1
|
Ruiz Rosquete M, Gonzalez J, Wertz K, Gonzalez N, Baez M, Wang L, Zhang L, Patil S, Funaro L, Busch W. ClearDepth: a simple, robust, and low-cost method to assess root depth in soil. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17177. [PMID: 39645605 PMCID: PMC11711945 DOI: 10.1111/tpj.17177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
Root depth is a major determinant of plant performance during drought and a key trait for strategies to improve soil carbon sequestration to mitigate climate change. While the model Arabidopsis thaliana offers numerous advantages for studies of root system architecture and root depth, its small and fragile roots severely limit the use of the methods and techniques currently available for such studies in soils. To overcome this, we have developed ClearDepth, a conceptually simple, non-destructive, sensitive, and low-cost method to estimate the root depth of Arabidopsis in relatively small pots that are amenable to mid- and large-scale studies. In our method, the root system develops naturally inside of the soil, without considerable space constraints. The ClearDepth parameter wall root shallowness (WRS) quantifies the shallowness of the root system by measuring the depth of roots that reach the transparent walls of clear pots. We show that WRS is a robust and sensitive parameter that distinguishes deep root systems from shallower ones while also capturing relatively smaller differences in root depth caused by the influence of an environmental factor. In addition, we leveraged ClearDepth to study the relation between lateral root angles measured in non-soil systems and root depth in soil. We found that Arabidopsis genotypes characterized by steep lateral roots in transparent growth media produce deeper root systems in the ClearDepth pots. Finally, we show that ClearDepth can also be used to study root depth in crop species like rice.
Collapse
Affiliation(s)
- Michel Ruiz Rosquete
- Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaCalifornia92037USA
| | - Juan Gonzalez
- Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaCalifornia92037USA
| | - Kristen Wertz
- Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaCalifornia92037USA
| | - Natalie Gonzalez
- Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaCalifornia92037USA
| | - Melissa Baez
- Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaCalifornia92037USA
| | - Lin Wang
- Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaCalifornia92037USA
| | - Ling Zhang
- Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaCalifornia92037USA
| | - Suyash Patil
- Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaCalifornia92037USA
| | - Lucas Funaro
- Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaCalifornia92037USA
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaCalifornia92037USA
| |
Collapse
|
2
|
Zhang Y, Wu X, Wang X, Dai M, Peng Y. Crop root system architecture in drought response. J Genet Genomics 2025; 52:4-13. [PMID: 38723744 DOI: 10.1016/j.jgg.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 07/27/2024]
Abstract
Drought is a natural disaster that profoundly impacts on global agricultural production, significantly reduces crop yields, and thereby poses a severe threat to worldwide food security. Addressing the challenge of effectively improving crop drought resistance (DR) to mitigate yield loss under drought conditions is a global issue. An optimal root system architecture (RSA) plays a pivotal role in enhancing the capacity of crops to efficiently uptake water and nutrients, which consequently strengthens their resilience against environmental stresses. In this review, we discuss the compositions and roles of crop RSA and summarize the most recent developments in augmenting drought tolerance in crops by manipulating RSA-related genes. Based on the current research, we propose the potential optimal RSA configuration that could be helpful in enhancing crop DR. Lastly, we discuss the existing challenges and future directions for breeding crops with enhanced DR capabilities through genetic improvements targeting RSA.
Collapse
Affiliation(s)
- Yanjun Zhang
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu 730070, China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China; Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China; Key Laboratory of Crop Gene Resources and Germplasm Innovation in Northwest Cold and Arid Regions, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu 730070, China
| | - Xi Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xingrong Wang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China; Key Laboratory of Crop Gene Resources and Germplasm Innovation in Northwest Cold and Arid Regions, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu 730070, China
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| | - Yunling Peng
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu 730070, China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
3
|
Renziehausen T, Chaudhury R, Hartman S, Mustroph A, Schmidt-Schippers RR. A mechanistic integration of hypoxia signaling with energy, redox, and hormonal cues. PLANT PHYSIOLOGY 2024; 197:kiae596. [PMID: 39530170 DOI: 10.1093/plphys/kiae596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Oxygen deficiency (hypoxia) occurs naturally in many developing plant tissues but can become a major threat during acute flooding stress. Consequently, plants as aerobic organisms must rapidly acclimate to hypoxia and the associated energy crisis to ensure cellular and ultimately organismal survival. In plants, oxygen sensing is tightly linked with oxygen-controlled protein stability of group VII ETHYLENE-RESPONSE FACTORs (ERFVII), which, when stabilized under hypoxia, act as key transcriptional regulators of hypoxia-responsive genes (HRGs). Multiple signaling pathways feed into hypoxia signaling to fine-tune cellular decision-making under stress. First, ATP shortage upon hypoxia directly affects the energy status and adjusts anaerobic metabolism. Secondly, altered redox homeostasis leads to reactive oxygen and nitrogen species (ROS and RNS) accumulation, evoking signaling and oxidative stress acclimation. Finally, the phytohormone ethylene promotes hypoxia signaling to improve acute stress acclimation, while hypoxia signaling in turn can alter ethylene, auxin, abscisic acid, salicylic acid, and jasmonate signaling to guide development and stress responses. In this Update, we summarize the current knowledge on how energy, redox, and hormone signaling pathways are induced under hypoxia and subsequently integrated at the molecular level to ensure stress-tailored cellular responses. We show that some HRGs are responsive to changes in redox, energy, and ethylene independently of the oxygen status, and we propose an updated HRG list that is more representative for hypoxia marker gene expression. We discuss the synergistic effects of hypoxia, energy, redox, and hormone signaling and their phenotypic consequences in the context of both environmental and developmental hypoxia.
Collapse
Affiliation(s)
- Tilo Renziehausen
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany
| | - Rim Chaudhury
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Sjon Hartman
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Angelika Mustroph
- Department of Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Romy R Schmidt-Schippers
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany
| |
Collapse
|
4
|
Luschnig C, Friml J. Over 25 years of decrypting PIN-mediated plant development. Nat Commun 2024; 15:9904. [PMID: 39548100 PMCID: PMC11567971 DOI: 10.1038/s41467-024-54240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Identification of PIN exporters for auxin, the major coordinative signal in plants, some 25 years ago, signifies a landmark in our understanding of plant-specific mechanisms underlying development and adaptation. Auxin is directionally transported throughout the plant body; a unique feature already envisioned by Darwin and solidified by PINs' discovery and characterization. The PIN-based auxin distribution network with its complex regulations of PIN expression, localization and activity turned out to underlie a remarkable multitude of developmental processes and represents means to integrate endogenous and environmental signals. Given the recent anniversary, we here summarize past and current developments in this exciting field.
Collapse
Affiliation(s)
- Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Wien, Austria.
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
5
|
Yamoune A, Zdarska M, Depaepe T, Rudolfova A, Skalak J, Berendzen KW, Mira-Rodado V, Fitz M, Pekarova B, Nicolas Mala KL, Tarr P, Spackova E, Tomovicova L, Parizkova B, Franczyk A, Kovacova I, Dolgikh V, Zemlyanskaya E, Pernisova M, Novak O, Meyerowitz E, Harter K, Van Der Straeten D, Hejatko J. Cytokinins regulate spatially specific ethylene production to control root growth in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:101013. [PMID: 38961625 PMCID: PMC11589326 DOI: 10.1016/j.xplc.2024.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Two principal growth regulators, cytokinins and ethylene, are known to interact in the regulation of plant growth. However, information about the underlying molecular mechanism and positional specificity of cytokinin/ethylene crosstalk in the control of root growth is scarce. We have identified the spatial specificity of cytokinin-regulated root elongation and root apical meristem (RAM) size, both of which we demonstrate to be dependent on ethylene biosynthesis. Upregulation of the cytokinin biosynthetic gene ISOPENTENYLTRANSFERASE (IPT) in proximal and peripheral tissues leads to both root and RAM shortening. By contrast, IPT activation in distal and inner tissues reduces RAM size while leaving the root length comparable to that of mock-treated controls. We show that cytokinins regulate two steps specific to ethylene biosynthesis: production of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) by ACC SYNTHASEs (ACSs) and its conversion to ethylene by ACC OXIDASEs (ACOs). We describe cytokinin- and ethylene-specific regulation controlling the activity of ACSs and ACOs that are spatially discrete along both proximo/distal and radial root axes. Using direct ethylene measurements, we identify ACO2, ACO3, and ACO4 as being responsible for ethylene biosynthesis and ethylene-regulated root and RAM shortening in cytokinin-treated Arabidopsis. Direct interaction between ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2), a member of the multistep phosphorelay cascade, and the C-terminal portion of ETHYLENE INSENSITIVE 2 (EIN2-C), a key regulator of canonical ethylene signaling, is involved in the cytokinin-induced, ethylene-mediated control of ACO4. We propose tight cooperation between cytokinin and ethylene signaling in the spatially specific regulation of ethylene biosynthesis as a key aspect of the hormonal control of root growth.
