1
|
Luo X, Li X, Chen J, Feng Q, Liao Y, Gong M, Qi J. Modeling urban pollutant wash-off processes with ecological memory. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123786. [PMID: 39718065 DOI: 10.1016/j.jenvman.2024.123786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/28/2024] [Accepted: 12/15/2024] [Indexed: 12/25/2024]
Abstract
Urbanization increases the extent of impervious surfaces, runoff, sediment, and nutrient loadings downstream, leading to the deterioration of urban surface waters. During pollutant wash-off from urban surfaces, the peak concentration of pollutants typically occurs after the rainfall peak. However, current urban wash-off models do not consider this time delay, assuming that the effect of rainfall on the wash-off process is immediate. Ecological memory (EM) is defined as the capacity of past states or experiences to influence the present or future ecological responses of a community ecosystem. In this study, ecological memory was calculated to reflect the lagging impact of rainfall on the wash-off process. Incorporating ecological memory into the original wash-off model improved its performance across all pollutant types and rainfall conditions, with the adjusted R-squared value increasing from -0.01-0.61 to -0.08-0.83. Among the factors impacting ecological memory, rainfall intensity significantly affected the distributions of ecological memory (p < 0.05 according to the Kolmogorov-Smirnov test). The first flush phenomenon, which involves a larger concentration or mass of pollutants in the initial portion of a storm event compared to the rest, showed no significant difference in the distributions of ecological memory between rain events with and without this phenomenon. The improved urban wash-off model can be applied for real-time simulation of urban pollutants and help develop site-specific measures for reducing urban nonpoint source pollution.
Collapse
Affiliation(s)
- Xi Luo
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, 5825 University Research Ct, College Park, MD, 20740, USA
| | - Xuyong Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| | - Jingqiu Chen
- Biological Systems Engineering, Florida A&M University, Tallahassee, FL, 32310, USA
| | - Qingyu Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yunjie Liao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Manli Gong
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Junyu Qi
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, 5825 University Research Ct, College Park, MD, 20740, USA
| |
Collapse
|
2
|
Gazol A, González de Andrés E, Valverde Á, Igual JM, Serrano A, Camarero JJ. The strong seasonality of soil microbial community structure in declining Mediterranean pine forests depends more on soil conditions than on tree vitality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177560. [PMID: 39557170 DOI: 10.1016/j.scitotenv.2024.177560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
The soil microbiome plays an important role in forest functioning. However, the impact of drought-induced dieback and tree death on soil microbial biomass, community structure, and functional composition is unknown. We also lack understanding on how soil microbiota varies seasonally in such declining stands. We used Phospholipid Fatty Acids (PLFA) analysis to quantify soil microbial biomass and study its seasonal changes in three Mediterranean forests showing dieback and dominated by three pine species (Pinus halepensis Mill, Pinus pinaster Ait. and Pinus sylvestris L.). We also measured microclimatic parameters and soil physical and chemical parameters under trees with different vigor, assessed as canopy defoliation degree, and related them to seasonal changes in the soil microbial community. We found marked differences in soil microbial community structure, total biomass, and the relative abundance of major functional groups among forests. First, soil microbial biomass peaked either in the dry summer (P. halepensis) or in autumn (P. pinaster and P. sylvestris). Accordingly, the relative abundance of most functional groups, excluding Arbuscular mycorrhizal fungi, displayed substantial variation between seasons. In addition, the relative abundance of fungi and Gram-positive bacteria exhibited an opposite pattern compared to actinomycetes and Gram-negative bacteria. Second, soil physical and chemical parameters had a significant impact on within-site PLFA variation, although their influence was less important than that of seasonal variation. Third, differences between defoliated and healthy trees were minor and restricted to averaged ratios between different PLFA markers. Overall, the structure, biomass and relative abundance of major functional groups of the soil microbiome vary considerably among stand types and seasons in forests showing ongoing dieback and high mortality. However, while the seasonal dynamics show predictable patterns, which should be accounted for in future studies, the within-site variation is highly variable and mainly depends on soil physical and chemical parameters.
Collapse
Affiliation(s)
- Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain.
| | | | - Ángel Valverde
- Grupo de Interacción Planta-Microorganismo, Instituto de Recursos Naturales y Agrobiología de Salamanca, CSIC, 37008 Salamanca, Spain.
| | - José M Igual
- Grupo de Interacción Planta-Microorganismo, Instituto de Recursos Naturales y Agrobiología de Salamanca, CSIC, 37008 Salamanca, Spain.
| | - Abel Serrano
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain.
| |
Collapse
|
3
|
Zhang D, Sun J, Peng S, Wang Y, Hua Q, Wu P, Lin X. Paddy-upland rotation combined with manure application: An optimal strategy for enhancing soil multifunctionality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123788. [PMID: 39705991 DOI: 10.1016/j.jenvman.2024.123788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Promoting soil multifunctionality is pivotal for maintaining agricultural productivity and sustainable agriculture, especially with the increasing global population and food demand. The effectiveness of different agricultural practices in enhancing soil multifunctionality and how the combination can maximize soil multifunctionality remains unknown. This study aimed to investigate the different impacts of rotation (paddy-upland rotation and dryland rotation) combined with fertilization (chemical fertilizer and manure) on soil multifunctionality, microbial community structure, and microbial networks. A two-year field experiment was conducted at the Fengqiu National Agro-Ecosystem Observation and Research Station in Henan Province, China, comparing the differences between rice-wheat rotation (paddy-upland rotation) and maize-wheat rotation (dryland rotation) combined with chemical fertilizer and pig manure. This finding revealed that paddy-upland rotation combined with manure application had the optimal effect in enhancing soil multifunctionality with a 216.25 % enhancement while contributing to a yield increase of 222.71 %. Notably, paddy-upland rotation and fertilization significantly promoted the soil bacterial network complexity and robustness, and these network properties were crucial factors in predicting soil multifunctionality. This study provides a new insight for developing a comprehensive strategy combining paddy-upland rotation with manure application in the future, which can help us to better improve soil health and agricultural sustainability.
Collapse
Affiliation(s)
- Dan Zhang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 101400, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Jianbin Sun
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 101400, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Shuang Peng
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Environment and Ecology, Jiangsu Open University, Nanjing, 210017, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - Yiming Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 101400, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - Qingqing Hua
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Pan Wu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Xiangui Lin
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| |
Collapse
|
4
|
Hu H, Liu X, He Y, Feng J, Xu Y, Jing J. Legacy effects of precipitation change: Theories, dynamics, and applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123729. [PMID: 39693973 DOI: 10.1016/j.jenvman.2024.123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
The intensification of climate-induced precipitation change poses a dual challenge to terrestrial ecosystems: immediate effects on their structure and function, coupled with legacy effects that persist beyond the cessation of precipitation change. Quantifying these legacy effects accurately can greatly assist in assessing the long-term impact of precipitation change. However, their broader understanding is just beginning. Therefore, this review endeavors to synthesize the existing knowledge concerning the legacy effects of precipitation change, elucidating their nature, characteristics, driving factors, and implications, thereby fostering further advancements in this research domain. To begin, we define that precipitation legacies are carried by the information and/or material remnants arising from previous precipitation change, with the enduring impacts of these remnants (precipitation legacy carriers) on the current ecosystem being termed the precipitation legacy effects. To comprehensively investigate the performances of precipitation legacy effects, we introduce a multi-faceted characterization framework, encompassing magnitude, direction, duration, and spatial-temporal variability. This framework is complemented by a proposed sequential analysis approach, spanning the pre-, during, and post-precipitation change phases. Next, we emphasize that the nature of precipitation legacy carriers and the pattern of precipitation change jointly determine the characteristics of precipitation legacy effect. Subsequently, we elucidate the possible carriers of precipitation legacies across species, community, and ecosystem levels, as well as the linkages among these carriers and levels, thereby introducing the underlying formation mechanism of precipitation legacy effects. Lastly, from the perspective of ecosystem stability debt, we propose potential applications of precipitation legacy effects in future climate change research. The viewpoints and methodologies outlined in this review can deepen our comprehension of precipitation legacy effects, contributing to the comprehensive assessment of precipitation impact on soil-vegetation systems and providing guidance for formulating effective strategies to address future climate change.
Collapse
Affiliation(s)
- Hongjiao Hu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinping Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Yuhui He
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, China; Lanzhou Ecological Agriculture Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jie Feng
- Forestry and Grassland Research Institute of Tongliao, Tongliao, 010020, China
| | - Yuanzhi Xu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqi Jing
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Jiang BN, Zhang YY, Wang Y, Liu HQ, Zhang ZY, Yang YJ, Song HL. Microbial biomass stoichiometry and proportion of Fe organic complexes separately shape the heterogeneity of mixotrophic denitrification and net N 2O sinks in iron-carbon amended ecological ditch. WATER RESEARCH 2024; 272:122945. [PMID: 39674145 DOI: 10.1016/j.watres.2024.122945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Coupling of iron-carbon can form a mixotrophic denitrification and is regarded as a promising solution for purifying nitrate-rich agricultural runoff. However, its prevalence and efficacy of the synergistic augmentation of nitrogen elimination and net N2O sinks remain crucial knowledge gaps in ecological ditches (eco-ditches). Here, we investigated the underlying variability mechanisms by implementing sponge iron (sFe)-coupled Iris hexagonus (IH)- or Myriophyllum aquaticum (MA)-derived biochar produced via microwave-assisted (MW) pyrolysis and conventional pyrolysis. Surprisingly, unamened eco-ditch became net N2O sink while exhibiting a significant increase in total nitrogen (TN) removal rate of 319 % (P < 0.001) compared to soil ditch. The integration of MW pyrolyzed IH-derived biochar with sFe to amend eco-ditch achieved synchronous enhancement in net N2O sinks (P < 0.01) and TN removal rate (P < 0.001), whereas the remaining amended eco-ditches that significantly intensified TN removal performance, were N2O emitters. Such heterogeneity primarily depends on Fe organic complexes (Fep) / the total reactive Fe oxides (Fed) ratio, rather than the prevailing nosZ gene, underscoring that low density metastable reactive iron plays a more important role than biological reactions during the mixotrophic denitrification process. As such, iron oxides are not necessarily a bottleneck for denitrification and contribute to N2O sinks. Conversely, microbial biomass C:(C + N), together with nirK and nosZ genes, mainly explain the TN removal heterogeneity of sFe-biochar eco-ditch. This study revisits the discrepant resilience of iron-carbon coupling to N abatement and N2O sink-induced cooling and has significant practical implications for better understanding the cascading effects of mixotrophic denitrification driven by iron-carbon interactions.
Collapse
Affiliation(s)
- Bi-Ni Jiang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China; School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Ying-Ying Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China
| | - Yan Wang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China
| | - Hai-Qin Liu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China
| | - Zhi-Yong Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China.
| | - Yi-Jing Yang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China; School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China.
| |
Collapse
|
6
|
Hosseiniyan Khatibi SM, Dimaano NG, Veliz E, Sundaresan V, Ali J. Exploring and exploiting the rice phytobiome to tackle climate change challenges. PLANT COMMUNICATIONS 2024; 5:101078. [PMID: 39233440 PMCID: PMC11671768 DOI: 10.1016/j.xplc.2024.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
The future of agriculture is uncertain under the current climate change scenario. Climate change directly and indirectly affects the biotic and abiotic elements that control agroecosystems, jeopardizing the safety of the world's food supply. A new area that focuses on characterizing the phytobiome is emerging. The phytobiome comprises plants and their immediate surroundings, involving numerous interdependent microscopic and macroscopic organisms that affect the health and productivity of plants. Phytobiome studies primarily focus on the microbial communities associated with plants, which are referred to as the plant microbiome. The development of high-throughput sequencing technologies over the past 10 years has dramatically advanced our understanding of the structure, functionality, and dynamics of the phytobiome; however, comprehensive methods for using this knowledge are lacking, particularly for major crops such as rice. Considering the impact of rice production on world food security, gaining fresh perspectives on the interdependent and interrelated components of the rice phytobiome could enhance rice production and crop health, sustain rice ecosystem function, and combat the effects of climate change. Our review re-conceptualizes the complex dynamics of the microscopic and macroscopic components in the rice phytobiome as influenced by human interventions and changing environmental conditions driven by climate change. We also discuss interdisciplinary and systematic approaches to decipher and reprogram the sophisticated interactions in the rice phytobiome using novel strategies and cutting-edge technology. Merging the gigantic datasets and complex information on the rice phytobiome and their application in the context of regenerative agriculture could lead to sustainable rice farming practices that are resilient to the impacts of climate change.
