1
|
Pan L, Song X, Zhang W, Yang J, Cao M. Seedling dynamics differ between canopy species and understory species in a tropical seasonal rainforest, SW China. PLANT DIVERSITY 2024; 46:671-677. [PMID: 39290886 PMCID: PMC11403141 DOI: 10.1016/j.pld.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 09/19/2024]
Abstract
We used 11 years of census data from 450 seedling quadrats established in a 20-ha forest dynamics plot to study seedling dynamics in tree species of a tropical seasonal rainforest in Xishuangbanna, southwestern China. We found that overall seedling recruitment rate and relative growth rate were higher in the rainy season than in the dry season. Both the recruitment rate of seedlings from canopy tree species (two species) and the relative growth rate of seedlings from understory species (nine species) were higher in the rainy season than in the dry season. However, in the rainy season, the recruitment rate of seedlings was higher for canopy tree species than for understory tree species. In addition, relative growth rate of seedlings was higher in the canopy species than in understory seedlings in the dry season. We also observed that, in both rainy and dry seasons, mortality rate of seedlings was higher for canopy species than for understory species. Overall, canopy tree species appear to have evolved a flexible strategy to adapt to the seasonal changes of a monsoon climate. In contrast, understory tree species seem to have adopted a conservative strategy. Specifically, these species mainly release seedlings in the rainy season and maintain relatively stable populations with a lower mortality rate and recruitment rate in both dry and rainy seasons. Our study suggests that canopy and understory seedling populations growing in forest understory may respond to future climate change scenarios with distinct regeneration strategies.
Collapse
Affiliation(s)
- Libing Pan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Wenfu Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| |
Collapse
|
2
|
Damasceno AR, Garcia S, Aleixo IF, Menezes JCG, Pereira IS, De Kauwe MG, Ferrer VR, Fleischer K, Grams TEE, Guedes AV, Hartley IP, Kruijt B, Lugli LF, Martins NP, Norby RJ, Pires-Santos JS, Portela BTT, Rammig A, de Oliveira LR, Santana FD, Santos YR, de Souza CCS, Ushida G, Lapola DM, Quesada CAN, Domingues TF. In situ short-term responses of Amazonian understory plants to elevated CO 2. PLANT, CELL & ENVIRONMENT 2024; 47:1865-1876. [PMID: 38334166 DOI: 10.1111/pce.14842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
The response of plants to increasing atmospheric CO2 depends on the ecological context where the plants are found. Several experiments with elevated CO2 (eCO2) have been done worldwide, but the Amazonian forest understory has been neglected. As the central Amazon is limited by light and phosphorus, understanding how understory responds to eCO2 is important for foreseeing how the forest will function in the future. In the understory of a natural forest in the Central Amazon, we installed four open-top chambers as control replicates and another four under eCO2 (+250 ppm above ambient levels). Under eCO2, we observed increases in carbon assimilation rate (67%), maximum electron transport rate (19%), quantum yield (56%), and water use efficiency (78%). We also detected an increase in leaf area (51%) and stem diameter increment (65%). Central Amazon understory responded positively to eCO2 by increasing their ability to capture and use light and the extra primary productivity was allocated to supporting more leaf and conducting tissues. The increment in leaf area while maintaining transpiration rates suggests that the understory will increase its contribution to evapotranspiration. Therefore, this forest might be less resistant in the future to extreme drought, as no reduction in transpiration rates were detected.