Collapse
Affiliation(s)
- Amel Yamoune
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marketa Zdarska
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Gent, Belgium
| | - Anna Rudolfova
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Skalak
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic
| | | | | | - Michael Fitz
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Blanka Pekarova
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Katrina Leslie Nicolas Mala
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Paul Tarr
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Eliska Spackova
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic
| | - Lucia Tomovicova
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Barbora Parizkova
- Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Abigail Franczyk
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic
| | - Ingrid Kovacova
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic
| | - Vladislav Dolgikh
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena Zemlyanskaya
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Marketa Pernisova
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ondrej Novak
- Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Elliot Meyerowitz
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Klaus Harter
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | | | - Jan Hejatko
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
6
|
Wang X, Liu C, Li T, Zhou F, Sun H, Li F, Ma Y, Jia H, Zhang X, Shi W, Gong C, Li J. Hydrogen sulfide antagonizes cytokinin to change root system architecture through persulfidation of CKX2 in Arabidopsis. THE NEW PHYTOLOGIST 2024; 244:1377-1390. [PMID: 39279035 DOI: 10.1111/nph.20122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024]
Abstract
Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule, which has been shown to play an important role in plant growth and development by coupling with various phytohormones. However, the relationship between H2S and cytokinin (CTK) and the mechanisms by which H2S and CTK affect root growth remain poorly understood. Endogenous CTK was analyzed by UHPLC-ESI-MS/MS. Persulfidation of cytokinin oxidase/dehydrogenases (CKXs) was analyzed by mass spectrometry (MS). ckx2/CKX2wild-type (WT), OE CKX2 and ckx2/CKX2Cys(C)62alanine(A) transgenic lines were isolated with the ckx2 background. H2S is linked to CTK content by CKX2, which regulates root system architecture (RSA). Persulfidation at cysteine (Cys)62 residue of CKX2 enhances CKX2 activity, resulting in reduced CTK content. We utilized 35S-LCD/oasa1 transgenic lines to investigate the effect of endogenous H2S on RSA, indicating that H2S reduces the gravitropic set-point angle (GSA), shortens root hairs, and increases the number of lateral roots (LRs). The persulfidation of CKX2Cys62 changes the elongation of cells on the upper and lower flanks of LR elongation zone, confirming that Cys62 of CKX2 is the specificity target of H2S to regulate RSA in vivo. In conclusion, this study demonstrated that H2S negatively regulates CTK content and affects RSA by persulfidation of CKX2Cys62 in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xiuyu Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cuixia Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tian Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fangyu Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haotian Sun
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fali Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Xiaoyue Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Shi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunmei Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
7
|
Farooq MA, Zeeshan Ul Haq M, Zhang L, Wu S, Mushtaq N, Tahir H, Wang Z. Transcriptomic Insights into Salt Stress Response in Two Pepper Species: The Role of MAPK and Plant Hormone Signaling Pathways. Int J Mol Sci 2024; 25:9355. [PMID: 39273302 PMCID: PMC11394676 DOI: 10.3390/ijms25179355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Salt stress imposes significant plant limitations, altering their molecular, physiological, and biochemical functions. Pepper, a valuable herbaceous plant species of the Solanaceae family, is particularly susceptible to salt stress. This study aimed to elucidate the physiological and molecular mechanisms that contribute to the development of salt tolerance in two pepper species (Capsicum baccatum (moderate salt tolerant) and Capsicum chinense (salt sensitive)) through a transcriptome and weighted gene co-expression network analysis (WGCNA) approach to provide detailed insights. A continuous increase in malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels in C. chinense and higher activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) in C. baccatum indicated more tissue damage in C. chinense than in C. baccatum. In transcriptome analysis, we identified 39 DEGs related to salt stress. Meanwhile, KEGG pathway analysis revealed enrichment of MAPK and hormone signaling pathways, with six DEGs each. Through WGCNA, the ME.red module was identified as positively correlated. Moreover, 10 genes, A-ARR (CQW23_24856), CHIb (CQW23_04881), ERF1b (CQW23_08898), PP2C (CQW23_15893), ABI5 (CQW23_29948), P450 (CQW23_16085), Aldedh1 (CQW23_06433), GDA (CQW23_12764), Aldedh2 (CQW23_14182), and Aldedh3 (CQW23_11481), were validated by qRT-PCR. This study provides valuable insights into the genetic mechanisms underlying salt stress tolerance in pepper. It offers potential targets for future breeding efforts to enhance salt stress resilience in this crop.
Collapse
Affiliation(s)
- Muhammad Aamir Farooq
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Muhammad Zeeshan Ul Haq
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
| | - Liping Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shuhua Wu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Naveed Mushtaq
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Hassam Tahir
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Kirschner GK, Hochholdinger F, Salvi S, Bennett MJ, Huang G, Bhosale RA. Genetic regulation of the root angle in cereals. TRENDS IN PLANT SCIENCE 2024; 29:814-822. [PMID: 38402016 DOI: 10.1016/j.tplants.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/26/2024]
Abstract
The root angle plays a critical role in efficiently capturing nutrients and water from different soil layers. Steeper root angles enable access to mobile water and nitrogen from deeper soil layers, whereas shallow root angles facilitate the capture of immobile phosphorus from the topsoil. Thus, understanding the genetic regulation of the root angle is crucial for breeding crop varieties that can efficiently capture resources and enhance yield. Moreover, this understanding can contribute to developing varieties that effectively sequester carbon in deeper soil layers, supporting global carbon mitigation efforts. Here we review and consolidate significant recent discoveries regarding the molecular components controlling root angle in cereal crop species and outline the remaining research gaps in this field.
Collapse
Affiliation(s)
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| | - Silvio Salvi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, LE12 5RD Nottingham, UK
| | - Guoqiang Huang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Rahul A Bhosale
- School of Biosciences, University of Nottingham, LE12 5RD Nottingham, UK; International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India.
| |
Collapse
|
9
|
Fang L, Li M, Zhang J, Jia C, Qiang Y, He X, Liu T, Zhou Q, Luo D, Han Y, Li Z, Liu W, Yang Y, Liu J, Liu Z. Chromosome-level genome assembly of Pedicularis kansuensis illuminates genome evolution of facultative parasitic plant. Mol Ecol Resour 2024; 24:e13966. [PMID: 38695851 DOI: 10.1111/1755-0998.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/11/2023] [Accepted: 04/15/2024] [Indexed: 06/04/2024]
Abstract
Parasitic plants have a heterotrophic lifestyle, in which they withdraw all or part of their nutrients from their host through the haustorium. Despite the release of many draft genomes of parasitic plants, the genome evolution related to the parasitism feature of facultative parasites remains largely unknown. In this study, we present a high-quality chromosomal-level genome assembly for the facultative parasite Pedicularis kansuensis (Orobanchaceae), which invades both legume and grass host species in degraded grasslands on the Qinghai-Tibet Plateau. This species has the largest genome size compared with other parasitic species, and expansions of long terminal repeat retrotransposons accounting for 62.37% of the assembly greatly contributed to the genome size expansion of this species. A total of 42,782 genes were annotated, and the patterns of gene loss in P. kansuensis differed from other parasitic species. We also found many mobile mRNAs between P. kansuensis and one of its host species, but these mobile mRNAs could not compensate for the functional losses of missing genes in P. kansuensis. In addition, we identified nine horizontal gene transfer (HGT) events from rosids and monocots, as well as one single-gene duplication events from HGT genes, which differ distinctly from that of other parasitic species. Furthermore, we found evidence for HGT through transferring genomic fragments from phylogenetically remote host species. Taken together, these findings provide genomic insights into the evolution of facultative parasites and broaden our understanding of the diversified genome evolution in parasitic plants and the molecular mechanisms of plant parasitism.
Collapse
Affiliation(s)
- Longfa Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Mingyu Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jia Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chenglin Jia
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuqing Qiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaojuan He
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tao Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Qiang Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Dong Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuling Han
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhen Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenxian Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yongzhi Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Zhipeng Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Bai Q, Xuan S, Li W, Ali K, Zheng B, Ren H. Molecular mechanism of brassinosteroids involved in root gravity response based on transcriptome analysis. BMC PLANT BIOLOGY 2024; 24:485. [PMID: 38822229 PMCID: PMC11143716 DOI: 10.1186/s12870-024-05174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Brassinosteroids (BRs) are a class of phytohormones that regulate a wide range of developmental processes in plants. BR-associated mutants display impaired growth and response to developmental and environmental stimuli. RESULTS Here, we found that a BR-deficient mutant det2-1 displayed abnormal root gravitropic growth in Arabidopsis, which was not present in other BR mutants. To further elucidate the role of DET2 in gravity, we performed transcriptome sequencing and analysis of det2-1 and bri1-116, bri1 null mutant allele. Expression levels of auxin, gibberellin, cytokinin, and other related genes in the two mutants of det2-1 and bri1-116 were basically the same. However, we only found that a large number of JAZ (JASMONATE ZIM-domain) genes and jasmonate synthesis-related genes were upregulated in det2-1 mutant, suggesting increased levels of endogenous JA. CONCLUSIONS Our results also suggested that DET2 not only plays a role in BR synthesis but may also be involved in JA regulation. Our study provides a new insight into the molecular mechanism of BRs on the root gravitropism.
Collapse
Affiliation(s)
- Qunwei Bai
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi Province, 716000, PR China
| | - Shurong Xuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China
| | - Wenjuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China
| | - Khawar Ali
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China
| | - Bowen Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China
| | - Hongyan Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China.
| |
Collapse
|
11
|
Wexler Y, Schroeder JI, Shkolnik D. Hydrotropism mechanisms and their interplay with gravitropism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1732-1746. [PMID: 38394056 DOI: 10.1111/tpj.16683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Plants partly optimize their water recruitment from the growth medium by directing root growth toward a moisture source, a phenomenon termed hydrotropism. The default mechanism of downward growth, termed gravitropism, often functions to counteract hydrotropism when the water-potential gradient deviates from the gravity vector. This review addresses the identity of the root sites in which hydrotropism-regulating factors function to attenuate gravitropism and the interplay between these various factors. In this context, the function of hormones, including auxin, abscisic acid, and cytokinins, as well as secondary messengers, calcium ions, and reactive oxygen species in the conflict between these two opposing tropisms is discussed. We have assembled the available data on the effects of various chemicals and genetic backgrounds on both gravitropism and hydrotropism, to provide an up-to-date perspective on the interactions that dictate the orientation of root tip growth. We specify the relevant open questions for future research. Broadening our understanding of root mechanisms of water recruitment holds great potential for providing advanced approaches and technologies that can improve crop plant performance under less-than-optimal conditions, in light of predicted frequent and prolonged drought periods due to global climate change.
