1
|
Ma Y, Zhang H, Dou L, Sun H, Jing Y, Gu Z, Wang L, Gao C. Mitochondrial uncoupler BAM15 enhances the function of CD7CAR-T CD7- cells and reduces the release of cytokines for the therapy of T-cell malignancies. Int Immunopharmacol 2025; 155:114577. [PMID: 40215779 DOI: 10.1016/j.intimp.2025.114577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
Traditional therapies for relapsed/refractory T-cell malignancies, such as T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphomas, have limited efficacy. Chimeric antigen receptor T-cell (CAR-T) therapy has shown potential in treating hematologic malignancies, but challenges such as tumor immune evasion, CAR-T resistance, and cytokine release syndrome (CRS) hinder its clinical application. In this study, we generated CD7CAR-TCD7- cells by modifying naturally occurring CD7 negative T cells from human peripheral blood with a novel CD7 targeted CAR construct. The cytotoxic efficacy of CD7CAR-TCD7- cells against CD7 positive T cell malignancies was assessed through in vitro experiments and xenograft mouse models. To address CAR-T therapy limitations, we identified BAM15, a mitochondrial uncoupling agent, from a small molecule library. BAM15 enhanced the cytotoxic function of CD7CAR-TCD7- cells in a concentration-dependent manner while reducing cytokine release profile in both cellular assays and xenograft models. Notably, at low concentrations (2.5μM, 1 μM and 0.5 μM), BAM15 improved antitumor efficacy at suboptimal effector-to-target ratios (E:T = 1:1 and 1:2), reduced inflammatory cytokines like IL-6 and TNFα, and alleviated inflammatory cell infiltration in lung and liver. This study confirms the feasibility of constructing CD7CAR-TCD7- cells from CD7- T cells and first reveals the synergistic effects of BAM15 on CD7CAR-TCD7- cells, for overcoming dose limitations and CRS of CAR-T therapy, and providing a novel strategy for T-cell malignancies.
Collapse
Affiliation(s)
- Yanqing Ma
- Medical School of Chinese PLA, Beijing 100853, China; State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Zhang
- Yanda Medical Research Institute, Hebei Yanda Hospital, Langfang 065201, China
| | - Liping Dou
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Huiyan Sun
- Yanda Medical Research Institute, Hebei Yanda Hospital, Langfang 065201, China; The Sanly-Health Cell Technology Inc, Beijing, China
| | - Yu Jing
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Zhenyang Gu
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Lisheng Wang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Chunji Gao
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
2
|
Courtemanche O, Blais-Lecours P, Lesage S, Chabot-Roy G, Coderre L, Blanchet MR, Châteauvert N, Lellouche F, Marsolais D. Exploratory analyses of leukocyte responses in hospitalized patients treated with ozanimod following a severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) infection. Immunol Cell Biol 2025; 103:433-443. [PMID: 40025871 DOI: 10.1111/imcb.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 03/04/2025]
Abstract
Sphingosine-1-phosphate receptor 1 (S1P1) ligands effectively reduce immunopathological damage in viral pneumonia models. Specifically, S1P1 ligands inhibit cytokine storm and help preserve lung endothelial barrier integrity. We recently showed that the S1P receptor ligand ozanimod can be safely administered to hospitalized patients with coronavirus disease 2019 (COVID-19) exhibiting severe symptoms of viral pneumonia, with potential clinical benefits. Here, we extend on this study and investigate the impact of ozanimod on key features of the immune response in patients with severe COVID-19. We quantified circulating cytokine levels, peripheral immune cell numbers, proportions and activation status; we also monitored the quality of the humoral response by assessing anti-severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) antibodies. Our findings reveal that patients receiving ozanimod during acute SARS-CoV-2 infection exhibit significantly reduced numbers of circulating monocytes compared with those receiving standard care. Correspondingly, in the ozanimod-treated group, circulating levels of C-C motif ligand 2 (CCL2) were decreased. While treatment with ozanimod negatively impacted the humoral response to COVID-19 in unvaccinated patients, it did not impair the development of a robust anti-SARS-CoV-2 antibody response in vaccinated patients. These findings suggest that ozanimod influences key immune mechanisms during the acute phase of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Olivier Courtemanche
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Pascale Blais-Lecours
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Sylvie Lesage
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, QC, Canada
| | | | - Lise Coderre
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, QC, Canada
| | - Marie-Renée Blanchet
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
- Département de Médecine, Université Laval, Quebec, QC, Canada
| | - Nathalie Châteauvert
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - François Lellouche
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
- Département de Médecine, Université Laval, Quebec, QC, Canada
| | - David Marsolais
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
- Département de Médecine, Université Laval, Quebec, QC, Canada
| |
Collapse
|
3
|
Brügger M, Machahua C, Zumkehr T, Cismaru C, Jandrasits D, Trüeb B, Ezzat S, Oliveira Esteves BI, Dorn P, Marti TM, Zimmer G, Thiel V, Funke-Chambour M, Alves MP. Aging shapes infection profiles of influenza A virus and SARS-CoV-2 in human precision-cut lung slices. Respir Res 2025; 26:112. [PMID: 40128814 PMCID: PMC11934781 DOI: 10.1186/s12931-025-03190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) outbreak revealed the susceptibility of elderly patients to respiratory virus infections, showing cell senescence or subclinical persistent inflammatory profiles and favoring the development of severe pneumonia. METHODS In our study, we evaluated the potential influence of lung aging on the efficiency of replication of influenza A virus (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as determining the pro-inflammatory and antiviral responses of the distal lung tissue. RESULTS Using precision-cut lung slices (PCLS) from donors of different ages, we found that pandemic H1N1 and avian H5N1 IAV replicated in the lung parenchyma with high efficacy. In contrast to these IAV strains, SARS-CoV-2 Early isolate and Delta variant of concern (VOC) replicated less efficiently in PCLS. Interestingly, both viruses showed reduced replication in PCLS from older compared to younger donors, suggesting that aged lung tissue represents a suboptimal environment for viral replication. Regardless of the age-dependent viral loads, PCLS responded to H5N1 IAV infection by an induction of IL-6 and IP10/CXCL10, both at the mRNA and protein levels, and to H1N1 IAV infection by induction of IP10/CXCL10 mRNA. Finally, while SARS-CoV-2 and H1N1 IAV infection were not causing detectable cell death, H5N1 IAV infection led to more cytotoxicity and induced significant early interferon responses. CONCLUSIONS In summary, our findings suggest that aged lung tissue might not favor viral dissemination, pointing to a determinant role of dysregulated immune mechanisms in the development of severe disease.
Collapse
Affiliation(s)
- Melanie Brügger
- Institute of Virology and Immunology, Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Carlos Machahua
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Trix Zumkehr
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Christiana Cismaru
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute of Virology, Freie Universitaet Berlin, Berlin, Germany
| | - Damian Jandrasits
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Bettina Trüeb
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sara Ezzat
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Blandina I Oliveira Esteves
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas M Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center, Jena, Germany
| | - Manuela Funke-Chambour
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marco P Alves
- Institute of Virology and Immunology, Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Chen CJ, Yi H, Stanley N. Conditional similarity triplets enable covariate-informed representations of single-cell data. BMC Bioinformatics 2025; 26:45. [PMID: 39924480 PMCID: PMC11807331 DOI: 10.1186/s12859-025-06069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Single-cell technologies enable comprehensive profiling of diverse immune cell-types through the measurement of multiple genes or proteins per individual cell. In order to translate immune signatures assayed from blood or tissue into powerful diagnostics, machine learning approaches are often employed to compute immunological summaries or per-sample featurizations, which can be used as inputs to models for outcomes of interest. Current supervised learning approaches for computing per-sample representations are trained only to accurately predict a single outcome and do not take into account relevant additional clinical features or covariates that are likely to also be measured for each sample. RESULTS Here, we introduce a novel approach for incorporating measured covariates in optimizing model parameters to ultimately specify per-sample encodings that accurately affect both immune signatures and additional clinical information. Our introduced method CytoCoSet is a set-based encoding method for learning per-sample featurizations, which formulates a loss function with an additional triplet term penalizing samples with similar covariates from having disparate embedding results in per-sample representations. CONCLUSIONS Overall, incorporating clinical covariates enables the learning of encodings for each individual sample that ultimately improve prediction of clinical outcome. This integration of information disparate more robust predictions of clinical phenotypes and holds significant potential for enhancing diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Chi-Jane Chen
- Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Haidong Yi
- Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Natalie Stanley
- Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
5
|
Lin X, Fu B, Xiong Y, Xue W, Lu X, Wang S, Guo D, Kunec D, Mao X, Trimpert J, Wu H. Yip1 interacting factor homolog B mediates the unconventional secretion of ORF8 during SARS-CoV-2 infection. iScience 2025; 28:111551. [PMID: 39811650 PMCID: PMC11732186 DOI: 10.1016/j.isci.2024.111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/04/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Severe cases of COVID-19 are associated with immune responses that lead to a surge in inflammatory molecules, resulting in multi-organ failure and death. This significant increase in inflammatory factors is triggered by viral proteins. Open reading frame 8 (ORF8) has received particular attention as a unique accessory protein of SARS-CoV-2. In a previous study, we have examined the role of unconventionally released ORF8 during cytokine storm associated with SARS-CoV-2 infection. Here, after mass spectrometry analysis and gene knockout/knockdown in cell/hamster models, we further discovered that Yip1 interacting factor homolog B (YIF1B) directly translocates unglycosylated ORF8 into vesicles that mediate cargo transport; specifically, the α4 helix of YIF1B interacts with the β8 sheet. Blocking ORF8 unconventional secretion via YIF1B knockdown attenuates inflammation and yields reduced mortality. Our study suggests that YIF1B directs ORF8 translocation into an unconventional secretion pathway, which has significant implications for the pathogenesis and treatment of COVID-19.
Collapse
Affiliation(s)
- Xiaoyuan Lin
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Institute of Virology, Free University of Berlin, Berlin 14163, Germany
| | - Beibei Fu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoxue Lu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shiwei Wang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dusan Kunec
- Institute of Virology, Free University of Berlin, Berlin 14163, Germany
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jakob Trimpert
- Institute of Virology, Free University of Berlin, Berlin 14163, Germany
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
6
|
Wang W, Hariharan M, Ding W, Bartlett A, Barragan C, Castanon R, Rothenberg V, Song H, Nery J, Aldridge A, Altshul J, Kenworthy M, Liu H, Tian W, Zhou J, Zeng Q, Chen H, Wei B, Gündüz IB, Norell T, Broderick TJ, McClain MT, Satterwhite LL, Burke TW, Petzold EA, Shen X, Woods CW, Fowler VG, Ruffin F, Panuwet P, Barr DB, Beare JL, Smith AK, Spurbeck RR, Vangeti S, Ramos I, Nudelman G, Sealfon SC, Castellino F, Walley AM, Evans T, Müller F, Greenleaf WJ, Ecker JR. Genetics and Environment Distinctively Shape the Human Immune Cell Epigenome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.29.546792. [PMID: 37425926 PMCID: PMC10327221 DOI: 10.1101/2023.06.29.546792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The epigenomic landscape of human immune cells is dynamically shaped by both genetic factors and environmental exposures. However, the relative contributions of these elements are still not fully understood. In this study, we employed single-nucleus methylation sequencing and ATAC-seq to systematically explore how pathogen and chemical exposures, along with genetic variation, influence the immune cell epigenome. We identified distinct exposure-associated differentially methylated regions (eDMRs) corresponding to each exposure, revealing how environmental factors remodel the methylome, alter immune cell states, and affect transcription factor binding. Furthermore, we observed a significant correlation between changes in DNA methylation and chromatin accessibility, underscoring the coordinated response of the epigenome. We also uncovered genotype-associated DMRs (gDMRs), demonstrating that while eDMRs are enriched in regulatory regions, gDMRs are preferentially located in gene body marks, suggesting that exposures and genetic factors exert differential regulatory control. Notably, disease-associated SNPs were frequently colocalized with meQTLs, providing new cell-type-specific insights into the genetic basis of disease. Our findings underscore the intricate interplay between genetic and environmental factors in sculpting the immune cell epigenome, offering a deeper understanding of how immune cell function is regulated in health and disease.
Collapse
Affiliation(s)
- Wenliang Wang
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Manoj Hariharan
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Wubin Ding
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Cesar Barragan
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Rosa Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Vince Rothenberg
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Haili Song
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Joseph Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Andrew Aldridge
- Duke University School of Medicine, Bryan Research Building, 311 Research Drive, Durham, NC 27710, USA
| | - Jordan Altshul
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Mia Kenworthy
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Wei Tian
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jingtian Zhou
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Qiurui Zeng
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Huaming Chen
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Bei Wei
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Irem B. Gündüz
- Integrative Cellular Biology & Bioinformatics Lab, Saarland University, 66123 Saarbrücken, Germany
| | - Todd Norell
- Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, 40 S Alcaniz St, Pensacola, FL 32502, USA
| | - Timothy J Broderick
- Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, 40 S Alcaniz St, Pensacola, FL 32502, USA
| | - Micah T. McClain
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
- Durham Veterans Affairs Medical Center, Durham, NC 27705 USA
| | - Lisa L. Satterwhite
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Thomas W. Burke
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
| | - Elizabeth A. Petzold
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
| | - Xiling Shen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Christopher W. Woods
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
- Durham Veterans Affairs Medical Center, Durham, NC 27705 USA
| | - Vance G. Fowler
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
- Duke Clinical Research Institute, Durham NC 27701 USA
| | - Felicia Ruffin
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| | - Dana B. Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| | | | - Anthony K. Smith
- Battelle Memorial Institute, 505 King Ave Columbus OH 43201, USA
| | | | - Sindhu Vangeti
- Department of Neurology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Irene Ramos
- Department of Neurology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - German Nudelman
- Department of Neurology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Stuart C. Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Flora Castellino
- U.S. Department of Health and Human Services, Administration for Strategic Preparedness and Response, Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | - Anna Maria Walley
- Vaccitech plc, Unit 6-10, Zeus Building, Rutherford Avenue, Harwell OX11 0DF, United Kingdom
| | - Thomas Evans
- Vaccitech plc, Unit 6-10, Zeus Building, Rutherford Avenue, Harwell OX11 0DF, United Kingdom
| | - Fabian Müller
- Integrative Cellular Biology & Bioinformatics Lab, Saarland University, 66123 Saarbrücken, Germany
| | | | - Joseph R. Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Martinod K, Claessen A, Martens C, Krauel K, Velásquez Pereira LC, Witsch J, Witsch T. NET burden in left atrial blood is associated with biomarkers of thrombosis and cardiac injury in patients with enlarged left atria. Clin Res Cardiol 2025; 114:112-125. [PMID: 38922424 PMCID: PMC11772398 DOI: 10.1007/s00392-024-02464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Emerging data suggest an association between left atrial (LA) enlargement, thrombus formation, and ischemic stroke. However, it is unknown what may mediate such clot formation in LA dysfunction. Neutrophils promote large vessel occlusion and microthrombosis via neutrophil extracellular trap (NET) release, thus lying at the interface of inflammation, thrombosis, and fibrosis. APPROACH We conducted a prospective all-comers cohort study in patients undergoing catheterization procedures with atrial transseptal access (MitraClip, MC; left atrial appendage closure, LAAC; pulmonary vein ablation, PVA; patent foramen ovale closure, PFO). We measured NETs, cytokines, thrombotic factors, and cardiac injury markers in paired blood samples collected from peripheral blood and within the left atrium. We correlated these biomarkers with echocardiographic measures of LA structure and function (including left atrial volume index, LAVI). Data were analyzed by procedure type, and stratified by LAVI or atrial fibrillation (AF) status. RESULTS We enrolled 70 patients (mean age 64 years, 53% women). NETs, but not other markers, were elevated in LA compared to peripheral blood samples. Most thrombotic, inflammatory, and cardiac damage markers were elevated in LAs from MC or LAAC compared to PFO patients. Overall, NET biomarkers positively correlated with VWF, LAVI, and markers of cardiac injury and negatively with ADAMTS13 activity. LA enlargement and the presence of AF similarly stratified patients based on thromboinflammation measurements, but this was not limited to AF at the time of sample collection. CONCLUSION Elevated NETs and VWF in patients with enlarged LA or AF suggest enhanced thromboinflammation within the LA.
