1
|
Caragine CM, Le VT, Mustafa M, Diaz BJ, Morris JA, Müller S, Mendez-Mancilla A, Geller E, Liscovitch-Brauer N, Sanjana NE. Comprehensive dissection of cis-regulatory elements in a 2.8 Mb topologically associated domain in six human cancers. Nat Commun 2025; 16:1611. [PMID: 39948336 PMCID: PMC11825950 DOI: 10.1038/s41467-025-56568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Cis-regulatory elements (CREs), such as enhancers and promoters, are fundamental regulators of gene expression and, across different cell types, the MYC locus utilizes a diverse regulatory architecture driven by multiple CREs. To better understand differences in CRE function, we perform pooled CRISPR inhibition (CRISPRi) screens to comprehensively probe the 2.8 Mb topologically-associated domain containing MYC in 6 human cancer cell lines with nucleotide resolution. We map 32 CREs where inhibition leads to changes in cell growth, including 8 that overlap previously identified enhancers. Targeting specific CREs decreases MYC expression by as much as 60%, and cell growth by as much as 50%. Using 3-D enhancer contact mapping, we find that these CREs almost always contact MYC but less than 10% of total MYC contacts impact growth when silenced, highlighting the utility of our approach to identify phenotypically-relevant CREs. We also detect an enrichment of lineage-specific transcription factors (TFs) at MYC CREs and, for some of these TFs, find a strong, tumor-specific correlation between TF and MYC expression not found in normal tissue. Taken together, these CREs represent systematically identified, functional regulatory regions and demonstrate how the same region of the human genome can give rise to complex, tissue-specific gene regulation.
Collapse
Affiliation(s)
- Christina M Caragine
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Victoria T Le
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Meer Mustafa
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Bianca Jay Diaz
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - John A Morris
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Simon Müller
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Alejandro Mendez-Mancilla
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Evan Geller
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Noa Liscovitch-Brauer
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Neville E Sanjana
- New York Genome Center, New York, NY, USA.
- Department of Biology, New York University, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Shi C, Zhao D, Butler J, Frantzeskos A, Rossi S, Ding J, Ferrazzano C, Wynn C, Hum RM, Richards E, Gupta M, Patel K, Yap CF, Plant D, Grencis R, Martin P, Adamson A, Eyre S, Bowes J, Barton A, Ho P, Rattray M, Orozco G. Multi-omics analysis in primary T cells elucidates mechanisms behind disease-associated genetic loci. Genome Biol 2025; 26:26. [PMID: 39930543 PMCID: PMC11808986 DOI: 10.1186/s13059-025-03492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have uncovered the genetic basis behind many diseases and conditions. However, most of these genetic loci affect regulatory regions, making the interpretation challenging. Chromatin conformation has a fundamental role in gene regulation and is frequently used to associate potential target genes to regulatory regions. However, previous studies mostly used small sample sizes and immortalized cell lines instead of primary cells. RESULTS Here we present the most extensive dataset of chromatin conformation with matching gene expression and chromatin accessibility from primary CD4+ and CD8+ T cells to date, isolated from psoriatic arthritis patients and healthy controls. We generated 108 Hi-C libraries (49 billion reads), 128 RNA-seq libraries and 126 ATAC-seq libraries. These data enhance our understanding of the mechanisms by which GWAS variants impact gene regulation, revealing how genetic variation alters chromatin accessibility and structure in primary cells at an unprecedented scale. We refine the mapping of GWAS loci to implicated regulatory elements, such as CTCF binding sites and other enhancer elements, aiding gene assignment. We uncover BCL2L11 as the probable causal gene within the rheumatoid arthritis (RA) locus rs13396472, despite the GWAS variants' intronic positioning relative to ACOXL, and we identify mechanisms involving SESN3 dysregulation in the RA locus rs4409785. CONCLUSIONS Given these genes' significant role in T cell development and maturation, our work deepens our comprehension of autoimmune disease pathogenesis, suggesting potential treatment targets. In addition, our dataset provides a valuable resource for the investigation of immune-mediated diseases and gene regulatory mechanisms.
Collapse
Affiliation(s)
- Chenfu Shi
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Danyun Zhao
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jake Butler
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Antonios Frantzeskos
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Stefano Rossi
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - James Ding
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Carlo Ferrazzano
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Charlotte Wynn
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ryan Malcolm Hum
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Kellgren Centre for Rheumatology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ellie Richards
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Muskan Gupta
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Khadijah Patel
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Chuan Fu Yap
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Darren Plant
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard Grencis
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Martin
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Antony Adamson
- Genome Editing Unit, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Stephen Eyre
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Anne Barton
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Kellgren Centre for Rheumatology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Pauline Ho
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Kellgren Centre for Rheumatology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Magnus Rattray
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gisela Orozco
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
3
|
O'Dwyer MR, Azagury M, Furlong K, Alsheikh A, Hall-Ponsele E, Pinto H, Fyodorov DV, Jaber M, Papachristoforou E, Benchetrit H, Ashmore J, Makedonski K, Rahamim M, Hanzevacki M, Yassen H, Skoda S, Levy A, Pollard SM, Skoultchi AI, Buganim Y, Soufi A. Nucleosome fibre topology guides transcription factor binding to enhancers. Nature 2025; 638:251-260. [PMID: 39695228 PMCID: PMC11798873 DOI: 10.1038/s41586-024-08333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Cellular identity requires the concerted action of multiple transcription factors (TFs) bound together to enhancers of cell-type-specific genes. Despite TFs recognizing specific DNA motifs within accessible chromatin, this information is insufficient to explain how TFs select enhancers1. Here we compared four different TF combinations that induce different cell states, analysing TF genome occupancy, chromatin accessibility, nucleosome positioning and 3D genome organization at the nucleosome resolution. We show that motif recognition on mononucleosomes can decipher only the individual binding of TFs. When bound together, TFs act cooperatively or competitively to target nucleosome arrays with defined 3D organization, displaying motifs in particular patterns. In one combination, motif directionality funnels TF combinatorial binding along chromatin loops, before infiltrating laterally to adjacent enhancers. In other combinations, TFs assemble on motif-dense and highly interconnected loop junctions, and subsequently translocate to nearby lineage-specific sites. We propose a guided-search model in which motif grammar on nucleosome fibres acts as signpost elements, directing TF combinatorial binding to enhancers.
Collapse
Affiliation(s)
- Michael R O'Dwyer
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Meir Azagury
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Katharine Furlong
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK
| | - Amani Alsheikh
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Elisa Hall-Ponsele
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hugo Pinto
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Mohammad Jaber
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eleni Papachristoforou
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Hana Benchetrit
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - James Ashmore
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Kirill Makedonski
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Moran Rahamim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Marta Hanzevacki
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hazar Yassen
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Samuel Skoda
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Adi Levy
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Steven M Pollard
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Abdenour Soufi
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Zhang Y, Chen K, Tang SC, Cai Y, Nambu A, See YX, Fu C, Raju A, Lebeau B, Ling Z, Chan JJ, Tay Y, Mutwil M, Lakshmanan M, Tucker-Kellogg G, Chng WJ, Tenen DG, Osato M, Tergaonkar V, Fullwood MJ. Super-silencer perturbation by EZH2 and REST inhibition leads to large loss of chromatin interactions and reduction in cancer growth. Nat Struct Mol Biol 2025; 32:137-149. [PMID: 39304765 PMCID: PMC11746141 DOI: 10.1038/s41594-024-01391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/28/2024] [Indexed: 09/22/2024]
Abstract
Human silencers have been shown to regulate developmental gene expression. However, the functional importance of human silencers needs to be elucidated, such as whether they can form 'super-silencers' and whether they are linked to cancer progression. Here, we show two silencer components of the FGF18 gene can cooperate through compensatory chromatin interactions to form a super-silencer. Double knockout of two silencers exhibited synergistic upregulation of FGF18 expression and changes in cell identity. To perturb the super-silencers, we applied combinational treatment of an enhancer of zeste homolog 2 inhibitor GSK343, and a repressor element 1-silencing transcription factor inhibitor, X5050 ('GR'). Interestingly, GR led to severe loss of topologically associated domains and loops, which were associated with reduced CTCF and TOP2A mRNA levels. Moreover, GR synergistically upregulated super-silencer-controlled genes related to cell cycle, apoptosis and DNA damage, leading to anticancer effects in vivo. Overall, our data demonstrated a super-silencer example and showed that GR can disrupt super-silencers, potentially leading to cancer ablation.
Collapse
Affiliation(s)
- Ying Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kaijing Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Seng Chuan Tang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yichao Cai
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Akiko Nambu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yi Xiang See
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chaoyu Fu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Anandhkumar Raju
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Benjamin Lebeau
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zixun Ling
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jia Jia Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Manikandan Lakshmanan
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Greg Tucker-Kellogg
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Computational Biology Programme, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Centre for Translational Medicine, Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Health System (NUHS), Singapore, Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Harvard Stem Cells Institute, Harvard Medical School, Boston, MA, USA
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Melissa Jane Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
5
|
Breves SL, Campigli Di Giammartino D, Nicholson J, Cirigliano S, Mahmood SR, Lee UJ, Martinez-Fundichely A, Jungverdorben J, Singhania R, Rajkumar S, Kirou R, Studer L, Khurana E, Polyzos A, Fine HA, Apostolou E. Three-dimensional regulatory hubs support oncogenic programs in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629544. [PMID: 40034649 PMCID: PMC11875237 DOI: 10.1101/2024.12.20.629544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Dysregulation of enhancer-promoter communication in the context of the three-dimensional (3D) nucleus is increasingly recognized as a potential driver of oncogenic programs. Here, we profiled the 3D enhancer-promoter networks of primary patient-derived glioblastoma stem cells (GSCs) in comparison with neuronal stem cells (NSCs) to identify potential central nodes and vulnerabilities in the regulatory logic of this devastating cancer. Specifically, we focused on hyperconnected 3D regulatory hubs and demonstrated that hub-interacting genes exhibit high and coordinated expression at the single-cell level and strong association with oncogenic programs that distinguish IDH-wt glioblastoma patients from low-grade glioma. Epigenetic silencing of a recurrent 3D enhancer hub-with an uncharacterized role in glioblastoma-was sufficient to cause concordant downregulation of multiple hub-connected genes along with significant shifts in transcriptional states and reduced clonogenicity. By integrating published datasets from other cancer types, we also identified both universal and cancer type-specific 3D regulatory hubs which enrich for varying oncogenic programs and nominate specific factors associated with worse outcomes. Genetic alterations, such as focal duplications, could explain only a small fraction of the detected hyperconnected hubs and their increased activity. Overall, our study provides computational and experimental support for the potential central role of 3D regulatory hubs in controlling oncogenic programs and properties. HIGHLIGHTS - 3D regulatory "hubs" in glioblastoma enrich for highly coregulated genes at a single-cell level and expand oncogenic regulatory networks.- Targeted perturbation of a highly recurrent 3D regulatory hub in GSCs results in altered transcriptional states and cellular properties.- 3D regulatory hubs across cancer types associate with tumor-specific and universal oncogenic programs and worse outcomes.- The majority of hyperconnected hubs do not overlap with structural variants, suggesting epigenetic mechanisms. eTOC Here we profile the 3D enhancer connectomes of primary patient-derived human glioblastoma stem cells (GSCs), identify hyperconnected 3D regulatory "hubs", and examine the impact of 3D hub perturbation on the transcriptional program and oncogenic properties.
Collapse
|
6
|
Nicoletti C, Massenet J, Pintado-Urbanc AP, Connor LJ, Nicolau M, Sundar S, Xu M, Schmitt A, Zhang W, Fang Z, Chan TCI, Tapscott SJ, Cheung TH, Simon MD, Caputo L, Puri PL. E-box independent chromatin recruitment turns MYOD into a transcriptional repressor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627024. [PMID: 39677796 PMCID: PMC11643108 DOI: 10.1101/2024.12.05.627024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
MYOD is an E-box sequence-specific basic Helix-Loop-Helix (bHLH) transcriptional activator that, when expressed in non-muscle cells, induces nuclear reprogramming toward skeletal myogenesis by promoting chromatin accessibility at previously silent loci. Here, we report on the identification of a previously unrecognized property of MYOD as repressor of gene expression, via E-box-independent chromatin binding within accessible genomic elements, which invariably leads to reduced chromatin accessibility. MYOD-mediated repression requires the integrity of functional domains previously implicated in MYOD-mediated activation of gene expression. Repression of mitogen- and growth factor-responsive genes occurs through promoter binding and requires a highly conserved domain within the first helix. Repression of cell-of-origin/alternative lineage genes occurs via binding and decommissioning of distal regulatory elements, such as super-enhancers (SE), which requires the N-terminal activation domain as well as two chromatin-remodeling domains and leads to reduced strength of CTCF-mediated chromatin interactions. Surprisingly, MYOD-mediated chromatin compaction and repression of transcription do not associate with reduction of H3K27ac, the conventional histone mark of enhancer or promoter activation, but with reduced levels of the recently discovered histone H4 acetyl-methyl lysine modification (Kacme). These results extend MYOD biological properties beyond the current dogma that restricts MYOD function to a monotone transcriptional activator and reveal a previously unrecognized functional versatility arising from an alternative chromatin recruitment through E-box or non-E-box sequences. The E-box independent repression of gene expression by MYOD might provide a promiscuous mechanism to reduce chromatin accessibility and repress cell-of-origin/alternative lineage and growth factor/mitogen-responsive genes to safeguard the integrity of cell identity during muscle progenitor commitment toward the myogenic lineage.
