1
|
Scheible K, Beblavy R, Sohn MB, Qui X, Gill AL, Narvaez-Miranda J, Brunner J, Miller RK, Barrett ES, O'Connor TG, Gill SR. Affective symptoms in pregnancy are associated with the vaginal microbiome. J Affect Disord 2025; 368:410-419. [PMID: 39293607 PMCID: PMC11560476 DOI: 10.1016/j.jad.2024.09.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Composition of the vaginal microbiome in pregnancy is associated with adverse maternal, obstetric, and child health outcomes. Therefore, identifying sources of individual differences in the vaginal microbiome is of considerable clinical and public health interest. The current study tested the hypothesis that vaginal microbiome composition during pregnancy is associated with an individual's experience of affective symptoms and stress exposure. METHODS Data were based on a prospective longitudinal study of a medically healthy community sample of 275 mother-infant pairs. Affective symptoms and stress exposure and select measures of associated biomarkers (diurnal salivary cortisol, serum measures of sex hormones) were collected at each trimester; self-report, clinical, and medical records were used to collect detailed data on socio-demographic factors and health behavior, including diet and sleep. Vaginal microbiome samples were collected in the third trimester (34-40 weeks) and characterized by 16S rRNA sequencing. Identified taxa were clustered into three community clusters (CC1-3) based on dissimilarity of vaginal microbiota composition. RESULTS Results indicate that depressive symptoms during pregnancy were reliably associated with individual taxa and CC3 in the third trimester. Prediction of functional potential from 16S taxonomy revealed a differential abundance of metabolic pathways in CC1-3 and individual taxa, including biosynthetic pathways for serotonin and dopamine. We did not find robust evidence linking symptom- and stress-related biomarkers and CCs. CONCLUSIONS Our results provide further evidence of how prenatal psychological distress during pregnancy alters the maternal-fetal microbiome ecosystem that may be important for understanding maternal and child health outcomes.
Collapse
Affiliation(s)
- Kristin Scheible
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Robert Beblavy
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michael B Sohn
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Xing Qui
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ann L Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Janiret Narvaez-Miranda
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Emily S Barrett
- Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Thomas G O'Connor
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Wynne Center for Family Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Steven R Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
2
|
Cruz AK, Alves MA, Andresson T, Bayless AL, Bloodsworth KJ, Bowden JA, Bullock K, Burnet MC, Neto FC, Choy A, Clish CB, Couvillion SP, Cumeras R, Dailey L, Dallmann G, Davis WC, Deik AA, Dickens AM, Djukovic D, Dorrestein PC, Eder JG, Fiehn O, Flores R, Gika H, Hagiwara KA, Pham TH, Harynuk JJ, Aristizabal-Henao JJ, Hoyt DW, Jean-François F, Kråkström M, Kumar A, Kyle JE, Lamichhane S, Li Y, Nam SL, Mandal R, de la Mata AP, Meehan MJ, Meikopoulos T, Metz TO, Mouskeftara T, Munoz N, Gowda GAN, Orešic M, Panitchpakdi M, Pierre-Hugues S, Raftery D, Rushing B, Schock T, Seifried H, Servetas S, Shen T, Sumner S, Carrillo KST, Thibaut D, Trejo JB, Van Meulebroek L, Vanhaecke L, Virgiliou C, Weldon KC, Wishart DS, Zhang L, Zheng J, Da Silva S. Multiplatform metabolomic interlaboratory study of a whole human stool candidate reference material from omnivore and vegan donors. Metabolomics 2024; 20:125. [PMID: 39495321 DOI: 10.1007/s11306-024-02185-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Human metabolomics has made significant strides in understanding metabolic changes and their implications for human health, with promising applications in diagnostics and treatment, particularly regarding the gut microbiome. However, progress is hampered by issues with data comparability and reproducibility across studies, limiting the translation of these discoveries into practical applications. OBJECTIVES This study aims to evaluate the fit-for-purpose of a suite of human stool samples as potential candidate reference materials (RMs) and assess the state of the field regarding harmonizing gut metabolomics measurements. METHODS An interlaboratory study was conducted with 18 participating institutions. The study allowed for the use of preferred analytical techniques, including liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR). RESULTS Different laboratories used various methods and analytical platforms to identify the metabolites present in human stool RM samples. The study found a 40% to 70% recurrence in the reported top 20 most abundant metabolites across the four materials. In the full annotation list, the percentage of metabolites reported multiple times after nomenclature standardization was 36% (LC-MS), 58% (GC-MS) and 76% (NMR). Out of 9,300 unique metabolites, only 37 were reported across all three measurement techniques. CONCLUSION This collaborative exercise emphasized the broad chemical survey possible with multi-technique approaches. Community engagement is essential for the evaluation and characterization of common materials designed to facilitate comparability and ensure data quality underscoring the value of determining current practices, challenges, and progress of a field through interlaboratory studies.
Collapse
Affiliation(s)
- Abraham Kuri Cruz
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 100 Bureau Dr.,, Gaithersburg, MD, 20899, USA
| | - Marina Amaral Alves
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
- Walter Mors Institute of Research On Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-599, Brazil
| | - Thorkell Andresson
- Division of Cancer Protection, National Institutes of Health, National Cancer Institute, 9000 Rockville Pike, , Bethesda, MD, 20892, USA
| | - Amanda L Bayless
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 331 Fort Johnson Rd, Charleston, SC, 29412, USA
| | - Kent J Bloodsworth
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | | | - Kevin Bullock
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St., Cambridge, MA, 02142, USA
| | - Meagan C Burnet
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Fausto Carnevale Neto
- Northwest Metabolomics Research Center, University of Washington, Seattle, Gerberding Hall G80, Box 351202, Seattle, WA, 98195, USA
| | - Angelina Choy
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St., Cambridge, MA, 02142, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St., Cambridge, MA, 02142, USA
| | - Sneha P Couvillion
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Raquel Cumeras
- West Coast Metabolomics Center, University of California Davis, One Shields Ave., Davis, CA, 95616, USA
- Institut d'Investigació Sanitària Pere Virgili (IISPV), CERCA, 43204, Reus, Spain
| | - Lucas Dailey
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St., Cambridge, MA, 02142, USA
| | - Guido Dallmann
- Biocrates Life Sciences AG, Eduard-Bodem-Gasse 8, 6020, Innsbruck, Austria
| | - W Clay Davis
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 331 Fort Johnson Rd, Charleston, SC, 29412, USA
| | - Amy A Deik
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St., Cambridge, MA, 02142, USA
| | - Alex M Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
- Department of Chemistry, University of Turku, 20014, Turku, Finland
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, University of Washington, Seattle, Gerberding Hall G80, Box 351202, Seattle, WA, 98195, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Josie G Eder
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Roberto Flores
- Division of Program Coordination, Planning and Strategic Initiatives, Office of Nutrition Research, Office of the Director, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Helen Gika
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd., 57001, Thessaloniki, Greece
| | - Kehau A Hagiwara
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 331 Fort Johnson Rd, Charleston, SC, 29412, USA
| | - Tuan Hai Pham
- Biocrates Life Sciences AG, Eduard-Bodem-Gasse 8, 6020, Innsbruck, Austria
| | - James J Harynuk
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Juan J Aristizabal-Henao
- University of Florida, Gainesville, FL, 32611, USA
- BPGbio Inc., 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | - David W Hoyt
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Focant Jean-François
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Pl. du Vingt Août 7, 4000, Liège, Belgium
| | - Matilda Kråkström
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Amit Kumar
- Division of Cancer Protection, National Institutes of Health, National Cancer Institute, 9000 Rockville Pike, , Bethesda, MD, 20892, USA
| | - Jennifer E Kyle
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Santosh Lamichhane
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Yuan Li
- UNC Chapel Hill's Nutrition Research Institute, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Seo Lin Nam
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | | | - Michael J Meehan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Thomas Meikopoulos
- Division of Program Coordination, Planning and Strategic Initiatives, Office of Nutrition Research, Office of the Director, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD, 20892, USA
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd., 57001, Thessaloniki, Greece
| | - Thomas O Metz
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Thomai Mouskeftara
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd., 57001, Thessaloniki, Greece
| | - Nathalie Munoz
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - G A Nagana Gowda
- Northwest Metabolomics Research Center, University of Washington, Seattle, Gerberding Hall G80, Box 351202, Seattle, WA, 98195, USA
| | - Matej Orešic
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70281, Örebro, Sweden
| | - Morgan Panitchpakdi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Stefanuto Pierre-Hugues
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Pl. du Vingt Août 7, 4000, Liège, Belgium
| | - Daniel Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, Gerberding Hall G80, Box 351202, Seattle, WA, 98195, USA
| | - Blake Rushing
- UNC Chapel Hill's Nutrition Research Institute, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Tracey Schock
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 331 Fort Johnson Rd, Charleston, SC, 29412, USA
| | - Harold Seifried
- Division of Cancer Protection, National Institutes of Health, National Cancer Institute, 9000 Rockville Pike, , Bethesda, MD, 20892, USA
| | - Stephanie Servetas
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), 100 Bureau Dr. , Gaithersburg, MD, 20899, USA
| | - Tong Shen
- West Coast Metabolomics Center, University of California Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Susan Sumner
- UNC Chapel Hill's Nutrition Research Institute, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | | | - Dejong Thibaut
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Pl. du Vingt Août 7, 4000, Liège, Belgium
| | - Jesse B Trejo
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Lieven Van Meulebroek
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Lynn Vanhaecke
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Christina Virgiliou
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd., 57001, Thessaloniki, Greece
| | - Kelly C Weldon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Lu Zhang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Jiamin Zheng
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Sandra Da Silva
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), 100 Bureau Dr. , Gaithersburg, MD, 20899, USA.
| |
Collapse
|
3
|
Stevens AJ, Heiwari TM, Rich FJ, Bradley HA, Gur TL, Galley JD, Kennedy MA, Dixon LA, Mulder RT, Rucklidge JJ. Randomised control trial indicates micronutrient supplementation may support a more robust maternal microbiome for women with antenatal depression during pregnancy. Clin Nutr 2024; 43:120-132. [PMID: 39361984 DOI: 10.1016/j.clnu.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND AND AIMS We investigated the effects of high dose dietary micronutrient supplementation or placebo on the human gut microbiome in pregnant women who had moderate symptoms of antenatal depression. There is a significant absence of well-controlled clinical studies that have investigated the dynamic changes of the microbiome during pregnancy and the relationship among diet, microbiome and antenatal depression. This research is among the first to provide an insight into this area of research. METHODS This 12 - week study followed a standard double blinded randomised placebo-controlled trial (RCT) design with either high dose micronutrients or active placebo. Matching stool microbiome samples and mood data were obtained at baseline and post-treatment, from participants between 12 and 24 weeks gestation. Stool microbiome samples from 33 participants (17 in the placebo and 16 in the treatment group) were assessed using 16s rRNA sequencing. Data preparation and statistical analysis was predominantly performed using the QIIME2 bioinformatic software tools for 16s rRNA analysis. RESULTS Microbiome community structure became increasingly heterogenous with decreased diversity during the course of the study, which was represented by significant changes in alpha and beta diversity. This effect appeared to be mitigated by micronutrient administration. There were less substantial changes at the genus level, where Coprococcus decreased in relative abundance in response to micronutrient administration. We also observed that a higher abundance of Coprococcus and higher alpha diversity correlated with higher antenatal depression scores. CONCLUSIONS Micronutrient treatment appeared to support a more diverse (alpha diversity) and stable (beta diversity) microbiome during pregnancy. This may aid in maintaining a more resilient or adaptable microbial community, which would help protect against decreases or fluctuations that are observed during pregnancy.
Collapse
Affiliation(s)
- Aaron J Stevens
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, Wellington, 6021, New Zealand.
| | - Thalia M Heiwari
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, Wellington, 6021, New Zealand
| | - Fenella J Rich
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, Wellington, 6021, New Zealand
| | - Hayley A Bradley
- School of Psychology, Speech and Hearing, University of Canterbury, New Zealand
| | - Tamar L Gur
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jeffrey D Galley
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, 8011, New Zealand
| | - Lesley A Dixon
- New Zealand College of Midwives, Christchurch, New Zealand
| | - Roger T Mulder
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand; Canterbury District Health Board, Christchurch, New Zealand
| | - Julia J Rucklidge
- School of Psychology, Speech and Hearing, University of Canterbury, New Zealand
| |
Collapse
|
4
|
Hashemi N, Tondro Anamag F, Javan Balegh Marand A, Rahnama'i MS, Herizchi Ghadim H, Salehi-Pourmehr H, Hajebrahimi S. A systematic and comprehensive review of the role of microbiota in urinary chronic pelvic pain syndrome. Neurourol Urodyn 2024; 43:1859-1882. [PMID: 38994675 DOI: 10.1002/nau.25550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Many genitourinary tract disorders could be attributed partly to the microbiota. This study sought to conduct a systematic review of the role of the microbiota in urinary chronic pelvic pain syndrome (UCPPS). METHODS We searched Embase, Scopus, Web of Science, and PubMed with no time, language, or study type restrictions until December 1, 2023. The JBI Appraisal Tool was used to assess the quality of the studies. Study selection followed the PRISMA statement. Studies addressing microbiome variations among patients suffering from interstitial cystitis/bladder pain syndrome (IC/BPS) or chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and a control group were considered eligible. RESULTS A total of 21 studies (1 UCPPS, 12 IC/BPS, and 8 CP/CPPS) comprising 1125 patients were enrolled in our final data synthesis. It has been shown that the reduced diversity and discrepant composition of the gut microbiota may partly be attributed to the UCPPS pathogenesis. In terms of urine microbiota, some operational taxonomic units were shown to be elevated, while others became less abundant. Furthermore, various bacteria and fungi are linked to specific clinical features. Few investigations denied UCPPS as a dysbiotic condition. CONCLUSIONS Urinary and intestinal microbiota appear to be linked with UCPPS, comprising IC/BPS and CP/CPPS. However, given the substantial disparity of published studies, a battery of prospective trials is required to corroborate these findings.