Collapse
Affiliation(s)
- Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Annika Claessen
- Department of Cardiology and Angiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Hugstetter Str 55, 79106, Freiburg, Germany
| | - Caroline Martens
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Krystin Krauel
- Department of Cardiology and Angiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Hugstetter Str 55, 79106, Freiburg, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Jens Witsch
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Thilo Witsch
- Department of Cardiology and Angiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Hugstetter Str 55, 79106, Freiburg, Germany.
| |
Collapse
|
8
|
Zhang WJ, Feng H, Zhang MM, Liu JS, Li LT, Chen HC, Liu ZF. Pseudorabies virus UL13 primes inflammatory response through downregulating heat shock factor 1. Virology 2024; 600:110214. [PMID: 39243656 DOI: 10.1016/j.virol.2024.110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Pseudorabies virus is a swine alpha-herpesvirus. We demonstrated that alpha-herpesvirus infection downregulates HSF1, a master transcription factor in the heat shock response. The serine/threonine protein kinase activity of late viral protein UL13 is indispensable for HSF1 depletion and phosphorylation, and UL13 does not degrade HSF1 posttranslationally but inhibits the HSF1 mRNA level. Importantly, UL13 increased HSF1 activity even though it reduced HSF1 mRNA. Furthermore, viral replication markedly decreased in the HSF1 knockout cell line or in the presence of an HSF1-specific inhibitor. Interestingly, HSF1 knockout accelerated the activation of NF-κB and p38MAPK. The K96 loci of UL13 are important to induce high levels of IL-6, TNF-α, and IL-β cytokines while playing a crucial role in promoting mild interstitial pneumonia, liver necrosis, and severe inflammatory cell infiltration in the footpad. Thus, UL13 steers the heat shock response to promote viral replication and the inflammatory response. IMPORTANCE: PRV is a ubiquitous pathogen that infects a variety of mammals, such as pigs, ruminants, carnivores, and rodents as well as human beings, causing enormous economic losses in the swine industry. Here, we employed PRV as a model to determine the relationship between α-herpesvirus and the inflammatory response. Overall, our findings indicated that PRV infection inhibits the level of HSF1 mRNA via the serine/threonine protein kinase activity of UL13. Additionally, we discovered that HSF1 was involved in NF-κB activation upon PRV infection. PRV UL13 orchestrates the level of HSF1 mRNA, HSF1 protein phosphorylation, and priming of the inflammatory response. Our study reveals a novel mechanism employed by UL13 serine/threonine protein kinase activity to promote the inflammatory response, providing novel clues for therapy against alpha-herpesvirus infection.
Collapse
Affiliation(s)
- Wen-Jing Zhang
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Han Feng
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei-Mei Zhang
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Song Liu
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin-Tao Li
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan-Chun Chen
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zheng-Fei Liu
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
De Visscher A, Vandeput M, Vandenhaute J, Malengier-Devlies B, Bernaerts E, Ahmadzadeh K, Filtjens J, Mitera T, Berghmans N, Van den Steen PE, Friedrich C, Gasteiger G, Wouters C, Matthys P. Liver type 1 innate lymphoid cells undergo apoptosis in murine models of macrophage activation syndrome and are dispensable for disease. Eur J Immunol 2024; 54:e2451043. [PMID: 39348088 DOI: 10.1002/eji.202451043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Macrophage activation syndrome (MAS) exemplifies a severe cytokine storm disorder with liver inflammation. In the liver, classical natural killer (cNK) cells and liver-resident type 1 innate lymphoid cells (ILC1s) dominate the ILC population. Thus far, research has primarily focused on the corresponding role of cNK cells. Considering the liver inflammation and cytokine storm in MAS, liver-resident ILC1s represent an interesting population to explore due to their rapid cytokine production upon environmental triggers. By utilizing a Toll-like receptor (TLR)9- and TLR3:4-triggered MAS model, we showed that ILC1s highly produce IFN-γ and TNF-α. However, activated ILC1s undergo apoptosis and are strongly reduced in numbers, while cNK cells resist inflammation-induced apoptosis. Signs of mitochondrial stress suggest that this ILC1 apoptosis may be driven by inflammation-induced mitochondrial impairment. To study whether early induction of highly cytokine-producing ILC1s influences MAS development, we used Hobit KO mice due to their paucity of liver ILC1s but unaffected cNK cell numbers. Nevertheless, neither the severity of MAS features nor the total inflammatory cytokine levels were affected in these Hobit KO mice, indicating that ILC1s are dispensable for MAS pathogenesis. Collectively, our data demonstrate that ILC1s undergo apoptosis during TLR-triggering and are dispensable for MAS pathogenesis.
Collapse
Affiliation(s)
- Amber De Visscher
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Marte Vandeput
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Jessica Vandenhaute
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
- Centre for Reproductive Health and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Eline Bernaerts
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Jessica Filtjens
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Tania Mitera
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Christin Friedrich
- Würzburg Institute and Max Planck Research Group for Systems Immunology, Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute and Max Planck Research Group for Systems Immunology, Würzburg, Germany
| | - Carine Wouters
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Kobayashi M, Kobayashi N, Deguchi K, Omori S, Nagai M, Fukui R, Song I, Fukuda S, Miyake K, Ichinohe T. TNF-α exacerbates SARS-CoV-2 infection by stimulating CXCL1 production from macrophages. PLoS Pathog 2024; 20:e1012776. [PMID: 39652608 DOI: 10.1371/journal.ppat.1012776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/19/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Since most genetically modified mice are C57BL/6 background, a mouse-adapted SARS-CoV-2 that causes lethal infection in young C57BL/6 mice is useful for studying innate immune protection against SARS-CoV-2 infection. Here, we established two mouse-adapted SARS-CoV-2, ancestral and Delta variants, by serial passaging 80 times in C57BL/6 mice. Although young C57BL/6 mice were resistant to infection with the mouse-adapted ancestral SARS-CoV-2, the mouse-adapted SARS-CoV-2 Delta variant caused lethal infection in young C57BL/6 mice. In contrast, MyD88 and IFNAR1 KO mice exhibited resistance to lethal infection with the mouse-adapted SARS-CoV-2 Delta variant. Treatment with recombinant IFN-α/β at the time of infection protected mice from lethal infection with the mouse-adapted SARS-CoV-2 Delta variant, but intranasal administration of recombinant IFN-α/β at 2 days post infection exacerbated the disease severity following the mouse-adapted ancestral SARS-CoV-2 infection. Moreover, we showed that TNF-α amplified by type I IFN signals exacerbated the SARS-CoV-2 infection by stimulating CXCL1 production from macrophages and neutrophil recruitment into the lung tissue. Finally, we showed that intravenous administration to mice or hamsters with TNF protease inhibitor 2 alleviated the severity of SARS-CoV-2 and influenza virus infection. Our results uncover an unexpected mechanism by which type I interferon-mediated TNF-α signaling exacerbates the disease severity and will aid in the development of novel therapeutic strategies to treat respiratory virus infection and associated diseases such as influenza and COVID-19.
Collapse
Affiliation(s)
- Moe Kobayashi
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Nene Kobayashi
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kyoka Deguchi
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seira Omori
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Minami Nagai
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Isaiah Song
- Institute for Advanced Biosciences, Keio University, Mizukami, Kakuganji, Tsuruoka, Yamagata, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Mizukami, Kakuganji, Tsuruoka, Yamagata, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology,Tonomachi, Kawasaki, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Ichinohe
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Li Y, Chen Y, Liang J, Wang Y. Immunological characteristics in elderly COVID-19 patients: a post-COVID era analysis. Front Cell Infect Microbiol 2024; 14:1450196. [PMID: 39679195 PMCID: PMC11638707 DOI: 10.3389/fcimb.2024.1450196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/14/2024] [Indexed: 12/17/2024] Open
Abstract
Background Advanced age is a primary risk factor for adverse COVID-19 outcomes, potentially attributed to immunosenescence and dysregulated inflammatory responses. In the post-pandemic era, with containment measures lifted, the elderly remain particularly susceptible, highlighting the need for intensified focus on immune health management. Methods A total of 281 elderly patients were enrolled in this study and categorized based on their clinical status at the time of admission into three groups: non-severe (n = 212), severe survivors (n = 49), and severe non-survivors (n = 20). Binary logistic regression analysis was employed to identify independent risk factors associated with disease severity and in-hospital outcomes. The diagnostic performance of risk factors was assessed using the receiver operating characteristic (ROC) curves. Kaplan-Meier survival analysis and log-rank test were utilized to compare the 30-day survival rates. Furthermore, the transcriptomic data of CD4+ T cells were extracted from Gene Expression Omnibus (GEO) database. Gene Set Enrichment Analysis (GSEA) was applied to reveal biological processes and pathways involved. Results In the comparison between severe and non-severe COVID-19 cases, significant elevations were observed in the neutrophil-to-lymphocyte ratio (NLR), C-reactive protein (CRP), and Serum Amyloid A (SAA) levels, concurrent with a notable reduction in CD8+ T cells, CD4+ T cells, natural killer (NK) cells, and monocytes (all p < 0.05). CD4+ T cells (OR: 0.997 [0.995-1.000], p<0.05) and NLR (OR: 1.03 [1.001-1.060], p<0.05) were independent risk factors affecting disease severity. The diagnostic accuracy for COVID-19 severity, as measured by the area under the curve (AUC) for CD4+ T cells and NLR, was 0.715 (95% CI: 0.645-0.784) and 0.741 (95% CI: 0.675-0.807), respectively. Moreover, patients with elevated NLR or IL-6 levels at admission exhibited significantly shorter survival times. Gene Set Enrichment Analysis (GSEA) revealed several biological pathways that are implicated in the regulation of immune responses and metabolic processes. Conclusions Lymphocytopenia and the cytokine storm onset are significant predictors of an unfavorable prognosis in elderly patients. The decrease in CD4+ T cells among elderly patients is detrimental to disease recovery, and the biological pathways regulated by these cells could potentially heighten vulnerability to SARS-CoV-2 infection, thereby exacerbating the development of associated complications.
Collapse
Affiliation(s)
| | | | | | - Yajie Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Rodríguez-Ubreva J, Calafell-Segura J, Calvillo CL, Keller B, Ciudad L, Handfield LF, de la Calle-Fabregat C, Godoy-Tena G, Andrés-León E, Hoo R, Porter T, Prigmore E, Hofmann M, Decker A, Martín J, Vento-Tormo R, Warnatz K, Ballestar E. COVID-19 progression and convalescence in common variable immunodeficiency patients show dysregulated adaptive immune responses and persistent type I interferon and inflammasome activation. Nat Commun 2024; 15:10344. [PMID: 39609471 PMCID: PMC11605083 DOI: 10.1038/s41467-024-54732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Common variable immunodeficiency (CVID) is the most prevalent primary immunodeficiency, marked by hypogammaglobulinemia, poor antibody responses, and increased infection susceptibility. The COVID-19 pandemic provided a unique opportunity to study the effects of prolonged viral infections on the immune responses of CVID patients. Here we use single-cell RNA-seq and spectral flow cytometry of peripheral blood samples before, during, and after SARS-CoV-2 infection showing that COVID-19 CVID patients display a persistent type I interferon signature at convalescence across immune compartments. Alterations in adaptive immunity include sustained activation of naïve B cells, increased CD21low B cells, impaired Th1 polarization, CD4+ T central memory exhaustion, and increased CD8+ T cell cytotoxicity. NK cell differentiation is defective, although cytotoxicity remains intact. Monocytes show persistent activation of inflammasome-related genes. These findings suggest the involvement of intact humoral immunity in regulating these processes and might indicate the need for early intervention to manage viral infections in CVID patients.
Collapse
Affiliation(s)
- Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain.
| | - Josep Calafell-Segura
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Celia L Calvillo
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | | | - Carlos de la Calle-Fabregat
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Eduardo Andrés-León
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Regina Hoo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Tarryn Porter
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Maike Hofmann
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annegrit Decker
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Javier Martín
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | | | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain.
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
13
|
Hoste L, Meertens B, Ogunjimi B, Sabato V, Guerti K, van der Hilst J, Bogie J, Joos R, Claes K, Debacker V, Janssen F, Tavernier SJ, Jacques P, Callens S, Dehoorne J, Haerynck F. Identification of a 5-Plex Cytokine Signature that Differentiates Patients with Multiple Systemic Inflammatory Diseases. Inflammation 2024:10.1007/s10753-024-02183-3. [PMID: 39528768 DOI: 10.1007/s10753-024-02183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Patients with non-infectious systemic inflammation may suffer from one of many diseases, including hyperinflammation (HI), autoinflammatory disorders (AID), and systemic autoimmune disease (AI). Despite their clinical overlap, the pathophysiology and patient management differ between these disorders. We aimed to investigate blood biomarkers able to discriminate between patient groups. We included 44 patients with active clinical and/or genetic systemic inflammatory disease (9 HI, 27 AID, 8 systemic AI) and 16 healthy controls. We quantified 55 serum proteins and combined multiple machine learning algorithms to identify five proteins (CCL26, CXCL10, ICAM-1, IL-27, and SAA) that maximally separated patient groups. High ICAM-1 was associated with HI. AID was characterized by an increase in SAA and decrease in CXCL10 levels. A trend for higher CXCL10 and statistically lower SAA was observed in patients with systemic AI. Principal component analysis and unsupervised hierarchical clustering confirmed separation of disease groups. Logistic regression modelling revealed a high statistical significance for HI (P = 0.001), AID, and systemic AI (P < 0.0001). Predictive accuracy was excellent for systemic AI (AUC 0.94) and AID (0.91) and good for HI (0.81). Further research is needed to validate findings in a larger prospective cohort. Results will contribute to a better understanding of the pathophysiology of systemic inflammatory disorders and can improve diagnosis and patient management.
