Y. Molecular insight into the neutralization mechanism of human-origin monoclonal antibody AH100 against Hantaan virus. J Virol 2024; 98:e0088324. [PMID: 39078157 PMCID: PMC11334459 DOI: 10.1128/jvi.00883-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/18/2024] [Indexed: 07/31/2024] Open
Abstract
Both Old World and New World hantaviruses are transmitted through rodents and can lead to hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome in humans without the availability of specific therapeutics. The square-shaped surface spikes of hantaviruses consist of four Gn-Gc heterodimers that are pivotal for viral entry into host cells and serve as targets for the immune system. Previously, a human-derived neutralizing monoclonal antibody, AH100, demonstrated specific neutralization against the Old World hantavirus, Hantaan virus. However, the precise mode binding of this neutralizing monoclonal antibody remains unclear. In the present study, we determined the structure of the Hantaan virus Gn-AH100 antigen-binding fragment complex and identified its epitope. Crystallography revealed that AH100 targeted the epitopes on domain A and b-ribbon and E3-like domain. Epitope mapping onto a model of the higher order (Gn-Gc)4 spike revealed its localization between neighboring Gn protomers, distinguishing this epitope as a unique site compared to the previously reported monoclonal antibodies. This study provides crucial insights into the structural basis of hantavirus neutralizing antibody epitopes, thereby facilitating the development of therapeutic antibodies.IMPORTANCEHantaan virus (HTNV) poses a significant threat to humans by causing hemorrhagic fever with renal syndrome with high mortality rates. In the absence of FDA-approved drugs or vaccines, it is urgent to develop specific therapeutics. Here, we elucidated the epitope of a human-derived neutralizing antibody, AH100, by determining the HTNV glycoprotein Gn-AH100 antigen-binding fragment (Fab) complex structure. Our findings revealed that the epitopes situated on the domain A and b-ribbon and E3-like domain of the HTNV Gn head. By modeling the complex structure in the viral lattice, we propose that AH100 neutralizes the virus by impeding conformational changes of Gn protomer, which is crucial for viral entry. Additionally, sequence analysis of all reported natural isolates indicated the absence of mutations in epitope residues, suggesting the potential neutralization ability of AH100 in diverse isolates. Therefore, our results provide novel insights into the epitope and the molecular basis of AH100 neutralization.
Collapse
Affiliation(s)
- Feiran Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Tiezhu Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Liying Liao
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Feng Gao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
| | - Mifang Liang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - George Fu Gao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Wang J, Chen D, Wei F, Yu R, Xu S, Lin X, Wu S. Identification of a broadly neutralizing epitope within Gc protein of Akabane virus using newly prepared neutralizing monoclonal antibodies. Vet Microbiol 2024; 295:110123. [PMID: 38889619 DOI: 10.1016/j.vetmic.2024.110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024]
Abstract
Akabane virus (AKAV) is characterized by abortion, stillbirth, premature birth, and congenital deformities in livestock and is widely distributed throughout Australia, Southeast Asia, East Asia, the Middle East, and Africa. Gc protein is the major neutralizing target of AKAV and is often considered as an immunogen to prepare neutralizing antibodies. In this study, we prepared and characterized three monoclonal antibodies (mAbs), 4D1, 4E6, and 4F12, against the Gc protein of AKAV (TJ2016 strain). Western blot (WB) and indirect immunofluorescence assay (IFA) analysis proved that the mAbs can react with both the truncated recombinant AKAV Gc protein and the natural Gc protein produced in the AKAV-infected cells. Further research demonstrated that these mAbs possess neutralizing activity. We next defined a neutralizing epitope 1134SVQSFDGKL1142 by screening a panel of overlapping peptides spanning the truncated Gc protein (aa991∼1232) using the generated neutralizing mAbs. Bioinformatic analysis shows that the neutralizing epitope is highly conserved across different genotypes of AKAV. The newly produced neutralizing mAbs and the identified neutralizing epitope in this study enrich the antigenic epitope information of the AKAV Gc protein and could have potential applications in the development of antigen and antibody detection systems that are specific to AKAV.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Dongjie Chen
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Fang Wei
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Ruyang Yu
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Shengkui Xu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xiangmei Lin
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Shaoqiang Wu
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
5
|
Lu Z, Yan X, Fan G, Li L, Sun X, Lu H, Jin N, Liu H, Sun W. Molecular and serological investigations of Batai virus in cattle and goats in the border area of Yunnan, China (2021-2022). Front Vet Sci 2024; 11:1433699. [PMID: 39144073 PMCID: PMC11322338 DOI: 10.3389/fvets.2024.1433699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Batai virus (BATV), a zoonotic pathogen transmitted by mosquitoes, infects vertebrates, including livestock, birds, and humans. Although BATV has been detected and isolated in mosquitoes in Yunnan Province, China, there have been no reports of livestock infection. Thus, we conducted a molecular and serological investigation of BATV in cattle and goat sera collected in spring and autumn from 2021 to 2022 in Honghe Prefecture, Yunnan Province, on the China-Vietnam border. Methods We used indirect enzyme-linked immunosorbent assays and reverse transcription real-time PCR (RT-qPCR) to test 929 cattle and 973 goat serum samples. Results BATV antibodies were detected in 262/929 (28.2%) cattle and 263/973 (27.0%) goat serum samples. RT-qPCR did not detect BATV RNA. Discussion The positive rate of BATV serum antibodies in cattle and goats in Luxi County was higher compared with other areas, and it was also higher in autumn compared with spring, which may be related to climate, temperature, and mosquito density. Although our findings indicated the presence of BATV infection in livestock in the region, RT-qPCR did not detect BATV RNA. Therefore, BATV monitoring in cattle and goats should be heightened in autumn, and the scope of host monitoring should be expanded to clarify the hosts and vectors of BATV infection.
Collapse
Affiliation(s)
- Zishuo Lu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Xingxiu Yan
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Guiying Fan
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Lixia Li
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Xiutao Sun
- Honghe Animal Disease Prevention and Control Center, Mengzi, China
| | - Huijun Lu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Ningyi Jin
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Hao Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Wenchao Sun
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| |
Collapse
|
6
|
Scachetti GC, Forato J, Claro IM, Hua X, Salgado BB, Vieira A, Simeoni CL, Barbosa ARC, Rosa IL, de Souza GF, Fernandes LCN, de Sena ACH, Oliveira SC, Singh CML, de Lima ST, de Jesus R, Costa MA, Kato RB, Rocha JF, Santos LC, Rodrigues JT, Cunha MP, Sabino EC, Faria NR, Weaver SC, Romano CM, Lalwani P, Proença-Módena JL, de Souza WM. Reemergence of Oropouche virus between 2023 and 2024 in Brazil. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.27.24310296. [PMID: 39132482 PMCID: PMC11312653 DOI: 10.1101/2024.07.27.24310296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Background Oropouche virus (OROV; species Orthobunyavirus oropoucheense) is an arthropod-borne virus that has caused outbreaks of Oropouche fever in Central and South America since the 1950s. This study investigates virological factors contributing to the reemergence of Oropouche fever in Brazil between 2023 and 2024. Methods In this study, we combined OROV genomic, molecular, and serological data from Brazil from 1 January 2015 to 29 June 2024, along with in vitro and in vivo characterization. Molecular screening data included 93 patients with febrile illness between January 2023 and February 2024 from the Amazonas State. Genomic data comprised two genomic OROV sequences from patients. Serological data were obtained from neutralizing antibody tests comparing the prototype OROV strain BeAn 19991 and the 2024 epidemic strain. Epidemiological data included aggregated cases reported to the Brazilian Ministry of Health from 1 January 2014 to 29 June 2024. Findings In 2024, autochthonous OROV infections were detected in previously non-endemic areas across all five Brazilian regions. Cases were reported in 19 of 27 federal units, with 83.2% (6,895 of 8,284) of infections in Northern Brazil and a nearly 200-fold increase in incidence compared to reported cases over the last decade. We detected OROV RNA in 10.8% (10 of 93) of patients with febrile illness between December 2023 and May 2024 in Amazonas. We demonstrate that the 2023-2024 epidemic was caused by a novel OROV reassortant that replicated approximately 100-fold higher titers in mammalian cells compared to the prototype strain. The 2023-2024 OROV reassortant displayed plaques earlier than the prototype, produced 1.7 times more plaques, and plaque sizes were 2.5 larger compared to the prototype. Furthermore, serum collected in 2016 from previously OROV-infected individuals showed at least a 32-fold reduction in neutralizing capacity against the reassortment strain compared to the prototype. Interpretation These findings provide a comprehensive assessment of Oropouche fever in Brazil and contribute to a better understanding of the 2023-2024 OROV reemergence. The recent increased incidence may be related to a higher replication efficiency of a new reassortant virus that also evades previous immunity.
Collapse
Affiliation(s)
- Gabriel C. Scachetti
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Julia Forato
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Ingra M. Claro
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Xinyi Hua
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bárbara B. Salgado
- Laboratory of Infectious Diseases and Immunology, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
| | - Aline Vieira
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Camila L. Simeoni
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Aguyda R. C. Barbosa
- Laboratory of Infectious Diseases and Immunology, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
| | - Italo L. Rosa
- Laboratory of Infectious Diseases and Immunology, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
| | - Gabriela F. de Souza
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Luana C. N. Fernandes
- Laboratory of Infectious Diseases and Immunology, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
| | - Ana Carla H. de Sena
- Laboratory of Infectious Diseases and Immunology, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Universidade Federal do Amazonas, Manaus, Brazil
| | - Stephanne C. Oliveira
- Laboratory of Infectious Diseases and Immunology, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
| | - Carolina M. L. Singh
- Laboratory of Infectious Diseases and Immunology, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | - Shirlene T. de Lima
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
- Laboratório Central de Saúde Pública do Ceará, Fortaleza, Brazil
| | - Ronaldo de Jesus
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana A. Costa
- Laboratório Central de Saúde Pública do Acre, Rio Branco, Brazil
| | - Rodrigo B. Kato
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Marielton P. Cunha
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Ester C. Sabino
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Nuno R. Faria
- Departamento de de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, USA
| | - Camila M. Romano
- Departamento de de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Pritesh Lalwani
- Laboratory of Infectious Diseases and Immunology, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
| | - José Luiz Proença-Módena
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - William M. de Souza
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
7
|
Sick F, Zeiske S, Beer M, Wernike K. Characterization of a natural 'dead-end' variant of Schmallenberg virus. J Gen Virol 2024; 105. [PMID: 38921821 DOI: 10.1099/jgv.0.002005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Schmallenberg virus (SBV) belongs to the Simbu serogroup within the family Peribunyaviridae, genus Orthobunyavirus and is transmitted by Culicoides biting midges. Infection of naïve ruminants in a critical phase of gestation may lead to severe congenital malformations. Sequence analysis from viremic animals revealed a very high genome stability. In contrast, sequence variations are frequently described for SBV from malformed fetuses. In addition to S segment mutations, especially within the M segment encoding the major immunogen Gc, point mutations or genomic deletions are also observed. Analysis of the SBV_D281/12 isolate from a malformed fetus revealed multiple point mutations in all three genome segments. It also has a large genomic deletion in the antigenic domain encoded by the M segment compared to the original SBV reference strain 'BH80/11' isolated from viremic blood in 2011. Interestingly, SBV_D281/12 showed a marked replication deficiency in vitro in Culicoides sonorensis cells (KC cells), but not in standard baby hamster kidney cells (BHK-21). We therefore generated a set of chimeric viruses of rSBV_D281/12 and wild-type rSBV_BH80/11 by reverse genetics, which were characterized in both KC and BHK-21 cells. It could be shown that the S segment of SBV_D281/12 is responsible for the replication deficit and that it acts independently from the large deletion within Gc. In addition, a single point mutation at position 111 (S to N) of the nucleoprotein was identified as the critical mutation. Our results suggest that virus variants found in malformed fetuses and carrying characteristic genomic mutations may have a clear 'loss of fitness' for their insect hosts in vitro. It can also be concluded that such mutations lead to virus variants that are no longer part of the natural transmission cycle between mammalian and insect hosts. Interestingly, analysis of a series of SBV sequences confirmed the S111N mutation exclusively in samples of malformed fetuses and not in blood from viremic animals. The characterization of these changes will allow the definition of protein functions that are critical for only one group of hosts.
Collapse
Affiliation(s)
- Franziska Sick
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Sophie Zeiske
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
8
|
Alatrash R, Herrera BB. The Adaptive Immune Response against Bunyavirales. Viruses 2024; 16:483. [PMID: 38543848 PMCID: PMC10974645 DOI: 10.3390/v16030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/23/2024] Open
Abstract
The Bunyavirales order includes at least fourteen families with diverse but related viruses, which are transmitted to vertebrate hosts by arthropod or rodent vectors. These viruses are responsible for an increasing number of outbreaks worldwide and represent a threat to public health. Infection in humans can be asymptomatic, or it may present with a range of conditions from a mild, febrile illness to severe hemorrhagic syndromes and/or neurological complications. There is a need to develop safe and effective vaccines, a process requiring better understanding of the adaptive immune responses involved during infection. This review highlights the most recent findings regarding T cell and antibody responses to the five Bunyavirales families with known human pathogens (Peribunyaviridae, Phenuiviridae, Hantaviridae, Nairoviridae, and Arenaviridae). Future studies that define and characterize mechanistic correlates of protection against Bunyavirales infections or disease will help inform the development of effective vaccines.