Collapse
Affiliation(s)
- Negin Hashemi
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Tondro Anamag
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sakineh Hajebrahimi
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Urology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Zhao F, Tie N, Kwok LY, Ma T, Wang J, Man D, Yuan X, Li H, Pang L, Shi H, Ren S, Yu Z, Shen X, Li H, Zhang H. Baseline gut microbiome as a predictive biomarker of response to probiotic adjuvant treatment in gout management. Pharmacol Res 2024; 209:107445. [PMID: 39396767 DOI: 10.1016/j.phrs.2024.107445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Gout is characterized by dysregulation of uric acid (UA) metabolism, and the gut microbiota may serve as a regulatory target. This two-month randomized, double-blind, placebo-controlled trial aimed to investigate the additional benefits of coadministering Probio-X alongside febuxostat. A total of 160 patients with gout were randomly assigned to either the probiotic group (n = 120; Probio-X [3 × 1010 CFU/day] with febuxostat) or the placebo group (n = 40; placebo material with febuxostat). Coadministration of Probio-X significantly decreased serum UA levels and the rate of acute gout attacks (P < 0.05). Based on achieving a target sUA level (360 μmol/L) after the intervention, the probiotic group was further subdivided into probiotic-responsive (ProA; n = 54) and probiotic-unresponsive (ProB; n = 66) subgroups. Post-intervention clinical indicators, metagenomic, and metabolomic changes in the ProB and placebo groups were similar, but differed from those in the ProA group, which exhibited significantly lower levels of acute gout attack, gout impact score, serum indicators (UA, XOD, hypoxanthine, and IL-1β), and fecal gene abundances of UA-producing pathways (KEGG orthologs of K13479 and K01487; gut metabolic modules for formate conversion and lactose and galactose degradation). Additionally, the ProA group showed significantly higher levels (P < 0.05) of gut SCFAs-producing bacteria and UA-related metabolites (xanthine, hypoxanthine, bile acids) after the intervention. Finally, we established a gout metagenomic classifier to predict probiotic responsiveness based on subjects' baseline gut microbiota composition. Our results indicate that probiotic-driven therapeutic responses are highly individual, with the probiotic-responsive cohort benefitting significantly from probiotic coadministration.
Collapse
Affiliation(s)
- Feiyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ning Tie
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Teng Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Jing Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China
| | - Dafu Man
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China
| | - Xiangzheng Yuan
- Physical examination center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Huiyun Li
- Department of Rheumatology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Lixia Pang
- Department of Rheumatology and Immunology, Hulunbuir People's Hospital, Hohhot, Inner Mongolia, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia, China
| | - Shuiming Ren
- Department of Rheumatology and Immunology, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos, Inner Mongolia, China
| | - Zhongjie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xin Shen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hongbin Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China.
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
6
|
Lu Y, Yu X, Wang Z, Kong L, Jiang Z, Shang R, Zhong X, Lv S, Zhang G, Gao H, Yang N. Microbiota-gut-brain axis: Natural antidepressants molecular mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156012. [PMID: 39260135 DOI: 10.1016/j.phymed.2024.156012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe mental health condition characterized by persistent depression, impaired cognition, and reduced activity. Increasing evidence suggests that gut microbiota (GM) imbalance is closely linked to the emergence and advancement of MDD, highlighting the potential significance of regulating the "Microbiota-Gut-Brain" (MGB) axis to impact the development of MDD. Natural products (NPs), characterized by broad biological activities, low toxicity, and multi-target characteristics, offer unique advantages in antidepressant treatment by regulating MGB axis. PURPOSE This review was aimed to explore the intricate relationship between the GM and the brain, as well as host responses, and investigated the mechanisms underlying the MGB axis in MDD development. It also explored the pharmacological mechanisms by which NPs modulate MGB axis to exert antidepressant effects and addressed current research limitations. Additionally, it proposed new strategies for future preclinical and clinical applications in the MDD domain. METHODS To study the effects and mechanism by which NPs exert antidepressant effects through mediating the MGB axis, data were collected from Web of Science, PubMed, ScienceDirect from initial establishment to March 2024. NPs were classified and summarized by their mechanisms of action. RESULTS NPs, such as flavonoids,alkaloids,polysaccharides,saponins, terpenoids, can treat MDD by regulating the MGB axis. Its mechanism includes balancing GM, regulating metabolites and neurotransmitters such as SCAFs, 5-HT, BDNF, inhibiting neuroinflammation, improving neural plasticity, and increasing neurogenesis. CONCLUSIONS NPs display good antidepressant effects, and have potential value for clinical application in the prevention and treatment of MDD by regulating the MGB axis. However, in-depth study of the mechanisms by which antidepressant medications affect MGB axis will also require considerable effort in clinical and preclinical research, which is essential for the development of effective antidepressant treatments.
Collapse
Affiliation(s)
- Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaowen Yu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhongling Wang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Linghui Kong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhenyuan Jiang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ruirui Shang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Haonan Gao
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
7
|
Halabitska I, Petakh P, Kamyshna I, Oksenych V, Kainov DE, Kamyshnyi O. The interplay of gut microbiota, obesity, and depression: insights and interventions. Cell Mol Life Sci 2024; 81:443. [PMID: 39476179 PMCID: PMC11525354 DOI: 10.1007/s00018-024-05476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/08/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
The gut microbiome, body weight, and related comorbidities are intricately linked through a complex interaction of microbial, genetic, environmental, and psychological factors. Alterations in gut microbiota can contribute to the development of weight disorders and depressive symptoms, with the potential for these relationships to be bidirectional. Effective management of these interconnected conditions often involves a combination of lifestyle modifications and psychological support. Medical interventions, including treatments for obesity, antidiabetic drugs, antidepressants, antibiotics, and probiotics, can have beneficial and detrimental effects on gut microbiota and mental health. Further research is needed to better understand their impact on gut microbiome and mental health in the context of obesity.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, Ternopil, 46001, Ukraine
| | - Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, 88000, Ukraine.
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, 46001, Ukraine
| | - Valentyn Oksenych
- Department of Clinical Science, University of Bergen, Bergen, 5020, Norway
| | - Denis E Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, 7028, Norway.
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, 46001, Ukraine
| |
Collapse
|
8
|
Tan X, Wang B, Zhou X, Liu C, Wang C, Bai J. Fecal fermentation behaviors of Konjac glucomannan and its impacts on human gut microbiota. Food Chem X 2024; 23:101610. [PMID: 39071938 PMCID: PMC11282934 DOI: 10.1016/j.fochx.2024.101610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Dietary fiber targets the regulation of the intestinal flora and thus affects host health, however, the complex relationship between these factors lacks direct evidence. In this study, the regulatory effects of Konjac glucomannan (KGM) on key metabolites of host intestinal flora were examined by using in vitro fermentation. The results showed that KGM could be utilized by the intestinal flora, which inhibited the relative abundance of Paeniclostridium, Lachnoclostridium, Phascolarctobacterium, and Bacteroides and enriched the relative abundance of Desulfovibrio, Sutterella, etc. Fermentation is accompanied by the production of short-chain acids, including acetic and propionic acids. Metabolomics revealed that KGM significantly promoted amino acid metabolism, lipid metabolism, and the biosynthesis of other secondary metabolites. Correlation analysis results showed that the increase of panose and N-(1-carboxy-3-carboxanilidopropyl) alanylproline content was positively correlated with the relative abundance of Megamonas. These results provide evidence that KGM affects host health by regulating gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing, 400700, China
| | - Botao Wang
- Bloomage Biotechnology CO, LTD, Jinan, Shandong, 250000, China
| | - Xu Zhou
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Cuiping Liu
- Department of Radiology, Yuxi Children's Hospital, Yuxi, Yunnan 653100, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing, 400700, China
| |
Collapse
|
9
|
Lee J, Oh SJ, Ha E, Shin GY, Kim HJ, Kim K, Lee CK. Gut microbial and human genetic signatures of inflammatory bowel disease increase risk of comorbid mental disorders. NPJ Genom Med 2024; 9:52. [PMID: 39472439 PMCID: PMC11522461 DOI: 10.1038/s41525-024-00440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
The high prevalence of comorbid mental disorders (CMDs) in patients with inflammatory bowel disease (IBD) is well-documented. This study delves into the intricate CMD-IBD relationship through comprehensive analyses using human variants, gut microbiome, and anxiety/depression estimates from a cohort of 507 IBD patients and 75 controls. Notably, patients with IBD, especially those with CMD, exhibited lower diversity than controls. We identified 106 differentially abundant taxa (DATs) in IBD patients compared to controls and 21 DATs distinguishing CMD-affected from CMD-free IBD patients. Microbial IBD-risk scores, reflecting an individual's microbial burden for IBD, revealed a significant enrichment of IBD-risk signatures in CMD-affected patients compared to CMD-free patients. Additionally, there was an IBD-risk variant potentially regulating the abundance of an IBD/CMD-associated DAT, suggesting an interplay between IBD-risk variants and dysbiosis in CMD. Our investigation underscores the pivotal role of IBD-associated gut dysbiosis in predisposing IBD patients to CMD, partially through genetic variant-mediated mechanisms.
Collapse
Affiliation(s)
- Junho Lee
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Shin Ju Oh
- Department of Gastroenterology, Center for Crohn's and Colitis, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Eunji Ha
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Ga Young Shin
- Department of Gastroenterology, Center for Crohn's and Colitis, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Hyo Jong Kim
- Department of Gastroenterology, Center for Crohn's and Colitis, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea.
| | - Chang Kyun Lee
- Department of Gastroenterology, Center for Crohn's and Colitis, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Buytaers FE, Berger N, Van der Heyden J, Roosens NHC, De Keersmaecker SCJ. The potential of including the microbiome as biomarker in population-based health studies: methods and benefits. Front Public Health 2024; 12:1467121. [PMID: 39507669 PMCID: PMC11538166 DOI: 10.3389/fpubh.2024.1467121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
The key role of our microbiome in influencing our health status, and its relationship with our environment and lifestyle or health behaviors, have been shown in the last decades. Therefore, the human microbiome has the potential to act as a biomarker or indicator of health or exposure to health risks in the general population, if information on the microbiome can be collected in population-based health surveys or cohorts. It could then be associated with epidemiological participant data such as demographic, clinical or exposure profiles. However, to our knowledge, microbiome sampling has not yet been included as biological evidence of health or exposure to health risks in large population-based studies representative of the general population. In this mini-review, we first highlight some practical considerations for microbiome sampling and analysis that need to be considered in the context of a population study. We then present some examples of topics where the microbiome could be included as biological evidence in population-based health studies for the benefit of public health, and how this could be developed in the future. In doing so, we aim to highlight the benefits of having microbiome data available at the level of the general population, combined with epidemiological data from health surveys, and hence how microbiological data could be used in the future to assess human health. We also stress the challenges that remain to be overcome to allow the use of this microbiome data in order to improve proactive public health policies.
Collapse
|
11
|
Gao X, Zhao H, Shi Q, Zou T, Zhu Y. Exploring the causal pathway from gut microbiota to polycystic ovary syndrome: A network Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40115. [PMID: 39432652 PMCID: PMC11495796 DOI: 10.1097/md.0000000000040115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complicated endocrine and metabolic syndrome with unclear pathogenesis. The gut microbiota sheds light on the etiology and pathophysiology of PCOS. We used Mendelian randomization (MR) studies to systematically evaluate the pathological mechanism gut microbiota causally associated with PCOS risk. A network MR analysis was performed to estimate the causal effects of gut microbiota and risk factors on PCOS, as well as the mediation effect of risk factors linking gut microbiota to PCOS. The investigation of side effects for the important gut microbiota was subsequently broadened to include phenotypes by performing Phenowide-MR analysis for a range of diseases. Genus Sellimonas id.14369 were causally associated with reduced PCOS risk (odds ratio [OR] = 0.69, 95% confidence interval [CI]: 0.58-0.84, P = 1.22 × 10-4) after multiple testing correction. And Sellimonas retained consistent causal effect estimates after a series of sensitivity analyses. In addition, we observed an indirect effect of Sellimonas on PCOS through body mass index (BMI) using network MR (b = -0.05, 95% CI: -0.09 to -0.01), with a mediated proportion of 12.82% of the total effect. Further, Phenowide-MR analyses showed that the protective effects of Sellimonas on type 2 diabetes and depression (for type 2 diabetes: OR = 0.95, 95% CI: 0.90-0.99, P = .0366; for depression: OR = 0.99, 95% CI: 0.98-1.00, P = .0210). We summarized that the causal path between gut microbiota and type 2 diabetes are also jointly mediated by BMI. Sellimonas may be a protective factor of PCOS, which can affect the occurrence of PCOS through BMI, supporting future studies on the importance of addressing obesity and metabolic issues in preventing and managing PCOS.
Collapse
Affiliation(s)
- Xueyan Gao
- Department of General Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Huijuan Zhao
- Department of General Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Qingling Shi
- Department of General Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Zou
- Department of General Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yidan Zhu
- Department of General Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Gamboa J, Le GH, Wong S, Alteza EAI, Zachos KA, Teopiz KM, McIntyre RS. Impact of antidepressants on the composition of the gut microbiome: A systematic review and meta-analysis of in vivo studies. J Affect Disord 2024; 369:819-833. [PMID: 39424151 DOI: 10.1016/j.jad.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/12/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND There is a growing body of evidence suggesting that antidepressant drugs (ADs) alter the gut microbiome of persons with depressive disorders. Herein, we aim to investigate the gut microbial profile of AD-treated animal models of depression (MoD) and persons with major depressive disorder (MDD). METHODS We conducted a systematic review and meta-analysis investigating the gut microbiome community-level diversity and relative abundance of microbial taxa in AD-treated animal MoD and persons with MDD. RESULTS 24 human studies (898 participants) and 48 animal studies (849 subjects) were identified. Nonsignificant differences in gut microbial richness were observed between AD-treated and nonmedicated animals and humans. Beta diversity analysis in animals shows that AD intake is linked to a distinct gut microbial profile, a result not observed in humans. Consistent depletion of the genera Faecalibacterium and Parasutterella, along with enrichment of Bifidobacterium, was observed in AD-treated persons with MDD. In AD-treated animals, AD intake was associated with depletion of Flavobacterium and Adlercreutzia, and enrichment of Parabacteroides. LIMITATIONS The studies in our review were heterogeneous in their participant population, dietary intake, type of ADs used, length and dosing of AD treatment, and frequency and time of fecal sample collection. CONCLUSION ADs are associated with some changes to the gut microbiome. Future studies should evaluate the gut microbiome profiles between depressive disorder diagnoses that may reveal potential differences and predictors of AD response, as well as new combinatorial therapeutics with agents (e.g., specific-strain probiotic adjunctive treatment) that can ameliorate micro-composition gut dysbiosis.