Collapse
Affiliation(s)
- Amanda Rayane Damasceno
- Ecology Graduate Program, National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - Sabrina Garcia
- Environmental Dynamics Coordination (CODAM), National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - Izabela Fonseca Aleixo
- Environmental Dynamics Coordination (CODAM), National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | | | - Iokanam Sales Pereira
- Environmental Dynamics Coordination (CODAM), National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | | | - Vanessa Rodrigues Ferrer
- Ecology Graduate Program, National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | | | - Thorsten E E Grams
- School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Alacimar V Guedes
- Environmental Dynamics Coordination (CODAM), National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - Iain Paul Hartley
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Bart Kruijt
- Wageningen University, Water Systems and Global Change, Wageningen, Netherlands
| | | | - Nathielly Pires Martins
- Tropical Forest Sciences Graduate Program, National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - Richard J Norby
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, UK
| | | | - Bruno Takeshi Tanaka Portela
- Environmental Dynamics Coordination (CODAM), National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - Anja Rammig
- School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Leonardo Ramos de Oliveira
- Environmental Dynamics Coordination (CODAM), National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - Flávia Delgado Santana
- Environmental Dynamics Coordination (CODAM), National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - Yago Rodrigues Santos
- Environmental Dynamics Coordination (CODAM), National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | | | - Gabriela Ushida
- Ecology Graduate Program, National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - David Montenegro Lapola
- Laboratório de Ciência do Sistema Terrestre - LabTerra, Centro de Pesquisas Meteorológicas e Climáticas Aplicadas à Agricultura - CEPAGRI, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Carlos Alberto Nobre Quesada
- Environmental Dynamics Coordination (CODAM), National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - Tomas Ferreira Domingues
- Faculdde de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Mu Y, Lindenmayer D, Zheng S, Yang Y, Wang D, Liu J. Size-focused conservation may fail to protect the world's oldest trees. Curr Biol 2023; 33:4641-4649.e3. [PMID: 37820721 DOI: 10.1016/j.cub.2023.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/02/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Old trees are irreplaceable natural resources that provide multifaceted benefits to humans. Current conservation strategies focus primarily on large-sized trees that were often considered old. However, some studies have demonstrated that small trees can be more than thousands of years old, suggesting that conventional size-focused perceptions may hamper the efficiency of current conservation strategies for old trees. Here, we compiled paired age and diameter data using tree-ring records sampled from 121,918 trees from 269 species around the world to detect whether tree size is a strong predictor of age for old trees and whether the spatial distribution of small old trees differs from that of large old trees. We found that tree size was a weak predictor of age for old trees, and diameter explained only 10% of the total age variance of old trees. Unlike large-sized trees that are mainly in warm, wet environments and protected, small old trees are predominantly in cold, dry environments and mostly unprotected, indicating that size-focused conservation failed to protect some of the oldest trees. To conserve old trees, comprehensive old-tree recognition systems are needed that consider not only tree size but also age and external characteristics. Protected areas designed for small old trees are urgently needed.
Collapse
Affiliation(s)
- Yumei Mu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - David Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2601, Australia
| | - Shilu Zheng
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yongchuan Yang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Deyi Wang
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, the Netherlands
| | - Jiajia Liu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming, Shanghai 202183, China.
| |
Collapse
|
4
|
Kozák D, Svitok M, Zemlerová V, Mikoláš M, Lachat T, Larrieu L, Paillet Y, Buechling A, Bače R, Keeton WS, Vítková L, Begovič K, Čada V, Dušátko M, Ferenčík M, Frankovič M, Gloor R, Hofmeister J, Janda P, Kameniar O, Kníř T, Majdanová L, Mejstřík M, Pavlin J, Ralhan D, Rodrigo R, Roibu CC, Synek M, Vostarek O, Svoboda M. Importance of conserving large and old trees to continuity of tree-related microhabitats. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14066. [PMID: 36751977 DOI: 10.1111/cobi.14066] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 05/30/2023]
Abstract
Protecting structural features, such as tree-related microhabitats (TreMs), is a cost-effective tool crucial for biodiversity conservation applicable to large forested landscapes. Although the development of TreMs is influenced by tree diameter, species, and vitality, the relationships between tree age and TreM profile remain poorly understood. Using a tree-ring-based approach and a large data set of 8038 trees, we modeled the effects of tree age, diameter, and site characteristics on TreM richness and occurrence across some of the most intact primary temperate forests in Europe, including mixed beech and spruce forests. We observed an overall increase in TreM richness on old and large trees in both forest types. The occurrence of specific TreM groups was variably related to tree age and diameter, but some TreM groups (e.g., epiphytes) had a stronger positive relationship with tree species and elevation. Although many TreM groups were positively associated with tree age and diameter, only two TreM groups in spruce stands reacted exclusively to tree age (insect galleries and exposed sapwood) without responding to diameter. Thus, the retention of trees for conservation purposes based on tree diameter appears to be a generally feasible approach with a rather low risk of underrepresentation of TreMs. Because greater tree age and diameter positively affected TreM development, placing a greater emphasis on conserving large trees and allowing them to reach older ages, for example, through the establishment of conservation reserves, would better maintain the continuity of TreM resource and associated biodiversity. However, this approach may be difficult due to the widespread intensification of forest management and global climate change.