Collapse
Affiliation(s)
- Chiara Nicoletti
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| | - Jimmy Massenet
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| | - Andreas P. Pintado-Urbanc
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT
| | - Leah J. Connor
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT
| | - Monica Nicolau
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| | - Swetha Sundar
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| | - Mingzhi Xu
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| | | | - Wenxin Zhang
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zesen Fang
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tsz Ching Indigo Chan
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Tom H. Cheung
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Matthew D. Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT
| | - Luca Caputo
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| | - Pier Lorenzo Puri
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| |
Collapse
|
7
|
Lee D, Kang J, Kim A. TAD-dependent sub-TAD is required for enhancer-promoter interaction enabling the β-globin transcription. FASEB J 2024; 38:e70181. [PMID: 39545685 PMCID: PMC11698014 DOI: 10.1096/fj.202401526rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Topologically associating domains (TADs) are chromatin domains in the eukaryotic genome. TADs often comprise several sub-TADs. The boundaries of TADs and sub-TADs are enriched in CTCF, an architectural protein. Deletion of CTCF-binding motifs at one boundary disrupts the domains, often resulting in a transcriptional decrease in genes inside the domains. However, it is not clear how TAD and sub-TAD affect each other in the domain formation. Unaffected gene transcription was observed in the β-globin locus when one boundary of TAD or sub-TAD was destroyed. Here, we disrupted β-globin TAD and sub-TAD by deleting CTCF motifs at both boundaries in MEL/ch11 cells. Disruption of TAD impaired sub-TAD, but sub-TAD disruption did not affect TAD. Both TAD and sub-TAD disruption compromised the β-globin transcription, accompanied by the loss of enhancer-promoter interactions. However, histone H3 occupancy and H3K27ac were largely maintained across the β-globin locus. Genome-wide analysis showed that putative enhancer-promoter interactions and gene transcription were decreased by the disruption of CTCF-mediated topological domains in neural progenitor cells. Collectively, our results indicate that there is unequal relationship between TAD and sub-TAD formation. TAD is likely not sufficient for gene transcription, and, therefore, sub-TAD appears to be required. TAD-dependently formed sub-TADs are considered to provide chromatin environments for enhancer-promoter interactions enabling gene transcription.
Collapse
Affiliation(s)
- Dasoul Lee
- Department of Molecular Biology, College of Natural SciencesPusan National UniversityBusanRepublic of Korea
| | - Jin Kang
- Department of Molecular Biology, College of Natural SciencesPusan National UniversityBusanRepublic of Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural SciencesPusan National UniversityBusanRepublic of Korea
| |
Collapse
|
8
|
Hudaiberdiev S, Ovcharenko I. Functional characteristics and computational model of abundant hyperactive loci in the human genome. eLife 2024; 13:RP95170. [PMID: 39535534 PMCID: PMC11560132 DOI: 10.7554/elife.95170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.
Collapse
Affiliation(s)
- Sanjarbek Hudaiberdiev
- National Institute for Biotechnology and Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Ivan Ovcharenko
- National Institute for Biotechnology and Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
9
|
Amrute JM, Lee PC, Eres I, Lee CJM, Bredemeyer A, Sheth MU, Yamawaki T, Gurung R, Anene-Nzelu C, Qiu WL, Kundu S, Li DY, Ramste M, Lu D, Tan A, Kang CJ, Wagoner RE, Alisio A, Cheng P, Zhao Q, Miller CL, Hall IM, Gupta RM, Hsu YH, Haldar SM, Lavine KJ, Jackson S, Andersson R, Engreitz JM, Foo RSY, Li CM, Ason B, Quertermous T, Stitziel NO. Single cell variant to enhancer to gene map for coronary artery disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.13.24317257. [PMID: 39606421 PMCID: PMC11601770 DOI: 10.1101/2024.11.13.24317257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Although genome wide association studies (GWAS) in large populations have identified hundreds of variants associated with common diseases such as coronary artery disease (CAD), most disease-associated variants lie within non-coding regions of the genome, rendering it difficult to determine the downstream causal gene and cell type. Here, we performed paired single nucleus gene expression and chromatin accessibility profiling from 44 human coronary arteries. To link disease variants to molecular traits, we developed a meta-map of 88 samples and discovered 11,182 single-cell chromatin accessibility quantitative trait loci (caQTLs). Heritability enrichment analysis and disease variant mapping demonstrated that smooth muscle cells (SMCs) harbor the greatest genetic risk for CAD. To capture the continuum of SMC cell states in disease, we used dynamic single cell caQTL modeling for the first time in tissue to uncover QTLs whose effects are modified by cell state and expand our insight into genetic regulation of heterogenous cell populations. Notably, we identified a variant in the COL4A1/COL4A2 CAD GWAS locus which becomes a caQTL as SMCs de-differentiate by changing a transcription factor binding site for EGR1/2. To unbiasedly prioritize functional candidate genes, we built a genome-wide single cell variant to enhancer to gene (scV2E2G) map for human CAD to link disease variants to causal genes in cell types. Using this approach, we found several hundred genes predicted to be linked to disease variants in different cell types. Next, we performed genome-wide Hi-C in 16 human coronary arteries to build tissue specific maps of chromatin conformation and link disease variants to integrated chromatin hubs and distal target genes. Using this approach, we show that rs4887091 within the ADAMTS7 CAD GWAS locus modulates function of a super chromatin interactome through a change in a CTCF binding site. Finally, we used CRISPR interference to validate a distal gene, AMOTL2, liked to a CAD GWAS locus. Collectively we provide a disease-agnostic framework to translate human genetic findings to identify pathologic cell states and genes driving disease, producing a comprehensive scV2E2G map with genetic and tissue level convergence for future mechanistic and therapeutic studies.
Collapse
Affiliation(s)
- Junedh M. Amrute
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Paul C. Lee
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Ittai Eres
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Chang Jie Mick Lee
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Andrea Bredemeyer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Maya U. Sheth
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Sciences and Engineering Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Rijan Gurung
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Chukwuemeka Anene-Nzelu
- Montreal Heart Institute, Montreal, 5000 Rue Belanger, QC, H1T 1C8, Canada
- Department of Medicine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montréal, QC, H3T 1J4, Canada
| | - Wei-Lin Qiu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
| | - Soumya Kundu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Y. Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
| | - Markus Ramste
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
| | - Daniel Lu
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Anthony Tan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Sciences and Engineering Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford, CA, USA
| | - Chul-Joo Kang
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Ryan E. Wagoner
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Arturo Alisio
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Paul Cheng
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305
| | - Quanyi Zhao
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
| | - Clint L. Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville
| | - Ira M. Hall
- Center for Genomic Health, Yale University, New Haven, CT, 06510, USA
- Department of Genetics, Yale University, New Haven, CT, 06510, USA
| | - Rajat M. Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yi-Hsiang Hsu
- Amgen Research, South San Francisco, CA, 94080, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | | | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | | | - Robin Andersson
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
| | - Jesse M. Engreitz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Sciences and Engineering Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford, CA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Roger S-Y Foo
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Chi-Ming Li
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Brandon Ason
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305
| | - Nathan O. Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
10
|
Flores JP, Davis E, Kramer N, Love MI, Phanstiel DH. A Bioconductor/R Workflow for the Detection and Visualization of Differential Chromatin Loops. F1000Res 2024; 13:1346. [PMID: 39931328 PMCID: PMC11809633 DOI: 10.12688/f1000research.153949.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/13/2025] Open
Abstract
Background Chromatin loops play a critical role in gene regulation by connecting regulatory loci and gene promoters. The identification of changes in chromatin looping between cell types or biological conditions is an important task for understanding gene regulation; however, the manipulation, statistical analysis, and visualization of data sets describing 3D chromatin structure is challenging due to the large and complex nature of the relevant data sets. Methods Here, we describe a workflow for identifying and visualizing differential chromatin loops from Hi-C data from two biological conditions using the 'mariner', 'DESeq2' and 'plotgardener' Bioconductor/R packages. The workflow assumes that Hi-C data has been processed into '.hic' or '.cool' files and that loops have been identified using an existing loop-calling algorithm. Results First, the 'mariner' package is used to merge redundant loop calls and extract interaction frequency counts. Next, 'DESeq2' is used to identify loops that exhibit differential contact frequencies between conditions. Finally, 'plotgardener' is used to visualize differential loops. Conclusion Chromatin interaction data is an important modality for understanding the mechanisms of transcriptional regulation. The workflow presented here outlines the use of 'mariner' as a tool to manipulate, extract, and aggregate chromatin interaction data, 'DESeq2' to perform differential analysis of these data across conditions, samples, and replicates, and 'plotgardener' to explore and visualize the results.
Collapse
Affiliation(s)
- JP Flores
- Curriculum in Bioinformatics & Computational Biology, Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Eric Davis
- Curriculum in Bioinformatics & Computational Biology, Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Nicole Kramer
- Curriculum in Bioinformatics & Computational Biology, Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Michael I Love
- Curriculum in Bioinformatics & Computational Biology, Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Douglas H Phanstiel
- Curriculum in Bioinformatics & Computational Biology, Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Curriculum in Genetics & Molecular Biology, Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27514, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| |
Collapse
|
11
|
Altıntaş UB, Seo JH, Giambartolomei C, Ozturan D, Fortunato BJ, Nelson GM, Goldman SR, Adelman K, Hach F, Freedman ML, Lack NA. Decoding the epigenetics and chromatin loop dynamics of androgen receptor-mediated transcription. Nat Commun 2024; 15:9494. [PMID: 39489778 PMCID: PMC11532539 DOI: 10.1038/s41467-024-53758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Androgen receptor (AR)-mediated transcription plays a critical role in development and prostate cancer growth. AR drives gene expression by binding to thousands of cis-regulatory elements (CRE) that loop to hundreds of target promoters. With multiple CREs interacting with a single promoter, it remains unclear how individual AR bound CREs contribute to gene expression. To characterize the involvement of these CREs, we investigate the AR-driven epigenetic and chromosomal chromatin looping changes by generating a kinetic multi-omic dataset comprised of steady-state mRNA, chromatin accessibility, transcription factor binding, histone modifications, chromatin looping, and nascent RNA. Using an integrated regulatory network, we find that AR binding induces sequential changes in the epigenetic features at CREs, independent of gene expression. Further, we show that binding of AR does not result in a substantial rewiring of chromatin loops, but instead increases the contact frequency of pre-existing loops to target promoters. Our results show that gene expression strongly correlates to the changes in contact frequency. We then propose and experimentally validate an unbalanced multi-enhancer model where the impact on gene expression of AR-bound enhancers is heterogeneous, and is proportional to their contact frequency with target gene promoters. Overall, these findings provide insights into AR-mediated gene expression upon acute androgen simulation and develop a mechanistic framework to investigate nuclear receptor mediated perturbations.
Collapse
Grants
- 221Z116 Türkiye Bilimsel ve Teknolojik Araştirma Kurumu (Scientific and Technological Research Council of Turkey)
- R01 CA259058 NCI NIH HHS
- R01 CA227237 NCI NIH HHS
- W81XWH-21-1-0339 U.S. Department of Defense (United States Department of Defense)
- R01 CA251555 NCI NIH HHS
- W81XWH-21-1-0234 U.S. Department of Defense (United States Department of Defense)
- PJT-173331 Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
- W81XWH-22-1-0951 U.S. Department of Defense (United States Department of Defense)
- R01 CA262577 NCI NIH HHS
- N.A.L. was supported by funding from TUBITAK (221Z116), W81XWH-21-1-0234 (DoD), and CIHR PJT-173331.
- M.L.F. was supported by the Claudia Adams Barr Program for Innovative Cancer Research, the Dana-Farber Cancer Institute Presidential Initiatives Fund, the H.L. Snyder Medical Research Foundation, the Cutler Family Fund for Prevention and Early Detection, the Donahue Family Fund, W81XWH-21-1-0339, W81XWH-22-1-0951 (DoD), NIH Awards R01CA251555, R01CA227237, R01CA262577, R01CA259058 and a Movember PCF Challenge Award.
Collapse
Affiliation(s)
- Umut Berkay Altıntaş
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Ji-Heui Seo
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Claudia Giambartolomei
- Integrative Data Analysis Unit, Health Data Science Centre, Human Technopole, Milan, 20157, Italy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Dogancan Ozturan
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Brad J Fortunato
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Geoffrey M Nelson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth R Goldman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- The Eli and Edythe L. Broad Institute, Boston, MA, 02142, USA
| | - Faraz Hach
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Matthew L Freedman
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- The Eli and Edythe L. Broad Institute, Boston, MA, 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Nathan A Lack
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada.
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.
- Department of Medical Pharmacology, School of Medicine, Koç University, Istanbul, 34450, Turkey.
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, 34450, Istanbul, Turkey.
| |
Collapse
|
12
|
Chen S, Keleş S. GEEES: inferring cell-specific gene-enhancer interactions from multi-modal single-cell data. Bioinformatics 2024; 40:btae638. [PMID: 39468737 PMCID: PMC11549018 DOI: 10.1093/bioinformatics/btae638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024] Open
Abstract
MOTIVATION Gene-enhancer interactions are central to transcriptional regulation. Current multi-modal single-cell datasets that profile transcriptome and chromatin accessibility simultaneously in a single cell are yielding opportunities to infer gene-enhancer associations in a cell type specific manner. Computational efforts for such multi-modal single-cell datasets thus far focused on methods for identification and refinement of cell types and trajectory construction. While initial attempts for inferring gene-enhancer interactions have emerged, these have not been evaluated against benchmark datasets that materialized from bulk genomic experiments. Furthermore, existing approaches are limited to inferring gene-enhancer associations at the level of grouped cells as opposed to individual cells, thereby ignoring regulatory heterogeneity among the cells. RESULTS We present a new approach, GEEES for "Gene EnhancEr IntEractions from Multi-modal Single Cell Data," for inferring gene-enhancer associations at the single-cell level using multi-modal single-cell transcriptome and chromatin accessibility data. We evaluated GEEES alongside several multivariate regression-based alternatives we devised and state-of-the-art methods using a large number of benchmark datasets, providing a comprehensive assessment of current approaches. This analysis revealed significant discrepancies between gold-standard interactions and gene-enhancer associations derived from multi-modal single-cell data. Notably, incorporating gene-enhancer distance into the analysis markedly improved performance across all methods, positioning GEEES as a leading approach in this domain. While the overall improvement in performance metrics by GEEES is modest, it provides enhanced cell representation learning which can be leveraged for more effective downstream analysis. Furthermore, our review of existing experimentally driven benchmark datasets uncovers their limited concordance, underscoring the necessity for new high-throughput experiments to validate gene-enhancer interactions inferred from single-cell data. AVAILABILITY AND IMPLEMENTATION https://github.com/keleslab/GEEES.
