1
|
Diroll BT, Coropceanu I, Portner J, Hua M, Schaller RD, Talapin DV. Bound and Continuum Intersubband Transitions in Colloidal Quantum Wells. NANO LETTERS 2025. [PMID: 39893572 DOI: 10.1021/acs.nanolett.4c05769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Quantum well intersubband transitions are critical for quantum cascade lasers and infrared photodetectors. Control of band offsets allows bound-to-bound intersubband transitions, with confinement of both initial and final states, and bound-to-continuum transitions, in which only the initial state is energetically confined within the potential well. Both types of transitions are also achieved in colloidal CdSe wells by changing the heterostructure shell. Bare wells have narrow intersubband transitions spanning the near-infrared spectrum following effective mass predictions. Atomically precise core/shells enable a readily adjusted potential well for electrons. For CdSe/ZnS, bound-to-bound transitions are narrow and redshift with shell thickness. By contrast, broad bound-to-continuum absorptions are found in CdSe/CdS. Due to small conduction band offsets, higher conduction band states of the well are more delocalized into the CdS shell. These measurements provide unique data to understand the electronic structure of colloidal quantum wells and chart a path to atomically precise optoelectronic materials for the mid-infrared.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Igor Coropceanu
- Department of Chemistry and James Franck Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Joshua Portner
- Department of Chemistry and James Franck Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Muchuan Hua
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dmitri V Talapin
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
- Department of Chemistry and James Franck Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Coley-O'Rourke MJ, Hou B, Sherman SJ, Dukovic G, Rabani E. Intrinsically Slow Cooling of Hot Electrons in CdSe Nanocrystals Compared to CdS. NANO LETTERS 2025; 25:244-250. [PMID: 39692560 DOI: 10.1021/acs.nanolett.4c04912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The utilization of excited charge carriers in semiconductor nanocrystals (NCs) for optoelectronic technologies has been a long-standing goal in the field of nanoscience. Experimental efforts to extend the lifetime of excited carriers have therefore been a principal focus. To understand the limits of these lifetimes, in this work, we theoretically study the time scales of pure electron relaxation in negatively charged NCs composed of two prototypical materials: CdSe and CdS. We find that hot electrons in CdSe have lifetimes that are 5 to 6 orders of magnitude longer than in CdS when the relaxation is governed only by the intrinsic properties of the materials. Although these two materials are known to have somewhat different electronic structure, we elucidate how this enormous difference in lifetimes arises from relatively small quantitative differences in electronic energy gaps and phonon frequencies, as well as the crucial role of Fröhlich-type electron-phonon couplings.
Collapse
Affiliation(s)
| | - Bokang Hou
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Skylar J Sherman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Gordana Dukovic
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry and Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
3
|
Ryu H, Shin D, Yoon B, Bae WK, Kwak J, Lee H. Direct Evidence of Excessive Charge-Carrier-Induced Degradation in InP Quantum-Dot Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1408-1419. [PMID: 39716446 DOI: 10.1021/acsami.4c12250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The limited operational lifetime of quantum-dot light-emitting diodes (QLEDs) poses a critical obstacle that must be addressed before their practical application. Specifically, cadmium-free InP-based QLEDs, which are environmentally benign, experience significant operational degradation due to challenges in charge-carrier confinement stemming from the composition of InP quantum dots (QDs). This study investigates the operational degradation of InP QLEDs and provides direct evidence of the degradation process. To facilitate degradation studies, a double-emission structure was designed. We employed transient electroluminescence and photoluminescence for nondestructive analysis of charge-carrier dynamics during device degradation. The time-resolved emission sequence revealed changes in carrier mobility within the QD layer as devices degraded. Furthermore, prolonged exposure of QDs to the charge-carrier population hindered their radiative recombination. Our observations indicate clear evidence of QLED degradation, characterized by ligand detachment from the QD surface and deterioration of the hole-transporting material due to excessive electrons. This comprehensive analysis of degradation mechanisms in InP QLEDs lays the groundwork for improving operational stability and longevity, serving as a benchmark for future research and development in the field of nanocrystal-based electroluminescent devices.
Collapse
Affiliation(s)
- Hyungsuk Ryu
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Doyoon Shin
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Beomhee Yoon
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Wan Ki Bae
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeonghun Kwak
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunho Lee
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
4
|
Shen X, Caillas A, Guyot-Sionnest P. Intraband cascade electroluminescence with weakly n-doped HgTe colloidal quantum dots. J Chem Phys 2024; 161:124703. [PMID: 39315879 DOI: 10.1063/5.0225746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Room temperature 6 μm intraband cascade electroluminescence (EL) is demonstrated with lightly n-doped HgTe colloidal quantum dots of ∼8 nm diameter deposited on interdigitated electrodes in a metal-insulator-metal device. With quantum dot films of ∼150 nm thickness made by solid-state-ligand-exchange, the devices emit at 1600 cm-1 (6.25 μm), with a spectral width of 200 cm-1, determined by the overlap of the 1Se-1Pe intraband transition of the quantum dots and the substrate photonic resonance. At the maximum current used of 20 mA, the bias was 30 V, the external quantum efficiency was 2.7%, and the power conversion efficiency was 0.025%. Adding gold nano-antennas between the electrodes broadened the emission and increased the quantum efficiency to 4.4% and the power efficiency to 0.036%. For these films, the doping was about 0.1 electron/dot, the electron mobility was 0.02 cm2 V-1 s-1, and the maximum current density was 0.04 kA cm-2. Higher mobility films made by solution ligand exchange show a 20-fold increase in current density and a 10-fold decrease in EL efficiencies. Electroluminescence with weak doping is interesting for eventually achieving electrically driven stimulated emission, and the requirements for population inversion and lasing are discussed.
Collapse
Affiliation(s)
- Xingyu Shen
- James Franck Institute, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| | - Augustin Caillas
- James Franck Institute, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| | - Philippe Guyot-Sionnest
- James Franck Institute, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
5
|
Homer MK, Larson HC, Dixon GJ, Miura-Stempel E, Armstrong NR, Cossairt BM. Extremely Long-Lived Charge Donor States Formed by Visible Irradiation of Quantum Dots. ACS NANO 2024; 18:24591-24602. [PMID: 39161977 DOI: 10.1021/acsnano.4c10526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Using cyclic voltammetry under illumination, we recently demonstrated that CdS quantum dots (QDs) form charge donor states that live for at least several minutes after illumination ends, ∼12 orders of magnitude longer than expected for free carriers. This time scale suggests that the conventionally accepted mechanism of charge transfer, wherein charges directly transfer to an acceptor following exciton dissociation, cannot be complete. Because of these long time scales, this unconventional pathway is not readily observed using time-resolved spectroscopy to probe charge transfer dynamics. Here, we investigated the chemical nature of these charge donor states using cyclic voltammetry under illumination coupled with NMR spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and optical spectroscopy. Our data reveal that charges are stored locally rather than as free carriers, and the number of charges stored is dependent on the QD surface ligation and stoichiometry. Altogether, our results confirm that electrons are stored at ligated surface Cd, these sites are competent charge donors, and this storage is charge balanced by X-type ligand desorption. We found that charge storage occurs in every QD system studied, including CdS, CdSe, and InP capped with carboxylate and phosphonate ligands.
Collapse
Affiliation(s)
- Micaela K Homer
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Helen C Larson
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Grant J Dixon
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Emily Miura-Stempel
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Neal R Armstrong
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arkansas 85721, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Wang B, Yuan M, Liu J, Zhang X, Liu J, Yang J, Gao L, Zhang J, Tang J, Lan X. Synergism in Binary Nanocrystals Enables Top-Illuminated HgTe Colloidal Quantum Dot Short-Wave Infrared Imager. NANO LETTERS 2024; 24:9583-9590. [PMID: 39041791 DOI: 10.1021/acs.nanolett.4c02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Thanks to their tunable infrared absorption, solution processability, and low fabrication costs, HgTe colloidal quantum dots (CQDs) are promising for optoelectronic devices. Despite advancements in device design, their potential for imaging applications remains underexplored. For integration with Si-based readout integrated circuits (ROICs), top illumination is necessary for simultaneous light absorption and signal acquisition. However, most high-performing traditional HgTe CQD photodiodes are p-on-n stack and bottom-illuminated. Herein, we report top-illuminated inverted n-on-p HgTe CQD photodiodes using a robust p-type CQD layer and a thermally evaporated Bi2S3 electron transport layer. The p-type CQD solid is achieved by exploring the synergism in binary HgTe and Ag2Te CQDs. These photodetectors show a room-temperature detectivity of 3.4 × 1011 jones and an EQE of ∼44% at ∼1.7 μm wavelength, comparable to the p-on-n HgTe CQD photodiodes. A top-illuminated HgTe CQD short-wave infrared imager (640 × 512 pixels) was fabricated, demonstrating successful infrared imaging.
Collapse
Affiliation(s)
- Binbin Wang
- School of Optical and Electronic Information (OEI), Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, People's Republic of China
| | - Mohan Yuan
- School of Optical and Electronic Information (OEI), Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, People's Republic of China
| | - Jing Liu
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, People's Republic of China
| | - Xingchen Zhang
- School of Optical and Electronic Information (OEI), Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, People's Republic of China
| | - Jing Liu
- School of Optical and Electronic Information (OEI), Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, People's Republic of China
| | - Ji Yang
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, People's Republic of China
| | - Liang Gao
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, People's Republic of China
- Optics Valley Laboratory, Wuhan, Hubei 430074, People's Republic of China
- School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Jianbing Zhang
- Optics Valley Laboratory, Wuhan, Hubei 430074, People's Republic of China
- School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Jiang Tang
- School of Optical and Electronic Information (OEI), Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, People's Republic of China
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, People's Republic of China
- Optics Valley Laboratory, Wuhan, Hubei 430074, People's Republic of China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Xinzheng Lan
- School of Optical and Electronic Information (OEI), Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, People's Republic of China
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, People's Republic of China
- Optics Valley Laboratory, Wuhan, Hubei 430074, People's Republic of China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
7
|
Almutlaq J, Liu Y, Mir WJ, Sabatini RP, Englund D, Bakr OM, Sargent EH. Engineering colloidal semiconductor nanocrystals for quantum information processing. NATURE NANOTECHNOLOGY 2024; 19:1091-1100. [PMID: 38514820 DOI: 10.1038/s41565-024-01606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/10/2024] [Indexed: 03/23/2024]
Abstract
Quantum information processing-which relies on spin defects or single-photon emission-has shown quantum advantage in proof-of-principle experiments including microscopic imaging of electromagnetic fields, strain and temperature in applications ranging from battery research to neuroscience. However, critical gaps remain on the path to wider applications, including a need for improved functionalization, deterministic placement, size homogeneity and greater programmability of multifunctional properties. Colloidal semiconductor nanocrystals can close these gaps in numerous application areas, following years of rapid advances in synthesis and functionalization. In this Review, we specifically focus on three key topics: optical interfaces to long-lived spin states, deterministic placement and delivery for sensing beyond the standard quantum limit, and extensions to multifunctional colloidal quantum circuits.
