1
|
Lu S, Yang Y, Song Z, Cao J, Han Z, Chen L, He Y, Wang J, Teng Y, Zhang Z, Zou J, Ge J, Yang H, Cheng L. Dual functional nanoplatforms potentiate osteosarcoma immunotherapy via microenvironment modulation. Natl Sci Rev 2025; 12:nwaf002. [PMID: 39936146 PMCID: PMC11812574 DOI: 10.1093/nsr/nwaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Osteosarcoma (OS), a highly aggressive bone tumor, presents significant challenges in terms of effective treatment. We identified that cellular autophagy was impaired within OS by comparing clinical OS samples through bioinformatic analyses and further validated the inhibition of mitochondrial autophagy in OS at the transcriptomic level. Based on this finding, we investigated the therapeutic potential of a dual functional metal nanoplatform (MnSx) to facilitate a transition from the protective effect of low-level autophagy in OS to the killing effect of high-level autophagy in OS. MnSx facilitated intracellular H2S generation via endocytosis, leading to the S-sulfhydration of ubiquitin-specific peptidase 8 (USP8) and subsequent promotion of mitochondrial autophagy in vitro. Additionally, MnSx activated the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway, further enhancing the cellular autophagic response and accelerating tumor cell death. Moreover, it was demonstrated in vivo that MnSx, on the one hand, mediated the activation of tumor autophagy by USP8 via intracellular H2S, while Mn2+ promoted the maturation of dendritic cells, activated cytotoxic T lymphocytes and contributed to tumor eradication. Such tumor killing could be suppressed by the autophagy inhibitor chloroquine. Importantly, synergistic combination therapy with immune checkpoint inhibitors showed promise for achieving complete remission of OS. This study highlights the potential of MnSx as a dual-functional therapeutic platform for OS treatment and offers novel directions for future research in this field.
Collapse
Affiliation(s)
- Shunyi Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215123, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yuqi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhuorun Song
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215123, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Jie Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhihui Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Linfu Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yunfei He
- Soochow University Institues for Translational Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Jiayi Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yun Teng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Zengli Zhang
- Department of Environmental Health School of Public Health, Soochow University, Suzhou 215123, China
| | - Jun Zou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Jun Ge
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215123, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Huilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Sato M, Kadomatsu T, Morinaga J, Kinoshita Y, Torigoe D, Horiguchi H, Ohtsuki S, Yamamura S, Kusaba R, Yamaguchi T, Yoshioka G, Araki K, Wakayama T, Miyata K, Node K, Oike Y. HINT1 suppression protects against age-related cardiac dysfunction by enhancing mitochondrial biogenesis. Mol Metab 2025; 93:102107. [PMID: 39909188 PMCID: PMC11850129 DOI: 10.1016/j.molmet.2025.102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/07/2025] Open
Abstract
OBJECTIVE Cardiac function declines with age, impairing exercise tolerance and negatively impacting healthy aging. However, mechanisms driving age-related declines in cardiac function are not fully understood. METHODS We examined mechanisms underlying age-related cardiac dysfunction using 3- and 24-month-old wild-type mice fed ad libitum or 24-month-old wild-type mice subjected to 70% calorie restriction (CR) starting at 2-month-old. In addition, cardiac aging phenotypes and mitochondrial biogenesis were also analyzed in 25-month-old cardiac-specific Hint1 knockout mice, 24-month-old CAG-Caren Tg mice, and 24-month-old wild-type mice injected with AAV6-Caren. RESULTS We observed inactivation of mitochondrial biogenesis in hearts of aged mice. We also showed that activity of the BAF chromatin remodeling complex is repressed by HINT1, whose expression in heart increases with age, leading to decreased transcription of Tfam, which promotes mitochondrial biogenesis. Interestingly, CR not only suppressed age-related declines in cardiac function and mitochondrial biogenesis but blocked concomitant increases in cardiac HINT1 protein levels and maintained Tfam transcription. Furthermore, expression of the lncRNA Caren, which inhibits Hint1 mRNA translation, decreased with age in heart, and CR suppressed this effect. Finally, decreased HINT1 expression due to Caren overexpression antagonized age-related declines in mitochondrial biogenesis, ameliorating age-related cardiac dysfunction, exercise intolerance, and exercise-induced cardiac damage and subsequent death of mice. CONCLUSION Our findings suggest that mitochondrial biogenesis in cardiomyocytes decreases with age and could underlie cardiac dysfunction, and that the Caren-HINT1-mitochondrial biogenesis axis may constitute a mechanism linking CR to resistance to cardiac aging. We also show that ameliorating declines in mitochondrial biogenesis in cardiomyocytes could counteract age-related declines in cardiac function, and that this strategy may improve exercise tolerance and extend so-called "healthy life span".
Collapse
Affiliation(s)
- Michio Sato
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Division of Kumamoto Mouse Clinic (KMC), Institute of Resource Developmental and Analysis (IRDA), Kumamoto University, Kumamoto, Japan; Department of Cardiovascular Medicine, School of Medicine, Saga University, Saga, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Jun Morinaga
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
| | - Yuya Kinoshita
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
| | - Daisuke Torigoe
- Division of Experimental Genetics, IRDA, Kumamoto University, Kumamoto, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmacological Sciences, Kumamoto University, Kumamoto, Japan
| | - Shuji Yamamura
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryoko Kusaba
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
| | - Takanori Yamaguchi
- Department of Cardiovascular Medicine, School of Medicine, Saga University, Saga, Japan
| | - Goro Yoshioka
- Department of Cardiovascular Medicine, School of Medicine, Saga University, Saga, Japan
| | - Kimi Araki
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Division of Developmental Genetics, IRDA, Kumamoto University, Kumamoto, Japan
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, School of Medicine, Saga University, Saga, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
3
|
Lu Y, Gao L, Yang Y, Shi D, Zhang Z, Wang X, Huang Y, Wu J, Meng J, Li H, Yan D. Protective role of mitophagy on microglia-mediated neuroinflammatory injury through mtDNA-STING signaling in manganese-induced parkinsonism. J Neuroinflammation 2025; 22:55. [PMID: 40022162 DOI: 10.1186/s12974-025-03396-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/23/2025] [Indexed: 03/03/2025] Open
Abstract
Manganese (Mn), the third most abundant transition metal in the earth's crust, has widespread applications in the emerging field of organometallic catalysis and traditional industries. Excessive Mn exposure causes neurological syndrome resembling Parkinson's disease (PD). The pathogenesis of PD is thought to involve microglia-mediated neuroinflammatory injury, with mitochondrial dysfunction playing a role in aberrant microglial activation. In the early stages of PD, PINK1/Parkin-mediated mitophagy contributes to the microglial inflammatory response via the cGAS/STING signaling pathway. Suppression of PINK1/Parkin-mediated mitophagy due to excessive Mn exposure exacerbates neuronal injury. Moreover, excessive Mn exposure leads to neuroinflammatory damage via the microglial cGAS-STING pathway. However, the precise role of microglial mitophagy in modulating neuroinflammation in Mn-induced parkinsonism and its underlying molecular mechanism remains unclear. Here, we observed that Mn-exposed mice exhibited neurobehavioral abnormalities and detrimental microglial activation, along with increased apoptosis of nerve cells, proinflammatory cytokines, and intracellular ROS. Furthermore, in vivo and in vitro experiments showed that excessive Mn exposure resulted in microglial mitochondrial dysfunction, manifested by increased mitochondrial ROS, decreased mitochondrial mass, and membrane potential. Additionally, with the escalating Mn dose, PINK1/Parkin-mediated mitophagy changed from activation to suppression. This was evidenced by decreased levels of LC3-II, PINK1, p-Parkin/Parkin, and increased levels of p62 protein expression level, as well as the colocalization between ATPB and LC3B due to excessive Mn exposure. Upregulation of mitophagy by urolithin A could mitigate Mn-induced mitochondrial dysfunction, as indicated by decreased mitochondrial ROS, increased mitochondrial mass, and membrane potential, along with improvements in neurobehavioral deficits and attenuated detrimental microglial activation. Using single-nucleus RNA-sequencing (snRNA-seq) analysis in the Mn-exposed mouse model, we identified the microglial cGAS-STING signaling pathway as a potential mechanism underlying Mn-induced neuroinflammation. This pathway is associated with an increase in cytosolic mtDNA levels, which activate STING signaling. These findings point to the induction of microglial mitophagy as a viable strategy to alleviate Mn-induced neuroinflammation through mtDNA-STING signaling.
Collapse
Affiliation(s)
- Yang Lu
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Liang Gao
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
- Collaborative Innovation Center For Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
| | - Yuqing Yang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Dihang Shi
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Zhipeng Zhang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Xiaobai Wang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Ying Huang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Jie Wu
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Jia Meng
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
- Collaborative Innovation Center For Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
| | - Hong Li
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
- Collaborative Innovation Center For Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
| | - Dongying Yan
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China.
- Collaborative Innovation Center For Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
4
|
Kong L, Li S, Fu Y, Cai Q, Zhai Z, Liang J, Ma T. Microplastics/nanoplastics contribute to aging and age-related diseases: mitochondrial dysfunction as a crucial role. Food Chem Toxicol 2025; 199:115355. [PMID: 40020987 DOI: 10.1016/j.fct.2025.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/08/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The pervasive utilization of plastic products has led to a significant escalation in plastic waste accumulation. Concurrently, the implications of emerging pollutants such as microplastics (MPs) and nanoplastics (NPs) on human health are increasingly being acknowledged. Recent research has demonstrated that MPs/NPs may contribute to the onset of human aging and age-related diseases. Additionally, MPs/NPs have the potential to induce mitochondrial damage, resulting in mitochondrial dysfunction. Mitochondrial dysfunction is widely recognized as a hallmark of aging; thus, it is necessary to elucidate the relationship between them. In this article, we first elucidate the distribution of MPs/NPs in various environmental media, their pathways into the human body, and their subsequent distribution within human tissues and organs. Subsequently, we examine the interplay between MPs/NPs, mitochondrial dysfunction, and the aging process. We aspire that this article will enhance awareness regarding the toxicity of MPs/NPs while also offering a theoretical framework to support the development of improved regulatory policies in the future.
Collapse
Affiliation(s)
- Liang Kong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Shuhao Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Yu Fu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Qinyun Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Zhengyu Zhai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Tan Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| |
Collapse
|
5
|
Ding S. Therapeutic Reprogramming toward Regenerative Medicine. Chem Rev 2025; 125:1805-1822. [PMID: 39907153 DOI: 10.1021/acs.chemrev.4c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Therapeutic reprogramming represents a transformative paradigm in regenerative medicine, developing new approaches in cell therapy, small molecule drugs, biologics, and gene therapy to address unmet medical challenges. This paradigm encompasses the precise modulation of cellular fate and function to either generate safe and functional cells ex vivo for cell-based therapies or to directly reprogram endogenous cells in vivo or in situ for tissue repair and regeneration. Building on the discovery of induced pluripotent stem cells (iPSCs), advancements in chemical modulation and CRISPR-based gene editing have propelled a new iterative medicine paradigm, focusing on developing scalable, standardized cell therapy products from universal starting materials and enabling iterative improvements for more effective therapeutic profiles. Beyond cell-based therapies, non-cell-based therapeutic strategies targeting endogenous cells may offer a less invasive, more convenient, accessible, and cost-effective alternative for treating a broad range of diseases, potentially rejuvenating tissues and extending healthspan.
Collapse
Affiliation(s)
- Sheng Ding
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Global Health Drug Discovery Institute, Beijing 100192, China
- CRE Life Institute, Beijing 100192, China
| |
Collapse
|
6
|
Yang F, Gao Y, Xie S, Yang W, Wang Q, Ye W, Sun L, Zhou J, Feng X. Dietary phytosterol supplementation mitigates renal fibrosis via activating mitophagy and modulating the gut microbiota. Food Funct 2025. [PMID: 39989003 DOI: 10.1039/d4fo06043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Chronic kidney disease (CKD) poses a significant global health challenge, primarily driven by renal fibrosis, with limited treatment options. Addressing this condition necessitates either targeted medical treatments or dietary interventions. Phytosterols (PS) are cholesterol-like bioactive compounds in various plant-based foods with antioxidant and anti-inflammatory effects. A CKD mouse model was established using folic acid (FA) and treated with dietary supplements of two PS, stigmasterol (Stig) and β-sitosterol (β-Sito). The effects and mechanisms of PS were investigated through biochemical indices, pathology, transcriptomics, and 16S rDNA sequencing. The results indicated that high-dose PS are more effective than low-dose PS and Losartan potassium (LP) in reducing renal fibrosis, restoring function, and modulating oxidative stress and inflammation, with no significant differences between high-dose Stig and β-Sito treatments. Gene Ontology (GO) enrichment analysis revealed that PS were significantly enriched in pathways related to the mitochondrial outer membrane, ubiquitin-protein ligase binding, and other cellular components and molecular processes. PS reduced the expression of TGF-β/Smad and cGAS/Sting1/TBK1 and activated PINK1/Parkin pathway proteins, thereby mitigating renal fibrosis in mice. CKD is often associated with imbalanced gut microbiota and compromised intestinal barriers. Our observations indicated that PS restored the intestinal barrier, altered the composition of the gut microbiota, and improved renal function in CKD mice. The present findings indicate that both Stig and β-Sito activate mitophagy via the PINK1/Parkin pathway and modulate the gut microbiota, thereby alleviating renal fibrosis. The findings provide solid and significant implications for developing effective application of PS supplementation in the management of CKD, presenting novel concepts and approaches for research and clinical treatment.