Collapse
Affiliation(s)
| | - Niña Gracel Dimaano
- International Rice Research Institute, Los Baños, Laguna, Philippines; College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños, Laguna, Philippines
| | - Esteban Veliz
- College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Venkatesan Sundaresan
- College of Biological Sciences, University of California, Davis, Davis, CA, USA; College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - Jauhar Ali
- International Rice Research Institute, Los Baños, Laguna, Philippines.
| |
Collapse
|
7
|
Canarini A, Fuchslueger L, Schnecker J, Metze D, Nelson DB, Kahmen A, Watzka M, Pötsch EM, Schaumberger A, Bahn M, Richter A. Soil fungi remain active and invest in storage compounds during drought independent of future climate conditions. Nat Commun 2024; 15:10410. [PMID: 39613745 DOI: 10.1038/s41467-024-54537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024] Open
Abstract
Microbial growth is central to soil carbon cycling. However, how microbial communities grow under climate change is still largely unexplored. Here we use a unique field experiment simulating future climate conditions (increased atmospheric CO2 and temperature) and drought concomitantly and investigate impacts on soil microbial activity. We trace 2H or 18O applied via water-vapor exchange into membrane (and storage) fatty acids or DNA, respectively, to assess community- and group-level adjustments in soil microbial physiology (replication, storage product synthesis, and carbon use efficiency). We show that, while bacterial growth decreases by half during drought, fungal growth remains stable, demonstrating a remarkable resistance against soil moisture changes. In addition, fungal investment into storage triglycerides increases more than five-fold under drought. Community-level carbon use efficiency (the balance between anabolism and catabolism) is unaffected by drought but decreases in future climate conditions, favoring catabolism. Our results highlight that accounting for different microbial growth strategies can foster our understanding of soil microbial contributions to carbon cycling and feedback on the climate system.
Collapse
Affiliation(s)
- Alberto Canarini
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
| | - Lucia Fuchslueger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Environment and Climate Hub, University of Vienna, Vienna, Austria.
| | - Jörg Schnecker
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Dennis Metze
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Daniel B Nelson
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| | - Margarete Watzka
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Erich M Pötsch
- Agricultural Research and Education Centre Raumberg-Gumpenstein, Irdning, Austria
| | - Andreas Schaumberger
- Agricultural Research and Education Centre Raumberg-Gumpenstein, Irdning, Austria
| | - Michael Bahn
- Department of Ecology, Universität Innsbruck, Innsbruck, Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
| |
Collapse
|
8
|
Jiang H, Chen X, Li Y, Chen J, Wei L, Zhang Y. Seasonal dynamics of soil microbiome in response to dry-wet alternation along the Jinsha River Dry-hot Valley. BMC Microbiol 2024; 24:496. [PMID: 39587503 PMCID: PMC11587743 DOI: 10.1186/s12866-024-03662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Soil microorganisms play a key role in nutrient cycling, carbon sequestration, and other important ecosystem processes, yet their response to seasonal dry-wet alternation remains poorly understood. Here, we collected 120 soil samples from dry-hot valleys (DHVs, ~ 1100 m a.s.l.), transition (~ 2000 m a.s.l.) and alpine zones (~ 3000 m a.s.l.) along the Jinsha River in southwest China during both wet and dry seasons. Our aims were to investigate the bacterial microbiome across these zones, with a specific focus on the difference between wet and dry seasons. RESULTS Despite seasonal variations, bacterial communities in DHVs exhibit resilience, maintaining consistent community richness, diversity, and coverage. This suggests that the microbes inhabiting DHVs have evolved adaptive mechanisms to withstand the extreme dry and hot conditions. In addition, we observed season-specific microbial clades in all sampling areas, highlighting their resilience to environmental fluctuations. Notably, we found similarities in microbial clades between soils from DHVs and the transition zones, including the phyla Actinomycetota, Chloroflexota, and Pseudomonadota. The neutral community model respectively explained a substantial proportion of the community variation in DHVs (87.7%), transition (81.4%) and alpine zones (81%), indicating that those were predominantly driven by stochastic processes. Our results showed that migration rates were higher in the dry season than in the wet season in both DHVs and the alpine zones, suggesting fewer diffusion constraints. However, this trend was reversed in the transition zones. CONCLUSIONS Our findings contribute to a better understanding of how the soil microbiome responds to seasonal dry-wet alternation in the Jinsha River valley. These insights can be valuable for optimizing soil health and enhancing ecosystem resilience, particularly in dry-hot valleys, in the context of climate change.
Collapse
Affiliation(s)
- Hao Jiang
- Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China.
- State Key Laboratory of Mountain Hazards and Engineering Resilience, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China.
| | - Xiaoqing Chen
- Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China.
- State Key Laboratory of Mountain Hazards and Engineering Resilience, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China.
| | - Yongping Li
- School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Jiangang Chen
- Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
- State Key Laboratory of Mountain Hazards and Engineering Resilience, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
| | - Li Wei
- Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
- State Key Laboratory of Mountain Hazards and Engineering Resilience, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
| | - Yuanbin Zhang
- Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
| |
Collapse
|
9
|
Xiao X, Zhang W, Chen W, Chabi K, Fu J, Feng M, Yu X. Bacterial accumulation dynamics in runoff from extreme precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175731. [PMID: 39233076 DOI: 10.1016/j.scitotenv.2024.175731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Extreme precipitation can significantly influence the water quality of surface waters. However, the total amount of bacteria carried by rainfall runoff is poorly understood. Here, thirty rainfall scenarios were simulated by artificial rainfall simulators, with designed rainfall intensity ranging from 19.3 to 250 mm/h. The instantaneous concentration ranges of R2A, nutrient agar (NA) culturable bacteria, and viable bacteria in runoff depended on the types of underlying surfaces. The instantaneous bacterial concentrations in runoff generated by forest lands, grasslands and bare soil were: R2A culturable bacteria = 104.5-6.3, 104.5-6.1, 104.0-5.3 colony-forming units (CFU)/mL, NA culturable bacteria = 104.0-6.0, 103.9-5.8, 103.2-4.9 CFU/mL, and viable bacteria = 106.4-8.0, 107.0-8.9, 106.4-7.6 cells/mL. Based on the measured bacterial instantaneous concentration in runoff, cumulative dynamic models were established, and the maximum amount of culturable bacteria and viable bacteria entering water sources were estimated to be 109.38-11.31 CFU/m2 and 1011.84-13.25 cells/m2, respectively. The model fitting and the bacterial accumulation dynamics were influenced by the rainfall types (p < 0.01). Surface runoff from the underlying surface of forest lands and grasslands had a high microbial risk that persisted even during the "Drought-to-Deluge Transition". Bacterial accumulation models provide valuable insight for predicting microbial risks in catchments during precipitation and can serve as theoretical support for further ensuring the safety of drinking water under the challenge of climate change.
Collapse
Affiliation(s)
- Xinyan Xiao
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China
| | - Weifeng Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China
| | - Wenling Chen
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China
| | - Kassim Chabi
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinjin Fu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
10
|
Hao Y, Sun A, Lu C, Su JQ, Chen QL. Protists and fungi: Reinforcing urban soil ecological functions against flash droughts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175274. [PMID: 39117190 DOI: 10.1016/j.scitotenv.2024.175274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Rising instances of flash droughts are contributing to notable variability in soil moisture across terrestrial ecosystems. These phenomena challenge urban ecosystem services, yet the reaction of soil ecological functions (SEFs) to such events is poorly understood. This study investigates the responses of SEFs (about nutrient metabolism capacity and potential) and the microbiome under two specific scenarios: a flooding-drought sequence and a direct drought condition. Using quantitative microbial element cycling analysis, high-throughput sequencing, and enzyme activity measurements, we found that unlike in forests, the microbial composition in urban soils remained unchanged during flash drought conditions. However, SEFs were affected in both settings. Correlation analysis and Mantel test showed that forest soils exhibited more complex interactions among soil moisture, properties, and microbial communities. Positive linear correlation revealed that bacteria were the sole drivers of SEFs. Interestingly, while multi-threshold results suggested bacterial α diversity impeded the maximization of SEFs in urban soils, fungi and protists had a beneficial impact. Cross-domain network of urban soils had higher number of nodes and edges, but lower average degree and robustness than forest soils. Mantel test revealed that fungi and protist had significant correlations with bacterial composition in forest soils, but not in urban soils. In the urban network, the degree and eigenvector centrality of bacterial, fungal and protistan ASVs were significantly lower compared to those in the forest. These results suggest that the lower robustness of the microbial network in urban soils is attributed to limited interactions among fungi, consumer protists, and bacteria, contributing to the failure of microbial-driven ecological functions. Overall, our findings emphasize the critical role of fungi and protists in shielding urban soils from drought-induced disturbances and in enhancing the resistance of urban ecological functions amidst environmental changes.
Collapse
Affiliation(s)
- Yilong Hao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Anqi Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Changyi Lu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
11
|
Diao H, Lan C, Huang H, Xu F, Dong D, Dong W, Qiu Y, Chen J, Ren Y. Effects of the recovery period after particulate matter pollution events on the dust retention capacity and physiological characteristics of Nerium oleander. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174990. [PMID: 39094640 DOI: 10.1016/j.scitotenv.2024.174990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Plants are known for their significant dust retention capacity and are widely used to alleviate atmospheric pollution. Urban green plants are exposed to periodic particulate matter pollution stress, and the time intervals between periods of pollution exposure are often inconsistent. The impact of stress memory and pollution intervals on plant dust retention capacity and physiological characteristics during periodic stress is not yet clear. In this study, the common urban landscaping species Nerium oleander L. was selected as the test plant, and stable isotope (15NH4Cl) tracing technology and aerosol generators were used to simulate periodic PM2.5 pollution. This study included two particulate pollution periods (each lasting 14 days) and one recovery period with three different durations (7, 14, and 21 days). The results indicated that periodic particulate matter pollution-induced stress decreased the dust retention capacity of N. oleander leaf surfaces, but particle adsorption to the wax layer was more stable. As the duration of the recovery period increased, leaf particle absorption, which accounted for the greatest proportion of total dust retention, increased, indicating that leaves are the primary organ for dust retention in Nerium oleander L. Root absorption also increased with increasing recovery periods. Prior pollution stress increased oleander physiological and morphological responses, and the plant's air pollution tolerance significantly improved after a recovery period of >14 days.