Collapse
Affiliation(s)
- Jawaher Almutlaq
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuan Liu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Wasim J Mir
- KAUST Catalysis Center, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Randy P Sabatini
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Dirk Englund
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Osman M Bakr
- KAUST Catalysis Center, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
8
|
Yu M, Yang J, Zhang X, Yuan M, Zhang J, Gao L, Tang J, Lan X. In-Synthesis Se-Stabilization Enables Defect and Doping Engineering of HgTe Colloidal Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311830. [PMID: 38501495 DOI: 10.1002/adma.202311830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/25/2024] [Indexed: 03/20/2024]
Abstract
Colloidal Quantum Dots (CQDs) of mercury telluride (HgTe) hold particular appeal for infrared photodetection due to their widely tunable infrared absorption and good compatibility with silicon electronics. While advances in surface chemistry have led to improved CQD solids, the chemical stability of HgTe material is not fully emphasized. In this study, it is aimed to address this issue and identifies a Se-stabilization strategy based on the surface coating of Se on HgTe CQDs via engineering in the precursor reactivity. The presence of Se-coating enables HgTe CQDs with improved colloidal stability, passivation, and enhanced degree of freedom in doping tuning. This enables the construction of optimized p-i-n HgTe CQD infrared photodetectors with an ultra-low dark current 3.26 × 10-6 A cm⁻2 at -0.4 V and room-temperature specific detectivity of 5.17 × 1011 Jones at wavelength ≈2 um, approximately one order of magnitude improvement compared to that of the control device. The stabilizing effect of Se is well preserved in the thin film state, contributing to much improved device stability. The in-synthesis Se-stabilization strategy highlights the importance of the chemical stability of materials for the construction of semiconductor-grade CQD solids and may have important implications for other high-performance CQD optoelectronic devices.
Collapse
Affiliation(s)
- Mengxuan Yu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Ji Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Xingchen Zhang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Mohan Yuan
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jianbing Zhang
- School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Yuexing Road, Shenzhen, 518057, P. R. China
| | - Liang Gao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Yuexing Road, Shenzhen, 518057, P. R. China
- Optics Valley Laboratory, Wuhan, Hubei, 430074, P. R. China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jiang Tang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Optics Valley Laboratory, Wuhan, Hubei, 430074, P. R. China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang, 325035, P. R. China
| | - Xinzheng Lan
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Optics Valley Laboratory, Wuhan, Hubei, 430074, P. R. China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
9
|
Kwon MG, Kim C, Kim SM, Yoo TJ, Lee Y, Hwang HJ, Lee S, Lee BH. Demonstration of a low power and high-speed graphene/silicon heterojunction near-infrared photodetector. NANOSCALE ADVANCES 2024; 6:3391-3398. [PMID: 38933854 PMCID: PMC11197439 DOI: 10.1039/d4na00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024]
Abstract
The structure and process of the graphene/Si heterojunction near-infrared photodetector were optimized to enhance the operating speed limit. The introduction of a well-designed structure improved the rise time from 12.6 μs to 115 ns, albeit at the expense of the responsivity, which decreased from 1.25 A W-1 to 0.56 A W-1. Similarly, the falling time was improved from 38 μs to 288 ns with a sacrifice in responsivity from 1.25 A W-1 to 0.29 A W-1, achieved through the introduction of Ge-induced defect-recombination centers within the well. Through a judicious well design and the introduction of recombination defect centers, the minimum pulse width could be improved from 50.6 μs to 435 ns, facilitating 2 MHz operation. This represents more than 100 times increase compared to previously reported graphene and graphene/Si hybrid photodetectors.
Collapse
Affiliation(s)
- Min Gyu Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST) 123, Cheomdangwagi-ro, Buk-gu Gwangju 61005 Republic of Korea
| | - Cihyun Kim
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH) 77, Cheongam-ro, Nam-gu Pohang-si Gyeongsangbuk-do 37673 Republic of Korea
| | - Seung-Mo Kim
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH) 77, Cheongam-ro, Nam-gu Pohang-si Gyeongsangbuk-do 37673 Republic of Korea
| | - Tae Jin Yoo
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH) 77, Cheongam-ro, Nam-gu Pohang-si Gyeongsangbuk-do 37673 Republic of Korea
| | - Yongsu Lee
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH) 77, Cheongam-ro, Nam-gu Pohang-si Gyeongsangbuk-do 37673 Republic of Korea
| | - Hyeon Jun Hwang
- Department of Semiconductor Engineering, Mokpo National University 1666, Yeongsan-ro, Cheonggye-myeon Muan-gun Jeollanam-do 58554 Republic of Korea
| | - Sanghan Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST) 123, Cheomdangwagi-ro, Buk-gu Gwangju 61005 Republic of Korea
| | - Byoung Hun Lee
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH) 77, Cheongam-ro, Nam-gu Pohang-si Gyeongsangbuk-do 37673 Republic of Korea
| |
Collapse
|
10
|
Wang S, Zhang X, Guo T, Cao S. Model-Based Practically Precise Fabrication of HgSe Quantum Dots toward Their Application in a Long-Wave Infrared Micro Spectrometer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29402-29409. [PMID: 38788139 DOI: 10.1021/acsami.4c03967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Quantum dot (QD) passive filters present a simple and low-cost strategy for the micromation of spectrometers. In this field, the consistency between ultranarrow band gap QD fabrication and the precise control of its absorption characteristics is the key-challenge to extend QD spectrometers into the long-wave infrared (LWIR) region. Here, we show the model-based, practically precise fabrication of HgSe QDs as well as their specific spectral responses. Both the theoretical and experimental models of the HgSe QDs r-λ are formulated, which reveals the variation of transmission spectrum with the size of HgSe QDs. Then, the HgSe QDs synthesis parameter-spectral response hyperplane model and neural network model were obtained by using traditional polynomial fitting and machine learning, respectively. We also demonstrate the model-based precise fabrication of HgSe QDs with transmission characteristic peaks within 14 μm. The further simulation also shows that the 255─element QD filter array has the signal-to-noise ratio up to 14.57 dB with detection resolution about 5 cm-1.
Collapse
Affiliation(s)
- Suhui Wang
- State Key Laboratory of NBC Protection for Civilian, 102205 Beijing, China
| | - Xu Zhang
- State Key Laboratory of NBC Protection for Civilian, 102205 Beijing, China
| | - Tengxiao Guo
- State Key Laboratory of NBC Protection for Civilian, 102205 Beijing, China
| | - Shuya Cao
- State Key Laboratory of NBC Protection for Civilian, 102205 Beijing, China
| |
Collapse
|
11
|
Malik S, Zhao Y, He Y, Zhao X, Li H, Yi W, Occhipinti LG, Wang M, Akhavan S. Spray-lithography of hybrid graphene-perovskite paper-based photodetectors for sustainable electronics. NANOTECHNOLOGY 2024; 35:325301. [PMID: 38640909 DOI: 10.1088/1361-6528/ad40b6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/18/2024] [Indexed: 04/21/2024]
Abstract
Paper is an ideal substrate for the development of flexible and environmentally sustainable ubiquitous electronic systems. When combined with nanomaterial-based devices, it can be harnessed for various Internet-of-Things applications, ranging from wearable electronics to smart packaging. However, paper remains a challenging substrate for electronics due to its rough and porous nature. In addition, the absence of established fabrication methods is impeding its utilization in wearable applications. Unlike other paper-based electronics with added layers, in this study, we present a scalable spray-lithography on a commercial paper substrate. We present a non-vacuum spray-lithography of chemical vapor deposition (CVD) single-layer graphene (SLG), carbon nanotubes (CNTs) and perovskite quantum dots (QDs) on a paper substrate. This approach combines the advantages of two large-area techniques: CVD and spray-coating. The first technique allows for the growth of SLG, while the second enables the spray coating of a mask to pattern CVD SLG, electrodes (CNTs), and photoactive (QDs) layers. We harness the advantages of perovskite QDs in photodetection, leveraging their strong absorption coefficients. Integrating them with the graphene enhances the photoconductive gain mechanism, leading to high external responsivity. The presented device shows high external responsivity of ∼520 A W-1at 405 nm at <1 V bias due to the photoconductive gain mechanism. The prepared paper-based photodetectors (PDs) achieve an external responsivity of 520 A W-1under 405 nm illumination at <1 V operating voltage. To the best of our knowledge, our devices have the highest external responsivity among paper-based PDs. By fabricating arrays of PDs on a paper substrate in the air, this work highlights the potential of this scalable approach for enabling ubiquitous electronics on paper.
Collapse
Affiliation(s)
- Sunaan Malik
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Yining Zhao
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Yutong He
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Xinyu Zhao
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Hongyu Li
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Wentian Yi
- Cambridge Graphene Centre, University of Cambridge, Cambridge, United Kingdom
| | - Luigi G Occhipinti
- Cambridge Graphene Centre, University of Cambridge, Cambridge, United Kingdom
| | - Mingqing Wang
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Shahab Akhavan
- Institute for Materials Discovery, University College London, London, United Kingdom
| |
Collapse
|
12
|
Fu Z, Wang F, Liu J, Sun W, Zhang H, Song X, Yao J. High responsivity photodetector based on MEH-PPV/CsPbBr 3heterojunction. NANOTECHNOLOGY 2024; 35:325201. [PMID: 38697049 DOI: 10.1088/1361-6528/ad4654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Perovskite quantum dots (QDs) and organic materials have great research potential in the field of optoelectronic devices. In this paper, MEH-PPV/CsPbBr3heterojunction photodetectors (PDs) are prepared by spin coating method based on the good photoelectric properties of CsPbBr3perovskite QDs and MEH-PPV. The MEH-PPV/CsPbBr3heterojunction improves the energy level arrangement, and CsPbBr3QDs can passivate the surface defects of MEH-PPV films to achieve effective charge separation and transfer, thus inhibiting the dark current and improving the photoelectric performance of the device. Under 532 nm laser irradiation, the responsivity (R) of MEH-PPV/CsPbBr3heterojunction PD is 11.98 A W-1, the specific detectivity (D*) is 6.98 × 1011Jones, and the response time is 15/16 ms. This work provides experience for the study of perovskite QDs and organic materials heterojunction optoelectronic devices.