Collapse
Affiliation(s)
- Shuyang Chen
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Sündüz Keleş
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, United States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, United States
| |
Collapse
|
13
|
Firdaus Z, Li X. Epigenetic Explorations of Neurological Disorders, the Identification Methods, and Therapeutic Avenues. Int J Mol Sci 2024; 25:11658. [PMID: 39519209 PMCID: PMC11546397 DOI: 10.3390/ijms252111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Neurodegenerative disorders are major health concerns globally, especially in aging societies. The exploration of brain epigenomes, which consist of multiple forms of DNA methylation and covalent histone modifications, offers new and unanticipated perspective into the mechanisms of aging and neurodegenerative diseases. Initially, chromatin defects in the brain were thought to be static abnormalities from early development associated with rare genetic syndromes. However, it is now evident that mutations and the dysregulation of the epigenetic machinery extend across a broader spectrum, encompassing adult-onset neurodegenerative diseases. Hence, it is crucial to develop methodologies that can enhance epigenetic research. Several approaches have been created to investigate alterations in epigenetics on a spectrum of scales-ranging from low to high-with a particular focus on detecting DNA methylation and histone modifications. This article explores the burgeoning realm of neuroepigenetics, emphasizing its role in enhancing our mechanistic comprehension of neurodegenerative disorders and elucidating the predominant techniques employed for detecting modifications in the epigenome. Additionally, we ponder the potential influence of these advancements on shaping future therapeutic approaches.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Monteagudo-Sánchez A, Richard Albert J, Scarpa M, Noordermeer D, Greenberg MC. The impact of the embryonic DNA methylation program on CTCF-mediated genome regulation. Nucleic Acids Res 2024; 52:10934-10950. [PMID: 39180406 PMCID: PMC11472158 DOI: 10.1093/nar/gkae724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/23/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024] Open
Abstract
During mammalian embryogenesis, both the 5-cytosine DNA methylation (5meC) landscape and three dimensional (3D) chromatin architecture are profoundly remodeled during a process known as 'epigenetic reprogramming.' An understudied aspect of epigenetic reprogramming is how the 5meC flux, per se, affects the 3D genome. This is pertinent given the 5meC-sensitivity of DNA binding for a key regulator of chromosome folding: CTCF. We profiled the CTCF binding landscape using a mouse embryonic stem cell (ESC) differentiation protocol that models embryonic 5meC dynamics. Mouse ESCs lacking DNA methylation machinery are able to exit naive pluripotency, thus allowing for dissection of subtle effects of CTCF on gene expression. We performed CTCF HiChIP in both wild-type and mutant conditions to assess gained CTCF-CTCF contacts in the absence of 5meC. We performed H3K27ac HiChIP to determine the impact that ectopic CTCF binding has on cis-regulatory contacts. Using 5meC epigenome editing, we demonstrated that the methyl-mark is able to impair CTCF binding at select loci. Finally, a detailed dissection of the imprinted Zdbf2 locus showed how 5meC-antagonism of CTCF allows for proper gene regulation during differentiation. This work provides a comprehensive overview of how 5meC impacts the 3D genome in a relevant model for early embryonic events.
Collapse
Affiliation(s)
| | | | - Margherita Scarpa
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91998 Gif-sur-Yvette, France
| | | |
Collapse
|
15
|
Kumar Halder A, Agarwal A, Jodkowska K, Plewczynski D. A systematic analyses of different bioinformatics pipelines for genomic data and its impact on deep learning models for chromatin loop prediction. Brief Funct Genomics 2024; 23:538-548. [PMID: 38555493 DOI: 10.1093/bfgp/elae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Genomic data analysis has witnessed a surge in complexity and volume, primarily driven by the advent of high-throughput technologies. In particular, studying chromatin loops and structures has become pivotal in understanding gene regulation and genome organization. This systematic investigation explores the realm of specialized bioinformatics pipelines designed specifically for the analysis of chromatin loops and structures. Our investigation incorporates two protein (CTCF and Cohesin) factor-specific loop interaction datasets from six distinct pipelines, amassing a comprehensive collection of 36 diverse datasets. Through a meticulous review of existing literature, we offer a holistic perspective on the methodologies, tools and algorithms underpinning the analysis of this multifaceted genomic feature. We illuminate the vast array of approaches deployed, encompassing pivotal aspects such as data preparation pipeline, preprocessing, statistical features and modelling techniques. Beyond this, we rigorously assess the strengths and limitations inherent in these bioinformatics pipelines, shedding light on the interplay between data quality and the performance of deep learning models, ultimately advancing our comprehension of genomic intricacies.
Collapse
Affiliation(s)
- Anup Kumar Halder
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Abhishek Agarwal
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Karolina Jodkowska
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
16
|
Su C, Lee D, Jin P, Zhang J. Cell-type-specific mapping of enhancers and target genes from single-cell multimodal data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614814. [PMID: 39386519 PMCID: PMC11463474 DOI: 10.1101/2024.09.24.614814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Mapping enhancers and target genes in disease-related cell types has provided critical insights into the functional mechanisms of genetic variants identified by genome-wide association studies (GWAS). However, most existing analyses rely on bulk data or cultured cell lines, which may fail to identify cell-type-specific enhancers and target genes. Recently, single-cell multimodal data measuring both gene expression and chromatin accessibility within the same cells have enabled the inference of enhancer-gene pairs in a cell-type-specific and context-specific manner. However, this task is challenged by the data's high sparsity, sequencing depth variation, and the computational burden of analyzing a large number of enhancer-gene pairs. To address these challenges, we propose scMultiMap, a statistical method that infers enhancer-gene association from sparse multimodal counts using a joint latent-variable model. It adjusts for technical confounding, permits fast moment-based estimation and provides analytically derived p -values. In systematic analyses of blood and brain data, scMultiMap shows appropriate type I error control, high statistical power with greater reproducibility across independent datasets and stronger consistency with orthogonal data modalities. Meanwhile, its computational cost is less than 1% of existing methods. When applied to single-cell multimodal data from postmortem brain samples from Alzheimer's disease (AD) patients and controls, scMultiMap gave the highest heritability enrichment in microglia and revealed new insights into the regulatory mechanisms of AD GWAS variants in microglia.
Collapse
Affiliation(s)
- Chang Su
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Dongsoo Lee
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jingfei Zhang
- Information Systems and Operations Management, Emory University, Atlanta, GA, USA
| |
Collapse
|
17
|
Zhong J, O’Brien A, Patel M, Eiser D, Mobaraki M, Collins I, Wang L, Guo K, TruongVo T, Jermusyk A, O’Neill M, Dill CD, Wells AD, Leonard ME, Pippin JA, Grant SF, Zhang T, Andresson T, Connelly KE, Shi J, Arda HE, Hoskins JW, Amundadottir LT. Large-scale multi-omic analysis identifies noncoding somatic driver mutations and nominates ZFP36L2 as a driver gene for pancreatic ductal adenocarcinoma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.22.24314165. [PMID: 39371173 PMCID: PMC11451821 DOI: 10.1101/2024.09.22.24314165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Identification of somatic driver mutations in the noncoding genome remains challenging. To comprehensively characterize noncoding driver mutations for pancreatic ductal adenocarcinoma (PDAC), we first created genome-scale maps of accessible chromatin regions (ACRs) and histone modification marks (HMMs) in pancreatic cell lines and purified pancreatic acinar and duct cells. Integration with whole-genome mutation calls from 506 PDACs revealed 314 ACRs/HMMs significantly enriched with 3,614 noncoding somatic mutations (NCSMs). Functional assessment using massively parallel reporter assays (MPRA) identified 178 NCSMs impacting reporter activity (19.45% of those tested). Focused luciferase validation confirmed negative effects on gene regulatory activity for NCSMs near CDKN2A and ZFP36L2. For the latter, CRISPR interference (CRISPRi) further identified ZFP36L2 as a target gene (16.0 - 24.0% reduced expression, P = 0.023-0.0047) with disrupted KLF9 binding likely mediating the effect. Our integrative approach provides a catalog of potentially functional noncoding driver mutations and nominates ZFP36L2 as a PDAC driver gene.
Collapse
Affiliation(s)
- Jun Zhong
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Aidan O’Brien
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, UK
| | - Minal Patel
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Daina Eiser
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael Mobaraki
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Irene Collins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Li Wang
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Konnie Guo
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - ThucNhi TruongVo
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ashley Jermusyk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Maura O’Neill
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Courtney D. Dill
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michelle E. Leonard
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - James A. Pippin
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan F.A. Grant
- Division of Human Genetics and Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA; Department of Genetics, Department of Pediatrics, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, Philadelphia, PA, USA
| | - Tongwu Zhang
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Katelyn E. Connelly
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jianxin Shi
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - H. Efsun Arda
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jason W. Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Laufey T. Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
18
|
Gutierrez Fugón OJ, Sharifi O, Heath N, Soto DC, Gomez JA, Yasui DH, Mendiola AJP, O’Geen H, Beitnere U, Tomkova M, Haghani V, Dillon G, Segal DJ, LaSalle JM. Integration of CTCF loops, methylome, and transcriptome in differentiating LUHMES as a model for imprinting dynamics of the 15q11-q13 locus in human neurons. Hum Mol Genet 2024; 33:1711-1725. [PMID: 39045627 PMCID: PMC11413648 DOI: 10.1093/hmg/ddae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Human cell line models, including the neuronal precursor line LUHMES, are important for investigating developmental transcriptional dynamics within imprinted regions, particularly the 15q11-q13 Angelman (AS) and Prader-Willi (PWS) syndrome locus. AS results from loss of maternal UBE3A in neurons, where the paternal allele is silenced by a convergent antisense transcript UBE3A-ATS, a lncRNA that terminates at PWAR1 in non-neurons. qRT-PCR analysis confirmed the exclusive and progressive increase in UBE3A-ATS in differentiating LUHMES neurons, validating their use for studying UBE3A silencing. Genome-wide transcriptome analyses revealed changes to 11 834 genes during neuronal differentiation, including the upregulation of most genes within the 15q11-q13 locus. To identify dynamic changes in chromatin loops linked to transcriptional activity, we performed a HiChIP validated by 4C, which identified two neuron-specific CTCF loops between MAGEL2-SNRPN and PWAR1-UBE3A. To determine if allele-specific differentially methylated regions (DMR) may be associated with CTCF loop anchors, whole genome long-read nanopore sequencing was performed. We identified a paternally hypomethylated DMR near the SNRPN upstream loop anchor exclusive to neurons and a paternally hypermethylated DMR near the PWAR1 CTCF anchor exclusive to undifferentiated cells, consistent with increases in neuronal transcription. Additionally, DMRs near CTCF loop anchors were observed in both cell types, indicative of allele-specific differences in chromatin loops regulating imprinted transcription. These results provide an integrated view of the 15q11-q13 epigenetic landscape during LUHMES neuronal differentiation, underscoring the complex interplay of transcription, chromatin looping, and DNA methylation. They also provide insights for future therapeutic approaches for AS and PWS.
Collapse
Affiliation(s)
- Orangel J Gutierrez Fugón
- Genome Center, Department of Biochemistry and Molecular Medicine, University of California Davis, 451 Health Sciences Dr., Davis, CA 95616, United States
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 1275 Med Science Dr, Davis, CA 95616, United States
| | - Osman Sharifi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 1275 Med Science Dr, Davis, CA 95616, United States
| | - Nicholas Heath
- Genome Center, Department of Biochemistry and Molecular Medicine, University of California Davis, 451 Health Sciences Dr., Davis, CA 95616, United States
| | - Daniela C Soto
- Genome Center, Department of Biochemistry and Molecular Medicine, University of California Davis, 451 Health Sciences Dr., Davis, CA 95616, United States
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, 757 Westwood Plaza #4, Los Angeles, CA 90095, United States
| | - J Antonio Gomez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 1275 Med Science Dr, Davis, CA 95616, United States
- Department of Natural Science, Seaver College, Pepperdine University, 24255 Pacific Coast Hwy, Malibu, CA 90263, United States
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 1275 Med Science Dr, Davis, CA 95616, United States
| | - Aron Judd P Mendiola
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 1275 Med Science Dr, Davis, CA 95616, United States
| | - Henriette O’Geen
- Genome Center, Department of Biochemistry and Molecular Medicine, University of California Davis, 451 Health Sciences Dr., Davis, CA 95616, United States
| | - Ulrika Beitnere
- Genome Center, Department of Biochemistry and Molecular Medicine, University of California Davis, 451 Health Sciences Dr., Davis, CA 95616, United States
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Marketa Tomkova
- Genome Center, Department of Biochemistry and Molecular Medicine, University of California Davis, 451 Health Sciences Dr., Davis, CA 95616, United States
- Ludwig Cancer Research Center, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Viktoria Haghani
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 1275 Med Science Dr, Davis, CA 95616, United States
| | - Greg Dillon
- Genetics and Neurodevelopmental Disorders Unit, Biogen, 225 Binney Street Cambridge, MA 02142 United States
| | - David J Segal
- Genome Center, Department of Biochemistry and Molecular Medicine, University of California Davis, 451 Health Sciences Dr., Davis, CA 95616, United States
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 1275 Med Science Dr, Davis, CA 95616, United States
| |
Collapse
|
19
|
Bhattacharyya S, Ay F. Identifying genetic variants associated with chromatin looping and genome function. Nat Commun 2024; 15:8174. [PMID: 39289357 PMCID: PMC11408621 DOI: 10.1038/s41467-024-52296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
Here we present a comprehensive HiChIP dataset on naïve CD4 T cells (nCD4) from 30 donors and identify QTLs that associate with genotype-dependent and/or allele-specific variation of HiChIP contacts defining loops between active regulatory regions (iQTLs). We observe a substantial overlap between iQTLs and previously defined eQTLs and histone QTLs, and an enrichment for fine-mapped QTLs and GWAS variants. Furthermore, we describe a distinct subset of nCD4 iQTLs, for which the significant variation of chromatin contacts in nCD4 are translated into significant eQTL trends in CD4 T cell memory subsets. Finally, we define connectivity-QTLs as iQTLs that are significantly associated with concordant genotype-dependent changes in chromatin contacts over a broad genomic region (e.g., GWAS SNP in the RNASET2 locus). Our results demonstrate the importance of chromatin contacts as a complementary modality for QTL mapping and their power in identifying previously uncharacterized QTLs linked to cell-specific gene expression and connectivity.
