1
|
Hutchens SED, Khurram I, Hurley LM. Solitude and serotonin: juvenile isolation alters the covariation between social behavior and cFos expression by serotonergic neurons. Front Neurosci 2024; 18:1446866. [PMID: 39502712 PMCID: PMC11535725 DOI: 10.3389/fnins.2024.1446866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024] Open
Abstract
Variation in the mutual responsiveness of social partners to each other can be reflected in behavioral suites that covary with neural activity in ways that track the salience or valence of interactions. Juvenile social isolation alters social behavior and neural activity during social interaction, but whether and how it alters the covariation between behavior and neural activity has not been as well explored. To address this issue, four classes of experimental subjects: isolated males, socially housed males, isolated females, and socially housed females, were paired with an opposite-sex social partner that had been socially housed. Social behaviors and c-Fos expression in the serotonergic dorsal raphe nucleus (DRN) were then measured in subjects following the social interactions. Relative to social housing, postweaning isolation led to a decrease in the density of neurons double-labeled for tryptophan hydroxylase and c-Fos in the dorsomedial subdivision of the DRN, regardless of sex. Vocal and non-vocal behaviors were also affected by isolation. In interactions with isolated males, both ultrasonic vocalization (USVs) and broadband vocalizations (squeaks) increased in conjunction with greater male investigation of females. Neural and behavioral measures also correlated with each other. In the isolated male group, the density of double-labeled neurons in the dorsomedial DRN was negatively correlated with USV production and positively correlated with a principal component of non-vocal behavior corresponding to greater defensive kicking by females and less investigation and mounting behavior. This correlation was reversed in direction for socially housed males, and for isolated males versus isolated females. These findings confirm that the dynamics of social interactions are reflected in c-Fos activation in the dorsomedial DRN, and suggest an altered responsiveness of serotonergic neurons to social interaction following social isolation in males, in parallel with an altered male response to female cues.
Collapse
Affiliation(s)
- Sarah E. D. Hutchens
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
| | - Izza Khurram
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
| | - Laura M. Hurley
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| |
Collapse
|
2
|
Wang WL, Liu JK, Sun YF, Liu XH, Ma YH, Gao XZ, Chen LM, Zhou ZH, Zhou HL. Interoception mediates the association between social support and sociability in patients with major depressive disorder. World J Psychiatry 2024; 14:1484-1494. [DOI: 10.5498/wjp.v14.i10.1484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 10/17/2024] Open
Abstract
BACKGROUND Interoception dysfunction has an important impact on the onset and development of major depressive disorder (MDD). Social support serves as a protective factor against MDD, and sociability also plays a significant role in this condition. These interconnected constructs-social support and sociability-play pivotal roles in MDD. However, no research on the mechanisms underlying the associations between social support and sociability, particularly the potential role of interoception, have been reported.
AIM To investigate the mediating effect of interoception between social support and social ability and to explore the independent role of social support in sociability.
METHODS The participants included 292 patients with MDD and 257 healthy controls (HCs). The patient health questionnaire 9, the multidimensional assessment of interoception awareness, version 2 (MAIA-2), the social support rating scale (SSRS), and the Texas social behavior inventory (TSBI) were used to assess depression, interoception, social support, and sociability, respectively. A mediation analysis model for the eight dimensions of interoception (noticing, not distracting, not worrying, attention regulation, emotional awareness, self-regulation, body listening, and trust), social support, and sociability were established to evaluate the mediating effects.
RESULTS A partial correlation analysis of eight dimensions of the MAIA-2, SSRS, and TSBI scores, with demographic data as control variables, revealed pairwise correlations between the SSRS score and both the MAIA-2 score and TSBI score. In the major depression (MD) group, the SSRS score had a positive direct effect on the TSBI score, while the scores for body listening, emotional awareness, self-regulation, and trust in the MAIA-2C had indirect effects on the TSBI score. In the HC group, the SSRS score had a positive direct effect on the TSBI score, and the scores for attention regulation, emotional awareness, self-regulation, and trust in the MAIA-2C had indirect effects on the TSBI score. The proportion of mediators in the MD group was lower than that in the HC group.
CONCLUSION Interoceptive awareness is a mediating factor in the association between social support and sociability in both HCs and depressed patients. Training in interoceptive awareness might not only help improve emotional regulation in depressed patients but also enhance their social skills and support networks.
Collapse
Affiliation(s)
- Wen-Liang Wang
- Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi 214151, Jiangsu Province, China
| | - Ji-Kang Liu
- Department of Psychiatry, The Affiliated Mental Health Center of Nanjing Medical University, Wuxi 214151, Jiangsu Province, China
| | - Yi-Fan Sun
- Department of Psychiatry, The Affiliated Mental Health Center of Nanjing Medical University, Wuxi 214151, Jiangsu Province, China
| | - Xiao-Hong Liu
- Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi 214151, Jiangsu Province, China
| | - Yu-Hang Ma
- Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi 214151, Jiangsu Province, China
| | - Xue-Zheng Gao
- Department of Psychiatry, The Affiliated Mental Health Center of Nanjing Medical University, Wuxi 214151, Jiangsu Province, China
| | - Li-Min Chen
- Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi 214151, Jiangsu Province, China
| | - Zhen-He Zhou
- Department of Psychiatry, The Affiliated Mental Health Center of Nanjing Medical University, Wuxi 214151, Jiangsu Province, China
| | - Hong-Liang Zhou
- Department of Psychology, The Affiliated Hospital of Jiangnan University, Wuxi 214151, Jiangsu Province, China
| |
Collapse
|
3
|
Zahedi E, Sadr SS, Sanaeierad A, Hosseini M, Roghani M. Acetyl-l-carnitine alleviates valproate-induced autism-like behaviors through attenuation of hippocampal mitochondrial dysregulation. Neuroscience 2024; 558:92-104. [PMID: 39168175 DOI: 10.1016/j.neuroscience.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/11/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
This study aimed to evaluate the potential benefits of acetyl-L-carnitine (ALCAR) in the context of valproate-induced autism. After prenatal exposure to valproate (VPA; 600 mg/kg, i.p.) on embryonic day 12.5, followed by ALCAR treatment (300 mg/kg on postnatal days 21-49, p.o.), assessment of oxidative stress, mitochondrial membrane potential (MMP), mitochondrial biogenesis, parvalbumin interneurons, and hippocampal volume was conducted. These assessments were carried out subsequent to the evaluation of autism-like behaviors. Hippocampal analysis of oxidative factors (reactive oxygen species and malondialdehyde) and antioxidants (superoxide dismutase, catalase, and glutathione) revealed a burden of oxidative stress in VPA rats. Additionally, mitochondrial biogenesis and MMP were elevated, while the number of parvalbumin interneurons decreased. These changes were accompanied by autism-like behaviors observed in the three-chamber maze, marble burring test, and Y-maze, as well as a learning deficit in the Barnes maze. In contrast, administrating ALCAR attenuated behavioral deficits, reduced oxidative stress, improved parvalbumin-positive neuronal population, and properly modified MMP and mitochondrial biogenesis. Collectively, our results indicate that oral administration of ALCAR ameliorates autism-like behaviors, partly through its targeting oxidative stress and mitochondrial biogenesis. This suggests that ALCAR may have potential benefits ASD managing.
Collapse
Affiliation(s)
- Elham Zahedi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ashkan Sanaeierad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marjan Hosseini
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
4
|
Fournier LA, Phadke RA, Salgado M, Brack A, Nocon JC, Bolshakova S, Grant JR, Padró Luna NM, Sen K, Cruz-Martín A. Overexpression of the schizophrenia risk gene C4 in PV cells drives sex-dependent behavioral deficits and circuit dysfunction. iScience 2024; 27:110800. [PMID: 39310747 PMCID: PMC11416532 DOI: 10.1016/j.isci.2024.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Fast-spiking parvalbumin (PV)-positive cells are key players in orchestrating pyramidal neuron activity, and their dysfunction is consistently observed in myriad brain diseases. To understand how immune complement pathway dysregulation in PV cells drives disease pathogenesis, we have developed a transgenic line that permits cell-type specific overexpression of the schizophrenia-associated C4 gene. We found that overexpression of mouse C4 (mC4) in PV cells causes sex-specific alterations in anxiety-like behavior and deficits in synaptic connectivity and excitability of PFC PV cells. Using a computational model, we demonstrated that these microcircuit deficits led to hyperactivity and disrupted neural communication. Finally, pan-neuronal overexpression of mC4 failed to evoke the same deficits in behavior as PV-specific mC4 overexpression, suggesting that perturbations of this neuroimmune gene in fast-spiking neurons are especially detrimental to circuits associated with anxiety-like behavior. Together, these results provide a causative link between C4 and the vulnerability of PV cells in brain disease.
Collapse
Affiliation(s)
- Luke A. Fournier
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Rhushikesh A. Phadke
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Maria Salgado
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Alison Brack
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Jian Carlo Nocon
- Neurophotonics Center, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Hearing Research Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sonia Bolshakova
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics MS Program, Boston University, Boston, MA, USA
| | - Jaylyn R. Grant
- Biological Sciences, Eastern Illinois University, Charleston, IL, USA
- The Summer Undergraduate Research Fellowship (SURF) Program, Boston University, Boston, MA, USA
| | - Nicole M. Padró Luna
- The Summer Undergraduate Research Fellowship (SURF) Program, Boston University, Boston, MA, USA
- Biology Department, College of Natural Sciences, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Kamal Sen
- Neurophotonics Center, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Hearing Research Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Alberto Cruz-Martín
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- NeuroTechnology Center (NTC), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Jin Y, Song D, Quan Z, Ni J, Qing H. The regulatory effect of the anterior cingulate cortex on helping behavior in juvenile social isolation model mice. Physiol Behav 2024; 287:114698. [PMID: 39306222 DOI: 10.1016/j.physbeh.2024.114698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Social isolation during adolescence negatively impacts the development of adult social behaviors. However, the exact link between social experiences during adolescence and social behaviors in adulthood is not fully understood. In the present study, we investigated how isolation during juvenility affects harm avoidance behavior in a mouse model of juvenile social isolation. We found that mice subjected to social isolation as juveniles display atypical harm avoidance behaviors and that neurons in the anterior cingulate cortex are involved in these abnormal behaviors. Furthermore, we discovered that the chemogenetic activation of anterior cingulate cortex pyramidal neurons can rescue impaired harm-avoidance behaviors in these mice. Our findings provide valuable insights into the potential mechanisms underlying the impact of social experiences on behavior and brain function. Understanding how social isolation during crucial developmental periods can lead to alterations in behavior opens up new avenues for exploring therapeutic interventions for neuropsychiatric disorders characterized by impaired prosocial behaviors.
Collapse
Affiliation(s)
- Yue Jin
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| |
Collapse
|
6
|
Ma D, Gu C. Discovering functional interactions among schizophrenia-risk genes by combining behavioral genetics with cell biology. Neurosci Biobehav Rev 2024; 167:105897. [PMID: 39278606 DOI: 10.1016/j.neubiorev.2024.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/26/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
Despite much progress in identifying risk genes for polygenic brain disorders, their core pathogenic mechanisms remain poorly understood. In particular, functions of many proteins encoded by schizophrenia risk genes appear diverse and unrelated, complicating the efforts to establish the causal relationship between genes and behavior. Using various mouse lines, recent studies indicate that alterations of parvalbumin-positive (PV+) GABAergic interneurons can lead to schizophrenia-like behavior. PV+ interneurons display fast spiking and contribute to excitation-inhibition balance and network oscillations via feedback and feedforward inhibition. Here, we first summarize different lines of genetically modified mice that display motor, cognitive, emotional, and social impairments used to model schizophrenia and related mental disorders. We highlight ten genes, encoding either a nuclear, cytosolic, or membrane protein. Next, we discuss their functional relationship in regulating fast spiking and other aspects of PV+ interneurons and in the context of other domains of schizophrenia. Future investigations combining behavioral genetics and cell biology should elucidate functional relationships among risk genes to identify the core pathogenic mechanisms underlying polygenic brain disorders.