Collapse
Affiliation(s)
- Yonatan Wexler
- Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Julian I Schroeder
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, California, 92093-0116, USA
| | - Doron Shkolnik
- Faculty of Agriculture, Food and Environment, Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| |
Collapse
|
12
|
Chen M, Dai Y, Liao J, Wu H, Lv Q, Huang Y, Liu L, Feng Y, Lv H, Zhou B, Peng D. TARGET OF MONOPTEROS: key transcription factors orchestrating plant development and environmental response. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2214-2234. [PMID: 38195092 DOI: 10.1093/jxb/erae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Plants have an incredible ability to sustain root and vascular growth after initiation of the embryonic root and the specification of vascular tissue in early embryos. Microarray assays have revealed that a group of transcription factors, TARGET OF MONOPTEROS (TMO), are important for embryonic root initiation in Arabidopsis. Despite the discovery of their auxin responsiveness early on, their function and mode of action remained unknown for many years. The advent of genome editing has accelerated the study of TMO transcription factors, revealing novel functions for biological processes such as vascular development, root system architecture, and response to environmental cues. This review covers recent achievements in understanding the developmental function and the genetic mode of action of TMO transcription factors in Arabidopsis and other plant species. We highlight the transcriptional and post-transcriptional regulation of TMO transcription factors in relation to their function, mainly in Arabidopsis. Finally, we provide suggestions for further research and potential applications in plant genetic engineering.
Collapse
Affiliation(s)
- Min Chen
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yani Dai
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Jiamin Liao
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Huan Wu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Qiang Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Huang
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Lichang Liu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Feng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Hongxuan Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Bo Zhou
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, 410004, Changsha, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| | - Dan Peng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| |
Collapse
|
13
|
Salvalaio M, Sena G. Long-term root electrotropism reveals habituation and hysteresis. PLANT PHYSIOLOGY 2024; 194:2697-2708. [PMID: 38156361 PMCID: PMC10980514 DOI: 10.1093/plphys/kiad686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/30/2023]
Abstract
Plant roots sense many physical and chemical cues in soil, such as gravity, humidity, light, and chemical gradients, and respond by redirecting their growth toward or away from the source of the stimulus. This process is called tropism. While gravitropism is the tendency to follow the gravitational field downwards, electrotropism is the alignment of growth with external electric fields and the induced ionic currents. Although root tropisms are at the core of their ability to explore large volumes of soil in search of water and nutrients, the molecular and physical mechanisms underlying most of them remain poorly understood. We have previously provided a quantitative characterization of root electrotropism in Arabidopsis (Arabidopsis thaliana) primary roots exposed for 5 h to weak electric fields, showing that auxin asymmetric distribution is not necessary for root electrotropism but that cytokinin biosynthesis is. Here, we extend that study showing that long-term electrotropism is characterized by a complex behavior. We describe overshoot and habituation as key traits of long-term root electrotropism in Arabidopsis and provide quantitative data about the role of past exposures in the response to electric fields (hysteresis). On the molecular side, we show that cytokinin, although necessary for root electrotropism, is not asymmetrically distributed during the bending. Overall, the data presented here represent a step forward toward a better understanding of the complexity of root behavior and provide a quantitative platform for future studies on the molecular mechanisms of electrotropism.
Collapse
Affiliation(s)
| | - Giovanni Sena
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
14
|
He W, Truong HA, Zhang L, Cao M, Arakawa N, Xiao Y, Zhong K, Hou Y, Busch W. Identification of mebendazole as an ethylene signaling activator reveals a role of ethylene signaling in the regulation of lateral root angles. Cell Rep 2024; 43:113763. [PMID: 38358890 PMCID: PMC10949360 DOI: 10.1016/j.celrep.2024.113763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
The lateral root angle or gravitropic set-point angle (GSA) is an important trait for root system architecture (RSA) that determines the radial expansion of the root system. The GSA therefore plays a crucial role for the ability of plants to access nutrients and water in the soil. Only a few regulatory pathways and mechanisms that determine GSA are known. These mostly relate to auxin and cytokinin pathways. Here, we report the identification of a small molecule, mebendazole (MBZ), that modulates GSA in Arabidopsis thaliana roots and acts via the activation of ethylene signaling. MBZ directly acts on the serine/threonine protein kinase CTR1, which is a negative regulator of ethylene signaling. Our study not only shows that the ethylene signaling pathway is essential for GSA regulation but also identifies a small molecular modulator of RSA that acts downstream of ethylene receptors and that directly activates ethylene signaling.
Collapse
Affiliation(s)
- Wenrong He
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Hai An Truong
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ling Zhang
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Min Cao
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Neal Arakawa
- Environmental and Complex Analysis Laboratory (ECAL), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yao Xiao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kaizhen Zhong
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yingnan Hou
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA 92521, USA; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
15
|
Taleski M, Jin M, Chapman K, Taylor K, Winning C, Frank M, Imin N, Djordjevic MA. CEP hormones at the nexus of nutrient acquisition and allocation, root development, and plant-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:538-552. [PMID: 37946363 PMCID: PMC10773996 DOI: 10.1093/jxb/erad444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
A growing understanding is emerging of the roles of peptide hormones in local and long-distance signalling that coordinates plant growth and development as well as responses to the environment. C-TERMINALLY ENCODED PEPTIDE (CEP) signalling triggered by its interaction with CEP RECEPTOR 1 (CEPR1) is known to play roles in systemic nitrogen (N) demand signalling, legume nodulation, and root system architecture. Recent research provides further insight into how CEP signalling operates, which involves diverse downstream targets and interactions with other hormone pathways. Additionally, there is emerging evidence of CEP signalling playing roles in N allocation, root responses to carbon levels, the uptake of other soil nutrients such as phosphorus and sulfur, root responses to arbuscular mycorrhizal fungi, plant immunity, and reproductive development. These findings suggest that CEP signalling more broadly coordinates growth across the whole plant in response to diverse environmental cues. Moreover, CEP signalling and function appear to be conserved in angiosperms. We review recent advances in CEP biology with a focus on soil nutrient uptake, root system architecture and organogenesis, and roles in plant-microbe interactions. Furthermore, we address knowledge gaps and future directions in this research field.
Collapse
Affiliation(s)
- Michael Taleski
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Marvin Jin
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Kelly Chapman
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Katia Taylor
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Courtney Winning
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Nijat Imin
- School of Science, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| |
Collapse
|
16
|
Daniel K, Hartman S. How plant roots respond to waterlogging. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:511-525. [PMID: 37610936 DOI: 10.1093/jxb/erad332] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Plant submergence is a major abiotic stress that impairs plant performance. Under water, reduced gas diffusion exposes submerged plant cells to an environment that is enriched in gaseous ethylene and is limited in oxygen (O2) availability (hypoxia). The capacity for plant roots to avoid and/or sustain critical hypoxia damage is essential for plants to survive waterlogging. Plants use spatiotemporal ethylene and O2 dynamics as instrumental flooding signals to modulate potential adaptive root growth and hypoxia stress acclimation responses. However, how non-adapted plant species modulate root growth behaviour during actual waterlogged conditions to overcome flooding stress has hardly been investigated. Here we discuss how changes in the root growth rate, lateral root formation, density, and growth angle of non-flood adapted plant species (mainly Arabidopsis) could contribute to avoiding and enduring critical hypoxic conditions. In addition, we discuss current molecular understanding of how ethylene and hypoxia signalling control these adaptive root growth responses. We propose that future research would benefit from less artificial experimental designs to better understand how plant roots respond to and survive waterlogging. This acquired knowledge would be instrumental to guide targeted breeding of flood-tolerant crops with more resilient root systems.
Collapse
Affiliation(s)
- Kevin Daniel
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Sjon Hartman
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
17
|
Chapman K, Taleski M, Frank M, Djordjevic MA. C-TERMINALLY ENCODED PEPTIDE (CEP) and cytokinin hormone signaling intersect to promote shallow lateral root angles. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:631-641. [PMID: 37688302 DOI: 10.1093/jxb/erad353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/07/2023] [Indexed: 09/10/2023]
Abstract
Root system architecture (RSA) influences the acquisition of heterogeneously dispersed soil nutrients. Cytokinin and C-TERMINALLY ENCODED PEPTIDE (CEP) hormones affect RSA, in part by controlling the angle of lateral root (LR) growth. Both hormone pathways converge on CEP DOWNSTREAM 1 (CEPD1) and CEPD2 to control primary root growth; however, a role for CEPDs in controlling the growth angle of LRs is unknown. Using phenotyping combined with genetic and grafting approaches, we show that CEP hormone-mediated shallower LR growth requires cytokinin biosynthesis and perception in roots via ARABIDOPSIS HISTIDINE KINASE 2 (AHK2) and AHK3. Consistently, cytokinin biosynthesis and ahk2,3 mutants phenocopied the steeper root phenotype of cep receptor 1 (cepr1) mutants on agar plates, and CEPR1 was required for trans-Zeatin (tZ)-type cytokinin-mediated shallower LR growth. In addition, the cepd1,2 mutant was less sensitive to CEP and tZ, and showed basally steeper LRs on agar plates. Cytokinin and CEP pathway mutants were grown in rhizoboxes to define the role of these pathways in controlling RSA. Only cytokinin receptor mutants and cepd1,2 partially phenocopied the steeper-rooted phenotype of cepr1 mutants. These results show that CEP and cytokinin signaling intersect to promote shallower LR growth, but additional components contribute to the cepr1 phenotype in soil.
Collapse
Affiliation(s)
- Kelly Chapman
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Michael Taleski
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| |
Collapse
|
18
|
Sanchez-Corrionero A, Sánchez-Vicente I, Arteaga N, Manrique-Gil I, Gómez-Jiménez S, Torres-Quezada I, Albertos P, Lorenzo O. Fine-tuned nitric oxide and hormone interface in plant root development and regeneration. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6104-6118. [PMID: 36548145 PMCID: PMC10575706 DOI: 10.1093/jxb/erac508] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Plant root growth and developmental capacities reside in a few stem cells of the root apical meristem (RAM). Maintenance of these stem cells requires regenerative divisions of the initial stem cell niche (SCN) cells, self-maintenance, and proliferative divisions of the daughter cells. This ensures sufficient cell diversity to guarantee the development of complex root tissues in the plant. Damage in the root during growth involves the formation of a new post-embryonic root, a process known as regeneration. Post-embryonic root development and organogenesis processes include primary root development and SCN maintenance, plant regeneration, and the development of adventitious and lateral roots. These developmental processes require a fine-tuned balance between cell proliferation and maintenance. An important regulator during root development and regeneration is the gasotransmitter nitric oxide (NO). In this review we have sought to compile how NO regulates cell rate proliferation, cell differentiation, and quiescence of SCNs, usually through interaction with phytohormones, or other molecular mechanisms involved in cellular redox homeostasis. NO exerts a role on molecular components of the auxin and cytokinin signaling pathways in primary roots that affects cell proliferation and maintenance of the RAM. During root regeneration, a peak of auxin and cytokinin triggers specific molecular programs. Moreover, NO participates in adventitious root formation through its interaction with players of the brassinosteroid and cytokinin signaling cascade. Lately, NO has been implicated in root regeneration under hypoxia conditions by regulating stem cell specification through phytoglobins.
