1
|
Badreldin A, Li Y. A critical appraisal of advances in integrated CO 2 capture and electrochemical conversion. Chem Sci 2025; 16:2483-2513. [PMID: 39867956 PMCID: PMC11758242 DOI: 10.1039/d4sc06642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/10/2025] [Indexed: 01/28/2025] Open
Abstract
This perspective work examines the current advancements in integrated CO2 capture and electrochemical conversion technologies, comparing the emerging methods of (1) electrochemical reactive capture (eRCC) though amine- and (bi)carbonate-mediated processes and (2) direct (flue gas) adsorptive capture and conversion (ACC) with the conventional approach of sequential carbon capture and conversion (SCCC). We initially identified and discussed a range of cell-level technological bottlenecks inherent to eRCC and ACC including, but not limited to, mass transport limitations of reactive species, limitation of dimerization, impurity effects, inadequate in situ generation of CO2 to sustain industrially relevant current densities, and catalyst instabilities with respect to some eRCC electrolytes, amongst others. We followed this with stepwise perspectives on whether these are considered intrinsic challenges of the technologies - otherwise recommendations were disclosed where appropriate. Furthermore, technoeconomic analysis (TEA) was conducted using a net present value (NPV) model to determine the minimum selling prices (MSPs) for CO, HCOOH, CH3OH, C2H5OH, and C2H4 as target products based on cell-performance metrics from contemporary literature for SCCC, eRCC, and ACC. Additionally, sensitivity analyses were performed, focusing on cell-level parameters (voltage requirements, Faradaic efficiencies, current density), production scale factors, and other relevant variables (levelized costs of electricity and stack). This analysis sheds light on the cost-driving factors influencing commercial viability, revealing key techno-economic challenges for eRCC, particularly with liquid products. However, it also identifies optimization opportunities in current designs. By pinpointing critical areas for improvement, this work helps advance electrochemical CO2 reduction technologies towards more sustainable and economically competitive applications at different scales.
Collapse
Affiliation(s)
- Ahmed Badreldin
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University College Station TX 77843 USA
| | - Ying Li
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University College Station TX 77843 USA
- Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station TX 77843 USA
| |
Collapse
|
2
|
Guan Y, Li Y, Li Z, Hou Y, Lei L, Yang B. Promotion of C─C Coupling in the CO 2 Electrochemical Reduction to Valuable C 2+ Products: From Micro-Foundation to Macro-Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417567. [PMID: 39895219 DOI: 10.1002/adma.202417567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/18/2025] [Indexed: 02/04/2025]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) to valuable C2+ products emerges as a promising strategy for converting intermittent renewable energy into high-energy-density fuels and feedstock. Leveraging its substantial commercial potential and compatibility with existing energy infrastructure, the electrochemical conversion of CO2 into multicarbon hydrocarbons and oxygenates (C2+) holds great industrial promise. However, the process is hampered by complex multielectron-proton transfer reactions and difficulties in reactant activation, posing significant thermodynamic and kinetic barriers to the commercialization of C2+ production. Addressing these barriers necessitates a comprehensive approach encompassing multiple facets, including the effective control of C─C coupling in industrial electrolyzers using efficient catalysts in optimized local environments. This review delves into the advancements and outstanding challenges spanning from the microcosmic to macroscopic scales, including the design of nanocatalysts, optimization of the microenvironment, and the development of macroscopic electrolyzers. By elucidating the influence of the local electrolyte environment, and exploring the design of potential industrial flow cells, guidelines are provided for future research aimed at promoting C─C coupling, thereby bridging microscopic insights and macroscopic applications in the field of CO2 electroreduction.
Collapse
Affiliation(s)
- Yuning Guan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Youzhi Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University, Quzhou, 324000, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University, Quzhou, 324000, China
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University, Quzhou, 324000, China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University, Quzhou, 324000, China
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University, Quzhou, 324000, China
| |
Collapse
|
3
|
Namdari M, Kim Y, Pimlott DJD, Jewlal AML, Berlinguette CP. Reactive carbon capture using electrochemical reactors. Chem Soc Rev 2025; 54:590-600. [PMID: 39635721 DOI: 10.1039/d4cs00834k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The electrolytic upgrading of CO2 presents a promising strategy to mitigate global CO2 emissions while generating valuable carbon-based products such as carbon monoxide, formate, and ethylene. However, the adoption of industrial-scale CO2 electrolyzers is hindered by the high energy and capital costs associated with the purification and pressurization of captured CO2 prior to electrolysis. One promising solution is "reactive carbon capture," which involves the electrolytic conversion of the eluent from CO2 capture units, or the "reactive carbon solution," directly into valuable products. This approach circumvents the energy-intensive processes required for electrolyzers fed with gaseous CO2. This Tutorial Review highlights recent advances for reactive carbon capture, showcasing its potential as a scalable solution for electrolyzers that upgrade CO2 into fuels and products.
Collapse
Affiliation(s)
- Marzieh Namdari
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Yongwook Kim
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Douglas J D Pimlott
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Andrew M L Jewlal
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Curtis P Berlinguette
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada
- Canadian Institute for Advanced Research (CIFAR), 661 University Avenue, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
4
|
Yang Y, He F, Lv X, Liu Q, Wu A, Qi Z, Wu HB. Tackling CO 2 Loss in Electrocatalytic Carbon Dioxide Reduction by Advanced Material and Electrolyzer Design. SMALL METHODS 2025; 9:e2400786. [PMID: 39075827 DOI: 10.1002/smtd.202400786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/08/2024] [Indexed: 07/31/2024]
Abstract
Electrocatalytic CO2 reduction (ECO2R) has been considered as a promising approach to convert CO2 into valuable chemicals and fuels. CO2 loss in conventional alkaline electrolyzers has been recognized as a major obstacle that compromising the efficiency of the ECO2R system. This review firstly conducts an in-depth assessment of the origin and influence of CO2 loss. On this basis, this work summarizes electrolyzer configurations based on novel material and structure design that are capable of tackling CO2 loss, including acidic electrolyzer, bipolar membrane (BPM) derived electrolyzer, cascade electrolyzer, liquid-phase-anode electrolyzer, and liquid-fed electrolyzer. The design strategies and challenges of these carbon efficient electrolyzers have been deliberated in detail. By comparing and analyzing the advantages and limitations of various electrolyzer designs, this work aims to provide some guidelines for the development of efficient ECO2R technology toward large-scale industrial application.
Collapse
Affiliation(s)
- Yue Yang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, China
| | - Fan He
- Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, Zhejiang, 311121, China
| | - Xiangzhou Lv
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, China
| | - Qian Liu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, China
| | - Angjian Wu
- Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, Zhejiang, 311121, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Zhifu Qi
- Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, Zhejiang, 311121, China
| | - Hao Bin Wu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Wu W, Xu L, Lu Q, Sun J, Xu Z, Song C, Yu JC, Wang Y. Addressing the Carbonate Issue: Electrocatalysts for Acidic CO 2 Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312894. [PMID: 38722084 PMCID: PMC11733726 DOI: 10.1002/adma.202312894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) powered by renewable energy provides a promising route to CO2 conversion and utilization. However, the widely used neutral/alkaline electrolyte consumes a large amount of CO2 to produce (bi)carbonate byproducts, leading to significant challenges at the device level, thereby impeding the further deployment of this reaction. Conducting CO2RR in acidic electrolytes offers a promising solution to address the "carbonate issue"; however, it presents inherent difficulties due to the competitive hydrogen evolution reaction, necessitating concerted efforts toward advanced catalyst and electrode designs to achieve high selectivity and activity. This review encompasses recent developments of acidic CO2RR, from mechanism elucidation to catalyst design and device engineering. This review begins by discussing the mechanistic understanding of the reaction pathway, laying the foundation for catalyst design in acidic CO2RR. Subsequently, an in-depth analysis of recent advancements in acidic CO2RR catalysts is provided, highlighting heterogeneous catalysts, surface immobilized molecular catalysts, and catalyst surface enhancement. Furthermore, the progress made in device-level applications is summarized, aiming to develop high-performance acidic CO2RR systems. Finally, the existing challenges and future directions in the design of acidic CO2RR catalysts are outlined, emphasizing the need for improved selectivity, activity, stability, and scalability.
Collapse
Affiliation(s)
- Weixing Wu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Liangpang Xu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Qian Lu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Jiping Sun
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Zhanyou Xu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Chunshan Song
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Jimmy C. Yu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Ying Wang
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| |
Collapse
|
6
|
Herranz D, Bernedo Biriucov S, Arranz A, Avilés Moreno JR, Ocón P. Syngas Production Improvement from CO2RR Using Cu-Sn Electrodeposited Catalysts. MATERIALS (BASEL, SWITZERLAND) 2024; 18:105. [PMID: 39795751 PMCID: PMC11722079 DOI: 10.3390/ma18010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
Electrochemical reduction of CO2 is an efficient and novel strategy to reduce the amount of this greenhouse-effect pollutant gas in the atmosphere while synthesizing value-added products, all of it with an easy synergy with intermittent renewable energies. This study investigates the influence of different ways of combining electrodeposited Cu and Sn as metallic elements in the electrocatalyst. From there, the use of Sn alone or with a small amount of Cu beneath is investigated, and finally, the best catalyst obtained, which has Sn over a slight Cu layer, is evaluated in consecutive cycles to make an initial exploration of the catalyst durability. As a result of this work, after optimization of the Sn and Cu-based catalysts, it is possible to obtain more than 60% of the organic products of interest, predominantly CO, the main component of syngas. Finally, this great amount of CO is obtained under low cell potential (below 3 V), which is a remarkable result in terms of the cost of the process.
Collapse
Affiliation(s)
- Daniel Herranz
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain; (D.H.); (S.B.B.); (P.O.)
| | - Santiago Bernedo Biriucov
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain; (D.H.); (S.B.B.); (P.O.)
| | - Antonio Arranz
- Departamento de Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain;
| | - Juan Ramón Avilés Moreno
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain; (D.H.); (S.B.B.); (P.O.)
| | - Pilar Ocón
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain; (D.H.); (S.B.B.); (P.O.)
| |
Collapse
|
7
|
Nourmohammadi Khiarak B, da Silva GTST, Grange V, Gao G, Golovanova V, de García de Arquer FP, Mascaro LH, Dinh CT. Macro- and Nano-Porous Ag Electrodes Enable Selective and Stable Aqueous CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409669. [PMID: 39716859 DOI: 10.1002/smll.202409669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/02/2024] [Indexed: 12/25/2024]
Abstract
Electrochemical carbon dioxide (CO2) reduction from aqueous solutions offers a promising strategy to overcome flooding and salt precipitation in gas diffusion electrodes used in gas-phase CO2 electrolysis. However, liquid-phase CO2 electrolysis often exhibits low CO2 reduction rates because of limited CO2 availability. Here, a macroporous Ag mesh is employed and activated to achieve selective CO2 conversion to CO with high rates from an aqueous bicarbonate solution. It is found that activation of Ag surface using oxidation/reduction cycles produces nanoporous surfaces that favor CO2-to-CO conversion. Notably, it is found that a combination of dissolved CO2 in bicarbonate solution with CO2 generated in situ from bicarbonate ions enables increased CO2 availability and a CO2-to-CO conversion rate over 100 mA cm-2. By optimizing the oxidation/reduction cycles to fine-tune the structure of Ag surface, CO2-to-CO conversion is reported from a bicarbonate solution with CO Faradaic efficiency of over 85% at current density of 100 mA cm-2, high concentration of 24.7% at outlet gas stream and stability of over 100 h with maintaining CO FE over 85% during whole reaction time.