Collapse
Affiliation(s)
- Reem Alatrash
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Bobby Brooke Herrera
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
9
|
Zhang Y, Liu X, Wu Z, Feng S, Lu K, Zhu W, Sun H, Niu G. Oropouche virus: A neglected global arboviral threat. Virus Res 2024; 341:199318. [PMID: 38224842 PMCID: PMC10827532 DOI: 10.1016/j.virusres.2024.199318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
The Oropouche virus is an important arthropod-borne virus in the Peribunyaviridae family that can cause febrile illnesses, and it is widely distributed in tropical regions such as Central and South America. Since the virus was first identified, a large number of related cases are reported every year. No deaths have been reported to date, however, the virus can cause systemic infections, including the nervous and blood systems, leading to serious complications. The transmission of Oropouche virus occurs through both urban and sylvatic cycles, with the anthropophilic biting midge Culicoides paraensis serving as the primary vector in urban areas. Direct human-to-human transmission of Oropouche virus has not been observed. Oropouche virus consists of three segments, and the proteins encoded by the different segments enables the virus to replicate efficiently in the host and to resist the host's immune response. Phylogenetic analyses showed that Oropouche virus sequences are geographically distinct and have closer homologies with Iquitos virus and Perdoes virus, which belong to the family Peribunyaviridae. Despite the enormous threat it poses to public health, there are currently no licensed vaccines or specific antiviral treatments for the disease it causes. Recent studies have utilised imJatobal virusmunoinformatics approaches to develop epitope-based peptide vaccines, which have laid the groundwork for the clinical use of vaccines. The present review focuses on the structure, epidemiology, immunity and phylogeny of Oropouche virus, as well as the progress of vaccine development, thereby attracting wider attention and research, particularly with regard to potential vaccine programs.
Collapse
Affiliation(s)
- Yuli Zhang
- Shandong Second Medical University, Weifang, 261053, China
| | - Xiao Liu
- Shandong Second Medical University, Weifang, 261053, China
| | - Zhen Wu
- Shandong Second Medical University, Weifang, 261053, China
| | - Shuo Feng
- Shandong Second Medical University, Weifang, 261053, China
| | - Ke Lu
- Shandong Second Medical University, Weifang, 261053, China
| | - Wenbing Zhu
- Shandong Second Medical University, Weifang, 261053, China
| | - Hengyi Sun
- Shandong Second Medical University, Weifang, 261053, China.
| | - Guoyu Niu
- Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
10
|
Lefebvre V, Leon Foun Lin R, Cole L, Cosset FL, Fogeron ML, Böckmann A. Do NSm Virulence Factors in the Bunyavirales Viral Order Originate from Gn Gene Duplication? Viruses 2024; 16:90. [PMID: 38257790 PMCID: PMC10819786 DOI: 10.3390/v16010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
One-third of the nine WHO shortlisted pathogens prioritized for research and development in public health emergencies belong to the Bunyavirales order. Several Bunyavirales species carry an NSm protein that acts as a virulence factor. We predicted the structures of these NSm proteins and unexpectedly found that in two families, their cytosolic domain was inferred to have a similar fold to that of the cytosolic domain of the viral envelope-forming glycoprotein N (Gncyto) encoded on the same genome fragment. We show that although the sequence identity between the NSmcyto and the Gncyto domains is low, the conservation of the two zinc finger-forming CysCysHisCys motifs explains the predicted structural conservation. Importantly, our predictions provide a first glimpse into the long-unknown structure of NSm. Also, these predictions suggest that NSm is the result of a gene duplication event in the Bunyavirales Nairoviridae and Peribunyaviridae families and that such events may be common in the recent evolutionary history of RNA viruses.
Collapse
Affiliation(s)
- Victor Lefebvre
- MMSB—Molecular Microbiology and Structural Biochemistry, Université de Lyon 1, CNRS UMR 5086, F-69367 Lyon, France; (V.L.); (R.L.F.L.)
| | - Ravy Leon Foun Lin
- MMSB—Molecular Microbiology and Structural Biochemistry, Université de Lyon 1, CNRS UMR 5086, F-69367 Lyon, France; (V.L.); (R.L.F.L.)
| | - Laura Cole
- MMSB—Molecular Microbiology and Structural Biochemistry, Université de Lyon 1, CNRS UMR 5086, F-69367 Lyon, France; (V.L.); (R.L.F.L.)
| | - François-Loïc Cosset
- CIRI—Centre International de Recherche en Infectiologie, Université de Lyon 1, ENS de Lyon, Inserm U1111, CNRS UMR 5308, F-69007 Lyon, France
| | - Marie-Laure Fogeron
- MMSB—Molecular Microbiology and Structural Biochemistry, Université de Lyon 1, CNRS UMR 5086, F-69367 Lyon, France; (V.L.); (R.L.F.L.)
| | - Anja Böckmann
- MMSB—Molecular Microbiology and Structural Biochemistry, Université de Lyon 1, CNRS UMR 5086, F-69367 Lyon, France; (V.L.); (R.L.F.L.)
| |
Collapse
|
11
|
Hughes HR, Kenney JL, Calvert AE. Cache Valley virus: an emerging arbovirus of public and veterinary health importance. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1230-1241. [PMID: 37862064 DOI: 10.1093/jme/tjad058] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 10/21/2023]
Abstract
Cache Valley virus (CVV) is a mosquito-borne virus in the genus Orthobunyavirus (Bunyavirales: Peribunyaviridae) that has been identified as a teratogen in ruminants causing fetal death and severe malformations during epizootics in the U.S. CVV has recently emerged as a viral pathogen causing severe disease in humans. Despite its emergence as a public health and agricultural concern, CVV has yet to be significantly studied by the scientific community. Limited information exists on CVV's geographic distribution, ecological cycle, seroprevalence in humans and animals, and spectrum of disease, including its potential as a human teratogen. Here, we present what is known of CVV's virology, ecology, and clinical disease in ruminants and humans. We discuss the current diagnostic techniques available and highlight gaps in our current knowledge and considerations for future research.
Collapse
Affiliation(s)
- Holly R Hughes
- Arboviral Diseases Branch, Division of Vector-Borne Infectious Diseases, U.S. Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Joan L Kenney
- Arboviral Diseases Branch, Division of Vector-Borne Infectious Diseases, U.S. Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Amanda E Calvert
- Arboviral Diseases Branch, Division of Vector-Borne Infectious Diseases, U.S. Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| |
Collapse
|
12
|
Powers JA, Boroughs KL, Mikula S, Goodman CH, Davis EH, Thrasher EM, Hughes HR, Biggerstaff BJ, Calvert AE. Characterization of a monoclonal antibody specific to California serogroup orthobunyaviruses and development as a chimeric immunoglobulin M-positive control in human diagnostics. Microbiol Spectr 2023; 11:e0196623. [PMID: 37668403 PMCID: PMC10581219 DOI: 10.1128/spectrum.01966-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 09/06/2023] Open
Abstract
IMPORTANCE Orthobunyaviruses in the California serogroup cause severe neurological disease in children and adults. While these viruses are known to circulate widely in North America, their occurrence is rare. Serological testing for CSGVs is hindered by the limited availability and volumes of human-positive specimens needed as controls in serologic assays. Here, we described the development of a murine monoclonal antibody cross-reactive to CSGVs engineered to contain the variable regions of the murine antibody on the backbone of human IgM. The chimeric IgM produced from the stably expressing HEK293 cell line was evaluated for use as a surrogate human-positive control in a serologic diagnostic test.
Collapse
Affiliation(s)
- Jordan A. Powers
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Karen L. Boroughs
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Sierra Mikula
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Christin H. Goodman
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Emily H. Davis
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Elisa M. Thrasher
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Holly R. Hughes
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Brad J. Biggerstaff
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Amanda E. Calvert
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| |
Collapse
|
13
|
Hover S, Charlton FW, Hellert J, Swanson JJ, Mankouri J, Barr JN, Fontana J. Organisation of the orthobunyavirus tripodal spike and the structural changes induced by low pH and K + during entry. Nat Commun 2023; 14:5885. [PMID: 37735161 PMCID: PMC10514341 DOI: 10.1038/s41467-023-41205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
Following endocytosis, enveloped viruses employ the changing environment of maturing endosomes as cues to promote endosomal escape, a process often mediated by viral glycoproteins. We previously showed that both high [K+] and low pH promote entry of Bunyamwera virus (BUNV), the prototypical bunyavirus. Here, we use sub-tomogram averaging and AlphaFold, to generate a pseudo-atomic model of the whole BUNV glycoprotein envelope. We unambiguously locate the Gc fusion domain and its chaperone Gn within the floor domain of the spike. Furthermore, viral incubation at low pH and high [K+], reminiscent of endocytic conditions, results in a dramatic rearrangement of the BUNV envelope. Structural and biochemical assays indicate that pH 6.3/K+ in the absence of a target membrane elicits a fusion-capable triggered intermediate state of BUNV GPs; but the same conditions induce fusion when target membranes are present. Taken together, we provide mechanistic understanding of the requirements for bunyavirus entry.
Collapse
Affiliation(s)
- Samantha Hover
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - Frank W Charlton
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - Jan Hellert
- Centre for Structural Systems Biology, Leibniz-Institut für Virologie (LIV), Notkestraße 85, 22607, Hamburg, Germany
| | - Jessica J Swanson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Leeds, United Kingdom.
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, United Kingdom.
| | - John N Barr
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Leeds, United Kingdom.
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, United Kingdom.
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Leeds, United Kingdom.
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, United Kingdom.
| |
Collapse
|
14
|
Thannickal SA, Spector SN, Stapleford KA. The La Crosse virus class II fusion glycoprotein ij loop contributes to infectivity and replication in vitro and in vivo. J Virol 2023; 97:e0081923. [PMID: 37578236 PMCID: PMC10506486 DOI: 10.1128/jvi.00819-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) are an emerging and evolving global public health threat, with limited antiviral treatments or vaccines available. La Crosse virus (LACV) from the Bunyavirales order is responsible for pediatric encephalitis cases in the United States, yet little is known about the infectivity of LACV. Given the structural similarities between class II fusion glycoproteins of LACV and chikungunya virus (CHIKV), an alphavirus from the Togaviridae family, we hypothesized that LACV would share similar entry mechanisms with CHIKV. To test this hypothesis, we performed cholesterol-depletion and repletion assays and used cholesterol-modulating compounds to study LACV entry and replication. We found that LACV entry was cholesterol dependent, while replication was less affected by cholesterol manipulation. In addition, we generated single-point mutants in the LACV Gc ij loop that corresponded to known CHIKV residues important for virus entry. We found that a conserved histidine and alanine residue in the Gc ij loop impaired virus infectivity and attenuated LACV replication in vitro and in vivo. Finally, we took an evolution-based approach to explore how the LACV glycoprotein evolves in mosquitoes and mice. We found multiple variants that cluster in the Gc glycoprotein head domain, providing evidence for the Gc glycoprotein as a contributor to LACV adaptation. Together, these results begin to characterize the mechanisms of LACV infectivity and how the LACV glycoprotein contributes to replication and pathogenesis. IMPORTANCE Vector-borne viruses are significant health threats that lead to devastating disease worldwide. The emergence of arboviruses, in addition to the lack of effective antivirals or vaccines, highlights the need to study how arboviruses replicate at the molecular level. One potential antiviral target is the class II fusion glycoprotein. Alphaviruses, flaviviruses, and bunyaviruses encode a class II fusion glycoprotein that contains strong structural similarities at the tip of domain II. Here, we show that the bunyavirus La Crosse virus uses a cholesterol-dependent entry pathway similar to the alphavirus chikungunya virus, and residues in the ij loop are important for virus infectivity in vitro and replication in mice. These studies show that genetically diverse viruses may use similar pathways through conserved structure domains, suggesting that these viruses may be targets for broad-spectrum antivirals in multiple arboviral families.