Collapse
Affiliation(s)
- Levi Hoste
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity ,Ghent University Hospital, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases Network (ERN-RITA) Center, Ghent, Belgium
| | - Bram Meertens
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity ,Ghent University Hospital, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases Network (ERN-RITA) Center, Ghent, Belgium
| | - Benson Ogunjimi
- Rheumatology Department, Antwerp Hospital Network, Antwerp, Belgium
- Division of Pediatric Rheumatology, Antwerp University Hospital, Edegem, Belgium
- Antwerp Center for Pediatric Rheumatology and Autoinflammatory Diseases, Antwerp, Belgium
- Division of Pediatric Rheumatology, Brussels University Hospital, Jette, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (VAXINFECTIO) ,Centre for Health Economics Research and Modeling Infectious Diseases (CHERMID), University of Antwerp, Antwerp, Belgium
| | - Vito Sabato
- Department of Immunology, Allergology, and Rheumatology, Antwerp University Hospital, Edegem, Belgium
| | - Khadija Guerti
- Department of Clinical Chemistry, Antwerp University Hospital, Edegem, Belgium
| | - Jeroen van der Hilst
- Department of Infectious Diseases and Immune Pathology, Jessa General Hospital, Hasselt, Belgium
- Limburg Clinical Research Center, Hasselt University, Hasselt, Belgium
| | - Jeroen Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Rik Joos
- Division of Pediatric Rheumatology, Antwerp University Hospital, Edegem, Belgium
- Department of Immunology, Allergology, and Rheumatology, Antwerp University Hospital, Edegem, Belgium
- Department of Pediatric Rheumatology, Ghent University Hospital, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (ERN-RITA) Center, Ghent, Belgium
| | - Karlien Claes
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity ,Ghent University Hospital, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases Network (ERN-RITA) Center, Ghent, Belgium
| | - Veronique Debacker
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Fleur Janssen
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Simon J Tavernier
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Peggy Jacques
- Department of Rheumatology, University Hospital Ghent, Ghent, Belgium
| | - Steven Callens
- Department of General Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Joke Dehoorne
- Department of Pediatric Rheumatology, Ghent University Hospital, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (ERN-RITA) Center, Ghent, Belgium
| | - Filomeen Haerynck
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity ,Ghent University Hospital, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases Network (ERN-RITA) Center, Ghent, Belgium.
| |
Collapse
|
14
|
Huang X, Yi N, Zhu P, Gao J, Lv J. Sorafenib-induced macrophage extracellular traps via ARHGDIG/IL4/PADI4 axis confer drug resistance through inhibiting ferroptosis in hepatocellular carcinoma. Biol Direct 2024; 19:110. [PMID: 39529192 PMCID: PMC11555812 DOI: 10.1186/s13062-024-00560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common as well as leading causes of mortality worldwide, and sorafenib is the first-line treatment in HCC patients. Unfortunately, drug resistance to sorafenib often develops. However, the underlying mechanism remains unclear. Here, we reveal the important role of macrophage extracellular traps (METs)-mediated crosstalk between macrophages and tumor cells in sorafenib resistance. METHODS METs in HCC tumor tissues were detected using immunofluorescence. The concentrations of MPO-DNA, elastase and cytokines were measured using ELISA. The mRNA expression levels of genes were confirmed by qRT-PCR. The siRNAs were conducted to knock ARHGDIG in Hepa1-6 and Hep3B cells. Western Blot assay was performed to determine protein expression of Rho GDP dissociation inhibitor gamma (ARHGDIG, or RHOGDI-3), PADI2, and PADI4. Cell viability and migration were evaluated by CCK-8 assay and transwell assay, respectively. Cell ferroptosis was assessed by measurement of Fe2+ concentration, flow cytometry assay of lipid ROS, and western blot assay of GPX4. The functions of sorafenib, DNase I, IL4 neutralization antibody and GPX4 in tumor growth were explored through in vivo experiments. RESULTS Sorafenib induced MET formation in M2 macrophages rather than M1 macrophages derived from both human and mice. In Hepa1-6 HCC mice, METs clearance by DNase I improved response to sorafenib therapy, detected by tumor weight, tumor growth curve, tumor volume, and survival. By screening candidate cytokines that affect macrophage function, we found that sorafenib-promoting IL4 secretion by HCC cells plays a crucial role in sorafenib-induced MET formation. Understanding the critical role of IL4 in sorafenib-induced MET formation led us to find that IL4 neutralization significantly improved the efficiency of sorafenib in HCC models. Mechanistically, we discovered that sorafenib increased the expression of ARHGDIG in HCC cells, which led to the release of IL4. In M2 macrophages, IL4 triggered MET formation by elevating the mRNA and protein expression of peptidyl arginine deiminase 4 (PADI4) rather than PADI2. In HCC models, GSK484 inhibition of PADI4 could consistently weaken sorafenib resistance and improve sorafenib efficiency. Importantly, we discovered that METs contribute to sorafenib resistance by inhibiting the ferroptosis of HCC cells. Meanwhile, PADI4 inhibition or DNase I could reverse the sorafenib resistance caused by METs-inhibiting ferroptosis of HCC cells. CONCLUSION Our study concludes that sorafenib-induced METs inhibit the ferroptosis of tumor cells, suggesting that targeting the IL4/PADI4/METs axis in HCC could reduce or prevent sorafenib resistance.
Collapse
Affiliation(s)
- Xiangbo Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Nan Yi
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Pengfei Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Jian Gao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, People's Republic of China.
| | - Jun Lv
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
15
|
Zhuang R, Xia H, Xu L, Liu Z, Zong K, Peng H, Liu B, Wu H, Huang L, Yang H, Luo C, Yin Y, Guo S. Corticosteroids for hospitalized patients with severe/critical COVID-19: a retrospective study in Chongqing, China. Sci Rep 2024; 14:24317. [PMID: 39414922 PMCID: PMC11484943 DOI: 10.1038/s41598-024-75926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
Corticosteroids have always been recommended for severe cases of COVID-19. However, the efficacy of treatment with corticosteroids for COVID-19 during the SARS-CoV-2 omicron outbreak in China has not been reported. Clinical data from 406 patients hospitalized for severe/critical COVID-19 from December 2022 to January 2023 at six hospitals in Chongqing were retrospectively analyzed. The primary outcome was all-cause mortality at 28 days in the groups with and without corticosteroids treatment after propensity score matching (PSM). Secondary outcomes were to compare in-hospital mortality and length of survival time with corticosteroids and those without corticosteroids. This study included 406 patients with severe or critical COVID-19, divided into the corticosteroids group (231, 56.9%) and non-corticosteroids group (175, 43.1%). After PSM, the use of corticosteroids did not reduce all-cause mortality at 28 days (42.5% vs. 39.1%). Univariate analysis showed that corticosteroids were not associated with improved all-cause mortality at 28 days [hazard ratio (HR), 1.019; 95% confidence interval (CI), 0.639-1.623; p = 0.938]. Multivariate analysis showed similar results (HR, 1.047; 95% CI, 0.633-1.732; p = 0.858). Among non-survivors, the survival time was significantly larger in those who received corticosteroids compared with the non-corticosteroid users [median 13 (IQR 6.5-15.5) vs. 6 (4-11.25), p = 0.007]. The use of systemic corticosteroids in severe/critical COVID-19 may provide certain potential survival benefits but does not improve prognosis.
Collapse
Affiliation(s)
- Rongjuan Zhuang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hongli Xia
- Department of General Practice, People's Hospital of Chongqing Heuchan, Chongqing, 401520, People's Republic of China
| | - Li Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhiqiang Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Kaican Zong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hailang Peng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bin Liu
- Department of Respiratory and Critical Care Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Zhuzhou Central Hospital, Central South University, Zhuzhou, 412007, People's Republic of China
| | - Huizi Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lan Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hongwei Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chun Luo
- Department of Respiratory and Critical Care Medicine, Affiliated University Town Hospital of Chongqing Medical University, Chongqing, 401331, People's Republic of China
| | - Yuting Yin
- Department of Infectious Diseases, People's Hospital of Shapingba District, Chongqing, 400030, People's Republic of China
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
16
|
Bekhbat M. Glycolytic metabolism: Food for immune cells, fuel for depression? Brain Behav Immun Health 2024; 40:100843. [PMID: 39263313 PMCID: PMC11387811 DOI: 10.1016/j.bbih.2024.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/16/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024] Open
Abstract
Inflammation is one biological pathway thought to impact the brain to contribute to major depressive disorder (MDD) and is reliably associated with resistance to standard antidepressant treatments. While peripheral immune cells, particularly monocytes, have been associated with aspects of increased inflammation in MDD and symptom severity, significant gaps in knowledge exist regarding the mechanisms by which these cells are activated to contribute to behavioral symptoms in MDD. One concept that has gained recent appreciation is that metabolic rewiring to glycolysis in activated myeloid cells plays a crucial role in facilitating these cells' pro-inflammatory functions, which may underlie myeloid contribution to systemic inflammation and its effects on the brain. Given emerging evidence from translational studies of depression that peripheral monocytes exhibit signs of glycolytic activation, better understanding the immunometabolic phenotypes of monocytes which are known to be elevated in MDD with high inflammation is a critical step toward comprehending and treating the impact of inflammation on the brain. This narrative review examines the extant literature on glycolytic metabolism of circulating monocytes in depression and discusses the functional implications of immunometabolic shifts at both cellular and systemic levels. Additionally, it proposes potential therapeutic applications of existing immunomodulators that target glycolysis and related metabolic pathways in order to reverse the impact of elevated inflammation on the brain and depressive symptoms.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
17
|
Hunewald O, Demczuk A, Longworth J, Ollert M. CyCadas: accelerating interactive annotation and analysis of clustered cytometry data. Bioinformatics 2024; 40:btae595. [PMID: 39374546 PMCID: PMC11488975 DOI: 10.1093/bioinformatics/btae595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024] Open
Abstract
MOTIVATION Single cell profiling by cytometry has emerged as a key technology in biology, immunology and clinical-translational medicine. The correct annotation, which refers to the identification of clusters as specific cell populations based on their marker expression, of clustered high-dimensional cytometry data, is a critical step of the analysis. Its accuracy determines the correct interpretation of the biological data. Despite the progress in various clustering algorithms, the annotation of clustered data still remains a manual, time consuming and error-prone task. We developed a user-friendly cluster annotation and differential abundance detection tool that can be applied on data generated with Self Organizing Map clustering algorithms, thus simplifying the annotation process of datasets that consist of hundreds or thousands of clusters. RESULTS We present Cytometry Cluster Annotation and Differential Abundance Suite (CyCadas), a semi-automated software tool that facilitates cluster annotation in cytometry data by offering both visual and computational guidance. CyCadas addresses the critical need for efficient and accurate annotation of high-resolution clustered cytometry data, significantly reducing the time needed to perform the analysis compared to both manual gating approaches and manual annotation of clustered data. The tool features a user-friendly interface, visual tools enabling data exploration and automated threshold estimation to separate negative and positive marker expression. It facilitates the definition and annotation of cell phenotypes among multiple clusters in a tree-based data structure. Finally, it calculates the abundance of various cell populations across the conditions with statistical interpretation. It is an ideal resource for researchers aiming to streamline their cytometry workflow. AVAILABILITY AND IMPLEMENTATION CyCadas is available as open source at: https://github.com/DII-LIH-Luxembourg/cycadas.
Collapse
Affiliation(s)
- Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
- Bioinformatics & AI, Department of Medical Informatics, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Agnieszka Demczuk
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Centre, Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
18
|
Chen CJ, Yi H, Stanley N. Conditional Similarity Triplets Enable Covariate-Informed Representations of Single-Cell Data. RESEARCH SQUARE 2024:rs.3.rs-4915088. [PMID: 39315265 PMCID: PMC11419254 DOI: 10.21203/rs.3.rs-4915088/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Single-cell technologies enable comprehensive profiling of diverse immune cell-types through the measurement of multiple genes or proteins per cell. In order to translate data from immune profiling assays into powerful diagnostics, machine learning approaches are used to compute per-sample immunological summaries, or featurizations that can be used as inputs to models for outcomes of interest. Current supervised learning approaches for computing per-sample representations are optimized based only on the outcome variable to be predicted and do not take into account clinically-relevant covariates that are likely to also be measured. Here we expand the optimization problem to also take into account such additional patient covariates to directly inform the learned per-sample representations. To do this, we introduce CytoCoSet, a set-based encoding method, which formulates a loss function with an additional triplet term penalizing samples with similar covariates from having disparate embedding results in per-sample representations. Overall, incorporating clinical covariates leads to improved prediction of clinical phenotypes.