Collapse
Affiliation(s)
- Di Ma
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Chen Gu
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Li DC, Hinton EA, Guo J, Knight KA, Sequeira MK, Wynne ME, Dighe NM, Gourley SL. Social experience in adolescence shapes prefrontal cortex structure and function in adulthood. Mol Psychiatry 2024; 29:2787-2798. [PMID: 38580810 DOI: 10.1038/s41380-024-02540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
During adolescence, the prefrontal cortex (PFC) undergoes dramatic reorganization. PFC development is profoundly influenced by the social environment, disruptions to which may prime the emergence of psychopathology across the lifespan. We investigated the neurobehavioral consequences of isolation experienced in adolescence in mice, and in particular, the long-term consequences that were detectable even despite normalization of the social milieu. Isolation produced biases toward habit-like behavior at the expense of flexible goal seeking, plus anhedonic-like reward deficits. Behavioral phenomena were accompanied by neuronal dendritic spine over-abundance and hyper-excitability in the ventromedial PFC (vmPFC), which was necessary for the expression of isolation-induced habits and sufficient to trigger behavioral inflexibility in socially reared controls. Isolation activated cytoskeletal regulatory pathways otherwise suppressed during adolescence, such that repression of constituent elements prevented long-term isolation-induced neurosequelae. Altogether, our findings unveil an adolescent critical period and multi-model mechanism by which social experiences facilitate prefrontal cortical maturation.
Collapse
Affiliation(s)
- Dan C Li
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
| | - Elizabeth A Hinton
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Jidong Guo
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Michelle K Sequeira
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Meghan E Wynne
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Niharika M Dighe
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Shannon L Gourley
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
8
|
Narita A, Asano H, Kudo H, Miyata S, Shutoh F, Miyoshi G. A novel quadrant spatial assay reveals environmental preference in mouse spontaneous and parental behaviors. Neurosci Res 2024:S0168-0102(24)00102-0. [PMID: 39134225 DOI: 10.1016/j.neures.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Environmental factors have well-documented impacts on brain development and mental health. Therefore, it is crucial to employ a reliable assay system to assess the spatial preference of model animals. In this study, we introduced an unbiased quadrant chamber assay system and discovered that parental pup-gathering behavior takes place in a very efficient manner. Furthermore, we found that test mice exhibited preferences for specific environments in both spontaneous and parental pup-gathering behavior contexts. Notably, the spatial preferences of autism spectrum disorder model animals were initially suppressed but later equalized during the spontaneous behavior assay, accompanied by increased time spent in the preferred chamber. In conclusion, our novel quadrant chamber assay system provides an ideal platform for investigating the spatial preference of mice, offering potential applications in studying environmental impacts and exploring neurodevelopmental and psychiatric disorder models.
Collapse
Affiliation(s)
- Aito Narita
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi city, Gunma 371-8511, Japan
| | - Hirofumi Asano
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi city, Gunma 371-8511, Japan
| | - Hayato Kudo
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi city, Gunma 371-8511, Japan
| | - Shigeo Miyata
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi city, Gunma 371-8511, Japan
| | - Fumihiro Shutoh
- Division of Informatics, Bioengineering and Bioscience, Maebashi Institute of Technology, 460-1 Kamisadori-machi, Maebashi city, Gunma 371-0816, Japan
| | - Goichi Miyoshi
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi city, Gunma 371-8511, Japan.
| |
Collapse
|
9
|
Medeiros D, Polepalli L, Li W, Pozzo-Miller L. Altered activity of mPFC pyramidal neurons and parvalbumin-expressing interneurons during social interactions in a Mecp2 mouse model for Rett syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606882. [PMID: 39149275 PMCID: PMC11326302 DOI: 10.1101/2024.08.06.606882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Social memory impairments in Mecp2 knockout (KO) mice result from altered neuronal activity in the monosynaptic projection from the ventral hippocampus (vHIP) to the medial prefrontal cortex (mPFC). The hippocampal network is hyperactive in this model for Rett syndrome, and such atypically heightened neuronal activity propagates to the mPFC through this monosynaptic projection, resulting in altered mPFC network activity and social memory deficits. However, the underlying mechanism of cellular dysfunction within this projection between vHIP pyramidal neurons (PYR) and mPFC PYRs and parvalbumin interneurons (PV-IN) resulting in social memory impairments in Mecp2 KO mice has yet to be elucidated. We confirmed social memory (but not sociability) deficits in Mecp2 KO mice using a new 4-chamber social memory arena, designed to minimize the impact of the tethering to optical fibers required for simultaneous in vivo fiber photometry of Ca2+-sensor signals during social interactions. mPFC PYRs of wildtype (WT) mice showed increases in Ca2+ signal amplitude during explorations of a novel toy mouse and interactions with both familiar and novel mice, while PYRs of Mecp2 KO mice showed smaller Ca2+ signals during interactions only with live mice. On the other hand, mPFC PV-INs of Mecp2 KO mice showed larger Ca2+ signals during interactions with a familiar cage-mate compared to those signals in PYRs, a difference absent in the WT mice. These observations suggest atypically heightened inhibition and impaired excitation in the mPFC network of Mecp2 KO mice during social interactions, potentially driving their deficit in social memory.
Collapse
Affiliation(s)
- Destynie Medeiros
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Likhitha Polepalli
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei Li
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
10
|
Leventhal MB, Morishita H. How childhood social isolation causes social dysfunction: deprivation or mismatch? Trends Cogn Sci 2024; 28:699-701. [PMID: 38839538 DOI: 10.1016/j.tics.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
There is a major gap in our understanding of how childhood social isolation causes adult social dysfunction. To stimulate future developmental mechanistic studies, we present two conceptual models which highlight that isolation can disrupt developmental events that are concurrent (social deprivation model) or subsequent (developmental mismatch model) to adverse experience.
Collapse
Affiliation(s)
- Michael B Leventhal
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
11
|
Walker H, Frost NA. Distinct transcriptional programs define a heterogeneous neuronal ensemble for social interaction. iScience 2024; 27:110355. [PMID: 39045099 PMCID: PMC11263963 DOI: 10.1016/j.isci.2024.110355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/01/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Social interactions are encoded by the coordinated activity of heterogeneous cell types within distributed brain regions including the medial prefrontal cortex (mPFC). However, our understanding of the cell types which comprise the social ensemble has been limited by available mouse lines and reliance on single marker genes. We identified differentially active neuronal populations during social interactions by quantifying immediate-early gene (IEG) expression using snRNA-sequencing. These studies revealed that distinct prefrontal neuron populations composed of heterogeneous cell types are activated by social interaction. Evaluation of IEG expression within these recruited neuronal populations revealed cell-type and region-specific programs, suggesting that reliance on a single molecular marker is insufficient to quantify activation across all cell types. Our findings provide a comprehensive description of cell-type specific transcriptional programs invoked by social interactions and reveal insights into the neuronal populations which compose the social ensemble.
Collapse
Affiliation(s)
- Hailee Walker
- University of Utah, Department of Neurology, Salt Lake City, UT 84132, USA
| | - Nicholas A. Frost
- University of Utah, Department of Neurology, Salt Lake City, UT 84132, USA
| |
Collapse
|
12
|
Mack NR, Bouras NN, Gao WJ. Prefrontal Regulation of Social Behavior and Related Deficits: Insights From Rodent Studies. Biol Psychiatry 2024; 96:85-94. [PMID: 38490368 DOI: 10.1016/j.biopsych.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
The prefrontal cortex (PFC) is well known as the executive center of the brain, combining internal states and goals to execute purposeful behavior, including social actions. With the advancement of tools for monitoring and manipulating neural activity in rodents, substantial progress has been made in understanding the specific cell types and neural circuits within the PFC that are essential for processing social cues and influencing social behaviors. Furthermore, combining these tools with translationally relevant behavioral paradigms has also provided novel insights into the PFC neural mechanisms that may contribute to social deficits in various psychiatric disorders. This review highlights findings from the past decade that have shed light on the PFC cell types and neural circuits that support social information processing and distinct aspects of social behavior, including social interactions, social memory, and social dominance. We also explore how the PFC contributes to social deficits in rodents induced by social isolation, social fear conditioning, and social status loss. These studies provide evidence that the PFC uses both overlapping and unique neural mechanisms to support distinct components of social cognition. Furthermore, specific PFC neural mechanisms drive social deficits induced by different contexts.
Collapse
Affiliation(s)
- Nancy R Mack
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| | - Nadia N Bouras
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
13
|
Sadakata M, Fujii K, Kaneko R, Hosoya E, Sugimoto H, Kawabata-Iwakawa R, Kasamatsu T, Hongo S, Koshidaka Y, Takase A, Iijima T, Takao K, Sadakata T. Maternal immunoglobulin G affects brain development of mouse offspring. J Neuroinflammation 2024; 21:114. [PMID: 38698428 PMCID: PMC11064405 DOI: 10.1186/s12974-024-03100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/14/2024] [Indexed: 05/05/2024] Open
Abstract
Maternal immunoglobulin (Ig)G is present in breast milk and has been shown to contribute to the development of the immune system in infants. In contrast, maternal IgG has no known effect on early childhood brain development. We found maternal IgG immunoreactivity in microglia, which are resident macrophages of the central nervous system of the pup brain, peaking at postnatal one week. Strong IgG immunoreactivity was observed in microglia in the corpus callosum and cerebellar white matter. IgG stimulation of primary cultured microglia activated the type I interferon feedback loop by Syk. Analysis of neonatal Fc receptor knockout (FcRn KO) mice that could not take up IgG from their mothers revealed abnormalities in the proliferation and/or survival of microglia, oligodendrocytes, and some types of interneurons. Moreover, FcRn KO mice also exhibited abnormalities in social behavior and lower locomotor activity in their home cages. Thus, changes in the mother-derived IgG levels affect brain development in offsprings.
Collapse
Affiliation(s)
- Mizuki Sadakata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.
| | - Kazuki Fujii
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Ryosuke Kaneko
- Medical Genetics Research Center, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Emi Hosoya
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Hisako Sugimoto
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Tetsuhiro Kasamatsu
- Department of Medical Technology and Clinical Engineering, Gunma University of Health and Walfare, Maebashi, Gunma, 371-0823, Japan
| | - Shoko Hongo
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Yumie Koshidaka
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Akinori Takase
- Medical Science College Office, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Takatoshi Iijima
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Tetsushi Sadakata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
14
|
Yokoyama R, Ago Y, Igarashi H, Higuchi M, Tanuma M, Shimazaki Y, Kawai T, Seiriki K, Hayashida M, Yamaguchi S, Tanaka H, Nakazawa T, Okamura Y, Hashimoto K, Kasai A, Hashimoto H. (R)-ketamine restores anterior insular cortex activity and cognitive deficits in social isolation-reared mice. Mol Psychiatry 2024; 29:1406-1416. [PMID: 38388704 PMCID: PMC11189812 DOI: 10.1038/s41380-024-02419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Chronic social isolation increases the risk of mental health problems, including cognitive impairments and depression. While subanesthetic ketamine is considered effective for cognitive impairments in patients with depression, the neural mechanisms underlying its effects are not well understood. Here we identified unique activation of the anterior insular cortex (aIC) as a characteristic feature in brain-wide regions of mice reared in social isolation and treated with (R)-ketamine, a ketamine enantiomer. Using fiber photometry recording on freely moving mice, we found that social isolation attenuates aIC neuronal activation upon social contact and that (R)-ketamine, but not (S)-ketamine, is able to counteracts this reduction. (R)-ketamine facilitated social cognition in social isolation-reared mice during the social memory test. aIC inactivation offset the effect of (R)-ketamine on social memory. Our results suggest that (R)-ketamine has promising potential as an effective intervention for social cognitive deficits by restoring aIC function.
Collapse
Affiliation(s)
- Rei Yokoyama
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan
| | - Hisato Igarashi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Momoko Higuchi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masato Tanuma
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuto Shimazaki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takafumi Kawai
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Misuzu Hayashida
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shun Yamaguchi
- Department of Morphological Neuroscience, Graduate School of Medicine, Gifu University, Gifu, Gifu, 501-1194, Japan
- Center for One Medicine Innovative Translational Research, Institute for Advanced Study, Gifu University, Gifu, Gifu, 501-1194, Japan
| | - Hirokazu Tanaka
- Faculty of Information Technology, Tokyo City University, Setagaya, Tokyo, 158-8557, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, 156-8502, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chuo, Chiba, 260-8670, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- Systems Brain Science Project, Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka, 565-0871, Japan.
- Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, 565-0871, Japan.
- Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
15
|
Komori T, Okamura K, Ikehara M, Yamamuro K, Endo N, Okumura K, Yamauchi T, Ikawa D, Ouji-Sageshima N, Toritsuka M, Takada R, Kayashima Y, Ishida R, Mori Y, Kamikawa K, Noriyama Y, Nishi Y, Ito T, Saito Y, Nishi M, Kishimoto T, Tanaka KF, Hiroi N, Makinodan M. Brain-derived neurotrophic factor from microglia regulates neuronal development in the medial prefrontal cortex and its associated social behavior. Mol Psychiatry 2024; 29:1338-1349. [PMID: 38243072 PMCID: PMC11189755 DOI: 10.1038/s41380-024-02413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Microglia and brain-derived neurotrophic factor (BDNF) are essential for the neuroplasticity that characterizes critical developmental periods. The experience-dependent development of social behaviors-associated with the medial prefrontal cortex (mPFC)-has a critical period during the juvenile period in mice. However, whether microglia and BDNF affect social development remains unclear. Herein, we aimed to elucidate the effects of microglia-derived BDNF on social behaviors and mPFC development. Mice that underwent social isolation during p21-p35 had increased Bdnf in the microglia accompanied by reduced adulthood sociability. Additionally, transgenic mice overexpressing microglial Bdnf-regulated using doxycycline at different time points-underwent behavioral, electrophysiological, and gene expression analyses. In these mice, long-term overexpression of microglial BDNF impaired sociability and excessive mPFC inhibitory neuronal circuit activity. However, administering doxycycline to normalize BDNF from p21 normalized sociability and electrophysiological function in the mPFC, whereas normalizing BDNF from later ages (p45-p50) did not normalize electrophysiological abnormalities in the mPFC, despite the improved sociability. To evaluate the possible role of BDNF in human sociability, we analyzed the relationship between adverse childhood experiences and BDNF expression in human macrophages, a possible proxy for microglia. Results show that adverse childhood experiences positively correlated with BDNF expression in M2 but not M1 macrophages. In summary, our study demonstrated the influence of microglial BDNF on the development of experience-dependent social behaviors in mice, emphasizing its specific impact on the maturation of mPFC function, particularly during the juvenile period. Furthermore, our results propose a translational implication by suggesting a potential link between BDNF secretion from macrophages and childhood experiences in humans.
Collapse
Affiliation(s)
- Takashi Komori
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kazuya Okamura
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Minobu Ikehara
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Nozomi Endo
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kazuki Okumura
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Takahira Yamauchi
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Daisuke Ikawa
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | | | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Ryohei Takada
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yoshinori Kayashima
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Rio Ishida
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yuki Mori
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kohei Kamikawa
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yuki Noriyama
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yuki Nishi
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Mayumi Nishi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Noboru Hiroi
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan.
| |
Collapse
|
16
|
Fournier LA, Phadke RA, Salgado M, Brack A, Nocon JC, Bolshakova S, Grant JR, Padró Luna NM, Sen K, Cruz-Martín A. Overexpression of the schizophrenia risk gene C4 in PV cells drives sex-dependent behavioral deficits and circuit dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.575409. [PMID: 38328248 PMCID: PMC10849664 DOI: 10.1101/2024.01.27.575409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Fast-spiking parvalbumin (PV)-positive cells are key players in orchestrating pyramidal neuron activity, and their dysfunction is consistently observed in myriad brain diseases. To understand how immune complement dysregulation - a prevalent locus of brain disease etiology - in PV cells may drive disease pathogenesis, we have developed a transgenic mouse line that permits cell-type specific overexpression of the schizophrenia-associated complement component 4 (C4) gene. We found that overexpression of mouse C4 (mC4) in PV cells causes sex-specific behavioral alterations and concomitant deficits in synaptic connectivity and excitability of PV cells of the prefrontal cortex. Using a computational network, we demonstrated that these microcircuit deficits led to hyperactivity and disrupted neural communication. Finally, pan-neuronal overexpression of mC4 failed to evoke the same deficits in behavior as PV-specific mC4 overexpression, suggesting that C4 perturbations in fast-spiking neurons are more harmful to brain function than pan-neuronal alterations. Together, these results provide a causative link between C4 and the vulnerability of PV cells in brain disease.
Collapse
Affiliation(s)
- Luke A. Fournier
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, United States
| | - Rhushikesh A. Phadke
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, United States
| | - Maria Salgado
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, United States
| | - Alison Brack
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, United States
| | - Jian Carlo Nocon
- Neurophotonics Center, Boston University, Boston, Massachusetts, United States
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States
- Hearing Research Center, Boston University, Boston, Massachusetts, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
| | - Sonia Bolshakova
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, United States
- Bioinformatics MS Program, Boston University, Boston, MA, United States
| | - Jaylyn R. Grant
- Biological Sciences, Eastern Illinois University, Charleston, IL, United States
- The Summer Undergraduate Research Fellowship (SURF) Program, Boston University, Boston, United States
| | - Nicole M. Padró Luna
- The Summer Undergraduate Research Fellowship (SURF) Program, Boston University, Boston, United States
- Biology Department, College of Natural Sciences, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | - Kamal Sen
- Neurophotonics Center, Boston University, Boston, Massachusetts, United States
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States
- Hearing Research Center, Boston University, Boston, Massachusetts, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
| | - Alberto Cruz-Martín
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, United States
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, United States
| |
Collapse
|
17
|
Nghiem TAE, Lee B, Chao THH, Branigan NK, Mistry PK, Shih YYI, Menon V. Space wandering in the rodent default mode network. Proc Natl Acad Sci U S A 2024; 121:e2315167121. [PMID: 38557177 PMCID: PMC11009630 DOI: 10.1073/pnas.2315167121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/17/2024] [Indexed: 04/04/2024] Open
Abstract
The default mode network (DMN) is a large-scale brain network known to be suppressed during a wide range of cognitive tasks. However, our comprehension of its role in naturalistic and unconstrained behaviors has remained elusive because most research on the DMN has been conducted within the restrictive confines of MRI scanners. Here, we use multisite GCaMP (a genetically encoded calcium indicator) fiber photometry with simultaneous videography to probe DMN function in awake, freely exploring rats. We examined neural dynamics in three core DMN nodes-the retrosplenial cortex, cingulate cortex, and prelimbic cortex-as well as the anterior insula node of the salience network, and their association with the rats' spatial exploration behaviors. We found that DMN nodes displayed a hierarchical functional organization during spatial exploration, characterized by stronger coupling with each other than with the anterior insula. Crucially, these DMN nodes encoded the kinematics of spatial exploration, including linear and angular velocity. Additionally, we identified latent brain states that encoded distinct patterns of time-varying exploration behaviors and found that higher linear velocity was associated with enhanced DMN activity, heightened synchronization among DMN nodes, and increased anticorrelation between the DMN and anterior insula. Our findings highlight the involvement of the DMN in collectively and dynamically encoding spatial exploration in a real-world setting. Our findings challenge the notion that the DMN is primarily a "task-negative" network disengaged from the external world. By illuminating the DMN's role in naturalistic behaviors, our study underscores the importance of investigating brain network function in ecologically valid contexts.
Collapse
Affiliation(s)
| | - Byeongwook Lee
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA94304
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Nicholas K. Branigan
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA94304
| | - Percy K. Mistry
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA94304
| | - Yen-Yu Ian Shih
- Center for Animal MRI, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC27514
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA94304
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA94304
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA94305
| |
Collapse
|
18
|
Magalhães DM, Mampay M, Sebastião AM, Sheridan GK, Valente CA. Age-related impact of social isolation in mice: Young vs middle-aged. Neurochem Int 2024; 174:105678. [PMID: 38266657 DOI: 10.1016/j.neuint.2024.105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Social isolation is a chronic mild stressor and a significant risk factor for mental health disorders. Herein we explored the impact of social isolation on depression- and anxiety-like behaviours, as well as spatial memory impairments, in middle-aged male mice compared to post-weaning mice. We aimed to quantify and correlate social isolation-induced behaviour discrepancies with changes in hippocampal glial cell reactivity and pro-inflammatory cytokine levels. Post-weaning and middle-aged C57BL7/J6 male mice were socially isolated for a 3-week period and behavioural tests were performed on the last five days of isolation. We found that 3 weeks of social isolation led to depressive-like behaviour in the forced swim test, anxiety-like behaviour in the open field test, and spatial memory impairment in the Morris water maze paradigm in middle-aged male mice. These behavioural alterations were not observed in male mice after post-weaning social isolation, indicating resilience to isolation-mediated stress. Increased Iba-1 expression and NLRP3 priming were both observed in the hippocampus of socially isolated middle-aged mice, suggesting a role for microglia and NLRP3 pathway in the detrimental effects of social isolation on cognition and behaviour. Young socially isolated mice also demonstrated elevated NLRP3 priming compared to controls, but no differences in Iba-1 levels and no significant changes in behaviour. Ageing-induced microglia activation and enhancement of IL-1β, TNF-α and IL-6 proinflammatory cytokines, known signs of a chronic low-grade inflammatory state, were also detected. Altogether, data suggest that social isolation, in addition to inflammaging, contributes to stress-related cognitive impairment in middle-aged mice.
Collapse
Affiliation(s)
- Daniela M Magalhães
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; School of Applied Sciences, University of Brighton, Brighton, UK
| | - Myrthe Mampay
- School of Applied Sciences, University of Brighton, Brighton, UK
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | - Cláudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
19
|
Cho JY, Rumschlag JA, Tsvetkov E, Proper DS, Lang H, Berto S, Assali A, Cowan CW. MEF2C Hypofunction in GABAergic Cells Alters Sociability and Prefrontal Cortex Inhibitory Synaptic Transmission in a Sex-Dependent Manner. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100289. [PMID: 38390348 PMCID: PMC10881314 DOI: 10.1016/j.bpsgos.2024.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 02/24/2024] Open
Abstract
Background Heterozygous mutations or deletions of MEF2C cause a neurodevelopmental disorder termed MEF2C haploinsufficiency syndrome (MCHS), characterized by autism spectrum disorder and neurological symptoms. In mice, global Mef2c heterozygosity has produced multiple MCHS-like phenotypes. MEF2C is highly expressed in multiple cell types of the developing brain, including GABAergic (gamma-aminobutyric acidergic) inhibitory neurons, but the influence of MEF2C hypofunction in GABAergic neurons on MCHS-like phenotypes remains unclear. Methods We employed GABAergic cell type-specific manipulations to study mouse Mef2c heterozygosity in a battery of MCHS-like behaviors. We also performed electroencephalography, single-cell transcriptomics, and patch-clamp electrophysiology and optogenetics to assess the impact of Mef2c haploinsufficiency on gene expression and prefrontal cortex microcircuits. Results Mef2c heterozygosity in developing GABAergic cells produced female-specific deficits in social preference and altered approach-avoidance behavior. In female, but not male, mice, we observed that Mef2c heterozygosity in developing GABAergic cells produced 1) differentially expressed genes in multiple cell types, including parvalbumin-expressing GABAergic neurons, 2) baseline and social-related frontocortical network activity alterations, and 3) reductions in parvalbumin cell intrinsic excitability and inhibitory synaptic transmission onto deep-layer pyramidal neurons. Conclusions MEF2C hypofunction in female, but not male, developing GABAergic cells is important for typical sociability and approach-avoidance behaviors and normal parvalbumin inhibitory neuron function in the prefrontal cortex of mice. While there is no apparent sex bias in autism spectrum disorder symptoms of MCHS, our findings suggest that GABAergic cell-specific dysfunction in females with MCHS may contribute disproportionately to sociability symptoms.