Collapse
Affiliation(s)
- Daniel Kozák
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Marek Svitok
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
- Department of Biology and General Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, Slovakia
| | - Veronika Zemlerová
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Martin Mikoláš
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Thibault Lachat
- Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences HAFL, Zollikofen & Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Laurent Larrieu
- Université de Toulouse, INRAE, UMR DYNAFOR, Castanet-Tolosan, France & CNPF-CRPF Occitanie, Tarbes, France
| | - Yoan Paillet
- Univ. Grenoble Alpes, INRAE, UR Lessem, Lessem, France
| | - Arne Buechling
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Radek Bače
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - William S Keeton
- University of Vermont, Rubenstein School of Environment and Natural Resources, Burlington, Vermont, USA
| | - Lucie Vítková
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Krešimir Begovič
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Vojtěch Čada
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Martin Dušátko
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Matej Ferenčík
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Michal Frankovič
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Rhiannon Gloor
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jeňýk Hofmeister
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Pavel Janda
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ondrej Kameniar
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Tomáš Kníř
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Linda Majdanová
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Marek Mejstřík
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jakob Pavlin
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Dheeraj Ralhan
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ruffy Rodrigo
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Catalin-Constantin Roibu
- Forest Biometrics Laboratory-Faculty of Forestry, 'Stefan cel Mare' University of Suceava, Suceava, Romania
| | - Michal Synek
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ondřej Vostarek
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Miroslav Svoboda
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
5
|
Biondi F, Meko DM, Piovesan G. Maximum tree lifespans derived from public-domain dendrochronological data. iScience 2023; 26:106138. [PMID: 36926654 PMCID: PMC10011738 DOI: 10.1016/j.isci.2023.106138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/07/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The public-domain International Tree-Ring Data Bank (ITRDB) is an under-utilized dataset to improve existing estimates of global tree longevity. We used the longest continuous ring-width series of existing ITRDB collections as an index of maximum tree age for that species and site. Using a total of 3,689 collections, we obtained longevity estimates for 237 unique tree species, 157 conifers and 80 angiosperms, distributed all over the world. More than half of the species (167) were represented by no more than 10 collections, and a similar number of species (144) reached longevity greater than 300 years. Maximum tree ages exceeded 1,000 years for several species (22), all of them conifers, whereas angiosperm longevity peaked around 500 years. Given the current emphasis on identifying human-induced impacts on global systems, detailed analyses of ITRDB holdings provide one of the most reliable sources of information for tree longevity as an ecological trait.