Collapse
Affiliation(s)
| | - Gelson T S T da Silva
- Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
- Interdisciplinary Laboratory of Electrochemistry and Ceramics, Department of Chemistry, Federal University of Sao Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Valentine Grange
- Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
- Institut National des Sciences Appliquées (I.N.S.A) de Rouen Normandie, 685 Avenue de l'Université, Saint-Étienne-du-Rouvray, 76800, France
| | - Guorui Gao
- Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Viktoria Golovanova
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, 08860, Spain
| | - F Pelayo de García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, 08860, Spain
| | - Lucia H Mascaro
- Interdisciplinary Laboratory of Electrochemistry and Ceramics, Department of Chemistry, Federal University of Sao Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Cao-Thang Dinh
- Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
8
|
Shi Q, Zhang B, Wu Z, Yang D, Wu H, Shi J, Jiang Z. Cascade Catalytic Systems for Converting CO 2 into C 2+ Products. CHEMSUSCHEM 2024:e202401916. [PMID: 39564785 DOI: 10.1002/cssc.202401916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
The excessive emission and continuous accumulation of CO2 have precipitated serious social and environmental issues. However, CO2 can also serve as an abundant, inexpensive, and non-toxic renewable C1 carbon source for synthetic reactions. To achieve carbon neutrality and recycling, it is crucial to convert CO2 into value-added products through chemical pathways. Multi-carbon (C2+) products, compared to C1 products, offer a broader range of applications and higher economic returns. Despite this, converting CO2 into C2+ products is difficult due to its stability and the high energy required for C-C coupling. Cascade catalytic reactions offer a solution by coordinating active components, promoting intermediate transfers, and facilitating further transformations. This method lowers energy consumption. Recent advancements in cascade catalytic systems have allowed for significant progress in synthesizing C2+ products from CO2. This review highlights the features and advantages of cascade catalysis strategies, explores the synergistic effects among active sites, and examines the mechanisms within these systems. It also outlines future prospects for CO2 cascade catalytic synthesis, offering a framework for efficient CO2 utilization and the development of next-generation catalytic systems.
Collapse
Affiliation(s)
- Qiaochu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Boyu Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhenhua Wu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Dong Yang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Hong Wu
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiafu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
9
|
Zhou G, Li B, Cheng G, Breckner CJ, Dean DP, Yang M, Yao N, Miller JT, Klok JBM, Tsesmetzis N, Wang G, Ren ZJ. Concentrated C 2+ Alcohol Production Enabled by Post-Intermediate Modulation and Augmented CO Adsorption in CO Electrolysis. J Am Chem Soc 2024; 146:31788-31798. [PMID: 39504513 DOI: 10.1021/jacs.4c10629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The electrocatalytic synthesis of multicarbon products from CO2/CO feedstock represents a sustainable method for chemical production with a reduced carbon footprint. Traditional copper catalysts predominantly produce alkenes, but generating valuable and versatile C2+ alcohols, especially high-energy-density C3 alcohols, has been challenging due to issues with selectivity, activity, and stability. Here, we present the construction of Ru-doped Cu nanowires that enhance the selectivity of n-PrOH and C2+ alcohols. In situ Raman spectroscopy shows that our approach promotes both *CO binding and availability, particularly facilitating the formation of high-frequency-bound *CO (*COHFB) and maintaining multiple *CO adsorption modes on Ru-modified and bare low-coordinated Cu nanowires. Density-functional theory (DFT) simulations illustrate that introducing Ru species onto a low-coordinated Cu step surface simultaneously stabilizes CO and alcohol-related intermediates, shifting the dominant reaction pathway toward alcohols and facilitating CO-C2 coupling at the expense of ethylene selectivity. In an alkaline gas-diffusion electrolyzer, we attained a maximum Faradaic efficiency (FE) of 35.9% for n-PrOH and 62.4% for the total C2+ alcohols. Optimizing parameters in the membrane electrode assembly (MEA) system enabled the one-pot generation and separation of C2+ alcohols, achieving a record concentration of 18.8 wt % (4.2 wt % n-PrOH and 14.6 wt % EtOH) with nearly 100% purity at 200 mA/cm2 over 100 h. This work not only provides new insights and guidance for the development of future catalysts from the perspectives of surface science and mechanisms but also highlights the importance of coupling material engineering with reactor engineering to optimize the production process of high-value alcohol products.
Collapse
Affiliation(s)
- Guangye Zhou
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Boyang Li
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Guangming Cheng
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Christian J Breckner
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - David P Dean
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Meiqi Yang
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Nan Yao
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Jeffrey T Miller
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Johannes B M Klok
- New Energies Research and Technology, Shell International Exploration and Production Inc, Houston, Texas 77082, United States
| | - Nicolas Tsesmetzis
- New Energies Research and Technology, Shell International Exploration and Production Inc, Houston, Texas 77082, United States
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
10
|
Siritanaratkul B, Khan MD, Yu EH, Cowan AJ. Alkali metal cations enhance CO 2 reduction by a Co molecular complex in a bipolar membrane electrolyzer. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230268. [PMID: 39307163 PMCID: PMC11449092 DOI: 10.1098/rsta.2023.0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 10/06/2024]
Abstract
The electrochemical reduction of CO2 is a promising pathway for converting CO2 into valuable fuels and chemicals. The local environment at the cathode of CO2 electrolyzers plays a key role in determining activity and selectivity, but currently some mechanisms are still under debate. In particular, alkali metal cations have been shown to enhance the selectivity of metal catalysts, but their role remains less explored for molecular catalysts especially in high-current electrolyzers. Here, we investigated the enhancement effects of cations (Na+, K+, Cs+) on Co phthalocyanine (CoPc) in a state-of-the-art reverse-biased bipolar membrane electrolyzer. When added to the anolyte, these cations increased the Faradaic efficiency for CO, except in the case of Na+ in which the effect was transient, but the effects are convoluted with the transport process through the membrane. Alternatively, these cations can also be added directly to the cathode as chloride salts, allowing the use of a pure H2O anolyte feed, leading to sustained improved CO selectivity (61% at 100 mA cm-2 after 24 h). Our results show that cation addition is a simple yet effective strategy for improving the product selectivity of molecular electrocatalysts, opening up new avenues for tuning their local environment for CO2 reduction.This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.
Collapse
Affiliation(s)
- Bhavin Siritanaratkul
- Department of Chemistry, Stephenson Institute for Renewable Energy, University of Liverpool, LiverpoolL69 7ZF, UK
| | - Mohammad Danish Khan
- Department of Chemical Engineering, Loughborough University, LoughboroughLE11 3TU, UK
| | - Eileen H. Yu
- Department of Chemical Engineering, Loughborough University, LoughboroughLE11 3TU, UK
| | - Alexander J. Cowan
- Department of Chemistry, Stephenson Institute for Renewable Energy, University of Liverpool, LiverpoolL69 7ZF, UK
| |
Collapse
|
11
|
Deng H, Liu T, Zhao W, Wang J, Zhang Y, Zhang S, Yang Y, Yang C, Teng W, Chen Z, Zheng G, Li F, Su Y, Hui J, Wang Y. Substituent tuning of Cu coordination polymers enables carbon-efficient CO 2 electroreduction to multi-carbon products. Nat Commun 2024; 15:9706. [PMID: 39521774 PMCID: PMC11550470 DOI: 10.1038/s41467-024-54107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
CO2 electroreduction is a potential pathway to achieve net-zero emissions in the chemical industry. Yet, CO2 loss, resulting from (bi)carbonate formation, renders the process energy-intensive. Acidic environments can address the issue but at the expense of compromised product Faradaic efficiencies (FEs), particularly for multi-carbon (C2+) products, as rapid diffusion and migration of protons (H+) favors competing H2 and CO production. Here, we present a strategy of tuning the 2-position substituent length on benzimidazole (BIM)-based copper (Cu) coordination polymer (CuCP) precatalyst - to enhance CO2 reduction to C2+ products in acidic environments. Lengthening the substituent from H to nonyl enhances H+ diffusion retardation and decreases Cu-Cu coordination numbers (CNs), favoring further reduction of CO. This leads to a nearly 24× enhancement of selectivity towards CO hydrogenation and C-C coupling at 60 mA cm-2. We report the highest C2+ product FE of more than 70% at 260 mA cm-2 on pentyl-CuCP and demonstrate a CO2-to-C2+ single-pass conversion (SPC) of ~54% at 180 mA cm-2 using pentyl-CuCP in zero-gap electrolyzers.
Collapse
Affiliation(s)
- Huiying Deng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China
| | - Tingting Liu
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China
- Soochow Institute for Energy and Materials Innovations (SIEMIS), College of Energy, Soochow University, Suzhou, Jiangsu, China
| | - Wenshan Zhao
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jundong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China
| | - Yuesheng Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China
| | - Shuzhen Zhang
- School of Chemical and Biomolecular Engineering and ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Sydney, Sydney, NSW, Australia
| | - Yu Yang
- School of Chemical and Biomolecular Engineering and ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Sydney, Sydney, NSW, Australia
| | - Chao Yang
- Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Wenzhi Teng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China
| | - Zhuo Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Fengwang Li
- School of Chemical and Biomolecular Engineering and ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Sydney, Sydney, NSW, Australia
| | - Yaqiong Su
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Jingshu Hui
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China.
- Soochow Institute for Energy and Materials Innovations (SIEMIS), College of Energy, Soochow University, Suzhou, Jiangsu, China.
| | - Yuhang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, China.
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
12
|
Wu B, Wang B, Cai B, Wu C, Tjiu WW, Zhang M, Aabdin Z, Xi S, Lum Y. A Solid-State Electrolyte Facilitates Acidic CO 2 Electrolysis without Alkali Metal Cations by Regulating Proton Transport. J Am Chem Soc 2024; 146:29801-29809. [PMID: 39263868 DOI: 10.1021/jacs.4c11564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Electrochemical CO2 reduction (CO2R) in acidic media provides a pathway to curtail CO2 losses by suppressing the formation of (bi)carbonates. In such systems, a high concentration of alkali metal cations is necessary for mitigating the proton-rich environment and suppressing the competing hydrogen evolution reaction. However, a high cation concentration also promotes salt precipitation within the gas diffusion layer, resulting in poor system durability. Here, we resolve this conundrum by replacing the liquid catholyte with a solid-state proton conductor to regulate H+ transport. This is postulated to allow for a locally alkaline environment at the cathode, enabling selective CO2R even without alkali metal cations. We show that this strategy is effective over a broad range of catalyst systems. For instance, we achieve an 87% CO faradaic efficiency (FE) at 300 mA/cm2 using a composite nanoporous Au and single-atom Ni catalyst, with 0.25 M H2SO4 as the anolyte. Stable operation over 110 h and a high single-pass carbon efficiency of 82.8% were also successfully demonstrated. Importantly, we find that this solid-state system is also particularly effective at converting dilute feedstock (5% CO2) with a CO FE of 47.7%, a factor of 16.4 times higher than a conventional system. Our results introduce a simple yet effective design approach for developing efficient acidic CO2R electrolyzers.