Collapse
Affiliation(s)
- Fan Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi province, China
| | - Yingjie Gao
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Siyi Xie
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Wenjing Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Qiyan Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi province, China
| | - Wenqian Ye
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Lu Sun
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Jiangtao Zhou
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - XiuE Feng
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| |
Collapse
|
7
|
Liu L, Xiao F, Yang J, Yao H, Hua K. Microglial pyroptosis induced by SENP7 via the cGAS/STING/IRF3 pathway contributes to neuronal apoptosis. Cytokine 2025; 189:156893. [PMID: 39999677 DOI: 10.1016/j.cyto.2025.156893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Maternal anesthetic exposure may exacerbate significant neurocognitive risks in the immature brains of fetuses. However, the mechanisms through which sevoflurane exposure during pregnancy results in cognitive impairments in offspring remain unclear. METHODS Pregnant C57BL/6 mice (gestational day 14) were intervented with 2.5 % sevoflurane for 6 h. Morris water maze test and context fear conditioning test were utilized to evaluate the cognitive function of the offspring. BV2 cells were stimulated with LPS-ATP to evaluate the impacts of SENP7 on microglial pyroptosis. A co-culture experiment was conducted to investigate the apoptosis of mouse hippocampal neuronal cells induced by BV2 cells. The regulatory roles of SENP7 in the cGAS/STING/IRF3 pathway were assessed using an immunoprecipitation SUMOylation assay, along with Western blot analysis. RESULTS Sevoflurane exposure during pregnancy resulted in cognitive impairments in offspring mice, which were associated with the upregulation of SENP7, Iba1, Caspase1, and GSDMD-N proteins, as well as the downregulation of NeuN and TH proteins in the brains of the offspring. The knockdown of SENP7 inhibited the elevation of GSDMD-N, Caspase1, and NLRP3 protein levels, subsequently reducing the concentrations of IL-1β and IL-18 in BV2 cells induced by LPS-ATP. Furthermore, SENP7 facilitated the activation of the cGAS/STING/IRF3 axis by regulating the deSUMOylation of cGAS, which triggered microglial pyroptosis and subsequently led to neuronal apoptosis. CONCLUSION Maternal exposure to sevoflurane increased the expression of SENP7 in the brains of offspring and resulted in detrimental effects on cognitive function. This phenomenon was associated with neuronal apoptosis triggered by microglial pyroptosis, which was regulated by SENP7 through the cGAS/STING/IRF3 pathway.
Collapse
Affiliation(s)
- Lin Liu
- Department of Anesthesiology, Jiaxing Maternity and Child Health Care Hospital, Jiaxing Women and Children's Hospital, Wenzhou Medical University, Jiaxing 314050, Zhejiang, PR China
| | - Fei Xiao
- Department of Anesthesiology, Jiaxing Maternity and Child Health Care Hospital, Jiaxing Women and Children's Hospital, Wenzhou Medical University, Jiaxing 314050, Zhejiang, PR China
| | - Jinyue Yang
- Department of Anesthesiology, Jiaxing Maternity and Child Health Care Hospital, Jiaxing Women and Children's Hospital, Wenzhou Medical University, Jiaxing 314050, Zhejiang, PR China.
| | - Hanqing Yao
- Department of Anesthesiology, Jiaxing Maternity and Child Health Care Hospital, Jiaxing Women and Children's Hospital, Wenzhou Medical University, Jiaxing 314050, Zhejiang, PR China
| | - Ke Hua
- Department of Reproductive Medicine Center, Jiaxing Maternity and Child Health Care Hospital, Jiaxing Women and Children's Hospital, Wenzhou Medical University, Jiaxing 314050, Zhejiang, PR China
| |
Collapse
|
8
|
Wei Y, Zhang Y, Cao W, Cheng N, Xiao Y, Zhu Y, Xu Y, Zhang L, Guo L, Song J, Sha SH, Shao B, Ma F, Yang J, Ying Z, He Z, Chai R, Fang Q, Yang J. RONIN/HCF1-TFEB Axis Protects Against D-Galactose-Induced Cochlear Hair Cell Senescence Through Autophagy Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2407880. [PMID: 39985193 DOI: 10.1002/advs.202407880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/17/2025] [Indexed: 02/24/2025]
Abstract
Age-related hearing loss is characterized by senescent inner ear hair cells (HCs) and reduced autophagy. Despite the improved understanding of these processes, detailed molecular mechanisms underlying cochlear HC senescence remain unclear. Transcription Factor EB (TFEB), a key regulator of genes associated with autophagy and lysosomes, crucially affects aging-related illnesses. However, intricate regulatory networks that influence TFEB activity remain to be thoroughly elucidated. The findings revealed that RONIN (THAP11), through its interaction with host cell factor C1 (HCF1/HCFC1), modulated the transcriptional activity of Tfeb, thus contributing to the mitigation (D-galatactose [D-gal]) senescent HC loss. Specifically, RONIN overexpression improved autophagy levels and lysosomal activity and attenuated changes associated with the senescence of HCs triggered by D-gal. These findings highlight the possibility of using RONIN as a viable therapeutic target to ameliorate presbycusis by enhancing the TFEB function.
Collapse
Affiliation(s)
- Yongjie Wei
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yuhua Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Wei Cao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Nan Cheng
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yun Xiao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yongjun Zhu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yan Xu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Lei Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Lingna Guo
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jun Song
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Buwei Shao
- School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Fang Ma
- Center for Scientific Research of Anhui Medical University, Hefei, 230032, China
| | - Jingwen Yang
- International Department of Hefei 168 High School, Hefei, 230601, China
| | - Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration Nantong University, Nantong, 226001, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science Beijing Institute of Technology, Beijing, 100081, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Qiaojun Fang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jianming Yang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| |
Collapse
|
9
|
Hu L, Liu J, Peng J, Li X, Huang Z, Zhang C, Fan S. TREM2 Alleviates Neuroinflammation by Maintaining Cellular Metabolic Homeostasis and Mitophagy Activity During Early Inflammation. Diseases 2025; 13:60. [PMID: 39997067 PMCID: PMC11854088 DOI: 10.3390/diseases13020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
AIMS Inflammation is a pivotal characteristic of neurodegenerative diseases. The triggering receptor expressed on the myeloid cells 2 (TREM2) gene has previously been shown to suppress inflammation by directly inhibiting inflammation-related pathways. Mitochondrial dysfunction has recently emerged as another critical pathological manifestation of neurodegenerative diseases. Although TREM2 is involved in the regulation of cellular energy metabolism and mitochondrial autophagy, its role in the relationship between inflammation and mitochondrial autophagy remains unclear. METHODS In this study, we generated TREM2-overexpressing BV-2 cells and established a neuroinflammatory model with LPS. We compared these cells with wild-type cells in terms of inflammation, metabolism, autophagy, and mitochondria using methods such as RT-qPCR, Western blotting, immunocytochemistry, transmission electron microscopy, and flow cytometry. RESULTS Microglia overexpressing TREM2 exhibited increased resistance to inflammation. Additionally, these cells inhibited the metabolic reprogramming that occurs early in LPS-induced inflammation, reduced ROS release, mitigated mitochondrial damage, maintained a certain level of autophagic activity, and cleared damaged mitochondria. Consequently, they alleviated the inflammation caused by the mitochondrial barrier. CONCLUSIONS ur results suggest that TREM2 can alleviate inflammation by maintaining cellular metabolic homeostasis and mitochondrial autophagy activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shengtao Fan
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650108, China; (L.H.); (J.L.); (J.P.); (X.L.); (Z.H.); (C.Z.)
| |
Collapse
|
10
|
Zhang G, Wei H, Zhao A, Yan X, Zhang X, Gan J, Guo M, Wang J, Zhang F, Jiang Y, Liu X, Yang Z, Jiang X. Mitochondrial DNA leakage: underlying mechanisms and therapeutic implications in neurological disorders. J Neuroinflammation 2025; 22:34. [PMID: 39920753 PMCID: PMC11806845 DOI: 10.1186/s12974-025-03363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
Mitochondrial dysfunction is a pivotal instigator of neuroinflammation, with mitochondrial DNA (mtDNA) leakage as a critical intermediary. This review delineates the intricate pathways leading to mtDNA release, which include membrane permeabilization, vesicular trafficking, disruption of homeostatic regulation, and abnormalities in mitochondrial dynamics. The escaped mtDNA activates cytosolic DNA sensors, especially cyclic gmp-amp synthase (cGAS) signalling and inflammasome, initiating neuroinflammatory cascades via pathways, exacerbating a spectrum of neurological pathologies. The therapeutic promise of targeting mtDNA leakage is discussed in detail, underscoring the necessity for a multifaceted strategy that encompasses the preservation of mtDNA homeostasis, prevention of membrane leakage, reestablishment of mitochondrial dynamics, and inhibition the activation of cytosolic DNA sensors. Advancing our understanding of the complex interplay between mtDNA leakage and neuroinflammation is imperative for developing precision therapeutic interventions for neurological disorders.
Collapse
Affiliation(s)
- Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Jie Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Fayan Zhang
- Heart Disease Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yifang Jiang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinxing Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Zhen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, China.
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
11
|
Khawaja RR, Martín-Segura A, Santiago-Fernández O, Sereda R, Lindenau K, McCabe M, Macho-González A, Jafari M, Scrivo A, Gomez-Sintes R, Chavda B, Saez-Ibanez AR, Tasset I, Arias E, Xie X, Kim M, Kaushik S, Cuervo AM. Sex-specific and cell-type-specific changes in chaperone-mediated autophagy across tissues during aging. NATURE AGING 2025:10.1038/s43587-024-00799-6. [PMID: 39910244 DOI: 10.1038/s43587-024-00799-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/18/2024] [Indexed: 02/07/2025]
Abstract
Aging leads to progressive decline in organ and tissue integrity and function, partly due to loss of proteostasis and autophagy malfunctioning. A decrease with age in chaperone-mediated autophagy (CMA), a selective type of lysosomal degradation, has been reported in various organs and cells from rodents and humans. Disruption of CMA recapitulates features of aging, whereas activating CMA in mice protects against age-related diseases such as Alzheimer's, retinal degeneration and/or atherosclerosis. However, sex-specific and cell-type-specific differences in CMA with aging remain unexplored. Here, using CMA reporter mice and single-cell transcriptomic data, we report that most organs and cell types show CMA decline with age, with males exhibiting a greater decline with aging. Reduced CMA is often associated with fewer lysosomes competent for CMA. Transcriptional downregulation of CMA genes may further contribute to CMA decline, especially in males. These findings suggest that CMA differences may influence organ vulnerability to age-related degeneration.
