1
|
Frericks N, Klöhn M, Lange F, Pottkämper L, Carpentier A, Steinmann E. Host-targeting antivirals for chronic viral infections of the liver. Antiviral Res 2025; 234:106062. [PMID: 39716667 DOI: 10.1016/j.antiviral.2024.106062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Infection with one or several of the five known hepatitis viruses is a leading cause of liver disease and poses a high risk of developing hepatocellular carcinoma upon chronic infection. Chronicity is primarily caused by hepatitis B virus (HBV) and hepatitis C virus (HCV) and poses a significant health burden worldwide. Co-infection of chronic HBV infected patients with hepatitis D virus (HDV) is less common but is marked as the most severe form of chronic viral hepatitis. Hepatitis A virus (HAV) and hepatitis E virus (HEV) primarily cause self-limiting acute hepatitis. However, studies have also reported chronic progression of HEV disease in immunocompromised patients. While considerable progress has been made in the treatment of HCV and HBV through the development of direct-acting antivirals (DAAs), challenges including drug resistance, incomplete viral suppression resulting in failure to achieve clearance and the lack of effective treatment options for HDV and HEV remain. Host-targeting antivirals (HTAs) have emerged as a promising alternative approach to DAAs and aim to disrupt virus-host interactions by modulating host cell pathways that are hijacked during the viral replication cycle. The aim of this review is to provide a comprehensive overview about the major milestones in research and development of HTAs for chronic HBV/HDV and HCV infections. It also summarizes the current state of knowledge on promising host-targeting therapeutic options against HEV infection.
Collapse
Affiliation(s)
- Nicola Frericks
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Frauke Lange
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Hannover Medical School (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Lilli Pottkämper
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Arnaud Carpentier
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Hannover Medical School (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
2
|
Liu Y, Maya S, Carver S, O’Connell AK, Tseng AE, Gertje HP, Seneca K, Nahass RG, Crossland NA, Ploss A. Development of a dual channel detection system for pan-genotypic simultaneous quantification of hepatitis B and delta viruses. Emerg Microbes Infect 2024; 13:2350167. [PMID: 38687692 PMCID: PMC11095294 DOI: 10.1080/22221751.2024.2350167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Hepatitis B virus (HBV) infection remains a major public health problem and, in associated co-infection with hepatitis delta virus (HDV), causes the most severe viral hepatitis and accelerated liver disease progression. As a defective satellite RNA virus, HDV can only propagate in the presence of HBV infection, which makes HBV DNA and HDV RNA the standard biomarkers for monitoring the virological response upon antiviral therapy, in co-infected patients. Although assays have been described to quantify these viral nucleic acids in circulation independently, a method for monitoring both viruses simultaneously is not available, thus hampering characterization of their complex dynamic interactions. Here, we describe the development of a dual fluorescence channel detection system for pan-genotypic, simultaneous quantification of HBV DNA and HDV RNA through a one-step quantitative PCR. The sensitivity for both HBV and HDV is about 10 copies per microliter without significant interference between these two detection targets. This assay provides reliable detection for HBV and HDV basic research in vitro and in human liver chimeric mice. Preclinical validation of this system on serum samples from patients on or off antiviral therapy also illustrates a promising application that is rapid and cost-effective in monitoring HBV and HDV viral loads simultaneously.
Collapse
Affiliation(s)
- Yongzhen Liu
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Stephanie Maya
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sebastian Carver
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Aoife K. O’Connell
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Anna E. Tseng
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Hans P. Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | | | | | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Chi H, Qu B, Prawira A, Richardt T, Maurer L, Hu J, Fu RM, Lempp FA, Zhang Z, Grimm D, Wu X, Urban S, Dao Thi VL. An hepatitis B and D virus infection model using human pluripotent stem cell-derived hepatocytes. EMBO Rep 2024; 25:4311-4336. [PMID: 39232200 PMCID: PMC11466959 DOI: 10.1038/s44319-024-00236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Current culture systems available for studying hepatitis D virus (HDV) are suboptimal. In this study, we demonstrate that hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) are fully permissive to HDV infection across various tested genotypes. When co-infected with the helper hepatitis B virus (HBV) or transduced to express the HBV envelope protein HBsAg, HLCs effectively release infectious progeny virions. We also show that HBsAg-expressing HLCs support the extracellular spread of HDV, thus providing a valuable platform for testing available anti-HDV regimens. By challenging the cells along the differentiation with HDV infection, we have identified CD63 as a potential HDV co-entry factor that was rate-limiting for HDV infection in immature hepatocytes. Given their renewable source and the potential to derive hPSCs from individual patients, we propose HLCs as a promising model for investigating HDV biology. Our findings offer new insights into HDV infection and expand the repertoire of research tools available for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Huanting Chi
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Bingqian Qu
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Angga Prawira
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Talisa Richardt
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Lars Maurer
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Section Viral Vector Technologies, University Hospital Heidelberg, Cluster of Excellence CellNetworks, BioQuant, Center for Integrative Infectious Diseases Research (CIID), Heidelberg, Germany
| | - Jungen Hu
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Rebecca M Fu
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Florian A Lempp
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Zhenfeng Zhang
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- School of Public Health and Emergency Management, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dirk Grimm
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Section Viral Vector Technologies, University Hospital Heidelberg, Cluster of Excellence CellNetworks, BioQuant, Center for Integrative Infectious Diseases Research (CIID), Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Xianfang Wu
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Stephan Urban
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany.
| | - Viet Loan Dao Thi
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany.
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
4
|
Mucke HAM. Drug Repurposing Patent Applications: April-June 2024. Assay Drug Dev Technol 2024; 22:387-394. [PMID: 39320326 DOI: 10.1089/adt.2024.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
|
5
|
Carpentier A. Cell Culture Models for Hepatitis B and D Viruses Infection: Old Challenges, New Developments and Future Strategies. Viruses 2024; 16:716. [PMID: 38793598 PMCID: PMC11125795 DOI: 10.3390/v16050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic Hepatitis B and D Virus (HBV and HDV) co-infection is responsible for the most severe form of viral Hepatitis, the Hepatitis Delta. Despite an efficient vaccine against HBV, the HBV/HDV infection remains a global health burden. Notably, no efficient curative treatment exists against any of these viruses. While physiologically distinct, HBV and HDV life cycles are closely linked. HDV is a deficient virus that relies on HBV to fulfil is viral cycle. As a result, the cellular response to HDV also influences HBV replication. In vitro studying of HBV and HDV infection and co-infection rely on various cell culture models that differ greatly in terms of biological relevance and amenability to classical virology experiments. Here, we review the various cell culture models available to scientists to decipher HBV and HDV virology and host-pathogen interactions. We discuss their relevance and how they may help address the remaining questions, with one objective in mind: the development of new therapeutic approaches allowing viral clearance in patients.
Collapse
Affiliation(s)
- Arnaud Carpentier
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture between Hannover Medical School (MHH) and Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Strasse 7, 30625 Hannover, Germany;
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
6
|
Blanchet M, Angelo L, Tétreault Y, Khabir M, Sureau C, Vaillant A, Labonté P. HepG2BD: A Novel and Versatile Cell Line with Inducible HDV Replication and Constitutive HBV Expression. Viruses 2024; 16:532. [PMID: 38675875 PMCID: PMC11053718 DOI: 10.3390/v16040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Individuals chronically infected with hepatitis B virus (HBV) and hepatitis Delta virus (HDV) present an increased risk of developing cirrhosis and hepatocellular carcinoma in comparison to HBV mono-infected individuals. Although HDV only replicates in individuals coinfected or superinfected with HBV, there is currently no in vitro model that can stably express both viruses simultaneously, mimicking the chronic infections seen in HBV/HDV patients. Here, we present the HepG2BD cell line as a novel in vitro culture system for long-term replication of HBV and HDV. HepG2BD cells derive from HepG2.2.15 cells in which a 2 kb HDV cDNA sequence was inserted into the adeno-associated virus safe harbor integration site 1 (AAVS1) using CRISPR-Cas9. A Tet-Off promoter was placed 5' of the genomic HDV sequence for reliable initiation/repression of viral replication and secretion. HBV and HDV replication were then thoroughly characterized. Of note, non-dividing cells adopt a hepatocyte-like morphology associated with an increased production of both HDV and HBV virions. Finally, HDV seems to negatively interfere with HBV in this model system. Altogether, HepG2BD cells will be instrumental to evaluate, in vitro, the fundamental HBV-HDV interplay during simultaneous chronic replication as well as for antivirals screening targeting both viruses.
Collapse
Affiliation(s)
- Matthieu Blanchet
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
- Replicor Inc., Montréal, QC H4P 2R2, Canada;
| | - Léna Angelo
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
| | - Yasmine Tétreault
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
| | - Marwa Khabir
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
| | | | | | - Patrick Labonté
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
| |
Collapse
|
7
|
Shivangi, Mishra MK, Gupta S, Razdan K, Sudan S, Sehgal S. Clinical diagnosis of viral hepatitis: Current status and future strategies. Diagn Microbiol Infect Dis 2024; 108:116151. [PMID: 38184983 DOI: 10.1016/j.diagmicrobio.2023.116151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/15/2023] [Accepted: 11/24/2023] [Indexed: 01/09/2024]
Abstract
Viral hepatitis (VH) is a significant public health issue with tremendous potential to aggravate into chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Recent decade has witnessed remarkable uprising in the drug development and effective treatment of VH. An upsurge is seen in identification of antiviral therapies with low rates of viral resistance, the improvement of Hepatitis B Virus (HBV) vaccination and the development of direct-acting antivirals for Hepatitis C Virus (HCV). But unfortunately, the "2030 worldwide eradication" objective of World Health Organization (WHO) is still unmet. It can be largely attributed to the deficit faced by the healthcare system concerning screening and diagnosis. A timely, accurate and comprehensive screening; encompassing maximum population coverage is essential to combat this disease. However, advancements in VH diagnostics remain inadequate and with a marginal use in routine practice. This paper deliberates upon the lacunae in traditional and prevailing diagnostic methodology of viral hepatitis, especially their inadequacy in meeting the unique situations prevailing low- and middle-income countries (LMIC).
Collapse
Affiliation(s)
- Shivangi
- Centre for Molecular Biology, Central University of Jammu, Jammu (J&K), India
| | - Manish Kumar Mishra
- Centre for Molecular Biology, Central University of Jammu, Jammu (J&K), India
| | | | - Konika Razdan
- Government Medical College, Bakshi Nagar, Jammu, Jammu and Kashmir 180001, India
| | - Shashi Sudan
- Government Medical College, Bakshi Nagar, Jammu, Jammu and Kashmir 180001, India
| | - Shelly Sehgal
- Centre for Molecular Biology, Central University of Jammu, Jammu (J&K), India.
| |
Collapse
|
8
|
Maestro S, Gomez-Echarte N, Camps G, Usai C, Olagüe C, Vales A, Aldabe R, Gonzalez-Aseguinolaza G. Deciphering the Role of Post-Translational Modifications and Cellular Location of Hepatitis Delta Virus (HDV) Antigens in HDV-Mediated Liver Damage in Mice. Viruses 2024; 16:379. [PMID: 38543745 PMCID: PMC10975000 DOI: 10.3390/v16030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 05/23/2024] Open
Abstract
Hepatitis D virus (HDV) infection represents the most severe form of chronic viral hepatitis. We have shown that the delivery of HDV replication-competent genomes to the hepatocytes using adeno-associated virus (AAV-HDV) as gene delivery vehicles offers a unique platform to investigate the molecular aspects of HDV and associated liver damage. For the purpose of this study, we generated HDV genomes modified by site-directed mutagenesis aimed to (i) prevent some post-translational modifications of HDV antigens (HDAgs) such as large-HDAg (L-HDAg) isoprenylation or short-HDAg (S-HDAg) phosphorylation; (ii) alter the localization of HDAgs within the subcellular compartments; and (iii) inhibit the right conformation of the delta ribozyme. First, the different HDV mutants were tested in vitro using plasmid-transfected Huh-7 cells and then in vivo in C57BL/6 mice using AAV vectors. We found that Ser177 phosphorylation and ribozymal activity are essential for HDV replication and HDAg expression. Mutations of the isoprenylation domain prevented the formation of infectious particles and increased cellular toxicity and liver damage. Furthermore, altering HDAg intracellular localization notably decreased viral replication, though liver damage remained unchanged versus normal HDAg distribution. In addition, a mutation in the nuclear export signal impaired the formation of infectious viral particles. These findings contribute valuable insights into the intricate mechanisms of HDV biology and have implications for therapeutic considerations.