Collapse
Affiliation(s)
- Bo Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Republic of Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Bingqing Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Republic of Singapore
| | - Beijing Cai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Republic of Singapore
| | - Chao Wu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore
| | - Weng Weei Tjiu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Mingsheng Zhang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Zainul Aabdin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore
| | - Yanwei Lum
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Republic of Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
13
|
Kao YL, Buchauer F, Serhiichuk D, Boettcher SW, Aili D. Bipolar Membranes Via Divergent Synthesis: On the Interplay between Ion Exchange Capacity and Water Dissociation Catalysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58637-58647. [PMID: 39412035 DOI: 10.1021/acsami.4c12213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Bipolar membranes (BPMs) enable the operation of electrochemical reactors with electrode compartments in different chemical environments or pH. The transport properties at the microscopic scale are dictated by the composition and morphology of the interfacial junctions as well as the specific chemistry of the ion-exchange layers that support the current of protons and hydroxide ions. This work elucidates the relation between water-dissociation efficiency and the physicochemical properties of the individual ion-exchange membrane layers in the poly(styrene-b-poly(ethylene-ran-butylene)-b-polystyrene) (SEBS)-based BPM. The optimal water dissociation performance of three previously reported water-dissociation catalysts in the SEBS-based BPM was examined, with junction thickness of graphene oxide > TiO2 > SnO2, resulting in disparate junction morphologies at the BPM's interface. A hybrid junction system, which included both the effective water dissociation catalyst SnO2 and direct contacting of the ion-exchange membrane layer, exhibited high water dissociation efficiency. This was likely due to the immediate ion transport pathway provided by direct membrane contact around the catalyst, which also improved the interfacial adhesion. A higher ion exchange capacity (IEC) in BPMs substantially enhanced the water dissociation performance in BPMs without water-dissociation catalysts. However, the incorporation of the effective SnO2 catalyst into the BPMs with a lower IEC significantly improved performance, an effect attributed to the hybrid junction system. Additionally, the increase in water uptake and ion conductivity of the cation exchange layer with higher IEC suggested that the cation exchange layer and its interface to the water-dissociation catalyst layer may play a key role in water dissociation. This study identifies the key parameters of individual BPM components and their interactions to water dissociation performance, offering new insights to guide in the construction of future BPMs optimized for enhanced water dissociation efficiency at high current densities.
Collapse
Affiliation(s)
- Yi-Lin Kao
- Department of Energy Conversion and Storage, Technical University of Denmark, Elektrovej, Building 375, Lyngby 2800, Denmark
| | - Fabian Buchauer
- Department of Energy Conversion and Storage, Technical University of Denmark, Elektrovej, Building 375, Lyngby 2800, Denmark
| | - Dmytro Serhiichuk
- Department of Energy Conversion and Storage, Technical University of Denmark, Elektrovej, Building 375, Lyngby 2800, Denmark
| | - Shannon W Boettcher
- Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Department of Chemical & Biomolecular Engineering and Department of Chemistry, University of California, Berkeley, and Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David Aili
- Department of Energy Conversion and Storage, Technical University of Denmark, Elektrovej, Building 375, Lyngby 2800, Denmark
| |
Collapse
|
14
|
Deng H, Chen Z, Wang Y. Ionomer and Membrane Designs for Low-temperature CO 2 and CO Electrolysis. CHEMSUSCHEM 2024:e202401728. [PMID: 39367689 DOI: 10.1002/cssc.202401728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
Low-temperature electroreduction of CO2 and CO (CO(2)RR) into valuable chemicals and fuels offers a promising pathway to reduce greenhouse gas emissions and achieve carbon neutrality. Today's low-temperature CO(2)RR technology relies on the use of ionomers, polymers with ionized groups, primarily as catalyst layer (CL) additives. In the meantime, ionomers can assemble into ion-exchange membranes (IEMs), serving as important components of electrolyzers. According to the ion-exchange functions, ionomer additives are classified as cation-exchange ionomers (CEIs) and anion-exchange ionomers (AEIs); similarly, IEMs are divided into cation-exchange membranes (CEMs) and anion-exchange membranes (AEMs), as well as the multilayer polymer electrolytes (MPEs). Recent studies show that ionomer additives can regulate the catalytic microenvironment and thereby enhance performance towards desired products. This Review discusses the roles of ionomer additives and IEMs in CO2 and CO reduction reactions, highlighting the latest mechanistic insights and performance advances. It outlines challenges in designing ionomer additives and IEMs to improve product selectivity, energy efficiency (EE), and operational lifetime of CO(2)RR electrolyzers, while also providing perspectives on future research directions. The aim is to connect the current status of ionomer and membrane development with performance metrics analysis, offering insights for the advancement of commercially relevant low-temperature CO(2)RR electrolyzers.
Collapse
Affiliation(s)
- Huiying Deng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Zhuo Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yuhang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| |
Collapse
|
15
|
Sasmal S, Chen L, Sarma PV, Vulpin OT, Simons CR, Wells KM, Spontak RJ, Boettcher SW. Materials descriptors for advanced water dissociation catalysts in bipolar membranes. NATURE MATERIALS 2024; 23:1421-1427. [PMID: 38951650 DOI: 10.1038/s41563-024-01943-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
The voltage penalty driving water dissociation (WD) at high current density is a major obstacle in the commercialization of bipolar membrane (BPM) technology for energy devices. Here we show that three materials descriptors, that is, electrical conductivity, microscopic surface area and (nominal) surface-hydroxyl coverage, effectively control the kinetics of WD in BPMs. Using these descriptors and optimizing mass loading, we design new earth-abundant WD catalysts based on nanoparticle SnO2 synthesized at low temperature with high conductivity and hydroxyl coverage. These catalysts exhibit exceptional performance in a BPM electrolyser with low WD overvoltage (ηwd) of 100 ± 20 mV at 1.0 A cm-2. The new catalyst works equivalently well with hydrocarbon proton-exchange layers as it does with fluorocarbon-based Nafion, thus providing pathways to commercializing advanced BPMs for a broad array of electrolysis, fuel-cell and electrodialysis applications.
Collapse
Affiliation(s)
- Sayantan Sasmal
- Department of Chemistry & Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, OR, USA
| | - Lihaokun Chen
- Department of Chemistry & Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, OR, USA
- Department of Chemical & Biomolecular Engineering and Department of Chemistry, University of California, Berkeley, CA, USA
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Prasad V Sarma
- Department of Chemistry & Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, OR, USA
| | - Olivia T Vulpin
- Department of Chemistry & Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, OR, USA
| | - Casey R Simons
- Center for Materials Characterization in Oregon, University of Oregon, Eugene, OR, USA
| | - Kacie M Wells
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, NC, USA
| | - Richard J Spontak
- Departments of Chemical & Biomolecular Engineering and Materials Science & Engineering and Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC, USA
| | - Shannon W Boettcher
- Department of Chemistry & Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, OR, USA.
- Department of Chemical & Biomolecular Engineering and Department of Chemistry, University of California, Berkeley, CA, USA.
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
16
|
Li M, Lees EW, Ju W, Subramanian S, Yang K, Bui JC, Iglesias van Montfort HP, Abdinejad M, Middelkoop J, Strasser P, Weber AZ, Bell AT, Burdyny T. Local ionic transport enables selective PGM-free bipolar membrane electrode assembly. Nat Commun 2024; 15:8222. [PMID: 39300064 DOI: 10.1038/s41467-024-52409-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Bipolar membranes in electrochemical CO2 conversion cells enable different reaction environments in the CO2-reduction and O2-evolution compartments. Under ideal conditions, water-splitting in the bipolar membrane allows for platinum-group-metal-free anode materials and high CO2 utilizations. In practice, however, even minor unwanted ion crossover limits stability to short time periods. Here we report the vital role of managing ionic species to improve CO2 conversion efficiency while preventing acidification of the anodic compartment. Through transport modelling, we identify that an anion-exchange ionomer in the catalyst layer improves local bicarbonate availability and increasing the proton transference number in the bipolar membranes increases CO2 regeneration and limits K+ concentration in the cathode region. Through experiments, we show that a uniform local distribution of bicarbonate ions increases the accessibility of reverted CO2 to the catalyst surface, improving Faradaic efficiency and limiting current densities by twofold. Using these insights, we demonstrate a fully platinum-group-metal-free bipolar membrane electrode assembly CO2 conversion system exhibiting <1% CO2/cation crossover rates and 80-90% CO2-to-CO utilization efficiency over 150 h operation at 100 mA cm-2 without anolyte replenishment.
Collapse
Affiliation(s)
- Mengran Li
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands.
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Eric W Lees
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Wen Ju
- Chemical Engineering Division, Department of Chemistry, Technical University Berlin, Berlin, 10623, Germany
- Department of Electrochemistry and Catalysis, Leibniz Institute for Catalysis, 18059, Rostock, Germany
| | - Siddhartha Subramanian
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands
| | - Kailun Yang
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands
| | - Justin C Bui
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemical and Biological Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | | | - Maryam Abdinejad
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Joost Middelkoop
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands
| | - Peter Strasser
- Chemical Engineering Division, Department of Chemistry, Technical University Berlin, Berlin, 10623, Germany
| | - Adam Z Weber
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alexis T Bell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemical and Biological Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Thomas Burdyny
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands.
| |
Collapse
|
17
|
Hicks MH, Nie W, Boehme AE, Atwater HA, Agapie T, Peters JC. Electrochemical CO 2 Reduction in Acidic Electrolytes: Spectroscopic Evidence for Local pH Gradients. J Am Chem Soc 2024; 146:25282-25289. [PMID: 39215715 PMCID: PMC11403608 DOI: 10.1021/jacs.4c09512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Inspired by recent advances in electrochemical CO2 reduction (CO2R) under acidic conditions, herein we leverage in situ spectroscopy to inform the optimization of CO2R at low pH. Using attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and fluorescent confocal laser scanning microscopy, we investigate the role that alkali cations (M+) play on electrochemical CO2R. This study hence provides important information related to the local electrode surface pH under bulk acidic conditions for CO2R, both in the presence and absence of an organic film layer, at variable [M+]. We show that in an acidic electrolyte, an appropriate current density can enable CO2R in the absence of metal cations. In situ local pH measurements suggest the local [H+] must be sufficiently depleted to promote H2O reduction as the competing reaction with CO2R. Incrementally incorporating [K+] leads to increases in the local pH that promotes CO2R but only at proton consumption rates sufficient to drive the pH up dramatically. Stark tuning measurements and analysis of surface water structure reveal no change in the electric field with [M+] and a desorption of interfacial water, indicating that improved CO2R performance is driven by suppression of H+ mass transport and modification of the interfacial solvation structure. In situ pH measurements confirm increasing local pH, and therefore decreased local [CO2], with [M+], motivating alternate means of modulating proton transport. We show that an organic film formed via in situ electrodeposition of an organic additive provides a means to achieve selective CO2R (FECO2R ∼ 65%) over hydrogen evolution reaction in the presence of strong acid (pH 1) and low cation concentrations (≤0.1 M) at both low and high current densities.