Collapse
Affiliation(s)
- Chi-Jane Chen
- Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haidong Yi
- Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie Stanley
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Ruan GJ, Wu X, Gwin KA, Manske MK, Abeykoon JP, Bhardwaj V, Witter TL, Schellenberg MJ, Rabe KG, Kay NE, Parikh SA, Witzig TE. Monocyte response to SARS-CoV-2 protein ORF8 is associated with severe COVID-19 infection in patients with chronic lymphocytic leukemia. Haematologica 2024; 109:2884-2892. [PMID: 38654668 PMCID: PMC11367184 DOI: 10.3324/haematol.2023.284617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
The open reading frame 8 (ORF8) protein, encoded by the SARS-CoV-2 virus after infection, stimulates monocytes/macrophages to produce pro-inflammatory cytokines. We hypothesized that a positive ex vivo monocyte response to ORF8 protein pre-COVID-19 would be associated with subsequent severe Coronavirus disease 2019 (COVID-19). We tested ORF8 ex vivo on peripheral blood mononuclear cells from 26 anonymous healthy blood donors and measured intracellular cytokine/ chemokine levels in monocytes by flow cytometry. The percentage of positive monocyte staining in the sample and change in mean fluorescence intensity (ΔMFI) after ORF8 were used to calculate the adjusted MFI for each cytokine. We then tested pre-COVID-19 peripheral blood mononuclear cell samples from 60 chronic lymphocytic leukemia (CLL) patients who subsequently developed COVID-19 infection. Severe COVID-19 was defined as hospitalization due to COVID-19. In the 26 normal donor samples, the adjusted MFI for interleukin (IL)-1β, IL-6, IL-8, and CCL-2 were significantly different with ORF8 stimulation versus controls. We next analyzed monocytes from pre-COVID-19 PBMC samples from 60 CLL patients. The adjusted MFI to ORF8 stimulation of monocyte intracellular IL-1β was associated with severe COVID-19 and a reactive ORF8 monocyte response was defined as an IL-1β adjusted MFI ≥0.18 (sensitivity 67%, specificity 75%). The median time to hospitalization after infection in CLL patients with a reactive ORF8 response was 12 days versus not reached for patients with a non-reactive ORF8 response with a hazard ratio of 7.7 (95% confidence interval: 2.4-132; P=0.005). These results provide new insight on the monocyte inflammatory response to virus with implications in a broad range of disorders involving monocytes.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/complications
- COVID-19/immunology
- COVID-19/blood
- COVID-19/complications
- Male
- Monocytes/metabolism
- Monocytes/immunology
- Monocytes/pathology
- Female
- SARS-CoV-2
- Middle Aged
- Aged
- Viral Proteins
- Cytokines/metabolism
- Aged, 80 and over
- Adult
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Neil E Kay
- Division of Hematology, Department of Medicine; Department of Immunology, Mayo Clinic Rochester, MN
| | | | | |
Collapse
|
20
|
Kumagai Y. BootCellNet, a resampling-based procedure, promotes unsupervised identification of cell populations via robust inference of gene regulatory networks. PLoS Comput Biol 2024; 20:e1012480. [PMID: 39348410 PMCID: PMC11466406 DOI: 10.1371/journal.pcbi.1012480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/10/2024] [Accepted: 09/11/2024] [Indexed: 10/02/2024] Open
Abstract
Recent advances in measurement technologies, particularly single-cell RNA sequencing (scRNA-seq), have revolutionized our ability to acquire large amounts of omics-level data on cellular states. As measurement techniques evolve, there has been an increasing need for data analysis methodologies, especially those focused on cell-type identification and inference of gene regulatory networks (GRNs). We have developed a new method named BootCellNet, which employs smoothing and resampling to infer GRNs. Using the inferred GRNs, BootCellNet further infers the minimum dominating set (MDS), a set of genes that determines the dynamics of the entire network. We have demonstrated that BootCellNet robustly infers GRNs and their MDSs from scRNA-seq data and facilitates unsupervised identification of cell clusters using scRNA-seq datasets of peripheral blood mononuclear cells and hematopoiesis. It has also identified COVID-19 patient-specific cells and their potential regulatory transcription factors. BootCellNet not only identifies cell types in an unsupervised and explainable way but also provides insights into the characteristics of identified cell types through the inference of GRNs and MDS.
Collapse
Affiliation(s)
- Yutaro Kumagai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Higashi, Tsukuba, Ibaraki, Japan
| |
Collapse
|
21
|
Hawwari I, Rossnagel L, Rosero N, Maasewerd S, Vasconcelos MB, Jentzsch M, Demczuk A, Teichmann LL, Meffert L, Bertheloot D, Ribeiro LS, Kallabis S, Meissner F, Arditi M, Atici AE, Noval Rivas M, Franklin BS. Platelet transcription factors license the pro-inflammatory cytokine response of human monocytes. EMBO Mol Med 2024; 16:1901-1929. [PMID: 38977927 PMCID: PMC11319489 DOI: 10.1038/s44321-024-00093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
In humans, blood Classical CD14+ monocytes contribute to host defense by secreting large amounts of pro-inflammatory cytokines. Their aberrant activity causes hyper-inflammation and life-threatening cytokine storms, while dysfunctional monocytes are associated with 'immunoparalysis', a state of immune hypo responsiveness and reduced pro-inflammatory gene expression, predisposing individuals to opportunistic infections. Understanding how monocyte functions are regulated is critical to prevent these harmful outcomes. We reveal platelets' vital role in the pro-inflammatory cytokine responses of human monocytes. Naturally low platelet counts in patients with immune thrombocytopenia or removal of platelets from healthy monocytes result in monocyte immunoparalysis, marked by impaired cytokine response to immune challenge and weakened host defense transcriptional programs. Remarkably, supplementing monocytes with fresh platelets reverses these conditions. We discovered that platelets serve as reservoirs of key cytokine transcription regulators, such as NF-κB and MAPK p38, and pinpointed the enrichment of platelet NF-κB2 in human monocytes by proteomics. Platelets proportionally restore impaired cytokine production in human monocytes lacking MAPK p38α, NF-κB p65, and NF-κB2. We uncovered a vesicle-mediated platelet-monocyte-propagation of inflammatory transcription regulators, positioning platelets as central checkpoints in monocyte inflammation.
Collapse
Affiliation(s)
- Ibrahim Hawwari
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.
| | - Lukas Rossnagel
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Nathalia Rosero
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Salie Maasewerd
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Marius Jentzsch
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Agnieszka Demczuk
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lino L Teichmann
- Department of Medicine III, University Hospital Bonn, Bonn, Germany
| | - Lisa Meffert
- Department of Medicine III, University Hospital Bonn, Bonn, Germany
| | - Damien Bertheloot
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lucas S Ribeiro
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sebastian Kallabis
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Felix Meissner
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Moshe Arditi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Asli E Atici
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bernardo S Franklin
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
22
|
García-Vega M, Llamas-Covarrubias MA, Loza M, Reséndiz-Sandoval M, Hinojosa-Trujillo D, Melgoza-González E, Valenzuela O, Mata-Haro V, Hernández-Oñate M, Soto-Gaxiola A, Chávez-Rueda K, Nakai K, Hernández J. Single-cell transcriptomic analysis of B cells reveals new insights into atypical memory B cells in COVID-19. J Med Virol 2024; 96:e29851. [PMID: 39132689 DOI: 10.1002/jmv.29851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Here, we performed single-cell RNA sequencing of S1 and receptor binding domain protein-specific B cells from convalescent COVID-19 patients with different clinical manifestations. This study aimed to evaluate the role and developmental pathway of atypical memory B cells (MBCs) in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The results revealed a proinflammatory signature across B cell subsets associated with disease severity, as evidenced by the upregulation of genes such as GADD45B, MAP3K8, and NFKBIA in critical and severe individuals. Furthermore, the analysis of atypical MBCs suggested a developmental pathway similar to that of conventional MBCs through germinal centers, as indicated by the expression of several genes involved in germinal center processes, including CXCR4, CXCR5, BCL2, and MYC. Additionally, the upregulation of genes characteristic of the immune response in COVID-19, such as ZFP36 and DUSP1, suggested that the differentiation and activation of atypical MBCs may be influenced by exposure to SARS-CoV-2 and that these genes may contribute to the immune response for COVID-19 recovery. Our study contributes to a better understanding of atypical MBCs in COVID-19 and the role of other B cell subsets across different clinical manifestations.
Collapse
Affiliation(s)
- Melissa García-Vega
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | | | - Martin Loza
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Mónica Reséndiz-Sandoval
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Diana Hinojosa-Trujillo
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Edgar Melgoza-González
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Olivia Valenzuela
- Departamento de Ciencias Químico Biológicas, División de Ciencias Biológicas y de la Salud, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Miguel Hernández-Oñate
- CONAHCYT-Laboratorio de Fisiología y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Alan Soto-Gaxiola
- Hospital General del Estado de Sonora "Dr. Ernesto Ramos Bours", Secretaria de Salud del Estado de Sonora, Hermosillo, Sonora, Mexico
| | - Karina Chávez-Rueda
- Unidad de Investigación Médica en Inmunología, UMAE, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Kenta Nakai
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| |
Collapse
|
23
|
Park Y, Park S, Chinratanalab W, Savani B, Kassim A, Douds JJ, Sengsayadeth S, Kim TK. SARS-CoV2 is not just infection but a culprit of donor graft failure post-allogeneic stem cell transplant. Clin Hematol Int 2024; 6:33-37. [PMID: 39071177 PMCID: PMC11283860 DOI: 10.46989/001c.121430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 07/30/2024] Open
Affiliation(s)
- Yoojin Park
- Duke University
- MedicineVanderbilt University Medical Center
| | - Silvia Park
- MedicineVanderbilt University Medical Center
- Department of HematologyThe Catholic University of Korea
| | - Wichai Chinratanalab
- MedicineVanderbilt University Medical Center
- Vanderbilt-Ingram Cancer Center
- VA Tennessee Valley Healthcare System
| | - Bipin Savani
- MedicineVanderbilt University Medical Center
- Vanderbilt-Ingram Cancer Center
- VA Tennessee Valley Healthcare System
| | - Adetola Kassim
- MedicineVanderbilt University Medical Center
- Vanderbilt-Ingram Cancer Center
- VA Tennessee Valley Healthcare System
| | | | - Salyka Sengsayadeth
- MedicineVanderbilt University Medical Center
- Vanderbilt-Ingram Cancer Center
- VA Tennessee Valley Healthcare System
| | - Tae Kon Kim
- MedicineVanderbilt University Medical Center
- Vanderbilt-Ingram Cancer Center
- VA Tennessee Valley Healthcare System
| |
Collapse
|
24
|
Hurler L, Mescia F, Bergamaschi L, Cambridge Institute of Therapeutic Immunology and Infectious Disease-National Institute of Health Research (CITIID-NIHR) COVID BioResource Collaboration, Kajdácsi E, Sinkovits G, Cervenak L, Prohászka Z, Lyons PA, Toonen EJ. sMR and PTX3 levels associate with COVID-19 outcome and survival but not with Long COVID. iScience 2024; 27:110162. [PMID: 39027374 PMCID: PMC11255846 DOI: 10.1016/j.isci.2024.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/28/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
Biomarkers for monitoring COVID-19 disease course are lacking. Study aim was to identify biomarkers associated with disease severity, survival, long-term outcome, and Long COVID. As excessive macrophages activation is a hallmark of COVID-19 and complement activation is key in this, we selected the following proteins involved in these processes: PTX3, C1q, C1-INH, C1s/C1-INH, and sMR. EDTA-plasma concentrations were measured in 215 patients and 47 controls using ELISA. PTX3, sMR, C1-INH, and C1s/C1-INH levels were associated with disease severity. PTX3 and sMR were also associated with survival and long-term immune recovery. Lastly, sMR levels associate with ICU admittance. sMR (AUC 0.85) and PTX3 (AUC 0.78) are good markers for disease severity, especially when used in combination (AUC 0.88). No association between biomarker levels and Long COVID was observed. sMR has not previously been associated with COVID-19 disease severity, ICU admittance or survival and may serve as marker for disease course.
Collapse
Affiliation(s)
- Lisa Hurler
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Federica Mescia
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Laura Bergamaschi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Cambridge Institute of Therapeutic Immunology and Infectious Disease-National Institute of Health Research (CITIID-NIHR) COVID BioResource Collaboration
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Research Group for Immunology and Haematology, Semmelweis University - Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
- Research and Development Department, Hycult Biotech, Uden, the Netherlands
| | - Erika Kajdácsi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - György Sinkovits
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - László Cervenak
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
- Research Group for Immunology and Haematology, Semmelweis University - Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Paul A. Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Erik J.M. Toonen
- Research and Development Department, Hycult Biotech, Uden, the Netherlands
| |
Collapse
|
25
|
Ibrahim EN, Alrashdan HA, Alshiyyab O, Ikhwayleh ZA, Alboun S, Al-Theiabat ARI, Al-Shatnawi AF, Aldeeb MT, Almiqdad YM, Cycline M. An Albumin, Neutrophil, and Lymphocyte-Related Risk Estimation Tool in Hospitalised Patients. Cureus 2024; 16:e64197. [PMID: 39130833 PMCID: PMC11310491 DOI: 10.7759/cureus.64197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
AIM The neutrophil-to-lymphocyte ratio (NLR) is commonly used as a prognostic indicator for microbiological and inflammatory conditions in clinical settings. However, the quotient to albumin levels, which is another nutritional and clinical predictor, may also have an interesting diagnostic and prognostic value. This study aimed to primarily investigate the predictive performances of the neutrophils to albumin and lymphocytes ratio (NALR) compared to the NLR in predicting poor outcomes during hospital admission, particularly the decomposition of respiratory, renal, liver, and circulatory systems, resulting in longer hospital stays or mortality. METHODS An observational study was performed on a cohort of 270 hospitalised patients admitted to Rashid bin Al-Hussein Military Hospital during the period from October 2023 to early November 2023. The study specifically targeted adult patients (age >17 years) who had a minimum of 80% availability of their initial and follow-up data during admission. We dichotomised all eligible test patients into two groups: Group I, which represented better outcomes of interest, and Group II, which represented poorer outcomes of interest. Statistically, we conducted binary logistic, receiver operating, and sensitivity analyses to explore the predictive performances and indices for NALR and NLR. We also conducted chi-square and independent T analyses to uncover the distribution rates of the independent variables across Groups I and II. We considered a p-value of less than 0.05 as the level of significance. RESULTS Out of a total sample size of 270, 82 patients (30.37%) were allocated to Group I, and 188 patients (69.63%) were allocated to Group II. Males outnumbered females in this study by 184 (68.1%) to 86 (31.9%). Patients in the study had an average age of 58.08±10.02 years. The average hospitalisation took 13.71±6.38 days, significantly longer in Group II compared to Group I (15.43±6.76 days vs. 9.77±2.69 days, p-value<0.05). We found that the area under the receiver operating characteristic (ROC) curves was estimated at [0.808±0.031 (0.748-0.868), p-value=0.000] and [0.667±0.034 (0.601-0.733), p-value=0.000] for NALR and NLR, respectively. The optimal operating thresholds for NALR and NLR were 1.5 and 5.37, with sensitivities and specificities of 86.7% versus 73.4% and 70.73% versus 70.73%, respectively. CONCLUSION The proposed NALR showed superior predictive performance, sensitivity, and correlation compared to the parent NLR. Both tools can be used in clinical practice to prioritise clinical and pharmacotherapeutics for hospitalised patients based on unfavourable outcomes.