Collapse
Affiliation(s)
- Sara A. Thannickal
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sophie N. Spector
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
15
|
van der Walt M, Rakaki ME, MacIntyre C, Mendes A, Junglen S, Theron C, Anthony T, O’Dell N, Venter M. Identification and Molecular Characterization of Shamonda Virus in an Aborted Goat Fetus in South Africa. Pathogens 2023; 12:1100. [PMID: 37764908 PMCID: PMC10536486 DOI: 10.3390/pathogens12091100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Viruses in the Orthobunyavirus genus, Peribunyaviridae family, are associated with encephalitis, birth defects and fatalities in animals, and some are zoonotic. Molecular diagnostic investigations of animals with neurological signs previously identified Shuni virus (SHUV) as the most significant orthobunyavirus in South Africa (SA). To determine if other orthobunyaviruses occur in SA, we screened clinical specimens from animals with neurological signs, abortions, and acute deaths from across SA in 2021 using a small (S) segment Simbu serogroup specific TaqMan real-time reverse transcription polymerase chain reaction (RT-PCR). Positive cases were subjected to Sanger sequencing and phylogenetic analysis to identify specific viruses involved, followed by next-generation sequencing (NGS) and additional PCR assays targeting the medium (M) segment and the large (L) segment. In total, 3/172 (1.7%) animals were PCR positive for Simbu serogroup viruses, including two horses with neurological signs and one aborted goat fetus in 2021. Phylogenetic analyses confirmed that the two horses were infected with SHUV strains with nucleotide pairwise (p-) distances of 98.1% and 97.6% to previously identified strains, while the aborted goat fetus was infected with a virus closely related to Shamonda virus (SHAV) with nucleotide p-distances between 94.7% and 91.8%. Virus isolation was unsuccessful, likely due to low levels of infectious particles. However, phylogenetic analyses of a larger fragment of the S segment obtained through NGS and partial sequences of the M and L segments obtained through RT-PCR and Sanger sequencing confirmed that the virus is likely SHAV with nucleotide p-distances between 96.6% and 97.8%. This is the first detection of SHAV in an aborted animal in SA and suggests that SHAV should be considered in differential diagnosis for abortion in animals in Southern Africa.
Collapse
Affiliation(s)
- Miné van der Walt
- Zoonotic Arbo- and Respiratory Virus Research Program, Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0084, South Africa; (M.v.d.W.); (M.E.R.); (C.M.); (A.M.)
| | - Matshepo E. Rakaki
- Zoonotic Arbo- and Respiratory Virus Research Program, Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0084, South Africa; (M.v.d.W.); (M.E.R.); (C.M.); (A.M.)
| | - Caitlin MacIntyre
- Zoonotic Arbo- and Respiratory Virus Research Program, Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0084, South Africa; (M.v.d.W.); (M.E.R.); (C.M.); (A.M.)
| | - Adriano Mendes
- Zoonotic Arbo- and Respiratory Virus Research Program, Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0084, South Africa; (M.v.d.W.); (M.E.R.); (C.M.); (A.M.)
| | - Sandra Junglen
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany;
| | - Cherise Theron
- Western Cape Provincial Veterinary Laboratory, Stellenbosch 7600, South Africa; (C.T.); (T.A.)
| | - Tasneem Anthony
- Western Cape Provincial Veterinary Laboratory, Stellenbosch 7600, South Africa; (C.T.); (T.A.)
| | - Nicolize O’Dell
- Department of Paraclinical Science, Section Pathology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa;
| | - Marietjie Venter
- Zoonotic Arbo- and Respiratory Virus Research Program, Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0084, South Africa; (M.v.d.W.); (M.E.R.); (C.M.); (A.M.)
| |
Collapse
|
16
|
Guerra GS, Barriales D, Lorenzo G, Moreno S, Anguita J, Brun A, Abrescia NGA. Immunization with a small fragment of the Schmallenberg virus nucleoprotein highly conserved across the Orthobunyaviruses of the Simbu serogroup reduces viremia in SBV challenged IFNAR -/- mice. Vaccine 2023; 41:3275-3284. [PMID: 37085455 DOI: 10.1016/j.vaccine.2023.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/23/2023]
Abstract
Schmallenberg Virus (SBV), an arbovirus from the Peribunyaviridae family and Orthobunyavirus genus, was discovered in late 2011 in Germany and has been circulating in Europe, Asia and Africa ever since. The virus causes a disease associated with ruminants that includes fever, fetal malformation, drop in milk production, diarrhoea and stillbirths, becoming a burden for small and large farms. Building on previous studies on SBV nucleoprotein (SBV-N) as a promising vaccine candidate, we have investigated the possible protein regions responsible for protection. Based on selective truncation of domains designed from the available crystal structure of the SBV-N, we identified both the N-terminal domain (N-term; Met1 - Thr133) and a smaller fragment within (C4; Met1 - Ala58) as vaccine prototypes. Two injections of the N-term and C4 polypeptides protected mice knockout for type I interferon (IFN) receptors (IFNAR-/-) challenged with virulent SBV, opposite to control groups that presented severe signs of morbidity and weight loss. Viremia analyses along with the presence of IFN-γ secreted from splenocytes re-stimulated with the N-terminal region of the protein corroborate that these two portions of SBV-N can be employed as subunit vaccines. Apart from both proteinaceous fragments being easily produced in bacterial cells, the C4 polypeptide shares a high sequence homology (∼87.1 %) with the corresponding region of nucleoproteins of several viruses of the Simbu serogroup, a group of Orthobunyaviruses that comprises SBV and veterinary pathogens like Akabane virus and human infecting viruses like Oropouche. Thus, we propose that this smaller fragment is better suited for vaccine nanoparticle formulation, and it paves the way to further research with other related Orthobunyaviruses.
Collapse
Affiliation(s)
- Gabriel Soares Guerra
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia 48160, Spain
| | - Diego Barriales
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain
| | - Gema Lorenzo
- Animal Health Research Center (INIA-CISA/CSIC), 28130 Valdeolmos, Madrid, Spain
| | - Sandra Moreno
- Animal Health Research Center (INIA-CISA/CSIC), 28130 Valdeolmos, Madrid, Spain
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia 48015, Spain
| | - Alejandro Brun
- Animal Health Research Center (INIA-CISA/CSIC), 28130 Valdeolmos, Madrid, Spain
| | - Nicola G A Abrescia
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia 48160, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia 48015, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
Thannickal SA, Spector SN, Stapleford KA. The La Crosse virus class II fusion glycoprotein ij loop contributes to infectivity and cholesterol-dependent entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529620. [PMID: 36865275 PMCID: PMC9980073 DOI: 10.1101/2023.02.22.529620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Arthropod-borne viruses (arboviruses) are an emerging and evolving global public health threat with little to no antiviral treatments. La Crosse virus (LACV) from the Bunyavirales order is responsible for pediatric encephalitis cases in the United States, yet little is known about the infectivity of LACV. Given the structural similarities between class II fusion glycoproteins of LACV and chikungunya virus (CHIKV), an alphavirus from the Togaviridae family, we hypothesized that LACV would share similar entry mechanisms to CHIKV. To test this hypothesis, we performed cholesterol-depletion and repletion assays and used cholesterol modulating compounds to study LACV entry and replication. We found that LACV entry was cholesterol-dependent while replication was less affected by cholesterol manipulation. In addition, we generated single point mutants in the LACV ij loop that corresponded to known CHIKV residues important for virus entry. We found that a conserved histidine and alanine residue in the Gc ij loop impaired virus infectivity and attenuate LACV in vitro and in vivo . Finally, we took an evolution-based approach to explore how the LACV glycoprotein evolution in mosquitoes and mice. We found multiple variants that cluster in the Gc glycoprotein head domain, supporting the Gc glycoprotein as a target for LACV adaptation. Together, these results begin to characterize the mechanisms of LACV infectivity and how the LACV glycoprotein contributes to infectivity and pathogenesis. Importance Vector-borne arboviruses are significant health threats leading to devastating disease worldwide. This emergence and the fact that there are little to no vaccines or antivirals targeting these viruses highlights the need to study how arboviruses replicate at the molecular level. One potential antiviral target is the class II fusion glycoprotein. Alphaviruses, flaviviruses, and bunyaviruses encode a class II fusion glycoprotein that contain strong structural similarities in the tip of domain II. Here we show that the bunyavirus La Crosse virus uses similar mechanisms to entry as the alphavirus chikungunya virus and residues in the ij loop are important for virus infectivity. These studies show that genetically diverse viruses use similar mechanisms through concerned structure domains, suggesting these may be a target for broad-spectrum antivirals to multiple arbovirus families.
Collapse
|
18
|
Hellert J, Aebischer A, Haouz A, Guardado-Calvo P, Reiche S, Beer M, Rey FA. Structure, function, and evolution of the Orthobunyavirus membrane fusion glycoprotein. Cell Rep 2023; 42:112142. [PMID: 36827185 DOI: 10.1016/j.celrep.2023.112142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
La Crosse virus, responsible for pediatric encephalitis in the United States, and Schmallenberg virus, a highly teratogenic veterinary virus in Europe, belong to the large Orthobunyavirus genus of zoonotic arthropod-borne pathogens distributed worldwide. Viruses in this under-studied genus cause CNS infections or fever with debilitating arthralgia/myalgia syndromes, with no effective treatment. The main surface antigen, glycoprotein Gc (∼1,000 residues), has a variable N-terminal half (GcS) targeted by the patients' antibody response and a conserved C-terminal moiety (GcF) responsible for membrane fusion during cell entry. Here, we report the X-ray structure of post-fusion La Crosse and Schmallenberg virus GcF, revealing the molecular determinants for hairpin formation and trimerization required to drive membrane fusion. We further experimentally confirm the role of residues in the fusion loops and in a vestigial endoplasmic reticulum (ER) translocation sequence at the GcS-GcF junction. The resulting knowledge provides essential molecular underpinnings for future development of potential therapeutic treatments and vaccines.
Collapse
Affiliation(s)
- Jan Hellert
- Structural Virology Unit, Institut Pasteur - Université Paris-Cité, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015 Paris, France; Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Notkestraße 85, 22607 Hamburg, Germany
| | - Andrea Aebischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany; Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany
| | - Ahmed Haouz
- Crystallography Platform C2RT, Institut Pasteur, CNRS UMR 3528, 25-28 rue du Dr. Roux, 75015 Paris, France
| | - Pablo Guardado-Calvo
- Structural Virology Unit, Institut Pasteur - Université Paris-Cité, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015 Paris, France
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany.
| | - Félix A Rey
- Structural Virology Unit, Institut Pasteur - Université Paris-Cité, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
19
|
Barbosa NS, Concha JO, daSilva LLP, Crump CM, Graham SC. Oropouche Virus Glycoprotein Topology and Cellular Requirements for Glycoprotein Secretion. J Virol 2023; 97:e0133122. [PMID: 36475765 PMCID: PMC9888203 DOI: 10.1128/jvi.01331-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022] Open
Abstract
Oropouche virus (OROV; genus Orthobunyavirus) is the etiological agent of Oropouche fever, a debilitating febrile illness common in South America. We used recombinant expression of the OROV M polyprotein, which encodes the surface glycoproteins Gn and Gc plus the nonstructural protein NSm, to probe the cellular determinants for OROV assembly and budding. Gn and Gc self-assemble and are secreted independently of NSm. Mature OROV Gn has two predicted transmembrane domains that are crucial for glycoprotein translocation to the Golgi complex and glycoprotein secretion, and unlike related orthobunyaviruses, both transmembrane domains are retained during Gn maturation. Disruption of Golgi function using the drugs brefeldin A and monensin inhibits glycoprotein secretion. Infection studies have previously shown that the cellular endosomal sorting complexes required for transport (ESCRT) machinery is recruited to Golgi membranes during OROV assembly and that ESCRT activity is required for virus secretion. A dominant-negative form of the ESCRT-associated ATPase VPS4 significantly reduces recombinant OROV glycoprotein secretion and blocks virus release from infected cells, and VPS4 partly colocalizes with OROV glycoproteins and membranes costained with Golgi markers. Furthermore, immunoprecipitation and fluorescence microscopy experiments demonstrate that OROV glycoproteins interact with the ESCRT-III component CHMP6, with overexpression of a dominant-negative form of CHMP6 significantly reducing OROV glycoprotein secretion. Taken together, our data highlight differences in M polyprotein processing across orthobunyaviruses, indicate that Golgi and ESCRT function are required for glycoprotein secretion, and identify CHMP6 as an ESCRT-III component that interacts with OROV glycoproteins. IMPORTANCE Oropouche virus causes Oropouche fever, a debilitating illness common in South America that is characterized by high fever, headache, myalgia, and vomiting. The tripartite genome of this zoonotic virus is capable of reassortment, and there have been multiple epidemics of Oropouche fever in South America over the last 50 years, making Oropouche virus infection a significant threat to public health. However, the molecular characteristics of this arbovirus are poorly understood. We developed a recombinant protein expression system to investigate the cellular determinants of OROV glycoprotein maturation and secretion. We show that the proteolytic processing of the M polypeptide, which encodes the surface glycoproteins (Gn and Gc) plus a nonstructural protein (NSm), differs between OROV and its close relative Bunyamwera virus. Furthermore, we demonstrate that OROV M glycoprotein secretion requires the cellular endosomal sorting complexes required for transport (ESCRT) membrane-remodeling machinery and identify that the OROV glycoproteins interact with the ESCRT protein CHMP6.