Collapse
Affiliation(s)
- Madeline H Hicks
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Liquid Sunlight Alliance (LiSA), California Institute of Technology, Pasadena, California 91125, United States
| | - Weixuan Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Liquid Sunlight Alliance (LiSA), California Institute of Technology, Pasadena, California 91125, United States
| | - Annette E Boehme
- Department of Applied Physics and Material Science, California Institute of Technology, Pasadena, California 91125, United States
- Liquid Sunlight Alliance (LiSA), California Institute of Technology, Pasadena, California 91125, United States
| | - Harry A Atwater
- Department of Applied Physics and Material Science, California Institute of Technology, Pasadena, California 91125, United States
- Liquid Sunlight Alliance (LiSA), California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Liquid Sunlight Alliance (LiSA), California Institute of Technology, Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Liquid Sunlight Alliance (LiSA), California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
18
|
Wang J, Zhang Y, Bai H, Deng H, Pan B, Li Y, Wang Y. Trilayer Polymer Electrolytes Enable Carbon-Efficient CO 2 to Multicarbon Product Conversion in Alkaline Electrolyzers. Angew Chem Int Ed Engl 2024; 63:e202404110. [PMID: 39031640 DOI: 10.1002/anie.202404110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) is an appealing method for carbon utilization. Alkaline CO2 electrolyzers exhibit high CO2RR activity, low full-cell voltages, and cost-effectiveness. However, the issue of CO2 loss caused by (bi)carbonate formation leads to excessive energy consumption, rendering the process economically impractical. In this study, we propose a trilayer polymer electrolyte (TPE) comprising a perforated anion exchange membrane (PAEM) and a bipolar membrane (BPM) to facilitate alkaline CO2RR. This TPE enables the coexistence of high alkalinity near the catalyst surface and the H+ flux at the interface between the PAEM and the cation exchange layer (CEL) of the BPM, conditions favoring both CO2 reduction to multicarbon products and (bi)carbonate removal in KOH-fed membrane electrode assembly (MEA) reactors. As a result, we achieve a Faradaic efficiency (FE) of approximately 46 % for C2H4, corresponding to a C2+ FE of 64 % at 260 mA cm-2, with a CO2-to-C2H4 single-pass conversion (SPC) of approximately 32 % at 140 mA cm-2-nearly 1.3 times the limiting SPC in conventional AEM-MEA electrolyzers. Furthermore, coupling CO2 reduction with formaldehyde oxidation reaction (FOR) in the TPE-MEA electrolyzer reduces the full-cell voltage to 2.3 V at 100 mA cm-2 without compromising the C2H4 FE.
Collapse
Affiliation(s)
- Jundong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yuesheng Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Haoxiang Bai
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Huiying Deng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Binbin Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yuhang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| |
Collapse
|
19
|
Wu H, Yu H, Chow YL, Webley PA, Zhang J. Toward Durable CO 2 Electroreduction with Cu-Based Catalysts via Understanding Their Deactivation Modes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403217. [PMID: 38845132 DOI: 10.1002/adma.202403217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/23/2024] [Indexed: 06/18/2024]
Abstract
The technology of CO2 electrochemical reduction (CO2ER) provides a means to convert CO2, a waste greenhouse gas, into value-added chemicals. Copper is the most studied element that is capable of catalyzing CO2ER to obtain multicarbon products, such as ethylene, ethanol, acetate, etc., at an appreciable rate. Under the operating condition of CO2ER, the catalytic performance of Cu decays because of several factors that alters the surface properties of Cu. In this review, these factors that cause the degradation of Cu-based CO2ER catalysts are categorized into generalized deactivation modes, that are applicable to all electrocatalytic systems. The fundamental principles of each deactivation mode and the associated effects of each on Cu-based catalysts are discussed in detail. Structure- and composition-activity relationship developed from recent in situ/operando characterization studies are presented as evidence of related deactivation modes in operation. With the aim to address these deactivation modes, catalyst design and reaction environment engineering rationales are suggested. Finally, perspectives and remarks built upon the recent advances in CO2ER are provided in attempts to improve the durability of CO2ER catalysts.
Collapse
Affiliation(s)
- Hsiwen Wu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Haoming Yu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, China
| | - Yuen-Leong Chow
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Paul A Webley
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC, 3800, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC, 3800, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
20
|
Chu N, Jiang Y, Zeng RJ, Li D, Liang P. Solid Electrolytes for Low-Temperature Carbon Dioxide Valorization: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10881-10896. [PMID: 38861036 DOI: 10.1021/acs.est.4c02066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
One of the most promising approaches to address the global challenge of climate change is electrochemical carbon capture and utilization. Solid electrolytes can play a crucial role in establishing a chemical-free pathway for the electrochemical capture of CO2. Furthermore, they can be applied in electrocatalytic CO2 reduction reactions (CO2RR) to increase carbon utilization, produce high-purity liquid chemicals, and advance hybrid electro-biosystems. This review article begins by covering the fundamentals and processes of electrochemical CO2 capture, emphasizing the advantages of utilizing solid electrolytes. Additionally, it highlights recent advancements in the use of the solid polymer electrolyte or solid electrolyte layer for the CO2RR with multiple functions. The review also explores avenues for future research to fully harness the potential of solid electrolytes, including the integration of CO2 capture and the CO2RR and performance assessment under realistic conditions. Finally, this review discusses future opportunities and challenges, aiming to contribute to the establishment of a green and sustainable society through electrochemical CO2 valorization.
Collapse
Affiliation(s)
- Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
21
|
Park EJ, Jannasch P, Miyatake K, Bae C, Noonan K, Fujimoto C, Holdcroft S, Varcoe JR, Henkensmeier D, Guiver MD, Kim YS. Aryl ether-free polymer electrolytes for electrochemical and energy devices. Chem Soc Rev 2024; 53:5704-5780. [PMID: 38666439 DOI: 10.1039/d3cs00186e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Anion exchange polymers (AEPs) play a crucial role in green hydrogen production through anion exchange membrane water electrolysis. The chemical stability of AEPs is paramount for stable system operation in electrolysers and other electrochemical devices. Given the instability of aryl ether-containing AEPs under high pH conditions, recent research has focused on quaternized aryl ether-free variants. The primary goal of this review is to provide a greater depth of knowledge on the synthesis of aryl ether-free AEPs targeted for electrochemical devices. Synthetic pathways that yield polyaromatic AEPs include acid-catalysed polyhydroxyalkylation, metal-promoted coupling reactions, ionene synthesis via nucleophilic substitution, alkylation of polybenzimidazole, and Diels-Alder polymerization. Polyolefinic AEPs are prepared through addition polymerization, ring-opening metathesis, radiation grafting reactions, and anionic polymerization. Discussions cover structure-property-performance relationships of AEPs in fuel cells, redox flow batteries, and water and CO2 electrolysers, along with the current status of scale-up synthesis and commercialization.
Collapse
Affiliation(s)
- Eun Joo Park
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | - Kenji Miyatake
- University of Yamanashi, Kofu 400-8510, Japan
- Waseda University, Tokyo 169-8555, Japan
| | - Chulsung Bae
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kevin Noonan
- Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cy Fujimoto
- Sandia National Laboratories, Albuquerque, NM 87123, USA
| | | | | | - Dirk Henkensmeier
- Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
- KIST School, University of Science and Technology (UST), Seoul 02792, South Korea
- KU-KIST School, Korea University, Seoul 02841, South Korea
| | - Michael D Guiver
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China.
| | - Yu Seung Kim
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
22
|
Ma M, Seger B. Rational Design of Local Reaction Environment for Electrocatalytic Conversion of CO 2 into Multicarbon Products. Angew Chem Int Ed Engl 2024; 63:e202401185. [PMID: 38576259 DOI: 10.1002/anie.202401185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
The electrocatalytic conversion of CO2 into multi-carbon (C2+) products provides an attractive route for storing intermittent renewable electricity as fuels and feedstocks with high energy densities. Although substantial progress has been made in selective electrosynthesis of C2+ products via engineering the catalyst, rational design of the local reaction environment in the vicinity of catalyst surface also acts as an effective approach for further enhancing the performance. Here, we discuss recent advances and pertinent challenges in the modulation of local reaction environment, encompassing local pH, the choice of the species and concentrations of cations and anions as well as local reactant/intermediate concentrations, for achieving high C2+ selectivity. In addition, mechanistic understanding in the effects of the local reaction environment is also discussed. Particularly, the important progress extracted from in situ and operando spectroscopy techniques provides insights into how local reaction environment affects C-C coupling and key intermediates formation that lead to reaction pathways toward a desired C2+ product. The possible future direction in understanding and engineering the local reaction environment is also provided.
Collapse
Affiliation(s)
- Ming Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Brian Seger
- Surface Physics and Catalysis (Surfcat) Section, Department of Physics, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
23
|
Heßelmann M, Lee JK, Chae S, Tricker A, Keller RG, Wessling M, Su J, Kushner D, Weber AZ, Peng X. Pure-Water-Fed Forward-Bias Bipolar Membrane CO 2 Electrolyzer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:24649-24659. [PMID: 38711294 PMCID: PMC11103649 DOI: 10.1021/acsami.4c02799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Coupling renewable electricity to reduce carbon dioxide (CO2) electrochemically into carbon feedstocks offers a promising pathway to produce chemical fuels sustainably. While there has been success in developing materials and theory for CO2 reduction, the widespread deployment of CO2 electrolyzers has been hindered by challenges in the reactor design and operational stability due to CO2 crossover and (bi)carbonate salt precipitation. Herein, we design asymmetrical bipolar membranes assembled into a zero-gap CO2 electrolyzer fed with pure water, solving both challenges. By investigating and optimizing the anion-exchange-layer thickness, cathode differential pressure, and cell temperature, the forward-bias bipolar membrane CO2 electrolyzer achieves a CO faradic efficiency over 80% with a partial current density over 200 mA cm-2 at less than 3.0 V with negligible CO2 crossover. In addition, this electrolyzer achieves 0.61 and 2.1 mV h-1 decay rates at 150 and 300 mA cm-2 for 200 and 100 h, respectively. Postmortem analysis indicates that the deterioration of catalyst/polymer-electrolyte interfaces resulted from catalyst structural change, and ionomer degradation at reductive potential shows the decay mechanism. All these results point to the future research direction and show a promising pathway to deploy CO2 electrolyzers at scale for industrial applications.