Collapse
Affiliation(s)
- Haichen Diao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an 311300, China
| | - Chenqiyu Lan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Hanhan Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Feifei Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Dubin Dong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Wen Dong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Yingying Qiu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Jian Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Yuan Ren
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an 311300, China.
| |
Collapse
|
12
|
Kumar S, Sindhu SS. Drought stress mitigation through bioengineering of microbes and crop varieties for sustainable agriculture and food security. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100285. [PMID: 39512260 PMCID: PMC11542684 DOI: 10.1016/j.crmicr.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Climate change and agriculture are intrinsically connected and sudden changes in climatic conditions adversely impact global food production and security. The climate change-linked abiotic stressors like drought and high temperatures are resulting in crop failure. The most severe abiotic stress drought significantly affect the stomatal closure, production of reactive oxygen species, transpiration, photosynthesis or other physiological processes and plant morphology, and adversely affect plant growth and crop yield. Therefore, there is an exigent need for cost effective and eco-friendly modern technologies to induce drought tolerance in crop plants leading to climate-adapted sustainable agricultural practices for sustained food production. Among many options being pursued in this regard, the use of plant growth promoting microbes (PGPMs) is the most sustainable approach to promote drought stress resilience in crop plants leading to better plant growth and crop productivity. These PGPMs confer drought resistance via various direct or indirect mechanisms including production of antioxidants, enzymes, exopolysaccharides, modulation of phytohormones level, osmotic adjustment by inducing the accumulation of sugars, along with increases in nutrients, water uptake and photosynthetic pigments. However, several technological and ecological challenges limit their use in agriculture and sometimes treatment with plant beneficial microbes fails to produce desired results under field conditions. Thus, development of synthetic microbial communities or host mediated microbiome engineering or development of transgenic plants with the capacity to express desired traits may promote plant survival and growth under drought stress conditions. The present review critically assesses research evidence on the plant growth and stress resilience promoting potentials of PGPMs and their genes as an approach to develop drought resilient plants leading to increased crop productivity. Effective collaboration among scientific communities, policymakers and regulatory agencies is needed to create strong frameworks that both promote and regulate the utilization of synthetic microbial communities and transgenic plants in agriculture.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
13
|
Halbrook S, Wilber W, Barrow ME, Farrer EC. Bacterial community response to novel and repeated disturbances. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70022. [PMID: 39387551 PMCID: PMC11465558 DOI: 10.1111/1758-2229.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
Disturbance response and recovery are increasingly important in microbial ecology, as microbes may recover from disturbances differently than macro communities. Past disturbances can alter microbial community structure and their response to subsequent disturbance events, but it remains unclear if the same recovery patterns persist after long-term exposure to stress. Here, we compare bacterial community composition in a community that experienced 2 years of monthly salinity addition disturbances with a community that has not experienced salinity additions. We then track the response and recovery to an additional salinity addition based on past disturbance exposure. We tested the following hypotheses: first, communities with a repeated disturbance history will have a different community composition than communities without a disturbance history; second, communities exposed to repeated disturbances will undergo a different recovery trajectory than communities experiencing a novel disturbance. We find that repeated disturbances alter community composition and affect community response and recovery to a subsequent disturbance after 2 years, primarily through increased resistance. This work enhances our understanding of microbial temporal dynamics and suggests that novel disturbances may pose a threat to microbial community structure and function.
Collapse
Affiliation(s)
- Susannah Halbrook
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisianaUSA
| | - William Wilber
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Mary Elizabeth Barrow
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisianaUSA
| | - Emily C. Farrer
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisianaUSA
| |
Collapse
|
14
|
Tao Z, Zhang K, Callaway RM, Siemann E, Liu Y, Huang W. Native Plant Diversity Generates Microbial Legacies That Either Promote or Suppress Non-Natives, Depending on Drought History. Ecol Lett 2024; 27:e14504. [PMID: 39354910 DOI: 10.1111/ele.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 10/03/2024]
Abstract
Diverse native plant communities resist non-native plants more than species-poor communities, in part through resource competition. The role of soil biota in diversity-invasibility relationships is poorly understood, although non-native plants interact with soil biota during invasions. We tested the responses of non-native plants to soil biota generated by different native plant diversities. We applied well-watered and drought treatments in both conditioning and response phases to explore the effects of 'historical' and 'contemporary' environmental stresses. When generated in well-watered soils, the microbial legacies from higher native diversity inhibited non-native growth in well-watered conditions. In contrast, when generated in drought-treated soils, the microbial legacies from higher native diversity facilitated non-native growth in well-watered conditions. Contemporary drought eliminated microbial legacy effects on non-native growth. We provide a new understanding of mechanisms behind diversity-invasibility relationships and demonstrate that temporal variation in environmental stress shapes relationships among native plant diversity, soil biota and non-native plants.
Collapse
Affiliation(s)
- Zhibin Tao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Kaoping Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Ragan M Callaway
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Yanjie Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Wei Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
15
|
Xu Q, Yu R, Guo L. Evaluation of forest ecosystem resilience to drought considering lagged effects of drought. Ecol Evol 2024; 14:e70281. [PMID: 39263459 PMCID: PMC11387464 DOI: 10.1002/ece3.70281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024] Open
Abstract
Drought can cause significant disruption to forest ecosystems and may have long-term impacts on the structure and function of ecosystems after the end of drought. This is the key to quantifying the ability of ecosystem to respond to disturbance events by comprehensively analyzing the impact of drought on vegetation, the lagged effect, and ecosystem resilience to drought. This article takes broad-leaved forests and coniferous forests in multiple temperature zones of China as the object of study, using distributed lagged nonlinear model (DLNM) to construct a systematic method. Our results show that the main sensitive lagged time for coniferous forests and broad-leaved forests is the first 3 months in various temperature zones, with the strongest lagged effect in the month when the drought incidents occur. Coping capacity represents ecosystems to remain stable during droughts, and we quantified the indicator by the ratio of the resistance (the difference between NDVI value before the drought and during the drought) to recovery (the difference between NDVI value after the drought and during the drought). When dealing with intensive drought events, the coping capacity of subtropical broad-leaved forests (-0.67) and tropical broad-leaved forests (-0.88) exhibit the strongest coping capacity (value tends to -1). Overall, vegetation growth in subtropical and tropical regions is less affected by drought compared to temperate and cold temperate zones. The research results help us understand the comprehensive impact of drought on vegetation and the strategies for different vegetation to cope with drought.
Collapse
Affiliation(s)
- Qingfeng Xu
- Yellow River Engineering Consulting Co., Ltd. Zhengzhou China
| | - Ruyue Yu
- College of Land Science and Technology China Agricultural University Beijing China
| | - Lili Guo
- Yellow River Engineering Consulting Co., Ltd. Zhengzhou China
| |
Collapse
|
16
|
Ginnan NA, Custódio V, Gopaulchan D, Ford N, Salas-González I, Jones DD, Wells DM, Moreno Â, Castrillo G, Wagner MR. Persistent legacy effects on soil metagenomes facilitate plant adaptive responses to drought. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609769. [PMID: 39253412 PMCID: PMC11383273 DOI: 10.1101/2024.08.26.609769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Both chronic and acute drought alter the composition and physiology of soil microbiomes, with implications for globally important processes including carbon cycling and plant productivity. When water is scarce, selection favors microbes with thicker peptidoglycan cell walls, sporulation ability, and constitutive osmolyte production (Schimel, Balser, and Wallenstein 2007)-but also the ability to degrade complex plant-derived polysaccharides, suggesting that the success of plants and microbes during drought are inextricably linked. However, communities vary enormously in their drought responses and subsequent interactions with plants. Hypothesized causes of this variation in drought resilience include soil texture, soil chemistry, and historical precipitation patterns that shaped the starting communities and their constituent species (Evans, Allison, and Hawkes 2022). Currently, the physiological and molecular mechanisms of microbial drought responses and microbe-dependent plant drought responses in diverse natural soils are largely unknown (de Vries et al. 2023). Here, we identify numerous microbial taxa, genes, and functions that characterize soil microbiomes with legacies of chronic water limitation. Soil microbiota from historically dry climates buffered plants from the negative effects of subsequent acute drought, but only for a wild grass species native to the same region, and not for domesticated maize. In particular, microbiota with a legacy of chronic water limitation altered the expression of a small subset of host genes in crown roots, which mediated the effect of acute drought on transpiration and intrinsic water use efficiency. Our results reveal how long-term exposure to water stress alters soil microbial communities at the metagenomic level, and demonstrate the resulting "legacy effects" on neighboring plants in unprecedented molecular and physiological detail.
Collapse
|
17
|
Jia X, Lin S, Zhang Q, Wang Y, Hong L, Li M, Zhang S, Wang T, Jia M, Luo Y, Ye J, Wang H. The Ability of Different Tea Tree Germplasm Resources in South China to Aggregate Rhizosphere Soil Characteristic Fungi Affects Tea Quality. PLANTS (BASEL, SWITZERLAND) 2024; 13:2029. [PMID: 39124147 PMCID: PMC11314174 DOI: 10.3390/plants13152029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
It is generally recognized that the quality differences in plant germplasm resources are genetically determined, and that only a good "pedigree" can have good quality. Ecological memory of plants and rhizosphere soil fungi provides a new perspective to understand this phenomenon. Here, we selected 45 tea tree germplasm resources and analyzed the rhizosphere soil fungi, nutrient content and tea quality. We found that the ecological memory of tea trees for soil fungi led to the recruitment and aggregation of dominant fungal populations that were similar across tea tree varieties, differing only in the number of fungi. We performed continuous simulation and validation to identify four characteristic fungal genera that determined the quality differences. Further analysis showed that the greater the recruitment and aggregation of Saitozyma and Archaeorhizomyces by tea trees, the greater the rejection of Chaetomium and Trechispora, the higher the available nutrient content in the soil and the better the tea quality. In summary, our study presents a new perspective, showing that ecological memory between tea trees and rhizosphere soil fungi leads to differences in plants' ability to recruit and aggregate characteristic fungi, which is one of the most important determinants of tea quality. The artificial inoculation of rhizosphere fungi may reconstruct the ecological memory of tea trees and substantially improve their quality.
Collapse
Affiliation(s)
- Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.)
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan 364012, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.)
| | - Yuhua Wang
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Hong
- College of Life Science, Longyan University, Longyan 364012, China
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan 364012, China
| | - Shuqi Zhang
- College of Life Science, Longyan University, Longyan 364012, China
| | - Tingting Wang
- College of Life Science, Longyan University, Longyan 364012, China
| | - Miao Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.)
| | - Yangxin Luo
- College of Life Science, Longyan University, Longyan 364012, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.)
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.)
- College of Life Science, Longyan University, Longyan 364012, China
| |
Collapse
|
18
|
Jiang Y, Zhang Z, Jiang J, Zhu F, Guo X, Jia P, Li H, Liu Z, Huang S, Zhang Y, Xue S. Enhancement of nitrogen on core taxa recruitment by Penicillium oxalicum stimulated microbially-driven soil formation in bauxite residue. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134647. [PMID: 38762986 DOI: 10.1016/j.jhazmat.2024.134647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Microbially-driven soil formation process is an emerging technology for the ecological rehabilitation of alkaline tailings. However, the dominant microorganisms and their specific roles in soil formation processes remain unknown. Herein, a 1-year field-scale experiment was applied to demonstrate the effect of nitrogen input on the structure and function of the microbiome in alkaline bauxite residue. Results showed that the contents of nutrient components were increased with Penicillium oxalicum (P. oxalicum) incorporation, as indicated by the increasing of carbon and nitrogen mineralization and enzyme metabolic efficiency. Specifically, the increasing enzyme metabolic efficiency was associated with nitrogen input, which shaped the microbial nutrient acquisition strategy. Subsequently, we evidenced that P. oxalicum played a significant role in shaping the assemblages of core bacterial taxa and influencing ecological functioning through intra- and cross-kingdom network analysis. Furthermore, a recruitment experiment indicated that nitrogen enhanced the enrichment of core microbiota (Nitrosomonas, Bacillus, Pseudomonas, and Saccharomyces) and may provide benefits to fungal community bio-diversity and microbial network stability. Collectively, these results demonstrated nitrogen-based coexistence patterns among P. oxalicum and microbiome and revealed P. oxalicum-mediated nutrient dynamics and ecophysiological adaptations in alkaline microhabitats. It will aid in promoting soil formation and ecological rehabilitation of bauxite residue. ENVIRONMENT IMPLICATION: Bauxite residue is a highly alkaline solid waste generated during the Bayer process for producing alumina. Attempting to transform bauxite residue into a stable soil-like substrate using low-cost microbial resources is a highly promising engineering. However, the dominant microorganisms and their specific roles in soil formation processes remain unknown. In this study, we evidenced the nitrogen-based coexistence patterns among Penicillium oxalicum and microbiome and revealed Penicillium oxalicum-mediated nutrient dynamics and ecophysiological adaptations in alkaline microhabitats. This study can improve the understanding of core microbes' assemblies that affect the microbiome physiological traits in soil formation processes.