Collapse
Affiliation(s)
- Alvaro Sanchez-Corrionero
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Noelia Arteaga
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Isabel Manrique-Gil
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Sara Gómez-Jiménez
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Isabel Torres-Quezada
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Pablo Albertos
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| |
Collapse
|
19
|
Rahmati Ishka M, Julkowska M. Tapping into the plasticity of plant architecture for increased stress resilience. F1000Res 2023; 12:1257. [PMID: 38434638 PMCID: PMC10905174 DOI: 10.12688/f1000research.140649.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 03/05/2024] Open
Abstract
Plant architecture develops post-embryonically and emerges from a dialogue between the developmental signals and environmental cues. Length and branching of the vegetative and reproductive tissues were the focus of improvement of plant performance from the early days of plant breeding. Current breeding priorities are changing, as we need to prioritize plant productivity under increasingly challenging environmental conditions. While it has been widely recognized that plant architecture changes in response to the environment, its contribution to plant productivity in the changing climate remains to be fully explored. This review will summarize prior discoveries of genetic control of plant architecture traits and their effect on plant performance under environmental stress. We review new tools in phenotyping that will guide future discoveries of genes contributing to plant architecture, its plasticity, and its contributions to stress resilience. Subsequently, we provide a perspective into how integrating the study of new species, modern phenotyping techniques, and modeling can lead to discovering new genetic targets underlying the plasticity of plant architecture and stress resilience. Altogether, this review provides a new perspective on the plasticity of plant architecture and how it can be harnessed for increased performance under environmental stress.
Collapse
|
20
|
Roychoudhry S, Sageman-Furnas K, Wolverton C, Grones P, Tan S, Molnár G, De Angelis M, Goodman HL, Capstaff N, Lloyd JPB, Mullen J, Hangarter R, Friml J, Kepinski S. Antigravitropic PIN polarization maintains non-vertical growth in lateral roots. NATURE PLANTS 2023; 9:1500-1513. [PMID: 37666965 PMCID: PMC10505559 DOI: 10.1038/s41477-023-01478-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/04/2023] [Indexed: 09/06/2023]
Abstract
Lateral roots are typically maintained at non-vertical angles with respect to gravity. These gravitropic setpoint angles are intriguing because their maintenance requires that roots are able to effect growth response both with and against the gravity vector, a phenomenon previously attributed to gravitropism acting against an antigravitropic offset mechanism. Here we show how the components mediating gravitropism in the vertical primary root-PINs and phosphatases acting upon them-are reconfigured in their regulation such that lateral root growth at a range of angles can be maintained. We show that the ability of Arabidopsis lateral roots to bend both downward and upward requires the generation of auxin asymmetries and is driven by angle-dependent variation in downward gravitropic auxin flux acting against angle-independent upward, antigravitropic flux. Further, we demonstrate a symmetry in auxin distribution in lateral roots at gravitropic setpoint angle that can be traced back to a net, balanced polarization of PIN3 and PIN7 auxin transporters in the columella. These auxin fluxes are shifted by altering PIN protein phosphoregulation in the columella, either by introducing PIN3 phosphovariant versions or via manipulation of levels of the phosphatase subunit PP2A/RCN1. Finally, we show that auxin, in addition to driving lateral root directional growth, acts within the lateral root columella to induce more vertical growth by increasing RCN1 levels, causing a downward shift in PIN3 localization, thereby diminishing the magnitude of the upward, antigravitropic auxin flux.
Collapse
Affiliation(s)
| | - Katelyn Sageman-Furnas
- School of Biology, University of Leeds, Leeds, UK
- Department of Biology, Duke University, Durham, NC, USA
| | | | - Peter Grones
- Institute of Science and Technology, Vienna, Austria
- Umeå Plant Science Centre, Umeå, Sweden
| | - Shutang Tan
- Institute of Science and Technology, Vienna, Austria
| | - Gergely Molnár
- Institute of Science and Technology, Vienna, Austria
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | | | - Heather L Goodman
- School of Biology, University of Leeds, Leeds, UK
- Tropic Biosciences Ltd, Norwich Research Park Innovation Centre, Norwich, UK
| | - Nicola Capstaff
- School of Biology, University of Leeds, Leeds, UK
- Department of Science, Innovation and Technology, UK Government, London, UK
| | - James P B Lloyd
- University of Western Australia, Perth, Western Australia, Australia
| | - Jack Mullen
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Roger Hangarter
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Jiří Friml
- Institute of Science and Technology, Vienna, Austria
| | | |
Collapse
|
21
|
PIN phospho-regulation drives gravity-dependent non-vertical growth in Arabidopsis roots. NATURE PLANTS 2023; 9:1383-1384. [PMID: 37666964 DOI: 10.1038/s41477-023-01479-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
22
|
Yamazaki C, Yamazaki T, Kojima M, Takebayashi Y, Sakakibara H, Uheda E, Oka M, Kamada M, Shimazu T, Kasahara H, Sano H, Suzuki T, Higashibata A, Miyamoto K, Ueda J. Comprehensive analyses of plant hormones in etiolated pea and maize seedlings grown under microgravity conditions in space: Relevance to the International Space Station experiment "Auxin Transport". LIFE SCIENCES IN SPACE RESEARCH 2023; 36:138-146. [PMID: 36682823 DOI: 10.1016/j.lssr.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
Functional relationships between endogenous levels of plant hormones in the growth and development of shoots in etiolated Alaska pea and etiolated Golden Cross Bantam maize seedlings under different gravities were investigated in the "Auxin Transport" experiment aboard the International Space Station (ISS). Comprehensive analyses of 31 species of plant hormones of pea and maize seedlings grown under microgravity (μg) in space and 1 g conditions were conducted. Principal component analysis (PCA) and a multiple regression analysis with the dataset from the plant hormone analysis of the etiolated pea seedlings grown under μg and 1 g conditions in the presence and absence of 2,3,5-triiodobenzoic acid (TIBA) revealed endogenous levels of auxin correlated positively with bending and length of epicotyls. Endogenous cytokinins correlated negatively with them. These results suggest an interaction of auxin and cytokinins in automorphogenesis and growth inhibition of etiolated Alaska pea epicotyls grown under μg conditions in space. Less polar auxin transport with reduced endogenous levels of auxin increased endogenous levels of cytokinins, resulting in changing the growth direction of epicotyls and inhibiting growth. On the other hand, almost no close relationship between endogenous plant hormone levels and growth and development in etiolated maize seedlings grown was observed under μg conditions in space, as per Schulze et al. (1992). However, endogenous levels of IAA in the seedlings grown under μg conditions in space were significantly higher than those grown on Earth, similar to the cases of polar auxin transport already reported.
Collapse
Affiliation(s)
- Chiaki Yamazaki
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.
| | - Tomokazu Yamazaki
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.
| | - Mikiko Kojima
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science (CSRS), Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Yumiko Takebayashi
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science (CSRS), Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Hitoshi Sakakibara
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science (CSRS), Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Eiji Uheda
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Mariko Oka
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8553, Japan.
| | - Motoshi Kamada
- Future Development Division, Advanced Engineering Services Co., Ltd., 1-6-1 Takezono, Tsukuba, Ibaraki 305-0032, Japan.
| | - Toru Shimazu
- Technology and Research Promotion Department, Japan Space Forum, Shin-Otemachi Bldg. 7F, 2-2-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| | - Haruo Kasahara
- Utilization Engineering Department, Japan Manned Space System Corporation, Space Station Test Building, Tsukuba Space Center, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.
| | - Hiromi Sano
- Utilization Engineering Department, Japan Manned Space System Corporation, Space Station Test Building, Tsukuba Space Center, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.
| | - Tomomi Suzuki
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.
| | - Akira Higashibata
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.
| | - Kensuke Miyamoto
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Junichi Ueda
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
23
|
Boter M, Pozas J, Jarillo JA, Piñeiro M, Pernas M. Brassica napus Roots Use Different Strategies to Respond to Warm Temperatures. Int J Mol Sci 2023; 24:ijms24021143. [PMID: 36674684 PMCID: PMC9863162 DOI: 10.3390/ijms24021143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Elevated growth temperatures are negatively affecting crop productivity by increasing yield losses. The modulation of root traits associated with improved response to rising temperatures is a promising approach to generate new varieties better suited to face the environmental constraints caused by climate change. In this study, we identified several Brassica napus root traits altered in response to warm ambient temperatures. Different combinations of changes in specific root traits result in an extended and deeper root system. This overall root growth expansion facilitates root response by maximizing root-soil surface interaction and increasing roots' ability to explore extended soil areas. We associated these traits with coordinated cellular events, including changes in cell division and elongation rates that drive root growth increases triggered by warm temperatures. Comparative transcriptomic analysis revealed the main genetic determinants of these root system architecture (RSA) changes and uncovered the necessity of a tight regulation of the heat-shock stress response to adjusting root growth to warm temperatures. Our work provides a phenotypic, cellular, and genetic framework of root response to warming temperatures that will help to harness root response mechanisms for crop yield improvement under the future climatic scenario.