Collapse
Affiliation(s)
- Matthias Heßelmann
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Chemical
Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany
| | - Jason Keonhag Lee
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Sudong Chae
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Andrew Tricker
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Robert Gregor Keller
- Chemical
Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany
| | - Matthias Wessling
- Chemical
Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany
- DWI
Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Ji Su
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Douglas Kushner
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Adam Z. Weber
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Xiong Peng
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Fischer R, Dessiex MA, Marone F, Büchi FN. Gas-Induced Structural Damages in Forward-Bias Bipolar Membrane CO 2 Electrolysis Studied by Fast X-ray Tomography. ACS APPLIED ENERGY MATERIALS 2024; 7:3590-3601. [PMID: 38756863 PMCID: PMC11094683 DOI: 10.1021/acsaem.3c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 05/19/2024]
Abstract
Forward-bias bipolar membrane (BPM) CO2 coelectrolysis (CO2ELY) aims at overcoming the issues of salt precipitation and CO2 crossover in anion exchange membrane CO2ELY. Increasing the stability of BPM-CO2ELY is crucial for widespread application of the technique. In this study, we employ time-resolved X-ray tomographic microscopy to elucidate the structural dynamics that occur within the electrochemical cell during operation under various conditions. Using advanced image processing methods, including custom 4D machine learning segmentation, we can visualize and quantify damages in the membrane and anode catalyst layer (CL). We compare our results to a CO2 transport model and hypothesize gaseous CO2 as the cause of the observed damages. At any operation condition, CO2 is formed at the junction in the center of the BPM by recombination of carbonate ions. CO2 migrates to the anode by diffusion and goes into the gas phase at the interface of the membrane and anode CL. After sufficient CO2 accumulation and pressure buildup after only tens of minutes, small irreversible holes break into the CL distributed over the entire active area. Additionally, at higher current densities, the CO2 accumulation leads to membrane delamination at the BPM junction. Despite the clear degradation processes, we do not observe an obvious direct effect on the electrochemical performance. The poor stability of BPM-CO2ELY remains an open question.
Collapse
Affiliation(s)
- Robert Fischer
- Electrochemistry
Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Matthieu A. Dessiex
- Electrochemistry
Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
- Laboratory
of Renewable Energy Science and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Federica Marone
- Swiss
Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Felix N. Büchi
- Electrochemistry
Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
25
|
Woo J, Han S, Yoon J. Mn-doped Sequentially Electrodeposited Co-based Oxygen Evolution Catalyst for Efficient Anion Exchange Membrane Water Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38662424 DOI: 10.1021/acsami.4c01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Designing high-performance and durable oxygen evolution reaction (OER) catalysts is important for green hydrogen production through anion exchange membrane water electrolysis (AEMWE). Herein, a series of Mn-doped Co-based OER catalysts supported on FeOxHy (FCMx) are presented to enhance the OER activity. Mn doping effectively reduces the size of the Co oxide particles, thereby augmenting the active surface area. Moreover, Mn doping induces the creation of oxygen vacancies, leading to an efficient structural conversion during the OER, which is confirmed via in situ Raman spectroscopy. Under optimal conditions, the catalyst exhibits an overpotential of 234.4 mV at 10 mA cm-2 and a Tafel slope of 37.2 mV dec-1 under half-cell conditions. The AEMWE single-cell system demonstrates a current density of 1560 mA cm-2 at 1.8 V at 60 °C with a degradation rate of 0.4 mV h-1 for 500 h at 500 mA cm-2. Our development of a robust OER catalyst represents notable progress in the field of nonprecious-metal water electrolysis, marking a step toward cost-effective green hydrogen production.
Collapse
Affiliation(s)
- Jinse Woo
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Sanghwi Han
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Jeyong Yoon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| |
Collapse
|
26
|
O'Brien CP, Miao RK, Shayesteh Zeraati A, Lee G, Sargent EH, Sinton D. CO 2 Electrolyzers. Chem Rev 2024; 124:3648-3693. [PMID: 38518224 DOI: 10.1021/acs.chemrev.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
CO2 electrolyzers have progressed rapidly in energy efficiency and catalyst selectivity toward valuable chemical feedstocks and fuels, such as syngas, ethylene, ethanol, and methane. However, each component within these complex systems influences the overall performance, and the further advances needed to realize commercialization will require an approach that considers the whole process, with the electrochemical cell at the center. Beyond the cell boundaries, the electrolyzer must integrate with upstream CO2 feeds and downstream separation processes in a way that minimizes overall product energy intensity and presents viable use cases. Here we begin by describing upstream CO2 sources, their energy intensities, and impurities. We then focus on the cell, the most common CO2 electrolyzer system architectures, and each component within these systems. We evaluate the energy savings and the feasibility of alternative approaches including integration with CO2 capture, direct conversion of flue gas and two-step conversion via carbon monoxide. We evaluate pathways that minimize downstream separations and produce concentrated streams compatible with existing sectors. Applying this comprehensive upstream-to-downstream approach, we highlight the most promising routes, and outlook, for electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Colin P O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Ali Shayesteh Zeraati
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Geonhui Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
27
|
Li G, Huang L, Wei C, Shen H, Liu Y, Zhang Q, Su J, Song Y, Guo W, Cao X, Tang BZ, Robert M, Ye R. Backbone Engineering of Polymeric Catalysts for High-Performance CO 2 Reduction in Bipolar Membrane Zero-Gap Electrolyzer. Angew Chem Int Ed Engl 2024; 63:e202400414. [PMID: 38348904 DOI: 10.1002/anie.202400414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Indexed: 02/29/2024]
Abstract
Bipolar membranes (BPMs) have emerged as a promising solution for mitigating CO2 losses, salt precipitation and high maintenance costs associated with the commonly used anion-exchange membrane electrode assembly for CO2 reduction reaction (CO2RR). However, the industrial implementation of BPM-based zero-gap electrolyzer is hampered by the poor CO2RR performance, largely attributed to the local acidic environment. Here, we report a backbone engineering strategy to improve the CO2RR performance of molecular catalysts in BPM-based zero-gap electrolyzers by covalently grafting cobalt tetraaminophthalocyanine onto a positively charged polyfluorene backbone (PF-CoTAPc). PF-CoTAPc shows a high acid tolerance in BPM electrode assembly (BPMEA), achieving a high FE of 82.6 % for CO at 100 mA/cm2 and a high CO2 utilization efficiency of 87.8 %. Notably, the CO2RR selectivity, carbon utilization efficiency and long-term stability of PF-CoTAPc in BPMEA outperform reported BPM systems. We attribute the enhancement to the stable cationic shield in the double layer and suppression of proton migration, ultimately inhibiting the undesired hydrogen evolution and improving the CO2RR selectivity. Techno-economic analysis shows the least energy consumption (957 kJ/mol) for the PF-CoTAPc catalyst in BPMEA. Our findings provide a viable strategy for designing efficient CO2RR catalysts in acidic environments.
Collapse
Affiliation(s)
- Geng Li
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Libei Huang
- Division of Science, Engineering and Health Study, School of Professional Education and Executive Development, The Hong Kong Polytechnic University (PolyU SPEED), Hong Kong, P. R. China
| | - Chengpeng Wei
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hanchen Shen
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
| | - Yong Liu
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Qiang Zhang
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jianjun Su
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yun Song
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Weihua Guo
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Xiaohu Cao
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Marc Robert
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, 75006, Paris, France
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
28
|
Pimlott DJD, Kim Y, Berlinguette CP. Reactive Carbon Capture Enables CO 2 Electrolysis with Liquid Feedstocks. Acc Chem Res 2024; 57:1007-1018. [PMID: 38526508 DOI: 10.1021/acs.accounts.3c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
ConspectusThe electrochemical reduction of carbon dioxide (CO2RR) is a promising strategy for mitigating global CO2 emissions while simultaneously yielding valuable chemicals and fuels, such as CO, HCOO-, and C2H4. This approach becomes especially appealing when integrated with surplus renewable electricity, as the ensuing production of fuels could facilitate the closure of the carbon cycle. Despite these advantages, the realization of industrial-scale electrolyzers fed with CO2 will be challenged by the substantial energy inputs required to isolate, pressurize, and purify CO2 prior to electrolysis.To address these challenges, we devised an electrolyzer capable of directly converting reactive carbon solutions (e.g., a bicarbonate-rich eluent that exits a carbon capture unit) into higher value products. This "reactive carbon electrolyzer" operates by reacting (bi)carbonate with acid generated within the electrolyzer to produce CO2 in situ, thereby facilitating CO2RR at the cathode. This approach eliminates the need for expensive CO2 recovery and compression steps, as the electrolyzer can then then coupled directly to the CO2 capture unit.This Account outlines our endeavors in developing this type of electrolyzer, focusing on the design and implementation of materials for electrocatalytic (bi)carbonate conversion. We highlight the necessity for a permeable cathode that allows the efficient transport of (bi)carbonate ions while maintaining a sufficiently high catalytic surface area. We address the importance of the supporting electrolyte, detailing how (bi)carbonate concentration, counter cations, and ionic impurities impact selectivity for products formed in the electrolyzer. We also catalog state-of-the-art performance metrics for reactive carbon electrolyzers (i.e., Faradaic efficiency, full cell voltage, CO2 utilization efficiency) and outline strategies to bridge the gap between these values and those required for commercial operation Collectively, these findings contribute to the ongoing efforts to realize industrial-scale electrochemical reactors for CO2 conversion, bringing us closer to a sustainable and closed-loop carbon cycle.