Collapse
Affiliation(s)
- Natalia S. Barbosa
- Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Juan O. Concha
- Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luis L. P. daSilva
- Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Colin M. Crump
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen C. Graham
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Wernike K, Aebischer A, Audonnet JC, Beer M. Vaccine development against Schmallenberg virus: from classical inactivated to modified-live to scaffold particle vaccines. ONE HEALTH OUTLOOK 2022; 4:13. [PMID: 35978443 PMCID: PMC9383659 DOI: 10.1186/s42522-022-00069-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/01/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Subsequent to its first detection in 2011, the insect-transmitted bunyavirus Schmallenberg virus (SBV; genus Orthobunyavirus) caused a large-scale epizootic of fetal malformation in the European ruminant population. By now, SBV established an enzootic status in Central Europe with regular wave-like re-emergence, which has prompted intensive research efforts in order to elucidate the pathogenesis and to develop countermeasures. Since different orthobunyaviruses share a very similar structural organization, SBV has become an important model virus to study orthobunyaviruses in general and for the development of vaccines. In this review article, we summarize which vaccine formulations have been tested to prevent SBV infections in livestock animals. MAIN: In a first step, inactivated SBV candidate vaccines were developed, which efficiently protected against an experimental SBV infection. Due to the inability to differentiate infected from vaccinated animals (= DIVA capability), a series of further approaches ranging from modified live, live-vectored, subunit and DNA-mediated vaccine delivery to multimeric antigen-presentation on scaffold particles was developed and evaluated. In short, it was repeatedly demonstrated that the N-terminal half of the glycoprotein Gc, composed of the Gc head and the head-stalk, is highly immunogenic, with a superior immunogenicity of the complete head-stalk domain compared to the Gc head only. Furthermore, in all Gc protein-based vaccine candidates, immunized animals can be readily discriminated from animals infected with the field virus by the absence of antibodies against the viral N-protein. CONCLUSIONS Using SBV as a model virus, several vaccination-challenge studies in target species underscored the superior performance of antigenic domains compared to linear epitopes regarding their immunogenicity. In addition, it could be shown that holistic approaches combining immunization-challenge infection studies with structural analyses provide essential knowledge required for an improved vaccine design.
Collapse
Affiliation(s)
- Kerstin Wernike
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Andrea Aebischer
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | | | - Martin Beer
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany.
| |
Collapse
|
21
|
Hollidge BS, Salzano MV, Ibrahim JM, Fraser JW, Wagner V, Leitner NE, Weiss SR, Weber F, González-Scarano F, Soldan SS. Targeted Mutations in the Fusion Peptide Region of La Crosse Virus Attenuate Neuroinvasion and Confer Protection against Encephalitis. Viruses 2022; 14:1464. [PMID: 35891445 PMCID: PMC9317099 DOI: 10.3390/v14071464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
La Crosse virus (LACV) is a major cause of pediatric encephalitis and aseptic meningitis in the Midwestern, Mid-Atlantic, and Southern United States, where it is an emerging pathogen. The LACV Gc glycoprotein plays a critical role in the neuropathogenesis of LACV encephalitis as the putative virus attachment protein. Previously, we identified and experimentally confirmed the location of the LACV fusion peptide within Gc and generated a panel of recombinant LACVs (rLACVs) containing mutations in the fusion peptide as well as the wild-type sequence. These rLACVs retained their ability to cause neuronal death in a primary embryonic rat neuronal culture system, despite decreased replication and fusion phenotypes. To test the role of the fusion peptide in vivo, we tested rLACVs in an age-dependent murine model of LACV encephalitis. When inoculated directly into the CNS of young adult mice (P28), the rLACV fusion peptide mutants were as neurovirulent as the rLACV engineered with a wild-type sequence, confirming the results obtained in tissue culture. In contrast, the fusion peptide mutant rLACVs were less neuroinvasive when suckling (P3) or weanling (P21) mice were inoculated peripherally, demonstrating that the LACV fusion peptide is a determinant of neuroinvasion, but not of neurovirulence. In a challenge experiment, we found that peripheral challenge of weanling (P21) mice with fusion peptide mutant rLACVs protected from a subsequent WT-LACV challenge, suggesting that mutations in the fusion peptide are an attractive target for generating live-attenuated virus vaccines. Importantly, the high degree of conservation of the fusion peptide amongst the Bunyavirales and, structurally, other arboviruses suggests that these findings are broadly applicable to viruses that use a class II fusion mechanism and cause neurologic disease.
Collapse
Affiliation(s)
- Bradley S. Hollidge
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; (B.S.H.); (M.-V.S.); (J.M.I.); (J.W.F.); (N.E.L.); (S.R.W.); (F.G.-S.)
- Neuroscience Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Mary-Virginia Salzano
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; (B.S.H.); (M.-V.S.); (J.M.I.); (J.W.F.); (N.E.L.); (S.R.W.); (F.G.-S.)
| | - John M. Ibrahim
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; (B.S.H.); (M.-V.S.); (J.M.I.); (J.W.F.); (N.E.L.); (S.R.W.); (F.G.-S.)
| | - Jonathan W. Fraser
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; (B.S.H.); (M.-V.S.); (J.M.I.); (J.W.F.); (N.E.L.); (S.R.W.); (F.G.-S.)
| | - Valentina Wagner
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, 79008 Freiburg, Germany; (V.W.); (F.W.)
| | - Nicole E. Leitner
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; (B.S.H.); (M.-V.S.); (J.M.I.); (J.W.F.); (N.E.L.); (S.R.W.); (F.G.-S.)
| | - Susan R. Weiss
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; (B.S.H.); (M.-V.S.); (J.M.I.); (J.W.F.); (N.E.L.); (S.R.W.); (F.G.-S.)
| | - Friedemann Weber
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, 79008 Freiburg, Germany; (V.W.); (F.W.)
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, 35392 Giessen, Germany
| | - Francisco González-Scarano
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; (B.S.H.); (M.-V.S.); (J.M.I.); (J.W.F.); (N.E.L.); (S.R.W.); (F.G.-S.)
| | - Samantha S. Soldan
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; (B.S.H.); (M.-V.S.); (J.M.I.); (J.W.F.); (N.E.L.); (S.R.W.); (F.G.-S.)
- The Wistar Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Baseline mapping of Oropouche virology, epidemiology, therapeutics, and vaccine research and development. NPJ Vaccines 2022; 7:38. [PMID: 35301331 PMCID: PMC8931169 DOI: 10.1038/s41541-022-00456-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/04/2022] [Indexed: 11/08/2022] Open
Abstract
Oropouche virus (OROV) is an arthropod-borne orthobunyavirus found in South America and causes Oropouche fever, a febrile infection similar to dengue. It is the second most prevalent arthropod-borne viral disease in South America after dengue. Over 500,000 cases have been diagnosed since the virus was first discovered in 1955; however, this is likely a significant underestimate given the limited availability of diagnostics. No fatalities have been reported to date, however, up to 60% of cases have a recurrent phase of disease within one month of recovery from the primary disease course. The main arthropod vector is the biting midge Culicoides paraensis, which has a geographic range as far north as the United States and demonstrates the potential for OROV to geographically expand. The transmission cycle is incompletely understood and vertebrate hosts include both non-human primates and birds further supporting the potential ability of the virus to spread. A number of candidate antivirals have been evaluated against OROV in vitro but none showed antiviral activity. Surprisingly, there is only one report in the literature on candidate vaccines. We suggest that OROV is an undervalued pathogen much like chikungunya, Schmallenberg, and Zika viruses were before they emerged. Overall, OROV is an important emerging disease that has been under-investigated and has the potential to cause large epidemics in the future. Further research, in particular candidate vaccines, is needed for this important pathogen.
Collapse
|
23
|
Windhaber S, Xin Q, Uckeley ZM, Koch J, Obr M, Garnier C, Luengo-Guyonnot C, Duboeuf M, Schur FKM, Lozach PY. The Orthobunyavirus Germiston Enters Host Cells from Late Endosomes. J Virol 2022; 96:e0214621. [PMID: 35019710 PMCID: PMC8906410 DOI: 10.1128/jvi.02146-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/03/2022] [Indexed: 01/01/2023] Open
Abstract
With more than 80 members worldwide, the Orthobunyavirus genus in the Peribunyaviridae family is a large genus of enveloped RNA viruses, many of which are emerging pathogens in humans and livestock. How orthobunyaviruses (OBVs) penetrate and infect mammalian host cells remains poorly characterized. Here, we investigated the entry mechanisms of the OBV Germiston (GERV). Viral particles were visualized by cryo-electron microscopy and appeared roughly spherical with an average diameter of 98 nm. Labeling of the virus with fluorescent dyes did not adversely affect its infectivity and allowed the monitoring of single particles in fixed and live cells. Using this approach, we found that endocytic internalization of bound viruses was asynchronous and occurred within 30 to 40 min. The virus entered Rab5a-positive (Rab5a+) early endosomes and, subsequently, late endosomal vacuoles containing Rab7a but not LAMP-1. Infectious entry did not require proteolytic cleavage, and endosomal acidification was sufficient and necessary for viral fusion. Acid-activated penetration began 15 to 25 min after initiation of virus internalization and relied on maturation of early endosomes to late endosomes. The optimal pH for viral membrane fusion was slightly below 6.0, and penetration was hampered when the potassium influx was abolished. Overall, our study provides real-time visualization of GERV entry into host cells and demonstrates the importance of late endosomal maturation in facilitating OBV penetration. IMPORTANCE Orthobunyaviruses (OBVs), which include La Crosse, Oropouche, and Schmallenberg viruses, represent a growing threat to humans and domestic animals worldwide. Ideally, preventing OBV spread requires approaches that target early stages of infection, i.e., virus entry. However, little is known about the molecular and cellular mechanisms by which OBVs enter and infect host cells. Here, we developed accurate, sensitive tools and assays to investigate the penetration process of GERV. Our data emphasize the central role of late endosomal maturation in GERV entry, providing a comprehensive overview of the early stages of an OBV infection. Our study also brings a complete toolbox of innovative methods to study each step of the OBV entry program in fixed and living cells, from virus binding and endocytosis to fusion and penetration. The information gained herein lays the foundation for the development of antiviral strategies aiming to block OBV entry.
Collapse
Affiliation(s)
- Stefan Windhaber
- CellNetworks-Cluster of Excellence Heidelberg, Germany
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Qilin Xin
- University of Lyon, INRAE, EPHE, IVPC, Lyon, France
| | - Zina M. Uckeley
- CellNetworks-Cluster of Excellence Heidelberg, Germany
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jana Koch
- CellNetworks-Cluster of Excellence Heidelberg, Germany
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Obr
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | | | | | | | - Pierre-Yves Lozach
- CellNetworks-Cluster of Excellence Heidelberg, Germany
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- University of Lyon, INRAE, EPHE, IVPC, Lyon, France
| |
Collapse
|
24
|
Guardado-Calvo P, Rey FA. The Viral Class II Membrane Fusion Machinery: Divergent Evolution from an Ancestral Heterodimer. Viruses 2021; 13:v13122368. [PMID: 34960636 PMCID: PMC8706100 DOI: 10.3390/v13122368] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
A key step during the entry of enveloped viruses into cells is the merger of viral and cell lipid bilayers. This process is driven by a dedicated membrane fusion protein (MFP) present at the virion surface, which undergoes a membrane–fusogenic conformational change triggered by interactions with the target cell. Viral MFPs have been extensively studied structurally, and are divided into three classes depending on their three-dimensional fold. Because MFPs of the same class are found in otherwise unrelated viruses, their intra-class structural homology indicates horizontal gene exchange. We focus this review on the class II fusion machinery, which is composed of two glycoproteins that associate as heterodimers. They fold together in the ER of infected cells such that the MFP adopts a conformation primed to react to specific clues only upon contact with a target cell, avoiding premature fusion in the producer cell. We show that, despite having diverged in their 3D fold during evolution much more than the actual MFP, the class II accompanying proteins (AP) also derive from a distant common ancestor, displaying an invariant core formed by a β-ribbon and a C-terminal immunoglobulin-like domain playing different functional roles—heterotypic interactions with the MFP, and homotypic AP/AP contacts to form spikes, respectively. Our analysis shows that class II APs are easily identifiable with modern structural prediction algorithms, providing useful information in devising immunogens for vaccine design.
Collapse
|
25
|
Pereira TN, Virginio F, Souza JI, Moreira LA. Emergent Arboviruses: A Review About Mayaro virus and Oropouche orthobunyavirus. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.737436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arthropod-borne viruses have a significant impact on public health worldwide, and their (re) emergence put aside the importance of other circulating arboviruses. Therefore, this scoping review aims to identify and characterize the literature produced in recent years, focusing on aspects of two arboviruses: Mayaro virus and Oropouche orthobunyavirus. The Mayaro and Oropouche viruses were isolated for the first time in Trinidad and Tobago in 1954 and 1955, respectively, and have more recently caused numerous outbreaks. In addition, they have been incriminated as candidate diseases for human epidemics. These viruses have been drawing the attention of public health authorities worldwide following recent outbreaks. To determine the global epidemiological profile of these viruses, we used the Dimensions Database, which contains more than 100 million publications. In general, we identified 327 studies published from 1957 to 2020 for Mayaro virus, and 152 studies published from 1961 to 2020 for Oropouche orthobunyavirus. Interestingly, we observed that Mayaro and Oropouche had a significant increase in the number of publications in recent years. Thus, this comprehensive review will be helpful to guide future research based on the identified knowledge gaps.