Collapse
Affiliation(s)
- Sheila Maestro
- DNA & RNA Medicine Division, Centro de Investigación Médica Aplicada, University of Navarra, Avenida Pío XII, 31008 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (C.O.); (A.V.)
- IdiSNA—Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Nahia Gomez-Echarte
- DNA & RNA Medicine Division, Centro de Investigación Médica Aplicada, University of Navarra, Avenida Pío XII, 31008 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (C.O.); (A.V.)
- IdiSNA—Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Gracian Camps
- DNA & RNA Medicine Division, Centro de Investigación Médica Aplicada, University of Navarra, Avenida Pío XII, 31008 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (C.O.); (A.V.)
- IdiSNA—Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Carla Usai
- DNA & RNA Medicine Division, Centro de Investigación Médica Aplicada, University of Navarra, Avenida Pío XII, 31008 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (C.O.); (A.V.)
- IdiSNA—Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Cristina Olagüe
- DNA & RNA Medicine Division, Centro de Investigación Médica Aplicada, University of Navarra, Avenida Pío XII, 31008 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (C.O.); (A.V.)
| | - Africa Vales
- DNA & RNA Medicine Division, Centro de Investigación Médica Aplicada, University of Navarra, Avenida Pío XII, 31008 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (C.O.); (A.V.)
| | - Rafael Aldabe
- DNA & RNA Medicine Division, Centro de Investigación Médica Aplicada, University of Navarra, Avenida Pío XII, 31008 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (C.O.); (A.V.)
| | - Gloria Gonzalez-Aseguinolaza
- DNA & RNA Medicine Division, Centro de Investigación Médica Aplicada, University of Navarra, Avenida Pío XII, 31008 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (C.O.); (A.V.)
| |
Collapse
|
9
|
Rodríguez-Tajes S, García-Eliz M, Marcos AC, Campos-Varela I, Ros AC, Loinaz C, Gómez Bravo MÁ, Rodríguez-Perálvarez M, Fabrega E, González Diéguez ML, Vinaixa C, Pascasio JM, Vázquez IF, Baliellas C, Castells L, Salcedo M, Prieto M, Crespo G, Lens S, Forns X. The role of HBIG in real life for patients undergoing liver transplantation due to HDV-related cirrhosis. Liver Int 2024; 44:279-285. [PMID: 38100141 DOI: 10.1111/liv.15777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 12/20/2023]
Abstract
Recommended post-liver transplant (LT) prophylaxis in patients with hepatitis delta includes a nucleos(t)ide analogue (NA) and anti-hepatitis B immunoglobulin (HBIG) indefinitely. We analysed the use of HBIG in real-life clinical practice and its impact on HBV/HDV recurrence in 174 HDV-related LT patients from 10 Spanish liver transplant centres (1988-2018). Median post-LT follow-up was 7.8 (2.3-15.1) years and patient survival at 5 years was 90%. Most patients (97%) received HBIG in the immediate post-LT, but only 42% were on HBIG at the last control. Among those discontinuing HBIG, the median time on treatment was 18 (7-52) months. Post-LT HBsAg+ was detected in 16 (9%) patients and HBV-DNA in 12 (7%). Despite HBsAg positivity, HDV recurrence was reported only in three patients (1.7%), all of whom were not receiving NA and had discontinued HBIG. Our data suggest that a finite HBIG prophylaxis in HDV-LT is feasible, especially if high-barrier NAs are used.
Collapse
Affiliation(s)
- Sergio Rodríguez-Tajes
- Liver Unit, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, ISCIII, Madrid, Spain
| | - María García-Eliz
- Consorcio de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, ISCIII, Madrid, Spain
- Liver Unit, Hospital Universitario y Politécnico de La Fe, Valencia, Spain
| | | | | | - Alba Cachero Ros
- Liver Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
| | - Carmelo Loinaz
- Liver Transplant Unit, University Hospital 12 de Octubre, Madrid, Spain
| | | | - Manuel Rodríguez-Perálvarez
- Consorcio de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, ISCIII, Madrid, Spain
- Liver Transplant Unit, Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Emilio Fabrega
- Liver Unit, Marqués de Valdecilla University Hospital, Santander, Spain
| | | | - Carmen Vinaixa
- Consorcio de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, ISCIII, Madrid, Spain
- Liver Unit, Hospital Universitario y Politécnico de La Fe, Valencia, Spain
| | - José M Pascasio
- Consorcio de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, ISCIII, Madrid, Spain
- Liver Unit, Virgen del Rocio Hospital, Sevilla, Spain
| | | | - Carme Baliellas
- Liver Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
| | - Lluis Castells
- Consorcio de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, ISCIII, Madrid, Spain
- Liver Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Martín Prieto
- Consorcio de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, ISCIII, Madrid, Spain
- Liver Unit, Hospital Universitario y Politécnico de La Fe, Valencia, Spain
| | - Gonzalo Crespo
- Liver Unit, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, ISCIII, Madrid, Spain
| | - Sabela Lens
- Liver Unit, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, ISCIII, Madrid, Spain
| | - Xavier Forns
- Liver Unit, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, ISCIII, Madrid, Spain
| |
Collapse
|
10
|
Shekhtman L, Cotler SJ, Degasperi E, Anolli MP, Uceda Renteria SC, Sambarino D, Borghi M, Perbellini R, Facchetti F, Ceriotti F, Lampertico P, Dahari H. Modelling HDV kinetics under the entry inhibitor bulevirtide suggests the existence of two HDV-infected cell populations. JHEP Rep 2024; 6:100966. [PMID: 38274491 PMCID: PMC10808955 DOI: 10.1016/j.jhepr.2023.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 01/27/2024] Open
Abstract
Background & Aims Bulevirtide (BLV) was approved for the treatment of compensated chronic hepatitis D virus (HDV) infection in Europe in 2020. However, research into the effects of the entry inhibitor BLV on HDV-host dynamics is in its infancy. Methods Eighteen patients with HDV under nucleos(t)ide analogue treatment for hepatitis B, with compensated cirrhosis and clinically significant portal hypertension, received BLV 2 mg/day. HDV RNA, alanine aminotransferase (ALT), and hepatitis B surface antigen (HBsAg) were measured at baseline, weeks 4, 8 and every 8 weeks thereafter. A mathematical model was developed to account for HDV, HBsAg and ALT dynamics during BLV treatment. Results Median baseline HDV RNA, HBsAg, and ALT were 4.9 log IU/ml [IQR: 4.4-5.8], 3.7 log IU/ml [IQR: 3.4-3.9] and 106 U/L [IQR: 81-142], respectively. During therapy, patients fit into four main HDV kinetic patterns: monophasic (n = 2), biphasic (n = 10), flat-partial response (n = 4), and non-responder (n = 2). ALT normalization was achieved in 14 (78%) patients at a median of 8 weeks (range: 4-16). HBsAg remained at pre-treatment levels. Assuming that BLV completely (∼100%) blocks HDV entry, modeling indicated that two HDV-infected cell populations exist: fast HDV clearing (median t1/2 = 13 days) and slow HDV clearing (median t1/2 = 44 days), where the slow HDV-clearing population consisted of ∼1% of total HDV-infected cells, which could explain why most patients exhibited a non-monophasic pattern of HDV decline. Moreover, modeling explained ALT normalization without a change in HBsAg based on a non-cytolytic loss of HDV from infected cells, resulting in HDV-free HBsAg-producing cells that release ALT upon death at a substantially lower rate compared to HDV-infected cells. Conclusion The entry inhibitor BLV provides a unique opportunity to understand HDV, HBsAg, ALT, and host dynamics. Impact and implications Mathematical modeling of hepatitis D virus (HDV) treatment with the entry inhibitor bulevirtide (BLV) provides a novel window into the dynamics of HDV RNA and alanine aminotransferase. Kinetic data from patients treated with BLV monotherapy can be explained by hepatocyte populations with different basal HDV clearance rates and non-cytolytic clearance of infected cells. While further studies are needed to test and refine the kinetic characterization described here, this study provides a new perspective on viral dynamics, which could inform evolving treatment strategies for HDV.
Collapse
Affiliation(s)
- Louis Shekhtman
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
- Department of Information Science, Bar-Ilan University, Ramat Gan, Israel
| | - Scott J. Cotler
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Elisabetta Degasperi
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Paola Anolli
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Dana Sambarino
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marta Borghi
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Riccardo Perbellini
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Floriana Facchetti
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ferruccio Ceriotti
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Virology Unit, Milan, Italy
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- CRC “A. M. and A. Migliavacca” Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Harel Dahari
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
11
|
Heuschkel MJ, Bach C, Meiss-Heydmann L, Gerges E, Felli E, Giannone F, Pessaux P, Schuster C, Lucifora J, Baumert TF, Verrier ER. JAK1 promotes HDV replication and is a potential target for antiviral therapy. J Hepatol 2024; 80:220-231. [PMID: 37925078 DOI: 10.1016/j.jhep.2023.10.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND & AIMS Chronic co-infection with HBV and HDV leads to the most aggressive form of chronic viral hepatitis. To date, no treatment induces efficient viral clearance, and a better characterization of virus-host interactions is required to develop new therapeutic strategies. METHODS Using loss-of-function strategies, we validated the unexpected proviral activity of Janus kinase 1 (JAK1) - a key player in innate immunity - in the HDV life cycle and determined its mechanism of action on HDV through various functional analyses including co-immunoprecipitation assays. RESULTS We confirmed the key role of JAK1 kinase activity in HDV infection. Moreover, our results suggest that JAK1 inhibition is associated with a modulation of ERK1/2 activation and S-HDAg phosphorylation, which is crucial for viral replication. Finally, we showed that FDA-approved JAK1-specific inhibitors are efficient antivirals in relevant in vitro models including primary human hepatocytes. CONCLUSIONS Taken together, we uncovered JAK1 as a key host factor for HDV replication and a potential target for new antiviral treatment. IMPACT AND IMPLICATIONS Chronic hepatitis D is the most aggressive form of chronic viral hepatitis. As no curative treatment is currently available, new therapeutic strategies based on host-targeting agents are urgently needed. Here, using loss-of-function strategies, we uncover an unexpected interaction between JAK1, a major player in the innate antiviral response, and HDV infection. We demonstrated that JAK1 kinase activity is crucial for both the phosphorylation of the delta antigen and the replication of the virus. By demonstrating the antiviral potential of several FDA-approved JAK1 inhibitors, our results could pave the way for the development of innovative therapeutic strategies to tackle this global health threat.