Collapse
Affiliation(s)
| | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Perlman BS, Burget N, Zhou Y, Schwartz GW, Petrovic J, Modrusan Z, Faryabi RB. Enhancer-promoter hubs organize transcriptional networks promoting oncogenesis and drug resistance. Nat Commun 2024; 15:8070. [PMID: 39277592 PMCID: PMC11401928 DOI: 10.1038/s41467-024-52375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 09/04/2024] [Indexed: 09/17/2024] Open
Abstract
Recent advances in high-resolution mapping of spatial interactions among regulatory elements support the existence of complex topological assemblies of enhancers and promoters known as enhancer-promoter hubs or cliques. Yet, organization principles of these multi-interacting enhancer-promoter hubs and their potential role in regulating gene expression in cancer remain unclear. Here, we systematically identify enhancer-promoter hubs in breast cancer, lymphoma, and leukemia. We find that highly interacting enhancer-promoter hubs form at key oncogenes and lineage-associated transcription factors potentially promoting oncogenesis of these diverse cancer types. Genomic and optical mapping of interactions among enhancer and promoter elements further show that topological alterations in hubs coincide with transcriptional changes underlying acquired resistance to targeted therapy in T cell leukemia and B cell lymphoma. Together, our findings suggest that enhancer-promoter hubs are dynamic and heterogeneous topological assemblies with the potential to control gene expression circuits promoting oncogenesis and drug resistance.
Collapse
Affiliation(s)
- Brent S Perlman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, USA
| | - Noah Burget
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, USA
| | - Yeqiao Zhou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, USA
| | - Gregory W Schwartz
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jelena Petrovic
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, USA
| | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, USA
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
21
|
Wang L, Baek S, Prasad G, Wildenthal J, Guo K, Sturgill D, Truongvo T, Char E, Pegoraro G, McKinnon K, Hoskins JW, Amundadottir LT, Arda HE. Predictive Prioritization of Enhancers Associated with Pancreas Disease Risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611794. [PMID: 39314336 PMCID: PMC11418953 DOI: 10.1101/2024.09.07.611794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Genetic and epigenetic variations in regulatory enhancer elements increase susceptibility to a range of pathologies. Despite recent advances, linking enhancer elements to target genes and predicting transcriptional outcomes of enhancer dysfunction remain significant challenges. Using 3D chromatin conformation assays, we generated an extensive enhancer interaction dataset for the human pancreas, encompassing more than 20 donors and five major cell types, including both exocrine and endocrine compartments. We employed a network approach to parse chromatin interactions into enhancer-promoter tree models, facilitating a quantitative, genome-wide analysis of enhancer connectivity. With these tree models, we developed a machine learning algorithm to estimate the impact of enhancer perturbations on cell type-specific gene expression in the human pancreas. Orthogonal to our computational approach, we perturbed enhancer function in primary human pancreas cells using CRISPR interference and quantified the effects at the single-cell level through RNA FISH coupled with high-throughput imaging. Our enhancer tree models enabled the annotation of common germline risk variants associated with pancreas diseases, linking them to putative target genes in specific cell types. For pancreatic ductal adenocarcinoma, we found a stronger enrichment of disease susceptibility variants within acinar cell regulatory elements, despite ductal cells historically being assumed as the primary cell-of-origin. Our integrative approach-combining cell type-specific enhancer-promoter interaction mapping, computational models, and single-cell enhancer perturbation assays-produced a robust resource for studying the genetic basis of pancreas disorders.
Collapse
Affiliation(s)
- Li Wang
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gauri Prasad
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Wildenthal
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Konnie Guo
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Sturgill
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thucnhi Truongvo
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erin Char
- Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gianluca Pegoraro
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine McKinnon
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Jason W. Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laufey T. Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - H. Efsun Arda
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Flynn SM, Dhir S, Herka K, Doyle C, Melidis L, Simeone A, Hui WWI, Araujo Tavares RDC, Schoenfelder S, Tannahill D, Balasubramanian S. Improved simultaneous mapping of epigenetic features and 3D chromatin structure via ViCAR. Genome Biol 2024; 25:237. [PMID: 39227991 PMCID: PMC11370281 DOI: 10.1186/s13059-024-03377-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024] Open
Abstract
Methods to measure chromatin contacts at genomic regions bound by histone modifications or proteins are important tools to investigate chromatin organization. However, such methods do not capture the possible involvement of other epigenomic features such as G-quadruplex DNA secondary structures (G4s). To bridge this gap, we introduce ViCAR (viewpoint HiCAR), for the direct antibody-based capture of chromatin interactions at folded G4s. Through ViCAR, we showcase the first G4-3D interaction landscape. Using histone marks, we also demonstrate how ViCAR improves on earlier approaches yielding increased signal-to-noise. ViCAR is a practical and powerful tool to explore epigenetic marks and 3D genome interactomes.
Collapse
Affiliation(s)
- Sean M Flynn
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Somdutta Dhir
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Krzysztof Herka
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Colm Doyle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Larry Melidis
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Angela Simeone
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Winnie W I Hui
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | | | | | - David Tannahill
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK.
| |
Collapse
|
23
|
Schlegel L, Bhardwaj R, Shahryary Y, Demirtürk D, Marand A, Schmitz R, Johannes F. GenomicLinks: deep learning predictions of 3D chromatin interactions in the maize genome. NAR Genom Bioinform 2024; 6:lqae123. [PMID: 39318505 PMCID: PMC11420838 DOI: 10.1093/nargab/lqae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/25/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Gene regulation in eukaryotes is partly shaped by the 3D organization of chromatin within the cell nucleus. Distal interactions between cis-regulatory elements and their target genes are widespread, and many causal loci underlying heritable agricultural traits have been mapped to distal non-coding elements. The biology underlying chromatin loop formation in plants is poorly understood. Dissecting the sequence features that mediate distal interactions is an important step toward identifying putative molecular mechanisms. Here, we trained GenomicLinks, a deep learning model, to identify DNA sequence features predictive of 3D chromatin interactions in maize. We found that the presence of binding motifs of specific transcription factor classes, especially bHLH, is predictive of chromatin interaction specificities. Using an in silico mutagenesis approach we show the removal of these motifs from loop anchors leads to reduced interaction probabilities. We were able to validate these predictions with single-cell co-accessibility data from different maize genotypes that harbor natural substitutions in these TF binding motifs. GenomicLinks is currently implemented as an open-source web tool, which should facilitate its wider use in the plant research community.
Collapse
Affiliation(s)
- Luca Schlegel
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Rohan Bhardwaj
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Yadollah Shahryary
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Defne Demirtürk
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Alexandre P Marand
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Frank Johannes
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| |
Collapse
|
24
|
Liu W, Zhong W, Giusti-Rodríguez P, Jiang Z, Wang GW, Sun H, Hu M, Li Y. SnapHiC-G: identifying long-range enhancer-promoter interactions from single-cell Hi-C data via a global background model. Brief Bioinform 2024; 25:bbae426. [PMID: 39222061 PMCID: PMC11367764 DOI: 10.1093/bib/bbae426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/05/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Harnessing the power of single-cell genomics technologies, single-cell Hi-C (scHi-C) and its derived technologies provide powerful tools to measure spatial proximity between regulatory elements and their target genes in individual cells. Using a global background model, we propose SnapHiC-G, a computational method, to identify long-range enhancer-promoter interactions from scHi-C data. We applied SnapHiC-G to scHi-C datasets generated from mouse embryonic stem cells and human brain cortical cells. SnapHiC-G achieved high sensitivity in identifying long-range enhancer-promoter interactions. Moreover, SnapHiC-G can identify putative target genes for noncoding genome-wide association study (GWAS) variants, and the genetic heritability of neuropsychiatric diseases is enriched for single-nucleotide polymorphisms (SNPs) within SnapHiC-G-identified interactions in a cell-type-specific manner. In sum, SnapHiC-G is a powerful tool for characterizing cell-type-specific enhancer-promoter interactions from complex tissues and can facilitate the discovery of chromatin interactions important for gene regulation in biologically relevant cell types.
Collapse
Affiliation(s)
- Weifang Liu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599, United States
| | - Wujuan Zhong
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., 126 East Lincoln Ave, Rahway, New Jersey 07065, United States
| | - Paola Giusti-Rodríguez
- Department of Psychiatry, University of Florida, 1149 Newel Dr., Gainesville, FL 32611, United States
| | - Zhiyun Jiang
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, United States
| | - Geoffery W Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599, United States
| | - Huaigu Sun
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, United States
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44196, United States
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599, United States
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, United States
- Department of Computer Science, University of North Carolina at Chapel Hill, 201 S. Columbia St, Chapel Hill, NC 27599, United States
| |
Collapse
|
25
|
Tsiakanikas P, Athanasopoulou K, Darioti IA, Agiassoti VT, Theocharis S, Scorilas A, Adamopoulos PG. Beyond the Chromosome: Recent Developments in Decoding the Significance of Extrachromosomal Circular DNA (eccDNA) in Human Malignancies. Life (Basel) 2024; 14:922. [PMID: 39202666 PMCID: PMC11355349 DOI: 10.3390/life14080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a form of a circular double-stranded DNA that exists independently of conventional chromosomes. eccDNA exhibits a broad and random distribution across eukaryotic cells and has been associated with tumor-related properties due to its ability to harbor the complete gene information of oncogenes. The complex and multifaceted mechanisms underlying eccDNA formation include pathways such as DNA damage repair, breakage-fusion-bridge (BFB) mechanisms, chromothripsis, and cell apoptosis. Of note, eccDNA plays a pivotal role in tumor development, genetic heterogeneity, and therapeutic resistance. The high copy number and transcriptional activity of oncogenes carried by eccDNA contribute to the accelerated growth of tumors. Notably, the amplification of oncogenes on eccDNA is implicated in the malignant progression of cancer cells. The improvement of high-throughput sequencing techniques has greatly enhanced our knowledge of eccDNA by allowing for a detailed examination of its genetic structures and functions. However, we still lack a comprehensive and efficient annotation for eccDNA, while challenges persist in the study and understanding of the functional role of eccDNA, emphasizing the need for the development of robust methodologies. The potential clinical applications of eccDNA, such as its role as a measurable biomarker or therapeutic target in diseases, particularly within the spectrum of human malignancies, is a promising field for future research. In conclusion, eccDNA represents a quite dynamic and multifunctional genetic entity with far-reaching implications in cancer pathogenesis and beyond. Further research is essential to unravel the molecular pathways of eccDNA formation, elucidate its functional roles, and explore its clinical applications. Addressing these aspects is crucial for advancing our understanding of genomic instability and developing novel strategies for tailored therapeutics, especially in cancer.
Collapse
Affiliation(s)
- Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Konstantina Athanasopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Ioanna A. Darioti
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Vasiliki Taxiarchoula Agiassoti
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece; (V.T.A.)
| | - Stamatis Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece; (V.T.A.)
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Panagiotis G. Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
26
|
Sakellaropoulos T, Do C, Jiang G, Cova G, Meyn P, Dimartino D, Ramaswami S, Heguy A, Tsirigos A, Skok JA. MethNet: a robust approach to identify regulatory hubs and their distal targets from cancer data. Nat Commun 2024; 15:6027. [PMID: 39025865 PMCID: PMC11258126 DOI: 10.1038/s41467-024-50380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Aberrations in the capacity of DNA/chromatin modifiers and transcription factors to bind non-coding regions can lead to changes in gene regulation and impact disease phenotypes. However, identifying distal regulatory elements and connecting them with their target genes remains challenging. Here, we present MethNet, a pipeline that integrates large-scale DNA methylation and gene expression data across multiple cancers, to uncover cis regulatory elements (CREs) in a 1 Mb region around every promoter in the genome. MethNet identifies clusters of highly ranked CREs, referred to as 'hubs', which contribute to the regulation of multiple genes and significantly affect patient survival. Promoter-capture Hi-C confirmed that highly ranked associations involve physical interactions between CREs and their gene targets, and CRISPR interference based single-cell RNA Perturb-seq validated the functional impact of CREs. Thus, MethNet-identified CREs represent a valuable resource for unraveling complex mechanisms underlying gene expression, and for prioritizing the verification of predicted non-coding disease hotspots.
Collapse
Affiliation(s)
- Theodore Sakellaropoulos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Catherine Do
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Guimei Jiang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Giulia Cova
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Peter Meyn
- Genome Technology Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Dacia Dimartino
- Genome Technology Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Sitharam Ramaswami
- Genome Technology Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Adriana Heguy
- Genome Technology Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
- Applied Bioinformatics Laboratories, Office of Science & Research, NYU Grossman School of Medicine, New York, NY, USA.
| | - Jane A Skok
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
27
|
Sim N, Carter JM, Deka K, Tan BKT, Sim Y, Tan SM, Li Y. TWEAK/Fn14 signalling driven super-enhancer reprogramming promotes pro-metastatic metabolic rewiring in triple-negative breast cancer. Nat Commun 2024; 15:5638. [PMID: 38965263 PMCID: PMC11224303 DOI: 10.1038/s41467-024-50071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive breast cancer subtype suffering from limited targeted treatment options. Following recent reports correlating Fibroblast growth factor-inducible 14 (Fn14) receptor overexpression in Estrogen Receptor (ER)-negative breast cancers with metastatic events, we show that Fn14 is specifically overexpressed in TNBC patients and associated with poor survival. We demonstrate that constitutive Fn14 signalling rewires the transcriptomic and epigenomic landscape of TNBC, leading to enhanced tumour growth and metastasis. We further illustrate that such mechanisms activate TNBC-specific super enhancers (SE) to drive the transcriptional activation of cancer dependency genes via chromatin looping. In particular, we uncover the SE-driven upregulation of Nicotinamide phosphoribosyltransferase (NAMPT), which promotes NAD+ and ATP metabolic reprogramming critical for filopodia formation and metastasis. Collectively, our study details the complex mechanistic link between TWEAK/Fn14 signalling and TNBC metastasis, which reveals several vulnerabilities which could be pursued for the targeted treatment of TNBC patients.