Collapse
|
26
|
Zoonoses Anticipation and Preparedness Initiative, stakeholders conference, February 4 & 5, 2021. Biologicals 2021; 74:10-15. [PMID: 34736782 PMCID: PMC8560051 DOI: 10.1016/j.biologicals.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022] Open
Abstract
The Zoonoses Anticipation and Preparedness Initiative (ZAPI) was set up to prepare for future outbreaks and to develop and implement new technologies to accelerate development and manufacturing of vaccines and monoclonal antibodies. To be able to achieve surge capacity, an easy deployment and production at multiple sites is needed. This requires a straightforward manufacturing system with a limited number of steps in upstream and downstream processes, a minimum number of in vitro Quality Control assays, and robust and consistent platforms. Three viruses were selected as prototypes: Middle East Respiratory Syndrome (MERS) coronavirus, Rift Valley fever virus, and Schmallenberg virus. Selected antibodies against the viral surface antigens were manufactured by transient gene expression in Chinese Hamster Ovary (CHO) cells, scaling up to 200 L. For vaccine production, viral antigens were fused to multimeric protein scaffold particles using the SpyCatcher/SpyTag system. In vivo models demonstrated the efficacy of both antibodies and vaccines. The final step in speeding up vaccine (and antibody) development is the regulatory appraisal of new platform technologies. Towards this end, within ZAPI, a Platform Master File (PfMF) was developed, as part of a licensing dossier, to facilitate and accelerate the scientific assessment by avoiding repeated discussion of already accepted platforms. The veterinary PfMF was accepted, whereas the human PfMF is currently under review by the European Medicines Agency, aiming for publication of the guideline by January 2022.
Collapse
|
27
|
The Input of Structural Vaccinology in the Search for Vaccines against Bunyaviruses. Viruses 2021; 13:v13091766. [PMID: 34578349 PMCID: PMC8473429 DOI: 10.3390/v13091766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 11/26/2022] Open
Abstract
A significant increase in the number of viruses causing unexpected illnesses and epidemics among humans, wildlife and livestock has been observed in recent years. These new or re-emerging viruses have often caught the scientific community off-guard, without sufficient knowledge to combat them, as shown by the current coronavirus pandemic. The bunyaviruses, together with the flaviviruses and filoviruses, are the major etiological agents of viral hemorrhagic fever, and several of them have been listed as priority pathogens by the World Health Organization for which insufficient countermeasures exist. Based on new techniques allowing rapid analysis of the repertoire of protective antibodies induced during infection, combined with atomic-level structural information on viral surface proteins, structural vaccinology is now instrumental in the combat against newly emerging threats, as it allows rapid rational design of novel vaccine antigens. Here, we discuss the contribution of structural vaccinology and the current challenges that remain in the search for an efficient vaccine against some of the deadliest bunyaviruses.
Collapse
|
28
|
Rissanen I, Krumm SA, Stass R, Whitaker A, Voss JE, Bruce EA, Rothenberger S, Kunz S, Burton DR, Huiskonen JT, Botten JW, Bowden TA, Doores KJ. Structural Basis for a Neutralizing Antibody Response Elicited by a Recombinant Hantaan Virus Gn Immunogen. mBio 2021; 12:e0253120. [PMID: 34225492 PMCID: PMC8406324 DOI: 10.1128/mbio.02531-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hantaviruses are a group of emerging pathogens capable of causing severe disease upon zoonotic transmission to humans. The mature hantavirus surface presents higher-order tetrameric assemblies of two glycoproteins, Gn and Gc, which are responsible for negotiating host cell entry and constitute key therapeutic targets. Here, we demonstrate that recombinantly derived Gn from Hantaan virus (HTNV) elicits a neutralizing antibody response (serum dilution that inhibits 50% infection [ID50], 1:200 to 1:850) in an animal model. Using antigen-specific B cell sorting, we isolated monoclonal antibodies (mAbs) exhibiting neutralizing and non-neutralizing activity, termed mAb HTN-Gn1 and mAb nnHTN-Gn2, respectively. Crystallographic analysis reveals that these mAbs target spatially distinct epitopes at disparate sites of the N-terminal region of the HTNV Gn ectodomain. Epitope mapping onto a model of the higher order (Gn-Gc)4 spike supports the immune accessibility of the mAb HTN-Gn1 epitope, a hypothesis confirmed by electron cryo-tomography of the antibody with virus-like particles. These data define natively exposed regions of the hantaviral Gn that can be targeted in immunogen design. IMPORTANCE The spillover of pathogenic hantaviruses from rodent reservoirs into the human population poses a continued threat to human health. Here, we show that a recombinant form of the Hantaan virus (HTNV) surface-displayed glycoprotein, Gn, elicits a neutralizing antibody response in rabbits. We isolated a neutralizing (HTN-Gn1) and a non-neutralizing (nnHTN-Gn2) monoclonal antibody and provide the first molecular-level insights into how the Gn glycoprotein may be targeted by the antibody-mediated immune response. These findings may guide rational vaccine design approaches focused on targeting the hantavirus glycoprotein envelope.
Collapse
Affiliation(s)
- Ilona Rissanen
- Division of Structural Biology, Wellcome Centre for Human Genetics, grid.4991.5University of Oxford, Oxford, United Kingdom
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Stefanie A. Krumm
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, grid.4991.5University of Oxford, Oxford, United Kingdom
| | - Annalis Whitaker
- Division of Immunobiology, Department of Medicine, Larner College of Medicine, grid.59062.38University of Vermont, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, grid.59062.38University of Vermont, Burlington, Vermont, USA
| | - James E. Voss
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Emily A. Bruce
- Division of Immunobiology, Department of Medicine, Larner College of Medicine, grid.59062.38University of Vermont, Burlington, Vermont, USA
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, grid.59062.38University of Vermont, Burlington, Vermont, USA
| | - Sylvia Rothenberger
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Stefan Kunz
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, Massachusetts, USA
| | - Juha T. Huiskonen
- Division of Structural Biology, Wellcome Centre for Human Genetics, grid.4991.5University of Oxford, Oxford, United Kingdom
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jason W. Botten
- Division of Immunobiology, Department of Medicine, Larner College of Medicine, grid.59062.38University of Vermont, Burlington, Vermont, USA
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, grid.59062.38University of Vermont, Burlington, Vermont, USA
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, grid.4991.5University of Oxford, Oxford, United Kingdom
| | - Katie J. Doores
- Department of Infectious Diseases, King's College London, London, United Kingdom
| |
Collapse
|
29
|
Evans AB, Peterson KE. Cross reactivity of neutralizing antibodies to the encephalitic California Serogroup orthobunyaviruses varies by virus and genetic relatedness. Sci Rep 2021; 11:16424. [PMID: 34385513 PMCID: PMC8361150 DOI: 10.1038/s41598-021-95757-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/15/2021] [Indexed: 11/29/2022] Open
Abstract
The California Serogroup (CSG) of Orthobunyaviruses comprises several viruses capable of causing neuroinvasive disease in humans, including La Crosse (LACV), Snowshoe Hare (SSHV), Tahyna (TAHV), Jamestown Canyon (JCV), and Inkoo (INKV) viruses. Diagnosis of specific CSG viruses is complicated by the high degree of antibody cross-reactivity between them, with laboratory standards requiring a fourfold higher titer of neutralizating antibody (NAb) activity to positively identify the etiologic virus. To help elucidate NAb relationships between neuroinvasive CSG viruses, we directly compared the cross-reactivity of NAb between LACV, SSHV, TAHV, JCV, and INKV. Mice were inoculated with individual viruses and the NAb activity of plasma samples was compared by plaque reduction neutralization tests against all five viruses. Overall, the results from these studies show that the CSG viruses induced high levels of NAb against the inoculum virus, and differing amounts of cross-reactive NAb against heterologous viruses. LACV, SSHV, and INKV elicited the highest amount of cross-reactive NAb. Interestingly, a fourfold difference in NAb titer between the inoculum virus and the other CSG viruses was not always observed. Thus, NAb titers, which are the gold-standard for diagnosing the etiologic agent for viral encephalitis, may not clearly differentiate between different CSG viruses.
Collapse
Affiliation(s)
- Alyssa B Evans
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Karin E Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA.
| |
Collapse
|
30
|
Vesicular Stomatitis Virus Chimeras Expressing the Oropouche Virus Glycoproteins Elicit Protective Immune Responses in Mice. mBio 2021; 12:e0046321. [PMID: 34340542 PMCID: PMC8406270 DOI: 10.1128/mbio.00463-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oropouche virus (OROV) infection of humans is associated with a debilitating febrile illness that can progress to meningitis or encephalitis. First isolated from a forest worker in Trinidad and Tobago in 1955, the arbovirus OROV has since been detected throughout the Amazon basin with an estimated 500,000 human infections over 60 years. Like other members of the family Peribunyaviridae, the viral genome exists as 3 single-stranded negative-sense RNA segments. The medium-sized segment encodes a viral glycoprotein complex (GPC) that is proteolytically processed into two viral envelope proteins, Gn and Gc, responsible for attachment and membrane fusion. There are no therapeutics or vaccines to combat OROV infection, and we have little understanding of protective immunity to infection. Here, we generated a replication competent chimeric vesicular stomatitis virus (VSV), in which the endogenous glycoprotein was replaced by the GPC of OROV. Serum from mice immunized by intramuscular injection with VSV-OROV specifically neutralized wild-type OROV, and using peptide arrays we mapped multiple epitopes within an N-terminal variable region of Gc recognized by the immune sera. VSV-OROV lacking this variable region of Gc was also immunogenic in mice producing neutralizing sera that recognize additional regions of Gc. Challenge of both sets of immunized mice with wild-type OROV shows that the VSV-OROV chimeras reduce wild-type viral infection and suggest that antibodies that recognize the variable N terminus of Gc afford less protection than those that target more conserved regions of Gc. IMPORTANCE Oropouche virus (OROV), an orthobunyavirus found in Central and South America, is an emerging public health challenge that causes debilitating febrile illness. OROV is transmitted by arthropods, and increasing mobilization has the potential to significantly increase the spread of OROV globally. Despite this, no therapeutics or vaccines have been developed to combat infection. Using vesicular stomatitis (VSV) as a backbone, we developed a chimeric virus bearing the OROV glycoproteins (VSV-OROV) and tested its ability to elicit a neutralizing antibody response. Our results demonstrate that VSV-OROV produces a strong neutralizing antibody response that is at least partially targeted to the N-terminal region of Gc. Importantly, vaccination with VSV-OROV reduces viral loads in mice challenged with wild-type virus. These data provide novel evidence that targeting the OROV glycoproteins may be an effective vaccination strategy to combat OROV infection.
Collapse
|
31
|
Pérot P, Bielle F, Bigot T, Foulongne V, Bolloré K, Chrétien D, Gil P, Gutiérrez S, L'Ambert G, Mokhtari K, Hellert J, Flamand M, Tamietti C, Coulpier M, Huard de Verneuil A, Temmam S, Couderc T, De Sousa Cunha E, Boluda S, Plu I, Delisle MB, Bonneville F, Brassat D, Fieschi C, Malphettes M, Duyckaerts C, Mathon B, Demeret S, Seilhean D, Eloit M. Identification of Umbre Orthobunyavirus as a Novel Zoonotic Virus Responsible for Lethal Encephalitis in 2 French Patients with Hypogammaglobulinemia. Clin Infect Dis 2021; 72:1701-1708. [PMID: 32516409 DOI: 10.1093/cid/ciaa308] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/18/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Human encephalitis represents a medical challenge from a diagnostic and therapeutic point of view. We investigated the cause of 2 fatal cases of encephalitis of unknown origin in immunocompromised patients. METHODS Untargeted metatranscriptomics was applied on the brain tissue of 2 patients to search for pathogens (viruses, bacteria, fungi, or protozoans) without a prior hypothesis. RESULTS Umbre arbovirus, an orthobunyavirus never previously identified in humans, was found in 2 patients. In situ hybridization and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) showed that Umbre virus infected neurons and replicated at high titers. The virus was not detected in cerebrospinal fluid by RT-qPCR. Viral sequences related to Koongol virus, another orthobunyavirus close to Umbre virus, were found in Culex pipiens mosquitoes captured in the south of France where the patients had spent some time before the onset of symptoms, demonstrating the presence of the same clade of arboviruses in Europe and their potential public health impact. A serological survey conducted in the same area did not identify individuals positive for Umbre virus. The absence of seropositivity in the population may not reflect the actual risk of disease transmission in immunocompromised individuals. CONCLUSIONS Umbre arbovirus can cause encephalitis in immunocompromised humans and is present in Europe.