Collapse
Affiliation(s)
- Franco Biondi
- DendroLab, Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV 89557, USA
| | - David M Meko
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ 85721, USA
| | - Gianluca Piovesan
- DendrologyLab, Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
6
|
van Rooyen MW, Miabangana ES, Nsongola G, van Rooyen N, Orban B, Thomas A, Drescher K, Vasicek Gaugris C, Gaugris JY. Carbon of Chaillu forests based on a phytosociological analysis in Republic of Congo, more than meets the eye? Afr J Ecol 2022. [DOI: 10.1111/aje.13086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Margaretha W. van Rooyen
- FLORA FAUNA & MAN Ecological Services Ltd Tortola British Virgin Islands
- Department of Plant & Soil Sciences University of Pretoria Pretoria South Africa
| | - Edmond Sylvestre Miabangana
- FLORA FAUNA & MAN Ecological Services Ltd Tortola British Virgin Islands
- Centre d'Etude sur les Ressources Végétales, Herbier National du Congo Brazzaville Republic of Congo
| | - Gilbert Nsongola
- FLORA FAUNA & MAN Ecological Services Ltd Tortola British Virgin Islands
- Centre d'Etude sur les Ressources Végétales, Herbier National du Congo Brazzaville Republic of Congo
| | - Noel van Rooyen
- FLORA FAUNA & MAN Ecological Services Ltd Tortola British Virgin Islands
- Ekotrust Somerset West South Africa
| | - Ben Orban
- FLORA FAUNA & MAN Ecological Services Ltd Tortola British Virgin Islands
| | - Alain Thomas
- FLORA FAUNA & MAN Ecological Services Ltd Tortola British Virgin Islands
| | - Karsten Drescher
- FLORA FAUNA & MAN Ecological Services Ltd Tortola British Virgin Islands
| | - Caroline Vasicek Gaugris
- FLORA FAUNA & MAN Ecological Services Ltd Tortola British Virgin Islands
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
| | - Jérôme Y. Gaugris
- FLORA FAUNA & MAN Ecological Services Ltd Tortola British Virgin Islands
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
| |
Collapse
|
7
|
Liang J, Gamarra JGP, Picard N, Zhou M, Pijanowski B, Jacobs DF, Reich PB, Crowther TW, Nabuurs GJ, de-Miguel S, Fang J, Woodall CW, Svenning JC, Jucker T, Bastin JF, Wiser SK, Slik F, Hérault B, Alberti G, Keppel G, Hengeveld GM, Ibisch PL, Silva CA, Ter Steege H, Peri PL, Coomes DA, Searle EB, von Gadow K, Jaroszewicz B, Abbasi AO, Abegg M, Yao YCA, Aguirre-Gutiérrez J, Zambrano AMA, Altman J, Alvarez-Dávila E, Álvarez-González JG, Alves LF, Amani BHK, Amani CA, Ammer C, Ilondea BA, Antón-Fernández C, Avitabile V, Aymard GA, Azihou AF, Baard JA, Baker TR, Balazy R, Bastian ML, Batumike R, Bauters M, Beeckman H, Benu NMH, Bitariho R, Boeckx P, Bogaert J, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brearley FQ, Briseno-Reyes J, Broadbent EN, Bruelheide H, Bulte E, Catlin AC, Cazzolla Gatti R, César RG, Chen HYH, Chisholm C, Cienciala E, Colletta GD, Corral-Rivas JJ, Cuchietti A, Cuni-Sanchez A, Dar JA, Dayanandan S, de Haulleville T, Decuyper M, Delabye S, Derroire G, DeVries B, Diisi J, Do TV, Dolezal J, Dourdain A, Durrheim GP, Obiang NLE, Ewango CEN, Eyre TJ, Fayle TM, Feunang LFN, Finér L, Fischer M, Fridman J, Frizzera L, de Gasper AL, Gianelle D, Glick HB, Gonzalez-Elizondo MS, Gorenstein L, Habonayo R, Hardy OJ, Harris DJ, Hector A, Hemp A, Herold M, Hillers A, Hubau W, Ibanez T, Imai N, Imani G, Jagodzinski AM, Janecek S, Johannsen VK, Joly CA, Jumbam B, Kabelong BLPR, Kahsay GA, Karminov V, Kartawinata K, Kassi JN, Kearsley E, Kennard DK, Kepfer-Rojas S, Khan ML, Kigomo JN, Kim HS, Klauberg C, Klomberg Y, Korjus H, Kothandaraman S, Kraxner F, Kumar A, Kuswandi R, Lang M, Lawes MJ, Leite RV, Lentner G, Lewis SL, Libalah MB, Lisingo J, López-Serrano PM, Lu H, Lukina NV, Lykke AM, Maicher V, Maitner BS, Marcon E, Marshall AR, Martin EH, Martynenko O, Mbayu FM, Mbuvi MTE, Meave JA, Merow C, Miscicki S, Moreno VS, Morera A, Mukul SA, Müller JC, Murdjoko A, Nava-Miranda MG, Ndive LE, Neldner VJ, Nevenic RV, Nforbelie LN, Ngoh ML, N'Guessan AE, Ngugi MR, Ngute ASK, Njila ENN, Nyako MC, Ochuodho TO, Oleksyn J, Paquette A, Parfenova EI, Park M, Parren M, Parthasarathy N, Pfautsch S, Phillips OL, Piedade MTF, Piotto D, Pollastrini M, Poorter L, Poulsen JR, Poulsen AD, Pretzsch H, Rodeghiero M, Rolim SG, Rovero F, Rutishauser E, Sagheb-Talebi K, Saikia P, Sainge MN, Salas-Eljatib C, Salis A, Schall P, Schepaschenko D, Scherer-Lorenzen M, Schmid B, Schöngart J, Šebeň V, Sellan G, Selvi F, Serra-Diaz