Collapse
Affiliation(s)
- Zhendong Fu
- Center of Intelligent Opto-electric Sensors, Tianjin Jinhang Technical Physics Institute, Tianjin, 300308, People's Republic of China
| | - Fuguo Wang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- Institute of Micro-nano Optoelectronics and Terahertz Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Jiangnan Liu
- Center of Intelligent Opto-electric Sensors, Tianjin Jinhang Technical Physics Institute, Tianjin, 300308, People's Republic of China
| | - Wenbao Sun
- Center of Intelligent Opto-electric Sensors, Tianjin Jinhang Technical Physics Institute, Tianjin, 300308, People's Republic of China
| | - Haiting Zhang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- Institute of Micro-nano Optoelectronics and Terahertz Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Xiaoxian Song
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- Institute of Micro-nano Optoelectronics and Terahertz Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jianquan Yao
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- Institute of Micro-nano Optoelectronics and Terahertz Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
13
|
Yu C, Shan Y, Zhu J, Sun D, Zheng X, Zhang N, Hou J, Fang Y, Dai N, Liu Y. Heterojunctions of Mercury Selenide Quantum Dots and Halide Perovskites with High Lattice Matching and Their Photodetection Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1864. [PMID: 38673221 PMCID: PMC11051518 DOI: 10.3390/ma17081864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Heterojunction semiconductors have been extensively applied in various optoelectronic devices due to their unique carrier transport characteristics. However, it is still a challenge to construct heterojunctions based on colloidal quantum dots (CQDs) due to stress and lattice mismatch. Herein, HgSe/CsPbBrxI3-x heterojunctions with type I band alignment are acquired that are derived from minor lattice mismatch (~1.5%) via tuning the ratio of Br and I in halide perovskite. Meanwhile, HgSe CQDs with oleylamine ligands can been exchanged with a halide perovskite precursor, acquiring a smooth and compact quantum dot film. The photoconductive detector based on HgSe/CsPbBrxI3-x heterojunction presents a distinct photoelectric response under an incident light of 630 nm. The work provides a promising strategy to construct CQD-based heterojunctions, simultaneously achieving inorganic ligand exchange, which paves the way to obtain high-performance photodetectors based on CQD heterojunction films.
Collapse
Affiliation(s)
- Chengye Yu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (C.Y.); (D.S.); (X.Z.); (N.Z.); (J.H.)
| | - Yufeng Shan
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.Z.); (N.D.)
| | - Jiaqi Zhu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.Z.); (N.D.)
| | - Dingyue Sun
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (C.Y.); (D.S.); (X.Z.); (N.Z.); (J.H.)
| | - Xiaohong Zheng
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (C.Y.); (D.S.); (X.Z.); (N.Z.); (J.H.)
| | - Na Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (C.Y.); (D.S.); (X.Z.); (N.Z.); (J.H.)
| | - Jingshan Hou
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (C.Y.); (D.S.); (X.Z.); (N.Z.); (J.H.)
| | - Yongzheng Fang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (C.Y.); (D.S.); (X.Z.); (N.Z.); (J.H.)
| | - Ning Dai
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.Z.); (N.D.)
- State Key Labratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Yufeng Liu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (C.Y.); (D.S.); (X.Z.); (N.Z.); (J.H.)
- State Key Labratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| |
Collapse
|
14
|
Peng L, Wang Y, Ren Y, Wang Z, Cao P, Konstantatos G. InSb/InP Core-Shell Colloidal Quantum Dots for Sensitive and Fast Short-Wave Infrared Photodetectors. ACS NANO 2024. [PMID: 38305195 DOI: 10.1021/acsnano.3c12007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Colloidal quantum dot (CQD) technology is considered the main contender toward a low-cost high-performance optoelectronic technology platform for applications in the short-wave infrared (SWIR) to enable 3D imaging, LIDAR night vision, etc. in the consumer electronics and automotive markets. In order to unleash the full potential of this technology, there is a need for a material that is environmentally friendly, thus RoHS compliant, and possesses adequate optoelectronic properties to deliver high-performance devices. InSb CQDs hold great potential in view of their RoHS-compliant nature and─in principle─facile access to the SWIR. However, to date progress in realizing high-performance optoelectronic devices, including photodetectors (PDs), has been limited. Here, we have developed a synthesis method for producing size-tunable InSb CQDs with distinct excitonic peaks spanning a wide range from 900 to 1750 nm. To passivate the surface defects and enhance the photoluminescence (PL) efficiency of InSb CQDs, we further designed an InSb/InP core-shell structure. By employing the InSb/InP core-shell CQDs in a photodiode device stack, we report on robust InSb CQD SWIR photodetectors that exhibit an external quantum efficiency (EQE) of 25% at 1240 nm, a wide linear dynamic range exceeding 128 dB, a photoresponse time of 70 ns, and a specific detectivity of 4.4 × 1011 jones.
Collapse
Affiliation(s)
- Lucheng Peng
- ICFO-Insitut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Yongjie Wang
- ICFO-Insitut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Yurong Ren
- ICFO-Insitut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Zhuoran Wang
- ICFO-Insitut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Pengfei Cao
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Gerasimos Konstantatos
- ICFO-Insitut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudiats Avançats, Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
15
|
Kim J, Lee J, Lee JM, Facchetti A, Marks TJ, Park SK. Recent Advances in Low-Dimensional Nanomaterials for Photodetectors. SMALL METHODS 2024; 8:e2300246. [PMID: 37203281 DOI: 10.1002/smtd.202300246] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/21/2023] [Indexed: 05/20/2023]
Abstract
New emerging low-dimensional such as 0D, 1D, and 2D nanomaterials have attracted tremendous research interests in various fields of state-of-the-art electronics, optoelectronics, and photonic applications due to their unique structural features and associated electronic, mechanical, and optical properties as well as high-throughput fabrication for large-area and low-cost production and integration. Particularly, photodetectors which transform light to electrical signals are one of the key components in modern optical communication and developed imaging technologies for whole application spectrum in the daily lives, including X-rays and ultraviolet biomedical imaging, visible light camera, and infrared night vision and spectroscopy. Today, diverse photodetector technologies are growing in terms of functionality and performance beyond the conventional silicon semiconductor, and low-dimensional nanomaterials have been demonstrated as promising potential platforms. In this review, the current states of progress on the development of these nanomaterials and their applications in the field of photodetectors are summarized. From the elemental combination for material design and lattice structure to the essential investigations of hybrid device architectures, various devices and recent developments including wearable photodetectors and neuromorphic applications are fully introduced. Finally, the future perspectives and challenges of the low-dimensional nanomaterials based photodetectors are also discussed.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Junho Lee
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Jong-Min Lee
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Antonio Facchetti
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Tobin J Marks
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Sung Kyu Park
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
16
|
Kumar G, Lin CC, Kuo HC, Chen FC. Enhancing photoluminescence performance of perovskite quantum dots with plasmonic nanoparticles: insights into mechanisms and light-emitting applications. NANOSCALE ADVANCES 2024; 6:782-791. [PMID: 38298599 PMCID: PMC10825943 DOI: 10.1039/d3na01078c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024]
Abstract
Perovskite quantum dots (QDs) are considered as promising materials for numerous optoelectronic applications due to their narrow emission spectra, high color purity, high photoluminescence quantum yields (PLQYs), and cost-effectiveness. Herein, we synthesized various types of perovskite QDs and incorporated Au nanoparticles (NPs) to systematically investigate the impact of plasmonic effects on the photoluminescence performance of perovskite QDs. The PLQYs of the QDs are enhanced effectively upon the inclusion of Au NPs in the solutions, with an impressive PLQY approaching 99% achieved. The PL measurements reveal that the primary mechanism behind the PL improvement is the accelerated rate of radiative recombination. Furthermore, we integrate perovskite QDs and Au NPs, which function as color conversion layers, with blue light-emitting diodes (LEDs), achieving a remarkable efficiency of 140.6 lm W-1. Additionally, we prepare photopatternable thin films of perovskite QDs using photocrosslinkable polymers as the matrix. Microscale patterning of the thin films is accomplished, indicating that the addition of plasmonic NPs does not adversely affect their photopatternable properties. Overall, our research not only elucidates the underlying mechanisms of plasmonic effects on perovskite QDs but presents a practical method for enhancing their optical performance, paving the way for next-generation optoelectronic applications, including high-definition micro-LED panels.
Collapse
Affiliation(s)
- Gautham Kumar
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| | - Chien-Chung Lin
- Graduate Institute of Photonics and Optoelectronics, Department of Electrical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Hao-Chung Kuo
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| | - Fang-Chung Chen
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| |
Collapse
|
17
|
Kim TH, Choi YK, Lee GM, Saeed MA, Jung BK, Lee MJ, Choi HJ, Oh SJ, Shim JW. Ultra-Low Noise Level Infrared Quantum Dot Photodiodes with Self-Screenable Polymeric Optical Window. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309028. [PMID: 37991324 DOI: 10.1002/adma.202309028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Quantum dot photodiodes (QPDs) have garnered significant attention because of their unparalleled near-infrared (NIR) detection capabilities, primarily attributable to their size-dependent bandgap tunability. Nevertheless, the broadband absorption spectrum of QPD engenders substantial noise floor within superfluous visible light regions, notably hindering their use in several emerging applications necessitating the detection of faint micro-light signals. To overcome these hurdles, a self-screenable NIR QPD featuring an internal optical filter with a thick polymeric interlayer to reduce electronic noise is demonstrated. This effectively screens out undesirable visible light regions while reducing the ionized defect owing to decreased density of state, yielding an extremely low dark current (≈1010 A cm-2 at V = -1 V). Consequently, the electronic noise spectral density is attained at levels below ≈10-27 -10-28 A2 Hz-1 , and responsivity (R) dropped to 92% within the visible light spectrum.