Collapse
Affiliation(s)
- Nicholas Sim
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Benita Kiat Tee Tan
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
- SingHealth Duke-NUS Breast Centre, Singapore, Singapore
| | - Yirong Sim
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
- SingHealth Duke-NUS Breast Centre, Singapore, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
28
|
Perlman BS, Burget N, Zhou Y, Schwartz GW, Petrovic J, Modrusan Z, Faryabi RB. Enhancer-promoter hubs organize transcriptional networks promoting oncogenesis and drug resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601745. [PMID: 39005446 PMCID: PMC11244972 DOI: 10.1101/2024.07.02.601745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Recent advances in high-resolution mapping of spatial interactions among regulatory elements support the existence of complex topological assemblies of enhancers and promoters known as enhancer-promoter hubs or cliques. Yet, organization principles of these multi-interacting enhancer-promoter hubs and their potential role in regulating gene expression in cancer remains unclear. Here, we systematically identified enhancer-promoter hubs in breast cancer, lymphoma, and leukemia. We found that highly interacting enhancer-promoter hubs form at key oncogenes and lineage-associated transcription factors potentially promoting oncogenesis of these diverse cancer types. Genomic and optical mapping of interactions among enhancer and promoter elements further showed that topological alterations in hubs coincide with transcriptional changes underlying acquired resistance to targeted therapy in T cell leukemia and B cell lymphoma. Together, our findings suggest that enhancer-promoter hubs are dynamic and heterogeneous topological assemblies with the potential to control gene expression circuits promoting oncogenesis and drug resistance.
Collapse
|
29
|
Honnell V, Sweeney S, Norrie J, Parks M, Ramirez C, Jannu AJ, Xu B, Teubner B, Lee AY, Bell C, Dyer MA. Evolutionary conservation of VSX2 super-enhancer modules in retinal development. Development 2024; 151:dev202435. [PMID: 38994775 PMCID: PMC11266796 DOI: 10.1242/dev.202435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/04/2024] [Indexed: 07/13/2024]
Abstract
Super-enhancers (SEs) are expansive regions of genomic DNA that regulate the expression of genes involved in cell identity and cell fate. We recently identified developmental stage- and cell type-specific modules within the murine Vsx2 SE. Here, we show that the human VSX2 SE modules have similar developmental stage- and cell type-specific activity in reporter gene assays. By inserting the human sequence of one VSX2 SE module into a mouse with microphthalmia, eye size was rescued. To understand the function of these SE modules during human retinal development, we deleted individual modules in human embryonic stem cells and generated retinal organoids. Deleting one module results in small organoids, recapitulating the small-eyed phenotype of mice with microphthalmia, while deletion of the other module led to disruptions in bipolar neuron development. This prototypical SE serves as a model for understanding developmental stage- and cell type-specific effects of neurogenic transcription factors with complex expression patterns. Moreover, by elucidating the gene regulatory mechanisms, we can begin to examine how dysregulation of these mechanisms contributes to phenotypic diversity and disease.
Collapse
Affiliation(s)
- Victoria Honnell
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shannon Sweeney
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jackie Norrie
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Madison Parks
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cody Ramirez
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Asha Jacob Jannu
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brett Teubner
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ah Young Lee
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Claire Bell
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michael A. Dyer
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
30
|
Mian Y, Wang L, Keikhosravi A, Guo K, Misteli T, Arda HE, Finn EH. Cell type- and transcription-independent spatial proximity between enhancers and promoters. Mol Biol Cell 2024; 35:ar96. [PMID: 38717453 PMCID: PMC11244156 DOI: 10.1091/mbc.e24-02-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Cell type-specific enhancers are critically important for lineage specification. The mechanisms that determine cell-type specificity of enhancer activity, however, are not fully understood. Most current models for how enhancers function invoke physical proximity between enhancer elements and their target genes. Here, we use an imaging-based approach to examine the spatial relationship of cell type-specific enhancers and their target genes with single-cell resolution. Using high-throughput microscopy, we measure the spatial distance from target promoters to their cell type-specific active and inactive enhancers in individual pancreatic cells derived from distinct lineages. We find increased proximity of all promoter-enhancer pairs relative to non-enhancer pairs separated by similar genomic distances. Strikingly, spatial proximity between enhancers and target genes was unrelated to tissue-specific enhancer activity. Furthermore, promoter-enhancer proximity did not correlate with the expression status of target genes. Our results suggest that promoter-enhancer pairs exist in a distinctive chromatin environment but that genome folding is not a universal driver of cell-type specificity in enhancer function.
Collapse
Affiliation(s)
- Yasmine Mian
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Li Wang
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Adib Keikhosravi
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Konnie Guo
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - H. Efsun Arda
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Elizabeth H. Finn
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104
| |
Collapse
|
31
|
Dareng EO, Coetzee SG, Tyrer JP, Peng PC, Rosenow W, Chen S, Davis BD, Dezem FS, Seo JH, Nameki R, Reyes AL, Aben KKH, Anton-Culver H, Antonenkova NN, Aravantinos G, Bandera EV, Beane Freeman LE, Beckmann MW, Beeghly-Fadiel A, Benitez J, Bernardini MQ, Bjorge L, Black A, Bogdanova NV, Bolton KL, Brenton JD, Budzilowska A, Butzow R, Cai H, Campbell I, Cannioto R, Chang-Claude J, Chanock SJ, Chen K, Chenevix-Trench G, Chiew YE, Cook LS, DeFazio A, Dennis J, Doherty JA, Dörk T, du Bois A, Dürst M, Eccles DM, Ene G, Fasching PA, Flanagan JM, Fortner RT, Fostira F, Gentry-Maharaj A, Giles GG, Goodman MT, Gronwald J, Haiman CA, Håkansson N, Heitz F, Hildebrandt MAT, Høgdall E, Høgdall CK, Huang RY, Jensen A, Jones ME, Kang D, Karlan BY, Karnezis AN, Kelemen LE, Kennedy CJ, Khusnutdinova EK, Kiemeney LA, Kjaer SK, Kupryjanczyk J, Labrie M, Lambrechts D, Larson MC, Le ND, Lester J, Li L, Lubiński J, Lush M, Marks JR, Matsuo K, May T, McLaughlin JR, McNeish IA, Menon U, Missmer S, Modugno F, Moffitt M, Monteiro AN, Moysich KB, Narod SA, Nguyen-Dumont T, Odunsi K, Olsson H, Onland-Moret NC, Park SK, Pejovic T, Permuth JB, Piskorz A, Prokofyeva D, Riggan MJ, Risch HA, Rodríguez-Antona C, Rossing MA, Sandler DP, Setiawan VW, Shan K, Song H, Southey MC, Steed H, Sutphen R, Swerdlow AJ, Teo SH, Terry KL, Thompson PJ, Vestrheim Thomsen LC, Titus L, Trabert B, Travis R, Tworoger SS, Valen E, Van Nieuwenhuysen E, Edwards DV, Vierkant RA, Webb PM, Weinberg CR, Weise RM, Wentzensen N, White E, Winham SJ, Wolk A, Woo YL, Wu AH, Yan L, Yannoukakos D, Zeinomar N, Zheng W, Ziogas A, Berchuck A, Goode EL, Huntsman DG, Pearce CL, Ramus SJ, Sellers TA, Freedman ML, Lawrenson K, Schildkraut JM, Hazelett D, Plummer JT, Kar S, Jones MR, Pharoah PDP, Gayther SA. Integrative multi-omics analyses to identify the genetic and functional mechanisms underlying ovarian cancer risk regions. Am J Hum Genet 2024; 111:1061-1083. [PMID: 38723632 PMCID: PMC11179261 DOI: 10.1016/j.ajhg.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024] Open
Abstract
To identify credible causal risk variants (CCVs) associated with different histotypes of epithelial ovarian cancer (EOC), we performed genome-wide association analysis for 470,825 genotyped and 10,163,797 imputed SNPs in 25,981 EOC cases and 105,724 controls of European origin. We identified five histotype-specific EOC risk regions (p value <5 × 10-8) and confirmed previously reported associations for 27 risk regions. Conditional analyses identified an additional 11 signals independent of the primary signal at six risk regions (p value <10-5). Fine mapping identified 4,008 CCVs in these regions, of which 1,452 CCVs were located in ovarian cancer-related chromatin marks with significant enrichment in active enhancers, active promoters, and active regions for CCVs from each EOC histotype. Transcriptome-wide association and colocalization analyses across histotypes using tissue-specific and cross-tissue datasets identified 86 candidate susceptibility genes in known EOC risk regions and 32 genes in 23 additional genomic regions that may represent novel EOC risk loci (false discovery rate <0.05). Finally, by integrating genome-wide HiChIP interactome analysis with transcriptome-wide association study (TWAS), variant effect predictor, transcription factor ChIP-seq, and motifbreakR data, we identified candidate gene-CCV interactions at each locus. This included risk loci where TWAS identified one or more candidate susceptibility genes (e.g., HOXD-AS2, HOXD8, and HOXD3 at 2q31) and other loci where no candidate gene was identified (e.g., MYC and PVT1 at 8q24) by TWAS. In summary, this study describes a functional framework and provides a greater understanding of the biological significance of risk alleles and candidate gene targets at EOC susceptibility loci identified by a genome-wide association study.
Collapse
Affiliation(s)
- Eileen O Dareng
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Simon G Coetzee
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Pei-Chen Peng
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Will Rosenow
- 3Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Stephanie Chen
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brian D Davis
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Felipe Segato Dezem
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Robbin Nameki
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alberto L Reyes
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Katja K H Aben
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Netherlands Comprehensive Cancer Organisation, Utrecht, the Netherlands
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California, Irvine, Irvine, CA, USA
| | - Natalia N Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | | | - Elisa V Bandera
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Javier Benitez
- Human Genetics Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Marcus Q Bernardini
- Division of Gynecologic Oncology, University Health Network, Princess Margaret Hospital, Toronto, ON, Canada
| | - Line Bjorge
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway; Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Natalia V Bogdanova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus; Department of Radiation Oncology, Hannover Medical School, Hannover, Germany; Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Kelly L Bolton
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO, USA
| | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Agnieszka Budzilowska
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Ralf Butzow
- Department of Pathology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ian Campbell
- Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Rikki Cannioto
- Cancer Pathology & Prevention, Division of Cancer Prevention and Population Sciences, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Kexin Chen
- Department of Epidemiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Yoke-Eng Chiew
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia
| | - Linda S Cook
- Epidemiology, School of Public Health, University of Colorado, Aurora, CO, USA; Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia; The Daffodil Centre, a joint venture with Cancer Council NSW, The University of Sydney, Sydney, NSW, Australia
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jennifer A Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Andreas du Bois
- Department of Gynecology and Gynecological Oncology; HSK, Dr. Horst-Schmidt Klinik, Wiesbaden, Wiesbaden, Germany; Department of Gynecology and Gynecologic Oncology, Evangelische Kliniken Essen-Mitte (KEM), Essen, Germany
| | - Matthias Dürst
- Department of Gynaecology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Gabrielle Ene
- Division of Gynecologic Oncology, University Health Network, Princess Margaret Hospital, Toronto, ON, Canada
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - James M Flanagan
- Division of Cancer and Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Marc T Goodman
- Cancer Prevention and Control Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Niclas Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Florian Heitz
- Department of Gynecology and Gynecological Oncology; HSK, Dr. Horst-Schmidt Klinik, Wiesbaden, Wiesbaden, Germany; Department of Gynecology and Gynecologic Oncology, Evangelische Kliniken Essen-Mitte (KEM), Essen, Germany; Center for Pathology, Evangelische Kliniken Essen-Mitte, Essen, Germany
| | | | - Estrid Høgdall
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Claus K Høgdall
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ruea-Yea Huang
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Allan Jensen
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Michael E Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Beth Y Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Anthony N Karnezis
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Linda E Kelemen
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Catherine J Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia; Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Lambertus A Kiemeney
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne K Kjaer
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jolanta Kupryjanczyk
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Marilyne Labrie
- Department of Immunology and Cell Biology, FMSS - Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Nhu D Le
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Jenny Lester
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Lian Li
- Department of Epidemiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jeffrey R Marks
- Department of Surgery, Duke University Hospital, Durham, NC, USA
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan; Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taymaa May
- Division of Gynecologic Oncology, University Health Network, Princess Margaret Hospital, Toronto, ON, Canada
| | - John R McLaughlin
- Public Health Ontario, Samuel Lunenfeld Research Institute, Toronto, ON, Canada
| | - Iain A McNeish
- Division of Cancer and Ovarian Cancer Action Research Centre, Department Surgery & Cancer, Imperial College London, London, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Stacey Missmer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francesmary Modugno
- Women's Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Melissa Moffitt
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Steven A Narod
- Women's College Research Institute, University of Toronto, Toronto, ON, Canada
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kunle Odunsi
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA; Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Håkan Olsson
- Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Utrecht, UMC Utrecht, Utrecht, the Netherlands
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University, Seoul, Korea; Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Tanja Pejovic
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jennifer B Permuth
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Anna Piskorz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Darya Prokofyeva
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Marjorie J Riggan
- Department of Gynecologic Oncology, Duke University Hospital, Durham, NC, USA
| | - Harvey A Risch
- Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Cristina Rodríguez-Antona
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Mary Anne Rossing
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - V Wendy Setiawan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kang Shan
- Department of Obstetrics and Gynaecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Honglin Song
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada; Section of Gynecologic Oncology Surgery, Alberta Health Services, North Zone, Edmonton, AB, Canada
| | - Rebecca Sutphen
- Epidemiology Center, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia; Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kathryn L Terry
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gyneoclogy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pamela J Thompson
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Liv Cecilie Vestrheim Thomsen
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway; Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Linda Titus
- Muskie School of Public Service, University of Southern Maine, Portland, ME, USA
| | - Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ruth Travis
- Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | - Shelley S Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ellen Valen
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway; Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Els Van Nieuwenhuysen
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Leuven Cancer Institute, Leuven, Belgium
| | - Digna Velez Edwards
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Department of Biomedical Sciences, Women's Health Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert A Vierkant
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Penelope M Webb
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Rayna Matsuno Weise
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Emily White
- Department of Epidemiology, University of Washington, Seattle, WA, USA; Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stacey J Winham
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Yin-Ling Woo
- Department of Obstetrics and Gynaecology, University of Malaya Medical Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Li Yan
- Department of Molecular Biology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Nur Zeinomar
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Argyrios Ziogas
- Department of Medicine, Genetic Epidemiology Research Institute, University of California, Irvine, Irvine, CA, USA
| | - Andrew Berchuck
- Department of Gynecologic Oncology, Duke University Hospital, Durham, NC, USA
| | - Ellen L Goode
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - David G Huntsman
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Celeste L Pearce
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA; Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Susan J Ramus
- School of Women's and Children's Health, Faculty of Medicine and Health, University of NSW Sydney, Sydney, NSW, Australia; Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, NSW, Australia
| | | | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kate Lawrenson
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joellen M Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dennis Hazelett
- Samuel Oschin Comprehensive Cancer Institute, The Center for Bioinformatics and Functional Biology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jasmine T Plummer
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Section of Translational Epidemiology, Division of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Michelle R Jones
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Zhu T, Okabe A, Usui G, Fujiki R, Komiyama D, Huang KK, Seki M, Fukuyo M, Abe H, Ning M, Okada T, Minami M, Matsumoto M, Fan Q, Rahmutulla B, Hoshii T, Tan P, Morikawa T, Ushiku T, Kaneda A. Integrated enhancer regulatory network by enhancer-promoter looping in gastric cancer. NAR Cancer 2024; 6:zcae020. [PMID: 38720882 PMCID: PMC11077903 DOI: 10.1093/narcan/zcae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Enhancer cis-regulatory elements play critical roles in gene regulation at many stages of cell growth. Enhancers in cancer cells also regulate the transcription of oncogenes. In this study, we performed a comprehensive analysis of long-range chromatin interactions, histone modifications, chromatin accessibility and expression in two gastric cancer (GC) cell lines compared to normal gastric epithelial cells. We found that GC-specific enhancers marked by histone modifications can activate a population of genes, including some oncogenes, by interacting with their proximal promoters. In addition, motif analysis of enhancer-promoter interacting enhancers showed that GC-specific transcription factors are enriched. Among them, we found that MYB is crucial for GC cell growth and activated by the enhancer with an enhancer-promoter loop and TCF7 upregulation. Clinical GC samples showed epigenetic activation of enhancers at the MYB locus and significant upregulation of TCF7 and MYB, regardless of molecular GC subtype and clinicopathological factors. Single-cell RNA sequencing of gastric mucosa with intestinal metaplasia showed high expression of TCF7 and MYB in intestinal stem cells. When we inactivated the loop-forming enhancer at the MYB locus using CRISPR interference (dCas9-KRAB), GC cell growth was significantly inhibited. In conclusion, we identified MYB as an oncogene activated by a loop-forming enhancer and contributing to GC cell growth.