Collapse
Affiliation(s)
- Yifan Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Ziying Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Xuyao Guo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Pu Jia
- Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hongzhe Li
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhongkai Liu
- Zhengzhou Non-ferrous Metals Research Institute Co., Ltd of Chalco, Zhengzhou 450000, China
| | - Shiwei Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yufei Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
19
|
Wang X, Zeng J, Chen F, Wang Z, Liu H, Zhang Q, Liu W, Wang W, Guo Y, Niu Y, Yuan L, Ren C, Yang G, Zhong Z, Han X. Aridity shapes distinct biogeographic and assembly patterns of forest soil bacterial and fungal communities at the regional scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174812. [PMID: 39019268 DOI: 10.1016/j.scitotenv.2024.174812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Climate change is exacerbating drought in arid and semi-arid forest ecosystems worldwide. Soil microorganisms play a key role in supporting forest ecosystem services, yet their response to changes in aridity remains poorly understood. We present results from a study of 84 forests at four south-to-north Loess Plateau sites to assess how increases in aridity level (1- precipitation/evapotranspiration) shapes soil bacterial and fungal diversity and community stability by influencing community assembly. We showed that soil bacterial diversity underwent a significant downward trend at aridity levels >0.39, while fungal diversity decreased significantly at aridity levels >0.62. In addition, the relative abundance of Actinobacteria and Ascomycota increased with higher aridity level, while the relative abundance of Acidobacteria and Basidiomycota showed the opposite trend. Bacterial communities also exhibited higher similarity-distance decay rates across geographic and environmental gradients than did fungal communities. Phylogenetic bin-based community assembly analysis revealed homogeneous selection and dispersal limitation as the two dominant processes in bacterial and fungal assembly. Dispersal limitation of bacterial communities monotonically increased with aridity levels, whereas homogeneous selection of fungal communities monotonically decreased. Importantly, aridity also increased the sensitivity of microbial communities to environmental disturbance and potentially decreased community stability, as evidenced by greater community similarity-environmental distance decay rates, narrower habitat niche breadth, and lower microbial network stability. Our study provides new insights into soil microbial drought response, with implications on the sustainability of ecosystems under environmental stress.
Collapse
Affiliation(s)
- Xing Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Jia Zeng
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Fang Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Zhengchen Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Hanyu Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Qi Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Weichao Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Wenjie Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Yang Guo
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Yanfeng Niu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Linshan Yuan
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Chengjie Ren
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Gaihe Yang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Zekun Zhong
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Xinhui Han
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
20
|
Li DD, Wang J, Jiang Y, Zhang P, Liu Y, Li YZ, Zhang Z. Quantifying functional redundancy in polysaccharide-degrading prokaryotic communities. MICROBIOME 2024; 12:120. [PMID: 38956705 PMCID: PMC11218364 DOI: 10.1186/s40168-024-01838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Functional redundancy (FR) is widely present, but there is no consensus on its formation process and influencing factors. Taxonomically distinct microorganisms possessing genes for the same function in a community lead to within-community FR, and distinct assemblies of microorganisms in different communities playing the same functional roles are termed between-community FR. We proposed two formulas to respectively quantify the degree of functional redundancy within and between communities and analyzed the FR degrees of carbohydrate degradation functions in global environment samples using the genetic information of glycoside hydrolases (GHs) encoded by prokaryotes. RESULTS Our results revealed that GHs are each encoded by multiple taxonomically distinct prokaryotes within a community, and the enzyme-encoding prokaryotes are further distinct between almost any community pairs. The within- and between-FR degrees are primarily affected by the alpha and beta community diversities, respectively, and are also affected by environmental factors (e.g., pH, temperature, and salinity). The FR degree of the prokaryotic community is determined by deterministic factors. CONCLUSIONS We conclude that the functional redundancy of GHs is a stabilized community characteristic. This study helps to determine the FR formation process and influencing factors and provides new insights into the relationships between prokaryotic community biodiversity and ecosystem functions. Video Abstract.
Collapse
Affiliation(s)
- Dan-Dan Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Jianing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yiru Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Peng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Ya Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
21
|
Jia X, Lin S, Wang Y, Zhang Q, Jia M, Li M, Chen Y, Cheng P, Hong L, Zhang Y, Ye J, Wang H. Recruitment and Aggregation Capacity of Tea Trees to Rhizosphere Soil Characteristic Bacteria Affects the Quality of Tea Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:1686. [PMID: 38931118 PMCID: PMC11207862 DOI: 10.3390/plants13121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
There are obvious differences in quality between different varieties of the same plant, and it is not clear whether they can be effectively distinguished from each other from a bacterial point of view. In this study, 44 tea tree varieties (Camellia sinensis) were used to analyze the rhizosphere soil bacterial community using high-throughput sequencing technology, and five types of machine deep learning were used for modeling to obtain characteristic microorganisms that can effectively differentiate different varieties, and validation was performed. The relationship between characteristic microorganisms, soil nutrient transformation, and tea quality formation was further analyzed. It was found that 44 tea tree varieties were classified into two groups (group A and group B) and the characteristic bacteria that distinguished them came from 23 genera. Secondly, the content of rhizosphere soil available nutrients (available nitrogen, available phosphorus, and available potassium) and tea quality indexes (tea polyphenols, theanine, and caffeine) was significantly higher in group A than in group B. The classification result based on both was consistent with the above bacteria. This study provides a new insight and research methodology into the main reasons for the formation of quality differences among different varieties of the same plant.
Collapse
Affiliation(s)
- Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.); (J.Y.)
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan 364012, China
| | - Yuhua Wang
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.); (J.Y.)
| | - Miao Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.); (J.Y.)
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan 364012, China
| | - Yiling Chen
- College of Life Science, Longyan University, Longyan 364012, China
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan 364012, China
| | - Lei Hong
- College of Life Science, Longyan University, Longyan 364012, China
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.); (J.Y.)
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.); (J.Y.)
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.); (J.Y.)
- College of Life Science, Longyan University, Longyan 364012, China
| |
Collapse
|
22
|
Wang Y, Liao R, Pan H, Wang X, Wan X, Han B, Song C. Comparative metabolic profiling of the mycelium and fermentation broth of Penicillium restrictum from Peucedanum praeruptorum rhizosphere. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13286. [PMID: 38844388 PMCID: PMC11156492 DOI: 10.1111/1758-2229.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/30/2024] [Indexed: 06/10/2024]
Abstract
Microorganisms in the rhizosphere, particularly arbuscular mycorrhiza, have a broad symbiotic relationship with their host plants. One of the major fungi isolated from the rhizosphere of Peucedanum praeruptorum is Penicillium restrictum. The relationship between the metabolites of P. restrictum and the root exudates of P. praeruptorum is being investigated. The accumulation of metabolites in the mycelium and fermentation broth of P. restrictum was analysed over different fermentation periods. Non-targeted metabolomics was used to compare the differences in intracellular and extracellular metabolites over six periods. There were significant differences in the content and types of mycelial metabolites during the incubation. Marmesin, an important intermediate in the biosynthesis of coumarins, was found in the highest amount on the fourth day of incubation. The differential metabolites were screened to obtain 799 intracellular and 468 extracellular differential metabolites. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the highly enriched extracellular metabolic pathways were alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism, and terpenoid backbone biosynthesis. In addition, the enrichment analysis associated with intracellular and extracellular ATP-binding cassette transporter proteins revealed that some ATP-binding cassette transporters may be involved in the transportation of certain amino acids and carbohydrates. Our results provide some theoretical basis for the regulatory mechanisms between the rhizosphere and the host plant and pave the way for the heterologous production of furanocoumarin.
Collapse
Affiliation(s)
- Yuanyuan Wang
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Ranran Liao
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Haoyu Pan
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Xuejun Wang
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Xiaoting Wan
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Bangxing Han
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Cheng Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| |
Collapse
|
23
|
Gholizadeh S, Nemati I, Vestergård M, Barnes CJ, Kudjordjie EN, Nicolaisen M. Harnessing root-soil-microbiota interactions for drought-resilient cereals. Microbiol Res 2024; 283:127698. [PMID: 38537330 DOI: 10.1016/j.micres.2024.127698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/17/2024]
Abstract
Cereal plants form complex networks with their associated microbiome in the soil environment. A complex system including variations of numerous parameters of soil properties and host traits shapes the dynamics of cereal microbiota under drought. These multifaceted interactions can greatly affect carbon and nutrient cycling in soil and offer the potential to increase plant growth and fitness under drought conditions. Despite growing recognition of the importance of plant microbiota to agroecosystem functioning, harnessing the cereal root microbiota remains a significant challenge due to interacting and synergistic effects between root traits, soil properties, agricultural practices, and drought-related features. A better mechanistic understanding of root-soil-microbiota associations could lead to the development of novel strategies to improve cereal production under drought. In this review, we discuss the root-soil-microbiota interactions for improving the soil environment and host fitness under drought and suggest a roadmap for harnessing the benefits of these interactions for drought-resilient cereals. These methods include conservative trait-based approaches for the selection and breeding of plant genetic resources and manipulation of the soil environments.
Collapse
Affiliation(s)
- Somayeh Gholizadeh
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Iman Nemati
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mette Vestergård
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Christopher James Barnes
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Enoch Narh Kudjordjie
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Mogens Nicolaisen
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark.
| |
Collapse
|
24
|
Gao D, Luster J, Zürcher A, Arend M, Bai E, Gessler A, Rigling A, Schaub M, Hartmann M, Werner RA, Joseph J, Poll C, Hagedorn F. Drought resistance and resilience of rhizosphere communities in forest soils from the cellular to ecosystem scale - insights from 13C pulse labeling. THE NEW PHYTOLOGIST 2024; 242:960-974. [PMID: 38402527 DOI: 10.1111/nph.19612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
The link between above- and belowground communities is a key uncertainty in drought and rewetting effects on forest carbon (C) cycle. In young beech model ecosystems and mature naturally dry pine forest exposed to 15-yr-long irrigation, we performed 13C pulse labeling experiments, one during drought and one 2 wk after rewetting, tracing tree assimilates into rhizosphere communities. The 13C pulses applied in tree crowns reached soil microbial communities of the young and mature forests one and 4 d later, respectively. Drought decreased the transfer of labeled assimilates relative to the irrigation treatment. The 13C label in phospholipid fatty acids (PLFAs) indicated greater drought reduction of assimilate incorporation by fungi (-85%) than by gram-positive (-43%) and gram-negative bacteria (-58%). 13C label incorporation was more strongly reduced for PLFAs (cell membrane) than for microbial cytoplasm extracted by chloroform. This suggests that fresh rhizodeposits are predominantly used for osmoregulation or storage under drought, at the expense of new cell formation. Two weeks after rewetting, 13C enrichment in PLFAs was greater in previously dry than in continuously moist soils. Drought and rewetting effects were greater in beech systems than in pine forest. Belowground C allocation and rhizosphere communities are highly resilient to drought.
Collapse
Affiliation(s)
- Decai Gao
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Jörg Luster
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
| | - Alois Zürcher
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
| | - Matthias Arend
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
- Physiological Plant Ecology, University of Basel, 4056, Basel, Switzerland
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
- Terrestrial Ecosystems, ETH Zürich, 8092, Zürich, Switzerland
| | - Andreas Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
- Terrestrial Ecosystems, ETH Zürich, 8092, Zürich, Switzerland
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
| | - Martin Hartmann
- Sustainable Agroecosystems Group, Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, 8092, Zürich, Switzerland
| | - Roland A Werner
- Agricultural Sciences, ETH Zürich, 8092, Zürich, Switzerland
| | - Jobin Joseph
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
| | - Christian Poll
- Soil Biology, University of Hohenheim, 70599, Stuttgart, Germany
| | - Frank Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
| |
Collapse
|
25
|
Vimal SR, Singh JS, Kumar A, Prasad SM. The plant endomicrobiome: Structure and strategies to produce stress resilient future crop. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100236. [PMID: 38756233 PMCID: PMC11097330 DOI: 10.1016/j.crmicr.2024.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Plants have a microbiome, a diverse community of microorganisms, including bacteria, fungi, and viruses, living inside and on their tissues. Versatile endophytic microorganisms inhabited in every plant part without causing disease and develop endophytic microbiome or endo-microbiome. Plant endo-microbiome are drawn by the nutrient rich micro-environment, and in turn some microbes mutualistically endorse and protect plant from adverse environmental stresses. Plant endo-microbiome interact within well-designed host equilibrium containing xylem, phloem, nutrients, phytohormones, metabolites and shift according to environmental and nutritional change. Plant endo-microbiome regulate and respond to environmental variations, pathogens, herbivores by producing stress regulators, organic acids, secondary metabolites, stress hormones as well as unknown substances and signalling molecules. Endomicrobiome efficiently synthesizes multiple bioactive compounds, stress phytohormones with high competence. The technological innovation as next generation genomics biology and high-throughput multiomics techniques stepping stones on the illumination of critical endo-microbiome communities and functional characterization that aid in improving plant physiology, biochemistry and immunity interplay for best crop productivity. This review article contains deeper insight in endomicrobiome related research work in last years, recruitment, niche development, nutrient dynamics, stress removal mechanisms, bioactive services in plant health development, community architecture and communication, and immunity interplay in producing stress resilient future crop.