Collapse
Affiliation(s)
| | - Hisham A Alrashdan
- Otolaryngology - Head and Neck Surgery Department, Jordanian Royal Medical Services, Amman, JOR
| | | | | | - Samer Alboun
- Rehabilitation and Rheumatology Department, Jordanian Royal Medical Services, Amman, JOR
| | | | - Ali F Al-Shatnawi
- Internal Medicine Department, Jordanian Royal Medical Services, Amman, JOR
| | - Mohammad T Aldeeb
- Internal Medicine Department, Jordanian Royal Medical Services, Amman, JOR
| | - Yarub M Almiqdad
- Internal Medicine Department, Jordanian Royal Medical Services, Amman, JOR
| | - Mino Cycline
- Research and Development Department, Jordanian Royal Medical Services, Amman, JOR
| |
Collapse
|
26
|
Shojaporian S, Mahmoudian-Sani MR, Khodadadi A, Dehcheshmeh MG, Amari A. Effect of Priming With Toll-Like Receptor 3 Agonist on Expression of Long Noncoding RNAs in Human Wharton Jelly Mesenchymal Stem Cells. EXP CLIN TRANSPLANT 2024; 22:551-558. [PMID: 39223813 DOI: 10.6002/ect.2024.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Mesenchymal stem cells are gaining attention in medicine because of their anti-inflammatory and immunosuppressive properties. Inflammatory conditions can modulate immune responses in mesenchymal stem cells.We investigated the expression of long noncoding RNAs (RMRP, MALT1, NKILA,THRIL, and Linc-MAF-4) in humanWharton jelly mesenchymal stem cells primed with polyinosinicpolycytidylic acid. MATERIALS AND METHODS Mesenchymal stem cells were isolated from human Wharton jelly by the explant method. To determine the stem nature of the cells, we performed a differentiation test on bone and fat cells. We used flow cytometry analysis to determine surface markers. Umbilical cord mesenchymal stem cells (1 × 105) were cultured in T75 culture flasks in Dulbecco's modified Eagle medium containing 10% fetal bovine serum. After cells reached approximately 80% confluency, cells were exposed to 50 µg/mL of polyinosinic-polycytidylic acid, a Toll-like receptor 3 ligand, for 24, 48, and 72 hours. The control group were cells not exposed to polyinosinic-polycytidylic acid. Real-time polymerase chain reaction evaluated RMRP, MALAT1, NKILA, THRIL, and Linc-MAF-4 long noncoding RNAs. RESULTS We observed significantly increased expression of NKILA inWharton jelly mesenchymal stem cells stimulated with polyinosinic-polycytidylic acid at 72 hours compared with expression level in the control group (P < .001). CONCLUSIONS Results indicated that a potential mechanism by which the Toll-like receptor 3 ligand improves immunosuppression of mesenchymal stem cells can be attributed to the regulatory role of long noncoding RNAs, possibly through increased expression of anti-inflammatory long noncoding RNAs such as NKILA.
Collapse
Affiliation(s)
- Samira Shojaporian
- >From the Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | | | | |
Collapse
|
27
|
Maaß H, Ynga-Durand M, Milošević M, Krstanović F, Matešić MP, Žuža I, Jonjić S, Brizić I, Šustić A, Bloos F, Protić A, Čičin-Šain L. Serum cytokine dysregulation signatures associated with COVID-19 outcomes in high mortality intensive care unit cohorts across pandemic waves and variants. Sci Rep 2024; 14:13605. [PMID: 38871772 DOI: 10.1038/s41598-024-64384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
The aim of this study was to characterize the systemic cytokine signature of critically ill COVID-19 patients in a high mortality setting aiming to identify biomarkers of severity, and to explore their associations with viral loads and clinical characteristics. We studied two COVID-19 critically ill patient cohorts from a referral centre located in Central Europe. The cohorts were recruited during the pre-alpha/alpha (November 2020 to April 2021) and delta (end of 2021) period respectively. We determined both the serum and bronchoalveolar SARS-CoV-2 viral load and identified the variant of concern (VoC) involved. Using a cytokine multiplex assay, we quantified systemic cytokine concentrations and analyzed their relationship with clinical findings, routine laboratory workup and pulmonary function data obtained during the ICU stay. Patients who did not survive had a significantly higher systemic and pulmonary viral load. Patients infected with the pre-alpha VoC showed a significantly lower viral load in comparison to those infected with the alpha- and delta-variants. Levels of systemic CTACK, M-CSF and IL-18 were significantly higher in non-survivors in comparison to survivors. CTACK correlated directly with APACHE II scores. We observed differences in lung compliance and the association between cytokine levels and pulmonary function, dependent on the VoC identified. An intra-cytokine analysis revealed a loss of correlation in the non-survival group in comparison to survivors in both cohorts. Critically ill COVID-19 patients exhibited a distinct systemic cytokine profile based on their survival outcomes. CTACK, M-CSF and IL-18 were identified as mortality-associated analytes independently of the VoC involved. The Intra-cytokine correlation analysis suggested the potential role of a dysregulated systemic network of inflammatory mediators in severe COVID-19 mortality.
Collapse
Affiliation(s)
- Henrike Maaß
- Department of Viral Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine (CiiM), a joint venture of Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Mario Ynga-Durand
- Department of Viral Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine (CiiM), a joint venture of Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Marko Milošević
- Department of Anesthesiology, Faculty of Medicine, Reanimation, Intensive Care and Emergency Medicine, University of Rijeka, Rijeka, Croatia
| | - Fran Krstanović
- Faculty of Medicine, Center for Proteomics, University of Rijeka, Rijeka, Croatia
| | | | - Iva Žuža
- Department of Radiology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Faculty of Medicine, Center for Proteomics, University of Rijeka, Rijeka, Croatia
| | - Ilija Brizić
- Faculty of Medicine, Center for Proteomics, University of Rijeka, Rijeka, Croatia
| | - Alan Šustić
- Department of Anesthesiology, Faculty of Medicine, Reanimation, Intensive Care and Emergency Medicine, University of Rijeka, Rijeka, Croatia
- Department of Clinical Medical Science II, Faculty of Health Studies, University of Rijeka, Rijeka, Croatia
| | - Frank Bloos
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Alen Protić
- Department of Anesthesiology, Faculty of Medicine, Reanimation, Intensive Care and Emergency Medicine, University of Rijeka, Rijeka, Croatia
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany.
- Centre for Individualized Infection Medicine (CiiM), a joint venture of Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany.
- German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Braunschweig, Germany.
| |
Collapse
|
28
|
Tam IS, Elemary M, DeCoteau J, Porwit A, Torlakovic EE. Morphological Clues of Acute Monocytic Leukemia in COVID-19-Induced Transient Leukoerythroblastic Reaction with Monocytosis. Hematol Rep 2024; 16:331-335. [PMID: 38921181 PMCID: PMC11203109 DOI: 10.3390/hematolrep16020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Viral infections, including those caused by COVID-19, can produce striking morphologic changes in peripheral blood. Distinguishing between reactive changes and abnormal morphology of monocytes remains particularly difficult, with low consensus rates reported amongst hematopathologists. Here, we report a patient who developed transient monocytosis of 11.06 × 109/L with 32% promonocytes and 1% blasts during hospitalization that was secondary to severe COVID-19 infection. Three days later, the clinical status of the patient improved and the WBC had decreased to 8.47 × 109/L with 2.2 × 109/L monocytes. Flow cytometry studies did not reveal immunophenotypic findings specific for an overt malignant population. At no time during admission did the patient develop cytopenia(s), and she was discharged upon clinical improvement. However, the peripheral blood sample containing promonocytes was sent for molecular testing with an extended next-generation sequencing myeloid panel and was positive for pathogenic NPM1 Type A and DNMT3A R882H mutations. Subsequently, despite an essentially normal complete blood count, the patient underwent a bone marrow assessment that showed acute myeloid leukemia with 77% promonocytes. This case emphasizes the critical importance of a full work up to exclude acute leukemia when classical promonocyte morphology is encountered in the peripheral blood. Promonocytes are not a part of the reactive changes associated with COVID-19 and remain specific to myeloid neoplasia.
Collapse
Affiliation(s)
- Ingrid S. Tam
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; (I.S.T.); (J.D.)
| | | | - John DeCoteau
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; (I.S.T.); (J.D.)
| | - Anna Porwit
- Faculty of Medicine, Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, 221 00 Lund, Sweden;
| | - Emina E. Torlakovic
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; (I.S.T.); (J.D.)
- Saskatchewan Health Authority (SHA), Saskatoon, SK S7K 0M7, Canada
| |
Collapse
|
29
|
Shen S, Wang M, Li X, Wang B, Hong W, Li W, Xu B, Guo Z, Han R, Yi S, Wu Z, He X, Wang L, Zhu Q, Yang G, Wang H, Deng Q, Chen J, Gao S, Jiang C, Gao R. The gonadal niche safeguards human fetal germline cell development following maternal SARS-CoV-2 infection. Cell Rep Med 2024; 5:101515. [PMID: 38631348 PMCID: PMC11148563 DOI: 10.1016/j.xcrm.2024.101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
During pregnancy, germline development is vital for maintaining the continuation of species. Recent studies have shown increased pregnancy risks in COVID-19 patients at the perinatal stage. However, the potential consequence of infection for reproductive quality in developing fetuses remains unclear. Here, we analyze the transcriptome and DNA methylome of the fetal germline following maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We find that infection at early gestational age, a critical period of human primordial germ cell specification and epigenetic reprogramming, trivially affects fetal germ cell (FGC) development. Additionally, FGC-niche communications are not compromised by maternal infection. Strikingly, both general and SARS-CoV-2-specific immune pathways are greatly activated in gonadal niche cells to protect FGCs from maternal infection. Notably, there occurs an "in advance" development tendency in FGCs after maternal infection. Our study provides insights into the impacts of maternal SARS-CoV-2 infection on fetal germline development and serves as potential clinical guidance for future pandemics.
Collapse
Affiliation(s)
- Shijun Shen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Mengting Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Xiaocui Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China.
| | - Beiying Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Wei Hong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Wei Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Ben Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Zhenxiang Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Ruichen Han
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Shanru Yi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Zhiping Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Xiaoying He
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Liping Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Qianshu Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Guang Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Biomedicum B5, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| |
Collapse
|
30
|
Jerah A. Retrospective Evaluation of Hematological Parameters in COVID-19 Patients: Insights From the Emergency Department. Cureus 2024; 16:e61258. [PMID: 38939249 PMCID: PMC11210955 DOI: 10.7759/cureus.61258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND This retrospective study evaluated hematological parameters in coronavirus disease 2019 (COVID-19) patients to gain clinical insights. METHODS Data from the Emergency Department of Samtah General Hospital, Samtah, Saudi Arabia, were analyzed, focusing on the parameters measured during hospital admission. This study was conducted between April 2020 and October 2021. Associations between hematological parameters and COVID-19 outcomes were examined in 153 participants, including 23 deceased individuals. RESULTS The chi-square test results indicated no significant associations (P >0.05) between sex, body mass index (BMI), age, and disease outcome in the study population. However, a significant association was observed between neutrophil percentage and disease outcome, whereas no significant associations were found for red blood cell count, hemoglobin level, monocyte percentage, eosinophil percentage, and basophil percentage. Cox regression analysis revealed a significant association between neutrophil count (considered a categorical covariate) and survival outcomes (P = 0.030). However, specific neutrophil categories (50-70 and >70) were not significantly associated with survival. CONCLUSIONS Integrating hematological parameters into COVID-19 clinical guidelines and decision-support tools holds promise for enhancing patient care and outcomes.
Collapse
Affiliation(s)
- Ahmed Jerah
- College of Applied Medical Sciences, Jazan University, Jazan, SAU
| |
Collapse
|
31
|
Scovino AM, Dahab EC, Diniz-Lima I, de Senna Silveira E, Barroso SPC, Cardoso KM, Nico D, Makhoul GJ, da Silva-Junior EB, Freire-de-Lima CG, Freire-de-Lima L, da Fonseca LM, Valente N, Nacife V, Machado A, Araújo M, Vieira GF, Pauvolid-Corrêa A, Siqueira M, Morrot A. A Comparative Analysis of Innate Immune Responses and the Structural Characterization of Spike from SARS-CoV-2 Gamma Variants and Subvariants. Microorganisms 2024; 12:720. [PMID: 38674664 PMCID: PMC11052025 DOI: 10.3390/microorganisms12040720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 04/28/2024] Open
Abstract
The SARS-CoV-2 P.1 variant, responsible for an outbreak in Manaus, Brazil, is distinguished by 12 amino acid differences in the S protein, potentially increasing its ACE-2 affinity and immune evasion capability. We investigated the innate immune response of this variant compared to the original B.1 strain, particularly concerning cytokine production. Blood samples from three severe COVID-19 patients were analyzed post-infection with both strains. Results showed no significant difference in cytokine production of mononuclear cells and neutrophils for either variant. While B.1 had higher cytopathogenicity, neither showed viral replication in mononuclear cells. Structural analyses of the S protein highlighted physicochemical variations, which might be linked to the differences in infectivity between the strains. Our studies point to the increased infectivity of P.1 could stem from altered immunogenicity and receptor-binding affinity.
Collapse
Affiliation(s)
- Aline Miranda Scovino
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil (E.C.D.); (D.N.)
- Laboratório de Imunoparasitologia, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil
| | - Elizabeth Chen Dahab
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil (E.C.D.); (D.N.)
- Laboratório de Imunoparasitologia, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil
| | - Israel Diniz-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (I.D.-L.); (G.J.M.); (E.B.d.S.-J.); (C.G.F.-d.-L.); (L.F.-d.-L.)
| | - Etiele de Senna Silveira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil; (E.d.S.S.)
| | - Shana Priscila Coutinho Barroso
- Laboratório de Biologia Molecular, Instituto de Pesquisa Biomédica, Hospital Naval Marcílio Dias, Marinha do Brazil, Rio de Janeiro 20725-090, Brazil; (S.P.C.B.); (K.M.C.)
- Biomanguinhos, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil
| | - Karina Martins Cardoso
- Laboratório de Biologia Molecular, Instituto de Pesquisa Biomédica, Hospital Naval Marcílio Dias, Marinha do Brazil, Rio de Janeiro 20725-090, Brazil; (S.P.C.B.); (K.M.C.)
| | - Dirlei Nico
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil (E.C.D.); (D.N.)
| | - Gustavo José Makhoul
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (I.D.-L.); (G.J.M.); (E.B.d.S.-J.); (C.G.F.-d.-L.); (L.F.-d.-L.)
| | - Elias Barbosa da Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (I.D.-L.); (G.J.M.); (E.B.d.S.-J.); (C.G.F.-d.-L.); (L.F.-d.-L.)
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (I.D.-L.); (G.J.M.); (E.B.d.S.-J.); (C.G.F.-d.-L.); (L.F.-d.-L.)
| | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (I.D.-L.); (G.J.M.); (E.B.d.S.-J.); (C.G.F.-d.-L.); (L.F.-d.-L.)
| | - Leonardo Marques da Fonseca
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (I.D.-L.); (G.J.M.); (E.B.d.S.-J.); (C.G.F.-d.-L.); (L.F.-d.-L.)