Collapse
Affiliation(s)
- Margaux J Heuschkel
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Charlotte Bach
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Laura Meiss-Heydmann
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Emma Gerges
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Emanuele Felli
- Institut hospitalo-universitaire (IHU), Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Fabio Giannone
- Institut hospitalo-universitaire (IHU), Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Patrick Pessaux
- Institut hospitalo-universitaire (IHU), Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Julie Lucifora
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France; Institut hospitalo-universitaire (IHU), Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Institut Universitaire de France, Paris, France
| | - Eloi R Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France.
| |
Collapse
|
12
|
Guo H, Li Q, Li C, Hou Y, Ding Y, Liu D, Ni Y, Tang R, Zheng K, Urban S, Wang W. Molecular determinants within the C-termini of L-HDAg that regulate hepatitis D virus replication and assembly. JHEP Rep 2024; 6:100961. [PMID: 38192534 PMCID: PMC10772390 DOI: 10.1016/j.jhepr.2023.100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 01/10/2024] Open
Abstract
Background & Aims Hepatitis D virus (HDV) is the causative agent of chronic hepatitis delta, the most severe form of viral hepatitis. HDV encodes one protein, hepatitis delta antigen (HDAg), in two isoforms: S- and L-HDAg. They are identical in sequence except that L-HDAg contains an additional 19-20 amino acids at its C-terminus, which confer regulatory roles that are distinct from those of S-HDAg. Notably, these residues are divergent between different genotypes. We aimed to elucidate the molecular determinants within the C-termini that are essential for the regulatory role of L-HDAg in HDV replication and assembly. Methods Northern blot, reverse-transcription quantitative PCR, and a newly established HDV trans-complementary system were used in this study. Results C-termini of L-HDAg, albeit with high sequence variation among different genotypes, are interchangeable with respect to the trans-inhibitory function of L-HDAg and HDV assembly. The C-terminus of L-HDAg features a conserved prenylation CXXQ motif and is enriched with proline and hydrophobic residues. Abolishment of the CXXQ motif attenuated the inhibitory effect of L-HDAg on HDV replication. In contrast, the enrichment of proline and hydrophobic residues per se does not modify the trans-inhibitory function of L-HDAg. Nevertheless, these residues are essential for HDV assembly. Mechanistically, prolines and hydrophobic residues contribute to HDV assembly via a mode of action independent of the prenylated CXXQ motif. Conclusions Within the C-terminus of L-HDAg, the CXXQ motif and the enrichment of proline and hydrophobic residues are all essential determinants of L-HDAg's regulatory roles in HDV replication and assembly. This intrinsic viral regulatory mechanism we elucidated deepens our understanding of the unique life cycle of HDV. Impact and implications Hepatitis D virus (HDV) encodes one protein, hepatitis delta antigen (HDAg), in two isoforms: S- and L-HDAg. They are identical in sequence except that L-HDAg contains an additional 19-20 amino acids at its C-terminus. This C-terminal extension in L-HDAg confers regulatory roles in the HDV life cycle that are distinct from those of S-HDAg. Herein, we found that C-termini of L-HDAg, although with high sequence variation, are interchangeable among different HDV genotypes. Within the C-terminus of L-HDAg, the prenylation motif, and the enrichment of proline and hydrophobic residues are all essential determinants of L-HDAg's regulatory roles in HDV replication and assembly.
Collapse
Affiliation(s)
- Hongbo Guo
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Qiudi Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Chunyang Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yao Hou
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yibo Ding
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Dan Liu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Renxian Tang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Wenshi Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Groth C, Maric J, Garcés Lázaro I, Hofman T, Zhang Z, Ni Y, Keller F, Seufert I, Hofmann M, Neumann-Haefelin C, Sticht C, Rippe K, Urban S, Cerwenka A. Hepatitis D infection induces IFN-β-mediated NK cell activation and TRAIL-dependent cytotoxicity. Front Immunol 2023; 14:1287367. [PMID: 38143742 PMCID: PMC10739304 DOI: 10.3389/fimmu.2023.1287367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023] Open
Abstract
Background and aims The co-infection of hepatitis B (HBV) patients with the hepatitis D virus (HDV) causes the most severe form of viral hepatitis and thus drastically worsens the course of the disease. Therapy options for HBV/HDV patients are still limited. Here, we investigated the potential of natural killer (NK) cells that are crucial drivers of the innate immune response against viruses to target HDV-infected hepatocytes. Methods We established in vitro co-culture models using HDV-infected hepatoma cell lines and human peripheral blood NK cells. We determined NK cell activation by flow cytometry, transcriptome analysis, bead-based cytokine immunoassays, and NK cell-mediated effects on T cells by flow cytometry. We validated the mechanisms using CRISPR/Cas9-mediated gene deletions. Moreover, we assessed the frequencies and phenotype of NK cells in peripheral blood of HBV and HDV superinfected patients. Results Upon co-culture with HDV-infected hepatic cell lines, NK cells upregulated activation markers, interferon-stimulated genes (ISGs) including the death receptor ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), produced interferon (IFN)-γ and eliminated HDV-infected cells via the TRAIL-TRAIL-R2 axis. We identified IFN-β released by HDV-infected cells as an important enhancer of NK cell activity. In line with our in vitro data, we observed activation of peripheral blood NK cells from HBV/HDV co-infected, but not HBV mono-infected patients. Conclusion Our data demonstrate NK cell activation in HDV infection and their potential to eliminate HDV-infected hepatoma cells via the TRAIL/TRAIL-R2 axis which implies a high relevance of NK cells for the design of novel anti-viral therapies.
Collapse
Affiliation(s)
- Christopher Groth
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jovana Maric
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Irene Garcés Lázaro
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tomáš Hofman
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZFI) - Heidelberg Partner Site, Heidelberg, Germany
| | - Franziska Keller
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Isabelle Seufert
- Division of Chromatin Networks, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ) and Bioquant, Heidelberg, Germany
| | - Maike Hofmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ) and Bioquant, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZFI) - Heidelberg Partner Site, Heidelberg, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
14
|
Tian Y, Fan Z, Zhang X, Xu L, Cao Y, Pan Z, Mo Y, Gao Y, Zheng S, Huang J, Zou H, Duan Z, Li H, Ren F. CRISPR/Cas13a-Assisted accurate and portable hepatitis D virus RNA detection. Emerg Microbes Infect 2023; 12:2276337. [PMID: 37882492 PMCID: PMC10796118 DOI: 10.1080/22221751.2023.2276337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND & AIMS Hepatitis delta virus (HDV) infection accelerates the progression of chronic hepatitis B virus (HBV) infection, posing a large economic and health burden to patients. At present, there remains a lack of accurate and portable detection methods for HDV RNA. Here, we aim to establish a convenient, rapid, highly sensitive and specific method to detect HDV RNA using CRISPR-Cas13a technology. METHODS We established fluorescence (F) and lateral flow strip (L) assays based on CRISPR-Cas13a combined with RT-PCR and RT-RAA for HDV RNA detection, respectively. we conducted a cohort study of 144 patients with HDV-IgG positive to evaluate the CRISPR-Cas13a diagnostic performance for identifying HDV in clinical samples, compared to RT-qPCR and RT-ddPCR. RESULTS For synthetic HDV RNA plasmids, the sensitivity of RT-PCR-CRISPR-based fluorescence assays was 1 copy/μL, higher than that of RT-qPCR (10 copies/μL) and RT-ddPCR (10 copies/μL); for HDV RNA-positive samples, the sensitivity of RT-RAA-CRISPR-based fluorescence and lateral flow strip assays was 10 copies/μL, as low as that of RT-qPCR and RT-ddPCR, and the assay took only approximately 85 min. Additionally, the positivity rates of anti-HDV IgG-positive samples detected by the RT-qPCR, RT-ddPCR, RT-PCR-CRISPR fluorescence and RT-RAA-CRISPR lateral flow strip methods were 66.7% (96/144), 76.4% (110/144), 81.9% (118/144), and 72.2% (104/144), respectively. CONCLUSIONS We developed a highly sensitive and specific, as well as a portable and easy CRISPR-based assay for the detection of HDV RNA, which could be a prospective measure for monitoring the development of HDV infection and evaluating the therapeutic effect.
Collapse
Affiliation(s)
- Yuan Tian
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zihao Fan
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiangying Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Ling Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yaling Cao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhenzhen Pan
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yinkang Mo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yao Gao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Sujun Zheng
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jing Huang
- Department of Infection Control, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Huaibin Zou
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhongping Duan
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Feng Ren
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
15
|
Abdul Majeed N, Zehnder B, Koh C, Heller T, Urban S. Hepatitis delta: Epidemiology to recent advances in therapeutic agents. Hepatology 2023; 78:1306-1321. [PMID: 36738087 DOI: 10.1097/hep.0000000000000331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023]
Abstract
Hepatitis D virus (HDV) was first described in 1977 and is dependent on the presence of hepatitis B surface antigen (HBsAg) for its entry into cells and on the human host for replication. Due to the envelopment with the hepatitis B virus (HBV) envelope, early phases of HDV entry resemble HBV infection. Unlike HBV, HDV activates innate immune responses. The global prevalence of HDV is estimated to be about 5% of HBsAg positive individuals. However, recent studies have described a wide range of prevalence between 12 to 72 million individuals. Infection can occur as super-infection or co-infection. The diagnosis of active HDV infection involves screening with anti HDV antibodies followed by quantitative PCR testing for HDV RNA in those who are HBsAg positive. The diagnostic studies have evolved over the years improving the validity and reliability of the tests performed. HDV infection is considered the most severe form of viral hepatitis and the HDV genotype may influence the disease course. There are eight major HDV genotypes with prevalence varying by geographic region. HDV treatment has been challenging as HDV strongly depends on the host cell for replication and provides few, if any viral targets. Better understanding of HDV virology has led to the development of several therapeutic agents currently being studied in different phase II and III clinical trials. There is increasing promise of effective therapies that will ameliorate the course of this devastating disease.
Collapse
Affiliation(s)
- Nehna Abdul Majeed
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Benno Zehnder
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany
| |
Collapse
|
16
|
Lange F, Garn J, Anagho HA, Vondran FWR, von Hahn T, Pietschmann T, Carpentier A. Hepatitis D virus infection, innate immune response and antiviral treatments in stem cell-derived hepatocytes. Liver Int 2023; 43:2116-2129. [PMID: 37366005 DOI: 10.1111/liv.15655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) are a valuable model to investigate host-pathogen interactions of hepatitis viruses in a mature and authentic environment. Here, we investigate the susceptibility of HLCs to the hepatitis delta virus (HDV). METHODS We differentiated hPSC into HLCs, and inoculated them with infectious HDV produced in Huh7NTCP . HDV infection and cellular response was monitored by RTqPCR and immunostaining. RESULTS Cells undergoing hepatic differentiation become susceptible to HDV after acquiring expression of the viral receptor Na+ -taurocholate co-transporting polypeptide (NTCP) during hepatic specification. Inoculation of HLCs with HDV leads to detection of intracellular HDV RNA and accumulation of the HDV antigen in the cells. Upon infection, the HLCs mounted an innate immune response based on induction of the interferons IFNB and L, and upregulation of interferon-stimulated genes. The intensity of this immune response positively correlated with the level of viral replication and was dependant on both the JAK/STAT and NFκB pathway activation. Importantly, this innate immune response did not inhibit HDV replication. However, pre-treatment of the HLCs with IFNα2b reduced viral infection, suggesting that ISGs may limit early stages of infection. Myrcludex efficiently abrogated infection and blocked innate immune activation. Lonafarnib treatment of HDV mono infected HLCs on the other hand led to exacerbated viral replication and innate immune response. CONCLUSION The HDV in vitro mono-infection model represents a new tool to study HDV replication, its host-pathogen interactions and evaluate new antiviral drugs in cells displaying mature hepatic functions.