Collapse
Affiliation(s)
- Jann Gamboa
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Gia Han Le
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada
| | - Sabrina Wong
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada
| | | | - Kassandra A Zachos
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Roger S McIntyre
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada.
| |
Collapse
|
13
|
Liu T, Ji H, Li Z, Luan Y, Zhu C, Li D, Gao Y, Yan Z. Gut microbiota causally impacts adrenal function: a two-sample mendelian randomization study. Sci Rep 2024; 14:23338. [PMID: 39375408 PMCID: PMC11458771 DOI: 10.1038/s41598-024-73420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
Some studies have reported that the gut microbiota can influence adrenal-related hormone levels. However, the causal effects of the gut microbiota on adrenal function remain unknown. Therefore, we employed a two-sample Mendelian randomization (MR) study to systematically investigate the impact of gut microbiota on the function of different regions of the adrenal gland. The summary statistics for gut microbiota and adrenal-related hormones used in the two-sample MR analysis were derived from publicly available genome-wide association studies (GWAS). In the MR analysis, inverse variance weighting (IVW) was used as the primary method, with MR-Egger, weighted median, and cML-MA serving as supplementary methods for causal inference. Sensitivity analyses such as the MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis were used to assess pleiotropy and heterogeneity. We identified 27 causal relationships between 23 gut microbiota and adrenal function using the IVW method. Among these, Sellimonas enhanced the function of the adrenal cortex reticularis zone (beta = 0.008, 95% CI: 0.002-0.013, P = 0.0057). The cML-MA method supported our estimate (beta = 0.009, 95% CI: 0.004-0.013, P = 2 × 10- 4). Parasutterella, Sutterella, and Anaerofilum affect the functioning of different regions of the adrenal gland. Notably, pleiotropy was not observed. Our findings revealed that the gut microbiota is causally associated with adrenal function. This enhances our understanding of the gut-microbiota-brain axis and provides assistance in the early diagnosis and treatment of adrenal-related diseases in clinical practice.
Collapse
Affiliation(s)
- Tonghu Liu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Engineering Research Center of Tumor Molecular diagnosis and treatment, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Hongfei Ji
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Zhiyuan Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Engineering Research Center of Tumor Molecular diagnosis and treatment, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yongkun Luan
- Henan Engineering Research Center of Tumor Molecular diagnosis and treatment, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Congcong Zhu
- Henan Engineering Research Center of Tumor Molecular diagnosis and treatment, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Dongxiao Li
- Henan Engineering Research Center of Tumor Molecular diagnosis and treatment, Zhengzhou, 450001, Henan, People's Republic of China.
- Institute of Molecular Cancer Surgery of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| | - Yukui Gao
- Henan Engineering Research Center of Tumor Molecular diagnosis and treatment, Zhengzhou, 450001, Henan, People's Republic of China.
- Institute of Molecular Cancer Surgery of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, Anhui, People's Republic of China.
| | - Zechen Yan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Henan Engineering Research Center of Tumor Molecular diagnosis and treatment, Zhengzhou, 450001, Henan, People's Republic of China.
- Institute of Molecular Cancer Surgery of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
14
|
Jiang H, Miao X, Thairu MW, Beebe M, Grupe DW, Davidson RJ, Handelsman J, Sankaran K. multimedia: Multimodal Mediation Analysis of Microbiome Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587024. [PMID: 38585817 PMCID: PMC10996591 DOI: 10.1101/2024.03.27.587024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Mediation analysis has emerged as a versatile tool for answering mechanistic questions in microbiome research because it provides a statistical framework for attributing treatment effects to alternative causal pathways. Using a series of linked regressions, this analysis quantifies how complementary data relate to one another and respond to treatments. Despite these advances, existing software's rigid assumptions often result in users viewing mediation analysis as a black box. We designed the multimedia R package to make advanced mediation analysis techniques accessible, ensuring that statistical components are interpretable and adaptable. The package provides a uniform interface to direct and indirect effect estimation, synthetic null hypothesis testing, bootstrap confidence interval construction, and sensitivity analysis, enabling experimentation with various mediator and outcome models while maintaining a simple overall workflow. The software includes modules for regularized linear, compositional, random forest, hierarchical, and hurdle modeling, making it well-suited to microbiome data. We illustrate the package through two case studies. The first re-analyzes a study of the microbiome and metabolome of Inflammatory Bowel Disease patients, uncovering potential mechanistic interactions between the microbiome and disease-associated metabolites, not found in the original study. The second analyzes new data about the influence of mindfulness practice on the microbiome. The mediation analysis highlights shifts in taxa previously associated with depression that cannot be explained indirectly by diet or sleep behaviors alone. A gallery of examples and further documentation can be found at https://go.wisc.edu/830110.
Collapse
Affiliation(s)
| | - Xinran Miao
- Statistics Department, UW-Madison, Madison, WI, USA
| | | | - Mara Beebe
- Wisconsin Institute for Discovery, UW-Madison, Madison, WI, USA
| | - Dan W. Grupe
- Center for Healthy Minds, UW-Madison, Madison, WI, USA
| | - Richard J. Davidson
- Center for Healthy Minds, UW-Madison, Madison, WI, USA
- Psychology Department, UW-Madison, Madison, WI, USA
- Psychiatry Department, UW-Madison, Madison, WI, USA
| | - Jo Handelsman
- Wisconsin Institute for Discovery, UW-Madison, Madison, WI, USA
- Plant Pathology Department, UW-Madison, Madison, WI, USA
| | - Kris Sankaran
- Statistics Department, UW-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, UW-Madison, Madison, WI, USA
| |
Collapse
|
15
|
Li J, Li Y, Zhao J, Li L, Wang Y, Chen F, Li Y, Cheng R, He F, Ze X, Shen X. Effects of Bifidobacterium breve 207-1 on regulating lifestyle behaviors and mental wellness in healthy adults based on the microbiome-gut-brain axis: a randomized, double-blind, placebo-controlled trial. Eur J Nutr 2024; 63:2567-2585. [PMID: 38869657 DOI: 10.1007/s00394-024-03447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Our study aimed to explore the efficacy of Bifidobacterium breve 207-1 on specific neurotransmitters and hormones and the ability to regulate lifestyle behaviors in healthy adults. METHODS In total, 120 healthy adults with high mental stress, overweight, insomnia, and constipation were randomly assigned to receive low-dose B. breve 207-1 (LD, n = 40), high-dose B. breve 207-1 (HD, n = 40), or placebo (n = 40) for 28 days. Fecal and blood samples were collected and questionnaires were answered before and after the trial. Neurotransmitters and serum hormones were detected using enzyme-linked immunosorbent assay. The gut microbiota composition was assessed using 16 S rRNA sequencing. Short-chain fatty acids (SCFAs) concentrations were determined via gas chromatography-mass spectrometry (GC-MS). RESULTS The primary outcome of our study was changes in mental wellness, including neurotransmitters, the hypothalamic-pituitary-adrena (HPA) axis hormones, and the psychological scales. The results showed that γ-aminobutyric acid (GABA) increased significantly and the HPA axis hormones were suppressed overall in the probiotic groups while 5-hydroxytryptamine (5-HT) did not change significantly. However, there was no significant change in mood scale scores. The secondary outcome focused on the ability of 207-1 to regulate the body and lifestyle of healthy adults (e.g., sleep, diet, exercise, etc.). The PSQI scores in the probiotics groups significantly decreased, indicating improved sleep quality. Meanwhile, the probiotic groups had a slight increase in exercise consumption while dietary intake stabilized. By physical examination, the participants showed weight loss although no statistically significant difference was observed between the groups. Then, validated by gut microbiota, changes in the gut microbiota were observed under the effective intervention of 207-1 while short-chain fatty acids (SCFAs) increased in the LD group, particularly acetic and propionic acids. There was a slight decrease in alpha-diversity in the HD group. CONCLUSION Bifidobacterium breve 207-1 entered the organism and affected neurotransmitter and the HPA axis hormone levels via the microbiome-gut-brain axis. Meanwhile, 207-1 supplementation improved daily lifestyle behaviors in healthy adults, which may in turn lead to changes in their bodies (e.g. weight and lipid metabolism). However, this study did not find significant mood-modulating efficacy. The mechanism of the overall study is unclear, but we hypothesize that SCFAs may be the key pathway, and more experiments are needed for validation in the future. TRIAL REGISTRATION This trial was retrospectively registered in the Chinese Clinical Trial Registry under the accession number ChiCTR2300069453 on March 16, 2023.
Collapse
Affiliation(s)
- Jinxing Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Yapeng Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Jincheng Zhao
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Liang Li
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Science City, Huangpu District, Guangzhou, 510663, China
| | - Yunyi Wang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Fei Chen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Yuchen Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610044, Sichuan, China
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Xiaolei Ze
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Science City, Huangpu District, Guangzhou, 510663, China.
| | - Xi Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
16
|
Zhang X, Qiao Y, Li G, Rong L, Liang X, Wang Q, Liu Y, Pi L, Wei L, Bi H. Exploratory studies of the antidepressant effect of Cordyceps sinensis polysaccharide and its potential mechanism. Int J Biol Macromol 2024; 277:134281. [PMID: 39084447 DOI: 10.1016/j.ijbiomac.2024.134281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/16/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Cordyceps sinensis, a traditionally prized medicinal fungus, contains polysaccharides as one of its main bioactive constituents, known for their significant immunomodulatory properties. In this study, we systematically investigated the composition and structure of Cordyceps sinensis polysaccharide, followed by an evaluation of its therapeutic effect on depression using a chronic restraint stress-induced depression model. The polysaccharide CSWP-2, extracted via hot water, precipitated with ethanol, and purified using DEAE-cellulose column chromatography from Cordyceps sinensis, is primarily composed of glucose, mannose, and galactose, with α-1,4-D-glucan as its major structural component. Behavioral tests, immunological profiling, metabolomics, and gut microbiota analyses indicated a notable ameliorative effect of CSWP-2 on depressive-like symptoms in mice. Furthermore, the action of CSWP-2 may be attributed to the modulation of the gut microbiome's abundance and its metabolic impacts, thereby transmitting signals to the host immune system and exerting immunomodulatory activity, ultimately contributing to its antidepressant effects.
Collapse
Affiliation(s)
- Xingfang Zhang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; Medical College, Qinghai University, Xining 810001, China
| | - Yajun Qiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing 10049, China
| | - Guoqiang Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing 10049, China
| | - Lin Rong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing 10049, China
| | - Xinxin Liang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing 10049, China
| | - Qiannan Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Yi Liu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; Medical College, Qinghai University, Xining 810001, China
| | - Li Pi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Lixin Wei
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing 10049, China.
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing 10049, China.
| |
Collapse
|
17
|
Dabboussi N, Debs E, Bouji M, Rafei R, Fares N. Balancing the mind: Toward a complete picture of the interplay between gut microbiota, inflammation and major depressive disorder. Brain Res Bull 2024; 216:111056. [PMID: 39182696 DOI: 10.1016/j.brainresbull.2024.111056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The intricate interplay existing between gut microbiota and homeostasis extends to the realm of the brain, where emerging research underscores the significant impact of the microbiota on mood regulation and overall neurological well-being and vice-versa, with inflammation playing a pivotal role in mediating these complex interactions. This comprehensive review explores the complex interplay between inflammation, alterations in gut microbiota, and their impact on major depressive disorder (MDD). It provides a cohesive framework for the puzzle pieces of this triad, emphasizing recent advancements in understanding the gut microbiota and inflammatory states' contribution to the depressive features. Two directions of communication between the gut and the brain in depression are discussed, with inflammation serving as a potential modulator. Therapeutic implications were discussed as well, drawing insights from interventional studies on the effects of probiotics on gut bacterial composition and depressive symptoms. Ultimately, this review will attempt to provide a complete and valuable framework for future research and therapeutic interventions in MDD.
Collapse
Affiliation(s)
- Nour Dabboussi
- Laboratory of Research in Physiology and pathophysiology, Faculty of Medicine, Saint Joseph University of Beirut, POBox. 17-5208 - Mar Mikhaël, Beirut 1104 2020, Lebanon; Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science & Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli, Lebanon.
| | - Marc Bouji
- Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Beirut, Lebanon.
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science & Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Nassim Fares
- Laboratory of Research in Physiology and pathophysiology, Faculty of Medicine, Saint Joseph University of Beirut, POBox. 17-5208 - Mar Mikhaël, Beirut 1104 2020, Lebanon.
| |
Collapse
|
18
|
McGuinness AJ, O’Hely M, Stupart D, Watters D, Dawson SL, Hair C, Berk M, Mohebbi M, Loughman A, Guest G, Jacka FN. Depressive Symptoms and Gut Microbiota after Bowel Preparation and Colonoscopy: A Pre-Post Intervention Study. Microorganisms 2024; 12:1960. [PMID: 39458270 PMCID: PMC11509487 DOI: 10.3390/microorganisms12101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Mechanical bowel preparation (MBP) is essential for visualisation of the colon during colonoscopy. Previous studies have identified changes in gut microbiota composition after MBP and colonoscopy. Considering the gut microbiota is increasingly implicated in psychiatry, we explored the potential impact of this intervention on mood and the microbiota-gut-brain axis. We conducted a pre-post intervention study in adults, with timepoints of one week before and one month after MBP and colonoscopy. Our primary outcome was change in average Hospital Anxiety and Depression Scale depression sub-scores. We examined changes in average anxiety, stress, and quality of life scores and gut microbiota composition using 16S rRNA sequencing. We further explored associations between changes in depressive symptoms and gut microbiota and conducted post hoc analyses to explore potential effect modifiers. Average depressive symptom scores decreased one month post-procedure compared to baseline (n = 59; adjusted β = -0.64; 95%CI: -1.18, -0.11). Irritable bowel syndrome (IBS) appeared to moderate this relationship (β = 1.78; 95%CI: 0.292, 3.26); depressive symptoms increased in those with, and decreased in those without, IBS. Reduced alpha diversity, modest effects on beta-diversity, and increases in health-associated genera were observed one month post-procedure. Increases in the CLR-transformed abundances of Ruminococcaceae UCG-009 were associated with improvements in depressive symptoms. There is preliminary evidence of a potential mental health effect of MBP and colonoscopy, particularly for those with IBS, which may be associated with changes to the gut microbiota. Further research is required to confirm these findings and their clinical relevance.