JM, Sheil D, Shvidenko AZ, Sist P, Souza AF, Stereńczak KJ, Sullivan MJP, Sundarapandian S, Svoboda M, Swaine MD, Targhetta N, Tchebakova N, Trethowan LA, Tropek R, Mukendi JT, Umunay PM, Usoltsev VA, Vaglio Laurin G, Valentini R, Valladares F, van der Plas F, Vega-Nieva DJ, Verbeeck H, Viana H, Vibrans AC, Vieira SA, Vleminckx J, Waite CE, Wang HF, Wasingya EK, Wekesa C, Westerlund B, Wittmann F, Wortel V, Zawiła-Niedźwiecki T, Zhang C, Zhao X, Zhu J, Zhu X, Zhu ZX, Zo-Bi IC, Hui C. Co-limitation towards lower latitudes shapes global forest diversity gradients. Nat Ecol Evol 2022; 6:1423-1437. [PMID: 35941205 DOI: 10.1038/s41559-022-01831-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 06/15/2022] [Indexed: 11/09/2022]
Abstract
The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers.
Collapse
Affiliation(s)
- Jingjing Liang
- Forest Advanced Computing and Artificial Intelligence Laboratory (FACAI), Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.
| | - Javier G P Gamarra
- Forestry Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | - Mo Zhou
- Forest Advanced Computing and Artificial Intelligence Laboratory (FACAI), Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Bryan Pijanowski
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Douglass F Jacobs
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Peter B Reich
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Thomas W Crowther
- Crowther Lab, Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Gert-Jan Nabuurs
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, Netherlands
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | - Sergio de-Miguel
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
- Joint Research Unit CTFC-Agrotecnio-CERCA, Solsona, Spain
| | - Jingyun Fang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Evironmental Sciences, Peking University, Beijing, China
| | | | - Jens-Christian Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Tommaso Jucker
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Jean-Francois Bastin
- TERRA Teaching and Research Centre, Gembloux Agro Bio-Tech, University of Liege, Gembloux, Belgium
| | - Susan K Wiser
- Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Ferry Slik
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Bruno Hérault
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
- INP-HB (Institut National Polytechnique Félix Houphouet-Boigny), University of Montpellier, Yamoussoukro, Ivory Coast
| | - Giorgio Alberti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
- Institute of Bioeconomy, CNR, Sesto, Italy
| | - Gunnar Keppel
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Adelaide, South Australia, Australia
| | - Geerten M Hengeveld
- Biometris, Wageningen University and Research, Wageningen, Netherlands
- Wageningen University & Research, Forest and Nature Conservation Policy Group, Wageningen, Netherlands
| | - Pierre L Ibisch
- Centre for Econics and Ecosystem Management, Eberswalde University for Sustainable Development, Eberswalde, Germany
| | - Carlos A Silva
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food & Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | | | - Pablo L Peri
- Instituto Nacional de Tecnología Agropecuaria (INTA), Santa Cruz, Argentina
| | - David A Coomes
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Eric B Searle
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada
| | - Klaus von Gadow
- University of Göttingen, Göttingen, Germany
- Beijing Forestry University, Beijing, China
- University of Stellenbosch, Stellenbosch, South Africa
| | - Bogdan Jaroszewicz
- Białowieża Geobotanical Station, Faculty of Biology, University of Warsaw, Białowieża, Poland
| | - Akane O Abbasi
- Forest Advanced Computing and Artificial Intelligence Laboratory (FACAI), Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Meinrad Abegg
- Swiss National Forest Inventory/Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Yves C Adou Yao
- UFR Biosciences, University Félix Houphouët-Boigny, Abidjan, Ivory Coast
| | - Jesús Aguirre-Gutiérrez
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Biodiversity Dynamics, Naturalis Biodiversity Center, Leiden, Netherlands
| | | | - Jan Altman
- Institute of Botany, Academy of Sciences of the Czech Republic, Trebon, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Praha-Suchdol, Czech Republic