Collapse
Affiliation(s)
- Frauke Lange
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Medical School Hannover (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Jonathan Garn
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Medical School Hannover (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Holda A Anagho
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Medical School Hannover (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Thomas von Hahn
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Medical School Hannover (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Arnaud Carpentier
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Medical School Hannover (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
17
|
Maya S, Hershkovich L, Cardozo-Ojeda EF, Shirvani-Dastgerdi E, Srinivas J, Shekhtman L, Uprichard SL, Berneshawi AR, Cafiero TR, Dahari H, Ploss A. Hepatitis delta virus RNA decline post-inoculation in human NTCP transgenic mice is biphasic. mBio 2023; 14:e0100823. [PMID: 37436080 PMCID: PMC10470517 DOI: 10.1128/mbio.01008-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/13/2023] Open
Abstract
Chronic infection with hepatitis B and delta viruses (HDV) is the most serious form of viral hepatitis due to more severe manifestations of an accelerated progression to liver fibrosis, cirrhosis, and hepatocellular carcinoma. We characterized early HDV kinetics post-inoculation and incorporated mathematical modeling to provide insights into host-HDV dynamics. We analyzed HDV RNA serum viremia in 192 immunocompetent (C57BL/6) and immunodeficient (NRG) mice that did or did not transgenically express the HDV receptor-human sodium taurocholate co-transporting polypeptide (hNTCP). Kinetic analysis indicates an unanticipated biphasic decline consisting of a sharp first-phase and slower second-phase decline regardless of immunocompetence. HDV decline after re-inoculation again followed a biphasic decline; however, a steeper second-phase HDV decline was observed in NRG-hNTCP mice compared to NRG mice. HDV-entry inhibitor bulevirtide administration and HDV re-inoculation indicated that viral entry and receptor saturation are not major contributors to clearance, respectively. The biphasic kinetics can be mathematically modeled by assuming the existence of a non-specific-binding compartment with a constant on/off-rate and the steeper second-phase decline by a loss of bound virus that cannot be returned as free virus to circulation. The model predicts that free HDV is cleared with a half-life of 35 minutes (standard error, SE: 6.3), binds to non-specific cells with a rate of 0.05 per hour (SE: 0.01), and returns as free virus with a rate of 0.11 per hour (SE: 0.02). Characterizing early HDV-host kinetics elucidates how quickly HDV is either cleared or bound depending on the immunological background and hNTCP presence. IMPORTANCE The persistence phase of HDV infection has been studied in some animal models; however, the early kinetics of HDV in vivo is incompletely understood. In this study, we characterize an unexpectedly HDV biphasic decline post-inoculation in immunocompetent and immunodeficient mouse models and use mathematical modeling to provide insights into HDV-host dynamics.
Collapse
Affiliation(s)
- Stephanie Maya
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Leeor Hershkovich
- Department of Medicine, The Program for Experimental & Theoretical Modeling, Division of Hepatology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - E. Fabian Cardozo-Ojeda
- Department of Medicine, The Program for Experimental & Theoretical Modeling, Division of Hepatology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Jay Srinivas
- Department of Medicine, The Program for Experimental & Theoretical Modeling, Division of Hepatology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Louis Shekhtman
- Department of Medicine, The Program for Experimental & Theoretical Modeling, Division of Hepatology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Susan L. Uprichard
- Department of Medicine, The Program for Experimental & Theoretical Modeling, Division of Hepatology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Andrew R. Berneshawi
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Thomas R. Cafiero
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Harel Dahari
- Department of Medicine, The Program for Experimental & Theoretical Modeling, Division of Hepatology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
18
|
Thiyagarajah K, Basic M, Hildt E. Cellular Factors Involved in the Hepatitis D Virus Life Cycle. Viruses 2023; 15:1687. [PMID: 37632029 PMCID: PMC10459925 DOI: 10.3390/v15081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus with a negative-strand RNA genome encompassing less than 1700 nucleotides. The HDV genome encodes only for one protein, the hepatitis delta antigen (HDAg), which exists in two forms acting as nucleoproteins. HDV depends on the envelope proteins of the hepatitis B virus as a helper virus for packaging its ribonucleoprotein complex (RNP). HDV is considered the causative agent for the most severe form of viral hepatitis leading to liver fibrosis/cirrhosis and hepatocellular carcinoma. Many steps of the life cycle of HDV are still enigmatic. This review gives an overview of the complete life cycle of HDV and identifies gaps in knowledge. The focus is on the description of cellular factors being involved in the life cycle of HDV and the deregulation of cellular pathways by HDV with respect to their relevance for viral replication, morphogenesis and HDV-associated pathogenesis. Moreover, recent progress in antiviral strategies targeting cellular structures is summarized in this article.
Collapse
Affiliation(s)
| | | | - Eberhard Hildt
- Paul-Ehrlich-Institute, Department of Virology, D-63225 Langen, Germany; (K.T.); (M.B.)
| |
Collapse
|
19
|
Roca Suarez AA, Batbold E, Bartosch B, Dashdorj N, Testoni B, Zoulim F. Emerging anti-HDV drugs and HBV cure strategies with anti-HDV activity. Liver Int 2023; 43 Suppl 1:87-95. [PMID: 37017060 DOI: 10.1111/liv.15417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 04/06/2023]
Abstract
Hepatitis delta virus (HDV) is a satellite RNA virus that requires the presence of hepatitis B virus (HBV) for its replication. HDV/HBV co-infection is often associated with a faster disease progression of chronic hepatitis in comparison to HBV mono-infection. Therefore, the development of novel antiviral therapies targeting HDV represents a high priority and an urgent medical need. In this review, we summarize the ongoing efforts to evaluate promising HDV-specific drugs, such as lonafarnib (LNF), pegylated interferon lambda (PEG-IFN-λ) and their use as a combination therapy. Furthermore, we review the most recent developments in the area of anti-HBV drugs with potential effects against HDV, including therapeutic agents targeting hepatitis B surface antigen (HBsAg) expression, secretion and function. Finally, we consider the important insights that have emerged from the development of these potential antiviral strategies, as well as the intriguing questions that remain to be elucidated in this rapidly changing field.
Collapse
Affiliation(s)
- Armando A Roca Suarez
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
| | | | - Birke Bartosch
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
| | | | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- Hospices Civils de Lyon (HCL), Lyon, France
| |
Collapse
|
20
|
Metin O, Zeybel M, Yurdaydin C. Treatment endpoints for chronic hepatitis D. Liver Int 2023; 43 Suppl 1:60-68. [PMID: 36196680 DOI: 10.1111/liv.15447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/20/2022] [Accepted: 10/03/2022] [Indexed: 02/13/2023]
Abstract
Management of chronic hepatitis D (CHD) has entered a new era. In this new era, the virus entry inhibitor bulevirtide has received conditional approval as a treatment for compensated CHD. Three phase 3 studies with two new compounds are ongoing for the treatment of CHD. In this context, surrogate markers of treatment efficacy have been well defined for chronic hepatitis B (CHB) (7) and chronic hepatitis C (8) but not for CHD. The aim of this review is to give a perspective on treatment endpoints in CHD. For this, we took guidance from CHB studies and tried to make suggestions which differed according to finite versus prolonged treatment durations and also took into account the different characteristics of the new compounds.
Collapse
Affiliation(s)
- Olga Metin
- Department of Gastroenterology, Prof. Cemil Taşçioğlu City Hospital, Istanbul, Turkey
| | - Müjdat Zeybel
- Department of Gastroenterology and Hepatology, Koç University Medical School, Istanbul, Turkey
| | - Cihan Yurdaydin
- Department of Gastroenterology and Hepatology, Koç University Medical School, Istanbul, Turkey
| |
Collapse
|
21
|
Keskin O, Yurdaydin C. Emerging drugs for hepatitis D. Expert Opin Emerg Drugs 2023:1-12. [PMID: 37096555 DOI: 10.1080/14728214.2023.2205639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
INTRODUCTION Chronic hepatitis delta (CHD) is the most severe form of chronic viral hepatitis. Until recently, its treatment consisted of pegylated interferon alfa (pegIFN) use. AREAS COVERED Current and new drugs for treating CHD. Virus entry inhibitor bulevirtide has received conditional approval by the European Medicines Agency. Prenylation inhibitor lonafarnib and pegIFN lambda are in phase 3 and nucleic acid polymers in phase 2 of drug development. EXPERT OPINION Bulevirtide appears to be safe. Its antiviral efficacy increases with treatment duration. Combining bulevirtide with pegIFN has the highest antiviral efficacy short-term. The prenylation inhibitor lonafarnib prevents hepatitis D virus assembly. It is associated with dose dependent gastrointestinal toxicity and is better used with ritonavir which increases liver lonafarnib concentrations. Lonafarnib also possesses immune modulatory properties which explains some post-treatment beneficial flare cases. Combining lonafarnib/ritonavir with pegIFN has superior antiviral efficacy. Nucleic acid polymers are amphipathic oligonucleotides whose effect appears to be a consequence of phosphorothioate modification of internucleotide linkages. These compounds led to HBsAg clearance in a sizeable proportion of patients. PegIFN lambda is associated with less IFN typical side effects. In a phase 2 study it led to 6 months off treatment viral response in one third of patients.
Collapse
Affiliation(s)
- Onur Keskin
- Department of Gastroenterology, Hacettepe University Medical School, Ankara, Turkey
| | - Cihan Yurdaydin
- Department of Gastroenterology & Hepatology, Koc University Medical School, Istanbul, Turkey
| |
Collapse
|
22
|
Guo H, Urban S, Wang W. In vitro cell culture models to study hepatitis B and D virus infection. Front Microbiol 2023; 14:1169770. [PMID: 37089540 PMCID: PMC10113554 DOI: 10.3389/fmicb.2023.1169770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) and hepatitis D virus (HDV) can cause a major global health burden. Current medication regimens can repress viral replication and help to control disease progression, but a complete cure is hardly achieved due to the difficulties to eradicate viral templates (cccDNA and integrates). To develop novel curative antiviral therapies for HBV/HDV infection, it is vital to precisely understand the details of the molecular biology of both viruses and the virus-host interactions. One important prerequisite for gaining this aim is the availability of suitable in vitro models that support HBV/HDV infection, replicate both viruses via their authentic template and allow to adequately study host cell responses. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) receptor as the most crucial host factor promoted HBV/HDV research to a new era. Recently, the structure of human NTCP was solved, gaining a deeper understanding of HBV recognition as the bona fide receptor. After decades of continuous efforts, new progress has been achieved in the development of cell culture models supporting HBV/HDV study. This review summarizes the cell culture models currently available, discusses the advantages and disadvantages of each model, and highlights their future applications in HBV and HDV research.
Collapse
Affiliation(s)
- Hongbo Guo
- Department of Pathogen Biology and Immunology; Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- *Correspondence: Wenshi Wang, ; Stephan Urban,
| | - Wenshi Wang
- Department of Pathogen Biology and Immunology; Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wenshi Wang, ; Stephan Urban,
| |
Collapse
|
23
|
Expanded profiling of Remdesivir as a broad-spectrum antiviral and low potential for interaction with other medications in vitro. Sci Rep 2023; 13:3131. [PMID: 36823196 PMCID: PMC9950143 DOI: 10.1038/s41598-023-29517-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Remdesivir (GS-5734; VEKLURY) is a single diastereomer monophosphoramidate prodrug of an adenosine analog (GS-441524). Remdesivir is taken up by target cells and metabolized in multiple steps to form the active nucleoside triphosphate (GS-443902), which acts as a potent inhibitor of viral RNA-dependent RNA polymerases. Remdesivir and GS-441524 have antiviral activity against multiple RNA viruses. Here, we expand the evaluation of remdesivir's antiviral activity to members of the families Flaviviridae, Picornaviridae, Filoviridae, Orthomyxoviridae, and Hepadnaviridae. Using cell-based assays, we show that remdesivir can inhibit infection of flaviviruses (such as dengue 1-4, West Nile, yellow fever, Zika viruses), picornaviruses (such as enterovirus and rhinovirus), and filoviruses (such as various Ebola, Marburg, and Sudan virus isolates, including novel geographic isolates), but is ineffective or is significantly less effective against orthomyxoviruses (influenza A and B viruses), or hepadnaviruses B, D, and E. In addition, remdesivir shows no antagonistic effect when combined with favipiravir, another broadly acting antiviral nucleoside analog, and has minimal interaction with a panel of concomitant medications. Our data further support remdesivir as a broad-spectrum antiviral agent that has the potential to address multiple unmet medical needs, including those related to antiviral pandemic preparedness.