Collapse
Affiliation(s)
- Shobhit Raj Vimal
- Ranjan Plant Physiology & Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Jay Shankar Singh
- Department of Environmental Microbiology, School for Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, University of Allahabad (A Central University), Prayagraj 211002, Uttar Pradesh, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology & Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| |
Collapse
|
26
|
Yue H, Sun X, Wang T, Zhang A, Han D, Wei G, Song W, Shu D. Host genotype-specific rhizosphere fungus enhances drought resistance in wheat. MICROBIOME 2024; 12:44. [PMID: 38433268 PMCID: PMC10910722 DOI: 10.1186/s40168-024-01770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND The severity and frequency of drought are expected to increase substantially in the coming century and dramatically reduce crop yields. Manipulation of rhizosphere microbiomes is an emerging strategy for mitigating drought stress in agroecosystems. However, little is known about the mechanisms underlying how drought-resistant plant recruitment of specific rhizosphere fungi enhances drought adaptation of drought-sensitive wheats. Here, we investigated microbial community assembly features and functional profiles of rhizosphere microbiomes related to drought-resistant and drought-sensitive wheats by amplicon and shotgun metagenome sequencing techniques. We then established evident linkages between root morphology traits and putative keystone taxa based on microbial inoculation experiments. Furthermore, root RNA sequencing and RT-qPCR were employed to explore the mechanisms how rhizosphere microbes modify plant response traits to drought stresses. RESULTS Our results indicated that host plant signature, plant niche compartment, and planting site jointly contribute to the variation of soil microbiome assembly and functional adaptation, with a relatively greater effect of host plant signature observed for the rhizosphere fungi community. Importantly, drought-resistant wheat (Yunhan 618) possessed more diverse bacterial and fungal taxa than that of the drought-sensitive wheat (Chinese Spring), particularly for specific fungal species. In terms of microbial interkingdom association networks, the drought-resistant variety possessed more complex microbial networks. Metagenomics analyses further suggested that the enriched rhizosphere microbiomes belonging to the drought-resistant cultivar had a higher investment in energy metabolism, particularly in carbon cycling, that shaped their distinctive drought tolerance via the mediation of drought-induced feedback functional pathways. Furthermore, we observed that host plant signature drives the differentiation in the ecological role of the cultivable fungal species Mortierella alpine (M. alpina) and Epicoccum nigrum (E. nigrum). The successful colonization of M. alpina on the root surface enhanced the resistance of wheats in response to drought stresses via activation of drought-responsive genes (e.g., CIPK9 and PP2C30). Notably, we found that lateral roots and root hairs were significantly suppressed by co-colonization of a drought-enriched fungus (M. alpina) and a drought-depleted fungus (E. nigrum). CONCLUSIONS Collectively, our findings revealed host genotypes profoundly influence rhizosphere microbiome assembly and functional adaptation, as well as it provides evidence that drought-resistant plant recruitment of specific rhizosphere fungi enhances drought tolerance of drought-sensitive wheats. These findings significantly underpin our understanding of the complex feedbacks between plants and microbes during drought, and lay a foundation for steering "beneficial keystone biome" to develop more resilient and productive crops under climate change. Video Abstract.
Collapse
Affiliation(s)
- Hong Yue
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuming Sun
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tingting Wang
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ali Zhang
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dejun Han
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gehong Wei
- College of Life Sciences, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| | - Weining Song
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Duntao Shu
- College of Life Sciences, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
27
|
Liu M, Wang C, Zhu B. Independent and combined effects of microplastics pollution and drought on soil bacterial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169749. [PMID: 38160843 DOI: 10.1016/j.scitotenv.2023.169749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Global terrestrial ecosystems are simultaneously threatened by multiple environmental pressures, with microplastics (MPs) pollution and drought possibly being the most pressing, both of which may have unanticipated effects on soil organisms. Here, we investigated the responses of diversity, composition and functions of soil bacterial community to MPs pollution (including two MPs types: polyethylene (PE) and polylactic acid (PLA); two MPs sizes: < 20 μm and <300 μm) and drought in microcosms. We found that only 20 μm PLA MPs significantly decreased soil bacterial diversity by 17.4 % and altered soil bacterial community composition, while PE MPs and 300 μm PLA MPs had no significant effects. The copiotrophic bacteria (i.e., Proteobacteria and Firmicutes) were enriched in the 20 μm PLA MPs pollution soils due to the enhanced dissolved organic carbon contents. Moreover, our results showed that the 20 μm PLA MPs also affected the potential phenotypes and functions of soil bacterial community, increasing the potentially pathogenic, stress-tolerant, containing mobile elements and forming biofilms phenotypes, and promoting membrane transport and signal transduction pathways. These results suggested that the effects of MPs on soil bacterial community varied depending on MPs types and sizes. However, drought significantly increased soil bacterial diversity by 10.3 % and affected soil bacterial community composition in the 20 μm PLA MPs pollution soils. We also found that drought inhibited the levels of potentially pathogenic, containing mobile elements and forming biofilms phenotypes in the 20 μm PLA MPs pollution soils. Taken together, these findings reveal that drought may alleviate the adverse effects of MPs pollution on soil bacterial community, which enhances our understanding of the interactive effects of multiple global change factors on agroecosystem functions.
Collapse
Affiliation(s)
- Mengli Liu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Chong Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China.
| |
Collapse
|
28
|
Fu Q, Qiu Y, Zhao J, Li J, Xie S, Liao Q, Fu X, Huang Y, Yao Z, Dai Z, Qiu Y, Yang Y, Li F, Chen H. Monotonic trends of soil microbiomes, metagenomic and metabolomic functioning across ecosystems along water gradients in the Altai region, northwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169351. [PMID: 38123079 DOI: 10.1016/j.scitotenv.2023.169351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
To investigate microbial communities and their contributions to carbon and nutrient cycling along water gradients can enhance our comprehension of climate change impacts on ecosystem services. Thus, we conducted an assessment of microbial communities, metagenomic functions, and metabolomic profiles within four ecosystems, i.e., desert grassland (DG), shrub-steppe (SS), forest (FO), and marsh (MA) in the Altai region of Xinjiang, China. Our results showed that soil total carbon (TC), total nitrogen, NH4+, and NO3- increased, but pH decreased with soil water gradients. Microbial abundances and richness also increased with soil moisture except the abundances of fungi and protists being lowest in MA. A shift in microbial community composition is evident along the soil moisture gradient, with Proteobacteria, Basidiomycota, and Evosea proliferating but a decline in Actinobacteria and Cercozoa. The β-diversity of microbiomes, metagenomic, and metabolomic functioning were correlated with soil moisture gradients and have significant associations with specific soil factors of TC, NH4+, and pH. Metagenomic functions associated with carbohydrate and DNA metabolisms, as well as phages, prophages, TE, plasmids functions diminished with moisture, whereas the genes involved in nitrogen and potassium metabolism, along with certain biological interactions and environmental information processing functions, demonstrated an augmentation. Additionally, MA harbored the most abundant metabolomics dominated by lipids and lipid-like molecules and organic oxygen compounds, except certain metabolites showing decline trends along water gradients, such as N'-Hydroxymethylnorcotinine and 5-Hydroxyenterolactone. Thus, our study suggests that future ecosystem succession facilitated by changes in rainfall patterns will significantly alter soil microbial taxa, functional potential, and metabolite fractions.
Collapse
Affiliation(s)
- Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yingbo Qiu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaxin Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Siqi Xie
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Qiuchang Liao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yu Huang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Furong Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
29
|
Ranheim Sveen T, Hannula SE, Bahram M. Microbial regulation of feedbacks to ecosystem change. Trends Microbiol 2024; 32:68-78. [PMID: 37500365 DOI: 10.1016/j.tim.2023.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023]
Abstract
Microbes are key biodiversity components of all ecosystems and control vital ecosystem functions. Although we have just begun to unravel the scales and factors that regulate microbial communities, their role in mediating ecosystem stability in response to disturbances remains underexplored. Here, we review evidence of how, when, and where microbes regulate or drive disturbance feedbacks. Negative feedbacks dampen the impacts of disturbance, which maintain ecosystem stability, whereas positive feedbacks instead erode stability by amplifying the disturbance. Here we describe the processes underlying the responses to disturbance using a hierarchy of functional traits, and we exemplify how these may drive biogeochemical feedbacks. We suggest that the feedback potential of functional traits at different hierarchical levels is contingent on the complexity and heterogeneity of the environment.
Collapse
Affiliation(s)
- T Ranheim Sveen
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51 Uppsala, Sweden.
| | - S E Hannula
- Institute of Environmental Sciences, Leiden University, Leiden 2333, The Netherlands
| | - M Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51 Uppsala, Sweden; Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
30
|
Hao Z, Wang Q, Wang J, Deng Y, Yan Z, Tian L, Jiang H. Water Level Fluctuations Modulate the Microbiomes Involved in Biogeochemical Cycling in Floodplains. MICROBIAL ECOLOGY 2023; 87:24. [PMID: 38159125 DOI: 10.1007/s00248-023-02331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Drastic changes in hydrological conditions within floodplain ecosystems create distinct microbial habitats. However, there remains a lack of exploration regarding the variations in microbial function potentials across the flooding and drought seasons. In this study, metagenomics and environmental analyses were employed in floodplains that experience hydrological variations across four seasons. Analysis of functional gene composition, encompassing nitrogen, carbon, and sulfur metabolisms, revealed apparent differences between the flooding and drought seasons. The primary environmental drivers identified were water level, overlying water depth, submergence time, and temperature. Specific modules, e.g., the hydrolysis of β-1,4-glucosidic bond, denitrification, and dissimilatory/assimilatory nitrate reduction to ammonium, exhibited higher relative abundance in summer compared to winter. It is suggested that cellulose degradation was potentially coupled with nitrate reduction during the flooding season. Phylogenomic analysis of metagenome-assembled genomes (MAGs) unveiled that the Desulfobacterota lineage possessed abundant nitrogen metabolism genes supported by pathway reconstruction. Variation of relative abundance implied its environmental adaptability to both the wet and dry seasons. Furthermore, a novel order was found within Methylomirabilota, containing nitrogen reduction genes in the MAG. Overall, this study highlights the crucial role of hydrological factors in modulating microbial functional diversity and generating genomes with abundant nitrogen metabolism potentials.