Collapse
Affiliation(s)
- Rabia R Khawaja
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Adrián Martín-Segura
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- IMDEA Food, Madrid, Spain
| | - Olaya Santiago-Fernández
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rebecca Sereda
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kristen Lindenau
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mericka McCabe
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adrián Macho-González
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maryam Jafari
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aurora Scrivo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Bellvitge Biomedical Research Institute, IDIBELL, University of Barcelona, Barcelona, Spain
| | - Raquel Gomez-Sintes
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Bhakti Chavda
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Rosa Saez-Ibanez
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Inmaculada Tasset
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Esperanza Arias
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xianhong Xie
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mimi Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
12
|
Rai P, Fessler MB. Mechanisms and effects of activation of innate immunity by mitochondrial nucleic acids. Int Immunol 2025; 37:133-142. [PMID: 39213393 DOI: 10.1093/intimm/dxae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
In recent years, a growing number of roles have been identified for mitochondria in innate immunity. One principal mechanism is that the translocation of mitochondrial nucleic acid species from the mitochondrial matrix to the cytosol and endolysosomal lumen in response to an array of microbial and non-microbial environmental stressors has been found to serve as a second messenger event in the cell signaling of the innate immune response. Thus, mitochondrial DNA and RNA have been shown to access the cytosol through several regulated mechanisms involving remodeling of the mitochondrial inner and outer membranes and to access lysosomes via vesicular transport, thereby activating cytosolic [e.g. cyclic GMP-AMP synthase (cGAS), retinoic acid-inducible gene I (RIG-I)-like receptors], and endolysosomal (Toll-like receptor 7, 9) nucleic acid receptors that induce type I interferons and pro-inflammatory cytokines. In this mini-review, we discuss these molecular mechanisms of mitochondrial nucleic acid mislocalization and their roles in host defense, autoimmunity, and auto-inflammatory disorders. The emergent paradigm is one in which host-derived DNA interestingly serves as a signal amplifier in the innate immune response and also as an alarm signal for disturbances in organellar homeostasis. The apparent vast excess of mitochondria and mitochondrial DNA nucleoids per cell may thus serve to sensitize the cell response to stressors while ensuring an underlying reserve of intact mitochondria to sustain cellular metabolism. An improved understanding of these molecular mechanisms will hopefully afford future opportunities for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Prashant Rai
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
13
|
Wang K, Ho C, Li X, Hou J, Luo Q, Wu J, Yang Y, Zhang X. Matrix stiffness regulates mitochondria-lysosome contacts to modulate the mitochondrial network, alleviate the senescence of MSCs. Cell Prolif 2025; 58:e13746. [PMID: 39353686 PMCID: PMC11839199 DOI: 10.1111/cpr.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
The extracellular microenvironment encompasses the extracellular matrix, neighbouring cells, cytokines, and fluid components. Anomalies in the microenvironment can trigger aging and a decreased differentiation capacity in mesenchymal stem cells (MSCs). MSCs can perceive variations in the firmness of the extracellular matrix and respond by regulating mitochondrial function. Diminished mitochondrial function is intricately linked to cellular aging, and studies have shown that mitochondria-lysosome contacts (M-L contacts) can regulate mitochondrial function to sustain cellular equilibrium. Nonetheless, the influence of M-L contacts on MSC aging under varying matrix stiffness remains unclear. In this study, utilizing single-cell RNA sequencing and atomic force microscopy, we further demonstrate that reduced matrix stiffness in older individuals leads to MSC aging and subsequent decline in osteogenic ability. Mechanistically, augmented M-L contacts under low matrix stiffness exacerbate MSC aging by escalating mitochondrial oxidative stress and peripheral division. Moreover, under soft matrix stiffness, cytoskeleton reorganization facilitates rapid movement of lysosomes. The M-L contacts inhibitor ML282 ameliorates MSC aging by reinstating mitochondrial network and function. Overall, our findings confirm that MSC aging is instigated by disruption of the mitochondrial network and function induced by matrix stiffness, while also elucidating the potential mechanism by which M-L Contact regulates mitochondrial homeostasis. Crucially, this presents promise for cellular anti-aging strategies centred on mitochondria, particularly in the realm of stem cell therapy.
Collapse
Affiliation(s)
- Kang Wang
- Hospital of Stomatology, Guanghua School of StomatologySun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouPeople's Republic of China
| | - Chingchun Ho
- Hospital of Stomatology, Guanghua School of StomatologySun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouPeople's Republic of China
| | - Xiangyu Li
- The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenPeople's Republic of China
| | - Jianfeng Hou
- Department of Joint and Trauma SurgeryThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Qipei Luo
- Hospital of Stomatology, Guanghua School of StomatologySun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouPeople's Republic of China
| | - Jiahong Wu
- School of MedicineSun Yat‐sen UniversityShenzhenPeople's Republic of China
| | - Yuxin Yang
- Hospital of Stomatology, Guanghua School of StomatologySun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouPeople's Republic of China
| | - Xinchun Zhang
- Hospital of Stomatology, Guanghua School of StomatologySun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouPeople's Republic of China
| |
Collapse
|
14
|
Mao K, Huang Y, Liu Z, Sui W, Liu C, Li Y, Zeng J, Qian X, Ma X, Lin X, Lou B. Oxidative stress mediates retinal damage after corneal alkali burn through the activation of the cGAS/STING pathway. Exp Eye Res 2025; 251:110228. [PMID: 39736315 DOI: 10.1016/j.exer.2024.110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/22/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025]
Abstract
Retinal damage accounts for irreversible vision loss following ocular alkali burn (OAB), but the underlying mechanisms remain largely unexplored. Herein, using an OAB mouse model, we examined the impact of oxidative stress (OS) in retinal damage and its molecular mechanism. Results revealed that OS in the retina was enhanced soon after alkali injury. Antioxidant therapy with N-acetylcysteine (NAC) preserved the retinal structure, suppressed cell apoptosis and decreased retinal inflammation, confirming the role of OS. Moreover, enhanced OS was linked to mitochondrial dysfunction, mtDNA leakage and initiation of the cytosolic DNA-sensing signaling. The activation of the major DNA sensors cyclic GMP-AMP Synthase (cGas) and cGAS-Stimulator of Interferon Genes (cGAS/STING) pathway was then identified. Notably, inhibiting cGAS/STING signaling with C-176 markedly reduced inflammation and cell apoptosis and ultimately protected the retina against OAB. Overall, our study reveals the vital function of OS in the occurrence of OAB-induced retinal damage and the involvement of cGAS/STING activation. Furthermore, our provides preclinical validation of the use of an antioxidant or a STING inhibitor as a potential therapeutic approach to protect the retina after OAB.
Collapse
Affiliation(s)
- Keli Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Yanqiao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Zheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Wenjun Sui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Chong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Yujie Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Jieting Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Xiaobing Qian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Xinqi Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China.
| | - Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
15
|
Lakkaraju A, Boya P, Csete M, Ferrington DA, Hurley JB, Sadun AA, Shang P, Sharma R, Sinha D, Ueffing M, Brockerhoff SE. How crosstalk between mitochondria, lysosomes, and other organelles can prevent or promote dry age-related macular degeneration. Exp Eye Res 2025; 251:110219. [PMID: 39716681 DOI: 10.1016/j.exer.2024.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 12/25/2024]
Abstract
Organelles such as mitochondria, lysosomes, peroxisomes, and the endoplasmic reticulum form highly dynamic cellular networks and exchange information through sites of physical contact. While each organelle performs unique functions, this inter-organelle crosstalk helps maintain cell homeostasis. Age-related macular degeneration (AMD) is a devastating blinding disease strongly associated with mitochondrial dysfunction, oxidative stress, and decreased clearance of cellular debris in the retinal pigment epithelium (RPE). However, how these occur, and how they relate to organelle function both with the RPE and potentially the photoreceptors are fundamental, unresolved questions in AMD biology. Here, we report the discussions of the "Mitochondria, Lysosomes, and other Organelle Interactions" task group of the 2024 Ryan Initiative for Macular Research (RIMR). Our group focused on understanding the interplay between cellular organelles in maintaining homeostasis in the RPE and photoreceptors, how this could be derailed to promote AMD, and identifying where these pathways could potentially be targeted therapeutically.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Departments of Ophthalmology and Anatomy, School of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, 94143, USA.
| | - Patricia Boya
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, 1700, Switzerland
| | | | - Deborah A Ferrington
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - James B Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, WA, USA
| | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Peng Shang
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Debasish Sinha
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marius Ueffing
- Department for Ophthalmology, Institute for Ophthalmic Research, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Susan E Brockerhoff
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
16
|
Huang Y, Zhou Y, He Z, Yang J, Gu J, Cui B, Li S, Deng H, Zhao W, Yang X, Sun F, He C, Pan W. Cellular Senescence Contributes to Colonic Barrier Integrity Impairment Induced by Toxoplasma gondii Infection. Inflammation 2025:10.1007/s10753-024-02213-0. [PMID: 39827329 DOI: 10.1007/s10753-024-02213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
Toxoplasma gondii (T. gondii) induces gut barrier integrity impairment, which is crucial to the establishment of long-term infection in hosts. Cellular senescence is an imperative event that drives disease progression. Several studies have indicated that T. gondii induces oxidative stress and cell cycle blockade in the tissues of hosts, suggesting cellular senescence induced by the parasite. Here, we explored whether cell senescence is involved in T. gondii-mediated colonic barrier integrity damage in mice. C57BL/6J mice were infected with 10 cysts of T. gondii. Senolytic therapy (dasatinib and quercetin, DQ, a combination therapy for reducing senescent cells) was given by oral gavage 4 weeks post-infection. Alcian blue staining, immunofluorescence, western blot, quantitative PCR (qPCR), and enzyme-linked immunosorbent assay (ELISA) were employed to evaluate the thickness of the colonic mucus layer, the expression profiles of genes and proteins related to tight junction function and cellular senescence in the colonic tissues, and the levels of serum lipopolysaccharides (LPS), respectively. T. gondii-infected mice exhibited deteriorated secreted mucus, shortened length, decreased expression of zonula occludens-1 (ZO-1) and occludin in the colon, accompanied by elevated levels of serum LPS. Moreover, the infection upregulated cell senescence-related markers (p16INK4A, p21CIP1) while inhibiting Lamin B1 expression. In addition, the expression levels of senescence-associated secretory phenotypes (SASPs), including IL-1β, TNF-α, IL-6, MMP9 and CXCL10, were upregulated post-infection. Notably, reducing cell senescence with DQ administration, significantly ameliorated the colonic pathological alterations induced by T. gondii infection. This study uncovers for the first time that cellular senescence contributes to the colonic barrier integrity damage induced by chronic T. gondii infection. Importantly, we provide evidence that senolytic therapy exerts a therapeutic effect on the intestinal pathological lesions.
Collapse
Affiliation(s)
- Yingting Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yumeng Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhicheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiayi Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianqi Gu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bingqian Cui
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Siyu Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Heng Deng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wendi Zhao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fenfen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
17
|
Li YJ, Hua X, Zhao YQ, Mo H, Liu S, Chen X, Sun Z, Wang W, Zhao Q, Cui Z, An T, Song J. An Injectable Multifunctional Nanosweeper Eliminates Cardiac Mitochondrial DNA to Reduce Inflammation. Adv Healthc Mater 2025:e2404068. [PMID: 39811901 DOI: 10.1002/adhm.202404068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Myocarditis, a leading cause of sudden cardiac death and heart transplantation, poses significant treatment challenges. The study of clinical samples from myocarditis patients reveals a correlation between the pathogenesis of myocarditis and cardiomyocyte mitochondrial DNA (mtDNA). During inflammation, the concentration of mtDNA in cardiomyocytes increases. Hence, it is hypothesized that the combined clearance of mtDNA and its downstream STING pathway can treat myocarditis. However, clearing mtDNA is problematic. An innovative mtDNA scavenger is introduced, Nanosweeper (NS), which utilizes its nanostructure to facilitate the transport of NS-mtDNA co-assemblies for degradation, achieving mtDNA clearance. The fluorescent mtDNA probe on NS, bound to functional peptides, enhances the stability of NS. NS also exhibits robust stability in human plasma with a half-life of up to 10 hours. In a murine myocarditis model, NS serves as a drug delivery vehicle, targeting the delivery of the STING pathway inhibitor C-176 to the myocardium. This approach synergistically modulates the cGAS-STING axis with NS, effectively attenuating myocarditis- associated inflammatory cascade. This evaluation of NS in porcine models corroborated its superior biosafety profile and cardiac targeting capability. This strategic approach of targeted mtDNA clearance couple with STING pathway inhibition, significantly augments therapeutic efficacy against myocarditis, outperforming the conventional drug C-176, indicating its clinical potential.