Collapse
|
24
|
Maya S, Hershkovich L, Cardozo-Ojeda EF, Shirvani-Dastgerdi E, Srinivas J, Shekhtman L, Uprichard SL, Berneshawi AR, Cafiero TR, Dahari H, Ploss A. Hepatitis delta virus RNA decline post inoculation in human NTCP transgenic mice is biphasic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528964. [PMID: 36824865 PMCID: PMC9949124 DOI: 10.1101/2023.02.17.528964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Background and Aims Chronic infection with hepatitis B and hepatitis delta viruses (HDV) is considered the most serious form of viral hepatitis due to more severe manifestations of and accelerated progression to liver fibrosis, cirrhosis, and hepatocellular carcinoma. There is no FDA-approved treatment for HDV and current interferon-alpha treatment is suboptimal. We characterized early HDV kinetics post inoculation and incorporated mathematical modeling to provide insights into host-HDV dynamics. Methods We analyzed HDV RNA serum viremia in 192 immunocompetent (C57BL/6) and immunodeficient (NRG) mice that did or did not transgenically express the HDV receptor - human sodium taurocholate co-transporting peptide (hNTCP). Results Kinetic analysis indicates an unanticipated biphasic decline consisting of a sharp first-phase and slower second-phase decline regardless of immunocompetence. HDV decline after re-inoculation again followed a biphasic decline; however, a steeper second-phase HDV decline was observed in NRG-hNTCP mice compared to NRG mice. HDV-entry inhibitor bulevirtide administration and HDV re-inoculation indicated that viral entry and receptor saturation are not major contributors to clearance, respectively. The biphasic kinetics can be mathematically modeled by assuming the existence of a non-specific binding compartment with a constant on/off-rate and the steeper second-phase decline by a loss of bound virus that cannot be returned as free virus to circulation. The model predicts that free HDV is cleared with a half-life of 18 minutes (standard error, SE: 2.4), binds to non-specific cells with a rate of 0.06 hour -1 (SE: 0.03), and returns as free virus with a rate of 0.23 hour -1 (SE: 0.03). Conclusions Understanding early HDV-host kinetics will inform pre-clinical therapeutic kinetic studies on how the efficacy of anti-HDV therapeutics can be affected by early kinetics of viral decline. LAY SUMMARY The persistence phase of HDV infection has been studied in some animal models, however, the early kinetics of HDV in vivo is incompletely understood. In this study, we characterize an unexpectedly HDV biphasic decline post inoculation in immunocompetent and immunodeficient mouse models and use mathematical modeling to provide insights into HDV-host dynamics. Understanding the kinetics of viral clearance in the blood can aid pre-clinical development and testing models for anti-HDV therapeutics.
Collapse
|
25
|
Soriano V, Moreno-Torres V, Treviño A, Corral O, de Mendoza C. Bulevirtide in the Treatment of Hepatitis Delta: Drug Discovery, Clinical Development and Place in Therapy. Drug Des Devel Ther 2023; 17:155-166. [PMID: 36712949 PMCID: PMC9875571 DOI: 10.2147/dddt.s379964] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
It has been ten years since the identification of NTCP as the cell surface receptor for HBV and HDV entry into hepatocytes. The search for molecules interfering with the binding of NTCP and HBV/HDV led to design bulevirtide (BLV). This large polypeptide mimics a region of the pre-S1 HBsAg and blocks viral entry by inhibitory competition. BLV was initially tested in cell cultures, animal models and more recently in Phase I-III human trials (called 'MYRS'). As monotherapy or in combination with peginterferon, BLV is well tolerated and exhibits potent antiviral activity. Plasma viremia significantly declines and/or becomes undetectable in more than 75% of patients treated for >24 weeks. However, serum HBsAg concentrations remain unchanged. No selection of BLV resistance in HBV/HDV has been reported in vivo to date. BLV is administered subcutaneously once daily at doses between 2 and 10 mg. BLV received conditional approval in Europe in 2020 to treat chronic hepatitis delta. The advent of peginterferon lambda or new specific anti-HDV antivirals (lonafarnib, etc.) will open the door for combination therapies with BLV. Since there is no stable reservoir for HDV-RNA within infected hepatocytes, viral clearance might be achieved using antivirals for a minimum timeframe. This is what happens in hepatitis C combining several antivirals, curing nearly all patients treated for 3 months. Clearance of HDV-RNA genomes may occur despite HBV persistence as cccDNA or chromosome integrated HBV-DNA within hepatocytes. This is supported by cases of HDV elimination using BLV despite persistence of serum HBsAg. Another path for HDV cure will derive from achieving HBsAg clearance, the goal of new promising anti-HBV gene therapies (bepirovirsen, etc.). In summary, the advent of BLV has triggered a renovated interest for antiviral therapy in hepatitis delta. We envision combination therapies that will lead to HDV cure in the near future.
Collapse
Affiliation(s)
- Vicente Soriano
- Health Sciences School & Medical Center, Universidad Internacional La Rioja (UNIR), Madrid, Spain,Correspondence: Vicente Soriano, UNIR Health Sciences School & Medical Center, Calle García Martín 21, Pozuelo de Alarcón 28224, Madrid, Spain, Tel +34 659687981, Email
| | - Victor Moreno-Torres
- Health Sciences School & Medical Center, Universidad Internacional La Rioja (UNIR), Madrid, Spain,Puerta de Hierro University Hospital & Research Institute, Madrid, Spain
| | - Ana Treviño
- Health Sciences School & Medical Center, Universidad Internacional La Rioja (UNIR), Madrid, Spain
| | - Octavio Corral
- Health Sciences School & Medical Center, Universidad Internacional La Rioja (UNIR), Madrid, Spain
| | - Carmen de Mendoza
- Puerta de Hierro University Hospital & Research Institute, Madrid, Spain
| |
Collapse
|
26
|
Bach C, Lucifora J, Delphin M, Heydmann L, Heuschkel MJ, Pons C, Goto K, Scheers E, Schuster C, Durantel D, Pauwels F, Baumert TF, Verrier ER. A stable hepatitis D virus-producing cell line for host target and drug discovery. Antiviral Res 2023; 209:105477. [PMID: 36511319 DOI: 10.1016/j.antiviral.2022.105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Chronic hepatitis D is the most aggressive form of chronic viral hepatitis. It is caused by super-infection of hepatitis B virus (HBV)-infected hepatocytes with hepatitis D virus (HDV). While the recent conditional approval of bulevirtide for HDV treatment offers a new therapeutic modality in Europe, there is an unmet medical need to further improve therapy. A more detailed characterization of virus-host interactions is needed for the identification of novel therapeutic targets. Addressing this need, we engineered a new stably-transformed cell line, named HuH7-2C8D, producing high titer recombinant HDV and allowing the study of viral particles morphogenesis and infectivity. Using this culture system, where viral propagation by re-infection is limited, we observed an increased accumulation of edited version of the viral genomes within secreted HDV viral particles over time that is accompanied with a decrease in viral particle infectivity. We confirmed the interaction of HDV proteins with a previously described host factor in HuH7-2C8D cells and additionally showed that these cells are suitable for co-culture assays with other cell types such as macrophages. Finally, the use of HuH7-2C8D cells allowed to confirm the dual antiviral activity of farnesyl transferase inhibitors, including the clinical candidate lonafarnib, against HDV. In conclusion, we have established an easy-to-handle cell culture model to investigate HDV replication, morphogenesis, and host interactions. HuH7-2C8D cells are also suitable for high-throughput antiviral screening assays for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Charlotte Bach
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Julie Lucifora
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007, Lyon, France
| | - Marion Delphin
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007, Lyon, France
| | - Laura Heydmann
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Margaux J Heuschkel
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Caroline Pons
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007, Lyon, France
| | - Kaku Goto
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Els Scheers
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - David Durantel
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007, Lyon, France
| | - Frederik Pauwels
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Eloi R Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France.
| |
Collapse
|
27
|
Tseligka ED, Conzelmann S, Cambet Y, Schaer T, Negro F, Clément S. Identification of selective hepatitis delta virus ribozyme inhibitors by high-throughput screening of small molecule libraries. JHEP Rep 2022; 5:100652. [PMID: 36704052 PMCID: PMC9871325 DOI: 10.1016/j.jhepr.2022.100652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Background & Aims Chronic hepatitis delta is the most severe form of chronic viral hepatitis and is associated with faster progression towards cirrhosis, liver decompensation, and hepatocellular carcinoma. Hepatitis delta virus (HDV)'s tight dependency on hepatitis B virus and the host cell machinery for its life cycle limits the development of direct-acting antivirals. Thus, we aimed to identify compounds that could block HDV replication by targeting its antigenomic ribozyme. Methods We generated stable Huh7 human hepatoma cells expressing a reporter gene (Gaussia luciferase) either downstream (Gluc-2xRz) or upstream (2xRz-Gluc) of two HDV antigenomic ribozyme sequences. We performed high-throughput screening of three small molecule libraries. The secreted luciferase was measured as a readout of ribozyme inhibition upon addition of the molecules. Each plate was considered valid when the Z factor was >0.4. Specificity and toxicity evaluations were performed for the hits with a Z-score >5 and half-maximal inhibitory concentration was calculated by performing a dose-response experiment. Results A dose-dependent induction of luciferase expression was detected in Gluc-2xRz-transfected cells incubated with the antisense morpholino, suggesting that the catalytic activity of the ribozyme cloned downstream of the reporter gene was efficiently inhibited. Among the 6,644 compounds screened, we identified four compounds that showed a specific inhibitory effect on the HDV antigenomic ribozyme in Gluc-2xRz cells, i.e. three histone deacetylase inhibitors and the purine analogue 8-azaguanine. The latter also significantly decreased HDV replication (by 40%) in differentiated HepaRG cells six days post infection. Conclusion Using a novel cell culture model, we identified four small molecules active against the antigenomic HDV ribozyme. These results may provide insights into the structural requirements of molecules designed for the potent and specific inhibition of HDV replication. Impact and implications Chronic hepatitis delta is the most severe form of chronic viral hepatitis and is associated with faster progression towards cirrhosis, liver decompensation, and the development of hepatocellular carcinoma. Despite the current development of several new compounds, there is still a need for efficient antiviral treatments specifically targeting hepatitis delta virus (HDV). This work describes a novel cell culture model that allows for the high-throughput screening of compounds able to inhibit HDV ribozymes. We identified four small molecules active against the antigenomic HDV ribozyme (the ribozyme involved in the early step of HDV replication), with the strongest activity shown by 8-azaguanine, a purine analogue. Our data may provide insights into the structural requirements of molecules designed to inhibit HDV.