Collapse
Affiliation(s)
- Jennifer Y. Cho
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, South Carolina
| | - Jeffrey A. Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Divya S. Proper
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Ahlem Assali
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Christopher W. Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
20
|
Rajagopal L, Huang M, Mahjour S, Ryan C, Elzokaky A, Svensson KA, Meltzer HY. The dopamine D1 receptor positive allosteric modulator, DETQ, improves cognition and social interaction in aged mice and enhances cortical and hippocampal acetylcholine efflux. Behav Brain Res 2024; 459:114766. [PMID: 38048913 DOI: 10.1016/j.bbr.2023.114766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023]
Abstract
Dopamine (DA) D1 and D2 receptors (Rs) are critical for cognitive functioning. D1 positive allosteric modulators (D1PAMs) activate D1Rs without desensitization or an inverted U-shaped dose response curve. DETQ, [2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one] is highly selective for the human D1Rs as shown in humanized D1R knock-in (hD1Ki) mice. Here, we have ascertained the efficacy of DETQ in aged [13-23-month-old (mo)] hD1Ki mice and their corresponding age-matched wild-type (WT; C57BL/6NTac) controls. We found that in aged mice, DETQ, given acutely, subchronically, and chronically, rescued both novel object recognition memory and social behaviors, using novel object recognition (NOR) and social interaction (SI) tasks, respectively without any adverse effect on body weight or mortality. We have also shown, using in vivo microdialysis, a significant decrease in basal DA and norepinephrine, increase in glutamate (Glu) and gamma-amino butyric acid (GABA) efflux with no significant changes in acetylcholine (ACh) levels in aged vs young mice. In young and aged hD1Ki mice, DETQ, acutely and subchronically increased ACh in the medial prefrontal cortex and hippocampal regions in aged hD1Ki mice without affecting Glu. These results suggest that the D1PAM mechanism is of interest as potential treatment for cognitive and social behavioral deficits in neuropsychiatric disorders including but not restricted to neurodegenerative disorders, such as Parkinson's disease.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mei Huang
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sanaz Mahjour
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chelsea Ryan
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ahmad Elzokaky
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kjell A Svensson
- Neuroscience Discovery, Eli Lilly & Company, Indianapolis, IN, USA
| | - H Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
21
|
Guo B, Xi K, Mao H, Ren K, Xiao H, Hartley ND, Zhang Y, Kang J, Liu Y, Xie Y, Zhou Y, Zhu Y, Zhang X, Fu Z, Chen JF, Hu H, Wang W, Wu S. CB1R dysfunction of inhibitory synapses in the ACC drives chronic social isolation stress-induced social impairments in male mice. Neuron 2024; 112:441-457.e6. [PMID: 37992714 DOI: 10.1016/j.neuron.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Social isolation is a risk factor for multiple mood disorders. Specifically, social isolation can remodel the brain, causing behavioral abnormalities, including sociability impairments. Here, we investigated social behavior impairment in mice following chronic social isolation stress (CSIS) and conducted a screening of susceptible brain regions using functional readouts. CSIS enhanced synaptic inhibition in the anterior cingulate cortex (ACC), particularly at inhibitory synapses of cholecystokinin (CCK)-expressing interneurons. This enhanced synaptic inhibition in the ACC was characterized by CSIS-induced loss of presynaptic cannabinoid type-1 receptors (CB1Rs), resulting in excessive axonal calcium influx. Activation of CCK-expressing interneurons or conditional knockdown of CB1R expression in CCK-expressing interneurons specifically reproduced social impairment. In contrast, optogenetic activation of CB1R or administration of CB1R agonists restored sociability in CSIS mice. These results suggest that the CB1R may be an effective therapeutic target for preventing CSIS-induced social impairments by restoring synaptic inhibition in the ACC.
Collapse
Affiliation(s)
- Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Keke Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Haoxiang Xiao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Nolan D Hartley
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research in the Department of Brain and Cognitive Sciences at MIT, Cambridge, MA 02139, USA
| | - Yangming Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Junjun Kang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yingying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yongsheng Zhou
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yuanyuan Zhu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xia Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhanyan Fu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research in the Department of Brain and Cognitive Sciences at MIT, Cambridge, MA 02139, USA
| | - Jiang-Fan Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hailan Hu
- School of Brain Science and Brain Medicine, New Cornerstone Science Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
22
|
Irie K, Ohta KI, Ujihara H, Araki C, Honda K, Suzuki S, Warita K, Otabi H, Kumei H, Nakamura S, Koyano K, Miki T, Kusaka T. An enriched environment ameliorates the reduction of parvalbumin-positive interneurons in the medial prefrontal cortex caused by maternal separation early in life. Front Neurosci 2024; 17:1308368. [PMID: 38292903 PMCID: PMC10825025 DOI: 10.3389/fnins.2023.1308368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024] Open
Abstract
Early child maltreatment, such as child abuse and neglect, is well known to affect the development of social skills. However, the mechanisms by which such an adverse environment interrupts the development of social skills remain unelucidated. Identifying the period and brain regions that are susceptible to adverse environments can lead to appropriate developmental care later in life. We recently reported an excitatory/inhibitory imbalance and low activity during social behavior in the medial prefrontal cortex (mPFC) of the maternal separation (MS) animal model of early life neglect after maturation. Based on these results, in the present study, we investigated how MS disturbs factors related to excitatory and inhibitory neurons in the mPFC until the critical period of mPFC development. Additionally, we evaluated whether the effects of MS could be recovered in an enriched environment after MS exposure. Rat pups were separated from their dams on postnatal days (PDs) 2-20 (twice daily, 3 h each) and compared with the mother-reared control (MRC) group. Gene expression analysis revealed that various factors related to excitatory and inhibitory neurons were transiently disturbed in the mPFC during MS. A similar tendency was found in the sensory cortex; however, decreased parvalbumin (PV) expression persisted until PD 35 only in the mPFC. Moreover, the number of PV+ interneurons decreased in the ventromedial prefrontal cortex (vmPFC) on PD 35 in the MS group. Additionally, perineural net formation surrounding PV+ interneurons, which is an indicator of maturity and critical period closure, was unchanged, indicating that the decreased PV+ interneurons were not simply attributable to developmental delay. This reduction of PV+ interneurons improved to the level observed in the MRC group by the enriched environment from PD 21 after the MS period. These results suggest that an early adverse environment disturbs the development of the mPFC but that these abnormalities allow room for recovery depending on the subsequent environment. Considering that PV+ interneurons in the mPFC play an important role in social skills such as empathy, an early rearing environment is likely a very important factor in the subsequent acquisition of social skills.
Collapse
Affiliation(s)
- Kanako Irie
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Ken-ichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hidetoshi Ujihara
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Chihiro Araki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kodai Honda
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Hikari Otabi
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Haruki Kumei
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kosuke Koyano
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
23
|
Gillespie B, Panthi S, Sundram S, Hill RA. The impact of maternal immune activation on GABAergic interneuron development: A systematic review of rodent studies and their translational implications. Neurosci Biobehav Rev 2024; 156:105488. [PMID: 38042358 DOI: 10.1016/j.neubiorev.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Mothers exposed to infections during pregnancy disproportionally birth children who develop autism and schizophrenia, disorders associated with altered GABAergic function. The maternal immune activation (MIA) model recapitulates this risk factor, with many studies also reporting disruptions to GABAergic interneuron expression, protein, cellular density and function. However, it is unclear if there are species, sex, age, region, or GABAergic subtype specific vulnerabilities to MIA. Furthermore, to fully comprehend the impact of MIA on the GABAergic system a synthesised account of molecular, cellular, electrophysiological and behavioural findings was required. To this end we conducted a systematic review of GABAergic interneuron changes in the MIA model, focusing on the prefrontal cortex and hippocampus. We reviewed 102 articles that revealed robust changes in a number of GABAergic markers that present as gestationally-specific, region-specific and sometimes sex-specific. Disruptions to GABAergic markers coincided with distinct behavioural phenotypes, including memory, sensorimotor gating, anxiety, and sociability. Findings suggest the MIA model is a valid tool for testing novel therapeutics designed to recover GABAergic function and associated behaviour.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Sandesh Panthi
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
24
|
Walker H, Frost NA. Distinct transcriptional programs define a heterogeneous neuronal ensemble for social interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573153. [PMID: 38187723 PMCID: PMC10769355 DOI: 10.1101/2023.12.22.573153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Reliable representations of information regarding complex behaviors including social interactions require the coordinated activity of heterogeneous cell types within distributed brain regions. Activity in the medial prefrontal cortex is critical in regulating social behavior, but our understanding of the specific cell types which comprise the social ensemble has been limited by available mouse lines and molecular tagging strategies which rely on the expression of a single marker gene. Here we sought to quantify the heterogeneous neuronal populations which are recruited during social interaction in parallel in a non-biased manner and determine how distinct cell types are differentially active during social interactions. We identify distinct populations of prefrontal neurons activated by social interaction by quantification of immediate early gene (IEG) expression in transcriptomically clustered neurons. This approach revealed variability in the recruitment of different excitatory and inhibitory populations within the medial prefrontal cortex. Furthermore, evaluation of the populations of IEGs recruited following social interaction revealed both cell-type and region-specific transcriptional programs, suggesting that reliance on a single molecular marker is insufficient to quantify activation across all cell types. Our findings provide a comprehensive description of cell-type specific transcriptional programs invoked by social interactions and reveal new insights into the heterogeneous neuronal populations which compose the social ensemble.
Collapse
|
25
|
Parise LF, Joseph Burnett C, Russo SJ. Early life stress and altered social behaviors: A perspective across species. Neurosci Res 2023:S0168-0102(23)00200-6. [PMID: 37992997 PMCID: PMC11102940 DOI: 10.1016/j.neures.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/21/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
Childhood and adolescent affiliations guide how individuals engage in social relationships throughout their lifetime and adverse experiences can promote biological alterations that facilitate behavioral maladaptation. Indeed, childhood victims of abuse are more likely to be diagnosed with conduct or mood disorders which are both characterized by altered social engagement. A key domain particularly deserving of attention is aggressive behavior, a hallmark of many disorders characterized by deficits in reward processing. Animal models have been integral in identifying both the short- and long-term consequences of stress exposure and suggest that whether it is disruption to parental care or social isolation, chronic exposure to early life stress increases corticosterone, changes the expression of neurotransmitters and neuromodulators, and facilitates structural alterations to the hypothalamus, hippocampus, and amygdala, influencing how these brain regions communicate with other reward-related substrates. Herein, we describe how adverse early life experiences influence social behavioral outcomes across a wide range of species and highlight the long-term biological mechanisms that are most relevant to maladaptive aggressive behavior.
Collapse
Affiliation(s)
- Lyonna F Parise
- Icahn School of Medicine, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, NY, USA.
| | - C Joseph Burnett
- Icahn School of Medicine, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Scott J Russo
- Icahn School of Medicine, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, NY, USA.
| |
Collapse
|
26
|
Perica MI, Luna B. Impact of stress on excitatory and inhibitory markers of adolescent cognitive critical period plasticity. Neurosci Biobehav Rev 2023; 153:105378. [PMID: 37643681 PMCID: PMC10591935 DOI: 10.1016/j.neubiorev.2023.105378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Adolescence is a time of significant neurocognitive development. Prolonged maturation of prefrontal cortex (PFC) through adolescence has been found to support improvements in executive function. Changes in excitatory and inhibitory mechanisms of critical period plasticity have been found to be present in the PFC through adolescence, suggesting that environment may have a greater effect on development during this time. Stress is one factor known to affect neurodevelopment increasing risk for psychopathology. However, less is known about how stress experienced during adolescence could affect adolescent-specific critical period plasticity mechanisms and cognitive outcomes. In this review, we synthesize findings from human and animal literatures looking at the experience of stress during adolescence on cognition and frontal excitatory and inhibitory neural activity. Studies indicate enhancing effects of acute stress on cognition and excitation within specific contexts, while chronic stress generally dampens excitatory and inhibitory processes and impairs cognition. We propose a model of how stress could affect frontal critical period plasticity, thus potentially altering neurodevelopmental trajectories that could lead to risk for psychopathology.