Collapse
Affiliation(s)
- Amelia J. McGuinness
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine and Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (A.J.M.); (M.O.); (S.L.D.); (M.B.); (A.L.)
| | - Martin O’Hely
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine and Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (A.J.M.); (M.O.); (S.L.D.); (M.B.); (A.L.)
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Douglas Stupart
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (D.S.); (D.W.); (C.H.); (G.G.)
- Department of Surgery, University Hospital Geelong, Barwon Health, Geelong, VIC 3220, Australia
| | - David Watters
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (D.S.); (D.W.); (C.H.); (G.G.)
- Department of Surgery, University Hospital Geelong, Barwon Health, Geelong, VIC 3220, Australia
| | - Samantha L. Dawson
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine and Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (A.J.M.); (M.O.); (S.L.D.); (M.B.); (A.L.)
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Christopher Hair
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (D.S.); (D.W.); (C.H.); (G.G.)
- Department of Gastroenterology, Epworth Hospital, Waurn Ponds, VIC 3216, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine and Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (A.J.M.); (M.O.); (S.L.D.); (M.B.); (A.L.)
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (D.S.); (D.W.); (C.H.); (G.G.)
- Orygen, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Mohammadreza Mohebbi
- Biostatistics Unit, Faculty of Health, Deakin University, Burwood, VIC 3125, Australia;
| | - Amy Loughman
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine and Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (A.J.M.); (M.O.); (S.L.D.); (M.B.); (A.L.)
| | - Glenn Guest
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (D.S.); (D.W.); (C.H.); (G.G.)
- Department of Surgery, University Hospital Geelong, Barwon Health, Geelong, VIC 3220, Australia
| | - Felice N. Jacka
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine and Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (A.J.M.); (M.O.); (S.L.D.); (M.B.); (A.L.)
- Centre for Adolescent Health, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD 4814, Australia
| |
Collapse
|
19
|
Peng Y, Du Y, Zhang Y, Wang Z, Hu T, Mai Y, Song H, Pan W, Cai Q, Ge F, Fan Y, Kim HY, Liu D, Guan X. Gegen Qinlian decoction alleviates depression-like behavior by modulating the gut microenvironment in CUMS rats. BMC Complement Med Ther 2024; 24:339. [PMID: 39304871 DOI: 10.1186/s12906-024-04638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Gegen Qinlian Decoction (GQD) is a classical traditional Chinese medicine (TCM) formula primarily utilized for treating gut disorders. GQD showed therapeutic effects on several diseases in clinical and animal studies by targeting gut microbes. Our recent studies also found that GQD efficiently alleviated anxiety in methamphetamine-withdrawn mice via regulating gut microbiome and metabolism. Given that various studies have indicated the link between the gut microbiome and the development of depression, here we endeavor to explore whether GQD can manage depression disorders by targeting the gut microbiome. METHODS AND MATERIALS The depression-like model was induced in rats through chronic unpredictable mild stress (CUMS) and the depression levels were determined using the sucrose preference test (SPT). To address the depression-like behavior in rats, oral administration of GQD was employed. The colon microbiome and metabolite patterns were determined by 16s rRNA sequencing and untargeted metabolomics, respectively. RESULTS We found 6 weeks of CUMS can induce depression-like behavior in rats and 4 weeks of GQD treatment can significantly alleviate the depression-like behavior. GQD treatment can also ameliorate the histological lesions in the colon of CUMS rats. Then, CUMS increased the abundance of gut microbes, while GQD treatment can restore it to a lower level. We further discovered that the abundances of 19 bacteria at the genus level were changed with CUMS treatment, among which the abundances of Ruminococcus, Lachnoclostridium, Pygmaiobacter, Bacteroides, Pseudomonas, and Pseudomonas Family_XIII_AD3011_group were stored by GQD treatment. Besides, we identified the levels of 36 colon metabolites were changed with CUMS treatment, among which the levels of Fasciculic acid B, Spermine, Fludrocortisone acetate, alpha-Ketoglutaric acid, 2-Oxoglutaric acid, N'-(benzoyloxy)-2-(2,2-dichlorocyclopropyl) ethanimidamide, N6-Succinyl Adenosine Oleanolic acid, KQH, Ergosta-5,7,9(11),22-Tetraen-3-beta-Ol, Gentisic acid, 4-Hydroxyretinoic Acid, FAHFA (3:0/16:0), Leucine-enkephalin and N-lactoyl-phenylalanine can be restored by GQD treatment. CONCLUSION Our findings provide evidence supporting the therapeutic efficacy of GQD in alleviating depression-like behavior in CUMS rats, potentially being targeted on colon bacteria (especially the abundance of Ruminococcus and Bacteroides) and metabolites (especially the level of Oleanolic acid).
Collapse
Affiliation(s)
- Yaqin Peng
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yao Du
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Zhang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ze Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Hu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuning Mai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hongxiu Song
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichao Pan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinglong Cai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Dekang Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
20
|
Zhou C, Ye X, Liu Z, Liu T, Li S, Yang J, Wei J, Yu P, Jia R, Zhao W. Dissecting the causal links between gut microbiome, immune traits and polyp using genetic evidence. Front Immunol 2024; 15:1431990. [PMID: 39346904 PMCID: PMC11427361 DOI: 10.3389/fimmu.2024.1431990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
Background Previous research has demonstrated an association between gut microbiota and immune status with the development of several diseases. However, whether these factors contribute to polyps remains unclear. This study aims to use Mendelian randomization (MR) to investigate the causal relationship between gut microbiota and 4 types of polyps (nasal, gallbladder, colon, and gastric polyps), as well as to analyze the mediating role of immune traits. Methods This study utilized large-scale GWAS meta-analyses of gut microbiota (MiBioGen Consortium), 731 immune traits, and 4 types of polyps (one from the FinnGen Consortium and three from the NBDC Human Database). Univariate MR with the inverse variance weighted (IVW) estimation method was employed as the primary analytical approach. A two-step MR analysis was performed to identify potential mediating immune traits. Additionally, multivariable MR approach based on Bayesian model averaging (MR-BMA) was employed to further prioritize gut microbiota and immune traits associated with polyp development. Results Based on IVW method in univariate MR analysis, we identified 39 gut microbial taxa and 135 immune traits significantly causally associated with at least one type of polyp. For nasal polyps, 13 microbial taxa and 61 immune traits were causally associated. After false discovery rate (FDR) correction, CD3 on Central Memory CD8+ T cells and CD3 on CD4 regulatory T cells remained significant. MR-BMA identified 4 gut microbial taxa and 4 immune traits as high priority. For gallbladder polyps, 9 microbial taxa and 30 immune traits were causally associated. MR-BMA identified 8 microbial taxa and 6 immune traits as higher importance. For colon polyps, 6 microbial taxa and 21 immune traits were causally associated. MR-BMA identified 4 microbial taxa and 3 immune traits as higher importance. For gastric polyps, 12 microbial taxa and 33 immune traits were causally associated. Actinobacteria remained significant after FDR correction, and MR-BMA identified 7 gut microbial taxa and 6 immune traits as high priority. We identified 16 causal pathways with mediator directions consistent with the direction of gut microbiome-polyp association. Of these, 6 pathways were associated with the mechanism of nasal polyps, 1 with gallbladder polyps, 2 with colon polyps, and 7 with gastric polyps. Conclusions Our findings shed light on the causal relationships between gut microbiota, immune traits, and polyp development, underscoring the crucial roles of gut microbiota and immune status in polypogenesis. Furthermore, these findings suggest potential applications in polyp prevention, early screening, and the development of effective strategies to reduce polyp risk.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Xiaofeng Ye
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Zhinuo Liu
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tong Liu
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shanzheng Li
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinqiu Yang
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jingjing Wei
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Yu
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ran Jia
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenxia Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
21
|
Xu Y, Li Y, Yan Q, Mao X, Yang S, Jiang Z. The Function and Mechanism of Laminaripentaose Prepared from Curdlan for the Amelioration of the Cognitive Dysfunctions in Obese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19904-19919. [PMID: 39215716 DOI: 10.1021/acs.jafc.4c05163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Functional oligosaccharides induce specific alterations in gut microbiota, potentially providing physiological benefits. However, the effects of laminaripentaose (LPA) on metabolic syndrome and the mechanism underlying it have not been intensively investigated yet. This study aimed to determine the effects of LPA on obesity and obesity-induced cognition impairment in mice. C57BL/6N mice fed with a high-fat diet received an LPA treatment for 12 weeks. An antibiotic intervention was further applied to evaluate the effects of the gut microbiota on cognitive functions. LPA treatment (500 mg/kg) reduced the weight gain by 32.4%. Furthermore, LPA improved memory functions and reduced hippocampal insulin resistance and neuronal injury. LPA markedly reduced systemic low-grade inflammation and intestinal barrier injury. Moreover, LPA increased gut beneficial bacteria, and Butyricimonas and Bifidobacterium were increased by 94.0 and 422.7%, respectively, accompanied by increased fecal short-chain fatty acids. Interestingly, antibiotic cocktail treatment abrogated the beneficial effects of LPA on cognition, which further suggests that LPA may attenuate obesity-induced cognition impairment via the gut-brain axis. Our findings provide the first evidence for the potential of dietary LPA to prevent obesity and obesity-associated complications.
Collapse
Affiliation(s)
- Yuncong Xu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiao Li
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Shaoqing Yang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
22
|
Cheng T, Wen P, Yu R, Zhang F, Li H, Xu X, Zhao D, Liu F, Su W, Zheng Z, Yang H, Yao J, Jin L. Integrative microbiome and metabolome profiles reveal the impacts of periodontitis via oral-gut axis in first-trimester pregnant women. J Transl Med 2024; 22:819. [PMID: 39227984 PMCID: PMC11370083 DOI: 10.1186/s12967-024-05579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/04/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Periodontitis results from host-microbe dysbiosis and the resultant dysregulated immunoinflammatory response. Importantly, it closely links to numerous systemic comorbidities, and perplexingly contributes to adverse pregnancy outcomes (APOs). Currently, there are limited studies on the distal consequences of periodontitis via oral-gut axis in pregnant women. This study investigated the integrative microbiome-metabolome profiles through multi-omics approaches in first-trimester pregnant women and explored the translational potentials. METHODS We collected samples of subgingival plaques, saliva, sera and stool from 54 Chinese pregnant women at the first trimester, including 31 maternal periodontitis (Perio) subjects and 23 Non-Perio controls. By integrating 16S rRNA sequencing, untargeted metabolomics and clinical traits, we explored the oral-gut microbial and metabolic connection resulting from periodontitis among early pregnant women. RESULTS We demonstrated a novel bacterial distinguisher Coprococcus from feces of periodontitis subjects in association with subgingival periodontopathogens, being different from other fecal genera in Lachnospiraceae family. The ratio of fecal Coprococcus to Lachnoclostridium could discriminate between Perio and Non-Perio groups as the ratio of subgingival Porphyromonas to Rothia did. Furthermore, there were differentially abundant fecal metabolic features pivotally enriched in periodontitis subjects like L-urobilin and kynurenic acid. We revealed a periodontitis-oriented integrative network cluster, which was centered with fecal Coprococcus and L-urobilin as well as serum triglyceride. CONCLUSIONS The current findings about the notable influence of periodontitis on fecal microbiota and metabolites in first-trimester pregnant women via oral-gut axis signify the importance and translational implications of preconceptional oral/periodontal healthcare for enhancing maternal wellbeing.
Collapse
Affiliation(s)
- Tianfan Cheng
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Ping Wen
- Institute of Maternal and Child Medicine & Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Rong Yu
- Institute of Maternal and Child Medicine & Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Feng Zhang
- Division of Stomatology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Huijun Li
- Division of Stomatology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Xiaoyi Xu
- Institute of Maternal and Child Medicine & Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
- Center for Disease Control and Prevention, Shenzhen, China
| | - Dan Zhao
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
- Department of Implant Dentistry, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Fang Liu
- Division of Obstetrics & Gynecology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Weilan Su
- Division of Obstetrics & Gynecology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Zheng Zheng
- Division of Obstetrics & Gynecology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Hong Yang
- Division of Obstetrics & Gynecology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Jilong Yao
- Division of Obstetrics & Gynecology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Lijian Jin
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
23
|
Jin W, Li B, Wang L, Zhu L, Chai S, Hou R. The causal association between gut microbiota and postpartum depression: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1415237. [PMID: 39286351 PMCID: PMC11402819 DOI: 10.3389/fmicb.2024.1415237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Background An escalating body of clinical trials and observational studies hints at a plausible link between gut flora and postpartum depression (PPD). The definitive causal dynamics between these two entities remain shrouded in ambiguity. Therefore, in this study, we employed the two-sample Mendelian randomization approach to ascertain the causal link between gut microbiota and PPD. Methods Summary-level GWAS data related to the human gut microbiota were obtained from the international consortium MiBioGen and the Dutch Microbiome Project (species). For PPD, GWAS data were derived from the FinnGen biobank, consisting 57,604 cases and 596,601 controls. The inverse variance weighted method (IVW) as the cornerstone of our analytical approach. Subsequent to this, a comprehensive suite of tests for pleiotropy and heterogeneity were conducted to ensure the reliability and robustness of our findings. Results We identified 12 bacterial taxa associated with the risk of PPD. Veillonellaceae, Ruminococcaceae UCG 011, Bifidobacterium adolescentis, Paraprevotella clara, Clostridium leptum, Eubacterium siraeum, Coprococcus catus exhibited an inversely associated with the risk of PPD. Alphaproteobacteria, Roseburia, FamilyXIIIAD3011group, Alistipes onderdonkii, Bilophila wadsworthia showed a positive correlation with the risk of PPD. Limitations The GWAS data derived from the MiBioGen consortium, DMP, and FinnGen consortium, may introduce selection bias. Moreover, the data primarily originates from European populations, hence extrapolating these results to diverse populations should be approached with caution. The etiological factors behind PPD remain enigmatic, alluding to the existence of potential undisclosed confounders. Conclusion Based on this MR analysis, we found a causal relationship between certain gut microbial communities and PPD. Future clinical studies can further explore the treatment of PPD through the combined use of microorganisms. This not only offers insights into the pathogenesis of PPD but also lays the foundation for utilizing gut microbiota as biotherapeutics in treating neurological disorders.