Collapse
Affiliation(s)
- Eirini D. Tseligka
- Department of Pathology and Immunology, University of Geneva, Switzerland
| | | | - Yves Cambet
- Department of Pathology and Immunology, University of Geneva, Switzerland,READS Unit, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tifany Schaer
- Department of Pathology and Immunology, University of Geneva, Switzerland
| | - Francesco Negro
- Clinical Pathology, Geneva University Hospital, Geneva, Switzerland,Gastroenterology and Hepatology, Geneva University Hospital, Geneva, Switzerland,Corresponding author. Address: Clinical Pathology, and Gastroenterology and Hepatology, Geneva University Hospital, Geneva, Switzerland.
| | - Sophie Clément
- Department of Pathology and Immunology, University of Geneva, Switzerland
| |
Collapse
|
28
|
Zhang Z, Ni Y, Lempp FA, Walter L, Mutz P, Bartenschlager R, Urban S. Hepatitis D virus-induced interferon response and administered interferons control cell division-mediated virus spread. J Hepatol 2022; 77:957-966. [PMID: 35636579 DOI: 10.1016/j.jhep.2022.05.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Besides HBV-dependent de novo infection, cell division-mediated spread contributes to HDV persistence and dampens the effect of antivirals that abrogate de novo infection. Nonetheless, the combination of these antivirals with interferons (IFNs) showed strong synergism in recent clinical trials, implying a complementary mode-of-action of IFNs. Therefore, we investigated the effect of IFN response on cell division-mediated HDV spread. METHODS Cells infected with HDV were passaged to undergo cell division. The effect of the IFN response was evaluated by blocking HDV-induced IFN activation, by applying different IFN treatment regimens, and by adjusting HDV infection doses. RESULTS Cell division-mediated HDV spread was highly efficient following infection of HuH7NTCP cells (defective in IFN production), but profoundly restricted in infected IFN-competent HepaRGNTCP cells. Treatment with IFN-α/-λ1 inhibited HDV spread in dividing HuH7NTCP cells, but exhibited a marginal effect on HDV replication in resting cells. Blocking the HDV-induced IFN response with the JAK1/2 inhibitor ruxolitinib or knocking down MDA5 augmented HDV spread in dividing HepaRGNTCP cells. The virus-induced IFN response also destabilized HDV RNA in dividing cells. Moreover, the effect of exogenous IFNs on cell division-mediated HDV spread was more pronounced at low multiplicities of infection with weak virus-induced IFN responses. CONCLUSIONS Both HDV-induced IFN response and exogenous IFN treatment suppress cell division-mediated HDV spread, presumably through acceleration of HDV RNA decay. Our findings demonstrate a novel mode-of-action of IFN, explain the more pronounced effect of IFN therapy in patients with lower HDV serum RNA levels, and provide insights for the development of combination therapies. LAY SUMMARY Chronic hepatitis D is a major health problem. The causative pathogen hepatitis D virus (HDV) can propagate through viral particle-mediated infection and the division of infected cells. Although viral particle-dependent infection can be blocked by recently developed drugs, therapies addressing the cell division route have not been reported. Taking advantage of relevant cell culture models, we demonstrate that the widely used immune modulator interferon can efficiently suppress HDV spread through cell division. This work unveils a new function of interferon and sheds light on potentially curative combination therapies.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Lisa Walter
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Pascal Mutz
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany.
| |
Collapse
|
29
|
Qu B, Nebioglu F, Leuthold MM, Ni Y, Mutz P, Beneke J, Erfle H, Vondran FW, Bartenschlager R, Urban S. Dual role of neddylation in transcription of hepatitis B virus RNAs from cccDNA and production of viral surface antigen. JHEP Rep 2022; 4:100551. [PMID: 36124123 PMCID: PMC9482114 DOI: 10.1016/j.jhepr.2022.100551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023] Open
Abstract
Background & Aims HBV persistence is maintained by both an episomal covalently closed circular (ccc)DNA reservoir and genomic integration of HBV DNA fragments. While cccDNA transcription is regulated by Cullin4A-DDB1-HBx-mediated degradation of the SMC5/6 complex, HBsAg expression from integrants is largely SMC5/6 independent. Inhibiting neddylation of Cullin-RING ubiquitin ligases impairs degradation of substrates. Herein, we show that targeting neddylation pathway components by small-interfering (si)RNAs or the drug MLN4924 (pevonedistat) suppresses expression of HBV proteins from both cccDNA and integrants. Methods An siRNA screen targeting secretory pathway regulators and neddylation genes was performed. Activity of MLN4924 was assessed in infection and integration models. Trans-complementation assays were used to study HBx function in cccDNA-driven expression. Results siRNA screening uncovered neddylation pathway components (Nedd8, Ube2m) that promote HBsAg production post-transcriptionally. Likewise, MLN4924 inhibited production of HBsAg encoded by integrants and reduced intracellular HBsAg levels, independent of HBx. MLN4924 also profoundly inhibited cccDNA transcription in three infection models. Using the HBV inducible cell line HepAD38 as a model, we verified the dual action of MLN4924 on both cccDNA and integrants with sustained suppression of HBV markers during 42 days of treatment. Conclusions Neddylation is required both for transcription of a cccDNA reservoir and for the genomic integration of viral DNA. Therefore, blocking neddylation might offer an attractive approach towards functional cure of chronic hepatitis B. Lay summary Current treatments for chronic hepatitis B are rarely able to induce a functional cure. This is partly because of the presence of a pool of circular viral DNA in the host nucleus, as well as viral DNA fragments that are integrated into the host genome. Herein, we show that a host biological pathway called neddylation could play a key role in infection and viral DNA integration. Inhibiting this pathway could hold therapeutic promise for patients with chronic hepatitis B. Neddylation plays a dual role in HBV expression from viral integrants and episomal cccDNA. Impaired neddylation suppresses production of HBsAg expressed from viral integrants. Neddylation promotes HBsAg generation from viral integrants in an HBx-independent manner. MLN4924 also inhibits the synthesis of viral transcripts from episomal cccDNA.
Collapse
|
30
|
Yurdaydin C, Keskin O, Yurdcu E, Çalişkan A, Önem S, Karakaya F, Kalkan Ç, Karatayli E, Karatayli S, Choong I, Apelian D, Koh C, Heller T, Idilman R, Bozdayi AM, Glenn JS. A phase 2 dose-finding study of lonafarnib and ritonavir with or without interferon alpha for chronic delta hepatitis. Hepatology 2022; 75:1551-1565. [PMID: 34860418 DOI: 10.1002/hep.32259] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/04/2021] [Accepted: 11/21/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Proof-of-concept studies demonstrated lonafarnib (LNF), a first-in-class oral prenylation inhibitor, efficacy in patients infected with HDV. The lonafarnib with ritonavir for HDV-2 (LOWR-2) study's aim was to identify optimal combination regimens of LNF + ritonavir (RTV) ± pegylated interferon alpha (PEG-IFNα) with efficacy and tolerability for longer-term dosing. Here we report the safety and efficacy at end of treatment for up to 24 weeks. APPROACH AND RESULTS Fifty-five patients with chronic HDV were consecutively enrolled in an open-label, single-center, phase 2 dose-finding study. There were three main treatment groups: high-dose LNF (LNF ≥ 75 mg by mouth [po] twice daily [bid] + RTV) (n = 19, 12 weeks); all-oral low-dose LNF (LNF 25 or 50 mg po bid + RTV) (n = 24, 24 weeks), and combination low-dose LNF with PEG-IFNα (LNF 25 or 50 mg po bid + RTV + PEG-IFNα) (n = 12, 24 weeks). The primary endpoint, ≥2 log10 decline or < lower limit of quantification of HDV-RNA from baseline at end of treatment, was reached in 46% (6 of 13) and 89% (8 of 9) of patients receiving the all-oral regimen of LNF 50 mg bid + RTV, and combination regimens of LNF (25 or 50 mg bid) + RTV + PEG-IFNα, respectively. In addition, multiple patients experienced well-tolerated transient posttreatment alanine aminotransferase increases, resulting in HDV-RNA negativity and alanine aminotransferase normalization. The proportions of grade 2 and 3 gastrointestinal adverse events in the high-dose versus low-dose groups were 49% (37 of 76) and only 22% (18 of 81), respectively. CONCLUSIONS LNF, boosted with low-dose RTV, is a promising all-oral therapy, and maximal efficacy is achieved with PEG-IFNα addition. The identified optimal regimens support a phase 3 study of LNF for the treatment of HDV.
Collapse
Affiliation(s)
- Cihan Yurdaydin
- Department of GastroenterologyUniversity of Ankara Medical SchoolAnkaraTurkey
- Hepatology InstituteUniversity of AnkaraAnkaraTurkey
- Department of Gastroenterology and HepatologyKoç University Medical SchoolIstanbulTurkey
| | - Onur Keskin
- Department of GastroenterologyUniversity of Ankara Medical SchoolAnkaraTurkey
| | - Esra Yurdcu
- Hepatology InstituteUniversity of AnkaraAnkaraTurkey
| | - Aysun Çalişkan
- Department of GastroenterologyUniversity of Ankara Medical SchoolAnkaraTurkey
| | - Soner Önem
- Department of GastroenterologyUniversity of Ankara Medical SchoolAnkaraTurkey
| | - Fatih Karakaya
- Department of GastroenterologyUniversity of Ankara Medical SchoolAnkaraTurkey
| | - Çağdaş Kalkan
- Department of GastroenterologyUniversity of Ankara Medical SchoolAnkaraTurkey
| | - Ersin Karatayli
- Hepatology InstituteUniversity of AnkaraAnkaraTurkey
- Department of Medicine IISaarland University Medical CenterSaarland UniversityHomburgGermany
| | - Senem Karatayli
- Hepatology InstituteUniversity of AnkaraAnkaraTurkey
- Department of Medicine IISaarland University Medical CenterSaarland UniversityHomburgGermany
| | - Ingrid Choong
- Eiger BioPharmaceuticals, Inc.Palo AltoCaliforniaUSA
| | - David Apelian
- Eiger BioPharmaceuticals, Inc.Palo AltoCaliforniaUSA
| | - Christopher Koh
- Translational Hepatology SectionLiver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Theo Heller
- Translational Hepatology SectionLiver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Ramazan Idilman
- Department of GastroenterologyUniversity of Ankara Medical SchoolAnkaraTurkey
| | | | - Jeffrey S Glenn
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & ImmunologyStanford School of MedicineStanfordCaliforniaUSA
- Palo Alto Veterans AdministrationPalo AltoCaliforniaUSA
| |
Collapse
|
31
|
Herta T, Hahn M, Maier M, Fischer J, Niemeyer J, Hönemann M, Böhlig A, Gerhardt F, Schindler A, Schumacher J, Berg T, Wiegand J, van Bömmel F. Efficacy and Safety of Bulevirtide plus Tenofovir Disoproxil Fumarate in Real-World Patients with Chronic Hepatitis B and D Co-Infection. Pathogens 2022; 11:517. [PMID: 35631038 PMCID: PMC9143982 DOI: 10.3390/pathogens11050517] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Background: The hepatitis B and D virus (HBV/HDV) hepatocyte entry inhibitor bulevirtide (BLV) has been available in Europe since July 2020, after the registrational trial MYR202. Real-life data on the efficacy and safety of BLV are sparse. Methods: We have analysed the course of treatment with BLV (2 mg/day) plus tenofovir disoproxil fumarate (TDF) (245 mg/day) in patients with chronic hepatitis delta (CHD). Virologic (≥2 log reduction in HDV RNA or suppression of HDV RNA below the lower limit of detection) and biochemical (normalisation of serum ALT) treatment responses after 24 weeks were defined according to the MYR202 trial. Results: Seven patients were recruited (four with liver cirrhosis Child−Pugh A). After 24 weeks, a virologic response was observed in five of seven and a biochemical response was seen in three of six patients with elevated serum ALT at baseline. Extended treatment data > 48 weeks were available in three cases: two presented with continuous virologic and biochemical responses and in one individual an HDV-RNA breakthrough was observed. Adverse effects were not recorded. Conclusions: The first real-life data of the approved dosage of 2 mg of BLV in combination with TDF confirm the safety, tolerability, and efficacy of the registrational trial MYR202 for a treatment period of 24 weeks and beyond.
Collapse
Affiliation(s)
- Toni Herta
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, 04103 Leipzig, Germany; (T.H.); (M.H.); (J.F.); (J.N.); (A.B.); (F.G.); (A.S.); (J.S.); (T.B.); (J.W.)
| | - Magdalena Hahn
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, 04103 Leipzig, Germany; (T.H.); (M.H.); (J.F.); (J.N.); (A.B.); (F.G.); (A.S.); (J.S.); (T.B.); (J.W.)
| | - Melanie Maier
- Institute of Medical Microbiology and Virology, Leipzig University Medical Center, 04103 Leipzig, Germany; (M.M.); (M.H.)
| | - Janett Fischer
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, 04103 Leipzig, Germany; (T.H.); (M.H.); (J.F.); (J.N.); (A.B.); (F.G.); (A.S.); (J.S.); (T.B.); (J.W.)
| | - Johannes Niemeyer
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, 04103 Leipzig, Germany; (T.H.); (M.H.); (J.F.); (J.N.); (A.B.); (F.G.); (A.S.); (J.S.); (T.B.); (J.W.)
| | - Mario Hönemann
- Institute of Medical Microbiology and Virology, Leipzig University Medical Center, 04103 Leipzig, Germany; (M.M.); (M.H.)
| | - Albrecht Böhlig
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, 04103 Leipzig, Germany; (T.H.); (M.H.); (J.F.); (J.N.); (A.B.); (F.G.); (A.S.); (J.S.); (T.B.); (J.W.)
| | - Florian Gerhardt
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, 04103 Leipzig, Germany; (T.H.); (M.H.); (J.F.); (J.N.); (A.B.); (F.G.); (A.S.); (J.S.); (T.B.); (J.W.)
| | - Aaron Schindler
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, 04103 Leipzig, Germany; (T.H.); (M.H.); (J.F.); (J.N.); (A.B.); (F.G.); (A.S.); (J.S.); (T.B.); (J.W.)
| | - Jonas Schumacher
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, 04103 Leipzig, Germany; (T.H.); (M.H.); (J.F.); (J.N.); (A.B.); (F.G.); (A.S.); (J.S.); (T.B.); (J.W.)