Collapse
Affiliation(s)
- Douglas J D Pimlott
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yongwook Kim
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Curtis P Berlinguette
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Canadian Institute for Advanced Research (CIFAR), 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
29
|
Li Y, Wang H, Yang X, O'Carroll T, Wu G. Designing and Engineering Atomically Dispersed Metal Catalysts for CO 2 to CO Conversion: From Single to Dual Metal Sites. Angew Chem Int Ed Engl 2024; 63:e202317884. [PMID: 38150410 DOI: 10.1002/anie.202317884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
The electrochemical CO2 reduction reaction (CO2 RR) is a promising approach to achieving sustainable electrical-to-chemical energy conversion and storage while decarbonizing the emission-heavy industry. The carbon-supported, nitrogen-coordinated, and atomically dispersed metal sites are effective catalysts for CO generation due to their high activity, selectivity, and earth abundance. Here, we discuss progress, challenges, and opportunities for designing and engineering atomic metal catalysts from single to dual metal sites. Engineering single metal sites using a nitrogen-doped carbon model was highlighted to exclusively study the effect of carbon particle sizes, metal contents, and M-N bond structures in the form of MN4 moieties on catalytic activity and selectivity. The structure-property correlation was analyzed by combining experimental results with theoretical calculations to uncover the CO2 to CO conversion mechanisms. Furthermore, dual-metal site catalysts, inheriting the merits of single-metal sites, have emerged as a new frontier due to their potentially enhanced catalytic properties. Designing optimal dual metal site catalysts could offer additional sites to alter the surface adsorption to CO2 and various intermediates, thus breaking the scaling relationship limitation and activity-stability trade-off. The CO2 RR electrolysis in flow reactors was discussed to provide insights into the electrolyzer design with improved CO2 utilization, reaction kinetics, and mass transport.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Huanhuan Wang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Xiaoxuan Yang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Thomas O'Carroll
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
30
|
Chen Q, Wang X, Zhou Y, Tan Y, Li H, Fu J, Liu M. Electrocatalytic CO 2 Reduction to C 2+ Products in Flow Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303902. [PMID: 37651690 DOI: 10.1002/adma.202303902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Electrocatalytic CO2 reduction into value-added fuels and chemicals by renewable electric energy is one of the important strategies to address global energy shortage and carbon emission. Though the classical H-type electrolytic cell can quickly screen high-efficiency catalysts, the low current density and limited CO2 mass transfer process essentially impede its industrial applications. The electrolytic cells based on electrolyte flow system (flow cells) have shown great potential for industrial devices, due to higher current density, improved local CO2 concentration, and better mass transfer efficiency. The design and optimization of flow cells are of great significance to further accelerate the industrialization of electrocatalytic CO2 reduction reaction (CO2 RR). In this review, the progress of flow cells for CO2 RR to C2+ products is concerned. Firstly, the main events in the development of the flow cells for CO2 RR are outlined. Second, the main design principles of CO2 RR to C2+ products, the architectures, and types of flow cells are summarized. Third, the main strategies for optimizing flow cells to generate C2+ products are reviewed in detail, including cathode, anode, ion exchange membrane, and electrolyte. Finally, the preliminary attempts, challenges, and the research prospects of flow cells for industrial CO2 RR toward C2+ products are discussed.
Collapse
Affiliation(s)
- Qin Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Xiqing Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yajiao Zhou
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yao Tan
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450002, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
31
|
Wu Q, Zhu F, Wallace G, Yao X, Chen J. Electrocatalysis of nitrogen pollution: transforming nitrogen waste into high-value chemicals. Chem Soc Rev 2024; 53:557-565. [PMID: 38099452 DOI: 10.1039/d3cs00714f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
On 16 June 2023, the United Nations Environment Programme highlighted the severity of nitrogen pollution faced by humans and called for joint action for sustainable nitrogen use. Excess nitrogenous waste (NW: NO, NO2, NO2-, NO3-, etc.) mainly arises from the use of synthetic fertilisers, wastewater discharge, and fossil fuel combustion. Although the amount of NW produced can be minimised by reducing the use of nitrogen fertilisers and fossil fuels, the necessity to feed seven billion people on Earth limits the utility of this approach. Compared to current industrial processes, electrocatalytic NW reduction or CO2-NW co-reduction offers a potentially greener alternative for recycling NW and producing high-value chemicals. However, upgrading this technology to connect upstream and downstream industrial chains is challenging. This viewpoint focuses on electrocatalytic NW reduction, a cutting-edge technology, and highlights the challenges in its practical application. It also discusses future directions to meet the requirements of upstream and downstream industries by optimising production processes, including the pretreatment and supply of nitrogenous raw materials (e.g. flue gas and sewage), design and macroscopic preparation of electrocatalysts, and upscaling of reactors and other auxiliary equipment.
Collapse
Affiliation(s)
- Qilong Wu
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia.
| | - Fangfang Zhu
- School of Advanced Energy, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Gordon Wallace
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia.
| | - Xiangdong Yao
- School of Advanced Energy, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Jun Chen
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia.
| |
Collapse
|
32
|
Rios Amador I, Hannagan RT, Marin DH, Perryman JT, Rémy C, Hubert MA, Lindquist GA, Chen L, Stevens MB, Boettcher SW, Nielander AC, Jaramillo TF. Protocol for assembling and operating bipolar membrane water electrolyzers. STAR Protoc 2023; 4:102606. [PMID: 37924520 PMCID: PMC10656253 DOI: 10.1016/j.xpro.2023.102606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 11/06/2023] Open
Abstract
Renewable energy-driven bipolar membrane water electrolyzers (BPMWEs) are a promising technology for sustainable production of hydrogen from seawater and other impure water sources. Here, we present a protocol for assembling BPMWEs and operating them in a range of water feedstocks, including ultra-pure deionized water and seawater. We describe steps for membrane electrode assembly preparation, electrolyzer assembly, and electrochemical evaluation. For complete details on the use and execution of this protocol, please refer to Marin et al. (2023).1.
Collapse
Affiliation(s)
- Isabela Rios Amador
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ryan T Hannagan
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Daniela H Marin
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - Joseph T Perryman
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Charline Rémy
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - McKenzie A Hubert
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Grace A Lindquist
- University of Oregon Department of Chemistry and Oregon Center for Electrochemistry, Eugene, OR 97403, USA
| | - Lihaokun Chen
- University of Oregon Department of Chemistry and Oregon Center for Electrochemistry, Eugene, OR 97403, USA
| | - Michaela Burke Stevens
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Shannon W Boettcher
- University of Oregon Department of Chemistry and Oregon Center for Electrochemistry, Eugene, OR 97403, USA.
| | - Adam C Nielander
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| |
Collapse
|
33
|
Wang Z, Zhou Y, Qiu P, Xia C, Fang W, Jin J, Huang L, Deng P, Su Y, Crespo-Otero R, Tian X, You B, Guo W, Di Tommaso D, Pang Y, Ding S, Xia BY. Advanced Catalyst Design and Reactor Configuration Upgrade in Electrochemical Carbon Dioxide Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303052. [PMID: 37589167 DOI: 10.1002/adma.202303052] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2 RR) driven by renewable energy shows great promise in mitigating and potentially reversing the devastating effects of anthropogenic climate change and environmental degradation. The simultaneous synthesis of energy-dense chemicals can meet global energy demand while decoupling emissions from economic growth. However, the development of CO2 RR technology faces challenges in catalyst discovery and device optimization that hinder their industrial implementation. In this contribution, a comprehensive overview of the current state of CO2 RR research is provided, starting with the background and motivation for this technology, followed by the fundamentals and evaluated metrics. Then the underlying design principles of electrocatalysts are discussed, emphasizing their structure-performance correlations and advanced electrochemical assembly cells that can increase CO2 RR selectivity and throughput. Finally, the review looks to the future and identifies opportunities for innovation in mechanism discovery, material screening strategies, and device assemblies to move toward a carbon-neutral society.
Collapse
Affiliation(s)
- Zhitong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yansong Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Peng Qiu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Wensheng Fang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Jian Jin
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Lei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Peilin Deng
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yaqiong Su
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Rd, Xi'an, 710049, China
| | - Rachel Crespo-Otero
- Department of Chemistry, University of College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xinlong Tian
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Wei Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Devis Di Tommaso
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Shujiang Ding
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Rd, Xi'an, 710049, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| |
Collapse
|
34
|
Segets D, Andronescu C, Apfel UP. Accelerating CO 2 electrochemical conversion towards industrial implementation. Nat Commun 2023; 14:7950. [PMID: 38040758 PMCID: PMC10692087 DOI: 10.1038/s41467-023-43762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023] Open
Abstract
Despite significant progress in CO2 conversion field, there remains a significant gap between fundamental research and the industrial demands. This Comment discusses key performance parameters for industrial applications and outlines current limitations in the field.
Collapse
Affiliation(s)
- Doris Segets
- Institute for Energy and Materials Processes-Particle Science and Technology, University of Duisburg-Essen, Carl-Benz-Str. 199, 47057, Duisburg, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), Carl-Benz-Str. 199, 47057, Duisburg, Germany
| | - Corina Andronescu
- Center for Nanointegration Duisburg-Essen (CENIDE), Carl-Benz-Str. 199, 47057, Duisburg, Germany
- Chemical Technology III, Faculty of Chemistry University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Ulf-Peter Apfel
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelderstraße 3, 46047, Oberhausen, Germany.
- Inorganic Chemistry I-Technical Electrochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
35
|
Yue P, Fu Q, Li J, Zhang L, Ye D, Zhu X, Liao Q. Microenvironment Regulation Strategies Facilitating High-Efficiency CO 2 Electrolysis in a Zero-Gap Bipolar Membrane Electrolyzer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53429-53435. [PMID: 37957114 DOI: 10.1021/acsami.3c10817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In alkaline and neutral zero-gap CO2 electrolyzers, the carbon utilization efficiency of the electrocatalytic CO2 reduction to CO is less than 50% because of inherently homogeneous reactions. Utilization of the bipolar membrane (BPM) electrolyzer can effectively suppress (bi)carbonate formation and parasitic CO2 losses; however, an excessive concentration of H+ in the catalyst layer (CL) significantly hinders the activity and selectivity for CO2 reduction. Here, we report a microenvironment regulation strategy that controls the CL thickness and ionomer content to regulate local CO2 transport and the local pH within the CL. We report 80% faradaic efficiency of CO at a current density of 400 mA/cm2 without the use of a buffering layer, exceeding that of state-of-the-art catalysts with a buffering layer. A carbon utilization efficiency of 63.6% at 400 mA/cm2 is also obtained. This study demonstrates the significance of regulating the microenvironment of the CL in a BPM system.
Collapse
Affiliation(s)
- Pengtao Yue
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Jun Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Liang Zhang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Dingding Ye
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
36
|
Yan Z, Reynolds KG, Sun R, Shin Y, Thorarinsdottir AE, Gonzalez MI, Kudisch B, Galli G, Nocera DG. Oxidation Chemistry of Bicarbonate and Peroxybicarbonate: Implications for Carbonate Management in Energy Storage. J Am Chem Soc 2023; 145:22213-22221. [PMID: 37751528 DOI: 10.1021/jacs.3c08144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Carbonate formation presents a major challenge to energy storage applications based on low-temperature CO2 electrolysis and recyclable metal-air batteries. While direct electrochemical oxidation of (bi)carbonate represents a straightforward route for carbonate management, knowledge of the feasibility and mechanisms of direct oxidation is presently lacking. Herein, we report the isolation and characterization of the bis(triphenylphosphine)iminium salts of bicarbonate and peroxybicarbonate, thus enabling the examination of their oxidation chemistry. Infrared spectroelectrochemistry combined with time-resolved infrared spectroscopy reveals that the photoinduced oxidation of HCO3- by an Ir(III) photoreagent results in the generation of the short-lived bicarbonate radical in less than 50 ns. The highly acidic bicarbonate radical undergoes proton transfer with HCO3- to furnish the carbonate radical anion and H2CO3, leading to the eventual release of CO2 and H2O, thus accounting for the appearance of H2O and CO2 in both electrochemical and photochemical oxidation experiments. The back reaction of the carbonate radical subsequently oxidizes the Ir(II) photoreagent, leading to carbonate. In the absence of this back reaction, dimerization of the carbonate radical provides entry into peroxybicarbonate, which we show undergoes facile oxidation to O2 and CO2. Together, the results reported identify tangible pathways for the design of catalysts for the management of carbonate in energy storage applications.