| | - Esteban Alvarez-Dávila
- Escuela ECAPMA, National Open University and Distance (Colombia) | UNAD, Bogotá, Colombia
| | | | - Luciana F Alves
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, USA
| | | | - Christian A Amani
- Université Officielle de Bukavu, Bukavu, Democratic Republic of Congo
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Goettingen, Germany
| | - Bhely Angoboy Ilondea
- Institut National pour l'Etude et la Recherche Agronomiques, Kinshasa, Democratic Republic of Congo
| | - Clara Antón-Fernández
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Forestry and Forest Resources, Ås, Norway
| | | | | | - Akomian F Azihou
- Laboratory of Applied Ecology, University of Abomey-Calavi, Cotonou, Benin
| | - Johan A Baard
- Scientific Services, South African National Parks, Knysna, South Africa
| | | | - Radomir Balazy
- Department of Geomatics, Forest Research Institute, Sekocin Stary, Raszyn, Poland
| | - Meredith L Bastian
- Proceedings of the National Academy of Sciences, Washington, DC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Rodrigue Batumike
- Department of Environment, Universtité du Cinquantenaire de Lwiro, Bukavu, Democratic Republic of Congo
| | - Marijn Bauters
- Department of Environment, Ghent University, Ghent, Belgium
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Hans Beeckman
- Service of Wood Biology, Royal Museum for Central Africa, Tervuren, Belgium
| | | | - Robert Bitariho
- Institute of Tropical Forest Conservation, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Pascal Boeckx
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Jan Bogaert
- Université de Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Frans Bongers
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | - Olivier Bouriaud
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD), University Stefan cel Mare of Suceava, Suceava, Romania
| | - Pedro H S Brancalion
- Department of Forestry Sciences, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Francis Q Brearley
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Jaime Briseno-Reyes
- Facultad de Ciencias Forestales, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Eben N Broadbent
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food & Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Helge Bruelheide
- Institute of Biology and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Erwin Bulte
- Development Economics Group, Wageningen University, Wageningen, Netherlands
| | - Ann Christine Catlin
- Rosen Center for Advanced Computing (RCAC), Purdue University, West Lafayette, IN, USA
| | - Roberto Cazzolla Gatti
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Ricardo G César
- Department of Forestry Sciences, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada
| | - Chelsea Chisholm
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Emil Cienciala
- IFER - Institute of Forest Ecosystem Research, Jilove u Prahy, Czech Republic
- Global Change Research Institute of the CAS, Brno, Czech Republic
| | - Gabriel D Colletta
- Programa de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas CEP, Biologia, Brazil
| | | | - Anibal Cuchietti
- Dirección Nacional de Bosques (DNB), Ministerio de Ambiente y Desarrollo Sostenible (MAyDS), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Aida Cuni-Sanchez
- Department of International Environment and Development Studies (Noragric), Faculty of Landscape and Society, Norwegian University of Life Sciences (NMBU), Ås, Norway
- Department of Environment and Geography, University of York, York, UK
| | - Javid A Dar
- Department of Environmental Science, School of Engineering and Sciences, SRM University-AP, Guntur, India
- Department of Botany, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Madhya Pradesh, India
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India
| | - Selvadurai Dayanandan
- Centre for Structural and Functional Genomics & Quebec Centre for Biodiversity Science, Biology Department, Concordia University, Montreal, Quebec, Canada
| | - Thales de Haulleville
- Service of Wood Biology, Royal Museum for Central Africa, Tervuren, Belgium
- Université de Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Mathieu Decuyper
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | - Sylvain Delabye
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Géraldine Derroire