Collapse
Affiliation(s)
- Tianhui Zhu
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Health and Disease Omics Center, Chiba University, Chiba 260-8670, Japan
| | - Genki Usui
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryoji Fujiki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Daichi Komiyama
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kie Kyon Huang
- Program in Cancer and Stem Cell Biology, Duke–NUS Medical School, Singapore 169857, Singapore
| | - Motoaki Seki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Meng Ning
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tomoka Okada
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Mizuki Minami
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Makoto Matsumoto
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Qin Fan
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Takayuki Hoshii
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke–NUS Medical School, Singapore 169857, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138632, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Teppei Morikawa
- Department of Diagnostic Pathology, NTT Medical Center Tokyo, Tokyo 141-8625, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Health and Disease Omics Center, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
33
|
Sayeed K, Parameswaran S, Beucler MJ, Edsall LE, VonHandorf A, Crowther A, Donmez O, Hass M, Richards S, Forney C, Wright J, Leong MML, Murray-Nerger LA, Gewurz BE, Kaufman KM, Harley JB, Zhao B, Miller WE, Kottyan LC, Weirauch MT. Human cytomegalovirus infection coopts chromatin organization to diminish TEAD1 transcription factor activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588762. [PMID: 38645179 PMCID: PMC11030363 DOI: 10.1101/2024.04.12.588762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Human cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hours after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity. We confirm extensive concordant loss of TEAD1 binding, active H3K27ac histone marks, and chromatin looping interactions upon infection. Our data position TEAD1 at the top of a hierarchy involving multiple altered important developmental pathways. HCMV infection reduces TEAD1 activity through four distinct mechanisms: closing of TEAD1-bound chromatin, reduction of YAP1 and phosphorylated YAP1 levels, reduction of TEAD1 transcript and protein levels, and alteration of TEAD1 exon-6 usage. Altered TEAD1-based mechanisms are highly enriched at genetic risk loci associated with eye and ear development, providing mechanistic insight into HCMV's established roles in these processes.
Collapse
Affiliation(s)
- Khund Sayeed
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew J. Beucler
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Lee E. Edsall
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Andrew VonHandorf
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Audrey Crowther
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Omer Donmez
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew Hass
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Scott Richards
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jay Wright
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Merrin Man Long Leong
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Laura A. Murray-Nerger
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Program in Virology, Harvard Medical School, Boston, MA, 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Ben E. Gewurz
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kenneth M. Kaufman
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Research Service, Cincinnati VA Medical Center, Cincinnati, OH 45229, USA
| | - John B. Harley
- Research Service, Cincinnati VA Medical Center, Cincinnati, OH 45229, USA
| | - Bo Zhao
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - William E. Miller
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Leah C. Kottyan
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew T. Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
34
|
D'haene E, López-Soriano V, Martínez-García PM, Kalayanamontri S, Rey AD, Sousa-Ortega A, Naranjo S, Van de Sompele S, Vantomme L, Mahieu Q, Vergult S, Neto A, Gómez-Skarmeta JL, Martínez-Morales JR, Bauwens M, Tena JJ, De Baere E. Comparative 3D genome analysis between neural retina and retinal pigment epithelium reveals differential cis-regulatory interactions at retinal disease loci. Genome Biol 2024; 25:123. [PMID: 38760655 PMCID: PMC11100165 DOI: 10.1186/s13059-024-03250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/17/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Vision depends on the interplay between photoreceptor cells of the neural retina and the underlying retinal pigment epithelium (RPE). Most genes involved in inherited retinal diseases display specific spatiotemporal expression within these interconnected retinal components through the local recruitment of cis-regulatory elements (CREs) in 3D nuclear space. RESULTS To understand the role of differential chromatin architecture in establishing tissue-specific expression at inherited retinal disease loci, we mapped genome-wide chromatin interactions using in situ Hi-C and H3K4me3 HiChIP on neural retina and RPE/choroid from human adult donor eyes. We observed chromatin looping between active promoters and 32,425 and 8060 candidate CREs in the neural retina and RPE/choroid, respectively. A comparative 3D genome analysis between these two retinal tissues revealed that 56% of 290 known inherited retinal disease genes were marked by differential chromatin interactions. One of these was ABCA4, which is implicated in the most common autosomal recessive inherited retinal disease. We zoomed in on retina- and RPE-specific cis-regulatory interactions at the ABCA4 locus using high-resolution UMI-4C. Integration with bulk and single-cell epigenomic datasets and in vivo enhancer assays in zebrafish revealed tissue-specific CREs interacting with ABCA4. CONCLUSIONS Through comparative 3D genome mapping, based on genome-wide, promoter-centric, and locus-specific assays of human neural retina and RPE, we have shown that gene regulation at key inherited retinal disease loci is likely mediated by tissue-specific chromatin interactions. These findings do not only provide insight into tissue-specific regulatory landscapes at retinal disease loci, but also delineate the search space for non-coding genomic variation underlying unsolved inherited retinal diseases.
Collapse
Affiliation(s)
- Eva D'haene
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - Víctor López-Soriano
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Pedro Manuel Martínez-García
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Soraya Kalayanamontri
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Alfredo Dueñas Rey
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ana Sousa-Ortega
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Stijn Van de Sompele
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Lies Vantomme
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Quinten Mahieu
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sarah Vergult
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ana Neto
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Juan Ramón Martínez-Morales
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain.
| | - Miriam Bauwens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - Juan Jesús Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain.
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
35
|
Qi X, Zhang L, Zhao Q, Zhou P, Zhang S, Li J, Zheng Z, Xiang Y, Dai X, Jin Z, Jian Y, Li X, Fu L, Zhao S. Hi-Tag: a simple and efficient method for identifying protein-mediated long-range chromatin interactions with low cell numbers. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1027-1034. [PMID: 38280143 DOI: 10.1007/s11427-023-2441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/12/2023] [Indexed: 01/29/2024]
Abstract
Protein-mediated chromatin interactions can be revealed by coupling proximity-based ligation with chromatin immunoprecipitation. However, these techniques require complex experimental procedures and millions of cells per experiment, which limits their widespread application in life science research. Here, we develop a novel method, Hi-Tag, that identifies high-resolution, long-range chromatin interactions through transposase tagmentation and chromatin proximity ligation (with a phosphorothioate-modified linker). Hi-Tag can be implemented using as few as 100,000 cells, involving simple experimental procedures that can be completed within 1.5 days. Meanwhile, Hi-Tag is capable of using its own data to identify the binding sites of specific proteins, based on which, it can acquire accurate interaction information. Our results suggest that Hi-Tag has great potential for advancing chromatin interaction studies, particularly in the context of limited cell availability.
Collapse
Affiliation(s)
- Xiaolong Qi
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiulin Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Zhou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - SaiXian Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingjin Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuqing Zheng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Xiang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueting Dai
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhe Jin
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaobang Jian
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| | - Liangliang Fu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| |
Collapse
|
36
|
Reyna J, Fetter K, Ignacio R, Marandi CCA, Rao N, Jiang Z, Figueroa DS, Bhattacharyya S, Ay F. Loop Catalog: a comprehensive HiChIP database of human and mouse samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591349. [PMID: 38746164 PMCID: PMC11092438 DOI: 10.1101/2024.04.26.591349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
HiChIP enables cost-effective and high-resolution profiling of regulatory and structural loops. To leverage the increasing number of publicly available HiChIP datasets from diverse cell lines and primary cells, we developed the Loop Catalog (https://loopcatalog.lji.org), a web-based database featuring HiChIP loop calls for 1319 samples across 133 studies and 44 high-resolution Hi-C loop calls. We demonstrate its utility in interpreting fine-mapped GWAS variants (SNP-to-gene linking), in identifying enriched sequence motifs and motif pairs at loop anchors, and in network-level analysis of loops connecting regulatory elements (community detection). Our comprehensive catalog, spanning over 4M unique 5kb loops, along with the accompanying analysis modalities constitutes an important resource for studies in gene regulation and genome organization.
Collapse
Affiliation(s)
- Joaquin Reyna
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Bioinformatics and Systems Biology Graduate Program University of California, San Diego, La Jolla, CA 92093 USA
| | - Kyra Fetter
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093 USA
| | - Romeo Ignacio
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Cemil Can Ali Marandi
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Bioinformatics and Systems Biology Graduate Program University of California, San Diego, La Jolla, CA 92093 USA
| | - Nikhil Rao
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093 USA
| | - Zichen Jiang
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Department of Mathematics, University of California San Diego, La Jolla, CA 92093 USA
| | - Daniela Salgado Figueroa
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Bioinformatics and Systems Biology Graduate Program University of California, San Diego, La Jolla, CA 92093 USA
| | - Sourya Bhattacharyya
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Ferhat Ay
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Bioinformatics and Systems Biology Graduate Program University of California, San Diego, La Jolla, CA 92093 USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
37
|
Moreno-Oñate M, Gallardo-Fuentes L, Martínez-García PM, Naranjo S, Jiménez-Gancedo S, Tena JJ, Santos-Pereira JM. Rewiring of the epigenome and chromatin architecture by exogenously induced retinoic acid signaling during zebrafish embryonic development. Nucleic Acids Res 2024; 52:3682-3701. [PMID: 38321954 PMCID: PMC11040003 DOI: 10.1093/nar/gkae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
Retinoic acid (RA) is the ligand of RA receptors (RARs), transcription factors that bind to RA response elements. RA signaling is required for multiple processes during embryonic development, including body axis extension, hindbrain antero-posterior patterning and forelimb bud initiation. Although some RA target genes have been identified, little is known about the genome-wide effects of RA signaling during in vivo embryonic development. Here, we stimulate the RA pathway by treating zebrafish embryos with all-trans-RA (atRA) and use a combination of RNA-seq, ATAC-seq, ChIP-seq and HiChIP to gain insight into the molecular mechanisms by which exogenously induced RA signaling controls gene expression. We find that RA signaling is involved in anterior/posterior patterning, central nervous system development, and the transition from pluripotency to differentiation. AtRA treatment also alters chromatin accessibility during early development and promotes chromatin binding of RARαa and the RA targets Hoxb1b, Meis2b and Sox3, which cooperate in central nervous system development. Finally, we show that exogenous RA induces a rewiring of chromatin architecture, with alterations in chromatin 3D interactions involving target genes. Altogether, our findings identify genome-wide targets of RA signaling and provide a molecular mechanism by which developmental signaling pathways regulate target gene expression by altering chromatin topology.