Collapse
Affiliation(s)
- Yi-Jing Li
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Department of Cardiovascular Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Department of Cardiac Surgery, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, 650102, China
| | - Yi-Qi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Han Mo
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Shun Liu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xiao Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Department of Cardiovascular Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Department of Cardiac Surgery, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, 650102, China
| | - Zhe Sun
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Weiteng Wang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Qian Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zeyu Cui
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Tao An
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Department of Cardiovascular Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Department of Cardiac Surgery, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, 650102, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| |
Collapse
|
18
|
Wu Y, Zhao Z, Ma M, Zhang W, Liu W, Liang X, Zhao T, Luo Y, Wang Y, Li M, Li T, Liu C, Luo X, Wang S, Li W, Zeng W, Wang H, Li W, Wu T, Ke Z, Luo F. Ultrasound-activated erythrocyte membrane-camouflaged Pt (II) layered double hydroxide enhances PD-1 inhibitor efficacy in triple-negative breast cancer through cGAS-STING pathway-mediated immunogenic cell death. Theranostics 2025; 15:1456-1477. [PMID: 39816689 PMCID: PMC11729553 DOI: 10.7150/thno.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025] Open
Abstract
Rationale: Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses. Methods: Pt-CoNi layered double hydroxide (LDH) nanocages were synthesized using a two-step method, followed by functionalization with red blood cell membranes to prepare RmPLH. The in vitro assessments included evaluations of cell toxicity, cellular uptake, and sonodynamic effects of RmPLH. Key mechanisms-such as oxidative stress, DNA damage, pyroptosis, cGAS/STING pathway activation, and inhibition of cellular migration and invasion-were explored under varying treatment conditions in 4T1 cells. Tumor-bearing mice were employed to evaluate tumor-targeting capabilities and the synergistic tumor-suppressive effects of RmPLH combined with PD-1 inhibitors. Comprehensive safety evaluations, including blood tests, biochemical analyses, and histopathological examinations, were also conducted. Results: The synthesized Pt-CoNi LDH exhibited a uniform rhombic dodecahedral nanocage morphology with an average particle size of approximately 231 nm. Encapsulation with red blood cell membranes conferred prolonged systemic circulation, enhanced tumor targeting, and reduced immune clearance for RmPLH. Upon ultrasound (US) stimulation, the LDH released substantial levels of reactive oxygen species (ROS) and platinum ions. The ROS effectively induced endoplasmic reticulum stress and ferroptosis, while platinum ions facilitated DNA crosslinking, triggering significant DNA damage. ROS-induced pyroptosis released inflammatory mediators and damage-associated molecular patterns (DAMPs), which activated the cGAS/STING pathway and reinforced ICD. Combining RmPLH with PD-1 inhibitors significantly enhanced therapeutic efficacy against TNBC. Furthermore, safety assessments confirmed the excellent biocompatibility and biosafety of RmPLH. Conclusion: The integration of RmPLH with PD-1 inhibitors substantially amplifies ICD, fostering robust antigen-specific T cell immunity and offering a promising therapeutic strategy for TNBC. This study represents a pioneering application of Pt (II)-based LDH nanocages in oncology, laying a foundation for future innovations in tumor immunotherapy.
Collapse
Affiliation(s)
- Yanjie Wu
- School of Science and Engineering, Shenzhen Key Laboratory of Innovative Drug Synthesis, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Zhiyu Zhao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Mengli Ma
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Weijin Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Wei Liu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, 510026, China
| | - Xiaochen Liang
- Environmental Toxicology, University of California, Riverside, CA, 92507, USA
| | - Ting Zhao
- Environmental Toxicology, University of California, Riverside, CA, 92507, USA
| | - Yi Luo
- Institute of Immunotherapy, School of Basic Medicine, Fujian Medical University, Fuzhou, 350122, China
| | - Yunjie Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Mengqi Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Tingting Li
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Cong Liu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xian Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Shengyu Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Wanyun Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Wei Zeng
- Department of Gastroenterology, Department of Obstetrics and Gynecology, Affiliated Xiang'an Hospital, Medical Center, Xiamen University, 361000, China
| | - Hong Wang
- Department of Gastroenterology, Department of Obstetrics and Gynecology, Affiliated Xiang'an Hospital, Medical Center, Xiamen University, 361000, China
| | - Wengang Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Ting Wu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Zhihai Ke
- School of Science and Engineering, Shenzhen Key Laboratory of Innovative Drug Synthesis, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
19
|
Larrañaga-SanMiguel A, Bengoa-Vergniory N, Flores-Romero H. Crosstalk between mitochondria-ER contact sites and the apoptotic machinery as a novel health meter. Trends Cell Biol 2025; 35:33-45. [PMID: 39379268 DOI: 10.1016/j.tcb.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) function as transient signaling platforms that regulate essential cellular functions. MERCS are enriched in specific proteins and lipids that connect mitochondria and the ER together and modulate their activities. Dysregulation of MERCS is associated with several human pathologies including Alzheimer's disease (AD), Parkinson's disease (PD), and cancer. BCL-2 family proteins can locate at MERCS and control essential cellular functions such as calcium signaling and autophagy in addition to their role in mitochondrial apoptosis. Moreover, the BCL-2-mediated apoptotic machinery was recently found to trigger cGAS-STING pathway activation and a proinflammatory response, a recognized hallmark of these diseases that requires mitochondria-ER interplay. This review underscores the pivotal role of MERCS in regulating essential cellular functions, focusing on their crosstalk with BCL-2 family proteins, and discusses how their dysregulation is linked to disease.
Collapse
Affiliation(s)
| | - Nora Bengoa-Vergniory
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Hector Flores-Romero
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
20
|
Wang W, Wang Q, Li W, Xu H, Liang X, Wang W, Li N, Yang H, Xu Y, Bai J, Yang S, Geng D. Targeting APJ drives BNIP3-PINK1-PARKIN induced mitophagy and improves systemic inflammatory bone loss. J Adv Res 2024:S2090-1232(24)00611-8. [PMID: 39725007 DOI: 10.1016/j.jare.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION Inflammatory diseases, such as diabetes mellitus, rheumatoid arthritis, and inflammatory bowel disease, lead to systemic immune microenvironment disturbances, contributing to bone loss, yet the mechanisms by which specific receptors regulate this process in inflammatory bone loss remain poorly understood. As a G-protein-coupled receptor, the Apelin receptor plays a crucial role in the regulation of inflammation and immune microenvironment. However, the precise mechanisms governing its role in inflammatory bone loss remain incompletely understood. OBJECTIVE This study aims to investigate how APJ regulates macrophage polarization to mitigate inflammatory bone loss. METHODS Lipopolysaccharide induced systemic inflammatory bone loss model in mice was used to explore the relationship between bone loss and osteoclast activation, macrophage polarization and APJ. In vitro studies, Bone marrow derived macrophages and siRNA were used to elucidate the regulatory influence of APJ on the immune microenvironment and osteoclast differentiation, while high-throughput sequencing is leveraged to uncover the underlying mechanisms through which APJ modulates macrophage polarization. RESULTS Our study established a link between APJ and macrophage M1 polarization in systemic inflammatory bone loss mice. The activation of APJ effectively mitigated M1 polarization in macrophages, suppressed excessive osteoclast activation, and alleviated systemic inflammatory bone loss. In vitro high-throughput sequencing analysis revealed that APJ modulates macrophage polarization, linking to mitochondrial autophagy and the NOD-like receptor signaling pathway and the involvement of the AMPK and MAPK signaling pathways in signal transduction after APJ activation was also suggested. Subsequent experiments substantiated that APJ predominantly enhances mitophagy and diminishes the accumulation of reactive oxygen species by regulating the AMPK/BNIP3/PINK1/PARKIN axis, thereby suppressing the activation of macrophage M1 polarization and osteoclastogenesis. CONCLUSION This study elucidated the underlying mechanism by which APJ modulates macrophage polarization, thereby proposing a new therapeutic target for addressing inflammatory bone loss.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Qing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Wenming Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Hao Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Xiaolong Liang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Wei Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Ning Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
| | - Shuli Yang
- College of Clinical Medicine, Suzhou Vocational Health College, 215009, No.28 Kehua Road, Suzhou city, China.
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
21
|
Song D, Chen B, Cheng T, Jin L, He J, Li Y, Liao C. Attenuated NIX in impaired mitophagy contributes to exacerbating cellular senescence in experimental periodontitis under hyperglycemic conditions. FEBS J 2024. [PMID: 39718194 DOI: 10.1111/febs.17352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/08/2024] [Accepted: 09/23/2024] [Indexed: 12/25/2024]
Abstract
Premature accumulation of senescent cells results in tissue destruction, and it is one of the potential primary mechanisms underlying the accelerated progression of diabetes and periodontitis. However, whether this characterized phenomenon could account for periodontal pathogenesis under hyperglycemic conditions remains unclear. In this study, we assessed the senescent phenotypic changes in experimental periodontitis under hyperglycemic conditions. Next, we investigated the mitochondrial function and the potential mitophagy pathways in cellular senescence in vitro and in vivo. Our findings showed that significant senescence occurred in the gingival tissues of diabetic periodontitis mice with increased expression of senescence-related protein p21Cip1 and the senescence-associated secretory phenotype response as well as the decreased expression of NIP3-like protein X (NIX), a mitochondrial receptor. Likewise, we showed that mitochondrial dysfunction (e.g., reduction of mitochondrial membrane potential and accumulation of reactive oxygen species) was attributed to cellular senescence in: human periodontal ligament cells (hPDLCs) through hyperglycemia-induced and Porphyromonas gingivalis lipopolysaccharide (P.g-LPS)-induced oxidative stresses. Notably, the resulting reduced NIX expression was reversed by the use of the mitochondrial reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine (NAC), thus correcting the mitochondrial dysfunction. We further verified the expression of inflammatory mediators and senescence-related factors in mice gingival tissues and identified the possible regulatory pathways. Taken together, our work demonstrates the critical role of cellular senescence and mitochondrial dysfunction in periodontal pathogenesis under hyperglycemic conditions. Hence, restoration of mitochondrial function may be a potential novel therapeutic approach to tackling periodontitis in diabetic patients.
Collapse
Affiliation(s)
- Danni Song
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
- Jiangxi Provincial Key Laboratory of Oral Diseases & Jiangxi Provincial Clinical Research Center for Oral Diseases & The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Beibei Chen
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Tianfan Cheng
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Lijian Jin
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Jiangfeng He
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Yongming Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Chongshan Liao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Wu DH, Zhao ZL, Yin WT, Liu H, Xiang XY, Zhu LJ, Li JQ, Yan ZH, Li YJ, Jian YP, Xu ZX. STING exerts antiviral innate immune response by activating pentose phosphate pathway. Cell Commun Signal 2024; 22:599. [PMID: 39695767 DOI: 10.1186/s12964-024-01983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The innate immune system serves as the host's first line of defense against invading pathogens. Stimulator of interferon genes (STING) is a key component of this system, yet its relationship with glucose metabolism, particularly in antiviral immunity, remains underexplored. METHODS Metabolomics analysis was used for detecting metabolic alterations in spleens from STING knockout (KO) and wild-type (WT) mice. Co-immunoprecipitation was employed for determining ubiquitination of TKT. Mass spectrometry was used for detecting interaction proteins of STING. Enzyme activity kits were used for detecting the activities of TKT and G6PD. RESULTS In this study, we demonstrate that herpes simplex virus (HSV) infection activates the pentose phosphate pathway (PPP) in host cells, thereby initiating an antiviral immune response. Using STING-manipulated cells and systemic knockout mice, we show that STING positively regulates PPP, which, in turn, limits HSV infection. Inhibition of the PPP significantly reduced the production of antiviral immune factors and dampened STING-induced innate immune responses. Mechanistically, we discovered that STING interacts with transketolase (TKT), a key enzyme in the non-oxidative branch of the PPP, and reduces its ubiquitination via the E3 ubiquitin ligase UBE3A, stabilizing TKT. Silencing TKT or inhibiting its activity with oxythiamine diminished antiviral immune factor production. CONCLUSION Our findings reveal that the PPP plays a synergistic role in generating antiviral immune factors during viral infection and suggest that PPP activation could serve as an adjunct strategy for antiviral therapy.
Collapse
Affiliation(s)
- Dan-Hui Wu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Zi-Long Zhao
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Wei-Tao Yin
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Huai Liu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Xiong-Yan Xiang
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Ling-Jun Zhu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Jun-Qi Li
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Zhen-Hua Yan
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yu-Jia Li
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yong-Ping Jian
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China.