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, 04103 Leipzig, Germany; (T.H.); (M.H.); (J.F.); (J.N.); (A.B.); (F.G.); (A.S.); (J.S.); (T.B.); (J.W.)
| | - Johannes Wiegand
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, 04103 Leipzig, Germany; (T.H.); (M.H.); (J.F.); (J.N.); (A.B.); (F.G.); (A.S.); (J.S.); (T.B.); (J.W.)
| | - Florian van Bömmel
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, 04103 Leipzig, Germany; (T.H.); (M.H.); (J.F.); (J.N.); (A.B.); (F.G.); (A.S.); (J.S.); (T.B.); (J.W.)
| |
Collapse
|
32
|
Elazar M, Glenn JS. Combination of Novel Therapies for HDV. Viruses 2022; 14:v14020268. [PMID: 35215860 PMCID: PMC8877160 DOI: 10.3390/v14020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment options for HDV have been limited to interferon alfa-based therapies with its poor efficacy to side effects ratio. Several novel therapies have now advanced into the clinic. As they each have a different mechanism of action, there is the potential for combination therapy. Here we review how studying the HDV life cycle has led to the development of these novel therapies, the key developments leading to, and the details of, the first combination study of novel anti-HDV therapies, and suggest what additional combinations of novel therapies can be anticipated as we enter this exciting new area of HDV treatments.
Collapse
Affiliation(s)
- Menashe Elazar
- Division of Gastroenterology and Hepatology, Department of Medicine-Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Jeffrey S. Glenn
- Division of Gastroenterology and Hepatology, Department of Medicine-Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Palo Alto Veterans Administration, Palo Alto, CA 94305, USA
- Correspondence:
| |
Collapse
|
33
|
Verrier ER, Salvetti A, Pons C, Michelet M, Rivoire M, Baumert TF, Durantel D, Lucifora J. Loss of hepatitis D virus infectivity upon farnesyl transferase inhibitor treatment associates with increasing RNA editing rates revealed by a new RT-ddPCR method. Antiviral Res 2022; 198:105250. [DOI: 10.1016/j.antiviral.2022.105250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/05/2023]
|
34
|
Roggenbach I, Chi X, Lempp FA, Qu B, Walter L, Wu R, Gao X, Schnitzler P, Ding Y, Urban S, Niu J. HDV Seroprevalence in HBsAg-Positive Patients in China Occurs in Hotspots and Is Not Associated with HCV Mono-Infection. Viruses 2021; 13:1799. [PMID: 34578380 PMCID: PMC8473203 DOI: 10.3390/v13091799] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022] Open
Abstract
HDV infection causes severe liver disease, the global health burden of which may be underestimated due to limited epidemiological data. HDV depends on HBV for infection, but recent studies indicated that dissemination can also be supported by other helper viruses such as HCV. We used a rapid point-of-care test and an ELISA to retrospectively test for antibodies against the Hepatitis Delta antigen (anti-HDV-Ab) in 4103 HBsAg-positive and 1661 HBsAg-negative, anti-HCV-positive sera from China and Germany. We found that the HDV seroprevalence in HBsAg-positive patients in China is limited to geographic hotspots (Inner Mongolia: 35/251, 13.9%; Xinjiang: 7/180, 3.9%) and high-risk intravenous drug users (HBV mono-infected: 23/247, 9.3%; HBV-HCV co-infected: 34/107, 31.8%), while none of the 2634 HBsAg carriers from other metropolitan regions were anti-HDV-Ab-positive. In Germany, we recorded an HDV seroprevalence of 5.3% in a university hospital environment. In a cohort of HBsAg-negative, anti-HCV-positive patients that were not exposed to HBV before (anti-HBc-negative), HDV was not associated with HCV mono-infection (Chinese high-risk cohort: 0/365, 0.0%; German mixed cohort: 0/263, 0.0%). However, 21/1033 (2.0%) high-risk HCV patients in China with markers of a previously cleared HBV infection (anti-HBc-positive) were positive for anti-HDV-Ab, with two of them being positive for both HDV and HCV RNA but negative for HBV DNA. The absence of anti-HDV-Ab in HCV mono-infected patients shows that HCV cannot promote HDV transmission in humans.
Collapse
Affiliation(s)
- Imme Roggenbach
- Department of Hepatology, First Hospital of Jilin University, Changchun 130021, China; (I.R.); (X.C.); (R.W.); (X.G.)
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.A.L.); (B.Q.); (L.W.)
| | - Xiumei Chi
- Department of Hepatology, First Hospital of Jilin University, Changchun 130021, China; (I.R.); (X.C.); (R.W.); (X.G.)
- Phase I Clinical Trials Unit, First Hospital of Jilin University, Changchun 130021, China;
| | - Florian A. Lempp
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.A.L.); (B.Q.); (L.W.)
| | - Bingqian Qu
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.A.L.); (B.Q.); (L.W.)
| | - Lisa Walter
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.A.L.); (B.Q.); (L.W.)
| | - Ruihong Wu
- Department of Hepatology, First Hospital of Jilin University, Changchun 130021, China; (I.R.); (X.C.); (R.W.); (X.G.)
| | - Xiuzhu Gao
- Department of Hepatology, First Hospital of Jilin University, Changchun 130021, China; (I.R.); (X.C.); (R.W.); (X.G.)
| | - Paul Schnitzler
- Department of Infectious Diseases, Virology, University Hospital, 69120 Heidelberg, Germany;
| | - Yanhua Ding
- Phase I Clinical Trials Unit, First Hospital of Jilin University, Changchun 130021, China;
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.A.L.); (B.Q.); (L.W.)
| | - Junqi Niu
- Department of Hepatology, First Hospital of Jilin University, Changchun 130021, China; (I.R.); (X.C.); (R.W.); (X.G.)
| |
Collapse
|
35
|
Zuccaro V, Asperges E, Colaneri M, Marvulli LN, Bruno R. HBV and HDV: New Treatments on the Horizon. J Clin Med 2021; 10:jcm10184054. [PMID: 34575165 PMCID: PMC8471459 DOI: 10.3390/jcm10184054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Despite the accumulating knowledge, chronic hepatitis B (CHB) and HDV infection represent a global health problem, and there are still several critical issues, which frequently remain uncovered. In this paper, we provided an overview of the current therapeutic options and summarized the investigational therapies in the pipeline. Furthermore, we discussed some critical issues such as a “functional cure” approach, the futility of long-term NA therapy and the relevance of understanding drug actions and safety of antivirals, especially in special populations.
Collapse
Affiliation(s)
- Valentina Zuccaro
- U.O.C. Malattie Infettive I Fondazione IRCCS Policlinico San Matteo–Università di Pavia, 27100 Pavia, Italy; (E.A.); (M.C.); (L.N.M.); (R.B.)
- Correspondence: ; Tel.: +39-0382502660
| | - Erika Asperges
- U.O.C. Malattie Infettive I Fondazione IRCCS Policlinico San Matteo–Università di Pavia, 27100 Pavia, Italy; (E.A.); (M.C.); (L.N.M.); (R.B.)
| | - Marta Colaneri
- U.O.C. Malattie Infettive I Fondazione IRCCS Policlinico San Matteo–Università di Pavia, 27100 Pavia, Italy; (E.A.); (M.C.); (L.N.M.); (R.B.)
| | - Lea Nadia Marvulli
- U.O.C. Malattie Infettive I Fondazione IRCCS Policlinico San Matteo–Università di Pavia, 27100 Pavia, Italy; (E.A.); (M.C.); (L.N.M.); (R.B.)
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche–Università di Pavia, 27100 Pavia, Italy
| | - Raffaele Bruno
- U.O.C. Malattie Infettive I Fondazione IRCCS Policlinico San Matteo–Università di Pavia, 27100 Pavia, Italy; (E.A.); (M.C.); (L.N.M.); (R.B.)
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche–Università di Pavia, 27100 Pavia, Italy
| |
Collapse
|
36
|
Urban S, Neumann-Haefelin C, Lampertico P. Hepatitis D virus in 2021: virology, immunology and new treatment approaches for a difficult-to-treat disease. Gut 2021; 70:1782-1794. [PMID: 34103404 PMCID: PMC8355886 DOI: 10.1136/gutjnl-2020-323888] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Approximately 5% of individuals infected with hepatitis B virus (HBV) are coinfected with hepatitis D virus (HDV). Chronic HBV/HDV coinfection is associated with an unfavourable outcome, with many patients developing liver cirrhosis, liver failure and eventually hepatocellular carcinoma within 5-10 years. The identification of the HBV/HDV receptor and the development of novel in vitro and animal infection models allowed a more detailed study of the HDV life cycle in recent years, facilitating the development of specific antiviral drugs. The characterisation of HDV-specific CD4+ and CD8+T cell epitopes in untreated and treated patients also permitted a more precise understanding of HDV immunobiology and possibly paves the way for immunotherapeutic strategies to support upcoming specific therapies targeting viral or host factors. Pegylated interferon-α has been used for treating HDV patients for the last 30 years with only limited sustained responses. Here we describe novel treatment options with regard to their mode of action and their clinical effectiveness. Of those, the entry-inhibitor bulevirtide (formerly known as myrcludex B) received conditional marketing authorisation in the European Union (EU) in 2020 (Hepcludex). One additional drug, the prenylation inhibitor lonafarnib, is currently under investigation in phase III clinical trials. Other treatment strategies aim at targeting hepatitis B surface antigen, including the nucleic acid polymer REP2139Ca. These recent advances in HDV virology, immunology and treatment are important steps to make HDV a less difficult-to-treat virus and will be discussed.
Collapse
Affiliation(s)
- Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany,German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,CRC “A. M. and A. Migliavacca” Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
37
|
Heuschkel MJ, Baumert TF, Verrier ER. Cell Culture Models for the Study of Hepatitis D Virus Entry and Infection. Viruses 2021; 13:v13081532. [PMID: 34452397 PMCID: PMC8402901 DOI: 10.3390/v13081532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic hepatitis D is one of the most severe and aggressive forms of chronic viral hepatitis with a high risk of developing hepatocellular carcinoma (HCC). It results from the co-infection of the liver with the hepatitis B virus (HBV) and its satellite, the hepatitis D virus (HDV). Although current therapies can control HBV infection, no treatment that efficiently eliminates HDV is available and novel therapeutic strategies are needed. Although the HDV cycle is well described, the lack of simple experimental models has restricted the study of host–virus interactions, even if they represent relevant therapeutic targets. In the last few years, the discovery of the sodium taurocholate co-transporting polypeptide (NTCP) as a key cellular entry factor for HBV and HDV has allowed the development of new cell culture models susceptible to HBV and HDV infection. In this review, we summarize the main in vitro model systems used for the study of HDV entry and infection, discuss their benefits and limitations and highlight perspectives for future developments.
Collapse
Affiliation(s)
- Margaux J. Heuschkel
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (M.J.H.); (T.F.B.)
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (M.J.H.); (T.F.B.)
- Institut Hospitalo-Universitaire, Pôle Hépato-Digestif, Nouvel Hôpital Civil, 1 Place de L’Hôpital, 67000 Strasbourg, France
| | - Eloi R. Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (M.J.H.); (T.F.B.)