Collapse
Affiliation(s)
- Zheng Hao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qianhong Wang
- Changjiang Nanjing Waterway Engineering Bureau, Nanjing, 210011, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zaisheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Linqi Tian
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| |
Collapse
|
31
|
Cordero I, Leizeaga A, Hicks LC, Rousk J, Bardgett RD. High intensity perturbations induce an abrupt shift in soil microbial state. THE ISME JOURNAL 2023; 17:2190-2199. [PMID: 37814127 PMCID: PMC10690886 DOI: 10.1038/s41396-023-01512-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 10/11/2023]
Abstract
Soil microbial communities play a pivotal role in regulating ecosystem functioning. But they are increasingly being shaped by human-induced environmental change, including intense "pulse" perturbations, such as droughts, which are predicted to increase in frequency and intensity with climate change. While it is known that soil microbial communities are sensitive to such perturbations and that effects can be long-lasting, it remains untested whether there is a threshold in the intensity and frequency of perturbations that can trigger abrupt and persistent transitions in the taxonomic and functional characteristics of soil microbial communities. Here we demonstrate experimentally that intense pulses of drought equivalent to a 30-year drought event (<15% WHC) induce a major shift in the soil microbial community characterised by significantly altered bacterial and fungal community structures of reduced complexity and functionality. Moreover, the characteristics of this transformed microbial community persisted after returning soil to its previous moisture status. As a result, we found that drought had a strong legacy effect on bacterial community function, inducing an enhanced growth rate following subsequent drought. Abrupt transitions are widely documented in aquatic and terrestrial plant communities in response to human-induced perturbations. Our findings demonstrate that such transitions also occur in soil microbial communities in response to high intensity pulse perturbations, with potentially deleterious consequences for soil health.
Collapse
Affiliation(s)
- Irene Cordero
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
- Department of Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland.
| | - Ainara Leizeaga
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
- Department of Biology, Lund University, Lund, Sweden
| | | | | | - Richard D Bardgett
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
32
|
Liu L, Guan J, Zheng J, Wang Y, Han W, Liu Y. Cumulative effects of drought have an impact on net primary productivity stability in Central Asian grasslands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118734. [PMID: 37572401 DOI: 10.1016/j.jenvman.2023.118734] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
Global warming has exacerbated the threat of drought in Central Asia, amplifying its ecological implications within the region's grassland ecosystems. This has become an increasingly prominent issue that requires attention and action. The temporal link between grassland development and drought is asymmetric. However, a quantitative assessment of the temporal effects of multiscale drought on Central Asian grasslands has yet to be explored. Based on correlation analysis and the coefficient of variation method, this study analysed the cumulative and lag effects of multitimescale drought on grassland NPP (net primary productivity) under different climatic zones, altitudes and water availabilities in Central Asia from 1982 to 2018, and discussed the impact of temporal effects on grassland NPP stability. Our results on the cumulative effects of drought on grasslands indicate the 6.72 months preceding NPP measurement was the duration for which, on average, drought was most strongly correlated with NPP. Additionally, we found a mean lagged effect of 5.36 months, meaning that the monthly drought 5.36 months prior to NPP measurement was, on average, most strongly correlated with NPP. The degree to which grassland NPP was affected by cumulative drought at a given level of water availability was inversely proportional to the number of cumulative drought months. Under different water availabilities, the lagged effect of grassland NPP was stronger in dry areas than in wet areas, and the number of lag months tended to decrease and then increase as the water availability increased. The percentage of areas where grassland NPP was dominated by the cumulative and lagging effects of drought was 30.02% and 69.98%, respectively. The stability of grassland NPP was adversely affected by the drought accumulation effect. The findings of this study contribute to a deeper understanding of the long-term effects of drought on grassland ecosystems. Additionally, it will aid in the development of strategies for mitigating and adapting to drought events, thereby minimizing their negative impacts on agriculture, livestock, and ecosystems.
Collapse
Affiliation(s)
- Liang Liu
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi, 830046, China
| | - Jingyun Guan
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi, 830046, China; College of Tourism, Xinjiang University of Finance & Economics, Urumqi, 830012, China
| | - Jianghua Zheng
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi, 830046, China; Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China.
| | - Yongdong Wang
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi, 830046, China
| | - Wanqiang Han
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi, 830046, China
| | - Yujia Liu
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
33
|
Bei Q, Reitz T, Schnabel B, Eisenhauer N, Schädler M, Buscot F, Heintz-Buschart A. Extreme summers impact cropland and grassland soil microbiomes. THE ISME JOURNAL 2023; 17:1589-1600. [PMID: 37419993 PMCID: PMC10504347 DOI: 10.1038/s41396-023-01470-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
The increasing frequency of extreme weather events highlights the need to understand how soil microbiomes respond to such disturbances. Here, metagenomics was used to investigate the effects of future climate scenarios (+0.6 °C warming and altered precipitation) on soil microbiomes during the summers of 2014-2019. Unexpectedly, Central Europe experienced extreme heatwaves and droughts during 2018-2019, causing significant impacts on the structure, assembly, and function of soil microbiomes. Specifically, the relative abundance of Actinobacteria (bacteria), Eurotiales (fungi), and Vilmaviridae (viruses) was significantly increased in both cropland and grassland. The contribution of homogeneous selection to bacterial community assembly increased significantly from 40.0% in normal summers to 51.9% in extreme summers. Moreover, genes associated with microbial antioxidant (Ni-SOD), cell wall biosynthesis (glmSMU, murABCDEF), heat shock proteins (GroES/GroEL, Hsp40), and sporulation (spoIID, spoVK) were identified as potential contributors to drought-enriched taxa, and their expressions were confirmed by metatranscriptomics in 2022. The impact of extreme summers was further evident in the taxonomic profiles of 721 recovered metagenome-assembled genomes (MAGs). Annotation of contigs and MAGs suggested that Actinobacteria may have a competitive advantage in extreme summers due to the biosynthesis of geosmin and 2-methylisoborneol. Future climate scenarios caused a similar pattern of changes in microbial communities as extreme summers, but to a much lesser extent. Soil microbiomes in grassland showed greater resilience to climate change than those in cropland. Overall, this study provides a comprehensive framework for understanding the response of soil microbiomes to extreme summers.
Collapse
Affiliation(s)
- Qicheng Bei
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany.
| | - Thomas Reitz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Beatrix Schnabel
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Anna Heintz-Buschart
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Metze D, Schnecker J, Canarini A, Fuchslueger L, Koch BJ, Stone BW, Hungate BA, Hausmann B, Schmidt H, Schaumberger A, Bahn M, Kaiser C, Richter A. Microbial growth under drought is confined to distinct taxa and modified by potential future climate conditions. Nat Commun 2023; 14:5895. [PMID: 37736743 PMCID: PMC10516970 DOI: 10.1038/s41467-023-41524-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Climate change increases the frequency and intensity of drought events, affecting soil functions including carbon sequestration and nutrient cycling, which are driven by growing microorganisms. Yet we know little about microbial responses to drought due to methodological limitations. Here, we estimate microbial growth rates in montane grassland soils exposed to ambient conditions, drought, and potential future climate conditions (i.e., soils exposed to 6 years of elevated temperatures and elevated CO2 levels). For this purpose, we combined 18O-water vapor equilibration with quantitative stable isotope probing (termed 'vapor-qSIP') to measure taxon-specific microbial growth in dry soils. In our experiments, drought caused >90% of bacterial and archaeal taxa to stop dividing and reduced the growth rates of persisting ones. Under drought, growing taxa accounted for only 4% of the total community as compared to 35% in the controls. Drought-tolerant communities were dominated by specialized members of the Actinobacteriota, particularly the genus Streptomyces. Six years of pre-exposure to future climate conditions (3 °C warming and + 300 ppm atmospheric CO2) alleviated drought effects on microbial growth, through more drought-tolerant taxa across major phyla, accounting for 9% of the total community. Our results provide insights into the response of active microbes to drought today and in a future climate, and highlight the importance of studying drought in combination with future climate conditions to capture interactive effects and improve predictions of future soil-climate feedbacks.
Collapse
Affiliation(s)
- Dennis Metze
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria.
| | - Jörg Schnecker
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alberto Canarini
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Lucia Fuchslueger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Benjamin J Koch
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Bram W Stone
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Hannes Schmidt
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Andreas Schaumberger
- Agricultural Research and Education Centre Raumberg-Gumpenstein, Irdning, Austria
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- International Institute for Applied Systems Analysis, Advancing Systems Analysis Program, Laxenburg, Austria.
| |
Collapse
|
35
|
Qu Q, Wang Z, Gan Q, Liu R, Xu H. Impact of drought on soil microbial biomass and extracellular enzyme activity. FRONTIERS IN PLANT SCIENCE 2023; 14:1221288. [PMID: 37692424 PMCID: PMC10491016 DOI: 10.3389/fpls.2023.1221288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
Introduction With the continuous changes in climate patterns due to global warming, drought has become an important limiting factor in the development of terrestrial ecosystems. However, a comprehensive understanding of the impact of drought on soil microbial activity at a global scale is lacking. Methods In this study, we aimed to examine the effects of drought on soil microbial biomass (carbon [MBC], nitrogen [MBN], and phosphorus [MBP]) and enzyme activity (β-1, 4-glucosidase [BG]; β-D-cellobiosidase [CBH]; β-1, 4-N-acetylglucosaminidase [NAG]; L-leucine aminopeptidase [LAP]; and acid phosphatase [AP]). Additionally, we conducted a meta-analysis to determine the degree to which these effects are regulated by vegetation type, drought intensity, drought duration, and mean annual temperature (MAT). Result and discussion Our results showed that drought significantly decreased the MBC, MBN, and MBP and the activity levels of BG and AP by 22.7%, 21.2%, 21.6%, 26.8%, and 16.1%, respectively. In terms of vegetation type, drought mainly affected the MBC and MBN in croplands and grasslands. Furthermore, the response ratio of BG, CBH, NAG, and LAP were negatively correlated with drought intensity, whereas MBN and MBP and the activity levels of BG and CBH were negatively correlated with drought duration. Additionally, the response ratio of BG and NAG were negatively correlated with MAT. In conclusion, drought significantly reduced soil microbial biomass and enzyme activity on a global scale. Our results highlight the strong impact of drought on soil microbial biomass and carbon- and phosphorus-acquiring enzyme activity.
Collapse
Affiliation(s)
- Qing Qu
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Zhen Wang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, China
| | - Quan Gan
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Rentao Liu
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, China
| | - Hongwei Xu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
36
|
Wang J, Wang C, Wu X, Zhang J, Zhao G, Hou Y, Sun H. Effects of moderate drought extension on bacterial network structure in the rhizosphere soil of Leymus chinensis in semi-arid grasslands. Front Microbiol 2023; 14:1217557. [PMID: 37637130 PMCID: PMC10448527 DOI: 10.3389/fmicb.2023.1217557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Grasslands are home to complex bacterial communities whose dynamic interactions play a crucial role in organic matter and nutrient cycling. However, there is limited understanding regarding the impact of changes in rainfall amount and the duration of dry intervals on bacterial interactions. Methods To assess the impact of changes in precipitation volume and dry intervals on bacterial co-occurrence networks, we carried out precipitation manipulation experiments in the Eastern Eurasian Steppe of China. Results and Discussion We found that alterations in precipitation and dry intervals did not significantly affect bacterial alpha and beta diversity. However, we observed significant changes in the co-occurrence network structure of bacteria in the rhizosphere ecosystem, with the 12-day dry interval showing the most notable reduction in the number of degrees, edges, and clustering coefficient. Additionally, the study identified putative keystone taxa and observed that the moderately prolonged dry intervals between precipitation events had a major effect on the robustness of bacterial networks. The complexity and stability of the network were found to be positively correlated, and were primarily influenced by soil water content, phosphorous, and aboveground biomass, followed by available phosphorus (AP) and total biomass. These findings have the potential to enhance our comprehension of how bacterial co-occurrence pattern react to variations in dry intervals, by regulating their interactions in water-limited ecosystems. This, in turn, could aid in predicting the impact of precipitation regime alterations on ecosystem nutrient cycling, as well as the feedback between ecosystem processes and global climate change.