Collapse
Affiliation(s)
- Maria I Perica
- Department of Psychology, University of Pittsburgh, PA, USA.
| | - Beatriz Luna
- Department of Psychology, University of Pittsburgh, PA, USA
| |
Collapse
|
27
|
Larsen B, Sydnor VJ, Keller AS, Yeo BTT, Satterthwaite TD. A critical period plasticity framework for the sensorimotor-association axis of cortical neurodevelopment. Trends Neurosci 2023; 46:847-862. [PMID: 37643932 PMCID: PMC10530452 DOI: 10.1016/j.tins.2023.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
To understand human brain development it is necessary to describe not only the spatiotemporal patterns of neurodevelopment but also the neurobiological mechanisms that underlie them. Human neuroimaging studies have provided evidence for a hierarchical sensorimotor-to-association (S-A) axis of cortical neurodevelopment. Understanding the biological mechanisms that underlie this program of development using traditional neuroimaging approaches has been challenging. Animal models have been used to identify periods of enhanced experience-dependent plasticity - 'critical periods' - that progress along cortical hierarchies and are governed by a conserved set of neurobiological mechanisms that promote and then restrict plasticity. In this review we hypothesize that the S-A axis of cortical development in humans is partly driven by the cascading maturation of critical period plasticity mechanisms. We then describe how recent advances in in vivo neuroimaging approaches provide a promising path toward testing this hypothesis by linking signals derived from non-invasive imaging to critical period mechanisms.
Collapse
Affiliation(s)
- Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie J Sydnor
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arielle S Keller
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - B T Thomas Yeo
- Centre for Sleep and Cognition (CSC), and Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Reinhardt PR, Theis CDC, Juckel G, Freund N. Rodent models for mood disorders - understanding molecular changes by investigating social behavior. Biol Chem 2023; 404:939-950. [PMID: 37632729 DOI: 10.1515/hsz-2023-0190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
Mood disorders, including depressive and bipolar disorders, are the group of psychiatric disorders with the highest prevalence and disease burden. However, their pathophysiology remains poorly understood. Animal models are an extremely useful tool for the investigation of molecular mechanisms underlying these disorders. For psychiatric symptom assessment in animals, a meaningful behavioral phenotype is needed. Social behaviors constitute naturally occurring complex behaviors in rodents and can therefore serve as such a phenotype, contributing to insights into disorder related molecular changes. In this narrative review, we give a fundamental overview of social behaviors in laboratory rodents, as well as their underlying neuronal mechanisms and their assessment. Relevant behavioral and molecular changes in models for mood disorders are presented and an outlook on promising future directions is given.
Collapse
Affiliation(s)
- Patrick R Reinhardt
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
- International Graduate School of Neuroscience, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Candy D C Theis
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
| | - Georg Juckel
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
| |
Collapse
|
29
|
Uhlhaas PJ, Davey CG, Mehta UM, Shah J, Torous J, Allen NB, Avenevoli S, Bella-Awusah T, Chanen A, Chen EYH, Correll CU, Do KQ, Fisher HL, Frangou S, Hickie IB, Keshavan MS, Konrad K, Lee FS, Liu CH, Luna B, McGorry PD, Meyer-Lindenberg A, Nordentoft M, Öngür D, Patton GC, Paus T, Reininghaus U, Sawa A, Schoenbaum M, Schumann G, Srihari VH, Susser E, Verma SK, Woo TW, Yang LH, Yung AR, Wood SJ. Towards a youth mental health paradigm: a perspective and roadmap. Mol Psychiatry 2023; 28:3171-3181. [PMID: 37580524 PMCID: PMC10618105 DOI: 10.1038/s41380-023-02202-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 08/16/2023]
Abstract
Most mental disorders have a typical onset between 12 and 25 years of age, highlighting the importance of this period for the pathogenesis, diagnosis, and treatment of mental ill-health. This perspective addresses interactions between risk and protective factors and brain development as key pillars accounting for the emergence of psychopathology in youth. Moreover, we propose that novel approaches towards early diagnosis and interventions are required that reflect the evolution of emerging psychopathology, the importance of novel service models, and knowledge exchange between science and practitioners. Taken together, we propose a transformative early intervention paradigm for research and clinical care that could significantly enhance mental health in young people and initiate a shift towards the prevention of severe mental disorders.
Collapse
Affiliation(s)
- Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.
- Department of Child and Adolescent Psychiatry, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Christopher G Davey
- Department of Psychiatry, The University of Melbourne, Carlton, VIC, Australia
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Jai Shah
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - John Torous
- Division of Digital Psychiatry and Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Shelli Avenevoli
- Office of the Director, National Institute of Mental Health, Bethesda, MD, USA
| | - Tolulope Bella-Awusah
- Department of Psychiatry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Andrew Chanen
- Orygen: National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Eric Y H Chen
- Department of Psychiatry, University of Hong Kong, Hong Kong, China
| | - Christoph U Correll
- Department of Child and Adolescent Psychiatry, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Departments of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hostra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
| | - Kim Q Do
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Helen L Fisher
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- ESRC Centre for Society and Mental Health, King's College London, London, UK
| | - Sophia Frangou
- Department of Psychiatry, The University of British Columbia, Vancouver, BC, Canada
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, RWTH, Aachen, Germany
- JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, Research Center Jülich, Jülich, Germany
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Cornell Medicall College, New York, NY, USA
| | - Cindy H Liu
- Departments of Pediatrics and Psychiatry, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick D McGorry
- Orygen: National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Merete Nordentoft
- CORE-Copenhagen Research Centre for Mental Health, Mental Health Center Copenhagen, University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Hellerup, Denmark
| | - Dost Öngür
- McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - George C Patton
- Centre for Adolescent Health, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia
| | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte Justine, University of Montreal, Montreal, QC, Canada
- Department of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ulrich Reininghaus
- Department of Public Mental Health, Central Institute of Mental Health, Medical Faculty Mannheim, Mannheim, Germany
- Centre for Epidemiology and Public Health, Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Akira Sawa
- The John Hopkins Schizophrenia Center, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Schoenbaum
- Division of Service and Intervention Research, National Institute of Mental Health, Bethesda, MD, USA
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine, ISTBI, Fudan University, Shanghai, China
- Department of Psychiatry and Neuroscience, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vinod H Srihari
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Program for Specialized Treatment Early in Psychosis (STEP), New Haven, VIC, USA
| | - Ezra Susser
- Departments of Epidemiology and Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Swapna K Verma
- Department of Psychosis, Institute of Mental Health, Buangkok, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - T Wilson Woo
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Laboratory for Cellular Neuropathology, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Lawrence H Yang
- Department of Social and Behavioral Sciences, New York University, New York, NY, USA
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - Alison R Yung
- School of Medicine, Faculty of Health, Deakin University, Melbourne, VIC, Australia
- Department of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stephen J Wood
- Orygen: National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
30
|
Zheng C, Wei L, Liu B, Wang Q, Huang Y, Wang S, Li X, Gong H, Wang Z. Dorsal BNST DRD2 + neurons mediate sex-specific anxiety-like behavior induced by chronic social isolation. Cell Rep 2023; 42:112799. [PMID: 37453056 DOI: 10.1016/j.celrep.2023.112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 05/07/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
The dorsal bed nucleus of stria terminalis (dBNST) is a pivotal hub for stress response modulation. Dysfunction of dopamine (DA) network is associated with chronic stress, but the roles of DA network of dBNST in chronic stress-induced emotional disorders remain unclear. We examine the role of dBNST Drd1+ and Drd2+ neurons in post-weaning social isolation (PWSI)-induced behavior deficits. We find that male, but not female, PWSI rats exhibit negative emotional phenotypes and the increase of excitability and E-I balance of dBNST Drd2+ neurons. More importantly, hypofunction of dBNST Drd2 receptor underlies PWSI-stress-induced male-specific neuronal plasticity change of dBNST Drd2+ neurons. Furthermore, chemogenetic activation of dBNST Drd2+ neurons is sufficient to induce anxiogenic effects, while Kir4.1-mediated chronic inhibition of dBNST Drd2+ neurons ameliorate PWSI-induced anxiety-like behaviors. Our findings reveal an important neural mechanism underlying PWSI-induced sex-specific behavioral abnormalities and potentially provide a target for the treatment of social stress-related emotional disorder.
Collapse
Affiliation(s)
- Chaowen Zheng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Boyi Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxiu Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanwang Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangyi Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangning Li
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215000, China
| | - Hui Gong
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215000, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai 200031, China
| | - Zuoren Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Jendryka MM, Lewin U, van der Veen B, Kapanaiah SKT, Prex V, Strahnen D, Akam T, Liss B, Pekcec A, Nissen W, Kätzel D. Control of sustained attention and impulsivity by G q-protein signalling in parvalbumin interneurons of the anterior cingulate cortex. Transl Psychiatry 2023; 13:243. [PMID: 37407615 DOI: 10.1038/s41398-023-02541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
The anterior cingulate cortex (ACC) has been implicated in attention deficit hyperactivity disorder (ADHD). More specifically, an appropriate balance of excitatory and inhibitory activity in the ACC may be critical for the control of impulsivity, hyperactivity, and sustained attention which are centrally affected in ADHD. Hence, pharmacological augmentation of parvalbumin- (PV) or somatostatin-positive (Sst) inhibitory ACC interneurons could be a potential treatment strategy. We, therefore, tested whether stimulation of Gq-protein-coupled receptors (GqPCRs) in these interneurons could improve attention or impulsivity assessed with the 5-choice-serial reaction-time task in male mice. When challenging impulse control behaviourally or pharmacologically, activation of the chemogenetic GqPCR hM3Dq in ACC PV-cells caused a selective decrease of active erroneous-i.e. incorrect and premature-responses, indicating improved attentional and impulse control. When challenging attention, in contrast, omissions were increased, albeit without extension of reward latencies or decreases of attentional accuracy. These effects largely resembled those of the ADHD medication atomoxetine. Additionally, they were mostly independent of each other within individual animals. GqPCR activation in ACC PV-cells also reduced hyperactivity. In contrast, if hM3Dq was activated in Sst-interneurons, no improvement of impulse control was observed, and a reduction of incorrect responses was only induced at high agonist levels and accompanied by reduced motivational drive. These results suggest that the activation of GqPCRs expressed specifically in PV-cells of the ACC may be a viable strategy to improve certain aspects of sustained attention, impulsivity and hyperactivity in ADHD.
Collapse
Affiliation(s)
- Martin M Jendryka
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Div. Research Germany, Biberach an der Riss, Germany
| | - Uwe Lewin
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | | | | | - Vivien Prex
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Daniel Strahnen
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Thomas Akam
- Department of Experimental Psychology and Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Birgit Liss
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Linacre College and New College, University of Oxford, Oxford, UK
| | - Anton Pekcec
- Boehringer Ingelheim Pharma GmbH & Co. KG, Div. Research Germany, Biberach an der Riss, Germany
| | - Wiebke Nissen
- Boehringer Ingelheim Pharma GmbH & Co. KG, Div. Research Germany, Biberach an der Riss, Germany
| | - Dennis Kätzel
- Institute of Applied Physiology, Ulm University, Ulm, Germany.
| |
Collapse
|
32
|
Wang Z, Yueh H, Chau M, Veenstra-VanderWeele J, O'Reilly KC. Circuits underlying social function and dysfunction. Autism Res 2023; 16:1268-1288. [PMID: 37458578 DOI: 10.1002/aur.2978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/13/2023] [Indexed: 08/01/2023]
Abstract
Substantial advances have been made toward understanding the genetic and environmental risk factors for autism, a neurodevelopmental disorder with social impairment as a core feature. In combination with optogenetic and chemogenetic tools to manipulate neural circuits in vivo, it is now possible to use model systems to test how specific neural circuits underlie social function and dysfunction. Here, we review the literature that has identified circuits associated with social interest (sociability), social reward, social memory, dominance, and aggression, and we outline a preliminary roadmap of the neural circuits driving these social behaviors. We highlight the neural circuitry underlying each behavioral domain, as well as develop an interactive map of how these circuits overlap across domains. We find that some of the circuits underlying social behavior are general and are involved in the control of multiple behavioral aspects, whereas other circuits appear to be specialized for specific aspects of social behavior. Our overlapping circuit map therefore helps to delineate the circuits involved in the various domains of social behavior and to identify gaps in knowledge.