Collapse
Affiliation(s)
- Tae Hyuk Kim
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Young Kyun Choi
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Gyeong Min Lee
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Muhammad Ahsan Saeed
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Byung Ku Jung
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Min Jong Lee
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyung Jin Choi
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jae Won Shim
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
18
|
Wang S, Guo T, Cao S. The Influence of Synthetic Parameters on HgSe QDs. ACS OMEGA 2023; 8:44804-44811. [PMID: 38046346 PMCID: PMC10688168 DOI: 10.1021/acsomega.3c05910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023]
Abstract
HgSe quantum dots (QDs) were synthesized by a thermal injection method. The effects of material ratio, growth time, and reaction temperature on the growth and spectral properties of the QDs have been studied. The experimental results show that the QDs had the highest yield of 53.04% when the molar ratio of Se source to Hg source was 1.5. Also, the excess source of SeS2 was reduced to Se. In addition, the critical radius and spectral red-shift rate of QDs can be increased with the reaction temperature. When the reaction temperature was increased to 100 °C, the spectrum reached far-infrared and the growth rate was increased to 10 times and reached 0.63 nm/min. Differing particle morphologies can be obtained by increasing the growth time to 40 min. Moreover, the growth rate reached the minimum at 30 min and the maximum at 80 min of the growth time. This study can provide guidance for the synthesis of long-wave infrared QD materials.
Collapse
Affiliation(s)
- Suhui Wang
- State Key Laboratory of
NBC Protection for Civilian, Beijing 102205, China
| | - Tengxiao Guo
- State Key Laboratory of
NBC Protection for Civilian, Beijing 102205, China
| | - Shuya Cao
- State Key Laboratory of
NBC Protection for Civilian, Beijing 102205, China
| |
Collapse
|
19
|
Leemans J, Respekta D, Bai J, Braeuer S, Vanhaecke F, Hens Z. Formation of Colloidal In(As,P) Quantum Dots Active in the Short-Wave Infrared, Promoting Growth through Temperature Ramps. ACS NANO 2023; 17:20002-20012. [PMID: 37787479 DOI: 10.1021/acsnano.3c05138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Colloidal InAs quantum dots (QDs) are widely studied as a printable optoelectronic material for short-wave infrared (SWIR) that is not restricted by regulations on hazardous substances. Such applications, however, require synthetic procedures that yield QDs with adjustable sizes at the end of the reaction. Here, we show that such one-size-one-batch protocols can be realized through temperature profiles that involve a rapid transition from a lower injection temperature to a higher reaction temperature. By expediting the transition to the reaction temperature and reducing the overall synthesis concentration, we can tune QD sizes from 4.5 to 10 nm, the latter corresponding to a band gap transition at 1600 nm. We argue that the temperature ramps provide a more distinct separation between nucleation at low temperature and growth at high temperature such that larger QDs are obtained by minimizing the nucleation time. The synthetic procedures introduced here will strongly promote the development of a SWIR optoelectronic technology based on InAs QDs, while the use of temperature profiles to steer a colloidal synthesis can find applications well beyond the specific case of InAs QDs.
Collapse
Affiliation(s)
- Jari Leemans
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, 9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, 9000 Gent, Belgium
| | - Dobromił Respekta
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, 9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, 9000 Gent, Belgium
| | - Jing Bai
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, 9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, 9000 Gent, Belgium
| | - Simone Braeuer
- A&MS Research Group, Department of Chemistry, Ghent University, 9000 Gent, Belgium
| | - Frank Vanhaecke
- A&MS Research Group, Department of Chemistry, Ghent University, 9000 Gent, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, 9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, 9000 Gent, Belgium
| |
Collapse
|
20
|
Dang TH, Cavallo M, Khalili A, Dabard C, Bossavit E, Zhang H, Ledos N, Prado Y, Lafosse X, Abadie C, Gacemi D, Ithurria S, Vincent G, Todorov Y, Sirtori C, Vasanelli A, Lhuillier E. Multiresonant Grating to Replace Transparent Conductive Oxide Electrode for Bias Selected Filtering of Infrared Photoresponse. NANO LETTERS 2023; 23:8539-8546. [PMID: 37712683 DOI: 10.1021/acs.nanolett.3c02306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Optoelectronic devices rely on conductive layers as electrodes, but they usually introduce optical losses that are detrimental to the device performances. While the use of transparent conductive oxides is established in the visible region, these materials show high losses at longer wavelengths. Here, we demonstrate a photodiode based on a metallic grating acting as an electrode. The grating generates a multiresonant photonic structure over the diode stack and allows strong broadband absorption. The obtained device achieves the highest performances reported so far for a midwave infrared nanocrystal-based detector, with external quantum efficiency above 90%, detectivity of 7 × 1011 Jones at 80 K at 5 μm, and a sub-100 ns time response. Furthermore, we demonstrate that combining different gratings with a single diode stack can generate a bias reconfigurable response and develop new functionalities such as band rejection.
Collapse
Affiliation(s)
- Tung Huu Dang
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 24 Rue Lhomond, 75005 Paris, France
| | - Mariarosa Cavallo
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Adrien Khalili
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Corentin Dabard
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Erwan Bossavit
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Huichen Zhang
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Nicolas Ledos
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Yoann Prado
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Xavier Lafosse
- Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - Claire Abadie
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Djamal Gacemi
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 24 Rue Lhomond, 75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI, PSL Research University, Sorbonne Université, CNRS UMR 8213, 10 rue Vauquelin, 75005 Paris, France
| | - Grégory Vincent
- DOTA, ONERA, Université Paris Saclay, 6 Chem. de la Vauve aux Granges, 91120 Palaiseau, France
| | - Yanko Todorov
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 24 Rue Lhomond, 75005 Paris, France
| | - Carlo Sirtori
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 24 Rue Lhomond, 75005 Paris, France
| | - Angela Vasanelli
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 24 Rue Lhomond, 75005 Paris, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
21
|
Al Mahfuz MM, Park J, Islam R, Ko DK. Colloidal Ag 2Se intraband quantum dots. Chem Commun (Camb) 2023; 59:10722-10736. [PMID: 37606169 DOI: 10.1039/d3cc02203j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
With the emergence of the Internet of Things, wearable electronics, and machine vision, the exponentially growing demands for miniaturization, energy efficiency, and cost-effectiveness have imposed critical requirements on the size, weight, power consumption and cost (SWaP-C) of infrared detectors. To meet this demand, new sensor technologies that can reduce the fabrication cost associated with semiconductor epitaxy and remove the stringent requirement for cryogenic cooling are under active investigation. In the technologically important spectral region of mid-wavelength infrared, intraband colloidal quantum dots are currently at the forefront of this endeavor, with wafer-scale monolithic integration and Auger suppression being the key material capabilities to minimize the sensor's SWaP-C. In this Feature Article, we provide a focused review on the development of sensors based on Ag2Se intraband colloidal quantum dots, a heavy metal-free colloidal nanomaterial that has merits for wide-scale adoption in consumer and industrial sectors.
Collapse
Affiliation(s)
- Mohammad Mostafa Al Mahfuz
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| | - Junsung Park
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| | - Rakina Islam
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| | - Dong-Kyun Ko
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| |
Collapse
|
22
|
Zhao X, Ma H, Cai H, Wei Z, Bi Y, Tang X, Qin T. Lead Chalcogenide Colloidal Quantum Dots for Infrared Photodetectors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5790. [PMID: 37687485 PMCID: PMC10488450 DOI: 10.3390/ma16175790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Infrared detection technology plays an important role in remote sensing, imaging, monitoring, and other fields. So far, most infrared photodetectors are based on InGaAs and HgCdTe materials, which are limited by high fabrication costs, complex production processes, and poor compatibility with silicon-based readout integrated circuits. This hinders the wider application of infrared detection technology. Therefore, reducing the cost of high-performance photodetectors is a research focus. Colloidal quantum dot photodetectors have the advantages of solution processing, low cost, and good compatibility with silicon-based substrates. In this paper, we summarize the recent development of infrared photodetectors based on mainstream lead chalcogenide colloidal quantum dots.
Collapse
Affiliation(s)
- Xue Zhao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (X.Z.); (H.M.); (X.T.)
| | - Haifei Ma
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (X.Z.); (H.M.); (X.T.)
| | - Hongxing Cai
- Physics Department, Changchun University of Science and Technology, Changchun 130022, China; (H.C.); (Z.W.)
| | - Zhipeng Wei
- Physics Department, Changchun University of Science and Technology, Changchun 130022, China; (H.C.); (Z.W.)
| | - Ying Bi
- Beijing Institute of Aerospace Systems Engineering, Beijing 100076, China;
| | - Xin Tang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (X.Z.); (H.M.); (X.T.)
| | - Tianling Qin
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (X.Z.); (H.M.); (X.T.)
| |
Collapse
|
23
|
Wang S, Ashokan A, Balendhran S, Yan W, Johnson BC, Peruzzo A, Crozier KB, Mulvaney P, Bullock J. Room Temperature Bias-Selectable, Dual-Band Infrared Detectors Based on Lead Sulfide Colloidal Quantum Dots and Black Phosphorus. ACS NANO 2023. [PMID: 37318109 DOI: 10.1021/acsnano.3c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A single photodetector capable of switching its peak spectral photoresponse between two wavelength bands is highly useful, particularly for the infrared (IR) bands in applications such as remote sensing, object identification, and chemical sensing. Technologies exist for achieving dual-band IR detection with bulk III-V and II-VI materials, but the high cost and complexity as well as the necessity for active cooling associated with some of these technologies preclude their widespread adoption. In this study, we leverage the advantages of low-dimensional materials to demonstrate a bias-selectable dual-band IR detector that operates at room temperature by using lead sulfide colloidal quantum dots and black phosphorus nanosheets. By switching between zero and forward bias, these detectors switch peak photosensitive ranges between the mid- and short-wave IR bands with room temperature detectivities of 5 × 109 and 1.6 × 1011 cm Hz1/2 W-1, respectively. To the best of our knowledge, these are the highest reported room temperature values for low-dimensional material dual-band IR detectors to date. Unlike conventional bias-selectable detectors, which utilize a set of back-to-back photodiodes, we demonstrate that under zero/forward bias conditions the device's operation mode instead changes between a photodiode and a phototransistor, allowing additional functionalities that the conventional structure cannot provide.