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China.
| |
Collapse
|
23
|
Zhang M, Wei J, He C, Sui L, Jiao C, Zhu X, Pan X. Inter- and intracellular mitochondrial communication: signaling hubs in aging and age-related diseases. Cell Mol Biol Lett 2024; 29:153. [PMID: 39695918 DOI: 10.1186/s11658-024-00669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Mitochondria are versatile and complex organelles that can continuously communicate and interact with the cellular milieu. Deregulated communication between mitochondria and host cells/organelles has significant consequences and is an underlying factor of many pathophysiological conditions, including the process of aging. During aging, mitochondria lose function, and mitocellular communication pathways break down; mitochondrial dysfunction interacts with mitochondrial dyscommunication, forming a vicious circle. Therefore, strategies to protect mitochondrial function and promote effective communication of mitochondria can increase healthy lifespan and longevity, which might be a new treatment paradigm for age-related disorders. In this review, we comprehensively discuss the signal transduction mechanisms of inter- and intracellular mitochondrial communication, as well as the interactions between mitochondrial communication and the hallmarks of aging. This review emphasizes the indispensable position of inter- and intracellular mitochondrial communication in the aging process of organisms, which is crucial as the cellular signaling hubs. In addition, we also specifically focus on the status of mitochondria-targeted interventions to provide potential therapeutic targets for age-related diseases.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chang He
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Liutao Sui
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chucheng Jiao
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
24
|
Baninameh Z, Watzlawik JO, Hou X, Richardson T, Kurchaba NW, Yan T, Di Florio DN, Fairweather D, Kang L, Nguyen JH, Kanekiyo T, Dickson DW, Noda S, Sato S, Hattori N, Goldberg MS, Ganley IG, Stauch KL, Fiesel FC, Springer W. Alterations of PINK1-PRKN signaling in mice during normal aging. AUTOPHAGY REPORTS 2024; 3:2434379. [PMID: 40008113 PMCID: PMC11855339 DOI: 10.1080/27694127.2024.2434379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 02/27/2025]
Abstract
The ubiquitin kinase-ligase pair PINK1-PRKN identifies and selectively marks damaged mitochondria for elimination via the autophagy-lysosome system (mitophagy). While this cytoprotective pathway has been extensively studied in vitro upon acute and complete depolarization of mitochondria, the significance of PINK1-PRKN mitophagy in vivo is less well established. Here we used a novel approach to study PINK1-PRKN signaling in different energetically demanding tissues of mice during normal aging. We demonstrate a generally increased expression of both genes and enhanced enzymatic activity with aging across tissue types. Collectively our data suggest a distinct regulation of PINK1-PRKN signaling under basal conditions with the most pronounced activation and flux of the pathway in mouse heart compared to brain or skeletal muscle. Our biochemical analyses complement existing mitophagy reporter readouts and provide an important baseline assessment in vivo, setting the stage for further investigations of the PINK1-PRKN pathway during stress and in relevant disease conditions.
Collapse
Affiliation(s)
- Zahra Baninameh
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jens O. Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | - Tingxiang Yan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lu Kang
- Division of Transplant Surgery, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Justin H. Nguyen
- Division of Transplant Surgery, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Sachiko Noda
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Shigeto Sato
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Matthew S. Goldberg
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kelly L. Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| |
Collapse
|
25
|
Pang BPS, Iu ECY, Hang M, Chan WS, Tse MCL, Yeung CTY, Wang M, Siu PMF, Lee CW, Ye K, So H, Chan CB. Deficiency of muscle-generated brain-derived neurotrophic factor causes inflammatory myopathy through reactive oxygen species-mediated necroptosis and pyroptosis. Redox Biol 2024; 78:103418. [PMID: 39531828 PMCID: PMC11602578 DOI: 10.1016/j.redox.2024.103418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/21/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Idiopathic inflammatory myopathy (commonly known as myositis) is a group of immune-related diseases characterized by muscle damage, weakness, and fatigue with unknown causes. Although overactivated innate immunity is a widely believed cause of myositis onset, the mechanism that provokes and maintains a high immune response in myositis patients is still unclear. This study aims to test if brain-derived neurotrophic factor (BDNF) deficiency per se is sufficient to cause myositis and determine its underlying mechanism. We found that ablating BDNF production in skeletal muscle is sufficient to trigger myositis development in mice. Muscle-specific Bdnf knockout (MBKO) mice displayed extensive myocyte necrosis, mononuclear cell infiltration, and myophagocytosis. In association with these damages, elevated production of pro-inflammatory cytokines such as interleukin (IL) 23, IL-1β, IL-18, and tumor necrosis factor α (TNFα) was found in the muscle of MBKO mice. Disruption of sarcolemma integrity was also detected in MBKO mice, which is a result of necroptosis executioner Mixed lineage kinase domain-like protein (MLKL) and pyroptosis executioner Gasdermin D (GSDMD) activation. Mechanistically, diminishing BDNF synthesis in myotubes enhances the accumulation of mitochondrial reactive oxygen species (mtROS), which sensitizes the cells towards TNFα-induced receptor-interacting protein kinase (RIPs) activation and promotes the formation of NLR family pyrin domain containing 3 (NLRP3)-containing inflammasome. BDNF deficiency-induced cell death could be alleviated by scavenging mtROS, suppressing the activity of GSDMD, or inhibiting receptor-interacting kinase 3 (RIP3). Similarly, supplementation of BDNF mimetics, suppression of RIP3 activity, increasing the intramyocellular antioxidant, or enhancing mitophagy ameliorated the myopathies of MBKO mice and improved their muscle strength. Together, our study demonstrates that insufficient BDNF production in mouse muscle causes the development of pathological features of myositis via enhancing oxidative stress, necroptosis, and pyroptosis in myofibers.
Collapse
Affiliation(s)
- Brian Pak Shing Pang
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Elsie Chit Yu Iu
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Miaojia Hang
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Wing Suen Chan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Margaret Chui Ling Tse
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Connie Tsz Ying Yeung
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, Hong Kong Special Administrative Region
| | - Parco Ming Fai Siu
- Division of Kinesiology, School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region
| | - Chi Wai Lee
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Keqiang Ye
- Faculty of Life and Health Sciences, and Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Hong Kong Special Administrative Region
| | - Ho So
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Chi Bun Chan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
26
|
Nikoletopoulou V. Brain mitophagy in space and time. EMBO J 2024; 43:5781-5783. [PMID: 39478088 PMCID: PMC11612451 DOI: 10.1038/s44318-024-00275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 12/06/2024] Open
Abstract
A recent longitudinal imaging atlas reports desynchronized mitophagy changes during murine brain aging and highlights complex spatiotemporal dynamics in distinct subregions and cellular contexts.
Collapse
|
27
|
Wu Z, Qu J, Liu GH. Roles of chromatin and genome instability in cellular senescence and their relevance to ageing and related diseases. Nat Rev Mol Cell Biol 2024; 25:979-1000. [PMID: 39363000 DOI: 10.1038/s41580-024-00775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 10/05/2024]
Abstract
Ageing is a complex biological process in which a gradual decline in physiological fitness increases susceptibility to diseases such as neurodegenerative disorders and cancer. Cellular senescence, a state of irreversible cell-growth arrest accompanied by functional deterioration, has emerged as a pivotal driver of ageing. In this Review, we discuss how heterochromatin loss, telomere attrition and DNA damage contribute to cellular senescence, ageing and age-related diseases by eliciting genome instability, innate immunity and inflammation. We also discuss how emerging therapeutic strategies could restore heterochromatin stability, maintain telomere integrity and boost the DNA repair capacity, and thus counteract cellular senescence and ageing-associated pathologies. Finally, we outline current research challenges and future directions aimed at better comprehending and delaying ageing.
Collapse
Affiliation(s)
- Zeming Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
28
|
Di Rienzo M, Romagnoli A, Refolo G, Vescovo T, Ciccosanti F, Zuchegna C, Lozzi F, Occhigrossi L, Piacentini M, Fimia GM. Role of AMBRA1 in mitophagy regulation: emerging evidence in aging-related diseases. Autophagy 2024; 20:2602-2615. [PMID: 39113560 PMCID: PMC11587829 DOI: 10.1080/15548627.2024.2389474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Aging is a gradual and irreversible physiological process that significantly increases the risks of developing a variety of pathologies, including neurodegenerative, cardiovascular, metabolic, musculoskeletal, and immune system diseases. Mitochondria are the energy-producing organelles, and their proper functioning is crucial for overall cellular health. Over time, mitochondrial function declines causing an increased release of harmful reactive oxygen species (ROS) and DNA, which leads to oxidative stress, inflammation and cellular damage, common features associated with various age-related pathologies. The impairment of mitophagy, the selective removal of damaged or dysfunctional mitochondria by autophagy, is relevant to the development and progression of age-related diseases. The molecular mechanisms that regulates mitophagy levels in aging remain largely uncharacterized. AMBRA1 is an intrinsically disordered scaffold protein with a unique property of regulating the activity of both proliferation and autophagy core machineries. While the role of AMBRA1 during embryonic development and neoplastic transformation has been extensively investigated, its functions in post-mitotic cells of adult tissues have been limited due to the embryonic lethality caused by AMBRA1 deficiency. Recently, a key role of AMBRA1 in selectively regulating mitophagy in post-mitotic cells has emerged. Here we summarize and discuss these results with the aim of providing a comprehensive view of the mitochondrial roles of AMBRA1, and how defective activity of AMBRA1 has been functionally linked to mitophagy alterations observed in age-related degenerative disorders, including muscular dystrophy/sarcopenia, Parkinson diseases, Alzheimer diseases and age-related macular degeneration.Abbreviations: AD: Alzheimer disease; AMD: age-related macular degeneration; AMBRA1: autophagy and beclin 1 regulator 1; APOE4: apolipoprotein E4; ATAD3A: ATPase family AAA domain containing 3A; ATG: autophagy related; BCL2: BCL2 apoptosis regulator; BH3: BCL2-homology-3; BNIP3L/NIX: BCL2 interacting protein 3 like; CDK: cyclin dependent kinase; CHUK/IKKα: component of inhibitor of nuclear factor kappa B kinase complex; CRL2: CUL2-RING ubiquitin ligase; DDB1: damage specific DNA binding protein 1; ER: endoplasmic reticulum; FOXO: forkhead box O; FUNDC1: FUN14 domain containing 1; GBA/β-glucocerebrosidase: glucosylceramidase beta; HUWE1: HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1; IDR: intrinsically disordered region; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MCL1: MCL1 apoptosis regulator, BCL2 family member; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MSA: multiple system atrophy; MYC: MYC proto-oncogene, bHLH transcription factor; NUMA1: nuclear mitotic apparatus protein 1; OMM; mitochondria outer membrane; PD: Parkinson disease; PHB2: prohibitin 2; PINK1: PTEN induced kinase 1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PTK2/FAK: protein tyrosine kinase 2; ROS: reactive oxygen species; RPE: retinal pigment epithelium; SAD: sporadic AD; SOCS3: suppressor of cytokine signaling 3; SRC, SRC proto-oncogene, non-receptor tyrosine kinase; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; SQSTM1/p62: sequestosome 1; TBK1: TANK binding kinase 1; TGFB/TGFβ: transforming growth factor beta; TOMM: translocase of outer mitochondrial membrane; TRAF6: TNF receptor associated factor 6; TRIM32: tripartite motif containing 32; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Martina Di Rienzo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Alessandra Romagnoli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Giulia Refolo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Tiziana Vescovo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Candida Zuchegna
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Francesca Lozzi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Luca Occhigrossi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
29
|
Rappe A, Vihinen HA, Suomi F, Hassinen AJ, Ehsan H, Jokitalo ES, McWilliams TG. Longitudinal autophagy profiling of the mammalian brain reveals sustained mitophagy throughout healthy aging. EMBO J 2024; 43:6199-6231. [PMID: 39367235 PMCID: PMC11612485 DOI: 10.1038/s44318-024-00241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024] Open
Abstract
Mitophagy neutralizes mitochondrial damage, thereby preventing cellular dysfunction and apoptosis. Defects in mitophagy have been strongly implicated in age-related neurodegenerative disorders such as Parkinson's and Alzheimer's disease. While mitophagy decreases throughout the lifespan of short-lived model organisms, it remains unknown whether such a decline occurs in the aging mammalian brain-a question of fundamental importance for understanding cell type- and region-specific susceptibility to neurodegeneration. Here, we define the longitudinal dynamics of basal mitophagy and macroautophagy across neuronal and non-neuronal cell types within the intact aging mouse brain in vivo. Quantitative profiling of reporter mouse cohorts from young to geriatric ages reveals cell- and tissue-specific alterations in mitophagy and macroautophagy between distinct subregions and cell populations, including dopaminergic neurons, cerebellar Purkinje cells, astrocytes, microglia and interneurons. We also find that healthy aging is hallmarked by the dynamic accumulation of differentially acidified lysosomes in several neural cell subsets. Our findings argue against any widespread age-related decline in mitophagic activity, instead demonstrating dynamic fluctuations in mitophagy across the aging trajectory, with strong implications for ongoing theragnostic development.
Collapse
Affiliation(s)
- Anna Rappe
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
| | - Helena A Vihinen
- Electron Microscopy Unit (EMBI), Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Fumi Suomi
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
| | - Antti J Hassinen
- High Content Imaging and Analysis Unit (FIMM-HCA), Institute for Molecular Medicine, Helsinki Institute of Life Science, University of Helsinki, Tukholmankatu 8, Helsinki, 00290, Finland
| | - Homa Ehsan
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
| | - Eija S Jokitalo
- Electron Microscopy Unit (EMBI), Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Thomas G McWilliams
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland.