Collapse
Affiliation(s)
- Marta Moreno-Oñate
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Lourdes Gallardo-Fuentes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Pedro M Martínez-García
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Sandra Jiménez-Gancedo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - José M Santos-Pereira
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
38
|
de Smith AJ, Wahlster L, Jeon S, Kachuri L, Black S, Langie J, Cato LD, Nakatsuka N, Chan TF, Xia G, Mazumder S, Yang W, Gazal S, Eng C, Hu D, Burchard EG, Ziv E, Metayer C, Mancuso N, Yang JJ, Ma X, Wiemels JL, Yu F, Chiang CWK, Sankaran VG. A noncoding regulatory variant in IKZF1 increases acute lymphoblastic leukemia risk in Hispanic/Latino children. CELL GENOMICS 2024; 4:100526. [PMID: 38537633 PMCID: PMC11019360 DOI: 10.1016/j.xgen.2024.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Hispanic/Latino children have the highest risk of acute lymphoblastic leukemia (ALL) in the US compared to other racial/ethnic groups, yet the basis of this remains incompletely understood. Through genetic fine-mapping analyses, we identified a new independent childhood ALL risk signal near IKZF1 in self-reported Hispanic/Latino individuals, but not in non-Hispanic White individuals, with an effect size of ∼1.44 (95% confidence interval = 1.33-1.55) and a risk allele frequency of ∼18% in Hispanic/Latino populations and <0.5% in European populations. This risk allele was positively associated with Indigenous American ancestry, showed evidence of selection in human history, and was associated with reduced IKZF1 expression. We identified a putative causal variant in a downstream enhancer that is most active in pro-B cells and interacts with the IKZF1 promoter. This variant disrupts IKZF1 autoregulation at this enhancer and results in reduced enhancer activity in B cell progenitors. Our study reveals a genetic basis for the increased ALL risk in Hispanic/Latino children.
Collapse
Affiliation(s)
- Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Soyoung Jeon
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Susan Black
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jalen Langie
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Liam D Cato
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Tsz-Fung Chan
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Guangze Xia
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Soumyaa Mazumder
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Steven Gazal
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Celeste Eng
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Biotherapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Donglei Hu
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Esteban González Burchard
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Biotherapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elad Ziv
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas Mancuso
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaomei Ma
- Yale School of Public Health, New Haven, CT 06520, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Fulong Yu
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
39
|
Ang DA, Carter JM, Deka K, Tan JHL, Zhou J, Chen Q, Chng WJ, Harmston N, Li Y. Aberrant non-canonical NF-κB signalling reprograms the epigenome landscape to drive oncogenic transcriptomes in multiple myeloma. Nat Commun 2024; 15:2513. [PMID: 38514625 PMCID: PMC10957915 DOI: 10.1038/s41467-024-46728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
In multiple myeloma, abnormal plasma cells establish oncogenic niches within the bone marrow by engaging the NF-κB pathway to nurture their survival while they accumulate pro-proliferative mutations. Under these conditions, many cases eventually develop genetic abnormalities endowing them with constitutive NF-κB activation. Here, we find that sustained NF-κB/p52 levels resulting from such mutations favours the recruitment of enhancers beyond the normal B-cell repertoire. Furthermore, through targeted disruption of p52, we characterise how such enhancers are complicit in the formation of super-enhancers and the establishment of cis-regulatory interactions with myeloma dependencies during constitutive activation of p52. Finally, we functionally validate the pathological impact of these cis-regulatory modules on cell and tumour phenotypes using in vitro and in vivo models, confirming RGS1 as a p52-dependent myeloma driver. We conclude that the divergent epigenomic reprogramming enforced by aberrant non-canonical NF-κB signalling potentiates transcriptional programs beneficial for multiple myeloma progression.
Collapse
Affiliation(s)
- Daniel A Ang
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Joel H L Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
- NUS Centre for Cancer Research, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
- NUS Centre for Cancer Research, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore
| | - Nathan Harmston
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
- Molecular Biosciences Division, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| |
Collapse
|
40
|
Chowdhury HMAM, Boult T, Oluwadare O. Comparative study on chromatin loop callers using Hi-C data reveals their effectiveness. BMC Bioinformatics 2024; 25:123. [PMID: 38515011 PMCID: PMC10958853 DOI: 10.1186/s12859-024-05713-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Chromosome is one of the most fundamental part of cell biology where DNA holds the hierarchical information. DNA compacts its size by forming loops, and these regions house various protein particles, including CTCF, SMC3, H3 histone. Numerous sequencing methods, such as Hi-C, ChIP-seq, and Micro-C, have been developed to investigate these properties. Utilizing these data, scientists have developed a variety of loop prediction techniques that have greatly improved their methods for characterizing loop prediction and related aspects. RESULTS In this study, we categorized 22 loop calling methods and conducted a comprehensive study of 11 of them. Additionally, we have provided detailed insights into the methodologies underlying these algorithms for loop detection, categorizing them into five distinct groups based on their fundamental approaches. Furthermore, we have included critical information such as resolution, input and output formats, and parameters. For this analysis, we utilized the GM12878 Hi-C datasets at 5 KB, 10 KB, 100 KB and 250 KB resolutions. Our evaluation criteria encompassed various factors, including memory usages, running time, sequencing depth, and recovery of protein-specific sites such as CTCF, H3K27ac, and RNAPII. CONCLUSION This analysis offers insights into the loop detection processes of each method, along with the strengths and weaknesses of each, enabling readers to effectively choose suitable methods for their datasets. We evaluate the capabilities of these tools and introduce a novel Biological, Consistency, and Computational robustness score ( B C C score ) to measure their overall robustness ensuring a comprehensive evaluation of their performance.
Collapse
Affiliation(s)
- H M A Mohit Chowdhury
- Department of Computer Science, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, CO, 80918, USA
| | - Terrance Boult
- Department of Computer Science, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, CO, 80918, USA
| | - Oluwatosin Oluwadare
- Department of Computer Science, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, CO, 80918, USA.
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
41
|
Tang L, Liao J, Hill MC, Hu J, Zhao Y, Ellinor P, Li M. MMCT-Loop: a mix model-based pipeline for calling targeted 3D chromatin loops. Nucleic Acids Res 2024; 52:e25. [PMID: 38281134 PMCID: PMC10954456 DOI: 10.1093/nar/gkae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 12/03/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024] Open
Abstract
Protein-specific Chromatin Conformation Capture (3C)-based technologies have become essential for identifying distal genomic interactions with critical roles in gene regulation. The standard techniques include Chromatin Interaction Analysis by Paired-End Tag (ChIA-PET), in situ Hi-C followed by chromatin immunoprecipitation (HiChIP) also known as PLAC-seq. To identify chromatin interactions from these data, a variety of computational methods have emerged. Although these state-of-art methods address many issues with loop calling, only few methods can fit different data types simultaneously, and the accuracy as well as the efficiency these approaches remains limited. Here we have generated a pipeline, MMCT-Loop, which ensures the accurate identification of strong loops as well as dynamic or weak loops through a mixed model. MMCT-Loop outperforms existing methods in accuracy, and the detected loops show higher activation functionality. To highlight the utility of MMCT-Loop, we applied it to conformational data derived from neural stem cell (NSCs) and uncovered several previously unidentified regulatory regions for key master regulators of stem cell identity. MMCT-Loop is an accurate and efficient loop caller for targeted conformation capture data, which supports raw data or pre-processed valid pairs as input, the output interactions are formatted and easily uploaded to a genome browser for visualization.
Collapse
Affiliation(s)
- Li Tang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jiaqi Liao
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Matthew C Hill
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
- Cardiovascular Disease Initiative, The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jiaxin Hu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Yichao Zhao
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
- Cardiovascular Disease Initiative, The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
42
|
Michelatti D, Beyes S, Bernardis C, Negri ML, Morelli L, Bediaga NG, Poli V, Fagnocchi L, Lago S, D'Annunzio S, Cona N, Gaspardo I, Bianchi A, Jovetic J, Gianesello M, Turdo A, D'Accardo C, Gaggianesi M, Dori M, Forcato M, Crispatzu G, Rada-Iglesias A, Sosa MS, Timmers HTM, Bicciato S, Todaro M, Tiberi L, Zippo A. Oncogenic enhancers prime quiescent metastatic cells to escape NK immune surveillance by eliciting transcriptional memory. Nat Commun 2024; 15:2198. [PMID: 38503727 PMCID: PMC10951355 DOI: 10.1038/s41467-024-46524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
Metastasis arises from disseminated tumour cells (DTCs) that are characterized by intrinsic phenotypic plasticity and the capability of seeding to secondary organs. DTCs can remain latent for years before giving rise to symptomatic overt metastasis. In this context, DTCs fluctuate between a quiescent and proliferative state in response to systemic and microenvironmental signals including immune-mediated surveillance. Despite its relevance, how intrinsic mechanisms sustain DTCs plasticity has not been addressed. By interrogating the epigenetic state of metastatic cells, we find that tumour progression is coupled with the activation of oncogenic enhancers that are organized in variable interconnected chromatin domains. This spatial chromatin context leads to the activation of a robust transcriptional response upon repeated exposure to retinoic acid (RA). We show that this adaptive mechanism sustains the quiescence of DTCs through the activation of the master regulator SOX9. Finally, we determine that RA-stimulated transcriptional memory increases the fitness of metastatic cells by supporting the escape of quiescent DTCs from NK-mediated immune surveillance. Overall, these findings highlight the contribution of oncogenic enhancers in establishing transcriptional memories as an adaptive mechanism to reinforce cancer dormancy and immune escape, thus amenable for therapeutic intervention.
Collapse
Affiliation(s)
- Daniela Michelatti
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Sven Beyes
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Chiara Bernardis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Maria Luce Negri
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Leonardo Morelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Naiara Garcia Bediaga
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
- The South Australian Immunogenomics Cancer Institute, Faculty of Medicine Nursing and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Vittoria Poli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
- Istituto Italiano di Tecnologia IIT, Milan, Italy
| | - Luca Fagnocchi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
- Department of Epigenetics Van Andel Institute, Grand Rapids, MI, USA
| | - Sara Lago
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Sarah D'Annunzio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Nicole Cona
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Ilaria Gaspardo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Aurora Bianchi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Jovana Jovetic
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Matteo Gianesello
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Martina Dori
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuliano Crispatzu
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H T Marc Timmers
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Luca Tiberi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Alessio Zippo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| |
Collapse
|
43
|
Suda K, Okabe A, Matsuo J, Chuang LSH, Li Y, Jangphattananont N, Mon NN, Myint KN, Yamamura A, So JBY, Voon DCC, Yang H, Yeoh KG, Kaneda A, Ito Y. Aberrant Upregulation of RUNX3 Activates Developmental Genes to Drive Metastasis in Gastric Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:279-292. [PMID: 38240752 PMCID: PMC10836196 DOI: 10.1158/2767-9764.crc-22-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/08/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Gastric cancer metastasis is a major cause of mortality worldwide. Inhibition of RUNX3 in gastric cancer cell lines reduced migration, invasion, and anchorage-independent growth in vitro. Following splenic inoculation, CRISPR-mediated RUNX3-knockout HGC-27 cells show suppression of xenograft growth and liver metastasis. We interrogated the potential of RUNX3 as a metastasis driver in gastric cancer by profiling its target genes. Transcriptomic analysis revealed strong involvement of RUNX3 in the regulation of multiple developmental pathways, consistent with the notion that Runt domain transcription factor (RUNX) family genes are master regulators of development. RUNX3 promoted "cell migration" and "extracellular matrix" programs, which are necessary for metastasis. Of note, we found pro-metastatic genes WNT5A, CD44, and VIM among the top differentially expressed genes in RUNX3 knockout versus control cells. Chromatin immunoprecipitation sequencing and HiChIP analyses revealed that RUNX3 bound to the enhancers and promoters of these genes, suggesting that they are under direct transcriptional control by RUNX3. We show that RUNX3 promoted metastasis in part through its upregulation of WNT5A to promote migration, invasion, and anchorage-independent growth in various malignancies. Our study therefore reveals the RUNX3-WNT5A axis as a key targetable mechanism for gastric cancer metastasis. SIGNIFICANCE Subversion of RUNX3 developmental gene targets to metastasis program indicates the oncogenic nature of inappropriate RUNX3 regulation in gastric cancer.
Collapse
Affiliation(s)
- Kazuto Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Junichi Matsuo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Ying Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Naing Naing Mon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Khine Nyein Myint
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Akihiro Yamamura
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jimmy Bok-Yan So
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dominic Chih-Cheng Voon
- Innovative Cancer Model Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Japan
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
44
|
Lack N, Altintas UB, Seo JH, Giambartolomei C, Ozturan D, Fortunato B, Nelson G, Goldman S, Adelman K, Hach F, Freedman M. Decoding the Epigenetics and Chromatin Loop Dynamics of Androgen Receptor-Mediated Transcription. RESEARCH SQUARE 2024:rs.3.rs-3854707. [PMID: 38352568 PMCID: PMC10862967 DOI: 10.21203/rs.3.rs-3854707/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Androgen receptor (AR)-mediated transcription plays a critical role in normal prostate development and prostate cancer growth. AR drives gene expression by binding to thousands of cis-regulatory elements (CRE) that loop to hundreds of target promoters. With multiple CREs interacting with a single promoter, it remains unclear how individual AR bound CREs contribute to gene expression. To characterize the involvement of these CREs, we investigated the AR-driven epigenetic and chromosomal chromatin looping changes. We collected a kinetic multi-omic dataset comprised of steady-state mRNA, chromatin accessibility, transcription factor binding, histone modifications, chromatin looping, and nascent RNA. Using an integrated regulatory network, we found that AR binding induces sequential changes in the epigenetic features at CREs, independent of gene expression. Further, we showed that binding of AR does not result in a substantial rewiring of chromatin loops, but instead increases the contact frequency of pre-existing loops to target promoters. Our results show that gene expression strongly correlates to the changes in contact frequency. We then proposed and experimentally validated an unbalanced multi-enhancer model where the impact on gene expression of AR-bound enhancers is heterogeneous, and is proportional to their contact frequency with target gene promoters. Overall, these findings provide new insight into AR-mediated gene expression upon acute androgen simulation and develop a mechanistic framework to investigate nuclear receptor mediated perturbations.