Collapse
Affiliation(s)
- Shifan Wang
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Arun Ashokan
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sivacarendran Balendhran
- School of Physics, University of Melbourne, Melbourne, Victoria 3010, Australia
- ARC Centre of Excellence for Transformative Meta-Optical System (TMOS), The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Wei Yan
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Brett C Johnson
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Alberto Peruzzo
- Quantum Photonics Laboratory and Centre for Quantum Computation and Communication Technology, RMIT University, Melbourne, Victoria 3000, Australia
| | - Kenneth B Crozier
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
- School of Physics, University of Melbourne, Melbourne, Victoria 3010, Australia
- ARC Centre of Excellence for Transformative Meta-Optical System (TMOS), The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - James Bullock
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
24
|
Qin Y, Guo T, Liu J, Lin T, Wang J, Chu J. Colloidal Quantum Dots in Very-Long-Wave Infrared Detection: Progress, Challenges, and Opportunities. ACS OMEGA 2023; 8:19137-19144. [PMID: 37305230 PMCID: PMC10249132 DOI: 10.1021/acsomega.3c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/19/2023] [Indexed: 06/13/2023]
Abstract
The very long wave infrared (VLWIR) is an electromagnetic wave with a wavelength range of 15-30 μm, which plays an important role in missile defense and weather monitoring. This paper briefly introduces the development of intraband absorption of colloidal quantum dots (CQDs) and investigates the possibility of using CQDs to produce VLWIR detectors. We calculated the detectivity of CQDs for VLWIR. The results show that the detectivity is affected by parameters such as quantum dot size, temperature, electron relaxation time, and distance between quantum dots. The theoretical derivation results, combined with the current development status, show that the detection of VLWIR by CQDs is still in the theoretical stage.
Collapse
Affiliation(s)
- Yilu Qin
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai 201210, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
| | - Tianle Guo
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
| | - Jingjing Liu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
| | - Tie Lin
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
| | - Jianlu Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- Frontier Institute of Chip and System, Institute of Optoelectronics, Shanghai Frontier Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai 200438, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 330106, China
| | - Junhao Chu
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai 201210, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
| |
Collapse
|
25
|
Marino E, Rosen DJ, Yang S, Tsai EHR, Murray CB. Temperature-Controlled Reversible Formation and Phase Transformation of 3D Nanocrystal Superlattices Through In Situ Small-Angle X-ray Scattering. NANO LETTERS 2023; 23:4250-4257. [PMID: 37184728 DOI: 10.1021/acs.nanolett.3c00299] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
For decades, the spontaneous organization of nanocrystals into superlattices has captivated the scientific community. However, achieving direct control over the formation of the superlattice and its phase transformations has proven to be a grand challenge, often resulting in the generation of multiple symmetries under the same experimental conditions. Here, we achieve direct control over the formation of the superlattice and its phase transformations by modulating the thermal energy of a nanocrystal dispersion without relying on solvent evaporation. We follow the temperature-dependent dynamics of the self-assembly process using synchrotron-based small-angle X-ray scattering. When cooled below -24.5 °C, lead sulfide nanocrystals form micrometer-sized three-dimensional phase-pure body-centered cubic superlattices. When cooled below -35.1 °C, these superlattices undergo a collective diffusionless phase transformation that yields denser body-centered tetragonal phases. These structural changes can be reversed by increasing the temperature of the dispersion and may lead to the direct modulation of the optical properties of these artificial solids.
Collapse
Affiliation(s)
- Emanuele Marino
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennslvania 19104 United States
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Daniel J Rosen
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104 United States
| | - Shengsong Yang
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennslvania 19104 United States
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Building 735, Upton, New York 11973-5000, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennslvania 19104 United States
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104 United States
| |
Collapse
|
26
|
Zhang H, Peterson JC, Guyot-Sionnest P. Intraband Transition of HgTe Nanocrystals for Long-Wave Infrared Detection at 12 μm. ACS NANO 2023; 17:7530-7538. [PMID: 37027314 DOI: 10.1021/acsnano.2c12636] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The synthesis of n-doped HgTe colloidal quantum dots was optimized to produce samples with a 1Se-1Pe intraband transition in the long-wave infrared (8-12 μm). The spin-orbit splitting of 1Pe states places the 1Se-1Pe1/2 transition around 10 μm. The narrow line width of 130 cm-1 at 300 K is limited by the size distribution. This narrowing leads to an absorption coefficient about 5 times stronger than is possible with the HgTe CQD interband transition at similar energies. From 300 to 80 K, the intraband transition blueshifts by 90 cm-1, while the interband transition redshifts by 350 cm-1. These shifts are assigned to the temperature dependence of the band structure. With ∼2 electrons/dot doping at 80 K, a photoconductive film of 80 nm thickness on a quarter wave reflector substrate showed a detectivity (D*) of ∼107 Jones at 500 Hz in the 8-12 μm range.
Collapse
Affiliation(s)
- Haozhi Zhang
- The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - John C Peterson
- The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Philippe Guyot-Sionnest
- The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
27
|
Tian Y, Luo H, Chen M, Li C, Kershaw SV, Zhang R, Rogach AL. Mercury chalcogenide colloidal quantum dots for infrared photodetection: from synthesis to device applications. NANOSCALE 2023; 15:6476-6504. [PMID: 36960839 DOI: 10.1039/d2nr07309a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Commercial infrared (IR) photodetectors based on epitaxial growth inorganic semiconductors, e.g. InGaAs and HgCdTe, suffer from high fabrication cost, poor compatibility with silicon integrated circuits, rigid substrates and bulky cooling systems, which leaves a large development window for the emerging solution-processable semiconductor-based photo-sensing devices. Among the solution-processable semiconductors, mercury (Hg) chalcogenide colloidal quantum dots (QDs) exhibit unique ultra-broad and tuneable photo-responses in the short-wave infrared to far-wave infrared range, and have demonstrated photo-sensing abilities comparable to the commercial products, especially with advances in high operation temperature. Here, we provide a focused review on photodetectors employing Hg chalcogenide colloidal QDs, with a comprehensive summary of the essential progress in the areas of synthesis methods of QDs, property control, device engineering, focus plane array integration, etc. Besides imaging demonstrations, a series of Hg chalcogenide QD photodetector based flexible, integrated, multi-functional applications are also summarized. This review shows prospects for the next-generation low-cost highly-sensitive and compact IR photodetectors based on solution-processable Hg chalcogenide colloidal QDs.
Collapse
Affiliation(s)
- Yuanyuan Tian
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Hongqiang Luo
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Mengyu Chen
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
| | - Cheng Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
| | - Stephen V Kershaw
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China.
| | - Rong Zhang
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
- Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
- Engineering Research Center of Micro-nano Optoelectronic Materials and Devices, Ministry of Education, Xiamen University, Xiamen 361005, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China.
| |
Collapse
|
28
|
Stingel AM, Leemans J, Hens Z, Geiregat P, Petersen PB. Narrow homogeneous linewidths and slow cooling dynamics across infrared intra-band transitions in n-doped HgSe colloidal quantum dots. J Chem Phys 2023; 158:114202. [PMID: 36948807 DOI: 10.1063/5.0139795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Intra-band transitions in colloidal quantum dots (QDs) are promising for opto-electronic applications in the mid-IR spectral region. However, such intra-band transitions are typically very broad and spectrally overlapping, making the study of individual excited states and their ultrafast dynamics very challenging. Here, we present the first full spectrum two-dimensional continuum infrared (2D CIR) spectroscopy study of intrinsically n-doped HgSe QDs, which exhibit mid-infrared intra-band transitions in their ground state. The obtained 2D CIR spectra reveal that underneath the broad absorption line shape of ∼500 cm-1, the transitions exhibit surprisingly narrow intrinsic linewidths with a homogeneous broadening of 175-250 cm-1. Furthermore, the 2D IR spectra are remarkably invariant, with no sign of spectral diffusion dynamics at waiting times up to 50 ps. Accordingly, we attribute the large static inhomogeneous broadening to the distribution of size and doping level of the QDs. In addition, the two higher-lying P-states of the QDs can be clearly identified in the 2D IR spectra along the diagonal with a cross-peak. However, there is no indication of cross-peak dynamics indicating that, despite the strong spin-orbit coupling in HgSe, transitions between the P-states must be longer than our maximum waiting time of 50 ps. This study illustrates a new frontier of 2D IR spectroscopy enabling the study of intra-band carrier dynamics in nanocrystalline materials across the entire mid-infrared spectrum.
Collapse
Affiliation(s)
- Ashley M Stingel
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Jari Leemans
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Pieter Geiregat
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Poul B Petersen
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
29
|
Soueiti J, Sarieddine R, Kadiri H, Alhussein A, Lerondel G, Habchi R. A review of cost-effective black silicon fabrication techniques and applications. NANOSCALE 2023; 15:4738-4761. [PMID: 36808191 DOI: 10.1039/d2nr06087f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ever since the discovery of black silicon, scientists around the world have been trying to come up with novel, cost-effective methods of utilizing this super material in a variety of different industries due to its remarkably low reflectivity and excellent electronic and optoelectronic properties. In this review, many of the most common methods of black silicon fabrication are exhibited, including metal-assisted chemical etching, reactive ion etching, and femto-second laser irradiation. Different nanostructured silicon surfaces are assessed based on their reflectivity and applicable properties in both the visible wavelength range and the infrared range. The most cost efficient technique for the mass production of black silicon is discussed, as well as some promising contender materials ready to replace silicon. Also, solar cell, IR photo-detector, and antibacterial applications are looked into, along with their respective challenges to date.
Collapse
Affiliation(s)
- Jimmy Soueiti
- EC2M, Faculty of Sciences 2, Lebanese University, Campus Pierre Gemayel, Fanar, 90656, Lebanon.
| | - Rim Sarieddine
- EC2M, Faculty of Sciences 2, Lebanese University, Campus Pierre Gemayel, Fanar, 90656, Lebanon.