Collapse
Affiliation(s)
- Zhifei Yan
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Kristopher G Reynolds
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Rui Sun
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Yongjin Shin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Agnes E Thorarinsdottir
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Miguel I Gonzalez
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Bryan Kudisch
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Giulia Galli
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
37
|
Mehrabi H, Schichtl ZG, Conlin SK, Coridan RH. Modular Solar-to-Fuel Electrolysis at Low Cell Potentials Enabled by Glycerol Electrooxidation and a Bipolar Membrane Separator. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44953-44961. [PMID: 37706500 DOI: 10.1021/acsami.3c09016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Solar fuel generation through water electrolysis or electrochemical CO2 reduction is thermodynamically limited when it is paired with oxygen evolution reaction (OER). Glycerol electrooxidation reaction (GEOR) is an alternative anodic reaction with lower anodic electrochemical potential that utilizes a renewable coproduct produced during biodiesel synthesis. We show that GEOR on an Au-Pt-Bi ternary metal electrocatalyst in a model alkaline crude glycerol solution can provide significant cell potential reductions even when paired to reduction reactions in seawater and acidic catholytes via a bipolar membrane (BPM). We showed that the combination of GEOR and a BPM separator lowers the total cell potential by 1 V at an electrolysis current of 10.0 mA cm-2 versus an anode performing anode's OER when paired with hydrogen evolution and CO2 reduction cathodes. The observed voltage reduction was steady for periods of up to 80 h, with minimal glycerol crossover observed through the membrane. These results motivate new, high-performance cell designs for photoelectrochemical solar fuel integrated systems based on glycerol electrooxidation.
Collapse
Affiliation(s)
- Hamed Mehrabi
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Zebulon G Schichtl
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Samuel K Conlin
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Robert H Coridan
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
38
|
Yan T, Chen X, Kumari L, Lin J, Li M, Fan Q, Chi H, Meyer TJ, Zhang S, Ma X. Multiscale CO 2 Electrocatalysis to C 2+ Products: Reaction Mechanisms, Catalyst Design, and Device Fabrication. Chem Rev 2023; 123:10530-10583. [PMID: 37589482 DOI: 10.1021/acs.chemrev.2c00514] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Electrosynthesis of value-added chemicals, directly from CO2, could foster achievement of carbon neutral through an alternative electrical approach to the energy-intensive thermochemical industry for carbon utilization. Progress in this area, based on electrogeneration of multicarbon products through CO2 electroreduction, however, lags far behind that for C1 products. Reaction routes are complicated and kinetics are slow with scale up to the high levels required for commercialization, posing significant problems. In this review, we identify and summarize state-of-art progress in multicarbon synthesis with a multiscale perspective and discuss current hurdles to be resolved for multicarbon generation from CO2 reduction including atomistic mechanisms, nanoscale electrocatalysts, microscale electrodes, and macroscale electrolyzers with guidelines for future research. The review ends with a cross-scale perspective that links discrepancies between different approaches with extensions to performance and stability issues that arise from extensions to an industrial environment.
Collapse
Affiliation(s)
- Tianxiang Yan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyi Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lata Kumari
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianlong Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Minglu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qun Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haoyuan Chi
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sheng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
39
|
da Cunha SC, Resasco J. Maximizing single-pass conversion does not result in practical readiness for CO 2 reduction electrolyzers. Nat Commun 2023; 14:5513. [PMID: 37679385 PMCID: PMC10484981 DOI: 10.1038/s41467-023-41348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
The authors comment that maximizing product concentration is a more meaningful target for CO2 electrolyzers than maximizing single-pass conversion.
Collapse
Affiliation(s)
- Shashwati C da Cunha
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Joaquin Resasco
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
40
|
Wen G, Ren B, Liu Y, Dong S, Luo D, Jin M, Wang X, Yu A, Chen Z. Bridging Trans-Scale Electrode Engineering for Mass CO 2 Electrolysis. JACS AU 2023; 3:2046-2061. [PMID: 37654582 PMCID: PMC10466330 DOI: 10.1021/jacsau.3c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 09/02/2023]
Abstract
Electrochemical CO2 upgrade offers an artificial route for carbon recycling and neutralization, while its widespread implementation relies heavily on the simultaneous enhancement of mass transfer and reaction kinetics to achieve industrial conversion rates. Nevertheless, such a multiscale challenge calls for trans-scale electrode engineering. Herein, three scales are highlighted to disclose the key factors of CO2 electrolysis, including triple-phase boundaries, reaction microenvironment, and catalytic surface coordination. Furthermore, the advanced types of electrolyzers with various electrode design strategies are surveyed and compared to guide the system architectures for continuous conversion. We further offer an outlook on challenges and opportunities for the grand-scale application of CO2 electrolysis. Hence, this comprehensive Perspective bridges the gaps between electrode research and CO2 electrolysis practices. It contributes to facilitating the mixed reaction and mass transfer process, ultimately enabling the on-site recycling of CO2 emissions from industrial plants and achieving net negative emissions.
Collapse
Affiliation(s)
- Guobin Wen
- Department
of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L
3G1, Canada
| | - Bohua Ren
- Department
of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L
3G1, Canada
- Institute
of Carbon Neutrality, Zhejiang Wanli University, Ningbo 315100, China
- South
China Academy of Advanced Optoelectronics, International Academy of
Optoelectronics at Zhaoqing, South China
Normal University, Guangdong 510006, China
| | - Yinyi Liu
- South
China Academy of Advanced Optoelectronics, International Academy of
Optoelectronics at Zhaoqing, South China
Normal University, Guangdong 510006, China
| | - Silong Dong
- South
China Academy of Advanced Optoelectronics, International Academy of
Optoelectronics at Zhaoqing, South China
Normal University, Guangdong 510006, China
| | - Dan Luo
- Department
of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L
3G1, Canada
- Key
Laboratory of Nanophotonic Functional Materials and Devices, School
of Information and Optoelectronic Science and Engineering, South China Normal University, Guangdong 510006, China
| | - Mingliang Jin
- South
China Academy of Advanced Optoelectronics, International Academy of
Optoelectronics at Zhaoqing, South China
Normal University, Guangdong 510006, China
| | - Xin Wang
- South
China Academy of Advanced Optoelectronics, International Academy of
Optoelectronics at Zhaoqing, South China
Normal University, Guangdong 510006, China
| | - Aiping Yu
- Department
of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L
3G1, Canada
| | - Zhongwei Chen
- Department
of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L
3G1, Canada
| |
Collapse
|
41
|
Yan T, Pan H, Liu Z, Kang P. Phase-Inversion Induced 3D Electrode for Direct Acidic Electroreduction CO 2 to Formic acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207650. [PMID: 36890777 DOI: 10.1002/smll.202207650] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Indexed: 06/08/2023]
Abstract
Direct electrochemical CO2 reduction to formic acid (FA) instead of formate is a challenging task due to the high acidity of FA and competitive hydrogen evolution reaction. Herein, 3D porous electrode (TDPE) is prepared by a simple phase inversion method, which can electrochemically reduce CO2 to FA in acidic conditions. Owing to interconnected channels, high porosity, and appropriate wettability, TDPE not only improves mass transport, but also realizes pH gradient to build higher local pH micro-environment under acidic conditions for CO2 reduction compared with planar electrode and gas diffusion electrode. Kinetic isotopic effect experiments demonstrate that the proton transfer becomes the rate-determining step at the pH of 1.8; however, not significant in neutral solution, suggesting that the proton is aiding the overall kinetics. Maximum FA Faradaic efficiency of 89.2% has been reached at pH 2.7 in a flow cell, generating FA concentration of 0.1 m. Integrating catalyst and gas-liquid partition layer into a single electrode structure by phase inversion method paves a facile avenue for direct production of FA by electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Tao Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Hui Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhikun Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Peng Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
42
|
Li X, Zhang P, Zhang L, Zhang G, Gao H, Pang Z, Yu J, Pei C, Wang T, Gong J. Confinement of an alkaline environment for electrocatalytic CO 2 reduction in acidic electrolytes. Chem Sci 2023; 14:5602-5607. [PMID: 37265726 PMCID: PMC10231308 DOI: 10.1039/d3sc01040f] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/01/2023] [Indexed: 06/03/2023] Open
Abstract
Acidic electrochemical CO2 reduction reaction (CO2RR) can minimize carbonate formation and eliminate CO2 crossover, thereby improving long-term stability and enhancing single-pass carbon efficiency (SPCE). However, the kinetically favored hydrogen evolution reaction (HER) is generally predominant under acidic conditions. This paper describes the confinement of a local alkaline environment for efficient CO2RR in a strongly acidic electrolyte through the manipulation of mass transfer processes in well-designed hollow-structured Ag@C electrocatalysts. A high faradaic efficiency of over 95% at a current density of 300 mA cm-2 and an SPCE of 46.2% at a CO2 flow rate of 2 standard cubic centimeters per minute are achieved in the acidic electrolyte, with enhanced stability compared to that under alkaline conditions. Computational modeling results reveal that the unique structure of Ag@C could regulate the diffusion process of OH- and H+, confining a high-pH local reaction environment for the promoted activity. This work presents a promising route to engineer the microenvironment through the regulation of mass transport that permits the CO2RR in acidic electrolytes with high performance.
Collapse
Affiliation(s)
- Xiaozhi Li
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
| | - Peng Zhang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
- National Industry-Education Platform of Energy Storage, Tianjin University 135 Yaguan Road Tianjin 300350 China
- Joint School of National University of Singapore, Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 China
| | - Lili Zhang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
| | - Gong Zhang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
| | - Hui Gao
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
| | - Zifan Pang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
| | - Jia Yu
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
| | - Chunlei Pei
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
| | - Tuo Wang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
- National Industry-Education Platform of Energy Storage, Tianjin University 135 Yaguan Road Tianjin 300350 China
| | - Jinlong Gong
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
- National Industry-Education Platform of Energy Storage, Tianjin University 135 Yaguan Road Tianjin 300350 China
| |
Collapse
|
43
|
Chu AT, Jung O, Toh WL, Surendranath Y. Organic Non-Nucleophilic Electrolyte Resists Carbonation during Selective CO 2 Electroreduction. J Am Chem Soc 2023; 145:9617-9623. [PMID: 37093640 DOI: 10.1021/jacs.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The spontaneous reaction of CO2 with water and hydroxide to form (bi)carbonates in alkaline aqueous electrolytes compromises the energy and carbon efficiency of CO2 electrolyzers. We hypothesized that electrolyte carbonation could be mitigated by operating the reaction in an aprotic solvent with low water content, while also employing an exogenous non-nucleophilic acid as the proton donor to prevent parasitic capture of CO2 by its conjugate base. However, it is unclear whether such an electrolyte design could simultaneously engender high CO2 reduction selectivity and low electrolyte carbonation. We herein report selective CO2 electroreduction with low carbonate formation on a polycrystalline Au catalyst using dimethyl sulfoxide as the solvent and acetic acid/acetate as the proton-donating medium. CO2 is reduced to CO with over 90% faradaic efficiency at potentials relative to the reversible hydrogen electrode that are comparable to those in neutral aqueous electrolytes. 1H and 13C NMR studies demonstrate that only millimolar concentrations of bicarbonates are reversibly formed, that the proton activity of the medium is largely unaffected by exposure to CO2, and that low carbonation is maintained upon addition of 1 M water. This work demonstrates that electrolyte carbonation can be attenuated and decoupled from efficient CO2 reduction in an aprotic solvent, offering new electrolyte design principles for low-temperature CO2 electroreduction systems.