Collapse
Affiliation(s)
- Ziwen Wang
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, New York, New York, USA
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hannah Yueh
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, New York, New York, USA
| | - Mirabella Chau
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, New York, New York, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, New York, New York, USA
| | - Kally C O'Reilly
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
33
|
Biro L, Miskolczi C, Szebik H, Bruzsik B, Varga ZK, Szente L, Toth M, Halasz J, Mikics E. Post-weaning social isolation in male mice leads to abnormal aggression and disrupted network organization in the prefrontal cortex: Contribution of parvalbumin interneurons with or without perineuronal nets. Neurobiol Stress 2023; 25:100546. [PMID: 37323648 PMCID: PMC10265620 DOI: 10.1016/j.ynstr.2023.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023] Open
Abstract
Adverse social experiences during childhood increase the risk of developing aggression-related psychopathologies. The prefrontal cortex (PFC) is a key regulator of social behavior, where experience-dependent network development is tied to the maturation of parvalbumin-positive (PV+) interneurons. Maltreatment in childhood could impact PFC development and lead to disturbances in social behavior during later life. However, our knowledge regarding the impact of early-life social stress on PFC operation and PV+ cell function is still scarce. Here, we used post-weaning social isolation (PWSI) to model early-life social neglect in mice and to study the associated neuronal changes in the PFC, additionally distinguishing between the two main subpopulations of PV+ interneurons, i.e. those without or those enwrapped by perineuronal nets (PNN). For the first time to such detailed extent in mice, we show that PWSI induced disturbances in social behavior, including abnormal aggression, excessive vigilance and fragmented behavioral organization. PWSI mice showed altered resting-state and fighting-induced co-activation patterns between orbitofrontal and medial PFC (mPFC) subregions, with a particularly highly elevated activity in the mPFC. Surprisingly, aggressive interaction was associated with a higher recruitment of mPFC PV+ neurons that were surrounded by PNN in PWSI mice that seemed to mediate the emergence of social deficits. PWSI did not affect the number of PV+ neurons and PNN density, but enhanced PV and PNN intensity as well as cortical and subcortical glutamatergic drive onto mPFC PV+ neurons. Our results suggest that the increased excitatory input of PV+ cells could emerge as a compensatory mechanism for the PV+ neuron-mediated impaired inhibition of mPFC layer 5 pyramidal neurons, since we found lower numbers of GABAergic PV+ puncta on the perisomatic region of these cells. In conclusion, PWSI leads to altered PV-PNN activity and impaired excitatory/inhibitory balance in the mPFC, which possibly contributes to social behavioral disruptions seen in PWSI mice. Our data advances our understanding on how early-life social stress can impact the maturing PFC and lead to the development of social abnormalities in adulthood.
Collapse
Affiliation(s)
- Laszlo Biro
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Christina Miskolczi
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
- Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Ulloi ut 26., Hungary
| | - Huba Szebik
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
- Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Ulloi ut 26., Hungary
| | - Biborka Bruzsik
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Zoltan Kristof Varga
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Laszlo Szente
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
- Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Ulloi ut 26., Hungary
| | - Mate Toth
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Jozsef Halasz
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Eva Mikics
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| |
Collapse
|
34
|
Makinodan M, Komori T, Okamura K, Ikehara M, Yamamuro K, Endo N, Okumura K, Yamauchi T, Ikawa D, Ouji-Sageshima N, Toritsuka M, Takada R, Kayashima Y, Ishida R, Mori Y, Kamikawa K, Noriyama Y, Nishi Y, Ito T, Saito Y, Nishi M, Kishimoto T, Tanaka K, Hiroi N. Brain-derived neurotrophic factor from microglia regulates neuronal development in the medial prefrontal cortex and its associated social behavior. RESEARCH SQUARE 2023:rs.3.rs-3094335. [PMID: 37461488 PMCID: PMC10350236 DOI: 10.21203/rs.3.rs-3094335/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Microglia and brain-derived neurotrophic factor (BDNF) are essential for the neuroplasticity that characterizes critical developmental periods. The experience-dependent development of social behaviors-associated with the medial prefrontal cortex (mPFC)-has a critical period during the juvenile period in mice. However, whether microglia and BDNF affect social development remains unclear. Herein, we aimed to elucidate the effects of microglia-derived BDNF on social behaviors and mPFC development. Mice that underwent social isolation during p21-p35 had increased Bdnf in the microglia accompanied by reduced adulthood sociability. Additionally, transgenic mice overexpressing microglia Bdnf-regulated using doxycycline at different time points-underwent behavioral, electrophysiological, and gene expression analyses. In these mice, long-term overexpression of microglia BDNF impaired sociability and excessive mPFC inhibitory neuronal circuit activity. However, administration of doxycycline to normalize BDNF from p21 normalized sociability and electrophysiological functions; this was not observed when BDNF was normalized from a later age (p45-p50). To evaluate the possible role of BDNF in human sociability, we analyzed the relationship between adverse childhood experiences and BDNF expression in human macrophages, a possible substitute for microglia. Results show that adverse childhood experiences positively correlated with BDNF expression in M2 but not M1 macrophages. Thus, microglia BDNF might regulate sociability and mPFC maturation in mice during the juvenile period. Furthermore, childhood experiences in humans may be related to BDNF secretion from macrophages.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - T Ito
- Keio University School of Medicine
| | | | | | | | | | - Noboru Hiroi
- University of Texas Health Science Center at San Antonio
| |
Collapse
|
35
|
Minervini A, LaVarco A, Zorns S, Propper R, Suriano C, Keenan JP. Excitatory Dorsal Lateral Prefrontal Cortex Transcranial Magnetic Stimulation Increases Social Anxiety. Brain Sci 2023; 13:989. [PMID: 37508921 PMCID: PMC10377502 DOI: 10.3390/brainsci13070989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Social exclusion refers to the experience of rejection by one or more people during a social event and can induce pain-related sensations. Cyberball, a computer program, is one of the most common tools for analyzing social exclusion. Regions of the brain that underlie social pain include networks linked to the dorsal lateral prefrontal cortex (DLPFC). Specifically, self-directed negative socially induced exclusion is associated with changes in DLPFC activity. Direct manipulation of this area may provide a better understanding of how the DLPFC can influence the perception of social exclusion and determine a causal role of the DLPFC. Transcranial magnetic stimulation (TMS) was applied to both the left and right DLPFC to gauge different reactions to the Cyberball experience. It was found that there were elevated exclusion indices following right DLPFC rTMS; participants consistently felt more excluded when the right DLPFC was excited. This may relate to greater feelings of social pain when the right DLPFC is manipulated. These data demonstrate that direct manipulation of the DLPFC results in changes in responses to social exclusion.
Collapse
Affiliation(s)
- Anthony Minervini
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ 07043, USA
| | - Adriana LaVarco
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ 07043, USA
| | - Samantha Zorns
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ 07043, USA
| | - Ruth Propper
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ 07043, USA
| | - Christos Suriano
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ 07043, USA
| | - Julian Paul Keenan
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ 07043, USA
| |
Collapse
|
36
|
Ferrara NC, Trask S, Padival M, Rosenkranz JA. Maturation of a cortical-amygdala circuit limits sociability in male rats. Cereb Cortex 2023; 33:8391-8404. [PMID: 37032624 PMCID: PMC10321102 DOI: 10.1093/cercor/bhad124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 04/11/2023] Open
Abstract
Prefrontal cortical maturation coincides with adolescent transitions in social engagement, suggesting that it influences social development. The anterior cingulate cortex (ACC) is important for social interaction, including ACC outputs to the basolateral amygdala (BLA). However, little is known about ACC-BLA sensitivity to the social environment and if this changes during maturation. Here, we used brief (2-hour) isolation to test the immediate impact of changing the social environment on the ACC-BLA circuit and subsequent shifts in social behavior of adolescent and adult rats. We found that optogenetic inhibition of the ACC during brief isolation reduced isolation-driven facilitation of social interaction across ages. Isolation increased activity of ACC-BLA neurons across ages, but altered the influence of ACC on BLA activity in an age-dependent manner. Isolation reduced the inhibitory impact of ACC stimulation on BLA neurons in a frequency-dependent manner in adults, but uniformly suppressed ACC-driven BLA activity in adolescents. This work identifies isolation-driven alterations in an ACC-BLA circuit, and the ACC itself as an essential region sensitive to social environment and regulates its impact on social behavior in both adults and adolescents.
Collapse
Affiliation(s)
- Nicole C Ferrara
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
| | - Sydney Trask
- Department of Psychological Sciences, Purdue University, 703 3rd Street, West Lafayette, IN, 47907, United States
| | - Mallika Padival
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
| | - Jeremy Amiel Rosenkranz
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
| |
Collapse
|
37
|
Hu YY, Ding XS, Yang G, Liang XS, Feng L, Sun YY, Chen R, Ma QH. Analysis of the influences of social isolation on cognition and the therapeutic potential of deep brain stimulation in a mouse model. Front Psychiatry 2023; 14:1186073. [PMID: 37409161 PMCID: PMC10318365 DOI: 10.3389/fpsyt.2023.1186073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Background Social interaction is a fundamental human need. Social isolation (SI) can have negative effects on both emotional and cognitive function. However, it is currently unclear how age and the duration of SI affect emotion and recognition function. In addition, there is no specific treatment for the effects of SI. Methods The adolescence or adult mice were individually housed in cages for 1, 6 or 12 months and for 2 months to estabolish SI mouse model. We investigated the effects of SI on behavior in mice at different ages and under distinct durations of SI, and we explored the possible underlying mechanisms. Then we performed deep brain stimulation (DBS) to evaluate its influences on SI induced behavioral abnormalities. Results We found that social recognition was affected in the short term, while social preference was damaged by extremely long periods of SI. In addition to affecting social memory, SI also affects emotion, short-term spatial ability and learning willingness in mice. Myelin was decreased significantly in the medial prefrontal cortex (mPFC) and dorsal hippocampus of socially isolated mice. Cellular activity in response to social stimulation in both areas was impaired by social isolation. By stimulating the mPFC using DBS, we found that DBS alleviated cellular activation disorders in the mPFC after long-term SI and improved social preference in mice. Conclusion Our results suggest that the therapeutic potential of stimulating the mPFC with DBS in individuals with social preference deficits caused by long-term social isolation, as well as the effects of DBS on the cellular activity and density of OPCs.
Collapse
Affiliation(s)
- Yun-Yun Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- Department of Respiratory Medicine, Sleep Center, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Xuan-Si Ding
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Gang Yang
- Lab Center, Medical College of Soochow University, Suzhou, China
| | - Xue-Song Liang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- Second Clinical College, Dalian Medical University, Dalian, China
| | - Lei Feng
- Monash Suzhou Research Institute, Suzhou, China
| | - Yan-Yun Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Rui Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Respiratory Medicine, Sleep Center, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
38
|
Bijlsma A, Vanderschuren LJMJ, Wierenga CJ. Social play behavior shapes the development of prefrontal inhibition in a region-specific manner. Cereb Cortex 2023:bhad212. [PMID: 37317037 PMCID: PMC10393492 DOI: 10.1093/cercor/bhad212] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/16/2023] Open
Abstract
Experience-dependent organization of neuronal connectivity is critical for brain development. We recently demonstrated the importance of social play behavior for the developmental fine-tuning of inhibitory synapses in the medial prefrontal cortex in rats. When these effects of play experience occur and if this happens uniformly throughout the prefrontal cortex is currently unclear. Here we report important temporal and regional heterogeneity in the impact of social play on the development of excitatory and inhibitory neurotransmission in the medial prefrontal cortex and the orbitofrontal cortex. We recorded in layer 5 pyramidal neurons from juvenile (postnatal day (P)21), adolescent (P42), and adult (P85) rats after social play deprivation (between P21 and P42). The development of these prefrontal cortex subregions followed different trajectories. On P21, inhibitory and excitatory synaptic input was higher in the orbitofrontal cortex than in the medial prefrontal cortex. Social play deprivation did not affect excitatory currents, but reduced inhibitory transmission in both medial prefrontal cortex and orbitofrontal cortex. Intriguingly, the reduction occurred in the medial prefrontal cortex during social play deprivation, whereas the reduction in the orbitofrontal cortex only became manifested after social play deprivation. These data reveal a complex interaction between social play experience and the specific developmental trajectories of prefrontal subregions.