Collapse
|
24
|
Abbas M, Abid MA, Meng Z, Abbas M, Wang P, Lu C, Askari M, Akram U, Ye Y, Wei Y, Wang Y, Guo S, Liang C, Zhang R. Integrating advancements in root phenotyping and genome-wide association studies to open the root genetics gateway. PHYSIOLOGIA PLANTARUM 2022; 174:e13787. [PMID: 36169590 DOI: 10.1111/ppl.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Plant adaptation to challenging environmental conditions around the world has made root growth and development an important research area for plant breeders and scientists. Targeted manipulation of root system architecture (RSA) to increase water and nutrient use efficiency can minimize the adverse effects of climate change on crop production. However, phenotyping of RSA is a major bottleneck since the roots are hidden in the soil. Recently the development of 2- and 3D root imaging techniques combined with the genome-wide association studies (GWASs) have opened up new research tools to identify the genetic basis of RSA. These approaches provide a comprehensive understanding of the RSA, by accelerating the identification and characterization of genes involved in root growth and development. This review summarizes the latest developments in phenotyping techniques and GWAS for RSA, which are used to map important genes regulating various aspects of RSA under varying environmental conditions. Furthermore, we discussed about the state-of-the-art image analysis tools integrated with various phenotyping platforms for investigating and quantifying root traits with the highest phenotypic plasticity in both artificial and natural environments which were used for large scale association mapping studies, leading to the identification of RSA phenotypes and their underlying genetics with the greatest potential for RSA improvement. In addition, challenges in root phenotyping and GWAS are also highlighted, along with future research directions employing machine learning and pan-genomics approaches.
Collapse
Affiliation(s)
- Mubashir Abbas
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Ali Abid
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Peilin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Askari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Umar Akram
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulu Ye
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunxiao Wei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
GWAS and Transcriptome Analysis Reveal Key Genes Affecting Root Growth under Low Nitrogen Supply in Maize. Genes (Basel) 2022; 13:genes13091632. [PMID: 36140800 PMCID: PMC9498817 DOI: 10.3390/genes13091632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Nitrogen (N) is one of the most important factors affecting crop production. Root morphology exhibits a high degree of plasticity to nitrogen deficiency. However, the mechanisms underlying the root foraging response under low-N conditions remain poorly understood. In this study, we analyzed 213 maize inbred lines using hydroponic systems and regarding their natural variations in 22 root traits and 6 shoot traits under normal (2 mM nitrate) and low-N (0 mM nitrate) conditions. Substantial phenotypic variations were detected for all traits. N deficiency increased the root length and decreased the root diameter and shoot related traits. A total of 297 significant marker-trait associations were identified by a genome-wide association study involving different N levels and the N response value. A total of 51 candidate genes with amino acid variations in coding regions or differentially expressed under low nitrogen conditions were identified. Furthermore, a candidate gene ZmNAC36 was resequenced in all tested lines. A total of 38 single nucleotide polymorphisms and 12 insertions and deletions were significantly associated with lateral root length of primary root, primary root length between 0 and 0.5 mm in diameter, primary root surface area, and total length of primary root under a low-N condition. These findings help us to improve our understanding of the genetic mechanism of root plasticity to N deficiency, and the identified loci and candidate genes will be useful for the genetic improvement of maize tolerance cultivars to N deficiency.
Collapse
|
26
|
Xu Z, Wang R, Kong K, Begum N, Almakas A, Liu J, Li H, Liu B, Zhao T, Zhao T. An APETALA2/ethylene responsive factor transcription factor GmCRF4a regulates plant height and auxin biosynthesis in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:983650. [PMID: 36147224 PMCID: PMC9485679 DOI: 10.3389/fpls.2022.983650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 06/01/2023]
Abstract
Plant height is one of the key agronomic traits affecting soybean yield. The cytokinin response factors (CRFs), as a branch of the APETALA2/ethylene responsive factor (AP2/ERF) super gene family, have been reported to play important roles in regulating plant growth and development. However, their functions in soybean remain unknown. This study characterized a soybean CRF gene named GmCRF4a by comparing the performance of the homozygous Gmcrf4a-1 mutant, GmCRF4a overexpression (OX) and co-silencing (CS) lines. Phenotypic analysis showed that overexpression of GmCRF4a resulted in taller hypocotyls and epicotyls, more main stem nodes, and higher plant height. While down-regulation of GmCRF4a conferred shorter hypocotyls and epicotyls, as well as a reduction in plant height. The histological analysis results demonstrated that GmCRF4a promotes epicotyl elongation primarily by increasing cell length. Furthermore, GmCRF4a is required for the expression of GmYUCs genes to elevate endogenous auxin levels, which may subsequently enhance stem elongation. Taken together, these observations describe a novel regulatory mechanism in soybean, and provide the basis for elucidating the function of GmCRF4a in auxin biosynthesis pathway and plant heigh regulation in plants.
Collapse
Affiliation(s)
- Zhiyong Xu
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruikai Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Keke Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Aisha Almakas
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jun Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tao Zhao
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
LaRue T, Lindner H, Srinivas A, Exposito-Alonso M, Lobet G, Dinneny JR. Uncovering natural variation in root system architecture and growth dynamics using a robotics-assisted phenomics platform. eLife 2022; 11:e76968. [PMID: 36047575 PMCID: PMC9499532 DOI: 10.7554/elife.76968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/28/2022] [Indexed: 11/29/2022] Open
Abstract
The plant kingdom contains a stunning array of complex morphologies easily observed above-ground, but more challenging to visualize below-ground. Understanding the magnitude of diversity in root distribution within the soil, termed root system architecture (RSA), is fundamental in determining how this trait contributes to species adaptation in local environments. Roots are the interface between the soil environment and the shoot system and therefore play a key role in anchorage, resource uptake, and stress resilience. Previously, we presented the GLO-Roots (Growth and Luminescence Observatory for Roots) system to study the RSA of soil-grown Arabidopsis thaliana plants from germination to maturity (Rellán-Álvarez et al., 2015). In this study, we present the automation of GLO-Roots using robotics and the development of image analysis pipelines in order to examine the temporal dynamic regulation of RSA and the broader natural variation of RSA in Arabidopsis, over time. These datasets describe the developmental dynamics of two independent panels of accessions and reveal highly complex and polygenic RSA traits that show significant correlation with climate variables of the accessions' respective origins.
Collapse
Affiliation(s)
- Therese LaRue
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Heike Lindner
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
- Institute of Plant Sciences, University of BernBernSwitzerland
| | - Ankit Srinivas
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Moises Exposito-Alonso
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Guillaume Lobet
- UCLouvain, Faculty of BioengineeringLouvain-la-NeuveBelgium
- Forschungszentrum Jülich, Agrosphere InstituteJuelichGermany
| | - José R Dinneny
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
28
|
Shoaib M, Banerjee BP, Hayden M, Kant S. Roots' Drought Adaptive Traits in Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2022; 11:2256. [PMID: 36079644 PMCID: PMC9460784 DOI: 10.3390/plants11172256] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Drought is one of the biggest concerns in agriculture due to the projected reduction of global freshwater supply with a concurrent increase in global food demand. Roots can significantly contribute to improving drought adaptation and productivity. Plants increase water uptake by adjusting root architecture and cooperating with symbiotic soil microbes. Thus, emphasis has been given to root architectural responses and root-microbe relationships in drought-resilient crop development. However, root responses to drought adaptation are continuous and complex processes and involve additional root traits and interactions among themselves. This review comprehensively compiles and discusses several of these root traits such as structural, physiological, molecular, hydraulic, anatomical, and plasticity, which are important to consider together, with architectural changes, when developing drought resilient crop varieties. In addition, it describes the significance of root contribution in improving soil structure and water holding capacity and its implication on long-term resilience to drought. In addition, various drought adaptive root ideotypes of monocot and dicot crops are compared and proposed for given agroclimatic conditions. Overall, this review provides a broader perspective of understanding root structural, physiological, and molecular regulators, and describes the considerations for simultaneously integrating multiple traits for drought tolerance and crop improvement, under specific growing environments.