Collapse
Affiliation(s)
- Wenjun Jin
- Medical Department, Sias University, Zhengzhou, Henan, China
| | - Bo Li
- Medical Department, Zhengzhou University of Industry Technology, Zhengzhou, Henan, China
| | - Lijun Wang
- Medical Department, Zhengzhou University of Industry Technology, Zhengzhou, Henan, China
| | - Lin Zhu
- Medical Department, Sias University, Zhengzhou, Henan, China
| | - Songhao Chai
- Ultrasound Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Hou
- Medical Department, Sias University, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Molska M, Mruczyk K, Cisek-Woźniak A, Prokopowicz W, Szydełko P, Jakuszewska Z, Marzec K, Trocholepsza M. The Influence of Intestinal Microbiota on BDNF Levels. Nutrients 2024; 16:2891. [PMID: 39275207 PMCID: PMC11397622 DOI: 10.3390/nu16172891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The regulation of neurogenesis, the complex process of producing and differentiating new brain tissue cells, is influenced by a complex interaction of internal and external factors. Over the past decade, extensive research has been conducted on neurotrophins and their key role in adult neurogenesis, as well as their impact on diseases such as depression. Among neurotrophins, the brain-derived neurotrophic factor (BDNF) has been the subject of comprehensive studies on adult neurogenesis, and scientific evidence supports its necessity for neurogenesis in the subventricular zone of the hippocampus. A novel area of research is the emerging role of gut microbiota as a significant contributor to neurogenesis and neurotrophin production. Studies have shown that reduced BDNF levels can lead to mood disorders, which are observed in intestinal dysbiosis, characterized by an imbalance in the composition and quantity of the intestinal microbiota. There is evidence in the literature that there is a link between brain function and gut microbiota. Physical activity, and especially the regularity and intensity of exercise, is important in relation to the level of BDNF and the intestinal microbiota. Probiotics, prebiotics and physical activity may have a positive effect on the intestinal microbiota, and therefore also on the level of the brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Marta Molska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Kinga Mruczyk
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Angelika Cisek-Woźniak
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Wojciech Prokopowicz
- GSP Clinic Limited Liability Company, Kostrzyńska Street 12, 66-400 Gorzow Wielkopolski, Poland;
| | - Patrycja Szydełko
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Zuzanna Jakuszewska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Karolina Marzec
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Martyna Trocholepsza
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| |
Collapse
|
25
|
Nikdasti A, Khodadadi ES, Ferdosi F, Dadgostar E, Yahyazadeh S, Heidari P, Ehtiati S, Vakili O, Khatami SH. Nutritional Strategies in Major Depression Disorder: From Ketogenic Diet to Modulation of the Microbiota-Gut-Brain Axis. Mol Neurobiol 2024:10.1007/s12035-024-04446-4. [PMID: 39192045 DOI: 10.1007/s12035-024-04446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. While traditional pharmacological treatments are effective for many cases, a significant proportion of patients do not achieve full remission or experience side effects. Nutritional interventions hold promise as an alternative or adjunctive approach, especially for treatment-resistant depression. This review examines the potential role of nutrition in managing MDD through addressing biological deficits and modulating pathways relevant to its pathophysiology. Specifically, it explores the ketogenic diet and gut microbiome modulation through various methods, including probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation. Numerous studies link dietary inadequacies to increased MDD risk and deficiencies in nutrients like omega-3 s, vitamins D and B, magnesium, and zinc. These deficiencies impact neurotransmitters, inflammation, and other biological factors in MDD. The gut-brain axis also regulates mood, stress response, and immunity, and disruptions are implicated in MDD. While medications aid acute symptoms, nutritional strategies may improve long-term outcomes by preventing relapse and promoting sustained remission. This comprehensive review aims to provide insights into nutrition's multifaceted relationship with MDD and its potential for developing more effective integrated treatment approaches.
Collapse
Affiliation(s)
- Ali Nikdasti
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Elaheh Sadat Khodadadi
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Felora Ferdosi
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parasta Heidari
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Munshi S, Alarbi AM, Zheng H, Kuplicki R, Burrows K, Figueroa-Hall LK, Victor TA, Aupperle RL, Khalsa SS, Paulus MP, Teague TK, Savitz J. Increased expression of ER stress, inflammasome activation, and mitochondrial biogenesis-related genes in peripheral blood mononuclear cells in major depressive disorder. Mol Psychiatry 2024:10.1038/s41380-024-02695-2. [PMID: 39174649 DOI: 10.1038/s41380-024-02695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
A subset of major depressive disorder (MDD) is characterized by immune system dysfunction, but the intracellular origin of these immune changes remains unclear. Here we tested the hypothesis that abnormalities in endoplasmic reticulum (ER) stress, inflammasome activity and mitochondrial biogenesis contribute to the development of systemic inflammation in MDD. RT-qPCR was used to measure mRNA expression of key organellar genes from peripheral blood mononuclear cells (PBMCs) isolated from 186 MDD and 67 healthy control (HC) subjects. The comparative CT (2-ΔΔCT) method was applied to quantify mRNA expression using GAPDH as the reference gene. After controlling for age, sex, BMI, and medication status using linear regression models, expression of the inflammasome (NLRC4 and NLRP3) and the ER stress (XBP1u, XBP1s, and ATF4) genes was found to be significantly increased in the MDD versus the HC group. Sensitivity analyses excluding covariates yielded similar results. After excluding outliers, expression of the inflammasome genes was no longer statistically significant but expression of the ER stress genes (XBP1u, XBP1s, and ATF4) remained significant and the mitochondrial biogenesis gene, MFN2, was significantly increased in the MDD group. NLRC4 and MFN2 were positively correlated with serum C-reactive protein concentrations, while ASC trended significant. The altered expression of inflammasome activation, ER stress, and mitochondrial biogenesis pathway components suggest that dysfunction of these organelles may play a role in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Soumyabrata Munshi
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Ahlam M Alarbi
- Integrative Immunology Center, Department of Surgery and Department of Psychiatry, University of Oklahoma - School of Community Medicine, 4502 E. 41st St., Tulsa, OK, 74135, USA
| | - Haixia Zheng
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
| | - Kaiping Burrows
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
| | - Leandra K Figueroa-Hall
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - Teresa A Victor
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
| | - Robin L Aupperle
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, 300 UCLA Medical Plaza, Los Angeles, CA, 90095, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - T Kent Teague
- Integrative Immunology Center, Department of Surgery and Department of Psychiatry, University of Oklahoma - School of Community Medicine, 4502 E. 41st St., Tulsa, OK, 74135, USA
- Department of Biochemistry and Microbiology, Center for Health Sciences, Oklahoma State University, 1111 W. 17th St., Tulsa, OK, 74107, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| |
Collapse
|
27
|
Govaert M, Rotsaert C, Vannieuwenhuyse C, Duysburgh C, Medlin S, Marzorati M, Jarrett H. Survival of Probiotic Bacterial Cells in the Upper Gastrointestinal Tract and the Effect of the Surviving Population on the Colonic Microbial Community Activity and Composition. Nutrients 2024; 16:2791. [PMID: 39203927 PMCID: PMC11357584 DOI: 10.3390/nu16162791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Many health-promoting effects have been attributed to the intake of probiotic cells. However, it is important that probiotic cells arrive at the site of their activity in a viable state in order to exert their beneficial effects. Careful selection of the appropriate probiotic formulation is therefore required as mainly the type of probiotic species/strain and the administration strategy may affect survival of the probiotic cells during the upper gastrointestinal (GIT) passage. Therefore, the current study implemented Simulator of the Human Microbial Ecosystem (SHIME®) technology to investigate the efficacy of different commercially available probiotic formulations on the survival and culturability of probiotic bacteria during upper GIT passage. Moreover, Colon-on-a-Plate (CoaP™) technology was applied to assess the effect of the surviving probiotic bacteria on the gut microbial community (activity and composition) of three human donors. Significantly greater survival and culturability rates were reported for the delayed-release capsule formulation (>50%) as compared to the powder, liquid, and standard capsule formulations (<1%) (p < 0.05), indicating that the delayed-release capsule was most efficacious in delivering live bacteria cells. Indeed, administration of the delayed-release capsule probiotic digest resulted in enhanced production of SCFAs and shifted gut microbial community composition towards beneficial bacterial species. These results thus indicate that careful selection of the appropriate probiotic formulation and administration strategy is crucial to deliver probiotic cells in a viable state at the site of their activity (distal ileum and colon).
Collapse
Affiliation(s)
- Marlies Govaert
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
| | - Chloë Rotsaert
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
| | | | - Cindy Duysburgh
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
| | - Sophie Medlin
- Heights, Department for Research and Development, London W1D 2LG, UK; (S.M.); (H.J.)
| | - Massimo Marzorati
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Harry Jarrett
- Heights, Department for Research and Development, London W1D 2LG, UK; (S.M.); (H.J.)
| |
Collapse
|
28
|
Bellach L, Kautzky-Willer A, Heneis K, Leutner M, Kautzky A. The Effects of Caloric Restriction and Clinical Psychological Intervention on the Interplay of Gut Microbial Composition and Stress in Women. Nutrients 2024; 16:2584. [PMID: 39203721 PMCID: PMC11357322 DOI: 10.3390/nu16162584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Both mental and metabolic disorders are steadily becoming more prevalent, increasing interest in non-pharmacological lifestyle interventions targeting both types of disorders. However, the combined effect of diet and psychological interventions on the gut microbiome and mental health outcomes remains underexplored. Thus, in this study, we randomized 41 women into two caloric restriction (CR) dietary groups, namely very-low-calorie diet (VLCD) and F.X. Mayr diet (FXM). The patients were then further randomized to either receive clinical psychological intervention (CPI) or no CPI. Blood and fecal samples were collected before and after two weeks of CR. Psychometric outcomes were assessed using the Perceived Stress Scale (PSS), Brief Symptom Index (BSI), and Burnout Dimension Inventory (BODI). Stool samples underwent 16S-rRNA sequencing. Upon two weeks of CR, α-diversity decreased overall and longitudinal PERMANOVA models revealed significant shifts in β-diversity according to diet, CPI, age, and body-mass-index. Furthermore, Agathobacter, Fusicatenibacter, and Subdoligranulum decreased in abundance. However, the Oscillibacter genus was enriched solely in FXM. CPI had a negligible effect on the microbiome. Dimension reduction models revealed clusters of taxa which distinctly associated with psychometric outcomes. Members of the Oscillospiraceae family were linked to favorable psychometric outcomes after two weeks of CR. Despite α-diversity reductions after CR, enrichment of Oscillospiraceae spp., solely seen in FXM, correlated with improved psychometric outcomes. This study suggests a promising direction for future interventions targeting mental health through gut microbial modulation.
Collapse
Affiliation(s)
- Luise Bellach
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, 1090 Vienna, Austria
| | - Alexandra Kautzky-Willer
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, 1090 Vienna, Austria
| | - Kathrin Heneis
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Leutner
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, 1090 Vienna, Austria
| | - Alexander Kautzky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
29
|
Lutz M, Moya PR, Gallorio S, Ríos U, Arancibia M. Effects of Dietary Fiber, Phenolic Compounds, and Fatty Acids on Mental Health: Possible Interactions with Genetic and Epigenetic Aspects. Nutrients 2024; 16:2578. [PMID: 39203714 PMCID: PMC11356825 DOI: 10.3390/nu16162578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Scientific evidence shows that dietary patterns are a key environmental determinant of mental health. Dietary constituents can modify epigenetic patterns and thus the gene expression of relevant genetic variants in various mental health conditions. In the present work, we describe some nutrigenomic effects of dietary fiber, phenolic compounds (plant secondary metabolites), and fatty acids on mental health outcomes, with emphasis on their possible interactions with genetic and epigenetic aspects. Prebiotics, through their effects on the gut microbiota, have been associated with modulation in the neuroendocrine response to stress and the facilitation of the processing of positive emotions. Some of the genetic and epigenetic mechanisms include the serotonin neurotransmitter system (TPH1 gene) and the brain-derived neurotrophic factor (inhibition of histone deacetylases). The consumption of phenolic compounds exerts a positive role in neurocognitive domains. The evidence showing the involvement of genetic and epigenetic factors comes mainly from animal models, highlighting the role of epigenetic mechanisms through miRNAs and methyltransferases as well as the effect on the expression of apoptotic-related genes. Long-chain n-3 fatty acids (EPA and DHA) have been mainly related to psychotic and mood disorders, but the genetic and epigenetic evidence is scarce. Studies on the genetic and epigenetic basis of these interactions need to be promoted to move towards a precision and personalized approach to medicine.
Collapse
Affiliation(s)
- Mariane Lutz
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.L.); (P.R.M.); (U.R.)
- Department of Public Health, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2362735, Chile
| | - Pablo R. Moya
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.L.); (P.R.M.); (U.R.)
- Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Sofía Gallorio
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2362735, Chile;
| | - Ulises Ríos
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.L.); (P.R.M.); (U.R.)
- Department of Psychiatry, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2362735, Chile
| | - Marcelo Arancibia
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.L.); (P.R.M.); (U.R.)