Collapse
Affiliation(s)
- Philippe Pérot
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - Franck Bielle
- Département de Neuropathologie Raymond Escourolle, Assistance Publique - Hôpitaux de Paris (AP-HP)-Sorbonne, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Brain Institute (Institut du Cerveau et de la Moelle épinière; Institut National de la Santé et de la Recherche Médicale [INSERM], Unité Mixte de Recherche Santé 1127; Centre National de la Recherche Scientifique [CNRS], Unité Mixte de Recherche [UMR] 7225), Paris, France
| | - Thomas Bigot
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Unité de Service et de Recherche 3756 CNRS, Paris, France
| | - Vincent Foulongne
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Centre Hospitalier Universitaire (CHU) Montpellier, Montpellier, France
| | - Karine Bolloré
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Centre Hospitalier Universitaire (CHU) Montpellier, Montpellier, France
| | | | - Patricia Gil
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement (CIRAD), UMR ASTRE, Montpellier, France.,ASTRE, CIRAD, Institut National de la Recherche Agronomique, University of Montpellier, Montpellier, France
| | - Serafín Gutiérrez
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement (CIRAD), UMR ASTRE, Montpellier, France.,ASTRE, CIRAD, Institut National de la Recherche Agronomique, University of Montpellier, Montpellier, France
| | - Grégory L'Ambert
- Entente Interdépartementale Pour la Démoustication Méditerranée, Montpellier, France
| | - Karima Mokhtari
- Département de Neuropathologie Raymond Escourolle, Assistance Publique - Hôpitaux de Paris (AP-HP)-Sorbonne, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Brain Institute (Institut du Cerveau et de la Moelle épinière; Institut National de la Santé et de la Recherche Médicale [INSERM], Unité Mixte de Recherche Santé 1127; Centre National de la Recherche Scientifique [CNRS], Unité Mixte de Recherche [UMR] 7225), Paris, France
| | - Jan Hellert
- Structural Virology Unit, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Marie Flamand
- Structural Virology Unit, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Carole Tamietti
- Structural Virology Unit, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Muriel Coulpier
- UMR Virologie, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, École Nationale Vétérinaire d'Alfort, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Anne Huard de Verneuil
- UMR Virologie, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, École Nationale Vétérinaire d'Alfort, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Sarah Temmam
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - Thérèse Couderc
- Biology of Infection Unit, Institut Pasteur, INSERM U1117, Paris, France
| | - Edouard De Sousa Cunha
- Département de Neuropathologie Raymond Escourolle, Assistance Publique - Hôpitaux de Paris (AP-HP)-Sorbonne, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Susana Boluda
- Département de Neuropathologie Raymond Escourolle, Assistance Publique - Hôpitaux de Paris (AP-HP)-Sorbonne, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Brain Institute (Institut du Cerveau et de la Moelle épinière; Institut National de la Santé et de la Recherche Médicale [INSERM], Unité Mixte de Recherche Santé 1127; Centre National de la Recherche Scientifique [CNRS], Unité Mixte de Recherche [UMR] 7225), Paris, France.,Centre National de Référence des Agents Transmissibles Non Conventionnels (Reference Center for Nonconventional Transmissible Agents), Laboratory and Neuropathology Network for the Surveillance of Creutzfeldt-Jakob Disease, Santé Publique France, AP-HP, Paris, France
| | - Isabelle Plu
- Département de Neuropathologie Raymond Escourolle, Assistance Publique - Hôpitaux de Paris (AP-HP)-Sorbonne, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Brain Institute (Institut du Cerveau et de la Moelle épinière; Institut National de la Santé et de la Recherche Médicale [INSERM], Unité Mixte de Recherche Santé 1127; Centre National de la Recherche Scientifique [CNRS], Unité Mixte de Recherche [UMR] 7225), Paris, France.,Centre National de Référence des Agents Transmissibles Non Conventionnels (Reference Center for Nonconventional Transmissible Agents), Laboratory and Neuropathology Network for the Surveillance of Creutzfeldt-Jakob Disease, Santé Publique France, AP-HP, Paris, France
| | - Marie Bernadette Delisle
- Laboratoire de Neuropathologie, Laboratoire Universitaire d'Anatomie et Cytologie Pathologiques, CHU de Toulouse, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Fabrice Bonneville
- Department of Neuroradiology, CHU de Toulouse and UMR 1214 Toulouse NeuroImaging Center, Université de Toulouse, INSERM, Toulouse, France
| | - David Brassat
- Centre de Ressources et de Compétences Sclérose en Plaques, Pole des Neurosciences CHU Toulouse and UMR 1043, Université de Toulouse III, Toulouse, France
| | - Claire Fieschi
- Service d'Immunologie Clinique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Marion Malphettes
- Service d'Immunologie Clinique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Charles Duyckaerts
- Département de Neuropathologie Raymond Escourolle, Assistance Publique - Hôpitaux de Paris (AP-HP)-Sorbonne, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Brain Institute (Institut du Cerveau et de la Moelle épinière; Institut National de la Santé et de la Recherche Médicale [INSERM], Unité Mixte de Recherche Santé 1127; Centre National de la Recherche Scientifique [CNRS], Unité Mixte de Recherche [UMR] 7225), Paris, France
| | - Bertrand Mathon
- Sorbonne Université, Brain Institute (Institut du Cerveau et de la Moelle épinière; Institut National de la Santé et de la Recherche Médicale [INSERM], Unité Mixte de Recherche Santé 1127; Centre National de la Recherche Scientifique [CNRS], Unité Mixte de Recherche [UMR] 7225), Paris, France.,AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles-Foix, Department of Neurosurgery, Paris, France
| | - Sophie Demeret
- Department of Neurology, Neuro ICU, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - Danielle Seilhean
- Département de Neuropathologie Raymond Escourolle, Assistance Publique - Hôpitaux de Paris (AP-HP)-Sorbonne, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Brain Institute (Institut du Cerveau et de la Moelle épinière; Institut National de la Santé et de la Recherche Médicale [INSERM], Unité Mixte de Recherche Santé 1127; Centre National de la Recherche Scientifique [CNRS], Unité Mixte de Recherche [UMR] 7225), Paris, France.,Centre National de Référence des Agents Transmissibles Non Conventionnels (Reference Center for Nonconventional Transmissible Agents), Laboratory and Neuropathology Network for the Surveillance of Creutzfeldt-Jakob Disease, Santé Publique France, AP-HP, Paris, France
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| |
Collapse
|
32
|
Aebischer A, Wernike K, König P, Franzke K, Wichgers Schreur PJ, Kortekaas J, Vitikainen M, Wiebe M, Saloheimo M, Tchelet R, Audonnet JC, Beer M. Development of a Modular Vaccine Platform for Multimeric Antigen Display Using an Orthobunyavirus Model. Vaccines (Basel) 2021; 9:vaccines9060651. [PMID: 34203630 PMCID: PMC8232151 DOI: 10.3390/vaccines9060651] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
Emerging infectious diseases represent an increasing threat to human and animal health. Therefore, safe and effective vaccines that could be available within a short time frame after an outbreak are required for adequate prevention and control. Here, we developed a robust and versatile self-assembling multimeric protein scaffold particle (MPSP) vaccine platform using lumazine synthase (LS) from Aquifex aeolicus. This scaffold allowed the presentation of peptide epitopes by genetic fusion as well as the presentation of large antigens by bacterial superglue-based conjugation to the pre-assembled particle. Using the orthobunyavirus model Schmallenberg virus (SBV) we designed MPSPs presenting major immunogens of SBV and assessed their efficacy in a mouse model as well as in cattle, a target species of SBV. All prototype vaccines conferred protection from viral challenge infection and the multivalent presentation of the selected antigens on the MPSP markedly improved their immunogenicity compared to the monomeric subunits. Even a single shot vaccination protected about 80% of mice from an otherwise lethal dose of SBV. Most importantly, the MPSPs induced a virtually sterile immunity in cattle. Altogether, LS represents a promising platform for modular and rapid vaccine design.
Collapse
Affiliation(s)
- Andrea Aebischer
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (A.A.); (K.W.); (P.K.); (K.F.)
| | - Kerstin Wernike
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (A.A.); (K.W.); (P.K.); (K.F.)
| | - Patricia König
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (A.A.); (K.W.); (P.K.); (K.F.)
| | - Kati Franzke
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (A.A.); (K.W.); (P.K.); (K.F.)
| | - Paul J. Wichgers Schreur
- Laboratory of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (P.J.W.S.); (J.K.)
| | - Jeroen Kortekaas
- Laboratory of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (P.J.W.S.); (J.K.)
| | - Marika Vitikainen
- VTT Technical Research Centre of Finland Ltd., 02150 Espoo, Finland; (M.V.); (M.W.); (M.S.)
| | - Marilyn Wiebe
- VTT Technical Research Centre of Finland Ltd., 02150 Espoo, Finland; (M.V.); (M.W.); (M.S.)
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland Ltd., 02150 Espoo, Finland; (M.V.); (M.W.); (M.S.)
| | - Ronen Tchelet
- Dyadic Netherland B.V., 6709 PA Wageningen, The Netherlands;
| | | | - Martin Beer
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (A.A.); (K.W.); (P.K.); (K.F.)
- Correspondence:
| |
Collapse
|
33
|
Fels JM, Maurer DP, Herbert AS, Wirchnianski AS, Vergnolle O, Cross RW, Abelson DM, Moyer CL, Mishra AK, Aguilan JT, Kuehne AI, Pauli NT, Bakken RR, Nyakatura EK, Hellert J, Quevedo G, Lobel L, Balinandi S, Lutwama JJ, Zeitlin L, Geisbert TW, Rey FA, Sidoli S, McLellan JS, Lai JR, Bornholdt ZA, Dye JM, Walker LM, Chandran K. Protective neutralizing antibodies from human survivors of Crimean-Congo hemorrhagic fever. Cell 2021; 184:3486-3501.e21. [PMID: 34077751 DOI: 10.1016/j.cell.2021.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/19/2021] [Accepted: 04/29/2021] [Indexed: 12/31/2022]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a World Health Organization priority pathogen. CCHFV infections cause a highly lethal hemorrhagic fever for which specific treatments and vaccines are urgently needed. Here, we characterize the human immune response to natural CCHFV infection to identify potent neutralizing monoclonal antibodies (nAbs) targeting the viral glycoprotein. Competition experiments showed that these nAbs bind six distinct antigenic sites in the Gc subunit. These sites were further delineated through mutagenesis and mapped onto a prefusion model of Gc. Pairwise screening identified combinations of non-competing nAbs that afford synergistic neutralization. Further enhancements in neutralization breadth and potency were attained by physically linking variable domains of synergistic nAb pairs through bispecific antibody (bsAb) engineering. Although multiple nAbs protected mice from lethal CCHFV challenge in pre- or post-exposure prophylactic settings, only a single bsAb, DVD-121-801, afforded therapeutic protection. DVD-121-801 is a promising candidate suitable for clinical development as a CCHFV therapeutic.
Collapse
Affiliation(s)
- J Maximilian Fels
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Andrew S Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; The Geneva Foundation, Tacoma, WA 98402, USA
| | - Ariel S Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Deparment of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Olivia Vergnolle
- Deparment of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | | | - Akaash K Mishra
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer T Aguilan
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ana I Kuehne
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | | | - Russell R Bakken
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Elisabeth K Nyakatura
- Deparment of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jan Hellert
- Structural Virology Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, Paris 75724, France
| | - Gregory Quevedo
- Deparment of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Leslie Lobel
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Felix A Rey
- Structural Virology Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, Paris 75724, France
| | - Simone Sidoli
- Deparment of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jonathan R Lai
- Deparment of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Laura M Walker
- Adimab, LLC, Lebanon, NH 03766, USA; Adagio Therapeutics, Inc., Waltham, MA 02451, USA.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
34
|
Orthobunyaviruses: From Virus Binding to Penetration into Mammalian Host Cells. Viruses 2021; 13:v13050872. [PMID: 34068494 PMCID: PMC8151349 DOI: 10.3390/v13050872] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/04/2022] Open
Abstract
With over 80 members worldwide, Orthobunyavirus is the largest genus in the Peribunyaviridae family. Orthobunyaviruses (OBVs) are arthropod-borne viruses that are structurally simple, with a trisegmented, negative-sense RNA genome and only four structural proteins. OBVs are potential agents of emerging and re-emerging diseases and overall represent a global threat to both public and veterinary health. The focus of this review is on the very first steps of OBV infection in mammalian hosts, from virus binding to penetration and release of the viral genome into the cytosol. Here, we address the most current knowledge and advances regarding OBV receptors, endocytosis, and fusion.
Collapse
|
35
|
Hulswit RJG, Paesen GC, Bowden TA, Shi X. Recent Advances in Bunyavirus Glycoprotein Research: Precursor Processing, Receptor Binding and Structure. Viruses 2021; 13:353. [PMID: 33672327 PMCID: PMC7926653 DOI: 10.3390/v13020353] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 01/04/2023] Open
Abstract
The Bunyavirales order accommodates related viruses (bunyaviruses) with segmented, linear, single-stranded, negative- or ambi-sense RNA genomes. Their glycoproteins form capsomeric projections or spikes on the virion surface and play a crucial role in virus entry, assembly, morphogenesis. Bunyavirus glycoproteins are encoded by a single RNA segment as a polyprotein precursor that is co- and post-translationally cleaved by host cell enzymes to yield two mature glycoproteins, Gn and Gc (or GP1 and GP2 in arenaviruses). These glycoproteins undergo extensive N-linked glycosylation and despite their cleavage, remain associated to the virion to form an integral transmembrane glycoprotein complex. This review summarizes recent advances in our understanding of the molecular biology of bunyavirus glycoproteins, including their processing, structure, and known interactions with host factors that facilitate cell entry.