Collapse
Affiliation(s)
- Mirza Shoaib
- Agriculture Victoria, Grains Innovation Park, 110 Natimuk Road, Horsham, VIC 3400, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Melbourne, VIC 3083, Australia
| | - Bikram P. Banerjee
- Agriculture Victoria, Grains Innovation Park, 110 Natimuk Road, Horsham, VIC 3400, Australia
| | - Matthew Hayden
- School of Applied Systems Biology, La Trobe University, Bundoora, Melbourne, VIC 3083, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Melbourne, VIC 3083, Australia
| | - Surya Kant
- Agriculture Victoria, Grains Innovation Park, 110 Natimuk Road, Horsham, VIC 3400, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Melbourne, VIC 3083, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Melbourne, VIC 3083, Australia
| |
Collapse
|
29
|
Zhang X, Xue C, Wang R, Shen R, Lan P. Physiological and proteomic dissection of the rice roots in response to iron deficiency and excess. J Proteomics 2022; 267:104689. [PMID: 35914714 DOI: 10.1016/j.jprot.2022.104689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 10/16/2022]
Abstract
Iron (Fe) disorder is a pivotal factor that limits rice yields in many parts of the world. Extensive research has been devoted to studying how rice molecularly copes with the stresses of Fe deficiency or excess. However, a comprehensive dissection of the whole Fe-responsive atlas at the protein level is still lacking. Here, different concentrations of Fe (0, 40, 350, and 500 μM) were supplied to rice to demonstrate its response differences to Fe deficiency and excess via physiological and proteomic analysis. Results showed that compared with the normal condition, the seedling growth and contents of Fe and manganese were significantly disturbed under either Fe stress. Proteomic analysis revealed that differentially accumulated proteins under Fe deficiency and Fe excess were commonly enriched in localization, carbon metabolism, biosynthesis of amino acids, and antioxidant system. Notably, proteins with abundance retuned by Fe starvation were individually associated with phenylpropanoid biosynthesis, cysteine and methionine metabolism, while ribosome- and endocytosis-related proteins were specifically enriched in treatment of Fe overdose of 500 μM. Moreover, several novel proteins which may play potential roles in rice Fe homeostasis were predicted. These findings expand the understanding of rice Fe nutrition mechanisms, and provide efficient guidance for genetic breeding work. SIGNIFICANCE: Both iron (Fe) deficiency and excess significantly inhibited the growth of rice seedlings. Fe deficiency and excess disturbed processes of localization and cellular oxidant detoxification, metabolisms of carbohydrates and amino acids in different ways. The Fe-deficiency and Fe-excess-responsive proteins identified by the proteome were somewhat different from the reported transcriptional profiles, providing complementary information to the transcriptomic data.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Caiwen Xue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ruonan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Sharma A, Prakash S, Chattopadhyay D. Killing two birds with a single stone-genetic manipulation of cytokinin oxidase/dehydrogenase ( CKX) genes for enhancing crop productivity and amelioration of drought stress response. Front Genet 2022; 13:941595. [PMID: 35923693 PMCID: PMC9340367 DOI: 10.3389/fgene.2022.941595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022] Open
Abstract
The development of high-yielding, bio-fortified, stress-tolerant crop cultivars is the need of the hour in the wake of increasing global food insecurity, abrupt climate change, and continuous shrinking of resources and landmass suitable for agriculture. The cytokinin group of phytohormones positively regulates seed yield by simultaneous regulation of source capacity (leaf senescence) and sink strength (grain number and size). Cytokinins also regulate root-shoot architecture by promoting shoot growth and inhibiting root growth. Cytokinin oxidase/dehydrogenase (CKX) are the only enzymes that catalyze the irreversible degradation of active cytokinins and thus negatively regulate the endogenous cytokinin levels. Genetic manipulation of CKX genes is the key to improve seed yield and root-shoot architecture through direct manipulation of endogenous cytokinin levels. Downregulation of CKX genes expressed in sink tissues such as inflorescence meristem and developing seeds, through reverse genetics approaches such as RNAi and CRISPR/Cas9 resulted in increased yield marked by increased number and size of grains. On the other hand, root-specific expression of CKX genes resulted in decreased endogenous cytokinin levels in roots which in turn resulted in increased root growth indicated by increased root branching, root biomass, and root-shoot biomass ratio. Enhanced root growth provided enhanced tolerance to drought stress and improved micronutrient uptake efficiency. In this review, we have emphasized the role of CKX as a genetic factor determining yield, micronutrient uptake efficiency, and response to drought stress. We have summarised the efforts made to increase crop productivity and drought stress tolerance in different crop species through genetic manipulation of CKX family genes.
Collapse
|
31
|
Abstract
Root system architecture is an important determinant of below-ground resource capture and hence overall plant fitness. The plant hormone auxin plays a central role in almost every facet of root development from the cellular to the whole-root-system level. Here, using Arabidopsis as a model, we review the multiple gene signaling networks regulated by auxin biosynthesis, conjugation, and transport that underpin primary and lateral root development. We describe the role of auxin in establishing the root apical meristem and discuss how the tight spatiotemporal regulation of auxin distribution controls transitions between cell division, cell growth, and differentiation. This includes the localized reestablishment of mitotic activity required to elaborate the root system via the production of lateral roots. We also summarize recent discoveries on the effects of auxin and auxin signaling and transport on the control of lateral root gravitropic setpoint angle (GSA), a critical determinant of the overall shape of the root system. Finally, we discuss how environmental conditions influence root developmental plasticity by modulation of auxin biosynthesis, transport, and the canonical auxin signaling pathway.
Collapse
Affiliation(s)
- Suruchi Roychoudhry
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefan Kepinski
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
32
|
Sharma M, Sharma M, Jamsheer K M, Laxmi A. Jasmonic acid coordinates with light, glucose and auxin signalling in regulating branching angle of Arabidopsis lateral roots. PLANT, CELL & ENVIRONMENT 2022; 45:1554-1572. [PMID: 35147228 DOI: 10.1111/pce.14290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 06/14/2023]
Abstract
The role of jasmonates (JAs) in primary root growth and development and in plant response to external stimuli is already known. However, its role in lateral root (LR) development remains to be explored. Our work identified methyl jasmonate (MeJA) as a key phytohormone in determining the branching angle of Arabidopsis LRs. MeJA inclines the LRs to a more vertical orientation, which was dependent on the canonical JAR1-COI1-MYC2,3,4 signalling. Our work also highlights the dual roles of light in governing LR angle. Light signalling enhances JA biosynthesis, leading to erect root architecture; whereas, glucose (Glc) induces wider branching angles. Combining physiological and molecular assays, we revealed that Glc antagonises the MeJA response via TARGET OF RAPAMYCIN (TOR) signalling. Moreover, physiological assays using auxin mutants, MYC2-mediated transcriptional activation of LAZY2, LAZY4 and auxin biosynthetic gene CYP79B2, and asymmetric distribution of DR5::GFP and PIN2::GFP pinpointed the role of an intact auxin machinery required by MeJA for vertical growth of LRs. We also demonstrated that light perception and signalling are indispensable for inducing vertical angles by MeJA. Thus, our investigation highlights antagonism between light and Glc signalling and how they interact with JA-auxin signals to optimise the branching angle of LRs.
Collapse
Affiliation(s)
- Manvi Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
33
|
G. Viana W, Scharwies JD, Dinneny JR. Deconstructing the root system of grasses through an exploration of development, anatomy and function. PLANT, CELL & ENVIRONMENT 2022; 45:602-619. [PMID: 35092025 PMCID: PMC9303260 DOI: 10.1111/pce.14270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 05/16/2023]
Abstract
Well-adapted root systems allow plants to grow under resource-limiting environmental conditions and are important determinants of yield in agricultural systems. Important staple crops such as rice and maize belong to the family of grasses, which develop a complex root system that consists of an embryonic root system that emerges from the seed, and a postembryonic nodal root system that emerges from basal regions of the shoot after germination. While early seedling establishment is dependent on the embryonic root system, the nodal root system, and its associated branches, gains in importance as the plant matures and will ultimately constitute the bulk of below-ground growth. In this review, we aim to give an overview of the different root types that develop in cereal grass root systems, explore the different physiological roles they play by defining their anatomical features, and outline the genetic networks that control their development. Through this deconstructed view of grass root system function, we provide a parts-list of elements that function together in an integrated root system to promote survival and crop productivity.
Collapse
Affiliation(s)
| | | | - José R. Dinneny
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
34
|
Zou Y, Zhang Y, Testerink C. Root dynamic growth strategies in response to salinity. PLANT, CELL & ENVIRONMENT 2022; 45:695-704. [PMID: 34716934 PMCID: PMC9298695 DOI: 10.1111/pce.14205] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 05/25/2023]
Abstract
Increasing soil salinization largely impacts crop yield worldwide. To deal with salinity stress, plants exhibit an array of responses, including root system architecture remodelling. Here, we review recent progress in physiological, developmental and cellular mechanisms of root growth responses to salinity. Most recent research in modulation of root branching, root tropisms, as well as in root cell wall modifications under salinity stress, is discussed in the context of the contribution of these responses to overall plant performance. We highlight the power of natural variation approaches revealing novel potential pathways responsible for differences in root salt stress responses. Together, these new findings promote our understanding of how salt shapes the root phenotype, which may provide potential avenues for engineering crops with better yield and survival in saline soils.
Collapse
Affiliation(s)
- Yutao Zou
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| |
Collapse
|
35
|
Rutten J, van den Berg T, Tusscher KT. Modeling Auxin Signaling in Roots: Auxin Computations. Cold Spring Harb Perspect Biol 2022; 14:a040089. [PMID: 34001532 PMCID: PMC8805645 DOI: 10.1101/cshperspect.a040089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin signaling and patterning is an inherently complex process, involving polarized auxin transport, metabolism, and signaling, its effect on developmental zones, as well as growth rates, and the feedback between all these different aspects. This complexity has led to an important role for computational modeling in unraveling the multifactorial roles of auxin in plant developmental and adaptive processes. Here we discuss the basic ingredients of auxin signaling and patterning models for root development as well as a series of key modeling studies in this area. These modeling studies have helped elucidate how plants use auxin signaling to compute the size of their root meristem, the direction in which to grow, and when and where to form lateral roots. Importantly, these models highlight how auxin, through patterning of and collaborating with other factors, can fulfill all these roles simultaneously.
Collapse
Affiliation(s)
- Jaap Rutten
- Computational Developmental Biology Group, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Thea van den Berg
- Computational Developmental Biology Group, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Kirsten Ten Tusscher
- Computational Developmental Biology Group, Utrecht University, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
36
|
Deja-Muylle A, Opdenacker D, Parizot B, Motte H, Lobet G, Storme V, Clauw P, Njo M, Beeckman T. Genetic Variability of Arabidopsis thaliana Mature Root System Architecture and Genome-Wide Association Study. FRONTIERS IN PLANT SCIENCE 2022; 12:814110. [PMID: 35154211 PMCID: PMC8831901 DOI: 10.3389/fpls.2021.814110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Root system architecture (RSA) has a direct influence on the efficiency of nutrient uptake and plant growth, but the genetics of RSA are often studied only at the seedling stage. To get an insight into the genetic blueprint of a more mature RSA, we exploited natural variation and performed a detailed in vitro study of 241 Arabidopsis thaliana accessions using large petri dishes. A comprehensive analysis of 17 RSA traits showed high variability among the different accessions, unveiling correlations between traits and conditions of the natural habitat of the plants. A sub-selection of these accessions was grown in water-limiting conditions in a rhizotron set-up, which revealed that especially the spatial distribution showed a high consistency between in vitro and ex vitro conditions, while in particular, a large root area in the lower zone favored drought tolerance. The collected RSA phenotype data were used to perform genome-wide association studies (GWAS), which stands out from the previous studies by its exhaustive measurements of RSA traits on more mature Arabidopsis accessions used for GWAS. As a result, we found not only several genes involved in the lateral root (LR) development or auxin signaling pathways to be associated with RSA traits but also new candidate genes that are potentially involved in the adaptation to the natural habitats.