- L2n, Université de Technologie de Troyes, CNRS ERL 7004, 12 rue Marie Curie, 10000 Troyes, France
| | - Hind Kadiri
- L2n, Université de Technologie de Troyes, CNRS ERL 7004, 12 rue Marie Curie, 10000 Troyes, France
| | - Akram Alhussein
- UR LASMIS, Université de Technologie de Troyes, Pôle Technologique Sud Champagne, 52800 Nogent, France
| | - Gilles Lerondel
- L2n, Université de Technologie de Troyes, CNRS ERL 7004, 12 rue Marie Curie, 10000 Troyes, France
| | - Roland Habchi
- EC2M, Faculty of Sciences 2, Lebanese University, Campus Pierre Gemayel, Fanar, 90656, Lebanon.
| |
Collapse
|
30
|
Khalili A, Cavallo M, Dang TH, Dabard C, Zhang H, Bossavit E, Abadie C, Prado Y, Xu XZ, Ithurria S, Vincent G, Coinon C, Desplanque L, Lhuillier E. Mid-wave infrared sensitized InGaAs using intraband transition in doped colloidal II-VI nanocrystals. J Chem Phys 2023; 158:094702. [PMID: 36889960 DOI: 10.1063/5.0141328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Narrow bandgap nanocrystals (NCs) are now used as infrared light absorbers, making them competitors to epitaxially grown semiconductors. However, these two types of materials could benefit from one another. While bulk materials are more effective in transporting carriers and give a high degree of doping tunability, NCs offer a larger spectral tunability without lattice-matching constraints. Here, we investigate the potential of sensitizing InGaAs in the mid-wave infrared throughout the intraband transition of self-doped HgSe NCs. Our device geometry enables the design of a photodiode remaining mostly unreported for intraband-absorbing NCs. Finally, this strategy allows for more effective cooling and preserves the detectivity above 108 Jones up to 200 K, making it closer to cryo-free operation for mid-infrared NC-based sensors.
Collapse
Affiliation(s)
- Adrien Khalili
- Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France
| | - Mariarosa Cavallo
- Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France
| | - Tung Huu Dang
- Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France
| | - Corentin Dabard
- Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France
| | - Huichen Zhang
- Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France
| | - Erwan Bossavit
- Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France
| | - Claire Abadie
- Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France
| | - Yoann Prado
- Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France
| | - Xiang Zhen Xu
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin, 75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin, 75005 Paris, France
| | - Grégory Vincent
- ONERA-The French Aerospace Lab, 6, chemin de la Vauve aux Granges, BP 80100, 91123 Palaiseau, France
| | - Christophe Coinon
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| | - Ludovic Desplanque
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France
| |
Collapse
|
31
|
Hao Q, Zhao X, Tang X, Chen M. The Historical Development of Infrared Photodetection Based on Intraband Transitions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1562. [PMID: 36837192 PMCID: PMC9960069 DOI: 10.3390/ma16041562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 05/10/2023]
Abstract
The infrared technology is entering widespread use as it starts fulfilling a growing number of emerging applications, such as smart buildings and automotive sectors. Majority of infrared photodetectors are based on interband transition, which is the energy gap between the valence band and the conduction band. As a result, infrared materials are mainly limited to semi-metal or ternary alloys with narrow-bandgap bulk semiconductors, whose fabrication is complex and expensive. Different from interband transition, intraband transition utilizing the energy gap inside the band allows for a wider choice of materials. In this paper, we mainly discuss the recent developments on intraband infrared photodetectors, including 'bottom to up' devices such as quantum well devices based on the molecular beam epitaxial approach, as well as 'up to bottom' devices such as colloidal quantum dot devices based on the chemical synthesis.
Collapse
Affiliation(s)
- Qun Hao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Xue Zhao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Tang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Menglu Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| |
Collapse
|
32
|
Diroll BT, Guzelturk B, Po H, Dabard C, Fu N, Makke L, Lhuillier E, Ithurria S. 2D II-VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chem Rev 2023; 123:3543-3624. [PMID: 36724544 DOI: 10.1021/acs.chemrev.2c00436] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The field of colloidal synthesis of semiconductors emerged 40 years ago and has reached a certain level of maturity thanks to the use of nanocrystals as phosphors in commercial displays. In particular, II-VI semiconductors based on cadmium, zinc, or mercury chalcogenides can now be synthesized with tailored shapes, composition by alloying, and even as nanocrystal heterostructures. Fifteen years ago, II-VI semiconductor nanoplatelets injected new ideas into this field. Indeed, despite the emergence of other promising semiconductors such as halide perovskites or 2D transition metal dichalcogenides, colloidal II-VI semiconductor nanoplatelets remain among the narrowest room-temperature emitters that can be synthesized over a wide spectral range, and they exhibit good material stability over time. Such nanoplatelets are scientifically and technologically interesting because they exhibit optical features and production advantages at the intersection of those expected from colloidal quantum dots and epitaxial quantum wells. In organic solvents, gram-scale syntheses can produce nanoparticles with the same thicknesses and optical properties without inhomogeneous broadening. In such nanoplatelets, quantum confinement is limited to one dimension, defined at the atomic scale, which allows them to be treated as quantum wells. In this review, we discuss the synthetic developments, spectroscopic properties, and applications of such nanoplatelets. Covering growth mechanisms, we explain how a thorough understanding of nanoplatelet growth has enabled the development of nanoplatelets and heterostructured nanoplatelets with multiple emission colors, spatially localized excitations, narrow emission, and high quantum yields over a wide spectral range. Moreover, nanoplatelets, with their large lateral extension and their thin short axis and low dielectric surroundings, can support one or several electron-hole pairs with large exciton binding energies. Thus, we also discuss how the relaxation processes and lifetime of the carriers and excitons are modified in nanoplatelets compared to both spherical quantum dots and epitaxial quantum wells. Finally, we explore how nanoplatelets, with their strong and narrow emission, can be considered as ideal candidates for pure-color light emitting diodes (LEDs), strong gain media for lasers, or for use in luminescent light concentrators.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Burak Guzelturk
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Hong Po
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Corentin Dabard
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Ningyuan Fu
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Lina Makke
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
33
|
Xue X, Chen M, Luo Y, Qin T, Tang X, Hao Q. High-operating-temperature mid-infrared photodetectors via quantum dot gradient homojunction. LIGHT, SCIENCE & APPLICATIONS 2023; 12:2. [PMID: 36587039 PMCID: PMC9805449 DOI: 10.1038/s41377-022-01014-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
Due to thermal carriers generated by a narrow mid-infrared energy gap, cooling is always necessary to achieve ideal photodetection. In quantum dot (QD), the electron thermal generation should be reduced with quantum confinement in all three dimensions. As a result, there would be a great potential to realize high-operating-temperature (HOT) QD mid-IR photodetectors, though not yet achieved. Taking the advantages of colloidal nanocrystals' solution processability and precise doping control by surface dipoles, this work demonstrates a HOT mid-infrared photodetector with a QD gradient homojunction. The detector achieves background-limited performance with D* = 2.7 × 1011 Jones on 4.2 μm at 80 K, above 1011 Jones until 200 K, above 1010 Jones until 280 K, and 7.6 × 109 Jones on 3.5 μm at 300 K. The external quantum efficiency also achieves more than 77% with responsivity 2.7 A/W at zero bias. The applications such as spectrometers, chemical sensors, and thermal cameras, are also approved, which motivate interest in low-cost, solution-processed and high-performance mid-infrared photodetection beyond epitaxial growth bulk photodetectors.
Collapse
Affiliation(s)
- Xiaomeng Xue
- School of Optics and Photonics, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, China
| | - Menglu Chen
- School of Optics and Photonics, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, China.
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing, China.
- Yangtze Delta Region Academy of Beijing Institute of Technology, Beijing, China.
| | - Yuning Luo
- School of Optics and Photonics, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, China
| | - Tianling Qin
- School of Optics and Photonics, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, China
| | - Xin Tang
- School of Optics and Photonics, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, China.
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing, China.
- Yangtze Delta Region Academy of Beijing Institute of Technology, Beijing, China.
| | - Qun Hao
- School of Optics and Photonics, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, China.
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing, China.
- Yangtze Delta Region Academy of Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
34
|
Chen J, Chen F, Wang X, Zhao Y, Wu Y, Cao Q, Jiang T, Li K, Li Y, Zhang J, Wu W, Che R. Room-Temperature Response Performance of Coupled Doped-Well Quantum Cascade Detectors with Array Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:110. [PMID: 36616020 PMCID: PMC9824534 DOI: 10.3390/nano13010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Energy level interaction and electron concentration are crucial aspects that affect the response performance of quantum cascade detectors (QCDs). In this work, two different-structured array QCDs are prepared, and the detectivity reaches 109 cm·Hz1/2/W at room temperature. The overlap integral (OI) and oscillator strength (OS) between different energy levels under a series of applied biases are fitted and reveal the influence of energy level interaction on the response performance. The redistribution of electrons in the cascade structure at room temperatures is established. The coupled doped-well structure shows a higher electron concentration at room temperature, which represents a high absorption efficiency in the active region. Even better responsivity and detectivity are exhibited in the coupled doped-well QCD. These results offer a novel strategy to understand the mechanisms that affect response performance and expand the application range of QCDs for long-wave infrared (LWIR) detection.
Collapse
Affiliation(s)
- Jie Chen
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
| | - Fengwei Chen
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xuemin Wang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yunhao Zhao
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Yuyang Wu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Qingchen Cao
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Tao Jiang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
| | - Keyu Li
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yang Li
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
| | | | - Weidong Wu
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
- Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
35
|
Singh P, Kachhap S, Singh P, Singh S. Lanthanide-based hybrid nanostructures: Classification, synthesis, optical properties, and multifunctional applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Baek GW, Kim YJ, Lee M, Kwon Y, Chun B, Park G, Seo H, Yang H, Kwak J. Progress in the Development of Active-Matrix Quantum-Dot Light-Emitting Diodes Driven by Non-Si Thin-Film Transistors. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238511. [PMID: 36500003 PMCID: PMC9736594 DOI: 10.3390/ma15238511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 05/28/2023]
Abstract
This paper aims to discuss the key accomplishments and further prospects of active-matrix (AM) quantum-dot (QD) light-emitting diodes (QLEDs) display. We present an overview and state-of-the-art of QLEDs as a frontplane and non-Si-based thin-film transistors (TFTs) as a backplane to meet the requirements for the next-generation displays, such as flexibility, transparency, low power consumption, fast response, high efficiency, and operational reliability. After a brief introduction, we first review the research on non-Si-based TFTs using metal oxides, transition metal dichalcogenides, and semiconducting carbon nanotubes as the driving unit of display devices. Next, QLED technologies are analyzed in terms of the device structure, device engineering, and QD patterning technique to realize high-performance, full-color AM-QLEDs. Lastly, recent research on the monolithic integration of TFT-QLED is examined, which proposes a new perspective on the integrated device. We anticipate that this review will help the readership understand the fundamentals, current state, and issues on TFTs and QLEDs for future AM-QLED displays.