Collapse
Affiliation(s)
- An T Chu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Onyu Jung
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wei Lun Toh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yogesh Surendranath
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Xu Z, Peng C, Zheng G. Coupling Value-Added Anodic Reactions with Electrocatalytic CO 2 Reduction. Chemistry 2023; 29:e202203147. [PMID: 36380419 DOI: 10.1002/chem.202203147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
Electrocatalytic CO2 reduction features a promising approach to realize carbon neutrality. However, its competitiveness is limited by the sluggish oxygen evolution reaction (OER) at anode, which consumes a large portion of energy. Coupling value-added anodic reactions with CO2 electroreduction has been emerging as a promising strategy in recent years to enhance the full-cell energy efficiency and produce valuable chemicals at both cathode and anode of the electrolyzer. This review briefly summarizes recent progresses on the electrocatalytic CO2 reduction, and the economic feasibility of different CO2 electrolysis systems is discussed. Then a comprehensive summary of recent advances in the coupled electrolysis of CO2 and potential value-added anodic reactions is provided, with special focus on the specific cell designs. Finally, current challenges and future opportunities for the coupled electrolysis systems are proposed, which are targeted to facilitate progress in this field and push the CO2 electrolyzers to a more practical level.
Collapse
Affiliation(s)
- Zikai Xu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Chen Peng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
45
|
Larrea C, Avilés-Moreno JR, Ocón P. Strategies to Enhance CO 2 Electrochemical Reduction from Reactive Carbon Solutions. Molecules 2023; 28:molecules28041951. [PMID: 36838939 PMCID: PMC9960053 DOI: 10.3390/molecules28041951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
CO2 electrochemical reduction (CO2 ER) from (bi)carbonate feed presents an opportunity to efficiently couple this process to alkaline-based carbon capture systems. Likewise, while this method of reducing CO2 currently lags behind CO2 gas-fed electrolysers in certain performance metrics, it offers a significant improvement in CO2 utilization which makes the method worth exploring. This paper presents two simple modifications to a bicarbonate-fed CO2 ER system that enhance the selectivity towards CO. Specifically, a modified hydrophilic cathode with Ag catalyst loaded through electrodeposition and the addition of dodecyltrimethylammonium bromide (DTAB), a low-cost surfactant, to the catholyte enabled the system to achieve a FECO of 85% and 73% at 100 and 200 mA·cm-2, respectively. The modifications were tested in 4 h long experiments where DTAB helped maintain FECO stable even when the pH of the catholyte became more alkaline, and it improved the CO2 utilization compared to a system without DTAB.
Collapse
|
46
|
Dinh HQ, Toh WL, Chu AT, Surendranath Y. Neutralization Short-Circuiting with Weak Electrolytes Erodes the Efficiency of Bipolar Membranes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4001-4010. [PMID: 36633314 DOI: 10.1021/acsami.2c18685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bipolar membranes (BPMs) are critical components of a variety of electrochemical energy technologies. Many electrochemical applications require the use of buffers to maintain stable, nonextreme pH environments, yet the impact of buffers or weak acids/bases on the electrochemical behavior of BPMs remains poorly understood. Our data for a cell containing weak electrolytes is consistent with internal pH gradients within the anion exchange membrane (AEM) or cation exchange membrane (CEM) component of the BPM that form via ionic short-circuiting processes at open-circuit. Short-circuiting results from the coupling of co-ion crossover and parasitic neutralization and leads to buffering of the bipolar interface. This phenomenon, which we term neutralization short-circuiting, serves to erode BPM efficiency by attenuating the open-circuit membrane voltage and introducing parasitic reverse bias currents associated with weak acid/base dissociation at the interface. These findings establish a mechanistic basis for the operation of BPM cells in the presence of weak acid/base electrolytes.
Collapse
Affiliation(s)
- Hieu Q Dinh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Wei Lun Toh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - An T Chu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Yogesh Surendranath
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
47
|
Xu Q, Xu A, Garg S, Moss AB, Chorkendorff I, Bligaard T, Seger B. Enriching Surface-Accessible CO 2 in the Zero-Gap Anion-Exchange-Membrane-Based CO 2 Electrolyzer. Angew Chem Int Ed Engl 2023; 62:e202214383. [PMID: 36374271 PMCID: PMC10108229 DOI: 10.1002/anie.202214383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Zero-gap anion exchange membrane (AEM)-based CO2 electrolysis is a promising technology for CO production, however, their performance at elevated current densities still suffers from the low local CO2 concentration due to heavy CO2 neutralization. Herein, via modulating the CO2 feed mode and quantitative analyzing CO2 utilization with the aid of mass transport modeling, we develop a descriptor denoted as the surface-accessible CO2 concentration ([CO2 ]SA ), which enables us to indicate the transient state of the local [CO2 ]/[OH- ] ratio and helps define the limits of CO2 -to-CO conversion. To enrich the [CO2 ]SA , we developed three general strategies: (1) increasing catalyst layer thickness, (2) elevating CO2 pressure, and (3) applying a pulsed electrochemical (PE) method. Notably, an optimized PE method allows to keep the [CO2 ]SA at a high level by utilizing the dynamic balance period of CO2 neutralization. A maximum jCO of 368±28 mA cmgeo -2 was achieved using a commercial silver catalyst.
Collapse
Affiliation(s)
- Qiucheng Xu
- Surface Physics and Catalysis (Surf Cat) Section, Department of Physics, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Aoni Xu
- CatTheory Center, Department of Physics, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Sahil Garg
- Surface Physics and Catalysis (Surf Cat) Section, Department of Physics, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Asger B Moss
- Surface Physics and Catalysis (Surf Cat) Section, Department of Physics, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Ib Chorkendorff
- Surface Physics and Catalysis (Surf Cat) Section, Department of Physics, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Thomas Bligaard
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Brian Seger
- Surface Physics and Catalysis (Surf Cat) Section, Department of Physics, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| |
Collapse
|
48
|
Sassenburg M, Kelly M, Subramanian S, Smith WA, Burdyny T. Zero-Gap Electrochemical CO 2 Reduction Cells: Challenges and Operational Strategies for Prevention of Salt Precipitation. ACS ENERGY LETTERS 2023; 8:321-331. [PMID: 36660368 PMCID: PMC9841607 DOI: 10.1021/acsenergylett.2c01885] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Salt precipitation is a problem in electrochemical CO2 reduction electrolyzers that limits their long-term durability and industrial applicability by reducing the active area, causing flooding and hindering gas transport. Salt crystals form when hydroxide generation from electrochemical reactions interacts homogeneously with CO2 to generate substantial quantities of carbonate. In the presence of sufficient electrolyte cations, the solubility limits of these species are reached, resulting in "salting out" conditions in cathode compartments. Detrimental salt precipitation is regularly observed in zero-gap membrane electrode assemblies, especially when operated at high current densities. This Perspective briefly discusses the mechanisms for salt formation, and recently reported strategies for preventing or reversing salt formation in zero-gap CO2 reduction membrane electrode assemblies. We link these approaches to the solubility limit of potassium carbonate within the electrolyzer and describe how each strategy separately manipulates water, potassium, and carbonate concentrations to prevent (or mitigate) salt formation.
Collapse
Affiliation(s)
- Mark Sassenburg
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZHDelft, The Netherlands
| | - Maria Kelly
- Department
of Chemical and Biological Engineering and Renewable and Sustainable
Energy Institute (RASEI), University of
Colorado Boulder, Boulder, Colorado80303, United States
- National
Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Siddhartha Subramanian
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZHDelft, The Netherlands
| | - Wilson A. Smith
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZHDelft, The Netherlands
- Department
of Chemical and Biological Engineering and Renewable and Sustainable
Energy Institute (RASEI), University of
Colorado Boulder, Boulder, Colorado80303, United States
- National
Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Thomas Burdyny
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZHDelft, The Netherlands
| |
Collapse
|
49
|
Zhang Z, Ma P, Luo L, Ding X, Zhou S, Zeng J. Regulating Spin States in Oxygen Electrocatalysis. Angew Chem Int Ed Engl 2023; 62:e202216837. [PMID: 36598399 DOI: 10.1002/anie.202216837] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Developing efficient and stable transition metal oxides catalysts for energy conversion processes such as oxygen evolution reaction and oxygen reduction reaction is one of the key measures to solve the problem of energy shortage. The spin state of transition metal oxides is strongly correlated with their catalytic activities. In an octahedral structure of transition metal oxides, the spin state of active centers could be regulated by adjusting the splitting energy and the electron pairing energy. Regulating spin state of active centers could directly modulate the d orbitals occupancy, which influence the strength of metal-ligand bonds and the adsorption behavior of the intermediates. In this review, we clarified the significance of regulating spin state of the active centers. Subsequently, we discussed several characterization technologies for spin state and some recent strategies to regulate the spin state of the active centers. Finally, we put forward some views on the future research direction of this vital field.
Collapse
Affiliation(s)
- Zhirong Zhang
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China.,Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Peiyu Ma
- National Synchrotron Radiation Laboratory, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lei Luo
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China.,Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xilan Ding
- National Synchrotron Radiation Laboratory, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shiming Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jie Zeng
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China.,Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
50
|
Chang HM, Zenyuk IV. Membrane electrode assembly design to prevent CO 2 crossover in CO 2 reduction reaction electrolysis. Commun Chem 2023; 6:2. [PMID: 36697970 PMCID: PMC9814536 DOI: 10.1038/s42004-022-00806-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
To reach a net-zero energy economy by 2050, it is critical to develop negative emission technologies, such as CO2 reduction electrolyzers, but these devices still suffer from various issues including low utilization of CO2 because of its cross-over from the cathode to the anode. This comment highlights the recent innovative design of membrane electrode assembly, utilizing a bipolar membrane and catholyte layer that blocks CO2 cross-over and enables high CO2 single-pass utilization.
Collapse
Affiliation(s)
- Hung-Ming Chang
- grid.266093.80000 0001 0668 7243Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA USA ,grid.266093.80000 0001 0668 7243National Fuel Cell Research Center, University of California Irvine, Irvine, CA USA
| | - Iryna V. Zenyuk
- grid.266093.80000 0001 0668 7243Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA USA ,grid.266093.80000 0001 0668 7243National Fuel Cell Research Center, University of California Irvine, Irvine, CA USA
| |
Collapse
|