- Curso de Medicina, Universidade Castelo Branco (UCB), Rio de Janeiro 21710-255, Brazil
| | - Natalia Valente
- Laboratório de Vírus Respiratórios e Sarampo, COVID-19 National Reference Laboratory of Brazil and World Health Organization COVID-19 Reference Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (N.V.); (V.N.); (A.M.); (A.P.-C.)
| | - Valeria Nacife
- Laboratório de Vírus Respiratórios e Sarampo, COVID-19 National Reference Laboratory of Brazil and World Health Organization COVID-19 Reference Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (N.V.); (V.N.); (A.M.); (A.P.-C.)
| | - Ana Machado
- Laboratório de Vírus Respiratórios e Sarampo, COVID-19 National Reference Laboratory of Brazil and World Health Organization COVID-19 Reference Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (N.V.); (V.N.); (A.M.); (A.P.-C.)
| | - Mia Araújo
- Laboratório de Vírus Respiratórios e Sarampo, COVID-19 National Reference Laboratory of Brazil and World Health Organization COVID-19 Reference Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (N.V.); (V.N.); (A.M.); (A.P.-C.)
| | - Gustavo Fioravanti Vieira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil; (E.d.S.S.)
- PPGSDH—Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Canoas 92010-000, Brazil
| | - Alex Pauvolid-Corrêa
- Laboratório de Vírus Respiratórios e Sarampo, COVID-19 National Reference Laboratory of Brazil and World Health Organization COVID-19 Reference Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (N.V.); (V.N.); (A.M.); (A.P.-C.)
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
- Laboratório de Virologia Veterinária de Viçosa, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Marilda Siqueira
- Laboratório de Vírus Respiratórios e Sarampo, COVID-19 National Reference Laboratory of Brazil and World Health Organization COVID-19 Reference Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (N.V.); (V.N.); (A.M.); (A.P.-C.)
| | - Alexandre Morrot
- Laboratório de Imunoparasitologia, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil
- Escola de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
32
|
Gatselis NK, Lyberopoulou A, Lygoura V, Giannoulis G, Samakidou A, Vaiou A, Antoniou K, Triantafyllou K, Stefos A, Georgiadou S, Sagris D, Sveroni D, Gabeta S, Ntaios G, Norman GL, Dalekos GN. Calprotectin serum levels on admission and during follow-up predict severity and outcome of patients with COVID-19: A prospective study. Eur J Intern Med 2024; 122:78-85. [PMID: 37953124 DOI: 10.1016/j.ejim.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/02/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND & AIMS Calprotectin reflects neutrophil activation and is increased in various inflammatory conditions including severe COVID-19. However, serial serum calprotectin measurements in COVID-19 patients are limited. We assessed prospectively, calprotectin levels as biomarker of severity/outcome of the disease and a COVID-19 monitoring parameter in a large cohort of consecutive COVID-19 patients. METHODS Calprotectin serum levels were measured in 736 patients (58.2 % males; median age 63-years; moderate disease, n = 292; severe, n = 444, intubated and/or died, n = 50). Patients were treated with combined immunotherapies according to our published local algorithm. The endpoint was the composite event of intubation due to severe respiratory failure (SRF)/COVID-19-related mortality. RESULTS Median (interquartile range) calprotectin levels were significantly higher in patients with severe disease [7(8.2) vs. 6.1(8.1)μg/mL, p = 0.015]. Calprotectin on admission was the only independent risk factor for intubation/death (HR=1.473, 95 %CI=1.003-2.165, p = 0.048) even after adjustment for age, sex, body mass index, comorbidities, neutrophils, lymphocytes, neutrophil to lymphocytes ratio, ferritin, and CRP. The area under the curve (AUC, 95 %CI) of calprotectin for prediction of intubation/death was 0.619 (0.531-0.708), with an optimal cut-off at 13 μg/mL (sensitivity: 44 %, specificity: 79 %, positive and negative predictive values: 13 % and 95 %, respectively). For intubated/died patients, paired comparisons from baseline to middle of hospitalization and subsequently to intubation/death showed significant increase of calprotectin (p = 0.009 and p < 0.001, respectively). Calprotectin alteration had the higher predictive ability for intubation/death [AUC (95 %CI):0.803 (0.664-0.943), p < 0.001]. CONCLUSIONS Calprotectin levels on admission and their subsequent dynamic alterations could serve as indicator of COVID-19 severity and predict the occurrence of SRF and mortality.
Collapse
Affiliation(s)
- Nikolaos K Gatselis
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Aggeliki Lyberopoulou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Vasiliki Lygoura
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - George Giannoulis
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Anna Samakidou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Antonia Vaiou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Katerina Antoniou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Katerina Triantafyllou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Aggelos Stefos
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Sarah Georgiadou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Dimitrios Sagris
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Dafni Sveroni
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Stella Gabeta
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - George Ntaios
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Gary L Norman
- Research and Development, Headquarters & Technology Center Autoimmunity, Werfen, San Diego, CA 92131, USA
| | - George N Dalekos
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece.
| |
Collapse
|
33
|
Madruga MP, Grun LK, Santos LSMD, Friedrich FO, Antunes DB, Rocha MEF, Silva PL, Dorneles GP, Teixeira PC, Oliveira TF, Romão PRT, Santos L, Moreira JCF, Michaelsen VS, Cypel M, Antunes MOB, Jones MH, Barbé-Tuana FM, Bauer ME. Excess of body weight is associated with accelerated T-cell senescence in hospitalized COVID-19 patients. Immun Ageing 2024; 21:17. [PMID: 38454515 PMCID: PMC10921685 DOI: 10.1186/s12979-024-00423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Several risk factors have been involved in the poor clinical progression of coronavirus disease-19 (COVID-19), including ageing, and obesity. SARS-CoV-2 may compromise lung function through cell damage and paracrine inflammation; and obesity has been associated with premature immunosenescence, microbial translocation, and dysfunctional innate immune responses leading to poor immune response against a range of viruses and bacterial infections. Here, we have comprehensively characterized the immunosenescence, microbial translocation, and immune dysregulation established in hospitalized COVID-19 patients with different degrees of body weight. RESULTS Hospitalised COVID-19 patients with overweight and obesity had similarly higher plasma LPS and sCD14 levels than controls (all p < 0.01). Patients with obesity had higher leptin levels than controls. Obesity and overweight patients had similarly higher expansions of classical monocytes and immature natural killer (NK) cells (CD56+CD16-) than controls. In contrast, reduced proportions of intermediate monocytes, mature NK cells (CD56+CD16+), and NKT were found in both groups of patients than controls. As expected, COVID-19 patients had a robust expansion of plasmablasts, contrasting to lower proportions of major T-cell subsets (CD4 + and CD8+) than controls. Concerning T-cell activation, overweight and obese patients had lower proportions of CD4+CD38+ cells than controls. Contrasting changes were reported in CD25+CD127low/neg regulatory T cells, with increased and decreased proportions found in CD4+ and CD8+ T cells, respectively. There were similar proportions of T cells expressing checkpoint inhibitors across all groups. We also investigated distinct stages of T-cell differentiation (early, intermediate, and late-differentiated - TEMRA). The intermediate-differentiated CD4 + T cells and TEMRA cells (CD4+ and CD8+) were expanded in patients compared to controls. Senescent T cells can also express NK receptors (NKG2A/D), and patients had a robust expansion of CD8+CD57+NKG2A+ cells than controls. Unbiased immune profiling further confirmed the expansions of senescent T cells in COVID-19. CONCLUSIONS These findings suggest that dysregulated immune cells, microbial translocation, and T-cell senescence may partially explain the increased vulnerability to COVID-19 in subjects with excess of body weight.
Collapse
Affiliation(s)
- Mailton Prestes Madruga
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Lucas Kich Grun
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Letícya Simone Melo Dos Santos
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | | | - Douglas Bitencourt Antunes
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Marcella Elesbão Fogaça Rocha
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Pedro Luis Silva
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Gilson P Dorneles
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Paula Coelho Teixeira
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Tiago Franco Oliveira
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Pedro R T Romão
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Lucas Santos
- Centro de Estudos em Estresse Oxidativo - Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (IB-UFRGS), Porto Alegre, RS, Brazil
| | - José Claudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo - Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (IB-UFRGS), Porto Alegre, RS, Brazil
| | - Vinicius Schenk Michaelsen
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Marcelo Cypel
- Toronto General Hospital Research Institute, Department of Surgery, University Health Network, University of Toronto, Toronto, Canada
| | - Marcos Otávio Brum Antunes
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Marcus Herbert Jones
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Florencia María Barbé-Tuana
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Moisés Evandro Bauer
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil.
| |
Collapse
|
34
|
Pan T, Lee JW. A crucial role of neutrophil extracellular traps in pulmonary infectious diseases. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:34-41. [PMID: 39170960 PMCID: PMC11332830 DOI: 10.1016/j.pccm.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 08/23/2024]
Abstract
Neutrophil extracellular traps (NETs), extrusions of intracellular DNA with attached granular material that exert an antibacterial effect through entangling, isolating, and immobilizing microorganisms, have been extensively studied in recent decades. The primary role of NETs is to entrap and facilitate the killing of bacteria, fungi, viruses, and parasites, preventing bacterial and fungal dissemination. NET formation has been described in many pulmonary diseases, including both infectious and non-infectious. NETs are considered a double-edged sword. As innate immune cells, neutrophils release NETs to kill pathogens and remove cellular debris. However, the deleterious effects of excessive NET release in lung disease are particularly important because NETs and by-products of NETosis can directly induce epithelial and endothelial cell death while simultaneously inducing inflammatory cytokine secretion and immune-mediated thrombosis. Thus, NET formation must be tightly regulated to preserve the anti-microbial capability of NETs while minimizing damage to the host. In this review, we summarized the recent updates on the mechanism of NETs formation and pathophysiology associated with excessive NETs, aiming to provide insights for research and treatment of pulmonary infectious diseases.
Collapse
Affiliation(s)
- Ting Pan
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jae Woo Lee
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA 90230, USA
| |
Collapse
|
35
|
Gu X, Huang L, Li X, Zhou Y, Zhang H, Wang Y, Cui D, Yu T, Wang Y, Cao B. Association of Monocyte Count With Lung Function and Exercise Capacity Among Hospitalized COVID-19 Survivors: A 2-Year Cohort Study. Influenza Other Respir Viruses 2024; 18:e13263. [PMID: 38503498 PMCID: PMC10950557 DOI: 10.1111/irv.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Abnormal changes of monocytes have been observed in acute COVID-19, whereas associations of monocyte count with long COVID were not sufficiently elucidated. METHODS A cohort study was conducted among COVID-19 survivors discharged from hospital. The primary outcomes were core symptoms of long COVID, distance walked in 6 min, and lung function, and the secondary outcomes were health-related quality of life and healthcare use after discharge. Latent variable mixture modeling was used to classify individuals into groups with similar trajectory of monocyte count from discharge to 2-year after symptom onset. Multivariable adjusted generalized linear regression models and logistic regression models were used to estimate the associations of monocyte count trajectories and monocyte count at discharge with outcomes. RESULTS In total, 1389 study participants were included in this study. Two monocyte count trajectories including high to normal high and normal trajectory were identified. After multivariable adjustment, participants in high to normal high trajectory group had an odds ratio (OR) of 2.52 (95% CI, 1.44-4.42) for smell disorder, 2.27 (1.27-4.04) for 6-min walking distance less than lower limit of normal range, 2.45 (1.08-5.57) for total lung capacity (TLC) < 80% of predicted, 3.37 (1.16-9.76) for personal care problem, and 1.70 (1.12-2.58) for rehospitalization after discharge at 2-year follow-up compared with those in normal trajectory group. Monocyte count at discharge showed similar results, which was associated with smell disorder, TLC < 80% of predicted, diffusion impairment, and rehospitalization. CONCLUSIONS Monocyte count may serve as an easily accessible marker for long-term management of people recovering from COVID-19.
Collapse
Affiliation(s)
- Xiaoying Gu
- National Center for Respiratory MedicineBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- National Clinical Research Center for Respiratory DiseasesBeijingChina
- Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Department of Clinical Research and Data Management, Center of Respiratory MedicineChina‐Japan Friendship HospitalBeijingChina
| | - Lixue Huang
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Xia Li
- Hubei Provincial Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and TreatmentChinese Academy of Medical SciencesWuhanChina
| | - Yuting Zhou
- Department of Pulmonary and Critical Care Medicine, Hubei Provincial Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and TreatmentChinese Academy of Medical SciencesWuhanChina
| | - Hui Zhang
- National Center for Respiratory MedicineBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- National Clinical Research Center for Respiratory DiseasesBeijingChina
- Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory MedicineChina‐Japan Friendship HospitalBeijingChina
- Department of Pulmonary and Critical Care MedicineCapital Medical UniversityBeijingChina
| | - Yeming Wang
- National Center for Respiratory MedicineBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- National Clinical Research Center for Respiratory DiseasesBeijingChina
- Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory MedicineChina‐Japan Friendship HospitalBeijingChina
| | - Dan Cui
- Department of Pulmonary and Critical Care MedicineThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Ting Yu
- Department of Pulmonary and Critical Care Medicine, Hubei Provincial Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and TreatmentChinese Academy of Medical SciencesWuhanChina
| | - Yimin Wang
- National Center for Respiratory MedicineBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- National Clinical Research Center for Respiratory DiseasesBeijingChina
- Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Department of Pulmonary and Critical Care Medicine, Hubei Provincial Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and TreatmentChinese Academy of Medical SciencesWuhanChina
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory MedicineChina‐Japan Friendship HospitalBeijingChina
| | - Bin Cao
- National Center for Respiratory MedicineBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- National Clinical Research Center for Respiratory DiseasesBeijingChina
- Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory MedicineChina‐Japan Friendship HospitalBeijingChina
- Department of Pulmonary and Critical Care MedicineCapital Medical UniversityBeijingChina
- Tsinghua University‐Peking University Joint Center for Life SciencesBeijingChina
| |
Collapse
|
36
|
Inokuchi S, Shimamoto K. Persistent Risk of Developing Autoimmune Diseases Associated With COVID-19: An Observational Study Using an Electronic Medical Record Database in Japan. J Clin Rheumatol 2024; 30:65-72. [PMID: 38190730 DOI: 10.1097/rhu.0000000000002054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
OBJECTIVE This study aimed to investigate the risk of developing autoimmune diseases associated with coronavirus disease 2019 (COVID-19) in Japan, including long-term risks and risks specific to different variants of concern. METHODS This observational study used an electronic medical record database in Japan. The COVID-19 group is composed of patients diagnosed with COVID-19, whereas the non-COVID-19 group had data sampled from the database. The outcomes of interest encompassed several autoimmune diseases, including rheumatoid arthritis, systemic sclerosis, and immunoglobulin G4-related disease, as well as a composite of these diseases (any autoimmune disease). We examined the relative risk of autoimmune diseases using standardized mortality ratio weighting and the Cox proportional hazards model. Subgroup analyses based on epidemic variants were performed. In addition, short- and long-term risks were investigated using piecewise constant hazard models. RESULTS A total of 90,855 COVID-19 and 459,827 non-COVID-19 patients were included between January 16, 2020, and December 31, 2022. The relative risk of any autoimmune disease was 2.32 (95% confidence interval, 2.08-2.60). All the investigated outcomes showed a significant risk associated with COVID-19. Several autoimmune diseases exhibit a risk associated with COVID-19 in the short to long term, and the long-term risk is substantial for systemic sclerosis and immunoglobulin G4-related disease. The variant-specific risk varied across outcomes. CONCLUSIONS COVID-19 is associated with an increased risk of developing autoimmune diseases in the Japanese population, and this effect persists for a long time. This study provides insights into the association between viral infections and autoimmunity.