Collapse
Affiliation(s)
- Ruben J. G. Hulswit
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (R.J.G.H.); (G.C.P.)
| | - Guido C. Paesen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (R.J.G.H.); (G.C.P.)
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (R.J.G.H.); (G.C.P.)
| | - Xiaohong Shi
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
36
|
Differentiation of Antibodies against Selected Simbu Serogroup Viruses by a Glycoprotein Gc-Based Triplex ELISA. Vet Sci 2021; 8:vetsci8010012. [PMID: 33477718 PMCID: PMC7831895 DOI: 10.3390/vetsci8010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
Abstract
The Simbu serogroup of orthobunyaviruses includes several pathogens of veterinary importance, among them Schmallenberg virus (SBV), Akabane virus (AKAV) and Shuni virus (SHUV). They infect predominantly ruminants and induce severe congenital malformation. In adult animals, the intra vitam diagnostics by direct virus detection is limited to only a few days due to a short-lived viremia. For surveillance purposes the testing for specific antibodies is a superior approach. However, the serological differentiation is hampered by a considerable extent of cross-reactivity, as viruses were assigned into this serogroup based on antigenic relatedness. Here, we established a glycoprotein Gc-based triplex enzyme-linked immunosorbent assay (ELISA) for the detection and differentiation of antibodies against SBV, AKAV, and SHUV. A total of 477 negative samples of various ruminant species, 238 samples positive for SBV-antibodies, 36 positive for AKAV-antibodies and 53 SHUV antibody-positive samples were tested in comparison to neutralization tests. For the newly developed ELISA, overall diagnostic specificities of 84.56%, 94.68% and 89.39% and sensitivities of 89.08%, 69.44% and 84.91% were calculated for SBV, AKAV and SHUV, respectively, with only slight effects of serological cross-reactivity on the diagnostic specificity. Thus, this test system could be used for serological screening in suspected populations or as additional tool during outbreak investigations.
Collapse
|
37
|
Wernike K, Reimann I, Banyard AC, Kraatz F, La Rocca SA, Hoffmann B, McGowan S, Hechinger S, Choudhury B, Aebischer A, Steinbach F, Beer M. High genetic variability of Schmallenberg virus M-segment leads to efficient immune escape from neutralizing antibodies. PLoS Pathog 2021; 17:e1009247. [PMID: 33497419 PMCID: PMC7872300 DOI: 10.1371/journal.ppat.1009247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/09/2021] [Accepted: 12/21/2020] [Indexed: 11/19/2022] Open
Abstract
Schmallenberg virus (SBV) is the cause of severe fetal malformations when immunologically naïve pregnant ruminants are infected. In those malformed fetuses, a "hot-spot"-region of high genetic variability within the N-terminal region of the viral envelope protein Gc has been observed previously, and this region co-localizes with a known key immunogenic domain. We studied a series of M-segments of those SBV variants from malformed fetuses with point mutations, insertions or large in-frame deletions of up to 612 nucleotides. Furthermore, a unique cell-culture isolate from a malformed fetus with large in-frame deletions within the M-segment was analyzed. Each Gc-protein with amino acid deletions within the "hot spot" of mutations failed to react with any neutralizing anti-SBV monoclonal antibodies or a domain specific antiserum. In addition, in vitro virus replication of the natural deletion variant could not be markedly reduced by neutralizing monoclonal antibodies or antisera from the field. The large-deletion variant of SBV that could be isolated in cell culture was highly attenuated with an impaired in vivo replication following the inoculation of sheep. In conclusion, the observed amino acid sequence mutations within the N-terminal main immunogenic domain of glycoprotein Gc result in an efficient immune evasion from neutralizing antibodies in the special environment of a developing fetus. These SBV-variants were never detected as circulating viruses, and therefore should be considered to be dead-end virus variants, which are not able to spread further. The observations described here may be transferred to other orthobunyaviruses, particularly those of the Simbu serogroup that have been shown to infect fetuses. Importantly, such mutant strains should not be included in attempts to trace the spatial-temporal evolution of orthobunyaviruses in molecular-epidemiolocal approaches during outbreak investigations.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Ashley C. Banyard
- Department of Virology, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Franziska Kraatz
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - S. Anna La Rocca
- Department of Virology, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Sarah McGowan
- Department of Virology, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Silke Hechinger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Bhudipa Choudhury
- Department of Virology, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Andrea Aebischer
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Falko Steinbach
- Department of Virology, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| |
Collapse
|
38
|
Rissanen I, Stass R, Krumm SA, Seow J, Hulswit RJG, Paesen GC, Hepojoki J, Vapalahti O, Lundkvist Å, Reynard O, Volchkov V, Doores KJ, Huiskonen JT, Bowden TA. Molecular rationale for antibody-mediated targeting of the hantavirus fusion glycoprotein. eLife 2020; 9:e58242. [PMID: 33349334 PMCID: PMC7755396 DOI: 10.7554/elife.58242] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/26/2020] [Indexed: 01/22/2023] Open
Abstract
The intricate lattice of Gn and Gc glycoprotein spike complexes on the hantavirus envelope facilitates host-cell entry and is the primary target of the neutralizing antibody-mediated immune response. Through study of a neutralizing monoclonal antibody termed mAb P-4G2, which neutralizes the zoonotic pathogen Puumala virus (PUUV), we provide a molecular-level basis for antibody-mediated targeting of the hantaviral glycoprotein lattice. Crystallographic analysis demonstrates that P-4G2 binds to a multi-domain site on PUUV Gc and may preclude fusogenic rearrangements of the glycoprotein that are required for host-cell entry. Furthermore, cryo-electron microscopy of PUUV-like particles in the presence of P-4G2 reveals a lattice-independent configuration of the Gc, demonstrating that P-4G2 perturbs the (Gn-Gc)4 lattice. This work provides a structure-based blueprint for rationalizing antibody-mediated targeting of hantaviruses.
Collapse
Affiliation(s)
- Ilona Rissanen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
- Helsinki Institute of Life Science HiLIFE, University of HelsinkiHelsinkiFinland
- Molecular and Integrative Biosciences Research Programme, The Faculty of Biological and Environmental Sciences, University of HelsinkiHelsinkiFinland
| | - Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Stefanie A Krumm
- Department of Infectious Diseases, King's College London, Guy's HospitalLondonUnited Kingdom
| | - Jeffrey Seow
- Department of Infectious Diseases, King's College London, Guy's HospitalLondonUnited Kingdom
| | - Ruben JG Hulswit
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Guido C Paesen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Jussi Hepojoki
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of ZürichZürichSwitzerland
- Department of Virology, Medicum, Faculty of Medicine, University of HelsinkiHelsinkiFinland
| | - Olli Vapalahti
- Departments of Virology and Veterinary Biosciences, University of Helsinki and HUSLAB, Helsinki University HospitalHelsinkiFinland
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala UniversityUppsalaSweden
| | - Olivier Reynard
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université LyonLyonFrance
| | - Viktor Volchkov
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université LyonLyonFrance
| | - Katie J Doores
- Department of Infectious Diseases, King's College London, Guy's HospitalLondonUnited Kingdom
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
- Helsinki Institute of Life Science HiLIFE, University of HelsinkiHelsinkiFinland
- Molecular and Integrative Biosciences Research Programme, The Faculty of Biological and Environmental Sciences, University of HelsinkiHelsinkiFinland
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
39
|
Bahat Y, Alter J, Dessau M. Crystal structure of tomato spotted wilt virus G N reveals a dimer complex formation and evolutionary link to animal-infecting viruses. Proc Natl Acad Sci U S A 2020; 117:26237-26244. [PMID: 33020295 PMCID: PMC7584872 DOI: 10.1073/pnas.2004657117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tospoviridae is a family of enveloped RNA plant viruses that infect many field crops, inflicting a heavy global economic burden. These tripartite, single-stranded, negative-sense RNA viruses are transmitted from plant to plant by thrips as the insect vector. The medium (M) segment of the viral genome encodes two envelope glycoproteins, GN and GC, which together form the envelope spikes. GC is considered the virus fusogen, while the accompanying GN protein serves as an attachment protein that binds to a yet unknown receptor, mediating the virus acquisition by the thrips carrier. Here we present the crystal structure of glycoprotein N (GN) from the tomato spotted wilt virus (TSWV), a representative member of the Tospoviridae family. The structure suggests that GN is organized as dimers on TSWV's outer shell. Our structural data also suggest that this dimerization is required for maintaining GN structural integrity. Although the structure of the TSWV GN is different from other bunyavirus GN proteins, they all share similar domain connectivity that resembles glycoproteins from unrelated animal-infecting viruses, suggesting a common ancestor for these accompanying proteins.
Collapse
Affiliation(s)
- Yoav Bahat
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed , Israel 1311502
| | - Joel Alter
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed , Israel 1311502
| | - Moshe Dessau
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed , Israel 1311502
| |
Collapse
|
40
|
A Genome-Wide CRISPR-Cas9 Screen Reveals the Requirement of Host Cell Sulfation for Schmallenberg Virus Infection. J Virol 2020; 94:JVI.00752-20. [PMID: 32522852 DOI: 10.1128/jvi.00752-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Schmallenberg virus (SBV) is an insect-transmitted orthobunyavirus that can cause abortions and congenital malformations in the offspring of ruminants. Even though the two viral surface glycoproteins Gn and Gc are involved in host cell entry, the specific cellular receptors of SBV are currently unknown. Using genome-wide CRISPR-Cas9 forward screening, we identified 3'-phosphoadenosine 5'-phosphosulfate (PAPS) transporter 1 (PAPST1) as an essential factor for SBV infection. PAPST1 is a sulfotransferase involved in heparan sulfate proteoglycan synthesis encoded by the solute carrier family 35 member B2 gene (SLC35B2). SBV cell surface attachment and entry were largely reduced upon the knockout of SLC35B2, whereas the reconstitution of SLC35B2 in these cells fully restored their susceptibility to SBV infection. Furthermore, treatment of cells with heparinase diminished infection with SBV, confirming that heparan sulfate plays an important role in cell attachment and entry, although to various degrees, heparan sulfate was also found to be important to initiate infection by two other bunyaviruses, La Crosse virus and Rift Valley fever virus. Thus, PAPST1-triggered synthesis of cell surface heparan sulfate is required for the efficient replication of SBV and other bunyaviruses.IMPORTANCE SBV is a newly emerging orthobunyavirus (family Peribunyaviridae) that has spread rapidly across Europe since 2011, resulting in substantial economic losses in livestock farming. In this study, we performed unbiased genome-wide CRISPR-Cas9 screening and identified PAPST1, a sulfotransferase encoded by SLC35B2, as a host entry factor for SBV. Consistent with its role in the synthesis of heparan sulfate, we show that this activity is required for efficient infection by SBV. A comparable dependency on heparan sulfate was also observed for La Crosse virus and Rift Valley fever virus, highlighting the importance of heparan sulfate for host cell infection by bunyaviruses. Thus, the present work provides crucial insights into virus-host interactions of important animal and human pathogens.