Collapse
Affiliation(s)
- Geun Woo Baek
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Soft Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeon Jun Kim
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Soft Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Minhyung Lee
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Soft Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeunwoo Kwon
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Soft Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Beomsoo Chun
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Soft Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Ganghyun Park
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Soft Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hansol Seo
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Soft Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Heesun Yang
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Jeonghun Kwak
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Soft Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
37
|
Yakimov AI, Kirienko VV, Utkin DE, Dvurechenskii AV. Light-Trapping-Enhanced Photodetection in Ge/Si Quantum Dot Photodiodes Containing Microhole Arrays with Different Hole Depths. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2993. [PMID: 36080030 PMCID: PMC9457855 DOI: 10.3390/nano12172993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Photodetection based on assemblies of quantum dots (QDs) is able to tie the advantages of both the conventional photodetector and unique electronic properties of zero-dimensional structures in an unprecedented way. However, the biggest drawback of QDs is the small absorbance of infrared radiation due to the low density of the states coupled to the dots. In this paper, we report on the Ge/Si QD pin photodiodes integrated with photon-trapping hole array structures of various thicknesses. The aim of this study was to search for the hole array thickness that provided the maximum optical response of the light-trapping Ge/Si QD detectors. With this purpose, the embedded hole arrays were etched to different depths ranging from 100 to 550 nm. By micropatterning Ge/Si QD photodiodes, we were able to redirect normal incident light laterally along the plane of the dots, therefore facilitating the optical conversion of the near-infrared photodetectors due to elongation of the effective absorption length. Compared with the conventional flat photodetector, the responsivity of all microstructured devices had a polarization-independent improvement in the 1.0-1.8-μm wavelength range. The maximum photocurrent enhancement factor (≈50× at 1.7 μm) was achieved when the thickness of the photon-trapping structure reached the depth of the buried QD layers.
Collapse
Affiliation(s)
- Andrew I. Yakimov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Victor V. Kirienko
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Dmitrii E. Utkin
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
- Physical Department, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Anatoly V. Dvurechenskii
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
- Physical Department, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
38
|
Chen M, Hao Q, Luo Y, Tang X. Mid-Infrared Intraband Photodetector via High Carrier Mobility HgSe Colloidal Quantum Dots. ACS NANO 2022; 16:11027-11035. [PMID: 35792103 DOI: 10.1021/acsnano.2c03631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this work, a room-temperature mixed-phase ligand exchange method is developed to obtain a relatively high carrier mobility (∼1 cm2/(V s)) on HgSe intraband colloidal quantum dot solids without any observable trap state. What is more, the doping from 1Se to 1Pe state in the conduction band could be precisely controlled by additional salts during this method, proved by optical and transport experiments. The high mobility and controllable doping benefit the mid-infrared photodetector utilizing the 1Se to 1Pe transition, with a 1000-fold improvement in response speed, which is several μs, a 55-fold increase in responsivity, which is 77 mA/W, and a 10-fold increase in specific detectivity, which is above 1.7 × 109 Jones at 80 K. The high-performance photodetector could serve as an intraband infrared camera for thermal imaging, as well as a CO2 gas sensor with a range from 0.25 to 2000 ppm.
Collapse
Affiliation(s)
- Menglu Chen
- School of Optics and Photonics, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, China
| | - Qun Hao
- School of Optics and Photonics, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, China
| | - Yuning Luo
- School of Optics and Photonics, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Xin Tang
- School of Optics and Photonics, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, China
| |
Collapse
|
39
|
Lee HY, Kim S. Nanowires for 2D material-based photonic and optoelectronic devices. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2571-2582. [PMID: 39635689 PMCID: PMC11501477 DOI: 10.1515/nanoph-2021-0800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/26/2022] [Indexed: 12/07/2024]
Abstract
Nanowires have garnered considerable attention in photonics and optoelectronics due to their unique features. Owing to the large surface area and significant potential of usage as a resonator and waveguide in photonic integrated circuits (PICs), nanowires have been applied in many research areas in nanophotonics. To enhance the properties of light emitting materials, the hybrid of nanowires and 2D materials has been deployed in many papers. This paper summarises recent studies on the application of various types of nanowires in photonics and optoelectronics, as well as the combination of nanowires and 2D materials. This review article introduces nanowires that act as resonators or/and waveguides to increase the performance of 2D materials used in PICs for light enhancement and guiding. Moreover, the review lays out the hybrid of nanowires and 2D materials that have been studied in the field of optoelectronics. The hybridization of nanowires and 2D materials for photonics and optoelectronics is discussed in this review for the outlook of future studies.
Collapse
Affiliation(s)
- Ha Young Lee
- Department of Electrical and Electronic Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Victoria3010, Australia
| | - Sejeong Kim
- Department of Electrical and Electronic Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Victoria3010, Australia
| |
Collapse
|
40
|
|
41
|
Han M, Karatum O, Nizamoglu S. Optoelectronic Neural Interfaces Based on Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20468-20490. [PMID: 35482955 PMCID: PMC9100496 DOI: 10.1021/acsami.1c25009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/15/2022] [Indexed: 05/26/2023]
Abstract
Optoelectronic modulation of neural activity is an emerging field for the investigation of neural circuits and the development of neural therapeutics. Among a wide variety of nanomaterials, colloidal quantum dots provide unique optoelectronic features for neural interfaces such as sensitive tuning of electron and hole energy levels via the quantum confinement effect, controlling the carrier localization via band alignment, and engineering the surface by shell growth and ligand engineering. Even though colloidal quantum dots have been frontier nanomaterials for solar energy harvesting and lighting, their application to optoelectronic neural interfaces has remained below their significant potential. However, this potential has recently gained attention with the rise of bioelectronic medicine. In this review, we unravel the fundamentals of quantum-dot-based optoelectronic biointerfaces and discuss their neuromodulation mechanisms starting from the quantum dot level up to electrode-electrolyte interactions and stimulation of neurons with their physiological pathways. We conclude the review by proposing new strategies and possible perspectives toward nanodevices for the optoelectronic stimulation of neural tissue by utilizing the exceptional nanoscale properties of colloidal quantum dots.
Collapse
Affiliation(s)
- Mertcan Han
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Onuralp Karatum
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
- Graduate
School of Biomedical Science and Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
42
|
Maier A, Strauß F, Kohlschreiber P, Schedel C, Braun K, Scheele M. Sub-nanosecond Intrinsic Response Time of PbS Nanocrystal IR-Photodetectors. NANO LETTERS 2022; 22:2809-2816. [PMID: 35311295 DOI: 10.1021/acs.nanolett.1c04938] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colloidal nanocrystals (NCs), especially lead sulfide NCs, are promising candidates for solution-processed next-generation photodetectors with high-speed operation frequencies. However, the intrinsic response time of PbS-NC photodetectors, which is the material-specific physical limit, is still elusive, as the reported response times are typically limited by the device geometry. Here, we use the two-pulse coincidence photoresponse technique to identify the intrinsic response time of 1,2-ethanedithiol-functionalized PbS-NC photodetectors after femtosecond-pulsed 1560 nm excitation. We obtain an intrinsic response time of ∼1 ns, indicating an intrinsic bandwidth of ∼0.55 GHz as the material-specific limit. Examination of the dependence on laser power, gating, bias, temperature, channel length, and environmental conditions suggest that Auger recombination, assisted by NC-surface defects, is the dominant mechanism. Accordingly, the intrinsic response time might further be tuned by specifically controlling the ligand coverage and trap states. Thus, PbS-NC photodetectors are feasible for gigahertz optical communication in the third telecommunication window.
Collapse
Affiliation(s)
- Andre Maier
- Institute of Physical and Theoretical Chemistry, Universität Tübingen, Auf der Morgenstelle 18, D-72076Tübingen, Germany
- Center for Light-Matter Interaction, Sensors and Analytics LISA+, Universität Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Fabian Strauß
- Institute of Physical and Theoretical Chemistry, Universität Tübingen, Auf der Morgenstelle 18, D-72076Tübingen, Germany
- Center for Light-Matter Interaction, Sensors and Analytics LISA+, Universität Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Pia Kohlschreiber
- Institute of Physical and Theoretical Chemistry, Universität Tübingen, Auf der Morgenstelle 18, D-72076Tübingen, Germany
- Center for Light-Matter Interaction, Sensors and Analytics LISA+, Universität Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Christine Schedel
- Institute of Physical and Theoretical Chemistry, Universität Tübingen, Auf der Morgenstelle 18, D-72076Tübingen, Germany
| | - Kai Braun
- Institute of Physical and Theoretical Chemistry, Universität Tübingen, Auf der Morgenstelle 18, D-72076Tübingen, Germany
- Center for Light-Matter Interaction, Sensors and Analytics LISA+, Universität Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Marcus Scheele
- Institute of Physical and Theoretical Chemistry, Universität Tübingen, Auf der Morgenstelle 18, D-72076Tübingen, Germany
- Center for Light-Matter Interaction, Sensors and Analytics LISA+, Universität Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| |
Collapse
|
43
|
Ding N, Wu Y, Xu W, Lyu J, Wang Y, Zi L, Shao L, Sun R, Wang N, Liu S, Zhou D, Bai X, Zhou J, Song H. A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared. LIGHT, SCIENCE & APPLICATIONS 2022; 11:91. [PMID: 35410451 PMCID: PMC9001727 DOI: 10.1038/s41377-022-00777-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/02/2022] [Accepted: 03/24/2022] [Indexed: 05/03/2023]
Abstract
Broadband photodetection (PD) covering the deep ultraviolet to near-infrared (200-1000 nm) range is significant and desirable for various optoelectronic designs. Herein, we employ ultraviolet (UV) luminescent concentrators (LC), iodine-based perovskite quantum dots (PQDs), and organic bulk heterojunction (BHJ) as the UV, visible, and near-infrared (NIR) photosensitive layers, respectively, to construct a broadband heterojunction PD. Firstly, experimental and theoretical results reveal that optoelectronic properties and stability of CsPbI3 PQDs are significantly improved through Er3+ doping, owing to the reduced defect density, improved charge mobility, increased formation energy, tolerance factor, etc. The narrow bandgap of CsPbI3:Er3+ PQDs serves as a visible photosensitive layer of PD. Secondly, considering the matchable energy bandgap, the BHJ (BTP-4Cl: PBDB-TF) is selected as to NIR absorption layer to fabricate the hybrid structure with CsPbI3:Er3+ PQDs. Thirdly, UV LC converts the UV light (200-400 nm) to visible light (400-700 nm), which is further absorbed by CsPbI3:Er3+ PQDs. In contrast with other perovskites PDs and commercial Si PDs, our PD presents a relatively wide response range and high detectivity especially in UV and NIR regions (two orders of magnitude increase that of commercial Si PDs). Furthermore, the PD also demonstrates significantly enhanced air- and UV- stability, and the photocurrent of the device maintains 81.5% of the original one after 5000 cycles. This work highlights a new attempt for designing broadband PDs, which has application potential in optoelectronic devices.