Collapse
Affiliation(s)
- Jinlong Wang
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin, China
| | - Chunjuan Wang
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin, China
| | - Xuefeng Wu
- Chongqing Institute of Quality and Standardization, Chongqing, China
| | - Jinwei Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guiyun Zhao
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin, China
| | - Yu Hou
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin, China
| | - Haiming Sun
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin, China
| |
Collapse
|
37
|
Yang R, Yang Z, Yang S, Chen LL, Xin J, Xu L, Zhang X, Zhai B, Wang Z, Zheng W, Li Z. Nitrogen inhibitors improve soil ecosystem multifunctionality by enhancing soil quality and alleviating microbial nitrogen limitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163238. [PMID: 37011677 DOI: 10.1016/j.scitotenv.2023.163238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/27/2023]
Abstract
Soil quality (SQI) is a comprehensive indicator reflecting the agricultural productivity of soil, and soil ecosystem multifunctionality (performing multiple functions simultaneously; EMF) can reflect complex biogeochemical processes. However, the effects of enhanced efficiency nitrogen fertilizers (EENFs; urease inhibitors (NBPT), nitrification inhibitors (DCD), and coated controlled-release urea (RCN)) application on the SQI and soil EMF and their relationships are still unclear. Therefore, we conducted a field experiment to study the effects of different EENFs on the SQI, enzyme stoichiometry and soil EMF in semiarid areas of Northwest China (Gansu, Ningxia, Shaanxi, Shanxi). Across the four study sites, DCD and NBPT increased SQI by 7.61-16.80 % and 2.61 %-23.20 % compared to mineral fertilizer, respectively. N fertilizer application (N200 and EENFs) alleviated microbial N limitation, and EENFs alleviated microbial N and C limitations to a greater extent in Gansu and Shanxi. Moreover, nitrogen inhibitors (Nis; DCD and NBPT) improved the soil EMF to a greater extent than N200 and RCN, DCD increased by 205.82-340.00 % and 145.00-215.47 % in Gansu and Shanxi, respectively; NBPT increased by 332.75-778.59 % and 364.44-929.62 % in Ningxia and Shanxi, respectively. A random forest model showed that the microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and soil water content (SWC) of the SQI factors were the main driving forces of soil EMF. Moreover, SQI improvement could alleviate microbial C and N limitations and promote the improvement of soil EMF. It is worth noting that soil EMF was mainly affected by microbial N limitation rather than C limitation. Overall, NIs application is an effective way to improve the SQI and soil EMF in the semiarid region of Northwest China.
Collapse
Affiliation(s)
- Ruizhe Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Ze Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Shilong Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lan-Lan Chen
- College of Resources and Environmental Sciences, Gansu Agricultural University/Gansu Provincial Key Laboratory of Arid-land Crop Science, Lanzhou 730070, PR China
| | - Jia Xin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Changshu National Agro-Ecosystem Observation and Research Station, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Lingying Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Changshu National Agro-Ecosystem Observation and Research Station, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xuechen Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Bingnian Zhai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Zhaohui Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Wei Zheng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Ziyan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
38
|
Xie P, Huang K, Deng A, Mo P, Xiao F, Wu F, Xiao D, Wang Y. The diversity and abundance of bacterial and fungal communities in the rhizosphere of Cathaya argyrophylla are affected by soil physicochemical properties. Front Microbiol 2023; 14:1111087. [PMID: 37378294 PMCID: PMC10292655 DOI: 10.3389/fmicb.2023.1111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Cathaya argyrophylla is an ancient Pinaceae species endemic to China that is listed on the IUCN Red List. Although C. argyrophylla is an ectomycorrhizal plant, the relationship between its rhizospheric soil microbial community and soil properties related to the natural habitat remains unknown. High-throughput sequencing of bacterial 16S rRNA genes and fungal ITS region sequences was used to survey the C. argyrophylla soil community at four natural spatially distributed points in Hunan Province, China, and functional profiles were predicted using PICRUSt2 and FUNGuild. The dominant bacterial phyla included Proteobacteria, Acidobacteria, Actinobacteria, and Chloroflexi, and the dominant genus was Acidothermus. The dominant fungal phyla were Basidiomycota and Ascomycota, while Russula was the dominant genus. Soil properties were the main factors leading to changes in rhizosphere soil bacterial and fungal communities, with nitrogen being the main driver of changes in soil microbial communities. The metabolic capacities of the microbial communities were predicted to identify differences in their functional profiles, including amino acid transport and metabolism, energy production and conversion, and the presence of fungi, including saprotrophs and symbiotrophs. These findings illuminate the soil microbial ecology of C. argyrophylla, and provide a scientific basis for screening rhizosphere microorganisms that are suitable for vegetation restoration and reconstruction for this important threatened species.
Collapse
Affiliation(s)
- Peng Xie
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- College of Agriculture, Forestry and Technology, Hunan Applied Technology University, Changde, Hunan, China
| | - Kerui Huang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Aihua Deng
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Ping Mo
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Fen Xiao
- Central South University of Forestry and Technology Changsha, Hunan, China
| | - Fei Wu
- Qingjie Mountain State Forest Farm, Chengbu, Hunan, China
| | - Dewei Xiao
- Chukou State-Owned Forest Farm, Zixing, Hunan, China
| | - Yun Wang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| |
Collapse
|
39
|
Zhou L, Wang S. The bright side of ecological stressors. Trends Ecol Evol 2023; 38:568-578. [PMID: 36906435 DOI: 10.1016/j.tree.2023.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 03/12/2023]
Abstract
Ecological stressors are considered to negatively affect biological systems; however, corresponding responses to stressors can be complex, depending on the ecological functions and the number and duration of the stressors. Mounting evidence indicates potential benefits of stressors. Here, we develop an integrative framework to understand stressor-induced benefits by clarifying three categories of mechanisms: seesaw effects, cross-tolerance, and memory effects. These mechanisms operate across various organizational levels (e.g., individual, population, community) and can be extended to an evolutionary context. One remaining challenge is to develop scaling approaches for linking stressor-induced benefits across organizational levels. Our framework provides a novel platform for predicting the consequences of global environmental changes and informing management strategies in conservation and restoration practices.
Collapse
Affiliation(s)
- Libin Zhou
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Shaopeng Wang
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China.
| |
Collapse
|
40
|
Hereira-Pacheco SE, Estrada-Torres A, Dendooven L, Navarro-Noya YE. Shifts in root-associated fungal communities under drought conditions in Ricinus communis. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2023.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
41
|
Allsup CM, George I, Lankau RA. Shifting microbial communities can enhance tree tolerance to changing climates. Science 2023; 380:835-840. [PMID: 37228219 DOI: 10.1126/science.adf2027] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
Climate change is pushing species outside of their evolved tolerances. Plant populations must acclimate, adapt, or migrate to avoid extinction. However, because plants associate with diverse microbial communities that shape their phenotypes, shifts in microbial associations may provide an alternative source of climate tolerance. Here, we show that tree seedlings inoculated with microbial communities sourced from drier, warmer, or colder sites displayed higher survival when faced with drought, heat, or cold stress, respectively. Microbially mediated drought tolerance was associated with increased diversity of arbuscular mycorrhizal fungi, whereas cold tolerance was associated with lower fungal richness, likely reflecting a reduced burden of nonadapted fungal taxa. Understanding microbially mediated climate tolerance may enhance our ability to predict and manage the adaptability of forest ecosystems to changing climates.
Collapse
Affiliation(s)
- Cassandra M Allsup
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Isabelle George
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Lankau
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
42
|
Zeng J, Li Y, Dai Y, Zhu Q, Wu Y, Lin X. Soil drying legacy does not affect phenanthrene fate in soil but modifies bacterial community response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121909. [PMID: 37245790 DOI: 10.1016/j.envpol.2023.121909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Alteration of the structure of soil microbial communities following the elimination of hydrophobic organic pollutants (e.g., polycyclic aromatic hydrocarbons, PAHs) is generally assessed using DNA-based techniques, and soil is often required to dry prior to pollutant addition, to facilitate a better mix when establishing microcosms. However, the drying practice may have a legacy effect on soil microbial community structure, which would in turn influence the biodegradation process. Here, we used 14C-labeled phenanthrene to examine the potential side effects of precedent short-term drought events. The results indicate that the drying practice had legacy effects on soil microbial community structure, illustrated by irreversible shifts in the communities. The legacy effects had no significant impact on phenanthrene mineralization and non-extractable residue formation. However, they altered the response of bacterial communities to PAH degradation, leading to a decrease in the abundance of potential PAH degradation genes plausibly attributed to moderately abundant taxa. Based on a comparison of the varied effects of different drying intensity levels, an accurate description of microbial responses to phenanthrene degradation strongly relies on the establishment of stable microbial communities before PAH amendment. Concurrent alterations in the communities resulting from environmental perturbation could greatly mask minor alterations from the degradation of recalcitrant hydrophobic PAH. In practice, to minimize the legacy effects, a soil equilibration step with a reduced drying intensity is indispensable.
Collapse
Affiliation(s)
- Jun Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, China
| | - Yanjie Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, China
| | - Yeliang Dai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, China
| | - Qinghe Zhu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Yucheng Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, China
| | - Xiangui Lin
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, China.
| |
Collapse
|
43
|
Xiong X, Li Y, Zhang C, Zhou X. Water quality improvement and consequent N 2O emission reduction in hypoxic freshwater utilizing green oxygen-carrying biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162251. [PMID: 36796685 DOI: 10.1016/j.scitotenv.2023.162251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Declines in dissolved oxygen (DO) levels in aquatic systems worldwide negatively influence biodiversity, nutrient biogeochemistry, drinking water quality, and greenhouse gas emission. As a response, oxygen-carrying dual-modified sediment-based biochar (O-DM-SBC) as a green and sustainable emerging material was utilized for simultaneous hypoxia restoration, water quality improvement, and greenhouse gas reduction. Column incubation experiments were carried out using the water and sediment samples from a tributary of the Yangtze River. The application of O-DM-SBC effectively increased the DO concentration from ~1.99 mg/L to ~6.44 mg/L and decreased the concentrations of TN and NH4+-N by 61.1 % and 78.3 %, respectively, during the 30-day incubation period. Moreover, the N2O emission was apparently inhibited by O-DM-SBC with a 50.2 % decrease in daily flux under the functional coupling of biochar (SBC) and oxygen nanobubbles (ONBs). Path analysis supported that the treatments (SBC, modification, and ONBs) had joint effects on N2O emission by changing the concentration and composition of dissolved inorganic nitrogen (e.g., NH4+-N, NO2--N and NO3--N). The nitrogen-transforming bacteria were found to be significantly promoted by O-DM-SBC at the end of the incubation, while the archaeal community seemed to be more active in the SBC groups without ONB, confirming their different mechanisms. The PICRUSt2 prediction results revealed that most nitrogen metabolism genes including nitrification (i.e., amoABC), denitrification (i.e., nirK and nosZ), and assimilatory nitrate reduction (i.e., nirB and gdhA) were largely enriched in O-DM-SBC, indicating the active nitrogen-cycling network was established, thus achieving simultaneous nitrogen pollution control and N2O emission reduction. Our findings not only confirm the beneficial effect of O-DM-SBC amendment on nitrogen pollution control and N2O emission mitigation in hypoxic freshwater, but also contribute to a more comprehensive understanding of the effect of oxygen-carrying biochar on nitrogen cycling microbial communities.