- Department of Psychiatry, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2362735, Chile
| |
Collapse
|
30
|
Smith ML, Wade JB, Wolstenholme J, Bajaj JS. Gut microbiome-brain-cirrhosis axis. Hepatology 2024; 80:465-485. [PMID: 36866864 PMCID: PMC10480351 DOI: 10.1097/hep.0000000000000344] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
Cirrhosis is characterized by inflammation, degeneration, and fibrosis of liver tissue. Along with being the most common cause of liver failure and liver transplant, cirrhosis is a significant risk factor for several neuropsychiatric conditions. The most common of these is HE, which is characterized by cognitive and ataxic symptoms, resulting from the buildup of metabolic toxins with liver failure. However, cirrhosis patients also show a significantly increased risk for neurodegenerative diseases such as Alzheimer and Parkinson diseases, and for mood disorders such as anxiety and depression. In recent years, more attention has been played to communication between the ways the gut and liver communicate with each other and with the central nervous system, and the way these organs influence each other's function. This bidirectional communication has come to be known as the gut-liver-brain axis. The gut microbiome has emerged as a key mechanism affecting gut-liver, gut-brain, and brain-liver communication. Clinical studies and animal models have demonstrated the significant patterns of gut dysbiosis when cirrhosis is present, both with or without concomitant alcohol use disorder, and have provided compelling evidence that this dysbiosis also influences the cognitive and mood-related behaviors. In this review, we have summarized the pathophysiological and cognitive effects associated with cirrhosis, links to cirrhosis-associated disruption of the gut microbiome, and the current evidence from clinical and preclinical studies for the modulation of the gut microbiome as a treatment for cirrhosis and associated neuropsychiatric conditions.
Collapse
Affiliation(s)
- Maren L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - James B Wade
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jennifer Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| |
Collapse
|
31
|
Bian M, Zhu C, Nie A, Zhou Z. Guizhi Shaoyao Zhimu Decoction ameliorates gouty arthritis in rats via altering gut microbiota and improving metabolic profile. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155800. [PMID: 38851098 DOI: 10.1016/j.phymed.2024.155800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND The incidence of gouty arthritis (GA) has gradually increased, and modern drug therapies have obvious side effects. Guizhi Shaoyao Zhimu Decoction (GSZD), a classic prescription in Traditional Chinese Medicine for treating various osteoarthritis, has shown significant advantages in curing GA. PURPOSE To verify the therapeutic effect of GSZD on GA and investigate its potential pharmacological mechanism via integrated analysis of the gut microbiota and serum metabolites for the first time. METHODS The chemical composition of GSZD was determined using UPLC-MS. The GA rat model was established by the induction of a high-purine diet combined with local injection. We examined the effects and mechanisms of GSZD after 21 d using enzyme-linked immunosorbent assays, 16S rRNA, and non-targeted metabolomics. Finally, correlation analysis and validation experiment were performed to explore the association among the gut microbiota, serum metabolites, and GA-related clinical indices. RESULTS In total, 19 compounds were identified as GSZD. High-purine feedstuff with local injection-induced arthroceles were significantly attenuated after GSZD treatment. GSZD improved bone erosion and reduced the serum levels of inflammatory factors (lipopolysaccharide, tumor cell necrosis factor-α, and interleukin) and key indicators of GA (uric acid). 16S rRNA analysis indicated that GSZD-treated GA rats exhibited differences in the composition of the gut microbiota. The abundance of flora involved in uric acid transport, including Lactobacillus, Ruminococcaceae, and Turicibacter, was elevated to various degrees, whereas the abundance of bacteria involved in inflammatory responses, such as Blautia, was markedly reduced after treatment. Moreover, serum metabolite profiles revealed 27 different metabolites associated with the amelioration of GA, which primarily included fatty acids, glycerophospholipids, purine metabolism, amino acids, and bile acids, as well as primary metabolic pathways, such as glycerophospholipid metabolism and alanine. Finally, correlation analysis of the heat maps and validation experiment demonstrated a close relationship among inflammatory cytokines, gut microbial phylotypes, and metabolic parameters. CONCLUSION This study demonstrated that GSZD could modulate the gut microbiota and serum metabolic homeostasis to treat GA. In addition, the application of gut microbiota and serum metabolomics correlation analyses sheds light on the mechanism of Traditional Chinese Medicine compounds in the treatment of bone diseases.
Collapse
Affiliation(s)
- Meng Bian
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Anzheng Nie
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
32
|
Shekarabi A, Qureishy I, Puglisi CH, Dalseth M, Vuong HE. Host-microbe interactions: communication in the microbiota-gut-brain axis. Curr Opin Microbiol 2024; 80:102494. [PMID: 38824840 PMCID: PMC11323153 DOI: 10.1016/j.mib.2024.102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
Animals harbor a diverse array of symbiotic micro-organisms that coexist in communities across different body sites. These microbes maintain host homeostasis and respond to environmental insults to impact host physiological processes. Trillions of indigenous microbes reside in the gastrointestinal tract and engage with the host central nervous system (microbiota-gut-brain axis) by modulating immune responses, interacting with gut intrinsic and extrinsic nervous system, and regulating neuromodulators and biochemicals. These gut microbiota to brain signaling pathways are constantly informed by each other and are hypothesized to mediate brain health across the lifespan. In this review, we will examine the crosstalk of gut microbiota to brain communications in neurological pathologies, with an emphasis on microbial metabolites and neuromodulators, and provide a discussion of recent advances that help elucidate the microbiota as a therapeutic target for treating brain and behavioral disorders.
Collapse
Affiliation(s)
- Aryan Shekarabi
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA
| | - Izhan Qureishy
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA
| | - Chloe H Puglisi
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA
| | - Marge Dalseth
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA
| | - Helen E Vuong
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA.
| |
Collapse
|
33
|
Mulder D, Jakobi B, Shi Y, Mulders P, Kist JD, Collard RM, Vrijsen JN, van Eijndhoven P, Tendolkar I, Bloemendaal M, Arias Vasquez A. Gut microbiota composition links to variation in functional domains across psychiatric disorders. Brain Behav Immun 2024; 120:275-287. [PMID: 38815661 DOI: 10.1016/j.bbi.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVE Changes in microbial composition are observed in various psychiatric disorders, but their specificity to certain symptoms or processes remains unclear. This study explores the associations between the gut microbiota composition and the Research Domain Criteria (RDoC) domains of functioning, representing symptom domains, specifically focusing on stress-related and neurodevelopmental disorders in patients with and without psychiatric comorbidity. METHODS The gut microbiota was analyzed in 369 participants, comprising 272 individuals diagnosed with a mood disorder, anxiety disorder, attention deficit/hyperactivity disorder, autism spectrum disorder, and/or substance use disorder, as well as 97 psychiatrically unaffected individuals. The RDoC domains were estimated using principal component analysis (PCA) with oblique rotation on a range of psychiatric, psychological, and personality measures. Associations between the gut microbiota and the functional domains were assessed using multiple linear regression and permanova, adjusted for age, sex, diet, smoking, medication use and comorbidity status. RESULTS Four functional domains, aligning with RDoC's negative valence, social processes, cognitive systems, and arousal/regulatory systems domains, were identified. Significant associations were found between these domains and eight microbial genera, including associations of negative valence with the abundance of the genera Sellimonas, CHKCI001, Clostridium sensu stricto 1, Oscillibacter, and Flavonifractor; social processes with Sellimonas; cognitive systems with Sporobacter and Hungatella; and arousal/regulatory systems with Ruminococcus torques (all pFDR < 0.05). CONCLUSION Our findings demonstrate associations between the gut microbiota and the domains of functioning across patients and unaffected individuals, potentially mediated by immune-related processes. These results open avenues for microbiota-focused personalized interventions, considering psychiatric comorbidity. However, further research is warranted to establish causality and elucidate mechanistic pathways.
Collapse
Affiliation(s)
- Danique Mulder
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Babette Jakobi
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Yingjie Shi
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Peter Mulders
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Josina D Kist
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Rose M Collard
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Janna N Vrijsen
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Pro Persona Mental Health Care, Depression Expertise Center, Nijmegen, the Netherlands
| | - Phillip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Mirjam Bloemendaal
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt am Main, Frankfurt am Main, Germany
| | - Alejandro Arias Vasquez
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.
| |
Collapse
|
34
|
Yuan X, Chai J, Xu W, Zhao Y. Exploring the Potential of Probiotics and Prebiotics in Major Depression: From Molecular Function to Clinical Therapy. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10326-z. [PMID: 39078446 DOI: 10.1007/s12602-024-10326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Major depressive disorder (MDD) represents a complex and challenging mental health condition with multifaceted etiology. Recent research exploring the gut-brain axis has shed light on the potential influence of gut microbiota on mental health, offering novel avenues for therapeutic intervention. This paper reviews current evidence on the role of prebiotics and probiotics in the context of MDD treatment. Clinical studies assessing the effects of prebiotic and probiotic interventions have demonstrated promising results, showcasing improvements in depression symptoms and metabolic parameters in certain populations. Notably, prebiotics and probiotics have shown the capacity to modulate inflammatory markers, cortisol levels, and neurotransmitter pathways linked to MDD. However, existing research presents varied outcomes, underscoring the need for further investigation into specific microbial strains, dosage optimization, and long-term effects. Future research should aim at refining personalized interventions, elucidating mechanisms of action, and establishing standardized protocols to integrate these interventions into clinical practice. While prebiotics and probiotics offer potential adjunctive therapies for MDD, continued interdisciplinary efforts are vital to harnessing their full therapeutic potential and reshaping the landscape of depression treatment paradigms.
Collapse
Affiliation(s)
- Xin Yuan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jianbo Chai
- Heilongjiang Mental Hospital, Harbin, 150036, China
| | - Wenqiang Xu
- Harbin Jiarun Hospital, Harbin, 150040, China
| | - Yonghou Zhao
- Heilongjiang Mental Hospital, Harbin, 150036, China.
| |
Collapse
|
35
|
Taylor B, Hobensack M, Niño de Rivera S, Zhao Y, Masterson Creber R, Cato K. Identifying Depression Through Machine Learning Analysis of Omics Data: Scoping Review. JMIR Nurs 2024; 7:e54810. [PMID: 39028994 PMCID: PMC11297379 DOI: 10.2196/54810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Depression is one of the most common mental disorders that affects >300 million people worldwide. There is a shortage of providers trained in the provision of mental health care, and the nursing workforce is essential in filling this gap. The diagnosis of depression relies heavily on self-reported symptoms and clinical interviews, which are subject to implicit biases. The omics methods, including genomics, transcriptomics, epigenomics, and microbiomics, are novel methods for identifying the biological underpinnings of depression. Machine learning is used to analyze genomic data that includes large, heterogeneous, and multidimensional data sets. OBJECTIVE This scoping review aims to review the existing literature on machine learning methods for omics data analysis to identify individuals with depression, with the goal of providing insight into alternative objective and driven insights into the diagnostic process for depression. METHODS This scoping review was reported following the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines. Searches were conducted in 3 databases to identify relevant publications. A total of 3 independent researchers performed screening, and discrepancies were resolved by consensus. Critical appraisal was performed using the Joanna Briggs Institute Critical Appraisal Checklist for Analytical Cross-Sectional Studies. RESULTS The screening process identified 15 relevant papers. The omics methods included genomics, transcriptomics, epigenomics, multiomics, and microbiomics, and machine learning methods included random forest, support vector machine, k-nearest neighbor, and artificial neural network. CONCLUSIONS The findings of this scoping review indicate that the omics methods had similar performance in identifying omics variants associated with depression. All machine learning methods performed well based on their performance metrics. When variants in omics data are associated with an increased risk of depression, the important next step is for clinicians, especially nurses, to assess individuals for symptoms of depression and provide a diagnosis and any necessary treatment.
Collapse
Affiliation(s)
- Brittany Taylor
- School of Nursing, Columbia University, New York, NY, United States
| | - Mollie Hobensack
- Brookdale Department of Geriatrics and Palliative Care, Icahn School of Medicine, Mount Sinai Health System, New York, NY, United States
| | | | - Yihong Zhao
- School of Nursing, Columbia University, New York, NY, United States
| | | | - Kenrick Cato
- School of Nursing, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
36
|
Cao F, Zhang H, Xu B, Li C. Genetic association between gut microbiota and the risk of Guillain-Barré syndrome. J Affect Disord 2024; 357:171-178. [PMID: 38703912 DOI: 10.1016/j.jad.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Guillain-Barré Syndrome (GBS) is an autoimmune disease that typically develops after a previous gastrointestinal (GI) infection. However, the exact association between Gut Microbiota (GM) and GBS still remains unknown due to various challenges. This study aimed to investigate the potential causal association between GM and GBS by using a two-sample Mendelian Randomization (TSMR) analysis. METHODS Utilizing the largest available genome-wide association study (GWAS) meta-analysis from the MiBioGen consortium (n = 13,266) as a foundation, we conducted a TSMR to decipher the causal relationship between GM and GBS. Various analytical methods were employed, including the inverse variance weighted (IVW), MR-PRESSO, MR-Egger, and weighted median. The heterogeneity of instrumental variables (IVs) was assessed using Cochran's Q statistics. RESULTS The analysis identified three microbial taxa with a significantly increased risk association for GBS, including Ruminococcus gnavus group (OR = 1.40, 95 % CI: 1.07-1.83), Ruminococcus gauvreauii group (OR = 1.51, 95 % CI: 1.02-2.25), and Ruminococcaceae UCG009 (OR = 1.42, 95 % CI: 1.02-1.97), while Eubacterium brachy group (OR = 1.44, 95 % CI: 1.10-1.87) and Romboutsia (OR = 1.67, 95 % CI: 1.12-2.47) showed a suggestively causal association. On the other hand, Ruminococcaceae UCG004 (OR = 0.61, 95 % CI: 0.41-0.91) had a protective effect on GBS, while Bacilli (OR = 0.60, 95 % CI: 0.38-0.96), Gamma proteobacteria (OR = 0.63, 95 % CI: 0.41-0.98) and Lachnospiraceae UCG001 (OR = 0.69, 95 % CI: 0.49-0.96) showed a suggestively protective association for GBS. CONCLUSION The MR analysis suggests a potential causal relationship between specific GM taxa and the risk of GBS. However, further extensive research involving diversified populations is imperative to validate these findings.