Collapse
Affiliation(s)
- Shoichiro Inokuchi
- From the Research and Analytics Department, Real World Data Co, Ltd, Kyoto, Japan
| | | |
Collapse
|
37
|
McClain MT, Zhbannikov I, Satterwhite LL, Henao R, Giroux NS, Ding S, Burke TW, Tsalik EL, Nix C, Balcazar JP, Petzold EA, Shen X, Woods CW. Epigenetic and transcriptional responses in circulating leukocytes are associated with future decompensation during SARS-CoV-2 infection. iScience 2024; 27:108288. [PMID: 38179063 PMCID: PMC10765013 DOI: 10.1016/j.isci.2023.108288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 08/03/2023] [Accepted: 10/18/2023] [Indexed: 01/06/2024] Open
Abstract
To elucidate host response elements that define impending decompensation during SARS-CoV-2 infection, we enrolled subjects hospitalized with COVID-19 who were matched for disease severity and comorbidities at the time of admission. We performed combined single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) on peripheral blood mononuclear cells (PBMCs) at admission and compared subjects who improved from their moderate disease with those who later clinically decompensated and required invasive mechanical ventilation or died. Chromatin accessibility and transcriptomic immune profiles were markedly altered between the two groups, with strong signals in CD4+ T cells, inflammatory T cells, dendritic cells, and NK cells. Multiomic signature scores at admission were tightly associated with future clinical deterioration (auROC 1.0). Epigenetic and transcriptional changes in PBMCs reveal early, broad immune dysregulation before typical clinical signs of decompensation are apparent and thus may act as biomarkers to predict future severity in COVID-19.
Collapse
Affiliation(s)
- Micah T. McClain
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
- Durham Veterans Affairs Medical Center, Durham, NC 27705, USA
| | - Ilya Zhbannikov
- Department of Medicine, Clinical Research Unit, Duke University Medical Center, Durham, NC 27710, USA
| | - Lisa L. Satterwhite
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Ricardo Henao
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicholas S. Giroux
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Shengli Ding
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Thomas W. Burke
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Christina Nix
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
| | - Jorge Prado Balcazar
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Elizabeth A. Petzold
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiling Shen
- Terasaki Institute for Biological Innovation, Los Angeles, CA 90024, USA
| | - Christopher W. Woods
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
- Durham Veterans Affairs Medical Center, Durham, NC 27705, USA
| |
Collapse
|
38
|
Ravkov EV, Williams ESCP, Elgort M, Barker AP, Planelles V, Spivak AM, Delgado JC, Lin L, Hanley TM. Reduced monocyte proportions and responsiveness in convalescent COVID-19 patients. Front Immunol 2024; 14:1329026. [PMID: 38250080 PMCID: PMC10797708 DOI: 10.3389/fimmu.2023.1329026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction The clinical manifestations of acute severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) suggest a dysregulation of the host immune response that leads to inflammation, thrombosis, and organ dysfunction. It is less clear whether these dysregulated processes persist during the convalescent phase of disease or during long COVID. We sought to examine the effects of SARS-CoV-2 infection on the proportions of classical, intermediate, and nonclassical monocytes, their activation status, and their functional properties in convalescent COVID-19 patients. Methods Peripheral blood mononuclear cells (PBMCs) from convalescent COVID-19 patients and uninfected controls were analyzed by multiparameter flow cytometry to determine relative percentages of total monocytes and monocyte subsets. The expression of activation markers and proinflammatory cytokines in response to LPS treatment were measured by flow cytometry and ELISA, respectively. Results We found that the percentage of total monocytes was decreased in convalescent COVID-19 patients compared to uninfected controls. This was due to decreased intermediate and non-classical monocytes. Classical monocytes from convalescent COVID-19 patients demonstrated a decrease in activation markers, such as CD56, in response to stimulation with bacterial lipopolysaccharide (LPS). In addition, classical monocytes from convalescent COVID-19 patients showed decreased expression of CD142 (tissue factor), which can initiate the extrinsic coagulation cascade, in response to LPS stimulation. Finally, we found that monocytes from convalescent COVID-19 patients produced less TNF-α and IL-6 in response to LPS stimulation, than those from uninfected controls. Conclusion SARS-CoV-2 infection exhibits a clear effect on the relative proportions of monocyte subsets, the activation status of classical monocytes, and proinflammatory cytokine production that persists during the convalescent phase of disease.
Collapse
Affiliation(s)
- Eugene V. Ravkov
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Elizabeth S. C. P. Williams
- Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Marc Elgort
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Adam P. Barker
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Vicente Planelles
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Adam M. Spivak
- Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Julio C. Delgado
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Leo Lin
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Timothy M. Hanley
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
39
|
Hafkamp FMJ, Taanman-Kueter EWM, van Capel TMM, Wynberg E, van Willigen HDG, Verveen A, Kootstra NA, Nieuwkerk P, de Jong MD, de Bree GJ, Prins M, Hazenberg MD, Groot Kormelink T, de Jong EC. Aberrant neutrophil degranulation in hospitalized patients with COVID-19 partially remains for 6 months. Eur J Immunol 2024; 54:e2350404. [PMID: 37853954 DOI: 10.1002/eji.202350404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
Neutrophils are important players in COVID-19, contributing to tissue damage by release of inflammatory mediators, including ROS and neutrophil elastase. Longitudinal studies on the effects of COVID-19 on neutrophil phenotype and function are scarce. Here, we longitudinally investigated the phenotype and degranulation of neutrophils in COVID-19 patients (28 nonhospitalized and 35 hospitalized patients) compared with 17 healthy donors (HDs). We assessed phenotype, degranulation, CXCL8 (IL-8) release, and ROS generation within 8 days, at one or 6 month(s) after COVID-19 diagnosis. For degranulation and ROS production, we stimulated neutrophils, either with ssRNA and TNF or granulocyte-macrophage colony-stimulating factor and N-Formylmethionyl-leucyl-phenylalanine. During active COVID-19, neutrophils from hospitalized patients were more immature than from HDs and were impaired in degranulation and ROS generation, while neutrophils from nonhospitalized patients only demonstrated reduced CD66b+ granule release and ROS production. Baseline CD63 expression, indicative of primary granule release, and CXCL8 production by neutrophils from hospitalized patients were elevated for up to 6 months. These findings show that patients hospitalized due to COVID-19, but not nonhospitalized patients, demonstrated an aberrant neutrophil phenotype, degranulation, CXCL8 release, and ROS generation that partially persists up to 6 months after infection.
Collapse
Affiliation(s)
- Florianne M J Hafkamp
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Esther W M Taanman-Kueter
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Toni M M van Capel
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Elke Wynberg
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Department of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hugo D G van Willigen
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anouk Verveen
- Department of Medical Psychology, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Pythia Nieuwkerk
- Department of Medical Psychology, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Menno D de Jong
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Godelieve J de Bree
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Maria Prins
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Department of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Mette D Hazenberg
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Hematopoiesis, Sanquin Research, Amsterdam, the Netherlands
| | - Tom Groot Kormelink
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Esther C de Jong
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
40
|
Shafqat A, Khan JA, Alkachem AY, Sabur H, Alkattan K, Yaqinuddin A, Sing GK. How Neutrophils Shape the Immune Response: Reassessing Their Multifaceted Role in Health and Disease. Int J Mol Sci 2023; 24:17583. [PMID: 38139412 PMCID: PMC10744338 DOI: 10.3390/ijms242417583] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neutrophils are the most abundant of the circulating immune cells and are the first to be recruited to sites of inflammation. Neutrophils are a heterogeneous group of immune cells from which are derived extracellular traps (NETs), reactive oxygen species, cytokines, chemokines, immunomodulatory factors, and alarmins that regulate the recruitment and phenotypes of neutrophils, macrophages, dendritic cells, T cells, and B cells. In addition, cytokine-stimulated neutrophils can express class II major histocompatibility complex and the internal machinery necessary for successful antigen presentation to memory CD4+ T cells. This may be relevant in the context of vaccine memory. Neutrophils thus emerge as orchestrators of immune responses that play a key role in determining the outcome of infections, vaccine efficacy, and chronic diseases like autoimmunity and cancer. This review aims to provide a synthesis of current evidence as regards the role of these functions of neutrophils in homeostasis and disease.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia (K.A.); (A.Y.); (G.K.S.)
| | | | | | | | | | | | | |
Collapse
|
41
|
Liu Y, Xiang C, Que Z, Li C, Wang W, Yin L, Chu C, Zhou Y. Neutrophil heterogeneity and aging: implications for COVID-19 and wound healing. Front Immunol 2023; 14:1201651. [PMID: 38090596 PMCID: PMC10715311 DOI: 10.3389/fimmu.2023.1201651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/02/2023] [Indexed: 12/18/2023] Open
Abstract
Neutrophils play a critical role in the immune response to infection and tissue injury. However, recent studies have shown that neutrophils are a heterogeneous population with distinct subtypes that differ in their functional properties. Moreover, aging can alter neutrophil function and exacerbate immune dysregulation. In this review, we discuss the concept of neutrophil heterogeneity and how it may be affected by aging. We then examine the implications of neutrophil heterogeneity and aging for COVID-19 pathogenesis and wound healing. Specifically, we summarize the evidence for neutrophil involvement in COVID-19 and the potential mechanisms underlying neutrophil recruitment and activation in this disease. We also review the literature on the role of neutrophils in the wound healing process and how aging and neutrophil heterogeneity may impact wound healing outcomes. Finally, we discuss the potential for neutrophil-targeted therapies to improve clinical outcomes in COVID-19 and wound healing.
Collapse
Affiliation(s)
| | | | | | | | - Wen Wang
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| | - Lijuan Yin
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| | - Chenyu Chu
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| | - Yin Zhou
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Luo R, Lv C, Wang T, Deng X, Sima M, Guo J, Qi J, Sun W, Shen B, Li Y, Yue D, Gao Y. A potential Chinese medicine monomer against influenza A virus and influenza B virus: isoquercitrin. Chin Med 2023; 18:144. [PMID: 37919750 PMCID: PMC10621105 DOI: 10.1186/s13020-023-00843-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Influenza viruses, especially Influenza A virus and Influenza B virus, are respiratory pathogens and can cause seasonal epidemics and pandemics. Severe influenza viruses infection induces strong host-defense response and excessive inflammatory response, resulting in acute lung damage, multiple organ failure and high mortality. Isoquercitrin is a Chinese medicine monomer, which was reported to have multiple biological activities, including antiviral activity against HSV, IAV, SARS-CoV-2 and so on. Aims of this study were to assess the in vitro anti-IAV and anti-IBV activity, evaluate the in vivo protective efficacy against lethal infection of the influenza virus and searched for the more optimal method of drug administration of isoquercitrin. METHODS In vitro infection model (MDCK and A549 cells) and mouse lethal infection model of Influenza A virus and Influenza B virus were used to evaluate the antiviral activity of isoquercitrin. RESULTS Isoquercitrin could significantly suppress the replication in vitro and in vivo and reduced the mortality of mouse lethal infection models. Compared with virus infection group, isoquercitrin mitigated lung and multiple organ damage. Moreover, isoquercitrin blocked hyperproduction of cytokines induced by virus infection via inactivating NF-κB signaling. Among these routes of isoquercitrin administration, intramuscular injection is a better drug delivery method. CONCLUSION Isoquercitrin is a potential Chinese medicine monomer Against Influenza A Virus and Influenza B Virus infection.
Collapse
Affiliation(s)
- Rongbo Luo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Chaoxiang Lv
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xiuwen Deng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Mingwei Sima
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Jin Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jing Qi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- College of Life Sciences, Northeast Normal University, Changchun, 130021, China
| | - Weiyang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Beilei Shen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yuanguo Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Donghui Yue
- School of Medical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
43
|
Drake KA, Talantov D, Tong GJ, Lin JT, Verheijden S, Katz S, Leung JM, Yuen B, Krishna V, Wu MJ, Sutherland AM, Short SA, Kheradpour P, Mumbach MR, Franz KM, Trifonov V, Lucas MV, Merson J, Kim CC. Multi-omic profiling reveals early immunological indicators for identifying COVID-19 Progressors. Clin Immunol 2023; 256:109808. [PMID: 37852344 DOI: 10.1016/j.clim.2023.109808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
We sought to better understand the immune response during the immediate post-diagnosis phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by identifying molecular associations with longitudinal disease outcomes. Multi-omic analyses identified differences in immune cell composition, cytokine levels, and cell subset-specific transcriptomic and epigenomic signatures between individuals on a more serious disease trajectory (Progressors) as compared to those on a milder course (Non-progressors). Higher levels of multiple cytokines were observed in Progressors, with IL-6 showing the largest difference. Blood monocyte cell subsets were also skewed, showing a comparative decrease in non-classical CD14-CD16+ and intermediate CD14+CD16+ monocytes. In lymphocytes, the CD8+ T effector memory cells displayed a gene expression signature consistent with stronger T cell activation in Progressors. These early stage observations could serve as the basis for the development of prognostic biomarkers of disease risk and interventional strategies to improve the management of severe COVID-19. BACKGROUND: Much of the literature on immune response post-SARS-CoV-2 infection has been in the acute and post-acute phases of infection. TRANSLATIONAL SIGNIFICANCE: We found differences at early time points of infection in approximately 160 participants. We compared multi-omic signatures in immune cells between individuals progressing to needing more significant medical intervention and non-progressors. We observed widespread evidence of a state of increased inflammation associated with progression, supported by a range of epigenomic, transcriptomic, and proteomic signatures. The signatures we identified support other findings at later time points and serve as the basis for prognostic biomarker development or to inform interventional strategies.