- Correspondence: ; Tel.: +33-3-68-85-37-06
| |
Collapse
|
38
|
Wang W, Lempp FA, Schlund F, Walter L, Decker CC, Zhang Z, Ni Y, Urban S. Assembly and infection efficacy of hepatitis B virus surface protein exchanges in 8 hepatitis D virus genotype isolates. J Hepatol 2021; 75:311-323. [PMID: 33845061 DOI: 10.1016/j.jhep.2021.03.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Chronic HDV infections cause the most severe form of viral hepatitis. HDV requires HBV envelope proteins for hepatocyte entry, particle assembly and release. Eight HDV and 8 HBV genotypes have been identified. However, there are limited data on the replication competence of different genotypes and the effect that different HBV envelopes have on virion assembly and infectivity. METHODS We subcloned complementary DNAs (cDNAs) of all HDV and HBV genotypes and systematically studied HDV replication, assembly and infectivity using northern blot, western blot, reverse-transcription quantitative PCR, and in-cell ELISA. RESULTS The 8 HDV cDNA clones initiated HDV replication with noticeable differences regarding replication efficacy. The 8 HBV-HBsAg-encoding constructs all supported secretion of subviral particles, however variations in envelope protein stoichiometry and secretion efficacy were observed. Co-transfection of all HDV/HBV combinations supported particle assembly, however, the respective pseudo-typed HDVs differed with respect to assembly kinetics. The most productive combinations did not correlate with the natural geographic distribution, arguing against an evolutionary adaptation of HDV ribonucleoprotein complexes to HBV envelopes. All HDVs elicited robust and comparable innate immune responses. HBV envelope-dependent differences in the activity of the EMA-approved entry inhibitor bulevirtide were observed, however efficient inhibition could be achieved at therapeutically applied doses. Lonafarnib also showed pan-genotypic activity. CONCLUSIONS HDVs from different genotypes replicate with variable efficacies. Variations in HDV genomes and HBV envelope proteins are both major determinants of HDV egress and entry efficacy, and consequently assembly inhibition by lonafarnib or entry inhibition by bulevirtide. These differences possibly influence HDV pathogenicity, immune responses and the efficacy of novel drug regimens. LAY SUMMARY HDV requires the envelope protein of HBV for assembly and to infect human cells. We investigated the ability of different HDV genotypes to infect cells and replicate. We also assessed the effect that envelope proteins from different HBV genotypes had on HDV infectivity and replication. Herein, we confirmed that genotypic differences in HDV and HBV envelope proteins are major determinants of HDV assembly, de novo cell entry and consequently the efficacy of novel antivirals.
Collapse
Affiliation(s)
- Wenshi Wang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Franziska Schlund
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lisa Walter
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Charlotte C Decker
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
39
|
Khoshdel-Rad N, Zahmatkesh E, Bikmulina P, Peshkova M, Kosheleva N, Bezrukov EA, Sukhanov RB, Solovieva A, Shpichka A, Timashev P, Vosough M. Modeling Hepatotropic Viral Infections: Cells vs. Animals. Cells 2021; 10:1726. [PMID: 34359899 PMCID: PMC8305759 DOI: 10.3390/cells10071726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The lack of an appropriate platform for a better understanding of the molecular basis of hepatitis viruses and the absence of reliable models to identify novel therapeutic agents for a targeted treatment are the two major obstacles for launching efficient clinical protocols in different types of viral hepatitis. Viruses are obligate intracellular parasites, and the development of model systems for efficient viral replication is necessary for basic and applied studies. Viral hepatitis is a major health issue and a leading cause of morbidity and mortality. Despite the extensive efforts that have been made on fundamental and translational research, traditional models are not effective in representing this viral infection in a laboratory. In this review, we discuss in vitro cell-based models and in vivo animal models, with their strengths and weaknesses. In addition, the most important findings that have been retrieved from each model are described.
Collapse
Affiliation(s)
- Niloofar Khoshdel-Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Ensieh Zahmatkesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Nastasia Kosheleva
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- FSBSI ‘Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Evgeny A. Bezrukov
- Department of Urology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.B.); (R.B.S.)
| | - Roman B. Sukhanov
- Department of Urology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.B.); (R.B.S.)
| | - Anna Solovieva
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| |
Collapse
|
40
|
Zhang Z, Urban S. New insights into HDV persistence: The role of interferon response and implications for upcoming novel therapies. J Hepatol 2021; 74:686-699. [PMID: 33276031 DOI: 10.1016/j.jhep.2020.11.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/12/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis D (CHD), a global health problem, manifests as the most severe form of viral hepatitis. The causative agent, HDV, is the smallest known human virus; it replicates its circular single-stranded RNA genome in the nucleus of hepatocytes. HDV requires HBV-encoded envelope proteins for dissemination and de novo cell entry. However, HDV can also spread through cell division. Following entry into hepatocytes, replicative intermediates of HDV RNA are sensed by the pattern recognition receptor MDA5 (melanoma differentiation antigen 5) resulting in interferon (IFN)-β/λ induction. This IFN response strongly suppresses cell division-mediated spread of HDV genomes, however, it only marginally affects HDV RNA replication in already infected, resting hepatocytes. Monotherapy with IFN-α/λ shows efficacy but rarely results in HDV clearance. Recent molecular insights into key determinants of HDV persistence and the accelerated development of specifically acting antivirals that interfere with the replication cycle have revealed promising new therapeutic perspectives. In this review, we briefly summarise our knowledge on replication/persistence of HDV, the newly discovered HDV-like agents, and the interplay of HDV with the IFN response and its consequences for persistence. Finally, we discuss the possible role of IFNs in combination with upcoming therapies aimed at HDV cure.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany.
| |
Collapse
|
41
|
Bove G, Mehnert AK, Dao Thi VL. iPSCs for modeling hepatotropic pathogen infections. IPSCS FOR STUDYING INFECTIOUS DISEASES 2021:149-213. [DOI: 10.1016/b978-0-12-823808-0.00013-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
42
|
Zhang Z, Urban S. Interplay between Hepatitis D Virus and the Interferon Response. Viruses 2020; 12:v12111334. [PMID: 33233762 PMCID: PMC7699955 DOI: 10.3390/v12111334] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis D (CHD) is the most severe form of viral hepatitis, with rapid progression of liver-related diseases and high rates of development of hepatocellular carcinoma. The causative agent, hepatitis D virus (HDV), contains a small (approximately 1.7 kb) highly self-pairing single-strand circular RNA genome that assembles with the HDV antigen to form a ribonucleoprotein (RNP) complex. HDV depends on hepatitis B virus (HBV) envelope proteins for envelopment and de novo hepatocyte entry; however, its intracellular RNA replication is autonomous. In addition, HDV can amplify HBV independently through cell division. Cellular innate immune responses, mainly interferon (IFN) response, are crucial for controlling invading viruses, while viruses counteract these responses to favor their propagation. In contrast to HBV, HDV activates profound IFN response through the melanoma differentiation antigen 5 (MDA5) pathway. This cellular response efficiently suppresses cell-division-mediated HDV spread and, to some extent, early stages of HDV de novo infection, but only marginally impairs RNA replication in resting hepatocytes. In this review, we summarize the current knowledge on HDV structure, replication, and persistence and subsequently focus on the interplay between HDV and IFN response, including IFN activation, sensing, antiviral effects, and viral countermeasures. Finally, we discuss crosstalk with HBV.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-564-902
| |
Collapse
|
43
|
Ni Y, Zhang Z, Engelskircher L, Verch G, Tu T, Lempp FA, Urban S. Generation and characterization of a stable cell line persistently replicating and secreting the human hepatitis delta virus. Sci Rep 2019; 9:10021. [PMID: 31292511 PMCID: PMC6620269 DOI: 10.1038/s41598-019-46493-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/25/2019] [Indexed: 02/08/2023] Open
Abstract
Human hepatitis delta virus (HDV) causes the most severe form of viral hepatitis. Approximately 15-25 million people are chronically infected with HDV. As a satellite virus of the human hepatitis B virus (HBV), HDV uses the HBV-encoded envelope proteins for egress from and de novo entry into hepatocytes. So far, in vitro production of HDV particles is restricted to co-transfection of cells with HDV/HBV encoding cDNAs. This approach has several limitations. In this study, we established HuH7-END cells, which continuously secrete infectious HDV virions. The cell line was generated through stepwise stable integration of the cDNA of the HDV antigenome, the genes for the HBV envelope proteins and the HBV/HDV receptor NTCP. We found that HuH7-END cells release infectious HDV particles up to 400 million copies/milliliter and support virus spread to co-cultured cells. Due to the expression of NTCP, HuH7-END cells are also susceptible to de novo HDV entry. Virus production is stable for >16 passages and can be scaled up for preparation of large HDV virus stocks. Finally, HuH7-END cells are suitable for screening of antiviral drugs targeting HDV replication. In summary, the HuH7-END cell line provides a novel tool to study HDV replication in vitro.
Collapse
Affiliation(s)
- Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, TTU Hepatitis, Heidelberg, Germany
| | - Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lisa Engelskircher
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg Verch
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Tu
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, TTU Hepatitis, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany.
- German Center for Infection Research (DZIF), partner site Heidelberg, TTU Hepatitis, Heidelberg, Germany.
| |
Collapse
|
44
|
Nkongolo S, Nußbaum L, Lempp FA, Wodrich H, Urban S, Ni Y. The retinoic acid receptor (RAR) α-specific agonist Am80 (tamibarotene) and other RAR agonists potently inhibit hepatitis B virus transcription from cccDNA. Antiviral Res 2019; 168:146-155. [PMID: 31018112 DOI: 10.1016/j.antiviral.2019.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
Chronic infection with the human Hepatitis B virus (HBV) is a major global health problem. Hepatitis D virus (HDV) is a satellite of HBV that uses HBV envelope proteins for cell egress and entry. Using infection systems encoding the HBV/HDV receptor human sodium taurocholate co-transporting polypeptide (NTCP), we screened 1181 FDA-approved drugs applying markers for interference for HBV and HDV infection. As one primary hit we identified Acitretin, a retinoid, as an inhibitor of HBV replication and HDV release. Based on this, other retinoic acid receptor (RAR) agonists with different specificities were found to interfere with HBV replication, verifying that the retinoic acid receptor pathway regulates replication. Of the eight agonists investigated, RARα-specific agonist Am80 (tamibarotene) was most active. Am80 reduced secretion of HBeAg and HBsAg with IC50s < 10 nM in differentiated HepaRG-NTCP cells. Similar effects were observed in primary human hepatocytes. In HepG2-NTCP cells, profound Am80-mediated inhibition required prolonged treatment of up to 35 days. Am80 treatment of cells with an established HBV cccDNA pool resulted in a reduction of secreted HBsAg and HBeAg, which correlated with reduced intracellular viral RNA levels, but not cccDNA copy numbers. The effect lasted for >12 days after removal of the drug. HBV genotypes B, D, and E were equally inhibited. By contrast, Am80 did not affect HBV replication in transfected cells or HepG2.2.15 cells, which carry an integrated HBV genome. In conclusion, our results indicate a persistent inhibition of HBV transcription by Am80, which might be used for drug repositioning.
Collapse
Affiliation(s)
- Shirin Nkongolo
- University Hospital Heidelberg (Germany), Center for Infectious Diseases, Molecular Virology, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany.
| | - Lea Nußbaum
- University Hospital Heidelberg (Germany), Center for Infectious Diseases, Molecular Virology, Germany.
| | - Florian A Lempp
- University Hospital Heidelberg (Germany), Center for Infectious Diseases, Molecular Virology, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany.
| | - Harald Wodrich
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, University of Bordeaux, France.
| | - Stephan Urban
- University Hospital Heidelberg (Germany), Center for Infectious Diseases, Molecular Virology, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany.
| | - Yi Ni
- University Hospital Heidelberg (Germany), Center for Infectious Diseases, Molecular Virology, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany.
| |
Collapse
|