Collapse
Affiliation(s)
- Fangzheng Cao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China; The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Houwen Zhang
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China; The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Xu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunrong Li
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
| |
Collapse
|
37
|
Xu L, Wang S, Wu L, Cao H, Fan Y, Wang X, Yu Z, Zhou M, Gao R, Wang J. Coprococcus eutactus screened from healthy adolescent attenuates chronic restraint stress-induced depression-like changes in adolescent mice: Potential roles in the microbiome and neurotransmitter modulation. J Affect Disord 2024; 356:737-752. [PMID: 38649105 DOI: 10.1016/j.jad.2024.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
The onset of depression commonly occurs in adolescence; therefore, depressive prevention and intervention are pivotal during this period. It is becoming evident that neurotransmitter imbalance and gut microbiota dysbiosis are prominent causes of depression. However, the underlying links and mechanisms remain poorly understood. In this study, with 16S ribosomal RNA gene sequencing, genus Coprococcus markedly differentiated between the healthy and unmedicated depressive adolescents. Based on this, transplantation of Coprococcus eutactus (C.e.) was found to dramatically ameliorate the chronic restraint stress (CRS) induced depression-like changes and prevent synaptic loss and glial-stimulated neuroinflammation in mice. The Ultra-high performance liquid chromatography tandem mass spectrometry analysis (UHPLC-MS/MS) further showed that neurotoxic neurotransmitters in kynurenine pathway (KP) such as 3-hydroxykynurenine (3-HK) and 3-hydroxyanthranilic acid (3-HAA) decreased in mouse brains, mechanistically deciphering the transfer of the tryptophan metabolic pathway to serotonin metabolic signaling in the brain after C.e. treatment, which was also verified in the colon. Molecularly, blockage of KP activities mediated by C.e. was ascribed to the restraint of the limit-step enzymes responsible for kynurenine, 3-HK, and quinolinic acid generation. In the colon, C.e. treatment significantly recovered goblet cells and mucus secretion in CRS mice which may ascribe to the rebalance of the disordered gut microbiota, especially Akkermansia, Roseburia, Rikenella, Blautia, and Alloprevotella. Taken together, the current study reveals for the first time the beneficial effects and potential mechanisms of C.e. in ameliorating CRS-induced depression, unraveling the direct links between C.e. treatment and neurotransmitter rebalance, which may provide efficacious therapeutic avenues for adolescent depressive intervention.
Collapse
Affiliation(s)
- Liuting Xu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sizhe Wang
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Linlin Wu
- Department of Physical and Chemical Inspection, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Hui Cao
- Department of Hygienic Analysis and Detection, Nanjing Qixia District Center for Disease Control and Prevention, Nanjing, China
| | - Yichun Fan
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xi Wang
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zheng Yu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Manfei Zhou
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rong Gao
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Jun Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
38
|
Zhou X, Ganz AB, Rayner A, Cheng TY, Oba H, Rolnik B, Lancaster S, Lu X, Li Y, Johnson JS, Hoyd R, Spakowicz DJ, Slavich GM, Snyder MP. Dynamic Human Gut Microbiome and Immune Shifts During an Immersive Psychosocial Therapeutic Program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600881. [PMID: 38979211 PMCID: PMC11230355 DOI: 10.1101/2024.06.26.600881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Depression is a leading cause of disability worldwide yet its underlying factors, particularly microbial associations, are poorly understood. Methods We examined the longitudinal interplay between the microbiome and immune system in the context of depression during an immersive psychosocial intervention. 142 multi-omics samples were collected from 52 well-characterized participants before, during, and three months after a nine-day inquiry-based stress reduction program. Results We found that depression was associated with both an increased presence of putatively pathogenic bacteria and reduced microbial beta-diversity. Following the intervention, we observed reductions in neuroinflammatory cytokines and improvements in several mental health indicators. Interestingly, participants with a Prevotella-dominant microbiome showed milder symptoms when depressed, along with a more resilient microbiome and more favorable inflammatory cytokine profile, including reduced levels of CXCL-1. Conclusions Our findings reveal a protective link between the Prevotella-dominant microbiome and depression, associated with a less inflammatory environment and moderated symptoms. These insights, coupled with observed improvements in neuroinflammatory markers and mental health from the intervention, highlight potential avenues for microbiome-targeted therapies in depression management.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford university School of Medicine, CA, USA
- These authors contributed equally to the work
| | - Ariel B. Ganz
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Healthcare Innovation Lab, Stanford University, CA, USA
- These authors contributed equally to the work
| | - Andre Rayner
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Tess Yan Cheng
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Department of Microbiology, College of Arts and Sciences, University of Washington, WA, USA
| | - Haley Oba
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Benjamin Rolnik
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Samuel Lancaster
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Xinrui Lu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Yizhou Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Jethro S. Johnson
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Rebecca Hoyd
- The Ohio State University Comprehensive Cancer Center, OH, USA
| | | | - George M. Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford university School of Medicine, CA, USA
- Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| |
Collapse
|
39
|
Leclercq S, de Timary P. Role of the Microbiome and the Gut-Brain Axis in Alcohol Use Disorder: Potential Implication for Treatment Development. Curr Top Behav Neurosci 2024. [PMID: 38914878 DOI: 10.1007/7854_2024_478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The gut microbiota is constituted by trillions of microorganisms colonizing the human intestine. Studies conducted in patients with alcohol use disorder (AUD) have shown altered microbial composition related to bacteria, viruses, and fungi.This review describes the communication pathways between the gut and the brain, including the ones related to the bacterial metabolites, the inflammatory cytokines, and the vagus nerve. We described in more detail the gut-derived metabolites that have been shown to be implicated in AUD or that could potentially be involved in the development of AUD due to their immune and/or neuroactive properties, including tryptophan-derivatives, tyrosine-derivatives, short chain fatty acids.Finally, we discussed the potential beneficial effects of microbiome-based therapies for AUD such as probiotics, prebiotics, postbiotic, and phage therapy.
Collapse
Affiliation(s)
- Sophie Leclercq
- Laboratory of Nutritional Psychiatry, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Philippe de Timary
- Department of Adult Psychiatry, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
40
|
Francavilla M, Facchetti S, Demartini C, Zanaboni AM, Amoroso C, Bottiroli S, Tassorelli C, Greco R. A Narrative Review of Intestinal Microbiota's Impact on Migraine with Psychopathologies. Int J Mol Sci 2024; 25:6655. [PMID: 38928361 PMCID: PMC11203823 DOI: 10.3390/ijms25126655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Migraine is a common and debilitating neurological disorder characterized by the recurrent attack of pulsating headaches typically localized on one side of the head associated with other disabling symptoms, such as nausea, increased sensitivity to light, sound and smell and mood changes. Various clinical factors, including the excessive use of migraine medication, inadequate acute treatment and stressful events, can contribute to the worsening of the condition, which may evolve to chronic migraine, that is, a headache present on >15 days/month for at least 3 months. Chronic migraine is frequently associated with various comorbidities, including anxiety and mood disorders, particularly depression, which complicate the prognosis, response to treatment and overall clinical outcomes. Emerging research indicates a connection between alterations in the composition of the gut microbiota and mental health conditions, particularly anxiety and depression, which are considered disorders of the gut-brain axis. This underscores the potential of modulating the gut microbiota as a new avenue for managing these conditions. In this context, it is interesting to investigate whether migraine, particularly in its chronic form, exhibits a dysbiosis profile similar to that observed in individuals with anxiety and depression. This could pave the way for interventions aimed at modulating the gut microbiota for treating difficult-to-manage migraines.
Collapse
Affiliation(s)
- Miriam Francavilla
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Sara Facchetti
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Chiara Demartini
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Anna Maria Zanaboni
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20135 Milan, Italy;
| | - Sara Bottiroli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Rosaria Greco
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| |
Collapse
|
41
|
Lu K, Zhou Y, He L, Li Y, Shahzad M, Li D. Coprococcus protects against high-fat diet-induced nonalcoholic fatty liver disease in mice. J Appl Microbiol 2024; 135:lxae125. [PMID: 38830802 DOI: 10.1093/jambio/lxae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/21/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
AIMS The incidence of nonalcoholic fatty liver disease (NAFLD) is increasing annually, leading to substantial medical and health burdens. Numerous studies have demonstrated the potential effectiveness of intestinal probiotics as a treatment strategy for NAFLD. Therefore, the objective of this study is to identify a probiotic for the treatment of NAFLD. METHODS AND RESULTS In this study, blood and fecal samples were collected from 41 healthy volunteers and 44 patients diagnosed with NAFLD. Analysis of the 16S rDNA sequencing data and quantitative real-time PCR (RT-qPCR) revealed a significant reduction in the abundance of Coprococcus in NAFLD patients. Subsequent animal experiments demonstrated that Coprococcus was able to effectively reverse liver lipid accumulation, inflammation, and fibrosis induced by a high-fat diet (HFD) in mice. CONCLUSIONS This study provides the first in vivo evidence that Coprococcus is a beneficial bacterium capable of preventing NAFLD and has the same probiotic effect in mice as Lactobacillus GG (LGG), a positive control. Therefore, Coprococcus has the potential to serve as a probiotic for the prevention and treatment of NAFLD in humans.
Collapse
Affiliation(s)
- Kaikai Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaan Xi 710061, China
| | - Yimeng Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi 710061, China
- Department of Planned Immunization, Xi'an Center for Disease Control and Prevention, No. 599 Xiying Road, Yanta District, Xi'an 710054 Shaanxi, China
| | - Lei He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi 710061, China
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center of China, Beijing 100034, China
| | - Ya Li
- Department of Clinical Laboratory, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710004, P.R. China
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaan Xi 710061, China
| |
Collapse
|
42
|
Li C, Zhang J, Pan P, Zhang J, Hou X, Wang Y, Chen G, Muhammad P, Reis RL, Ding L, Wang Y. Humanistic Health Management and Cancer: Associations of Psychology, Nutrition, and Exercise with Cancer Progression and Pathogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400665. [PMID: 38526194 PMCID: PMC11165509 DOI: 10.1002/advs.202400665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Indexed: 03/26/2024]
Abstract
The incidence rate of cancer is increasing year by year due to the aging of the population, unhealthy living, and eating habits. At present, surgery and medication are still the main treatments for cancer, without paying attention to the impact of individual differences in health management on cancer. However, increasing evidence suggests that individual psychological status, dietary habits, and exercise frequency are closely related to the risk and prognosis of cancer. The reminder to humanity is that the medical concept of the unified treatment plan is insufficient in cancer treatment, and a personalized treatment plan may become a breakthrough point. On this basis, the concept of "Humanistic Health Management" (HHM) is proposed. This concept is a healthcare plan that focuses on self-health management, providing an accurate and comprehensive evaluation of individual lifestyle habits, psychology, and health status, and developing personalized and targeted comprehensive cancer prevention and treatment plans. This review will provide a detailed explanation of the relationship between psychological status, dietary, and exercise habits, and the regulatory mechanisms of cancer. Intended to emphasize the importance of HHM concept in cancer prevention and better prognostic efficacy, providing new ideas for the new generation of cancer treatment.
Collapse
Affiliation(s)
- Chenchen Li
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and NanobiologySchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Pengcheng Pan
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Junjie Zhang
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Xinyi Hou
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Yan Wang
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Guoping Chen
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Pir Muhammad
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Rui L. Reis
- 3B's Research GroupI3Bs‐Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoGuimarães4805‐017Portugal
| | - Lin Ding
- Translational Medicine Collaborative Innovation CenterShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical College of Jinan University)ShenzhenGuangdong518055P. R. China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell TherapyShenzhen Key Laboratory of Stem Cell Research and Clinical TransformationShenzhen Immune Cell Therapy Public Service PlatformShenzhen518020P. R. China
| | - Yanli Wang
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| |
Collapse
|
43
|
Wang N, Yin C, Feng R, Jia R, Zhou L, Wu W, Yu H, Ye Y, Gong Z, Li L. Analysis of Intestinal Microbiota in Schizophrenic Patients with Type 2 Diabetes Mellitus. ALPHA PSYCHIATRY 2024; 25:375-381. [PMID: 39148590 PMCID: PMC11322711 DOI: 10.5152/alphapsychiatry.2024.231302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/10/2024] [Indexed: 08/17/2024]
Abstract
Objective Our goal is to examine the correlation between gut microbiota and the cooccurrence of schizophrenia and type 2 diabetes. Methods We conducted a study on the intestinal microbiota of 4 distinct groups: simple schizophrenia group (SC), schizophrenia with type 2 diabetes group (TS), type 2 diabetes group (T2DM), and normal population control group (HC), comprising a total of 35 subjects. Results The bacteria phyla Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Verrucobacteria were consistently present across all 4 groups. Significantly higher intestinal microbiota richness was observed in the T2DM compared to the other group, and the intestinal microbiota richness in TS significantly lower than that of the SC. Conclusion Our study suggests that the presence of type 2 diabetes in individuals with schizophrenia may affect the composition of their gut microbiota. We hypothesize that the concurrent existence of both diseases could potentially lead to alterations in the structure of gut microbiota, potentially influencing treatment effectiveness and outcomes.