Collapse
Affiliation(s)
- Nan Ding
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yanjie Wu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Wen Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Dalian Minzu University, Dalian, 116600, China.
| | - Jiekai Lyu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yue Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Lu Zi
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Long Shao
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Rui Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Nan Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Sen Liu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Donglei Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xue Bai
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Ji Zhou
- State Kay Lab of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Hongwei Song
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.
| |
Collapse
|
44
|
Abstract
In this paper, we investigate an intraband mid-infrared photodetector based on HgSe colloidal quantum dots (CQDs). We study the size, absorption spectra, and carrier mobility of HgSe CQDs films. By regulating the time and temperature of the reaction during synthesis, we have achieved the regulation of CQDs size, and the number of electrons doped in conduction band. It is experimentally verified by the field effect transistor measurement that dark current is effectively reduced by a factor of 10 when the 1Se state is doped with two electrons compared with other doping densities. The HgSe CQDs film mobility is also measured as a function of temperature the HgSe CQDs thin film detector, which could be well fitted by Marcus Theory with a maximum of 0.046 ± 0.002 cm2/Vs at room temperature. Finally, we experimentally discuss the device performance such as photocurrent and responsivity. The responsivity reaches a maximum of 0.135 ± 0.012 A/W at liquid nitrogen temperature with a narrow band photocurrent spectrum.
Collapse
|
45
|
Aligned CuO nanowire array for a high performance visible light photodetector. Sci Rep 2022; 12:2284. [PMID: 35145152 PMCID: PMC8831480 DOI: 10.1038/s41598-022-06031-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Recently, copper oxide (CuO) has drawn much attention as a promising material in visible light photodetection with its advantages in ease of nanofabrication. CuO allows a variety of nanostructures to be explored to enhance the optoelectrical performance such as photogenerated carriers scattering and bandgap engineering. However, previous researches neglect in-depth analysis of CuO’s light interaction effects, restrictively using random orientation such as randomly arranged nanowires, single nanowires, and dispersed nanoparticles. Here, we demonstrate an ultra-high performance CuO visible light photodetector utilizing perfectly-aligned nanowire array structures. CuO nanowires with 300 nm-width critical dimension suppressed carrier transport in the dark state and enhanced the conversion of photons to carriers; additionally, the aligned arrangement of the nanowires with designed geometry improved the light absorption by means of the constructive interference effect. The proposed nanostructures provide advantages in terms of dark current, photocurrent, and response time, showing unprecedentedly high (state-of-the-art) optoelectronic performance, including high values of sensitivity (S = 172.21%), photo-responsivity (R = 16.03 A/W, λ = 535 nm), photo-detectivity (D* = 7.78 × 1011 Jones), rise/decay time (τr/τd = 0.31 s/1.21 s).
Collapse
|
46
|
Pradhan S. Multi-bandgap colloidal quantum dot mixing for optoelectronic devices. NEW J CHEM 2022. [DOI: 10.1039/d2nj01987f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article discusses the current status and future prospects of multi-bandgap colloidal quantum dot-based optoelectronic devices.
Collapse
Affiliation(s)
- Santanu Pradhan
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee-247667, India
| |
Collapse
|
47
|
Chang R, Wang K, Zhang Y, Ma T, Tang J, Chen XW, Zhang B, Wang S. Tunable Performance of Quantum Dot-MoS 2 Hybrid Photodetectors via Interface Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59411-59421. [PMID: 34851094 DOI: 10.1021/acsami.1c10888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Heterostructures of quantum dots (QDs) and two-dimensional (2D) materials show promising potential for photodetection applications owing to their combination of high optical absorption and good in-plane carrier mobility. In this work, the performance of QD-2D photodetectors is tuned by band engineering. Devices are fabricated by coating MoS2 nanosheets with InP QDs, type-I core-shell InP/ZnS QDs, and type-II core-shell InP/CdS QDs. Comparative spectroscopic and photoelectric studies of different hybrids show that the energy band alignment and shell thickness can influence the efficiency of charge transfer (CT), energy transfer (ET), and defect-related processes between QDs and MoS2. Benefiting from efficient CT between the QDs and MoS2, a significant enhancement of responsivity and detectivity is observed in thick-shell InP/CdS QD-MoS2 devices. Our results demonstrate the feasibility of using core-shell QDs for regulating the ET and CT efficiency in heterostructures and highlight the importance of interface band design in QD-2D and other low-dimensional photodetectors.
Collapse
Affiliation(s)
- Ruiheng Chang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kexin Wang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Youwei Zhang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tianzi Ma
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianwei Tang
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xue-Wen Chen
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Butian Zhang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shun Wang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China
| |
Collapse
|
48
|
Kamath A, Melnychuk C, Guyot-Sionnest P. Toward Bright Mid-Infrared Emitters: Thick-Shell n-Type HgSe/CdS Nanocrystals. J Am Chem Soc 2021; 143:19567-19575. [PMID: 34752062 PMCID: PMC8630792 DOI: 10.1021/jacs.1c09858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A procedure is developed for the growth of thick, conformal CdS shells that preserve the optical properties of 5 nm HgSe cores. The n-doping of the HgSe/CdS core/shell particles is quantitatively tuned through a simple postsynthetic Cd treatment, while the doping is monitored via the intraband optical absorption at 5 μm wavelength. Photoluminescence lifetime and quantum yield measurements show that the CdS shell greatly increases the intraband emission intensity. This indicates that decoupling the excitation from the environment reduces the nonradiative recombination. We find that weakly n-type HgSe/CdS are the brightest solution-phase mid-infrared chromophores reported to date at room temperature, achieving intraband photoluminescence quantum yields of 2%. Such photoluminescence corresponds to intraband lifetimes in excess of 10 ns, raising important questions about the fundamental limits to achievable slow intraband relaxation in quantum dots.
Collapse
Affiliation(s)
- Ananth Kamath
- Department of Chemistry and the James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Christopher Melnychuk
- Department of Chemistry and the James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Philippe Guyot-Sionnest
- Department of Chemistry and the James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
49
|
Chen P, Atallah TL, Lin Z, Wang P, Lee SJ, Xu J, Huang Z, Duan X, Ping Y, Huang Y, Caram JR, Duan X. Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes. Nature 2021; 599:404-410. [PMID: 34789906 DOI: 10.1038/s41586-021-03949-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/24/2021] [Indexed: 11/09/2022]
Abstract
Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality1-5. Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor-contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley-Read-Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton-charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton-charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices.
Collapse
Affiliation(s)
- Peng Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Timothy L Atallah
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhaoyang Lin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peiqi Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sung-Joon Lee
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Junqing Xu
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Zhihong Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xidong Duan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yuan Ping
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA. .,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA. .,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
50
|
Asgari M, Coquillat D, Menichetti G, Zannier V, Diakonova N, Knap W, Sorba L, Viti L, Vitiello MS. Quantum-Dot Single-Electron Transistors as Thermoelectric Quantum Detectors at Terahertz Frequencies. NANO LETTERS 2021; 21:8587-8594. [PMID: 34618458 DOI: 10.1021/acs.nanolett.1c02022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Low-dimensional nanosystems are promising candidates for manipulating, controlling, and capturing photons with large sensitivities and low noise. If quantum engineered to tailor the energy of the localized electrons across the desired frequency range, they can allow devising of efficient quantum sensors across any frequency domain. Here, we exploit the rich few-electron physics to develop millimeter-wave nanodetectors employing as a sensing element an InAs/InAs0.3P0.7 quantum-dot nanowire, embedded in a single-electron transistor. Once irradiated with light, the deeply localized quantum element exhibits an extra electromotive force driven by the photothermoelectric effect, which is exploited to efficiently sense radiation at 0.6 THz with a noise equivalent power <8 pWHz-1/2 and almost zero dark current. The achieved results open intriguing perspectives for quantum key distributions, quantum communications, and quantum cryptography at terahertz frequencies.
Collapse
Affiliation(s)
- Mahdi Asgari
- National Enterprise for Nanoscience and Nanotechnology (NEST), Consiglio Nazionale delle Ricerche (CNR)-Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Dominique Coquillat
- Laboratoire Charles Coulomb UMR 5221, Centre National de la Recherche Scientifique (CNRS)-Université Montpellier, Place Eugène Bataillon CC074, F-34095 Montpellier, France
| | - Guido Menichetti
- Graphene Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
- Dipartimento di Fisica dell'Universit di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
| | - Valentina Zannier
- National Enterprise for Nanoscience and Nanotechnology (NEST), Consiglio Nazionale delle Ricerche (CNR)-Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Nina Diakonova
- Laboratoire Charles Coulomb UMR 5221, Centre National de la Recherche Scientifique (CNRS)-Université Montpellier, Place Eugène Bataillon CC074, F-34095 Montpellier, France
| | - Wojciech Knap
- Laboratoire Charles Coulomb UMR 5221, Centre National de la Recherche Scientifique (CNRS)-Université Montpellier, Place Eugène Bataillon CC074, F-34095 Montpellier, France
- CENTERA Laboratories, Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Poland
| | - Lucia Sorba
- National Enterprise for Nanoscience and Nanotechnology (NEST), Consiglio Nazionale delle Ricerche (CNR)-Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Leonardo Viti
- National Enterprise for Nanoscience and Nanotechnology (NEST), Consiglio Nazionale delle Ricerche (CNR)-Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Miriam Serena Vitiello
- National Enterprise for Nanoscience and Nanotechnology (NEST), Consiglio Nazionale delle Ricerche (CNR)-Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy
| |
Collapse
|