Collapse
Affiliation(s)
- Agnieszka Deja-Muylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Davy Opdenacker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Guillaume Lobet
- Forschungszentrum Jülich GmbH, Agrosphere (IBG-3), Jülich, Germany
| | - Veronique Storme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Pieter Clauw
- Gregor Mendel Institute of Molecular Plant Biology, Vienna, Austria
| | - Maria Njo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
37
|
Siqueira JA, Otoni WC, Araújo WL. The hidden half comes into the spotlight: Peeking inside the black box of root developmental phases. PLANT COMMUNICATIONS 2022; 3:100246. [PMID: 35059627 PMCID: PMC8760039 DOI: 10.1016/j.xplc.2021.100246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/13/2021] [Accepted: 09/18/2021] [Indexed: 05/30/2023]
Abstract
Efficient use of natural resources (e.g., light, water, and nutrients) can be improved with a tailored developmental program that maximizes the lifetime and fitness of plants. In plant shoots, a developmental phase represents a time window in which the meristem triggers the development of unique morphological and physiological traits, leading to the emergence of leaves, flowers, and fruits. Whereas developmental phases in plant shoots have been shown to enhance food production in crops, this phenomenon has remained poorly investigated in roots. In light of recent advances, we suggest that root development occurs in three main phases: root apical meristem appearance, foraging, and senescence. We provide compelling evidence suggesting that these phases are regulated by at least four developmental pathways: autonomous, non-autonomous, hormonal, and periodic. Root developmental pathways differentially coordinate organ plasticity, promoting morphological alterations, tissue regeneration, and cell death regulation. Furthermore, we suggest how nutritional checkpoints may allow progression through the developmental phases, thus completing the root life cycle. These insights highlight novel and exciting advances in root biology that may help maximize the productivity of crops through more sustainable agriculture and the reduced use of chemical fertilizers.
Collapse
|
38
|
Chin S, Blancaflor EB. Plant Gravitropism: From Mechanistic Insights into Plant Function on Earth to Plants Colonizing Other Worlds. Methods Mol Biol 2022; 2368:1-41. [PMID: 34647245 DOI: 10.1007/978-1-0716-1677-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gravitropism, the growth of roots and shoots toward or away from the direction of gravity, has been studied for centuries. Such studies have not only led to a better understanding of the gravitropic process itself, but also paved new paths leading to deeper mechanistic insights into a wide range of research areas. These include hormone biology, cell signal transduction, regulation of gene expression, plant evolution, and plant interactions with a variety of environmental stimuli. In addition to contributions to basic knowledge about how plants function, there is accumulating evidence that gravitropism confers adaptive advantages to crops, particularly under marginal agricultural soils. Therefore, gravitropism is emerging as a breeding target for enhancing agricultural productivity. Moreover, research on gravitropism has spawned several studies on plant growth in microgravity that have enabled researchers to uncouple the effects of gravity from other tropisms. Although rapid progress on understanding gravitropism witnessed during the past decade continues to be driven by traditional molecular, physiological, and cell biological tools, these tools have been enriched by technological innovations in next-generation omics platforms and microgravity analog facilities. In this chapter, we review the field of gravitropism by highlighting recent landmark studies that have provided unique insights into this classic research topic while also discussing potential contributions to agriculture on Earth and beyond.
Collapse
Affiliation(s)
- Sabrina Chin
- Department of Botany, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
39
|
Furutani M, Morita MT. LAZY1-LIKE-mediated gravity signaling pathway in root gravitropic set-point angle control. PLANT PHYSIOLOGY 2021; 187:1087-1095. [PMID: 34734273 PMCID: PMC8566294 DOI: 10.1093/plphys/kiab219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
Gravity signaling components contribute to the control of root gravitropic set-point angle through protein polarization relay within columella.
Collapse
Affiliation(s)
- Masahiko Furutani
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki 444-8556, Japan
| |
Collapse
|
40
|
The Analysis of Gravitropic Setpoint Angle Control in Plants. Methods Mol Biol 2021. [PMID: 34647254 DOI: 10.1007/978-1-0716-1677-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The history of research on gravitropism has been largely confined to the primary root-shoot axis and to understanding how the typically vertical orientation observed there is maintained. Many lateral organs are gravitropic too and are often held at specific non-vertical angles relative to gravity. These so-called gravitropic setpoint angles (GSAs) are intriguing because their maintenance requires that root and shoot lateral organs are able to effect tropic growth both with and against the gravity vector. This chapter describes methods and considerations relevant to the investigation of mechanisms underlying GSA control.
Collapse
|
41
|
Staging of Emerged Lateral Roots in Arabidopsis thaliana. Methods Mol Biol 2021. [PMID: 34647252 DOI: 10.1007/978-1-0716-1677-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The root system in plants plays a fundamental role in water and nutrient uptake. Lateral roots emerge from the primary root (PR) and its directional organ growth allows the plant to strategically explore the surrounding area. Compared to the main root, lateral roots initially display a distinct gravitropic set point angle, which is established shortly after emergence. Here, we describe a unifying protocol for the morphological description and classification of emerged, young lateral roots.
Collapse
|
42
|
Marconi M, Wabnik K. Shaping the Organ: A Biologist Guide to Quantitative Models of Plant Morphogenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:746183. [PMID: 34675952 PMCID: PMC8523991 DOI: 10.3389/fpls.2021.746183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Organ morphogenesis is the process of shape acquisition initiated with a small reservoir of undifferentiated cells. In plants, morphogenesis is a complex endeavor that comprises a large number of interacting elements, including mechanical stimuli, biochemical signaling, and genetic prerequisites. Because of the large body of data being produced by modern laboratories, solving this complexity requires the application of computational techniques and analyses. In the last two decades, computational models combined with wet-lab experiments have advanced our understanding of plant organ morphogenesis. Here, we provide a comprehensive review of the most important achievements in the field of computational plant morphodynamics. We present a brief history from the earliest attempts to describe plant forms using algorithmic pattern generation to the evolution of quantitative cell-based models fueled by increasing computational power. We then provide an overview of the most common types of "digital plant" paradigms, and demonstrate how models benefit from diverse techniques used to describe cell growth mechanics. Finally, we highlight the development of computational frameworks designed to resolve organ shape complexity through integration of mechanical, biochemical, and genetic cues into a quantitative standardized and user-friendly environment.
Collapse
Affiliation(s)
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
43
|
Mazzoni-Putman SM, Brumos J, Zhao C, Alonso JM, Stepanova AN. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harb Perspect Biol 2021; 13:a039990. [PMID: 33903155 PMCID: PMC8485746 DOI: 10.1101/cshperspect.a039990] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin is a crucial growth regulator that governs plant development and responses to environmental perturbations. It functions at the heart of many developmental processes, from embryogenesis to organ senescence, and is key to plant interactions with the environment, including responses to biotic and abiotic stimuli. As remarkable as auxin is, it does not act alone, but rather solicits the help of, or is solicited by, other endogenous signals, including the plant hormones abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellic acid, jasmonates, salicylic acid, and strigolactones. The interactions between auxin and other hormones occur at multiple levels: hormones regulate one another's synthesis, transport, and/or response; hormone-specific transcriptional regulators for different pathways physically interact and/or converge on common target genes; etc. However, our understanding of this crosstalk is still fragmentary, with only a few pieces of the gigantic puzzle firmly established. In this review, we provide a glimpse into the complexity of hormone interactions that involve auxin, underscoring how patchy our current understanding is.
Collapse
Affiliation(s)
- Serina M Mazzoni-Putman
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Javier Brumos
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
44
|
Meristematic Connectome: A Cellular Coordinator of Plant Responses to Environmental Signals? Cells 2021; 10:cells10102544. [PMID: 34685524 PMCID: PMC8533771 DOI: 10.3390/cells10102544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Mechanical stress in tree roots induces the production of reaction wood (RW) and the formation of new branch roots, both functioning to avoid anchorage failure and limb damage. The vascular cambium (VC) is the factor responsible for the onset of these responses as shown by their occurrence when all primary tissues and the root tips are removed. The data presented confirm that the VC is able to evaluate both the direction and magnitude of the mechanical forces experienced before coordinating the most fitting responses along the root axis whenever and wherever these are necessary. The coordination of these responses requires intense crosstalk between meristematic cells of the VC which may be very distant from the place where the mechanical stress is first detected. Signaling could be facilitated through plasmodesmata between meristematic cells. The mechanism of RW production also seems to be well conserved in the stem and this fact suggests that the VC could behave as a single structure spread along the plant body axis as a means to control the relationship between the plant and its environment. The observation that there are numerous morphological and functional similarities between different meristems and that some important regulatory mechanisms of meristem activity, such as homeostasis, are common to several meristems, supports the hypothesis that not only the VC but all apical, primary and secondary meristems present in the plant body behave as a single interconnected structure. We propose to name this structure “meristematic connectome” given the possibility that the sequence of meristems from root apex to shoot apex could represent a pluricellular network that facilitates long-distance signaling in the plant body. The possibility that the “meristematic connectome” could act as a single structure active in adjusting the plant body to its surrounding environment throughout the life of a plant is now proposed.
Collapse
|
45
|
Lombardi M, De Gara L, Loreto F. Determinants of root system architecture for future-ready, stress-resilient crops. PHYSIOLOGIA PLANTARUM 2021; 172:2090-2097. [PMID: 33905535 PMCID: PMC8360026 DOI: 10.1111/ppl.13439] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/19/2021] [Accepted: 04/19/2021] [Indexed: 06/02/2023]
Abstract
Climate change hampers food safety and food security. Crop breeding has been boosting superior quantity traits such as yield, but roots have often been overlooked in spite of their role in the whole plant physiology. New evidence is emerging on the relevance of root system architecture in coping with the environment. Here, we review determinants of root system architecture, mainly based on studies on Arabidopsis, and we discuss how breeding for appropriate root architecture may help obtain plants that are better adapted or resilient to abiotic and biotic stresses, more productive, and more efficient for soil and water use. We also highlight recent advances in phenotyping high-tech platforms and genotyping techniques that may further help to understand the mechanisms of root development and how roots control relationships between plants and soil. An integrated approach is proposed that combines phenotyping and genotyping information via bioinformatic analyses and reveals genetic control of root system architecture, paving the way for future research on plant breeding.