Collapse
Affiliation(s)
- Nan Wang
- Department of Medicine, Dali University, Dali, China
- School of Public Health, Dali University, Dali, China
| | - Chunlei Yin
- School of Public Health, Dali University, Dali, China
- Department of Disease Control and Prevention, ubei District Center for Disease Control and Prevention, Chongqing, China
| | - Ruiqi Feng
- Clinical, Pharmacy, and Science Education Department, Mental Hospital of Yunnan province, Kunming, China
| | - Rong Jia
- Clinical, Pharmacy, and Science Education Department, Mental Hospital of Yunnan province, Kunming, China
| | - Liguo Zhou
- Clinical, Pharmacy, and Science Education Department, Mental Hospital of Yunnan province, Kunming, China
| | - Wenyu Wu
- Clinical, Pharmacy, and Science Education Department, Mental Hospital of Yunnan province, Kunming, China
| | - Haiyan Yu
- Clinical, Pharmacy, and Science Education Department, Mental Hospital of Yunnan province, Kunming, China
| | - Yuan Ye
- Department of Science Education, The Second Peoples Hospital of KUNMING, Kunming, China
| | - Zhiting Gong
- Department of Medicine, Dali University, Dali, China
| | - Lijuan Li
- Department of Medicine, Dali University, Dali, China
| |
Collapse
|
44
|
Tamayo M, Olivares M, Ruas-Madiedo P, Margolles A, Espín JC, Medina I, Moreno-Arribas MV, Canals S, Mirasso CR, Ortín S, Beltrán-Sanchez H, Palloni A, Tomás-Barberán FA, Sanz Y. How Diet and Lifestyle Can Fine-Tune Gut Microbiomes for Healthy Aging. Annu Rev Food Sci Technol 2024; 15:283-305. [PMID: 38941492 DOI: 10.1146/annurev-food-072023-034458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Many physical, social, and psychological changes occur during aging that raise the risk of developing chronic diseases, frailty, and dependency. These changes adversely affect the gut microbiota, a phenomenon known as microbe-aging. Those microbiota alterations are, in turn, associated with the development of age-related diseases. The gut microbiota is highly responsive to lifestyle and dietary changes, displaying a flexibility that also provides anactionable tool by which healthy aging can be promoted. This review covers, firstly, the main lifestyle and socioeconomic factors that modify the gut microbiota composition and function during healthy or unhealthy aging and, secondly, the advances being made in defining and promoting healthy aging, including microbiome-informed artificial intelligence tools, personalized dietary patterns, and food probiotic systems.
Collapse
Affiliation(s)
- M Tamayo
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain;
- Faculty of Medicine, Autonomous University of Madrid (UAM), Spain
| | - M Olivares
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain;
| | | | - A Margolles
- Health Research Institute (ISPA), Asturias, Spain
| | - J C Espín
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - I Medina
- Instituto de Investigaciones Marinas, Spanish National Research Council (IIM-CSIC), Vigo, Spain
| | | | - S Canals
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - C R Mirasso
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (UIB-CSIC), Campus Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - S Ortín
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (UIB-CSIC), Campus Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - H Beltrán-Sanchez
- Department of Community Health Sciences, Fielding School of Public Health and California Center for Population Research, University of California, Los Angeles, California, USA
| | - A Palloni
- Department of Sociology, University of Wisconsin, Madison, Wisconsin, USA
| | - F A Tomás-Barberán
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - Y Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain;
| |
Collapse
|
45
|
Tizabi Y, Getachew B, Hauser SR, Tsytsarev V, Manhães AC, da Silva VDA. Role of Glial Cells in Neuronal Function, Mood Disorders, and Drug Addiction. Brain Sci 2024; 14:558. [PMID: 38928557 PMCID: PMC11201416 DOI: 10.3390/brainsci14060558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Mood disorders and substance use disorder (SUD) are of immense medical and social concern. Although significant progress on neuronal involvement in mood and reward circuitries has been achieved, it is only relatively recently that the role of glia in these disorders has attracted attention. Detailed understanding of the glial functions in these devastating diseases could offer novel interventions. Here, following a brief review of circuitries involved in mood regulation and reward perception, the specific contributions of neurotrophic factors, neuroinflammation, and gut microbiota to these diseases are highlighted. In this context, the role of specific glial cells (e.g., microglia, astroglia, oligodendrocytes, and synantocytes) on phenotypic manifestation of mood disorders or SUD are emphasized. In addition, use of this knowledge in the potential development of novel therapeutics is touched upon.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Alex C. Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-170, RJ, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-100, BA, Brazil;
| |
Collapse
|
46
|
Teixeira M, Silva F, Ferreira RM, Pereira T, Figueiredo C, Oliveira HP. A review of machine learning methods for cancer characterization from microbiome data. NPJ Precis Oncol 2024; 8:123. [PMID: 38816569 PMCID: PMC11139966 DOI: 10.1038/s41698-024-00617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Recent studies have shown that the microbiome can impact cancer development, progression, and response to therapies suggesting microbiome-based approaches for cancer characterization. As cancer-related signatures are complex and implicate many taxa, their discovery often requires Machine Learning approaches. This review discusses Machine Learning methods for cancer characterization from microbiome data. It focuses on the implications of choices undertaken during sample collection, feature selection and pre-processing. It also discusses ML model selection, guiding how to choose an ML model, and model validation. Finally, it enumerates current limitations and how these may be surpassed. Proposed methods, often based on Random Forests, show promising results, however insufficient for widespread clinical usage. Studies often report conflicting results mainly due to ML models with poor generalizability. We expect that evaluating models with expanded, hold-out datasets, removing technical artifacts, exploring representations of the microbiome other than taxonomical profiles, leveraging advances in deep learning, and developing ML models better adapted to the characteristics of microbiome data will improve the performance and generalizability of models and enable their usage in the clinic.
Collapse
Affiliation(s)
- Marco Teixeira
- Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal.
- Faculty of Engineering, University of Porto, Porto, Portugal.
| | - Francisco Silva
- Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
- Faculty of Science, University of Porto, Porto, Portugal
| | - Rui M Ferreira
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Tania Pereira
- Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Ceu Figueiredo
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Hélder P Oliveira
- Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
- Faculty of Science, University of Porto, Porto, Portugal
| |
Collapse
|
47
|
Okuma K, Hatayama K, Tokuno H, Ebara A, Odachi A, Masuyama H, Hoshiko N, Tanaka N. A risk estimation method for depression based on the dysbiosis of intestinal microbiota in Japanese patients. Front Psychiatry 2024; 15:1382175. [PMID: 38863614 PMCID: PMC11165696 DOI: 10.3389/fpsyt.2024.1382175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Early detection of depression is important for preventing depression-related suicides and reducing the risk of recurrence. This study explored the association between depression and intestinal microbiota and developed a depression risk-estimation method based on this. Methods The intestinal microbiota of Japanese patients with depression (33 males and 35 females) and disease-free controls (246 males and 384 females) in their 20's to 60's were compared by sex using 16S rRNA gene amplicon sequencing. A depression-risk estimation method was developed using structural equation modeling. Results Intestinal bacteria taxa that differed between depression and control groups were identified based on effect size (absolute value greater than 0.2). Neglecta was more abundant, while Coprobacter, Butyricimonas, Clostridium_XlVb, and Romboutsia were less abundant in the male depression group compared to the male control group. In the female depression group, Massilimicrobiota, Merdimonas, and Sellimonas were more abundant, whereas Dorea and Agathobacter were less abundant compared to the female control group. Several of the intestinal bacterial taxa that were less abundant in depression were associated with butyrate or hydrogen production. Using these depression-associated intestinal bacteria as indicators, risk-estimation models using structural equation modeling for depression were developed. In the risk-estimation models for males and females, the areas under the receiver operating characteristic curve were 0.72 and 0.70, respectively, indicating that these models can distinguish between individuals with and without depression. Conclusions This study provides insights into depression etiology and aids in its early detection and treatment.
Collapse
Affiliation(s)
| | | | - Hidetaka Tokuno
- Symbiosis Solutions Inc., Tokyo, Japan
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Aya Ebara
- Symbiosis Solutions Inc., Tokyo, Japan
| | | | | | | | | |
Collapse
|
48
|
Averina OV, Poluektova EU, Zorkina YA, Kovtun AS, Danilenko VN. Human Gut Microbiota for Diagnosis and Treatment of Depression. Int J Mol Sci 2024; 25:5782. [PMID: 38891970 PMCID: PMC11171505 DOI: 10.3390/ijms25115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Nowadays, depressive disorder is spreading rapidly all over the world. Therefore, attention to the studies of the pathogenesis of the disease in order to find novel ways of early diagnosis and treatment is increasing among the scientific and medical communities. Special attention is drawn to a biomarker and therapeutic strategy through the microbiota-gut-brain axis. It is known that the symbiotic interactions between the gut microbes and the host can affect mental health. The review analyzes the mechanisms and ways of action of the gut microbiota on the pathophysiology of depression. The possibility of using knowledge about the taxonomic composition and metabolic profile of the microbiota of patients with depression to select gene compositions (metagenomic signature) as biomarkers of the disease is evaluated. The use of in silico technologies (machine learning) for the diagnosis of depression based on the biomarkers of the gut microbiota is given. Alternative approaches to the treatment of depression are being considered by balancing the microbial composition through dietary modifications and the use of additives, namely probiotics, postbiotics (including vesicles) and prebiotics as psychobiotics, and fecal transplantation. The bacterium Faecalibacterium prausnitzii is under consideration as a promising new-generation probiotic and auxiliary diagnostic biomarker of depression. The analysis conducted in this review may be useful for clinical practice and pharmacology.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Yana A. Zorkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Alexey S. Kovtun
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| |
Collapse
|
49
|
Wang Q, Song YX, Wu XD, Luo YG, Miao R, Yu XM, Guo X, Wu DZ, Bao R, Mi WD, Cao JB. Gut microbiota and cognitive performance: A bidirectional two-sample Mendelian randomization. J Affect Disord 2024; 353:38-47. [PMID: 38417715 DOI: 10.1016/j.jad.2024.02.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
PURPOSE Previous studies have suggested a potential association between gut microbiota and neurological and psychiatric disorders. However, the causal relationship between gut microbiota and cognitive performance remains uncertain. METHODS A two-sample Mendelian randomization (MR) study used SNPs linked to gut microbiota (n = 18,340) and cognitive performance (n = 257,841) from recent GWAS data. Inverse-variance weighted (IVW), MR Egger, weighted median, simple mode, and weighted mode were employed. Heterogeneity was assessed via Cochran's Q test for IVW. Results were shown with funnel plots. Outliers were detected through leave-one-out method. MR-PRESSO and MR-Egger intercept tests were conducted to address horizontal pleiotropy influence. LIMITATIONS Limited to European populations, generic level, and potential confounding factors. RESULTS IVW analysis revealed detrimental effects on cognitive perfmance associated with the presence of genus Blautia (P = 0.013, 0.966[0.940-0.993]), Catenibacterium (P = 0.035, 0.977[0.956-0.998]), Oxalobacter (P = 0.043, 0.979[0.960-0.999]). Roseburia (P < 0.001, 0.935[0.906-0.965]), in particular, remained strongly negatively associated with cognitive performance after Bonferroni correction. Conversely, families including Bacteroidaceae (P = 0.043, 1.040[1.001-1.081]), Rikenellaceae (P = 0.047, 1.026[1.000-1.053]), along with genera including Paraprevotella (P = 0.044, 1.020[1.001-1.039]), Ruminococcus torques group (P = 0.016, 1.062[1.011-1.115]), Bacteroides (P = 0.043, 1.040[1.001-1.081]), Dialister (P = 0.027, 1.039[1.004-1.074]), Paraprevotella (P = 0.044, 1.020[1.001-1.039]) and Ruminococcaceae UCG003 (P = 0.007, 1.040[1.011-1.070]) had a protective effect on cognitive performance. CONCLUSIONS Our results suggest that interventions targeting specific gut microbiota may offer a promising avenue for improving cognitive function in diseased populations. The practical application of these findings has the potential to enhance cognitive performance, thereby improving overall quality of life.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Yu-Xiang Song
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Dong Wu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yun-Gen Luo
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Ran Miao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Meng Yu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xu Guo
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - De-Zhen Wu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Rui Bao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Wei-Dong Mi
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jiang-Bei Cao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
50
|
Tan X, Wu J, Zhang H, Li Y, Huang Y, Zheng P, Xie P. Biogeography of intestinal mucus-associated microbiome: Depletion of genus Pseudomonas is associated with depressive-like behaviors in female cynomolgus macaques. J Adv Res 2024:S2090-1232(24)00204-2. [PMID: 38735389 DOI: 10.1016/j.jare.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION Depression is a debilitating and poorly understood mental disorder. There is an urgency to explore new potential biological mechanisms of depression and the gut microbiota is a promising research area. OBJECTIVES Our study was aim to understand regional heterogeneity and potential molecular mechanisms underlying depression induced by dysbiosis of mucus-associated microbiota. METHODS Here, we only selected female macaques because they are more likely to form a natural social hierarchy in a harem-like environment. Because high-ranking macaques rarely displayed depressive-like behaviors, we selected seven monkeys from high-ranking individuals as control group (HC) and the same number of low-ranking ones as depressive-like group (DL), which displayed significant depressive-like behaviors. Then, we collected mucus from the duodenum, jejunum, ileum, cecum and colon of DL and HC monkeys for shotgun metagenomic sequencing, to profile the biogeography of mucus-associated microbiota along duodenum to colon. RESULTS Compared with HC, DL macaques displayed noticeable depressive-like behaviors such as longer duration of huddle and sit alone behaviors (negative emotion behaviors), and fewer duration of locomotion, amicable and ingestion activities (positive emotion behaviors). Moreover, the alpha diversity index (Chao) could predict aforementioned depressive-like behaviors along duodenum to colon. Further, we identified that genus Pseudomonas was consistently decreased in DL group throughout the entire intestinal tract except for the jejunum. Specifically, there were 10, 18 and 28 decreased Pseudomonas spp. identified in ileum, cecum and colon, respectively. Moreover, a bacterial module mainly composed of Pseudomonas spp. was positively associated with three positive emotion behaviors. Functionally, Pseudomonaswas mainly involved in microbiota derived lipid metabolisms such as PPAR signaling pathway, cholesterol metabolism, and fat digestion and absorption. CONCLUSION Different regions of intestinal mucus-associated microbiota revealed that depletion of genus Pseudomonas is associated with depressive-like behaviors in female macaques, which might induce depressive phenotypes through regulating lipid metabolism.
Collapse
Affiliation(s)
- Xunmin Tan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Jin Feng Laboratory, Chongqing, China
| | - Jing Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Jin Feng Laboratory, Chongqing, China
| | - Hanping Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Jin Feng Laboratory, Chongqing, China
| | - Yifan Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Jin Feng Laboratory, Chongqing, China
| | - Yu Huang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Jin Feng Laboratory, Chongqing, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Jin Feng Laboratory, Chongqing, China.
| |
Collapse
|