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland.
| |
Collapse
|
30
|
Sun M, Bao S. Association between cardiometabolic index and biological aging in the US population: evidence from NHANES 2015-2020. Front Aging Neurosci 2024; 16:1507035. [PMID: 39679260 PMCID: PMC11638210 DOI: 10.3389/fnagi.2024.1507035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Purpose It is crucial to identify biomarkers that influence the aging process and associated health risks, given the growing severity of the global population aging issue. The objectives of our research were to evaluate cardiac metabolic index (CMI) as a novel biomarker for identifying individuals at increased risk of accelerated biological aging and to assess its use in guiding preventive strategies for aging-related health risks. Methods The National Health and Nutrition Examination Survey (NHANES) provided cross-sectional data on participants with complete information on CMI, phenotypic age (PA), and other variables. Analyses of variance and weighted χ2 tests were conducted to assess differences between groups. The relationship between CMI and biological aging was investigated using a weighted multivariate logistic regression model, restricted cubic spline (RCS) regression analysis, subgroup analysis, and interaction testing. Results A positive correlation between CMI and biological aging was observed in 6,272 participants. RCS regression analysis confirmed the non-linear relationship, identifying significant inflection point at 1.10. In the crude or adjusted models, the OR (95% CI), for the highest group versus the reference were 3.608 (3.108, 4.188), 3.397 (2.920, 3.952), and 1.550 (1.299, 1.850), respectively, when categorizing CMI into different groups. Subgroup analyses and interaction tests indicate that the association between CMI and biological aging remained consistent across different subgroups. Gender, race, education level, marital status, poverty income ratio (PIR), drinking status and diabetes had an interaction with CMI in relation to biological aging. Conclusion An elevated CMI is linked to increased risk for biological aging. This relationship may inform more effective prevention and treatment strategies for biological aging in the future. CMI be integrated into routine health screenings or aging assessments by healthcare professionals.
Collapse
Affiliation(s)
| | - Shuang Bao
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
31
|
Abadin X, de Dios C, Zubillaga M, Ivars E, Puigròs M, Marí M, Morales A, Vizuete M, Vitorica J, Trullas R, Colell A, Roca-Agujetas V. Neuroinflammation in Age-Related Neurodegenerative Diseases: Role of Mitochondrial Oxidative Stress. Antioxidants (Basel) 2024; 13:1440. [PMID: 39765769 PMCID: PMC11672511 DOI: 10.3390/antiox13121440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
A shared hallmark of age-related neurodegenerative diseases is the chronic activation of innate immune cells, which actively contributes to the neurodegenerative process. In Alzheimer's disease, this inflammatory milieu exacerbates both amyloid and tau pathology. A similar abnormal inflammatory response has been reported in Parkinson's disease, with elevated levels of cytokines and other inflammatory intermediates derived from activated glial cells, which promote the progressive loss of nigral dopaminergic neurons. Understanding the causes that support this aberrant inflammatory response has become a topic of growing interest and research in neurodegeneration, with high translational potential. It has been postulated that the phenotypic shift of immune cells towards a proinflammatory state combined with the presence of immunogenic cell death fuels a vicious cycle in which mitochondrial dysfunction plays a central role. Mitochondria and mitochondria-generated reactive oxygen species are downstream effectors of different inflammatory signaling pathways, including inflammasomes. Dysfunctional mitochondria are also recognized as important producers of damage-associated molecular patterns, which can amplify the immune response. Here, we review the major findings highlighting the role of mitochondria as a checkpoint of neuroinflammation and immunogenic cell deaths in neurodegenerative diseases. The knowledge of these processes may help to find new druggable targets to modulate the inflammatory response.
Collapse
Affiliation(s)
- Xenia Abadin
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Cristina de Dios
- High Technology Unit, Vall d’Hebron Research Institute, 08035 Barcelona, Spain;
| | - Marlene Zubillaga
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
| | - Elia Ivars
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Margalida Puigròs
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marisa Vizuete
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC, 41013 Sevilla, Spain
| | - Javier Vitorica
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC, 41013 Sevilla, Spain
| | - Ramon Trullas
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
| | - Anna Colell
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
| | - Vicente Roca-Agujetas
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC, 41013 Sevilla, Spain
| |
Collapse
|
32
|
Cai W, Zhao J, Chen Y, Gao N, Gao B, Liu Z, Huang T, Dong L, Yang G, Wang Y. STING regulates aging-related osteoporosis by mediating the Hk2-Vdac1 mitochondrial axis. Free Radic Biol Med 2024; 225:1-14. [PMID: 39326680 DOI: 10.1016/j.freeradbiomed.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Metabolic abnormalities and mild inflammation are hallmarks of aging and major driving factors for aging-related damage and bone metabolic diseases. Mitochondria are crucial links in energy metabolism and immune homeostasis regulation. Mitochondrial dysfunction is considered one of the pathogenic factors of aging-related osteoporosis, but its mechanism of action needs further research. Here, we demonstrated that the interaction between stimulator of interferon genes (STING)-mediated regulation of hexokinase 2 (Hk2)-voltage-dependent anion channel-1 (Vdac1) is a critical factor contributing to mitochondrial dysfunction and osteogenic abnormalities during aging. As the aging process progresses, factors related to aging cause an increase in STING expression, which disrupts the interaction between Hk2 and Vdac1. Dissociation of Hk2 from Vadc1 triggered the opening of the mitochondrial inner mitochondrial permeability transition pore (mPTP), leading to mitochondrial dysfunction and abnormal osteogenic differentiation, thereby disrupting bone homeostasis. In brief, this study demonstrates that STING acts as an intracellular metabolic Checkpoint, influencing mitochondrial function to promote the development of osteoporosis. These findings significantly enhance the development of STING-targeted treatments for aging-related osteoporosis.
Collapse
Affiliation(s)
- Wenjin Cai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jiaying Zhao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yani Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Ning Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Bicong Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zengzhe Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Tingben Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lingling Dong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| |
Collapse
|
33
|
Zhang Y, Zou M, Wu H, Zhu J, Jin T. The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases. Neurobiol Dis 2024; 202:106710. [PMID: 39490400 DOI: 10.1016/j.nbd.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
34
|
Yan C, Liu X, Xu H, Wang L. Cytoplasmic mtDNA clearance suppresses inflammatory immune responses. Trends Cell Biol 2024; 34:897-900. [PMID: 39379269 DOI: 10.1016/j.tcb.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Upon various stresses, mtDNA leaks from mitochondria into the cytoplasm, leading to cellular dysfunction and inflammation, thereby exacerbating disease progression. The autophagy-lysosome pathway has emerged as a pivotal quality control mechanism for eliminating abnormal cytoplasmic mtDNA. This article summarizes the mechanisms underlying mtDNA-triggered inflammation and how cytoplasmic mtDNA is eliminated.
Collapse
Affiliation(s)
- Chenghao Yan
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, China; Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Xu Liu
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, China; Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Liming Wang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, China; Shenzhen Research Institute, Hunan University, Shenzhen, China.
| |
Collapse
|
35
|
Wang H, Kazaleh M, Gioscia-Ryan R, Millar J, Temprano-Sagrera G, Wood S, Van Den Bergh F, Blin MG, Wragg KM, Luna A, Hawkins RB, Soleimanpour SA, Sabater-Lleal M, Shu C, Beard DA, Ailawadi G, Deng JC, Goldstein DR, Salmon M. Deficiency of mitophagy mediator Parkin in aortic smooth muscle cells exacerbates abdominal aortic aneurysm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621201. [PMID: 39554010 PMCID: PMC11565987 DOI: 10.1101/2024.10.30.621201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Abdominal aortic aneurysms (AAAs) are a degenerative aortic disease and associated with hallmarks of aging, such as mitophagy. Despite this, the exact associations among mitophagy, aging, and AAA progression remain unknown. In our study, gene expression analysis of human AAA tissue revealed downregulation of mitophagy pathways, mitochondrial structure, and function-related proteins. Human proteomic analyses identified decreased levels of mitophagy mediators PINK1 and Parkin. Aged mice and, separately, a murine AAA model showed reduced mitophagy in aortic vascular smooth muscle cells (VSMCs) and PINK1 and Parkin expression. Parkin knockdown in VSMCs aggravated AAA dilation in murine models, with elevated mitochondrial ROS and impaired mitochondrial function. Importantly, inhibiting USP30, an antagonist of the PINK1/Parkin pathway, increased mitophagy in VSMCs, improved mitochondrial function, and reduced AAA incidence and growth. Our study elucidates a critical mechanism that proposes AAAs as an age-associated disease with altered mitophagy, introducing new potential therapeutic approaches.
Collapse
|
36
|
Xue JL, Ji JL, Zhou Y, Zhang Y, Liu BC, Ma RX, Li ZL. The multifaceted effects of mitochondria in kidney diseases. Mitochondrion 2024; 79:101957. [PMID: 39270830 DOI: 10.1016/j.mito.2024.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria serve as the primary site for aerobic respiration within cells, playing a crucial role in maintaining cellular homeostasis. To maintain homeostasis and meet the diverse demands of the cells, mitochondria have evolved intricate systems of quality control, mainly including mitochondrial dynamics, mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. The kidney, characterized by its high energy requirements, is particularly abundant in mitochondria. Interestingly, the mitochondria display complex behaviors and functions. When the kidney is suffered from obstructive, ischemic, hypoxic, oxidative, or metabolic insults, the dysfunctional mitochondrial derived from the defects in the mitochondrial quality control system contribute to cellular inflammation, cellular senescence, and cell death, posing a threat to the kidney. However, in addition to causing injury to the kidney in several cases, mitochondria also exhibit protective effect on the kidney. In recent years, accumulating evidence indicated that mitochondria play a crucial role in adaptive repair following kidney diseases caused by various etiologies. In this article, we comprehensively reviewed the current understanding about the multifaceted effects of mitochondria on kidney diseases and their therapeutic potential.
Collapse
Affiliation(s)
- Jia-Le Xue
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jia-Ling Ji
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Zhou
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yao Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Rui-Xia Ma
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
37
|
Li Z, Chen L, Qu L, Yu W, Liu T, Ning F, Li J, Guo X, Sun F, Sun B, Luo L. Potential implications of natural compounds on aging and metabolic regulation. Ageing Res Rev 2024; 101:102475. [PMID: 39222665 DOI: 10.1016/j.arr.2024.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aging is generally accompanied by a progressive loss of metabolic homeostasis. Targeting metabolic processes is an attractive strategy for healthy-aging. Numerous natural compounds have demonstrated strong anti-aging effects. This review summarizes recent findings on metabolic pathways involved in aging and explores the anti-aging effects of natural compounds by modulating these pathways. The potential anti-aging effects of natural extracts rich in biologically active compounds are also discussed. Regulating the metabolism of carbohydrates, proteins, lipids, and nicotinamide adenine dinucleotide is an important strategy for delaying aging. Furthermore, phenolic compounds, terpenoids, alkaloids, and nucleotide compounds have shown particularly promising effects on aging, especially with respect to metabolism regulation. Moreover, metabolomics is a valuable tool for uncovering potential targets against aging. Future research should focus on identifying novel natural compounds that regulate human metabolism and should delve deeper into the mechanisms of metabolic regulation using metabolomics methods, aiming to delay aging and extend lifespan.
Collapse
Affiliation(s)
- Zhuozhen Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lili Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liangliang Qu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tao Liu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Fangjian Ning
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinwang Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiali Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
38
|
Espín JC, Jarrín‐Orozco MP, Osuna‐Galisteo L, Ávila‐Gálvez MÁ, Romo‐Vaquero M, Selma MV. Perspective on the Coevolutionary Role of Host and Gut Microbiota in Polyphenol Health Effects: Metabotypes and Precision Health. Mol Nutr Food Res 2024; 68:e2400526. [PMID: 39538982 PMCID: PMC11605795 DOI: 10.1002/mnfr.202400526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Indexed: 11/16/2024]
Abstract
"Personalized nutrition" aims to establish nutritional strategies to improve health outcomes for non-responders. However, it is utopian since most people share similar nutritional requirements. "Precision health," encompassing lifestyles, may be more fitting. Dietary (poly)phenols are "healthy" but non-nutritional molecules (thus, we can live without them). The gut microbiota influences (poly)phenol effects, producing metabolites with different activity than their precursors. Furthermore, producing distinctive metabolites, like urolithins, lunularin, and equol, leads to the term "polyphenol-related gut microbiota metabotypes," grouping individuals based on a genuine microbial metabolism of ellagic acid, resveratrol, and isoflavones, respectively. Additionally, (poly)phenols exert prebiotic-like effects through their antimicrobial activities, typically reducing microbial diversity and modulating microbiota functionality by impacting its composition and transcriptomics. Since the gut microbiota perceives (poly)phenols as a threat, (poly)phenol effects are mostly a consequence of microbiota adaptation through differential (poly)phenol metabolism (e.g., distinctive reductions, dehydroxylations, etc.). This viewpoint is less prosaic than considering (poly)phenols as essential nutritional players in human health, yet underscores their health significance in a coevolutionary partnership with the gut microbiota. In the perspective on the gut microbiota and (poly)phenols interplay, microbiota metabotypes could arbiter health effects. An innovative aspect is also emphasized: modulating the interacting microbial networks without altering the composition.