Collapse
Affiliation(s)
- Ate Bijlsma
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Louk J M J Vanderschuren
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Corette J Wierenga
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
39
|
Matthiesen M, Khlaifia A, Steininger CFD, Dadabhoy M, Mumtaz U, Arruda-Carvalho M. Maturation of nucleus accumbens synaptic transmission signals a critical period for the rescue of social deficits in a mouse model of autism spectrum disorder. Mol Brain 2023; 16:46. [PMID: 37226266 DOI: 10.1186/s13041-023-01028-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023] Open
Abstract
Social behavior emerges early in development, a time marked by the onset of neurodevelopmental disorders featuring social deficits, including autism spectrum disorder (ASD). Although social deficits are at the core of the clinical diagnosis of ASD, very little is known about their neural correlates at the time of clinical onset. The nucleus accumbens (NAc), a brain region extensively implicated in social behavior, undergoes synaptic, cellular and molecular alterations in early life, and is particularly affected in ASD mouse models. To explore a link between the maturation of the NAc and neurodevelopmental deficits in social behavior, we compared spontaneous synaptic transmission in NAc shell medium spiny neurons (MSNs) between the highly social C57BL/6J and the idiopathic ASD mouse model BTBR T+Itpr3tf/J at postnatal day (P) 4, P6, P8, P12, P15, P21 and P30. BTBR NAc MSNs display increased spontaneous excitatory transmission during the first postnatal week, and increased inhibition across the first, second and fourth postnatal weeks, suggesting accelerated maturation of excitatory and inhibitory synaptic inputs compared to C57BL/6J mice. BTBR mice also show increased optically evoked medial prefrontal cortex-NAc paired pulse ratios at P15 and P30. These early changes in synaptic transmission are consistent with a potential critical period, which could maximize the efficacy of rescue interventions. To test this, we treated BTBR mice in either early life (P4-P8) or adulthood (P60-P64) with the mTORC1 antagonist rapamycin, a well-established intervention for ASD-like behavior. Rapamycin treatment rescued social interaction deficits in BTBR mice when injected in infancy, but did not affect social interaction in adulthood.
Collapse
Affiliation(s)
- Melina Matthiesen
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | | | - Maryam Dadabhoy
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Unza Mumtaz
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada.
| |
Collapse
|
40
|
Ferrara NC, Opendak M. Amygdala circuit transitions supporting developmentally-appropriate social behavior. Neurobiol Learn Mem 2023; 201:107762. [PMID: 37116857 PMCID: PMC10204580 DOI: 10.1016/j.nlm.2023.107762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/30/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
Social behaviors dynamically change throughout the lifespan alongside the maturation of neural circuits. The basolateral region of the amygdala (BLA), in particular, undergoes substantial maturational changes from birth throughout adolescence that are characterized by changes in excitation, inhibition, and dopaminergic modulation. In this review, we detail the trajectory through which BLA circuits mature and are influenced by dopaminergic systems to guide transitions in social behavior in infancy and adolescence using data from rodents. In early life, social behavior is oriented towards approaching the attachment figure, with minimal BLA involvement. Around weaning age, dopaminergic innervation of the BLA introduces avoidance of novel peers into rat pups' behavioral repertoire. In adolescence, social behavior transitions towards peer-peer interactions with a high incidence of social play-related behaviors. This transition coincides with an increasing role of the BLA in the regulation of social behavior. Adolescent BLA maturation can be characterized by an increasing integration and function of local inhibitory GABAergic circuits and their engagement by the medial prefrontal cortex (mPFC). Manipulation of these transitions using viral circuit dissection techniques and early adversity paradigms reveals the sensitivity of this system and its role in producing age-appropriate social behavior.
Collapse
Affiliation(s)
- Nicole C Ferrara
- Discipline of Physiology and Biophysics, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA; Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Maya Opendak
- Kennedy Krieger Institute, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, USA.
| |
Collapse
|
41
|
Chehrazi P, Lee KKY, Lavertu-Jolin M, Abbasnejad Z, Carreño-Muñoz MI, Chattopadhyaya B, Di Cristo G. p75 neurotrophin receptor in pre-adolescent prefrontal PV interneurons promotes cognitive flexibility in adult mice. Biol Psychiatry 2023:S0006-3223(23)01238-6. [PMID: 37120061 DOI: 10.1016/j.biopsych.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 05/01/2023]
Abstract
BACKGROUND Parvalbumin (PV)-positive GABAergic cells provide robust perisomatic inhibition to neighboring pyramidal neurons and regulate brain oscillations. Alterations in PV interneuron connectivity and function in the medial prefrontal cortex (mPFC) have been consistently reported in psychiatric disorders associated with cognitive rigidity, suggesting that PV cell deficits could be a core cellular phenotype in these disorders. p75 neurotrophin receptor (p75NTR) regulates the time course of PV cell maturation in a cell-autonomous fashion. Whether p75NTR expression during postnatal development affects adult prefrontal PV cell connectivity and cognitive function is unknown. METHODS We generated transgenic mice with conditional knockout (cKO) of p75NTR in postnatal PV cells. We analysed PV cell connectivity and recruitment following a tail pinch, by immunolabeling and confocal imaging, in naïve mice or following p75NTR re-expression in pre- or post-adolescent mice using Cre-dependent viral vectors. Cognitive flexibility was evaluated using behavioral tests. RESULTS PV cell-specific p75NTR deletion increased both PV cell synapse density and the proportion of PV cells surrounded by perineuronal nets, a marker of mature PV cells, in adult mPFC but not visual cortex. Both phenotypes were rescued by viral-mediated re-introduction of p75NTR in pre-adolescent but not post-adolescent mPFC. Prefrontal cortical PV cells failed to upregulate c-Fos following a tail-pinch stimulation in adult cKO mice. Finally, cKO mice showed impaired fear memory extinction learning as well as deficits in a attention set-shifting task. CONCLUSION These findings suggest that p75NTR expression in adolescent PV cells contributes to the fine tuning of their connectivity and promotes cognitive flexibility in adulthood.
Collapse
Affiliation(s)
- Pegah Chehrazi
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, Canada; Department of Neurosciences, Université de Montréal, Montréal, Canada
| | - Karen Ka Yan Lee
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, Canada; Department of Neurosciences, Université de Montréal, Montréal, Canada
| | - Marisol Lavertu-Jolin
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, Canada; Department of Neurosciences, Université de Montréal, Montréal, Canada
| | - Zahra Abbasnejad
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, Canada; Department of Neurosciences, Université de Montréal, Montréal, Canada
| | - Maria Isabel Carreño-Muñoz
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, Canada; Department of Neurosciences, Université de Montréal, Montréal, Canada
| | | | - Graziella Di Cristo
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, Canada; Department of Neurosciences, Université de Montréal, Montréal, Canada.
| |
Collapse
|
42
|
Jeon YS, Jeong D, Kweon H, Kim JH, Kim CY, Oh Y, Lee YH, Kim CH, Kim SG, Jeong JW, Kim E, Lee SH. Adolescent Parvalbumin Expression in the Left Orbitofrontal Cortex Shapes Sociability in Female Mice. J Neurosci 2023; 43:1555-1571. [PMID: 36717231 PMCID: PMC10008055 DOI: 10.1523/jneurosci.0918-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
The adolescent social experience is essential for the maturation of the prefrontal cortex in mammalian species. However, it still needs to be determined which cortical circuits mature with such experience and how it shapes adult social behaviors in a sex-specific manner. Here, we examined social-approaching behaviors in male and female mice after postweaning social isolation (PWSI), which deprives social experience during adolescence. We found that the PWSI, particularly isolation during late adolescence, caused an abnormal increase in social approaches (hypersociability) only in female mice. We further found that the PWSI female mice showed reduced parvalbumin (PV) expression in the left orbitofrontal cortex (OFCL). When we measured neural activity in the female OFCL, a substantial number of neurons showed higher activity when mice sniffed other mice (social sniffing) than when they sniffed an object (object sniffing). Interestingly, the PWSI significantly reduced both the number of activated neurons and the activity level during social sniffing in female mice. Similarly, the CRISPR/Cas9-mediated knockdown of PV in the OFCL during late adolescence enhanced sociability and reduced the social sniffing-induced activity in adult female mice via decreased excitability of PV+ neurons and reduced synaptic inhibition in the OFCL Moreover, optogenetic activation of excitatory neurons or optogenetic inhibition of PV+ neurons in the OFCL enhanced sociability in female mice. Our data demonstrate that the adolescent social experience is critical for the maturation of PV+ inhibitory circuits in the OFCL; this maturation shapes female social behavior via enhancing social representation in the OFCL SIGNIFICANCE STATEMENT Adolescent social isolation often changes adult social behaviors in mammals. Yet, we do not fully understand the sex-specific effects of social isolation and the brain areas and circuits that mediate such changes. Here, we found that adolescent social isolation causes three abnormal phenotypes in female but not male mice: hypersociability, decreased PV+ neurons in the left orbitofrontal cortex (OFCL), and decreased socially evoked activity in the OFCL Moreover, parvalbumin (PV) deletion in the OFCL in vivo caused the same phenotypes in female mice by increasing excitation compared with inhibition within the OFCL Our data suggest that adolescent social experience is required for PV maturation in the OFCL, which is critical for evoking OFCL activity that shapes social behaviors in female mice.
Collapse
Affiliation(s)
- Yi-Seon Jeon
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Daun Jeong
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Hanseul Kweon
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, KAIST, Daejeon 34141, Korea
| | - Jae-Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Choong Yeon Kim
- School of Electrical Engineering, KAIST, Daejeon 34141, Korea
| | - Youngbin Oh
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Young-Ho Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Chan Hyuk Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, KAIST, Daejeon 34141, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, KAIST, Daejeon 34141, Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, KAIST, Daejeon 34141, Korea
| |
Collapse
|
43
|
Ren Y, Savadlou A, Park S, Siska P, Epp JR, Sargin D. The impact of loneliness and social isolation on the development of cognitive decline and Alzheimer's Disease. Front Neuroendocrinol 2023; 69:101061. [PMID: 36758770 DOI: 10.1016/j.yfrne.2023.101061] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Alzheimer's Disease (AD) is the leading cause of dementia, observed at a higher incidence in women compared with men. Treatments aimed at improving pathology in AD remain ineffective to stop disease progression. This makes the detection of the early intervention strategies to reduce future disease risk extremely important. Isolation and loneliness have been identified among the major risk factors for AD. The increasing prevalence of both loneliness and AD emphasizes the urgent need to understand this association to inform treatment. Here we present a comprehensive review of both clinical and preclinical studies that investigated loneliness and social isolation as risk factors for AD. We discuss that understanding the mechanisms of how loneliness exacerbates cognitive impairment and AD with a focus on sex differences will shed the light for the underlying mechanisms regarding loneliness as a risk factor for AD and to develop effective prevention or treatment strategies.
Collapse
Affiliation(s)
- Yi Ren
- Department of Cell Biology and Anatomy, University of Calgary, Canada; Cumming School of Medicine, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Aisouda Savadlou
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Soobin Park
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Paul Siska
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, University of Calgary, Canada; Cumming School of Medicine, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Derya Sargin
- Department of Psychology, University of Calgary, Canada; Department of Physiology & Pharmacology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada.
| |
Collapse
|
44
|
Juvenile social isolation affects the structure of the tanycyte-vascular interface in the hypophyseal portal system of the adult mice. Neurochem Int 2023; 162:105439. [PMID: 36356785 DOI: 10.1016/j.neuint.2022.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Accumulating evidence indicates that social stress in the juvenile period affects hypothalamic-pituitary-adrenal (HPA) axis activity in adulthood. The biological mechanisms underlying this phenomenon remain unclear. We aimed to elucidate them by comparing adult mice that had experienced social isolation from postnatal day 21-35 (juvenile social isolation (JSI) group) with those reared normally (control group). JSI group mice showed an attenuated HPA response to acute swim stress, while the control group had a normal response to this stress. Activity levels of the paraventricular nucleus in both groups were comparable, as shown by c-Fos immunoreactivities and mRNA expression of c-Fos, Corticotropin-releasing factor (CRF), Glucocorticoid receptor, and Mineralocorticoid receptor. We found greater vascular coverage by tanycytic endfeet in the median eminence of the JSI group mice than in that of the control group mice under basal condition and after acute swim stress. Moreover, CRF content after acute swim stress was greater in the median eminence of the JSI group mice than in that of the control group mice. The attenuated HPA response to acute swim stress was specific to JSI group mice, but not to control group mice. Although a direct link awaits further experiments, tanycyte morphological changes in the median eminence could be related to the HPA response.