Collapse
|
41
|
Wernike K, Beer M. Schmallenberg Virus: To Vaccinate, or Not to Vaccinate? Vaccines (Basel) 2020; 8:E287. [PMID: 32521621 PMCID: PMC7349947 DOI: 10.3390/vaccines8020287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Schmallenberg virus (SBV), a teratogenic orthobunyavirus that infects predominantly ruminants, emerged in 2011 in Central Europe, spread rapidly throughout the continent, and subsequently established an endemic status with re-circulations to a larger extent every 2 to 3 years. Hence, it represents a constant threat to the continent's ruminant population when no effective countermeasures are implemented. Here, we discuss potential preventive measures to protect from Schmallenberg disease. Previous experiences with other arboviruses like bluetongue virus have already demonstrated that vaccination of livestock against a vector-transmitted disease can play a major role in reducing or even stopping virus circulation. For SBV, specific inactivated whole-virus vaccines have been developed and marketing authorizations were granted for such preparations. In addition, candidate marker vaccines either as live attenuated, DNA-mediated, subunit or live-vectored preparations have been developed, but none of these DIVA-capable candidate vaccines are currently commercially available. At the moment, the licensed inactivated vaccines are used only to a very limited extent. The high seroprevalence rates induced in years of virus re-occurrence to a larger extent, the wave-like and sometimes hard to predict circulation pattern of SBV, and the expenditures of time and costs for the vaccinations presumably impact on the willingness to vaccinate. However, one should bear in mind that the consequence of seronegative young animals and regular renewed virus circulation might be again more cases of fetal malformation caused by an infection of naïve dams during one of their first gestations. Therefore, an appropriate and cost-effective strategy might be to vaccinate naïve female animals of all affected species before the reproductive age.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | | |
Collapse
|
42
|
Wernike K, Beer M. Re-circulation of Schmallenberg virus, Germany, 2019. Transbound Emerg Dis 2020; 67:2290-2295. [PMID: 32320536 DOI: 10.1111/tbed.13592] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/02/2020] [Accepted: 04/16/2020] [Indexed: 12/27/2022]
Abstract
Schmallenberg virus (SBV), an insect-transmitted orthobunyavirus that induces severe foetal malformation in calves and lambs, was detected for the first time in late summer 2011 in Central Europe. Thereafter, the virus spread rapidly across the continent causing a large epidemic in the ruminant population. In 2019, detection of virus was again reported more frequently in Germany. From March to November, infections of viremic adult animals were noticed. In September, SBV genome was also detected in newborn lambs. Altogether, affected species included cattle, sheep, a goat and a fallow deer. M-segment sequences were generated from viruses detected in viremic cattle and compared to viral sequences from previous years. The genome of viruses detected in the blood of acutely infected adult cattle and sheep, which represent the circulating SBV strains, seems very stable over the course of nine years and in various European countries. The nucleotide similarities of these viruses are as high as 99.4%-100%. The renewed SBV circulation in 2019 in the country, in which the virus was first detected in 2011 and where it circulated again in 2014 and 2016, suggests the establishment of an enzootic status in Central Europe with regular larger waves in a cycle of around 3 years. Therefore, it has to be anticipated that SBV will re-emerge at similar intervals in future, and hence, it represents a constant threat for the continent's ruminant population.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
43
|
Wichgers Schreur PJ, van de Water S, Harmsen M, Bermúdez-Méndez E, Drabek D, Grosveld F, Wernike K, Beer M, Aebischer A, Daramola O, Rodriguez Conde S, Brennan K, Kozub D, Søndergaard Kristiansen M, Mistry KK, Deng Z, Hellert J, Guardado-Calvo P, Rey FA, van Keulen L, Kortekaas J. Multimeric single-domain antibody complexes protect against bunyavirus infections. eLife 2020; 9:52716. [PMID: 32314955 PMCID: PMC7173960 DOI: 10.7554/elife.52716] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/11/2020] [Indexed: 12/25/2022] Open
Abstract
The World Health Organization has included three bunyaviruses posing an increasing threat to human health on the Blueprint list of viruses likely to cause major epidemics and for which no, or insufficient countermeasures exist. Here, we describe a broadly applicable strategy, based on llama-derived single-domain antibodies (VHHs), for the development of bunyavirus biotherapeutics. The method was validated using the zoonotic Rift Valley fever virus (RVFV) and Schmallenberg virus (SBV), an emerging pathogen of ruminants, as model pathogens. VHH building blocks were assembled into highly potent neutralizing complexes using bacterial superglue technology. The multimeric complexes were shown to reduce and prevent virus-induced morbidity and mortality in mice upon prophylactic administration. Bispecific molecules engineered to present two different VHHs fused to an Fc domain were further shown to be effective upon therapeutic administration. The presented VHH-based technology holds great promise for the development of bunyavirus antiviral therapies.
Collapse
Affiliation(s)
| | - Sandra van de Water
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Michiel Harmsen
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Erick Bermúdez-Méndez
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Laboratory of Virology, Wageningen University, Wageningen, Netherlands
| | - Dubravka Drabek
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands.,Harbour Antibodies B.V, Rotterdam, Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands.,Harbour Antibodies B.V, Rotterdam, Netherlands
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Andrea Aebischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Olalekan Daramola
- Biopharmaceutical Development, R&D BioPharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Sara Rodriguez Conde
- Biopharmaceutical Development, R&D BioPharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Karen Brennan
- Biopharmaceutical Development, R&D BioPharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Dorota Kozub
- Biopharmaceutical Development, R&D BioPharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | | | - Kieran K Mistry
- Biopharmaceutical Development, R&D BioPharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Ziyan Deng
- Biopharmaceutical Development, R&D BioPharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Jan Hellert
- Structural Virology Unit, Virology Department, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Pablo Guardado-Calvo
- Structural Virology Unit, Virology Department, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Félix A Rey
- Structural Virology Unit, Virology Department, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Lucien van Keulen
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Jeroen Kortekaas
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Laboratory of Virology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
44
|
Structure and Characterization of Crimean-Congo Hemorrhagic Fever Virus GP38. J Virol 2020; 94:JVI.02005-19. [PMID: 31996434 PMCID: PMC7108853 DOI: 10.1128/jvi.02005-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/26/2020] [Indexed: 12/17/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a priority pathogen that poses a high risk to public health. Due to the high morbidity and mortality rates associated with CCHFV infection, there is an urgent need to develop medical countermeasures for disease prevention and treatment. CCHFV GP38, a secreted glycoprotein of unknown function unique to the Nairoviridae family, was recently shown to be the target of a protective antibody against CCHFV. Here, we present the crystal structure of GP38, which revealed a novel fold with distant homology to another CCHFV glycoprotein that is suggestive of a gene duplication event. We also demonstrate that antibody 13G8 protects STAT1-knockout mice against heterologous CCHFV challenge using a clinical isolate from regions where CCHFV is endemic. Collectively, these data advance our understanding of GP38 structure and antigenicity and should facilitate future studies investigating its function. Crimean-Congo hemorrhagic fever virus (CCHFV) is the causative agent of the most widespread tick-borne viral infection in humans. CCHFV encodes a secreted glycoprotein (GP38) of unknown function that is the target of a protective antibody. Here, we present the crystal structure of GP38 at a resolution of 2.5 Å, which revealed a novel fold primarily consisting of a 3-helix bundle and a β-sandwich. Sequence alignment and homology modeling showed distant homology between GP38 and the ectodomain of Gn (a structural glycoprotein in CCHFV), suggestive of a gene duplication event. Analysis of convalescent-phase sera showed high titers of GP38 antibodies indicating immunogenicity in humans during natural CCHFV infection. The only protective antibody for CCHFV in an adult mouse model reported to date, 13G8, bound GP38 with subnanomolar affinity and protected against heterologous CCHFV challenge in a STAT1-knockout mouse model. Our data strongly suggest that GP38 should be evaluated as a vaccine antigen and that its structure provides a foundation to investigate functions of this protein in the viral life cycle. IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) is a priority pathogen that poses a high risk to public health. Due to the high morbidity and mortality rates associated with CCHFV infection, there is an urgent need to develop medical countermeasures for disease prevention and treatment. CCHFV GP38, a secreted glycoprotein of unknown function unique to the Nairoviridae family, was recently shown to be the target of a protective antibody against CCHFV. Here, we present the crystal structure of GP38, which revealed a novel fold with distant homology to another CCHFV glycoprotein that is suggestive of a gene duplication event. We also demonstrate that antibody 13G8 protects STAT1-knockout mice against heterologous CCHFV challenge using a clinical isolate from regions where CCHFV is endemic. Collectively, these data advance our understanding of GP38 structure and antigenicity and should facilitate future studies investigating its function.
Collapse
|
45
|
Evolutionary Dynamics of Oropouche Virus in South America. J Virol 2020; 94:JVI.01127-19. [PMID: 31801869 PMCID: PMC7022353 DOI: 10.1128/jvi.01127-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023] Open
Abstract
The emergence and reemergence of pathogens such as Zika virus, chikungunya virus, and yellow fever virus have drawn attention toward other cocirculating arboviruses in South America. Oropouche virus (OROV) is a poorly studied pathogen responsible for over a dozen outbreaks since the early 1960s and represents a public health burden to countries such as Brazil, Panama, and Peru. OROV is likely underreported since its symptomatology can be easily confounded with other febrile illnesses (e.g., dengue fever and leptospirosis) and point-of-care testing for the virus is still uncommon. With limited data, there is a need to optimize the information currently available. Analysis of OROV genomes can help us understand how the virus circulates in nature and can reveal the evolutionary forces that shape the genetic diversity of the virus, which has implications for molecular diagnostics and the design of potential vaccines. The Amazon basin is home to numerous arthropod-borne viral pathogens that cause febrile disease in humans. Among these, Oropouche orthobunyavirus (OROV) is a relatively understudied member of the genus Orthobunyavirus, family Peribunyaviridae, that causes periodic outbreaks in human populations in Brazil and other South American countries. Although several studies have described the genetic diversity of the virus, the evolutionary processes that shape the OROV genome remain poorly understood. Here, we present a comprehensive study of the genomic dynamics of OROV that encompasses phylogenetic analysis, evolutionary rate estimates, inference of natural selective pressures, recombination and reassortment, and structural analysis of OROV variants. Our study includes all available published sequences, as well as a set of new OROV genome sequences obtained from patients in Ecuador, representing the first set of genomes from this country. Our results show differing evolutionary processes on the three segments that comprise the viral genome. We infer differing times of the most recent common ancestors of the genome segments and propose that this can be explained by cryptic reassortment. We also present the discovery of previously unobserved putative N-linked glycosylation sites, as well as codons that evolve under positive selection on the viral surface proteins, and discuss the potential role of these features in the evolution of OROV through a combined phylogenetic and structural approach. IMPORTANCE The emergence and reemergence of pathogens such as Zika virus, chikungunya virus, and yellow fever virus have drawn attention toward other cocirculating arboviruses in South America. Oropouche virus (OROV) is a poorly studied pathogen responsible for over a dozen outbreaks since the early 1960s and represents a public health burden to countries such as Brazil, Panama, and Peru. OROV is likely underreported since its symptomatology can be easily confounded with other febrile illnesses (e.g., dengue fever and leptospirosis) and point-of-care testing for the virus is still uncommon. With limited data, there is a need to optimize the information currently available. Analysis of OROV genomes can help us understand how the virus circulates in nature and can reveal the evolutionary forces that shape the genetic diversity of the virus, which has implications for molecular diagnostics and the design of potential vaccines.
Collapse
|
46
|
Kopp A, Hübner A, Zirkel F, Hobelsberger D, Estrada A, Jordan I, Gillespie TR, Drosten C, Junglen S. Detection of Two Highly Diverse Peribunyaviruses in Mosquitoes from Palenque, Mexico. Viruses 2019; 11:v11090832. [PMID: 31500304 PMCID: PMC6783978 DOI: 10.3390/v11090832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/29/2023] Open
Abstract
The Peribunyaviridae family contains the genera Orthobunyavirus, Herbevirus, Pacuvirus, and Shangavirus. Orthobunyaviruses and pacuviruses are mainly transmitted by blood-feeding insects and infect a variety of vertebrates whereas herbeviruses and shangaviruses have a host range restricted to insects. Here, we tested mosquitoes from a tropical rainforest in Mexico for infections with peribunyaviruses. We identified and characterized two previously unknown viruses, designated Baakal virus (BKAV) and Lakamha virus (LAKV). Sequencing and de novo assembly of the entire BKAV and LAKV genomes revealed that BKAV is an orthobunyavirus and LAKV is likely to belong to a new genus. LAKV was almost equidistant to the established peribunyavirus genera and branched as a deep rooting solitary lineage basal to herbeviruses. Virus isolation attempts of LAKV failed. BKAV is most closely related to the bird-associated orthobunyaviruses Koongol virus and Gamboa virus. BKAV was successfully isolated in mosquito cells but did not replicate in common mammalian cells from various species and organs. Also cells derived from chicken were not susceptible. Interestingly, BKAV can infect cells derived from a duck species that is endemic in the region where the BKAV-positive mosquito was collected. These results suggest a narrow host specificity and maintenance in a mosquito–bird transmission cycle.
Collapse
Affiliation(s)
- Anne Kopp
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany.
| | - Alexandra Hübner
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany.
| | - Florian Zirkel
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany, Biotest AG, 63303 Dreieich, Germany.
| | | | - Alejandro Estrada
- Estación de Biología Tropical Los Tuxtlas, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 04513, Mexico.
| | | | - Thomas R Gillespie
- Department of Environmental Sciences and Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, GA 30322, USA.
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| | - Christian Drosten
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany.
| | - Sandra Junglen
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany.
| |
Collapse
|
47
|
Chen Y, Dessau M, Rotenberg D, Rasmussen DA, Whitfield AE. Entry of bunyaviruses into plants and vectors. Adv Virus Res 2019; 104:65-96. [PMID: 31439153 DOI: 10.1016/bs.aivir.2019.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The majority of plant-infecting viruses are transmitted by arthropod vectors that deliver them directly into a living plant cell. There are diverse mechanisms of transmission ranging from direct binding to the insect stylet (non-persistent transmission) to persistent-propagative transmission in which the virus replicates in the insect vector. Despite this diversity in interactions, most arthropods that serve as efficient vectors have feeding strategies that enable them to deliver the virus into the plant cell without extensive damage to the plant and thus effectively inoculate the plant. As such, the primary virus entry mechanism for plant viruses is mediated by the biological vector. Remarkably, viruses that are transmitted in a propagative manner (bunyaviruses, rhabdoviruses, and reoviruses) have developed an ability to replicate in hosts from two kingdoms. Viruses in the order Bunyavirales are of emerging importance and with the advent of new sequencing technologies, we are getting unprecedented glimpses into the diversity of these viruses. Plant-infecting bunyaviruses are transmitted in a persistent, propagative manner must enter two unique types of host cells, plant and insect. In the insect phase of the virus life cycle, the propagative viruses likely use typical cellular entry strategies to traverse cell membranes. In this review, we highlight the transmission and entry strategies of three genera of plant-infecting bunyaviruses: orthotospoviruses, tenuiviruses, and emaraviruses.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Moshe Dessau
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - David A Rasmussen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|