Collapse
Affiliation(s)
- Juan Carlos Espín
- Laboratory of Food & Health; Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSIC30100 Campus de EspinardoMurciaSpain
| | - María Paula Jarrín‐Orozco
- Laboratory of Food & Health; Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSIC30100 Campus de EspinardoMurciaSpain
| | - Leire Osuna‐Galisteo
- Laboratory of Food & Health; Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSIC30100 Campus de EspinardoMurciaSpain
| | - María Ángeles Ávila‐Gálvez
- Laboratory of Food & Health; Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSIC30100 Campus de EspinardoMurciaSpain
| | - María Romo‐Vaquero
- Laboratory of Food & Health; Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSIC30100 Campus de EspinardoMurciaSpain
| | - María Victoria Selma
- Laboratory of Food & Health; Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSIC30100 Campus de EspinardoMurciaSpain
| |
Collapse
|
39
|
Narendra DP, Youle RJ. The role of PINK1-Parkin in mitochondrial quality control. Nat Cell Biol 2024; 26:1639-1651. [PMID: 39358449 DOI: 10.1038/s41556-024-01513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024]
Abstract
Mitophagy mediated by the recessive Parkinson's disease genes PINK1 and Parkin responds to mitochondrial damage to preserve mitochondrial function. In the pathway, PINK1 is the damage sensor, probing the integrity of the mitochondrial import pathway, and activating Parkin when import is blocked. Parkin is the effector, selectively marking damaged mitochondria with ubiquitin for mitophagy and other quality-control processes. This selective mitochondrial quality-control pathway may be especially critical for dopamine neurons affected in Parkinson's disease, in which the mitochondrial network is widely distributed throughout a highly branched axonal arbor. Here we review the current understanding of the role of PINK1-Parkin in the quality control of mitophagy, including sensing of mitochondrial distress by PINK1, activation of Parkin by PINK1 to induce mitophagy, and the physiological relevance of the PINK1-Parkin pathway.
Collapse
Affiliation(s)
- Derek P Narendra
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
40
|
Kalykaki M, Rubio-Tomás T, Tavernarakis N. The role of mitochondria in cytokine and chemokine signalling during ageing. Mech Ageing Dev 2024; 222:111993. [PMID: 39307464 DOI: 10.1016/j.mad.2024.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Ageing is accompanied by a persistent, low-level inflammation, termed "inflammageing", which contributes to the pathogenesis of age-related diseases. Mitochondria fulfil multiple roles in host immune responses, while mitochondrial dysfunction, a hallmark of ageing, has been shown to promote chronic inflammatory states by regulating the production of cytokines and chemokines. In this review, we aim to disentangle the molecular mechanisms underlying this process. We describe the role of mitochondrial signalling components such as mitochondrial DNA, mitochondrial RNA, N-formylated peptides, ROS, cardiolipin, cytochrome c, mitochondrial metabolites, potassium efflux and mitochondrial calcium in the age-related immune system activation. Furthermore, we discuss the effect of age-related decline in mitochondrial quality control mechanisms, including mitochondrial biogenesis, dynamics, mitophagy and UPRmt, in inflammatory states upon ageing. In addition, we focus on the dynamic relationship between mitochondrial dysfunction and cellular senescence and its role in regulating the secretion of pro-inflammatory molecules by senescent cells. Finally, we review the existing literature regarding mitochondrial dysfunction and inflammation in specific age-related pathological conditions, including neurodegenerative diseases (Alzheimer's and Parkinson's disease, and amyotrophic lateral sclerosis), osteoarthritis and sarcopenia.
Collapse
Affiliation(s)
- Maria Kalykaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete GR-71003, Greece.
| |
Collapse
|
41
|
Giacco A, Petito G, Silvestri E, Scopigno N, Vigliotti M, Mercurio G, de Lange P, Lombardi A, Moreno M, Goglia F, Lanni A, Senese R, Cioffi F. Comparative effects of 3,5-diiodo-L-thyronine and 3,5,3'-triiodo-L-thyronine on mitochondrial damage and cGAS/STING-driven inflammation in liver of hypothyroid rats. Front Endocrinol (Lausanne) 2024; 15:1432819. [PMID: 39301315 PMCID: PMC11410700 DOI: 10.3389/fendo.2024.1432819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
Maintaining a well-functioning mitochondrial network through the mitochondria quality control (MQC) mechanisms, including biogenesis, dynamics and mitophagy, is crucial for overall health. Mitochondrial dysfunction caused by oxidative stress and further exacerbated by impaired quality control can trigger inflammation through the release of the damage-associated molecular patterns (mtDAMPs). mtDAMPs act by stimulating the cyclic GMP-AMP synthase (cGAS) stimulator of interferon genes (STING) pathway. Recently, aberrant signalling of the cGAS-STING axis has been recognised to be closely associated with several sterile inflammatory diseases (e.g. non-alcoholic fatty liver disease, obesity). This may fit the pathophysiology of hypothyroidism, an endocrine disorder characterised by the reduction of thyroid hormone production associated with impaired metabolic fluxes, oxidative balance and inflammatory status. Both 3,5,3'-triiodo-L-tyronine (T3) and its derivative 3,5-diiodo-L-thyronine (3,5-T2), are known to mitigate processes targeting mitochondria, albeit the underlying mechanisms are not yet fully understood. Therefore, we used a chemically induced hypothyroidism rat model to investigate the effect of 3,5-T2 or T3 administration on inflammation-related factors (inflammatory cytokines, hepatic cGAS-STING pathway), oxidative stress, antioxidant defence enzymes, mitochondrial DNA (mtDNA) damage, release and repair, and the MQC system in the liver. Hypothyroid rats showed: i) increased oxidative stress, ii) accumulation of mtDNA damage, iii) high levels of circulating cytokines, iv) hepatic activation of cGAS-STING pathways and v) impairment of MQC mechanisms and autophagy. Both iodothyronines restored oxidative balance by enhancing antioxidant defence, preventing mtDNA damage through the activation of mtDNA repair mechanisms (OGG1, APE1, and POLγ) and promoting autophagy progression. Concerning MQC, both iodothyronines stimulated mitophagy and dynamics, with 3,5-T2 activating fusion and T3 modulating both fusion and fission processes. Moreover, only T3 enhanced mitochondrial biogenesis. Notably, 3,5-T2, but not T3, reversed the hypothyroidism-induced activation of the cGAS-STING inflammatory cascade. In addition, it is noteworthy that 3,5-T2 seems more effective than T3 in reducing circulating pro-inflammatory cytokines IL-6 and IL-1B and in stimulating the release of IL-10, a known anti-inflammatory cytokine. These findings reveal novel molecular mechanisms of hepatic signalling pathways involved in hypothyroidism, which could be targeted by natural iodothyronines, particularly 3,5-T2, paving the way for the development of new treatment strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Antonia Giacco
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Elena Silvestri
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Nicla Scopigno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Michela Vigliotti
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Giovanna Mercurio
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Maria Moreno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Fernando Goglia
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Federica Cioffi
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| |
Collapse
|
42
|
Gao D, Zhao B, Yu J, Li X, Yang D, Luo Y, Xia Y, Cai X, Guo Y. Deletion of stimulator of interferons genes aggravated cardiac dysfunction in physiological aged mice. Mech Ageing Dev 2024; 222:111978. [PMID: 39233064 DOI: 10.1016/j.mad.2024.111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Stimulator of interferons genes (STING) is crucial for innate immune response. It has been demonstrated that cGAS-STING pathway was the driver of aging-related inflammation. However, whether STING is involved in cardiac dysfunction during the physiological aging process remains unclear. METHODS Gene expression profiles were obtained from the Gene Expression Omnibus database, followed by weighted gene co-expression network analysis, gene ontology analysis and protein network interaction analysis to identify key pathway and genes associated with aging. The effects of STING on cardiac function, glucose homeostasis, inflammation, and autophagy in physiological aging were investigated with STING knockout mice. RESULTS Bioinformatics analysis revealed STING emerged as a hub gene of interest. Subsequent experiments demonstrated the activation of STING pathway in the heart of aged mice. Knockout of STING alleviated the inflammation in aged mice. However, Knockout of STING impaired glucose tolerance, inhibited autophagy, enhanced oxidative stress and aggravated cardiac dysfunction in aged mice. CONCLUSION Although reducing inflammation, long-term STING inhibition by genetic ablation exacerbated cardiac dysfunction in aged mice. Given the multifaceted nature of aging and the diverse cellular functions of STING beyond immune regulation, the negative effects of targeting STING as a strategy to mitigate aging phenotype should be fully considered.
Collapse
Affiliation(s)
- Diansa Gao
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Boying Zhao
- Division of Cardiothoracic Surgery, The Center Hospital of Chongqing University, Chongqing 400016, China
| | - Jiang Yu
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaorong Li
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ding Yang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuan Luo
- Division of Cardiothoracic Surgery, The Center Hospital of Chongqing University, Chongqing 400016, China
| | - Yong Xia
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiongwei Cai
- Department of Gynecology, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing 400037, China.
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
43
|
Meneux L, Feret N, Pernot S, Girard M, Sarkis S, Caballero Megido A, Quiles M, Müller A, Fichter L, Vialaret J, Hirtz C, Delettre C, Michon F. Inherited mitochondrial dysfunction triggered by OPA1 mutation impacts the sensory innervation fibre identity, functionality and regenerative potential in the cornea. Sci Rep 2024; 14:18794. [PMID: 39138286 PMCID: PMC11322642 DOI: 10.1038/s41598-024-68994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Mitochondrial dysfunctions are detrimental to organ metabolism. The cornea, transparent outmost layer of the eye, is prone to environmental aggressions, such as UV light, and therefore dependent on adequate mitochondrial function. While several reports have linked corneal defects to mitochondrial dysfunction, the impact of OPA1 mutation, known to induce such dysfunction, has never been studied in this context. We used the mouse line carrying OPA1delTTAG mutation to investigate its impact on corneal biology. To our surprise, neither the tear film composition nor the corneal epithelial transcriptomic signature were altered upon OPA1 mutation. However, when analyzing the corneal innervation, we discovered an undersensitivity of the cornea upon the mutation, but an increased innervation volume at 3 months. Furthermore, the fibre identity changed with a decrease of the SP + axons. Finally, we demonstrated that the innervation regeneration was less efficient and less functional in OPA1+/- corneas. Altogether, our study describes the resilience of the corneal epithelial biology, reflecting the mitohormesis induced by the OPA1 mutation, and the adaptation of the corneal innervation to maintain its functionality despite its morphogenesis defects. These findings will participate to a better understanding of the mitochondrial dysfunction on peripheral innervation.
Collapse
Affiliation(s)
- Léna Meneux
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Nadège Feret
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Sarah Pernot
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Mélissa Girard
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Solange Sarkis
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Alicia Caballero Megido
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Melanie Quiles
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- Faculté de Pharmacie, University of Montpellier, Montpellier, France
| | - Agnès Müller
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- Faculté de Pharmacie, University of Montpellier, Montpellier, France
| | - Laura Fichter
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- IRMB-PPC, INM, CHU Montpellier INSERM CNRS, University of Montpellier, Montpellier, France
| | - Jerome Vialaret
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- IRMB-PPC, INM, CHU Montpellier INSERM CNRS, University of Montpellier, Montpellier, France
| | - Christophe Hirtz
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- IRMB-PPC, INM, CHU Montpellier INSERM CNRS, University of Montpellier, Montpellier, France
| | - Cecile Delettre
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Frederic Michon
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France.
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France.
| |
Collapse
|
44
|
Zhou X, Wang J, Yu L, Qiao G, Qin D, Yuen-Kwan Law B, Ren F, Wu J, Wu A. Mitophagy and cGAS-STING crosstalk in neuroinflammation. Acta Pharm Sin B 2024; 14:3327-3361. [PMID: 39220869 PMCID: PMC11365416 DOI: 10.1016/j.apsb.2024.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Mitophagy, essential for mitochondrial health, selectively degrades damaged mitochondria. It is intricately linked to the cGAS-STING pathway, which is crucial for innate immunity. This pathway responds to mitochondrial DNA and is associated with cellular stress response. Our review explores the molecular details and regulatory mechanisms of mitophagy and the cGAS-STING pathway. We critically evaluate the literature demonstrating how dysfunctional mitophagy leads to neuroinflammatory conditions, primarily through the accumulation of damaged mitochondria, which activates the cGAS-STING pathway. This activation prompts the production of pro-inflammatory cytokines, exacerbating neuroinflammation. This review emphasizes the interaction between mitophagy and the cGAS-STING pathways. Effective mitophagy may suppress the cGAS-STING pathway, offering protection against neuroinflammation. Conversely, impaired mitophagy may activate the cGAS-STING pathway, leading to chronic neuroinflammation. Additionally, we explored how this interaction influences neurodegenerative disorders, suggesting a common mechanism underlying these diseases. In conclusion, there is a need for additional targeted research to unravel the complexities of mitophagy-cGAS-STING interactions and their role in neurodegeneration. This review highlights potential therapies targeting these pathways, potentially leading to new treatments for neuroinflammatory and neurodegenerative conditions. This synthesis enhances our understanding of the cellular and molecular foundations of neuroinflammation and opens new therapeutic avenues for neurodegenerative disease research.