Collapse
|
45
|
Feng Y, Xie N, Inoue F, Fan S, Saskin J, Zhang C, Zhang F, Hansen MEB, Nyambo T, Mpoloka SW, Mokone GG, Fokunang C, Belay G, Njamnshi AK, Marks MS, Oancea E, Ahituv N, Tishkoff SA. Integrative functional genomic analyses identify genetic variants influencing skin pigmentation in Africans. Nat Genet 2024; 56:258-272. [PMID: 38200130 PMCID: PMC11005318 DOI: 10.1038/s41588-023-01626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Skin color is highly variable in Africans, yet little is known about the underlying molecular mechanism. Here we applied massively parallel reporter assays to screen 1,157 candidate variants influencing skin pigmentation in Africans and identified 165 single-nucleotide polymorphisms showing differential regulatory activities between alleles. We combine Hi-C, genome editing and melanin assays to identify regulatory elements for MFSD12, HMG20B, OCA2, MITF, LEF1, TRPS1, BLOC1S6 and CYB561A3 that impact melanin levels in vitro and modulate human skin color. We found that independent mutations in an OCA2 enhancer contribute to the evolution of human skin color diversity and detect signals of local adaptation at enhancers of MITF, LEF1 and TRPS1, which may contribute to the light skin color of Khoesan-speaking populations from Southern Africa. Additionally, we identified CYB561A3 as a novel pigmentation regulator that impacts genes involved in oxidative phosphorylation and melanogenesis. These results provide insights into the mechanisms underlying human skin color diversity and adaptive evolution.
Collapse
Affiliation(s)
- Yuanqing Feng
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ning Xie
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Shaohua Fan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Human Phenome Institute, School of Life Science, Fudan University, Shanghai, China
| | - Joshua Saskin
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Chao Zhang
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Fang Zhang
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew E B Hansen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Nyambo
- Department of Biochemistry and Molecular Biology, Hubert Kairuki Memorial University, Dar es Salaam, Tanzania
| | - Sununguko Wata Mpoloka
- Department of Biological Sciences, Faculty of Sciences, University of Botswana, Gaborone, Botswana
| | | | - Charles Fokunang
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
| | - Gurja Belay
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Alfred K Njamnshi
- Brain Research Africa Initiative (BRAIN); Neuroscience Lab, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Department of Neurology, Central Hospital Yaoundé, Yaoundé, Cameroon
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Elena Oancea
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Global Genomics and Health Equity, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Weidemann BJ, Marcheva B, Kobayashi M, Omura C, Newman MV, Kobayashi Y, Waldeck NJ, Perelis M, Lantier L, McGuinness OP, Ramsey KM, Stein RW, Bass J. Repression of latent NF-κB enhancers by PDX1 regulates β cell functional heterogeneity. Cell Metab 2024; 36:90-102.e7. [PMID: 38171340 PMCID: PMC10793877 DOI: 10.1016/j.cmet.2023.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 07/17/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Interactions between lineage-determining and activity-dependent transcription factors determine single-cell identity and function within multicellular tissues through incompletely known mechanisms. By assembling a single-cell atlas of chromatin state within human islets, we identified β cell subtypes governed by either high or low activity of the lineage-determining factor pancreatic duodenal homeobox-1 (PDX1). β cells with reduced PDX1 activity displayed increased chromatin accessibility at latent nuclear factor κB (NF-κB) enhancers. Pdx1 hypomorphic mice exhibited de-repression of NF-κB and impaired glucose tolerance at night. Three-dimensional analyses in tandem with chromatin immunoprecipitation (ChIP) sequencing revealed that PDX1 silences NF-κB at circadian and inflammatory enhancers through long-range chromatin contacts involving SIN3A. Conversely, Bmal1 ablation in β cells disrupted genome-wide PDX1 and NF-κB DNA binding. Finally, antagonizing the interleukin (IL)-1β receptor, an NF-κB target, improved insulin secretion in Pdx1 hypomorphic islets. Our studies reveal functional subtypes of single β cells defined by a gradient in PDX1 activity and identify NF-κB as a target for insulinotropic therapy.
Collapse
Affiliation(s)
- Benjamin J Weidemann
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mikoto Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marsha V Newman
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yumiko Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nathan J Waldeck
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Louise Lantier
- Vanderbilt-NIH Mouse Metabolic Phenotyping Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Owen P McGuinness
- Vanderbilt-NIH Mouse Metabolic Phenotyping Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Roland W Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
47
|
Murphy D, Salataj E, Di Giammartino DC, Rodriguez-Hernaez J, Kloetgen A, Garg V, Char E, Uyehara CM, Ee LS, Lee U, Stadtfeld M, Hadjantonakis AK, Tsirigos A, Polyzos A, Apostolou E. 3D Enhancer-promoter networks provide predictive features for gene expression and coregulation in early embryonic lineages. Nat Struct Mol Biol 2024; 31:125-140. [PMID: 38053013 PMCID: PMC10897904 DOI: 10.1038/s41594-023-01130-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/18/2023] [Indexed: 12/07/2023]
Abstract
Mammalian embryogenesis commences with two pivotal and binary cell fate decisions that give rise to three essential lineages: the trophectoderm, the epiblast and the primitive endoderm. Although key signaling pathways and transcription factors that control these early embryonic decisions have been identified, the non-coding regulatory elements through which transcriptional regulators enact these fates remain understudied. Here, we characterize, at a genome-wide scale, enhancer activity and 3D connectivity in embryo-derived stem cell lines that represent each of the early developmental fates. We observe extensive enhancer remodeling and fine-scale 3D chromatin rewiring among the three lineages, which strongly associate with transcriptional changes, although distinct groups of genes are irresponsive to topological changes. In each lineage, a high degree of connectivity, or 'hubness', positively correlates with levels of gene expression and enriches for cell-type specific and essential genes. Genes within 3D hubs also show a significantly stronger probability of coregulation across lineages compared to genes in linear proximity or within the same contact domains. By incorporating 3D chromatin features, we build a predictive model for transcriptional regulation (3D-HiChAT) that outperforms models using only 1D promoter or proximal variables to predict levels and cell-type specificity of gene expression. Using 3D-HiChAT, we identify, in silico, candidate functional enhancers and hubs in each cell lineage, and with CRISPRi experiments, we validate several enhancers that control gene expression in their respective lineages. Our study identifies 3D regulatory hubs associated with the earliest mammalian lineages and describes their relationship to gene expression and cell identity, providing a framework to comprehensively understand lineage-specific transcriptional behaviors.
Collapse
Affiliation(s)
- Dylan Murphy
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Eralda Salataj
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Dafne Campigli Di Giammartino
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- 3D Chromatin Conformation and RNA Genomics Laboratory, Center for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Javier Rodriguez-Hernaez
- Department of Pathology, New York University Langone Health, New York, NY, USA
- Department of Medicine, New York University Langone Health, New York, NY, USA
- Applied Bioinformatics Laboratory, New York University Langone Health, New York, NY, USA
| | - Andreas Kloetgen
- Department of Pathology, New York University Langone Health, New York, NY, USA
- Department of Medicine, New York University Langone Health, New York, NY, USA
- Applied Bioinformatics Laboratory, New York University Langone Health, New York, NY, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Erin Char
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Christopher M Uyehara
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ly-Sha Ee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - UkJin Lee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Matthias Stadtfeld
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Langone Health, New York, NY, USA.
- Department of Medicine, New York University Langone Health, New York, NY, USA.
- Applied Bioinformatics Laboratory, New York University Langone Health, New York, NY, USA.
| | - Alexander Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
48
|
Ren R, Hua Y, Wang H. Protocol to capture transcription factor-mediated 3D chromatin interactions using affinity tag-based BL-HiChIP. STAR Protoc 2023; 4:102589. [PMID: 37738118 PMCID: PMC10519843 DOI: 10.1016/j.xpro.2023.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/26/2023] [Accepted: 09/01/2023] [Indexed: 09/24/2023] Open
Abstract
Pioneer transcription factors (TFs) can directly establish higher-order chromatin interactions to instruct gene transcription. Here, we present a protocol for capturing TF-mediated 3D chromatin interactions using affinity tag-based bridge linker (BL)-Hi-chromatin immunoprecipitation (HiChIP). We describe steps for constructing FLAG-tagged TF, performing BL-HiChIP, and preparing the library. We then detail procedures for sequencing, data analysis, and quality control. This protocol has potential applications in 3D chromatin analysis centered on any specific TF in any type of cells without the need of optimal antibodies. For complete details on the use and execution of this protocol, please refer to Ren et al. (2022).1.
Collapse
Affiliation(s)
- Ruimin Ren
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.
| | - Yao Hua
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Heng Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China.
| |
Collapse
|
49
|
Torre D, Fstkchyan YS, Ho JSY, Cheon Y, Patel RS, Degrace EJ, Mzoughi S, Schwarz M, Mohammed K, Seo JS, Romero-Bueno R, Demircioglu D, Hasson D, Tang W, Mahajani SU, Campisi L, Zheng S, Song WS, Wang YC, Shah H, Francoeur N, Soto J, Salfati Z, Weirauch MT, Warburton P, Beaumont K, Smith ML, Mulder L, Villalta SA, Kessenbrock K, Jang C, Lee D, De Rubeis S, Cobos I, Tam O, Hammell MG, Seldin M, Shi Y, Basu U, Sebastiano V, Byun M, Sebra R, Rosenberg BR, Benner C, Guccione E, Marazzi I. Nuclear RNA catabolism controls endogenous retroviruses, gene expression asymmetry, and dedifferentiation. Mol Cell 2023; 83:4255-4271.e9. [PMID: 37995687 PMCID: PMC10842741 DOI: 10.1016/j.molcel.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/28/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.
Collapse
Affiliation(s)
- Denis Torre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yesai S Fstkchyan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica Sook Yuin Ho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Youngseo Cheon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea; Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Roosheel S Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emma J Degrace
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Slim Mzoughi
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Megan Schwarz
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kevin Mohammed
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ji-Seon Seo
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Raquel Romero-Bueno
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weijing Tang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sameehan U Mahajani
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura Campisi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simin Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Won-Suk Song
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Ying-Chih Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hardik Shah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nancy Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Soto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zelda Salfati
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew T Weirauch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Peter Warburton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristin Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Lubbertus Mulder
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - S Armando Villalta
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, The Mindich Child Health and Development Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Inma Cobos
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oliver Tam
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Marcus Seldin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Yongsheng Shi
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA; Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Uttiya Basu
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Vittorio Sebastiano
- Institute for Stem Cell Biology and Regenerative Medicine and the Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Minji Byun
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chris Benner
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences and Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
50
|
Armaos A, Serra F, Núñez-Carpintero I, Seo JH, Baca SC, Gustincich S, Valencia A, Freedman ML, Cirillo D, Giambartolomei C, Tartaglia GG. The PENGUIN approach to reconstruct protein interactions at enhancer-promoter regions and its application to prostate cancer. Nat Commun 2023; 14:8084. [PMID: 38057321 PMCID: PMC10700545 DOI: 10.1038/s41467-023-43767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/18/2023] [Indexed: 12/08/2023] Open
Abstract
We introduce Promoter-Enhancer-Guided Interaction Networks (PENGUIN), a method for studying protein-protein interaction (PPI) networks within enhancer-promoter interactions. PENGUIN integrates H3K27ac-HiChIP data with tissue-specific PPIs to define enhancer-promoter PPI networks (EPINs). We validated PENGUIN using cancer (LNCaP) and benign (LHSAR) prostate cell lines. Our analysis detected EPIN clusters enriched with the architectural protein CTCF, a regulator of enhancer-promoter interactions. CTCF presence was coupled with the prevalence of prostate cancer (PrCa) single nucleotide polymorphisms (SNPs) within the same EPIN clusters, suggesting functional implications in PrCa. Within the EPINs displaying enrichments in both CTCF and PrCa SNPs, we also show enrichment in oncogenes. We substantiated our identified SNPs through CRISPR/Cas9 knockout and RNAi screens experiments. Here we show that PENGUIN provides insights into the intricate interplay between enhancer-promoter interactions and PPI networks, which are crucial for identifying key genes and potential intervention targets. A dedicated server is available at https://penguin.life.bsc.es/ .
Collapse
Affiliation(s)
- Alexandros Armaos
- Istituto Italiano di Tecnologia, CHT@Erzelli, Via Enrico Melen 83, Building B, 7th floor, 16152, Genova, Italy
| | - François Serra
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Ctra de Can Ruti, Camí de les Escoles, 08916, Badalona, Barcelona, Spain
| | | | - Ji-Heui Seo
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Sylvan C Baca
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Stefano Gustincich
- Istituto Italiano di Tecnologia, CHT@Erzelli, Via Enrico Melen 83, Building B, 7th floor, 16152, Genova, Italy
| | - Alfonso Valencia
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- ICREA - Institució Catalana de Recerca I Estudis Avançats, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Matthew L Freedman
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA, 02215, USA
- Eli and Edythe L. Broad Institute, 415 Main St., Cambridge, MA, 02142, USA
| | - Davide Cirillo
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain.
| | - Claudia Giambartolomei
- Istituto Italiano di Tecnologia, CHT@Erzelli, Via Enrico Melen 83, Building B, 7th floor, 16152, Genova, Italy.
- Health Data Science Centre, Human Technopole, Milan, Italy.
| | - Gian Gaetano Tartaglia
- Istituto Italiano di Tecnologia, CHT@Erzelli, Via Enrico Melen 83, Building B, 7th floor, 16152, Genova, Italy.
- ICREA - Institució Catalana de Recerca I Estudis Avançats, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
- Istituto Italiano di Tecnologia, CNLS@Sapienza, Viale Regina Elena, 00161, Rome, Italy.
| |
Collapse
|