Collapse
Affiliation(s)
- Katherine A Drake
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Dimitri Talantov
- Janssen Research & Development, LLC, San Diego, CA, United States of America
| | - Gary J Tong
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Jack T Lin
- Verily Life Sciences, South San Francisco, CA, United States of America
| | | | - Samuel Katz
- Verily Life Sciences, South San Francisco, CA, United States of America
| | | | - Benjamin Yuen
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Vinod Krishna
- Janssen Research & Development, LLC, San Diego, CA, United States of America
| | - Michelle J Wu
- Verily Life Sciences, South San Francisco, CA, United States of America
| | | | - Sarah A Short
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Pouya Kheradpour
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Maxwell R Mumbach
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Kate M Franz
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Vladimir Trifonov
- Janssen Research & Development, LLC, San Diego, CA, United States of America
| | - Molly V Lucas
- Janssen Research & Development, LLC, NJ, United States of America
| | - James Merson
- Janssen Research & Development, LLC, San Francisco, CA, United States of America
| | - Charles C Kim
- Verily Life Sciences, South San Francisco, CA, United States of America.
| |
Collapse
|
44
|
Xin X, Wang N, Zhang Y. Hemophagocytic lymphohistiocytosis with a hemizygous PRF1 c.674G>A mutation. Am J Med Sci 2023; 366:387-394. [PMID: 37467895 DOI: 10.1016/j.amjms.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
Hemophagocytic lymphohistiocytosis(HLH) is a rare highly-fatal disease presenting with fever, hepatosplenomegaly, and pancytopenia and has a poor prognosis. Homozygous or semi-zygous or complex heterozygous variants can cause familial HLH and heterozygous carriers are frequently seen in secondary HLH. A 42-year-old male patient was admitted to the hospital for persistent fever, fatigue, and splenomegaly. Investigations revealed hypertriglyceridemia, hyperlactatemia dehydrogenaseemia, hyperferritinemia, and elevated levels of soluble cluster of differentiation 25. We found a heterozygous mutation of PRF1: c.674G>A (p.R225Q) through next-generation sequencing technology of hemophagocytic-lymphohistiocytosis-related genes. After a brief remission with dexamethasone and etoposide-based therapy, the disease relapsed quickly, and an allogeneic hematopoietic stem cell transplant was performed to achieve complete remission. To date, the patient's condition was in complete remission. Our study detected a rare missense mutation in the PRF1 gene in a patient with HLH disease and the c.674G>A mutation may be rated as a possible pathogenic variant.
Collapse
Affiliation(s)
- Xiangke Xin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
45
|
Mafra D, Kemp JA, Cardozo LFMF, Borges NA, Nerbass FB, Alvarenga L, Kalantar-Zadeh K. COVID-19 and Nutrition: Focus on Chronic Kidney Disease. J Ren Nutr 2023; 33:S118-S127. [PMID: 37632513 DOI: 10.1053/j.jrn.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 08/28/2023] Open
Abstract
Some chronic diseases, including chronic kidney disease (CKD), may be associated with poor outcomes, including a high rate of hospitalization and death after COVID-19 infection. In addition to the vaccination program, diet intervention is essential for boosting immunity and preventing complications. A healthy diet containing bioactive compounds may help mitigate inflammatory responses and oxidative stress caused by COVID-19. In this review, we discuss dietary interventions for mitigating COVID-19 complications, including in persons with CKD, which can worsen COVID-19 symptoms and its clinical outcomes, while diet may help patients with CKD to resist the ravages of COVID-19 by improving the immune system, modulating gut dysbiosis, mitigating COVID-19 complications, and reducing hospitalization and mortality. The concept of food as medicine, also known as culinary medicine, for patients with CKD can be extrapolated to COVID-19 infection because healthy foods and nutraceuticals have the potential to exert an important antiviral, anti-inflammatory, and antioxidant role.
Collapse
Affiliation(s)
- Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro Rio de Janeiro, Brazil; Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.
| | - Julie A Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Natália A Borges
- Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Fabiana B Nerbass
- Research Department, Fundação Pró-Rim, Joinville, Santa Catarina, Brazil
| | - Lívia Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Kamyar Kalantar-Zadeh
- Divsion of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine, Orange, California
| |
Collapse
|
46
|
Ravkov EV, Williams ESCP, Elgort M, Barker AP, Planelles V, Spivak AM, Delgado JC, Lin L, Hanley TM. Reduced Monocyte Proportions and Responsiveness in Convalescent COVID-19 Patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.563806. [PMID: 37961575 PMCID: PMC10634809 DOI: 10.1101/2023.10.25.563806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The clinical manifestations of acute severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection and COVID-19 suggest a dysregulation of the host immune response that leads to inflammation, thrombosis, and organ dysfunction. It is less clear whether these dysregulated processes persist during the convalescent phase of disease or during long COVID. We investigated the effects of SARS-CoV-2 infection on the proportions of classical, intermediate, and non-classical monocytes, their activation status, and their functional properties in convalescent COVID-19 patients and uninfected control subjects. We found that the percentage of total monocytes was decreased in convalescent COVID-19 patients compared to uninfected controls. This was due to decreased intermediate and non-classical monocytes. Classical monocytes from convalescent COVID-19 patients demonstrated a decrease in activation markers, such as CD56, in response to stimulation with bacterial lipopolysaccharide (LPS). In addition, classical monocytes from convalescent COVID-19 patients showed decreased expression of CD142 (tissue factor), which can initiate the extrinsic coagulation cascade, in response to LPS stimulation. Finally, we found that monocytes from convalescent COVID-19 patients produced less TNF-α and IL-6 in response to LPS stimulation, than those from uninfected controls. In conclusion, SARS-CoV-2 infection exhibits a clear effect on the relative proportions of monocyte subsets, the activation status of classical monocytes, and proinflammatory cytokine production that persists during the convalescent phase of disease.
Collapse
|
47
|
Kam NW, Lau CY, Che CM, Lee VHF. Nasopharynx Battlefield: Cellular Immune Responses Mediated by Midkine in Nasopharyngeal Carcinoma and COVID-19. Cancers (Basel) 2023; 15:4850. [PMID: 37835544 PMCID: PMC10571800 DOI: 10.3390/cancers15194850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Clinical evidence suggests that the severe respiratory illness coronavirus disease 2019 (COVID-19) is often associated with a cytokine storm that results in dysregulated immune responses. Prolonged COVID-19 positivity is thought to disproportionately affect cancer patients. With COVID-19 disrupting the delivery of cancer care, it is crucial to gain momentum and awareness of the mechanistic intersection between these two diseases. This review discusses the role of the cytokine midkine (MK) as an immunomodulator in patients with COVID-19 and nasopharyngeal carcinoma (NPC), both of which affect the nasal cavity. We conducted a review and analysis of immunocellular similarities and differences based on clinical studies, research articles, and published transcriptomic datasets. We specifically focused on ligand-receptor pairs that could be used to infer intercellular communication, as well as the current medications used for each disease, including NPC patients who have contracted COVID-19. Based on our findings, we recommend close monitoring of the MK axis to maintain the desirable effects of therapeutic regimens in fighting both NPC and COVID-19 infections.
Collapse
Affiliation(s)
- Ngar-Woon Kam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (N.-W.K.); (C.-Y.L.)
- Laboratory for Synthetic Chemistry and Chemical Biology Ltd., Hong Kong Science Park, New Territories, Hong Kong 999077, China;
| | - Cho-Yiu Lau
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (N.-W.K.); (C.-Y.L.)
- Laboratory for Synthetic Chemistry and Chemical Biology Ltd., Hong Kong Science Park, New Territories, Hong Kong 999077, China;
| | - Chi-Ming Che
- Laboratory for Synthetic Chemistry and Chemical Biology Ltd., Hong Kong Science Park, New Territories, Hong Kong 999077, China;
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong 999077, China
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (N.-W.K.); (C.-Y.L.)
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
48
|
Muyayalo KP, Gong GS, Kiyonga Aimeé K, Liao AH. Impaired immune response against SARS-CoV-2 infection is the major factor indirectly altering reproductive function in COVID-19 patients: a narrative review. HUM FERTIL 2023; 26:778-796. [PMID: 37811836 DOI: 10.1080/14647273.2023.2262757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/25/2023] [Indexed: 10/10/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease affecting multiple systems and organs, including the reproductive system. SARS-CoV-2, the virus that causes COVID-19, can damage reproductive organs through direct (angiotensin converting enzyme-2, ACE-2) and indirect mechanisms. The immune system plays an essential role in the homeostasis and function of the male and female reproductive systems. Therefore, an altered immune response related to infectious and inflammatory diseases can affect reproductive function and fertility in both males and females. This narrative review discussed the dysregulation of innate and adaptive systems induced by SARS-CoV-2 infection. We reviewed the evidence showing that this altered immune response in COVID-19 patients is the major indirect mechanism leading to adverse reproduction outcomes in these patients. We summarized studies reporting the long-term effect of SARS-CoV-2 infection on women's reproductive function and proposed the chronic inflammation and chronic autoimmunity characterizing long COVID as potential underlying mechanisms. Further studies are needed to clarify the role of autoimmunity and chronic inflammation (long COVID) in altered female reproduction function in COVID-19.
Collapse
Affiliation(s)
- Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Department of Obstetrics and Gynecology, University of Kinshasa, Kinshasa, D. R. Congo
| | - Guang-Shun Gong
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Kahindo Kiyonga Aimeé
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, People's Republic of China
- Department of Tropical Medicine Infectious and Parasitic Diseases, University of Kinshasa, Kinshasa, D. R. Congo
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
49
|
Ciabatti M, Zocchi C, Olivotto I, Bolognese L, Pieroni M. Myocarditis and COVID-19 related issues. Glob Cardiol Sci Pract 2023; 2023:e202328. [PMID: 38404624 PMCID: PMC10886760 DOI: 10.21542/gcsp.2023.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/12/2023] [Indexed: 02/27/2024] Open
Abstract
The recent COVID-19 (Coronavirus Disease 2019) pandemic by SARS-CoV2 infection has caused millions of deaths and hospitalizations across the globe. In the early pandemic phases, the infection had been initially considered a primary pulmonary disease. However, increasing evidence has demonstrated a wide range of possible cardiac involvement. Most of systemic and cardiac damage is likely sustained by a complex interplay between inflammatory, immune-related and thrombotic mechanisms. Biventricular failure and myocardial damage with elevation of cardiac biomarkers have been reported in COVID-19 patients, although histological demonstration of acute myocarditis has been rarely documented. Indeed while cardiac magnetic resonance findings include different patterns of myocardial involvement in terms of late gadolinium enhancement, histological data from necropsy and endomyocardial biopsy showed peculiar inflammatory patterns, mostly composed by macrophages. On the other hand COVID-19 vaccines based on mRN technology have been also associated with increased risk of myocarditis. COVID-19 and mRNA vaccine-related myocarditis present different clinical and imaging presentations and recent data suggest the presence of distinctive immunological mechanisms involved.
Collapse
Affiliation(s)
| | - Chiara Zocchi
- Cardiovascular Department, San Donato Hospital, Arezzo, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Meyer Children Hospital, Florence, Italy
| | | | | |
Collapse
|
50
|
Krinsky N, Sizikov S, Nissim S, Dror A, Sas A, Prinz H, Pri-Or E, Perek S, Raz-Pasteur A, Lejbkowicz I, Cohen-Matsliah SI, Almog R, Chen N, Kurd R, Jarjou'i A, Rokach A, Ben-Chetrit E, Schroeder A, Caulin AF, Yost CC, Schiffman JD, Goldfeder M, Martinod K. NETosis induction reflects COVID-19 severity and long COVID: insights from a 2-center patient cohort study in Israel. J Thromb Haemost 2023; 21:2569-2584. [PMID: 37054916 PMCID: PMC10088279 DOI: 10.1016/j.jtha.2023.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/29/2023] [Accepted: 02/12/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND COVID-19 severity and its late complications continue to be poorly understood. Neutrophil extracellular traps (NETs) form in acute COVID-19, likely contributing to morbidity and mortality. OBJECTIVES This study evaluated immunothrombosis markers in a comprehensive cohort of acute and recovered COVID-19 patients, including the association of NETs with long COVID. METHODS One-hundred-seventy-seven patients were recruited from clinical cohorts at 2 Israeli centers: acute COVID-19 (mild/moderate, severe/critical), convalescent COVID-19 (recovered and long COVID), along with 54 non-COVID controls. Plasma was examined for markers of platelet activation, coagulation, and NETs. Ex vivo NETosis induction capability was evaluated after neutrophil incubation with patient plasma. RESULTS Soluble P-selectin, factor VIII, von Willebrand factor, and platelet factor 4 were significantly elevated in patients with COVID-19 versus controls. Myeloperoxidase (MPO)-DNA complex levels were increased only in severe COVID-19 and did not differentiate between COVID-19 severities or correlate with thrombotic markers. NETosis induction levels strongly correlated with illness severity/duration, platelet activation markers, and coagulation factors, and were significantly reduced upon dexamethasone treatment and recovery. Patients with long COVID maintained higher NETosis induction, but not NET fragments, compared to recovered convalescent patients. CONCLUSIONS Increased NETosis induction can be detected in patients with long COVID. NETosis induction appears to be a more sensitive NET measurement than MPO-DNA levels in COVID-19, differentiating between disease severity and patients with long COVID. Ongoing NETosis induction capability in long COVID may provide insights into pathogenesis and serve as a surrogate marker for persistent pathology. This study emphasizes the need to explore neutrophil-targeted therapies in acute and chronic COVID-19.
Collapse
Affiliation(s)
| | | | | | - Adi Dror
- Peel Therapeutics Israel, Ltd, Nesher, Israel
| | - Anna Sas
- Peel Therapeutics Israel, Ltd, Nesher, Israel
| | | | | | - Shay Perek
- Department of Internal Medicine A, Rambam Health Care Campus, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ayelet Raz-Pasteur
- Department of Internal Medicine A, Rambam Health Care Campus, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Izabella Lejbkowicz
- Epidemiology Department and Biobank, Rambam Health Care Campus, Haifa, Israel
| | | | - Ronit Almog
- Epidemiology Department and Biobank, Rambam Health Care Campus, Haifa, Israel
| | - Nikanor Chen
- Department of Internal Medicine, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ramzi Kurd
- Department of Internal Medicine, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amir Jarjou'i
- Department of Internal Medicine, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ariel Rokach
- Department of Internal Medicine, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eli Ben-Chetrit
- Department of Internal Medicine, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | | - Christian Con Yost
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA; Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Joshua D Schiffman
- Peel Therapeutics, Inc, Salt Lake City, Utah, USA; Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA.
| | | | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|