Collapse
Affiliation(s)
- Xinyan Xiong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing 210098, PR China.
| | - Xinyi Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
44
|
Singavarapu B, Du J, Beugnon R, Cesarz S, Eisenhauer N, Xue K, Wang Y, Bruelheide H, Wubet T. Functional Potential of Soil Microbial Communities and Their Subcommunities Varies with Tree Mycorrhizal Type and Tree Diversity. Microbiol Spectr 2023; 11:e0457822. [PMID: 36951585 PMCID: PMC10111882 DOI: 10.1128/spectrum.04578-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/11/2023] [Indexed: 03/24/2023] Open
Abstract
Soil microbial communities play crucial roles in the earth's biogeochemical cycles. Yet, their genomic potential for nutrient cycling in association with tree mycorrhizal type and tree-tree interactions remained unclear, especially in diverse tree communities. Here, we studied the genomic potential of soil fungi and bacteria with arbuscular (AM) and ectomycorrhizal (EcM) conspecific tree species pairs (TSPs) at three tree diversity levels in a subtropical tree diversity experiment (BEF-China). The soil fungi and bacteria of the TSPs' interaction zone were characterized by amplicon sequencing, and their subcommunities were determined using a microbial interkingdom co-occurrence network approach. Their potential genomic functions were predicted with regard to the three major nutrients carbon (C), nitrogen (N), and phosphorus (P) and their combinations. We found the microbial subcommunities that were significantly responding to different soil characteristics. The tree mycorrhizal type significantly influenced the functional composition of these co-occurring subcommunities in monospecific stands and two-tree-species mixtures but not in mixtures with more than three tree species (here multi-tree-species mixtures). Differentiation of subcommunities was driven by differentially abundant taxa producing different sets of nutrient cycling enzymes across the tree diversity levels, predominantly enzymes of the P (n = 11 and 16) cycles, followed by the N (n = 9) and C (n = 9) cycles, in monospecific stands and two-tree-species mixtures, respectively. Fungi of the Agaricomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes and bacteria of the Verrucomicrobia, Acidobacteria, Alphaproteobacteria, and Actinobacteria were the major differential contributors (48% to 62%) to the nutrient cycling functional abundances of soil microbial communities across tree diversity levels. Our study demonstrated the versatility and significance of microbial subcommunities in different soil nutrient cycling processes of forest ecosystems. IMPORTANCE Loss of multifunctional microbial communities can negatively affect ecosystem services, especially forest soil nutrient cycling. Therefore, exploration of the genomic potential of soil microbial communities, particularly their constituting subcommunities and taxa for nutrient cycling, is vital to get an in-depth mechanistic understanding for better management of forest soil ecosystems. This study revealed soil microbes with rich nutrient cycling potential, organized in subcommunities that are functionally resilient and abundant. Such microbial communities mainly found in multi-tree-species mixtures associated with different mycorrhizal partners can foster soil microbiome stability. A stable and functionally rich soil microbiome is involved in the cycling of nutrients, such as carbon, nitrogen, and phosphorus, and their combinations could have positive effects on ecosystem functioning, including increased forest productivity. The new findings could be highly relevant for afforestation and reforestation regimes, notably in the face of growing deforestation and global warming scenarios.
Collapse
Affiliation(s)
- Bala Singavarapu
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Jianqing Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Leipzig Institute for Meteorology, Universität Leipzig, Leipzig, Germany
- CEFE, Université Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Kai Xue
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Chinese Academy of Sciences, Beijing, China
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Tesfaye Wubet
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| |
Collapse
|
45
|
de Vries F, Lau J, Hawkes C, Semchenko M. Plant-soil feedback under drought: does history shape the future? Trends Ecol Evol 2023:S0169-5347(23)00054-X. [PMID: 36973124 DOI: 10.1016/j.tree.2023.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023]
Abstract
Plant-soil feedback (PSF) is widely recognised as a driver of plant community composition, but understanding of its response to drought remains in its infancy. Here, we provide a conceptual framework for the role of drought in PSF, considering plant traits, drought severity, and historical precipitation over ecological and evolutionary timescales. Comparing experimental studies where plants and microbes do or do not share a drought history (through co-sourcing or conditioning), we hypothesise that plants and microbes with a shared drought history experience more positive PSF under subsequent drought. To reflect real-world responses to drought, future studies need to explicitly include plant-microbial co-occurrence and potential co-adaptation and consider the precipitation history experienced by both plants and microbes.
Collapse
Affiliation(s)
- Franciska de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jennifer Lau
- Department of Biology and Environmental Resilience Institute, Indiana University, IN, USA
| | - Christine Hawkes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
46
|
Allison SD. Microbial drought resistance may destabilize soil carbon. Trends Microbiol 2023:S0966-842X(23)00078-1. [PMID: 37059647 DOI: 10.1016/j.tim.2023.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 04/16/2023]
Abstract
Droughts are becoming more frequent and intense with climate change. As plants and microbes respond to drought, there may be consequences for the vast stocks of organic carbon stored in soils. If microbes sustain their activity under drought, soils could lose carbon, especially if inputs from plants decline. Empirical and theoretical studies reveal multiple mechanisms of microbial drought resistance, including tolerance and avoidance. Physiological responses allow microbes to acclimate to drought within minutes to days. Along with dispersal, shifts in community composition could allow microbiomes to maintain functioning despite drought. Microbes might also adapt to drier conditions through evolutionary processes. Together, these mechanisms could result in soil carbon losses larger than currently anticipated under climate change.
Collapse
Affiliation(s)
- Steven D Allison
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA; Department of Earth System Science, University of California, Irvine, CA, USA.
| |
Collapse
|
47
|
Ma X, Li Y, Niu L, Shang J, Yang N. Microbial community structure and denitrification responses to cascade low-head dams and their contribution to eutrophication in urban rivers. ENVIRONMENTAL RESEARCH 2023; 221:115242. [PMID: 36634891 DOI: 10.1016/j.envres.2023.115242] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Low-head dams are one of the most common hydraulic facilities, yet they often fragment rivers, leading to profound changes in aquatic biodiversity and river eutrophication levels. Systematic assessments of river ecosystem structure and functions, and their contribution to eutrophication, are however lacking, especially for urban rivers where low-head dams prevail. In this study, we address this gap with a field survey on microbial community structure and ecosystem function, in combination with hydrological, environmental and ecological factors. Our findings revealed that microbial communities showed significant differences among the cascade impoundments, which may be due to the environment heterogeneity resulting from the cascade low-head dams. The alternating lentic-lotic flow environment created by the low-head dams caused nutrient accumulation in the cascade impoundments, enhancing environmental sorting and interspecific competition relationships, and thus possibly contributing to the reduction in sediment denitrification function. Decreased denitrification led to excessive accumulation of nutrients, which may have aggravated river eutrophication. In addition, structural equation model analysis showed that flow velocity may be the key controlling factor for river eutrophication. Therefore, in the construction of river flood control and water storage systems, the location, type and water storage capacity of low-head dams should be fully considered to optimize the hydrodynamic conditions of rivers. To summarize, our findings revealed the cumulative effects of cascade low-head dams in an urban river, and provided new insights into the trade-off between construction and decommissioning of low-head dams in urban river systems.
Collapse
Affiliation(s)
- Xin Ma
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, PR China; Research Institute of Mulan Ecological River, Putian, 351100, PR China
| | - Yi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, PR China; Research Institute of Mulan Ecological River, Putian, 351100, PR China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Research Institute of Mulan Ecological River, Putian, 351100, PR China.
| | - Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Nan Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
48
|
Wan Q, Li L, Liu B, Zhang Z, Liu Y, Xie M. Different and unified responses of soil bacterial and fungal community composition and predicted functional potential to 3 years’ drought stress in a semiarid alpine grassland. Front Microbiol 2023; 14:1104944. [PMID: 37082184 PMCID: PMC10112540 DOI: 10.3389/fmicb.2023.1104944] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionSoil microbial communities are key to functional processes in terrestrial ecosystems, and they serve as an important indicator of grasslands status. However, the responses of soil microbial communities and functional potential to drought stress in semiarid alpine grasslands remain unclear.MethodsHere, a field experiment was conducted under ambient precipitation as a control, −20% and −40% of precipitation to explore the responses of soil microbial diversity, community composition, and predicted functional potential to drought stress in a semiarid alpine grassland located in the northwest of China. Moreover, 16S rRNA gene and ITS sequencing were used to detect bacterial and fungal communities, and the PICRUST and FUNGuild databases were used to predict bacterial and fungal functional groups.ResultsResults showed drought stress substantially changes the community diversity of bacteria and fungi, among which the bacteria community is more sensitive to drought stress than fungi, indicating that the diversity or structure of soil bacteria community could serve as an indicator of alpine grasslands status. However, the fungal community still has difficulty maintaining resistance under excessive drought stress. Our paper also highlighted that soil moisture content, plant diversity (Shannon Wiener, Pieiou, and Simpson), and soil organic matter are the main drivers affecting soil bacterial and fungal community composition and predicted functional potential. Notably, the soil microbial functional potential could be predictable through taxonomic community profiles.ConclusionOur research provides insight for exploring the mechanisms of microbial community composition and functional response to climate change (longer drought) in a semiarid alpine grassland.
Collapse
Affiliation(s)
- Qian Wan
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Lei Li,
| | - Bo Liu
- Shandong Provincial Key Laboratory of Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China
| | - Zhihao Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yalan Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingyu Xie
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Hu J, Miller G, Shi W. Abundance, diversity, and composition of root-associated microbial communities varied with tall fescue cultivars under water deficit. Front Microbiol 2023; 13:1078836. [PMID: 36713160 PMCID: PMC9878326 DOI: 10.3389/fmicb.2022.1078836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
The plant breeding program has developed many cultivars of tall fescue (Festuca arundinacea) with low maintenance and stress tolerance. While the root-associated microbial community helps confer stress tolerance in the host plant, it is still largely unknown how the microbiota varies with plant cultivars under water stress. The study aimed to characterize drought-responsive bacteria and fungi in the roots and rhizosphere of different tall fescue cultivars. Intact grass-soil cores were collected from six cultivars grown in a field trial under no-irrigation for 3 years. Tall fescue under irrigation was also sampled from an adjacent area as the contrast. Bacterial and fungal communities in roots, rhizosphere, and bulk soil were examined for abundance, diversity, and composition using quantitative-PCR and high-throughput amplicon sequencing of 16S rRNA gene and ITS regions, respectively. Differences in microbial community composition and structure between non-irrigated and irrigated samples were statistically significant in all three microhabitats. No-irrigation enriched Actinobacteria in all three microhabitats, but mainly enriched Basidiomycota in the root endosphere and only Glomeromycota in bulk soil. Tall fescue cultivars slightly yet significantly modified endophytic microbial communities. Cultivars showing better adaptability to drought encompassed more relatively abundant Actinobacteria, Basidiomycota, or Glomeromycota in roots and the rhizosphere. PICRUSt2-based predictions revealed that the relative abundance of functional genes in roots related to phytohormones, antioxidant enzymes, and nutrient acquisition was enhanced under no-irrigation. Significant associations between Streptomyces and putative drought-ameliorating genes underscore possible mechanics for microbes to confer tall fescue with water stress tolerance. This work sheds important insight into the potential use of endophytic microbes for screening drought-adaptive genotypes and cultivars.
Collapse
|
50
|
Huang H, He Z, Li M, Zhou Y, Zhang J, Jin X, Chen J. Influence of exposure history on the particle retention capacity and physiological responses of Euonymus japonicus Thunb. var. aurea-marginatus Hort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120593. [PMID: 36336181 DOI: 10.1016/j.envpol.2022.120593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Green plants in urban environments experience cyclical particulate matter stress. And this history of exhaust exposure may generate stress memory in plants, which may alter their subsequent response. Studies combining urban pollution characteristics and stress memory are limited. Therefore, we selected E. japonicus var. aurea-marginatus, a common urban greening tree species in the Yangtze River Delta, and conducted an experiment in three periods: the initial pollution period (S1: 28 days), the recovery period (R: 14 days) and the secondary pollution period (S2: 28 days). The experimental design consisted of an elevated pollution treatment (173 μg•cm-3) and an ambient control (34 μg•cm-3) with three replicates. In S2, the net total particle retention and saturated particle retention decreased by 11.5% and 19.3%, respectively, while PM10 and PM2.5 did not change significantly. E. japonicus var. aurea-marginatus exhibited recovery of chlorophyll levels, slower degradation of carotenoid, faster accumulation of ASA, lower accumulation of MDA, reduced activity of SOD under the second pollution period, and the period had a significant effect on the physiological indicators. Collectively, the effect of autoexhaust exposure history on the particle retention capacity of selected plant varied across particle sizes, and stress memory may confer plant resistance to recurrent exhaust pollution via combined regulations of physiological responses. Fine particles which pose a great risk to human health arise predominantly from vehicular traffic and energy production. So, E. japonicus tends to play a stabilising role in particle retention in industrial, traffic and residential areas.
Collapse
Affiliation(s)
- Hanhan Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Zhengxuan He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Ming Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Yuanhong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Jing Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Xinjie Jin
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Jian Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China.
| |
Collapse
|