Collapse
Affiliation(s)
- Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
45
|
Passarella S, Kethiswaran S, Brandes K, Tsai IC, Cebulski K, Kröger A, Dieterich DC, Landgraf P. Alteration of cGAS-STING signaling pathway components in the mouse cortex and hippocampus during healthy brain aging. Front Aging Neurosci 2024; 16:1429005. [PMID: 39149145 PMCID: PMC11324507 DOI: 10.3389/fnagi.2024.1429005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
The cGAS-STING pathway is a pivotal element of the innate immune system, recognizing cytosolic DNA to initiate the production of type I interferons and pro-inflammatory cytokines. This study investigates the alterations of the cGAS-STING signaling components in the cortex and hippocampus of mice aged 24 and 108 weeks. In the cortex of old mice, an increase in the dsDNA sensor protein cGAS and its product 2'3'-cGAMP was observed, without corresponding activation of downstream signaling, suggesting an uncoupling of cGAS activity from STING activation. This phenomenon may be attributed to increased dsDNA concentrations in the EC neurons, potentially arising from nuclear DNA damage. Contrastingly, the hippocampus did not exhibit increased cGAS activity with aging, but there was a notable elevation in STING levels, particularly in microglia, neurons and astrocytes. This increase in STING did not correlate with enhanced IRF3 activation, indicating that brain inflammation induced by the cGAS-STING pathway may manifest extremely late in the aging process. Furthermore, we highlight the role of autophagy and its interplay with the cGAS-STING pathway, with evidence of autophagy dysfunction in aged hippocampal neurons leading to STING accumulation. These findings underscore the complexity of the cGAS-STING pathway's involvement in brain aging, with regional variations in activity and potential implications for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sergio Passarella
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Shananthan Kethiswaran
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Karina Brandes
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - I-Chin Tsai
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Kristin Cebulski
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Innate Immunity and Infection, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Peter Landgraf
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
46
|
Gąssowska-Dobrowolska M, Olech-Kochańczyk G, Culmsee C, Adamczyk A. Novel Insights into Parkin-Mediated Mitochondrial Dysfunction and "Mito-Inflammation" in α-Synuclein Toxicity. The Role of the cGAS-STING Signalling Pathway. J Inflamm Res 2024; 17:4549-4574. [PMID: 39011416 PMCID: PMC11249072 DOI: 10.2147/jir.s468609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
The prevalence of age-related neurodegenerative diseases, such as Parkinson's disease (PD) and related disorders continues to grow worldwide. Increasing evidence links intracellular inclusions of misfolded alpha-synuclein (α-syn) aggregates, so-called Lewy bodies (LB) and Lewy neuritis, to the progressive pathology of PD and other synucleinopathies. Our previous findings established that α-syn oligomers induce S-nitrosylation and deregulation of the E3-ubiquitin ligase Parkin, leading to mitochondrial disturbances in neuronal cells. The accumulation of damaged mitochondria as a consequence, together with the release of mitochondrial-derived damage-associated molecular patterns (mtDAMPs) could activate the innate immune response and induce neuroinflammation ("mito-inflammation"), eventually accelerating neurodegeneration. However, the molecular pathways that transmit pro-inflammatory signals from damaged mitochondria are not well understood. One of the proposed pathways could be the cyclic GMP-AMP synthase (cGAS) - stimulator of interferon genes (STING) (cGAS-STING) pathway, which plays a pivotal role in modulating the innate immune response. It has recently been suggested that cGAS-STING deregulation may contribute to the development of various pathological conditions. Especially, its excessive engagement may lead to neuroinflammation and appear to be essential for the development of neurodegenerative brain diseases, including PD. However, the precise molecular mechanisms underlying cGAS-STING pathway activation in PD and other synucleinopathies are not fully understood. This review focuses on linking mitochondrial dysfunction to neuroinflammation in these disorders, particularly emphasizing the role of the cGAS-STING signaling. We propose the cGAS-STING pathway as a critical driver of inflammation in α-syn-dependent neurodegeneration and hypothesize that cGAS-STING-driven "mito-inflammation" may be one of the key mechanisms promoting the neurodegeneration in PD. Understanding the molecular mechanisms of α-syn-induced cGAS-STING-associated "mito-inflammation" in PD and related synucleinopathies may contribute to the identification of new targets for the treatment of these disorders.
Collapse
Affiliation(s)
| | - Gabriela Olech-Kochańczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior - CMBB, University of Marburg, Marburg, Germany
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
47
|
Marzetti E, Calvani R, Landi F, Coelho-Júnior HJ, Picca A. Mitochondrial Quality Control Processes at the Crossroads of Cell Death and Survival: Mechanisms and Signaling Pathways. Int J Mol Sci 2024; 25:7305. [PMID: 39000412 PMCID: PMC11242688 DOI: 10.3390/ijms25137305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Biological aging results from an accumulation of damage in the face of reduced resilience. One major driver of aging is cell senescence, a state in which cells remain viable but lose their proliferative capacity, undergo metabolic alterations, and become resistant to apoptosis. This is accompanied by complex cellular changes that enable the development of a senescence-associated secretory phenotype (SASP). Mitochondria, organelles involved in energy provision and activities essential for regulating cell survival and death, are negatively impacted by aging. The age-associated decline in mitochondrial function is also accompanied by the development of chronic low-grade sterile inflammation. The latter shares some features and mediators with the SASP. Indeed, the unloading of damage-associated molecular patterns (DAMPs) at the extracellular level can trigger sterile inflammatory responses and mitochondria can contribute to the generation of DAMPs with pro-inflammatory properties. The extrusion of mitochondrial DNA (mtDNA) via mitochondrial outer membrane permeabilization under an apoptotic stress triggers senescence programs. Additional pathways can contribute to sterile inflammation. For instance, pyroptosis is a caspase-dependent inducer of systemic inflammation, which is also elicited by mtDNA release and contributes to aging. Herein, we overview the molecular mechanisms that may link mitochondrial dyshomeostasis, pyroptosis, sterile inflammation, and senescence and discuss how these contribute to aging and could be exploited as molecular targets for alleviating the cell damage burden and achieving healthy longevity.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Helio José Coelho-Júnior
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Anna Picca
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
- Department of Medicine and Surgery, LUM University, SS100 km 18, 70010 Casamassima, Italy
| |
Collapse
|
48
|
Somasundaram I, Jain SM, Blot-Chabaud M, Pathak S, Banerjee A, Rawat S, Sharma NR, Duttaroy AK. Mitochondrial dysfunction and its association with age-related disorders. Front Physiol 2024; 15:1384966. [PMID: 39015222 PMCID: PMC11250148 DOI: 10.3389/fphys.2024.1384966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Aging is a complex process that features a functional decline in many organelles. Various factors influence the aging process, such as chromosomal abnormalities, epigenetic changes, telomere shortening, oxidative stress, and mitochondrial dysfunction. Mitochondrial dysfunction significantly impacts aging because mitochondria regulate cellular energy, oxidative balance, and calcium levels. Mitochondrial integrity is maintained by mitophagy, which helps maintain cellular homeostasis, prevents ROS production, and protects against mtDNA damage. However, increased calcium uptake and oxidative stress can disrupt mitochondrial membrane potential and permeability, leading to the apoptotic cascade. This disruption causes increased production of free radicals, leading to oxidative modification and accumulation of mitochondrial DNA mutations, which contribute to cellular dysfunction and aging. Mitochondrial dysfunction, resulting from structural and functional changes, is linked to age-related degenerative diseases. This review focuses on mitochondrial dysfunction, its implications in aging and age-related disorders, and potential anti-aging strategies through targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Indumathi Somasundaram
- Biotechnology Engineering, Kolhapur Institute of Technology’s College of Engineering, Kolhapur, India
| | - Samatha M. Jain
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | | | - Surajit Pathak
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Antara Banerjee
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Sonali Rawat
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, India
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Asim K. Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
49
|
Jiménez-Loygorri JI, Boya P. Aging STINGs: mitophagy at the crossroads of neuroinflammation. Autophagy 2024; 20:1684-1686. [PMID: 38411192 PMCID: PMC11210893 DOI: 10.1080/15548627.2024.2322421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024] Open
Abstract
Loss of proteostasis and dysregulated mitochondrial function are part of the traditional hallmarks of aging, and in their last revision impaired macroautophagy and chronic inflammation are also included. Mitophagy is at the intersection of all these processes but whether it undergoes age-associated perturbations was not known. In our recent work, we performed a systematic and systemic analysis of mitolysosome levels in mice and found that, despite the already-known decrease in nonselective macroautophagy, mitophagy remains stable or increases upon aging in all tissues analyzed and is mediated by the PINK1-PRKN-dependent pathway. Further analyses revealed a concomitant increase in mtDNA leakage into the cytosol and activation of the CGAS-STING1 inflammation axis. Notably, both phenomena are also observed in primary fibroblasts from aged human donors. We hypothesized that mitophagy might be selectively upregulated during aging to improve mitochondrial fitness and reduce mtDNA-induced inflammation. Treatment with the mitophagy inducer urolithin A alleviates age-associated neurological decline, including improved synaptic connectivity, cognitive memory and visual function. Supporting our initial hypothesis, urolithin A reduces the levels of cytosolic mtDNA, CGAS-STING1 activation and neuroinflammation. Finally, using an in vitro model of mitochondrial membrane permeabilization we validated that PINK1-PRKN-mediated mitophagy is essential to resolve cytosolic mtDNA-triggered inflammation. These findings open up an integrative approach to tackle aging and increase healthspan via mitophagy induction.
Collapse
Affiliation(s)
- Juan Ignacio Jiménez-Loygorri
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
50
|
Jiménez-Loygorri JI, Viedma-Poyatos Á, Gómez-Sintes R, Boya P. Urolithin A promotes p62-dependent lysophagy to prevent acute retinal neurodegeneration. Mol Neurodegener 2024; 19:49. [PMID: 38890703 PMCID: PMC11186080 DOI: 10.1186/s13024-024-00739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of blindness in elderly people in the developed world, and the number of people affected is expected to almost double by 2040. The retina presents one of the highest metabolic demands in our bodies that is partially or fully fulfilled by mitochondria in the neuroretina and retinal pigment epithelium (RPE), respectively. Together with its post-mitotic status and constant photooxidative damage from incoming light, the retina requires a tightly-regulated housekeeping system that involves autophagy. The natural polyphenol Urolithin A (UA) has shown neuroprotective benefits in several models of aging and age-associated disorders, mostly attributed to its ability to induce mitophagy and mitochondrial biogenesis. Sodium iodate (SI) administration recapitulates the late stages of AMD, including geographic atrophy and photoreceptor cell death. METHODS A combination of in vitro, ex vivo and in vivo models were used to test the neuroprotective potential of UA in the SI model. Functional assays (OCT, ERGs), cellular analysis (flow cytometry, qPCR) and fine confocal microscopy (immunohistochemistry, tandem selective autophagy reporters) helped address this question. RESULTS UA alleviated neurodegeneration and preserved visual function in SI-treated mice. Simultaneously, we observed severe proteostasis defects upon SI damage induction, including autophagosome accumulation, that were resolved in animals that received UA. Treatment with UA restored autophagic flux and triggered PINK1/Parkin-dependent mitophagy, as previously reported in the literature. Autophagy blockage caused by SI was caused by severe lysosomal membrane permeabilization. While UA did not induce lysosomal biogenesis, it did restore upcycling of permeabilized lysosomes through lysophagy. Knockdown of the lysophagy adaptor SQSTM1/p62 abrogated viability rescue by UA in SI-treated cells, exacerbated lysosomal defects and inhibited lysophagy. CONCLUSIONS Collectively, these data highlight a novel putative application of UA in the treatment of AMD whereby it bypasses lysosomal defects by promoting p62-dependent lysophagy to sustain proteostasis.
Collapse
Affiliation(s)
- Juan Ignacio Jiménez-Loygorri
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain.
| | - Álvaro Viedma-Poyatos
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Raquel Gómez-Sintes
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain.
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|