Collapse
Affiliation(s)
- Marco Lombardi
- Department of Science and Technology for Humans and the EnvironmentCampus Bio‐Medico University of RomeVia Alvaro del Portillo 21Rome00128Italy
- Department of Biology, Agriculture, and Food SciencesNational Research Council of Italy (CNR‐DISBA)Piazzale Aldo Moro 7Rome00185Italy
| | - Laura De Gara
- Department of Science and Technology for Humans and the EnvironmentCampus Bio‐Medico University of RomeVia Alvaro del Portillo 21Rome00128Italy
| | - Francesco Loreto
- Department of Biology, Agriculture, and Food SciencesNational Research Council of Italy (CNR‐DISBA)Piazzale Aldo Moro 7Rome00185Italy
- Department of BiologyUniversity Federico IIvia CinthiaNaples80126Italy
| |
Collapse
|
46
|
Duan X, Wang X, Jin K, Wang W, Liu H, Liu L, Zhang Y, Hammond JP, White PJ, Ding G, Xu F, Shi L. Genetic Dissection of Root Angle of Brassica napus in Response to Low Phosphorus. FRONTIERS IN PLANT SCIENCE 2021; 12:697872. [PMID: 34394150 PMCID: PMC8358456 DOI: 10.3389/fpls.2021.697872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Plant root angle determines the vertical and horizontal distribution of roots in the soil layer, which further influences the acquisition of phosphorus (P) in topsoil. Large genetic variability for the lateral root angle (root angle) was observed in a linkage mapping population (BnaTNDH population) and an association panel of Brassica napus whether at a low P (LP) or at an optimal P (OP). At LP, the average root angle of both populations became smaller. Nine quantitative trait loci (QTLs) at LP and three QTLs at OP for the root angle and five QTLs for the relative root angle (RRA) were identified by the linkage mapping analysis in the BnaTNDH population. Genome-wide association studies (GWASs) revealed 11 single-nucleotide polymorphisms (SNPs) significantly associated with the root angle at LP (LPRA). The interval of a QTL for LPRA on A06 (qLPRA-A06c) overlapped with the confidence region of the leading SNP (Bn-A06-p14439400) significantly associated with LPRA. In addition, a QTL cluster on chromosome C01 associated with the root angle and the primary root length (PRL) in the "pouch and wick" high-throughput phenotyping (HTP) system, the root P concentration in the agar system, and the seed yield in the field was identified in the BnaTNDH population at LP. A total of 87 genes on A06 and 192 genes on C01 were identified within the confidence interval, and 14 genes related to auxin asymmetric redistribution and root developmental process were predicted to be candidate genes. The identification and functional analyses of these genes affecting LPRA are of benefit to the cultivar selection with optimal root system architecture (RSA) under P deficiency in Brassica napus.
Collapse
Affiliation(s)
- Xianjie Duan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xiaohua Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Kemo Jin
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Ministry of Education, China Agricultural University, Beijing, China
| | - Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Haijiang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Ling Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Ying Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - John P. Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Philip J. White
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- The James Hutton Institute, Dundee, United Kingdom
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
47
|
Panda S, Majhi PK, Anandan A, Mahender A, Veludandi S, Bastia D, Guttala SB, Singh SK, Saha S, Ali J. Proofing Direct-Seeded Rice with Better Root Plasticity and Architecture. Int J Mol Sci 2021; 22:6058. [PMID: 34199720 PMCID: PMC8199995 DOI: 10.3390/ijms22116058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
The underground reserve (root) has been an uncharted research territory with its untapped genetic variation yet to be exploited. Identifying ideal traits and breeding new rice varieties with efficient root system architecture (RSA) has great potential to increase resource-use efficiency and grain yield, especially under direct-seeded rice, by adapting to aerobic soil conditions. In this review, we tried to mine the available research information on the direct-seeded rice (DSR) root system to highlight the requirements of different root traits such as root architecture, length, number, density, thickness, diameter, and angle that play a pivotal role in determining the uptake of nutrients and moisture at different stages of plant growth. RSA also faces several stresses, due to excess or deficiency of moisture and nutrients, low or high temperature, or saline conditions. To counteract these hindrances, adaptation in response to stress becomes essential. Candidate genes such as early root growth enhancer PSTOL1, surface rooting QTL qSOR1, deep rooting gene DRO1, and numerous transporters for their respective nutrients and stress-responsive factors have been identified and validated under different circumstances. Identifying the desired QTLs and transporters underlying these traits and then designing an ideal root architecture can help in developing a suitable DSR cultivar and aid in further advancement in this direction.
Collapse
Affiliation(s)
- Siddharth Panda
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
- Department of Plant Breeding and Genetics, Odisha University of Agriculture & Technology, Bhubaneswar 751003, Odisha, India;
| | - Prasanta Kumar Majhi
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University (B.H.U.), Varanasi 221005, Uttar Pradesh, India; (P.K.M.); (S.K.S.)
| | - Annamalai Anandan
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
| | - Anumalla Mahender
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines;
| | - Sumanth Veludandi
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
| | - Debendranath Bastia
- Department of Plant Breeding and Genetics, Odisha University of Agriculture & Technology, Bhubaneswar 751003, Odisha, India;
| | - Suresh Babu Guttala
- Department of Genetics and Plant Breeding, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj 211007, Uttar Pradesh, India;
| | - Shravan Kumar Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University (B.H.U.), Varanasi 221005, Uttar Pradesh, India; (P.K.M.); (S.K.S.)
| | - Sanjoy Saha
- Crop Production Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India;
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines;
| |
Collapse
|
48
|
Sharma M, Singh D, Saksena HB, Sharma M, Tiwari A, Awasthi P, Botta HK, Shukla BN, Laxmi A. Understanding the Intricate Web of Phytohormone Signalling in Modulating Root System Architecture. Int J Mol Sci 2021; 22:ijms22115508. [PMID: 34073675 PMCID: PMC8197090 DOI: 10.3390/ijms22115508] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Root system architecture (RSA) is an important developmental and agronomic trait that is regulated by various physical factors such as nutrients, water, microbes, gravity, and soil compaction as well as hormone-mediated pathways. Phytohormones act as internal mediators between soil and RSA to influence various events of root development, starting from organogenesis to the formation of higher order lateral roots (LRs) through diverse mechanisms. Apart from interaction with the external cues, root development also relies on the complex web of interaction among phytohormones to exhibit synergistic or antagonistic effects to improve crop performance. However, there are considerable gaps in understanding the interaction of these hormonal networks during various aspects of root development. In this review, we elucidate the role of different hormones to modulate a common phenotypic output, such as RSA in Arabidopsis and crop plants, and discuss future perspectives to channel vast information on root development to modulate RSA components.
Collapse
|
49
|
Zakharova EV, Timofeeva GV, Fateev AD, Kovaleva LV. Caspase-like proteases and the phytohormone cytokinin as determinants of S-RNAse-based self-incompatibility-induced PCD in Petunia hybrida L. PROTOPLASMA 2021; 258:573-586. [PMID: 33230626 DOI: 10.1007/s00709-020-01587-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
S-RNAse-based self-incompatibility (SI) in petunia (Petunia hybrida L.) is a self-/non-self-recognition system underlying the pistil rejection of self-pollen. Using different methods, including a TUNEL assay, we have recently shown that programmed cell death (PCD) is a factor of the SI in petunia. Here, we show that the growth of self-incompatible pollen tubes in the style tissues during 4 h after pollination is accompanied by five-sixfold increase in a caspase-like protease (CLP) activity. Exogenous cytokinin (CK) inhibits the pollen tube growth and stimulates the CLP activity in compatible pollen tubes. The actin depolymerization with latrunculin B induces a sharp drop in the CLP activity in self-incompatible pollen tubes and its increase in compatible pollen tubes. Altogether, our results suggest that a CLP is involved in the SI-induced PCD and that CK is a putative activator of the CLP. We assume that CK provokes acidification of the cytosol and thus promotes the activation of a CLP. Thus, our results suggest that CK and CLP are involved in the S-RNAse-based SI-induced PCD in petunia. Potential relations between these components in PCD signaling are discussed.
Collapse
Affiliation(s)
| | - Galina V Timofeeva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Arseny D Fateev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Lidia V Kovaleva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
50
|
Nenadić M, Vermeer JEM. Dynamic cytokinin signalling landscapes during lateral root formation in Arabidopsis. QUANTITATIVE PLANT BIOLOGY 2021; 2:e13. [PMID: 37077210 PMCID: PMC10095801 DOI: 10.1017/qpb.2021.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/04/2021] [Accepted: 10/20/2021] [Indexed: 05/03/2023]
Abstract
By forming lateral roots, plants expand their root systems to improve anchorage and absorb more water and nutrients from the soil. Each phase of this developmental process in Arabidopsis is tightly regulated by dynamic and continuous signalling of the phytohormones cytokinin and auxin. While the roles of auxin in lateral root organogenesis and spatial accommodation by overlying cell layers have been well studied, insights on the importance of cytokinin is still somewhat limited. Cytokinin is a negative regulator of lateral root formation with versatile modes of action being activated at different root developmental zones. Here, we review the latest progress made towards our understanding of these spatially separated mechanisms of cytokinin-mediated signalling that shape lateral root initiation, outgrowth and emergence and highlight some of the enticing open questions.
Collapse
Affiliation(s)
- Milica Nenadić
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Centre, University of Zurich, Zurich, Switzerland
| | - Joop E. M. Vermeer
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Centre, University of Zurich, Zurich, Switzerland
- Laboratory of Cell and Molecular Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Author for correspondence: Joop E. M. Vermeer, E-mail:
| |
Collapse
|