Collapse
|
45
|
Xiong Y, Hong H, Liu C, Zhang YQ. Social isolation and the brain: effects and mechanisms. Mol Psychiatry 2023; 28:191-201. [PMID: 36434053 PMCID: PMC9702717 DOI: 10.1038/s41380-022-01835-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022]
Abstract
An obvious consequence of the coronavirus disease (COVID-19) pandemic is the worldwide reduction in social interaction, which is associated with many adverse effects on health in humans from babies to adults. Although social development under normal or isolated environments has been studied since the 1940s, the mechanism underlying social isolation (SI)-induced brain dysfunction remains poorly understood, possibly due to the complexity of SI in humans and translational gaps in findings from animal models. Herein, we present a systematic review that focused on brain changes at the molecular, cellular, structural and functional levels induced by SI at different ages and in different animal models. SI studies in humans and animal models revealed common socioemotional and cognitive deficits caused by SI in early life and an increased occurrence of depression and anxiety induced by SI during later stages of life. Altered neurotransmission and neural circuitry as well as abnormal development and function of glial cells in specific brain regions may contribute to the abnormal emotions and behaviors induced by SI. We highlight distinct alterations in oligodendrocyte progenitor cell differentiation and oligodendrocyte maturation caused by SI in early life and later stages of life, respectively, which may affect neural circuit formation and function and result in diverse brain dysfunctions. To further bridge animal and human SI studies, we propose alternative animal models with brain structures and complex social behaviors similar to those of humans.
Collapse
Affiliation(s)
- Ying Xiong
- grid.9227.e0000000119573309State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Huilin Hong
- grid.9227.e0000000119573309State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Cirong Liu
- grid.9227.e0000000119573309Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China ,grid.511008.dShanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210 China
| | - Yong Q. Zhang
- grid.9227.e0000000119573309State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
46
|
Canetta SE, Holt ES, Benoit LJ, Teboul E, Sahyoun GM, Ogden RT, Harris AZ, Kellendonk C. Mature parvalbumin interneuron function in prefrontal cortex requires activity during a postnatal sensitive period. eLife 2022; 11:80324. [PMID: 36576777 PMCID: PMC9797185 DOI: 10.7554/elife.80324] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022] Open
Abstract
In their seminal findings, Hubel and Wiesel identified sensitive periods in which experience can exert lasting effects on adult visual cortical functioning and behavior via transient changes in neuronal activity during development. Whether comparable sensitive periods exist for non-sensory cortices, such as the prefrontal cortex, in which alterations in activity determine adult circuit function and behavior is still an active area of research. Here, using mice we demonstrate that inhibition of prefrontal parvalbumin (PV)-expressing interneurons during the juvenile and adolescent period, results in persistent impairments in adult prefrontal circuit connectivity, in vivo network function, and behavioral flexibility that can be reversed by targeted activation of PV interneurons in adulthood. In contrast, reversible suppression of PV interneuron activity in adulthood produces no lasting effects. These findings identify an activity-dependent sensitive period for prefrontal circuit maturation and highlight how abnormal PV interneuron activity during development alters adult prefrontal circuit function and cognitive behavior.
Collapse
Affiliation(s)
- Sarah E Canetta
- Department of Psychiatry, Columbia University Medical Center, New York, United States.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, United States
| | - Emma S Holt
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, United States
| | - Laura J Benoit
- Department of Psychiatry, Columbia University Medical Center, New York, United States.,Division of Molecular Therapeutics, New York Psychiatric Institute, New York, United States
| | - Eric Teboul
- Division of Molecular Therapeutics, New York Psychiatric Institute, New York, United States
| | - Gabriella M Sahyoun
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, United States
| | - R Todd Ogden
- Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York, United States
| | - Alexander Z Harris
- Department of Psychiatry, Columbia University Medical Center, New York, United States.,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, United States
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University Medical Center, New York, United States.,Division of Molecular Therapeutics, New York Psychiatric Institute, New York, United States.,Department of Molecular Pharmacology & Therapeutics, Columbia University Medical Center, New York, United States
| |
Collapse
|
47
|
Goral RO, Harper KM, Bernstein BJ, Fry SA, Lamb PW, Moy SS, Cushman JD, Yakel JL. Loss of GABA co-transmission from cholinergic neurons impairs behaviors related to hippocampal, striatal, and medial prefrontal cortex functions. Front Behav Neurosci 2022; 16:1067409. [PMID: 36505727 PMCID: PMC9730538 DOI: 10.3389/fnbeh.2022.1067409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction: Altered signaling or function of acetylcholine (ACh) has been reported in various neurological diseases, including Alzheimer's disease, Tourette syndrome, epilepsy among others. Many neurons that release ACh also co-transmit the neurotransmitter gamma-aminobutyrate (GABA) at synapses in the hippocampus, striatum, substantia nigra, and medial prefrontal cortex (mPFC). Although ACh transmission is crucial for higher brain functions such as learning and memory, the role of co-transmitted GABA from ACh neurons in brain function remains unknown. Thus, the overarching goal of this study was to investigate how a systemic loss of GABA co-transmission from ACh neurons affected the behavioral performance of mice. Methods: To do this, we used a conditional knock-out mouse of the vesicular GABA transporter (vGAT) crossed with the ChAT-Cre driver line to selectively ablate GABA co-transmission at ACh synapses. In a comprehensive series of standardized behavioral assays, we compared Cre-negative control mice with Cre-positive vGAT knock-out mice of both sexes. Results: Loss of GABA co-transmission from ACh neurons did not disrupt the animal's sociability, motor skills or sensation. However, in the absence of GABA co-transmission, we found significant alterations in social, spatial and fear memory as well as a reduced reliance on striatum-dependent response strategies in a T-maze. In addition, male conditional knockout (CKO) mice showed increased locomotion. Discussion: Taken together, the loss of GABA co-transmission leads to deficits in higher brain functions and behaviors. Therefore, we propose that ACh/GABA co-transmission modulates neural circuitry involved in the affected behaviors.
Collapse
Affiliation(s)
- R. Oliver Goral
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, United States
| | - Kathryn M. Harper
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, United States
| | - Briana J. Bernstein
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,Department of Health and Human Services, Neurobehavioral Core, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Sydney A. Fry
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,Department of Health and Human Services, Neurobehavioral Core, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Patricia W. Lamb
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Sheryl S. Moy
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, United States
| | - Jesse D. Cushman
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,Department of Health and Human Services, Neurobehavioral Core, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Jerrel L. Yakel
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,*Correspondence: Jerrel L. Yakel
| |
Collapse
|
48
|
Harda Z, Misiołek K, Klimczak M, Chrószcz M, Rodriguez Parkitna J. C57BL/6N mice show a sub-strain specific resistance to the psychotomimetic effects of ketamine. Front Behav Neurosci 2022; 16:1057319. [PMID: 36505728 PMCID: PMC9731130 DOI: 10.3389/fnbeh.2022.1057319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Repeated administration of subanesthetic doses of ketamine is a model of psychosis-like state in rodents. In mice, this treatment produces a range of behavioral deficits, including impairment in social interactions and locomotion. To date, these phenotypes were described primarily in the Swiss and C3H/HeHsd mouse strains. A few studies investigated ketamine-induced behaviors in the C57BL/6J strain, but to our knowledge the C57BL/6N strain was not investigated thus far. This is surprising, as both C57BL/6 sub-strains are widely used in behavioral and neuropsychopharmacological research, and are de facto standards for characterization of drug effects. The goal of this study was to determine if C57BL/6N mice are vulnerable to develop social deficits after 5 days withdrawal from sub-chronic ketamine treatment (5 days, 30 mg/kg, i.p.), an experimental schedule shown before to cause deficits in social interactions in C57BL/6J mice. Our results show that sub-chronic administration of ketamine that was reported to cause psychotic-like behavior in C57BL/6J mice does not induce appreciable behavioral alterations in C57BL/6N mice. Thus, we show that the effects of sub-chronic ketamine treatment in mice are sub-strain specific.
Collapse
|
49
|
Bijlsma A, Omrani A, Spoelder M, Verharen JPH, Bauer L, Cornelis C, de Zwart B, van Dorland R, Vanderschuren LJMJ, Wierenga CJ. Social Play Behavior Is Critical for the Development of Prefrontal Inhibitory Synapses and Cognitive Flexibility in Rats. J Neurosci 2022; 42:8716-8728. [PMID: 36253083 PMCID: PMC9671579 DOI: 10.1523/jneurosci.0524-22.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Sensory driven activity during early life is critical for setting up the proper connectivity of the sensory cortices. We ask here whether social play behavior, a particular form of social interaction that is highly abundant during postweaning development, is equally important for setting up connections in the developing prefrontal cortex (PFC). Young male rats were deprived from social play with peers during the period in life when social play behavior normally peaks [postnatal day 21-42] (SPD rats), followed by resocialization until adulthood. We recorded synaptic currents in layer 5 cells in slices from medial PFC of adult SPD and control rats and observed that inhibitory synaptic currents were reduced in SPD slices, while excitatory synaptic currents were unaffected. This was associated with a decrease in perisomatic inhibitory synapses from parvalbumin-positive GABAergic cells. In parallel experiments, adult SPD rats achieved more reversals in a probabilistic reversal learning (PRL) task, which depends on the integrity of the PFC, by using a more simplified cognitive strategy than controls. Interestingly, we observed that one daily hour of play during SPD partially rescued the behavioral performance in the PRL, but did not prevent the decrease in PFC inhibitory synaptic inputs. Our data demonstrate the importance of unrestricted social play for the development of inhibitory synapses in the PFC and cognitive skills in adulthood and show that specific synaptic alterations in the PFC can result in a complex behavioral outcome.SIGNIFICANCE STATEMENT This study addressed the question whether social play behavior in juvenile rats contributes to functional development of the prefrontal cortex (PFC). We found that rats that had been deprived from juvenile social play (social play deprivation - SPD) showed a reduction in inhibitory synapses in the PFC and a simplified strategy to solve a complex behavioral task in adulthood. Providing one daily hour of play during SPD partially rescued the cognitive skills in these rats, but did not prevent the reduction in PFC inhibitory synapses. Our results demonstrate a key role for unrestricted juvenile social play in PFC development and emphasize the complex relation between PFC circuit connectivity and cognitive function.
Collapse
Affiliation(s)
- Ate Bijlsma
- Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Azar Omrani
- Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Marcia Spoelder
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Jeroen P H Verharen
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM, Utrecht, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Lisa Bauer
- Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Cosette Cornelis
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Beleke de Zwart
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - René van Dorland
- Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Louk J M J Vanderschuren
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Corette J Wierenga
- Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
50
|
Anastasiades PG, de Vivo L, Bellesi M, Jones MW. Adolescent sleep and the foundations of prefrontal cortical development and dysfunction. Prog Neurobiol 2022; 218:102338. [PMID: 35963360 PMCID: PMC7616212 DOI: 10.1016/j.pneurobio.2022.102338] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Modern life poses many threats to good-quality sleep, challenging brain health across the lifespan. Curtailed or fragmented sleep may be particularly damaging during adolescence, when sleep disruption by delayed chronotypes and societal pressures coincides with our brains preparing for adult life via intense refinement of neural connectivity. These vulnerabilities converge on the prefrontal cortex, one of the last brain regions to mature and a central hub of the limbic-cortical circuits underpinning decision-making, reward processing, social interactions and emotion. Even subtle disruption of prefrontal cortical development during adolescence may therefore have enduring impact. In this review, we integrate synaptic and circuit mechanisms, glial biology, sleep neurophysiology and epidemiology, to frame a hypothesis highlighting the implications of adolescent sleep disruption for the neural circuitry of the prefrontal cortex. Convergent evidence underscores the importance of acknowledging, quantifying and optimizing adolescent sleep's contributions to normative brain development and to lifelong mental health.
Collapse
Affiliation(s)
- Paul G Anastasiades
- University of Bristol, Translational Health Sciences, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Luisa de Vivo
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, University Walk, Bristol BS8 1TD, UK; University of Camerino, School of Pharmacy, via Gentile III Da Varano, Camerino 62032, Italy
| | - Michele Bellesi
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, University Walk, Bristol BS8 1TD, UK; University of Camerino, School of Bioscience and Veterinary Medicine, via Gentile III Da Varano, Camerino 62032, Italy
| | - Matt W Jones
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|