- Cirad, UMR EcoFoG (AgroParistech, CNRS, Inrae, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | - Ben DeVries
- Department of Geography, Environment and Geomatics, University of Guelph, Guelph, Ontario, Canada
| | - John Diisi
- National Forest Authority, Kampala, Uganda
| | - Tran Van Do
- Department of Silviculture Foundation, Silviculture Research Institute, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | - Jiri Dolezal
- Institute of Botany, Academy of Sciences of the Czech Republic, Trebon, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Bohemia, Czech Republic
| | - Aurélie Dourdain
- Cirad, UMR EcoFoG (AgroParistech, CNRS, Inrae, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | - Graham P Durrheim
- Scientific Services, South African National Parks, Knysna, South Africa
| | | | - Corneille E N Ewango
- Faculté de Gestion de Ressources Naturelles Renouvelables, Université de Kisangani, Kisangani, Democratic Republic of Congo
| | - Teresa J Eyre
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | - Tom M Fayle
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Leena Finér
- Natural Resources Institute Finland, Joensuu, Finland
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Jonas Fridman
- Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umea, Sweden
| | - Lorenzo Frizzera
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - André L de Gasper
- Herbário Dr. Roberto Miguel Klein, Universidade Regional de Blumenau, Blumenau, Brazil
| | - Damiano Gianelle
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | | | - Lev Gorenstein
- Rosen Center for Advanced Computing (RCAC), Purdue University, West Lafayette, IN, USA
| | - Richard Habonayo
- Département des Sciences et Technologies de l'Environnement, Université du Burundi, Bujumbura, Burundi
| | - Olivier J Hardy
- Faculté des Sciences, Evolutionary Biology and Ecology Unit, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Andrew Hector
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Andreas Hemp
- Department of Plant Systematics, Bayreuth University, Bayreuth, Germany
| | - Martin Herold
- Helmholtz GFZ German Research Centre for Geosciences, Section 1.4 Remote Sensing and Geoinformatics, Potsdam, Germany
| | - Annika Hillers
- Wild Chimpanzee Foundation, Liberia Representation, Monrovia, Liberia
- Centre for Conservation Science, The Royal Society for the Protection of Birds, Sandy, UK
| | - Wannes Hubau
- Service of Wood Biology, Royal Museum for Central Africa, Tervuren, Belgium
- Department of Environment, Laboratory for Wood Technology (UGent-Woodlab), Ghent University, Ghent, Belgium
| | - Thomas Ibanez
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Nobuo Imai
- Department of Forest Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Gerard Imani
- Biology Department, Université Officielle de Bukavu, Bukavu, Democratic Republic of Congo
| | - Andrzej M Jagodzinski
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Poznan University of Life Sciences, Faculty of Forestry and Wood Technology, Department of Game Management and Forest Protection, Poznan, Poland
| | - Stepan Janecek
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vivian Kvist Johannsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Carlos A Joly
- Plant Biology Department, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil
| | - Blaise Jumbam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
- Institute of Agricultural Research for Development (IRAD), Nkolbisson, Ministry of Scientific Research and Innovation, Yaounde, Cameroon
| | - Banoho L P R Kabelong
- Department of Plant Biology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Goytom Abraha Kahsay
- Department of Food and Resource Economics, University of Copenhagen, Copenhagen, Denmark
| | - Viktor Karminov
- Forestry Faculty, Bauman Moscow State Technical University, Mytischi, Russia
| | | | - Justin N Kassi
- Labo Botanique, Université Félix Houphouët-Boigny, Abidjan, Ivory Coast
| | - Elizabeth Kearsley
- Computational and Applied Vegetation Ecology Lab, Ghent University, Ghent, Belgium
| | - Deborah K Kennard
- Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO, USA
| | - Sebastian Kepfer-Rojas
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Mohammed Latif Khan
- Department of Botany, Dr. Harisingh Gour Vishwavidalaya (A Central University), Sagar, India
| | - John N Kigomo
- Kenya Forestry Research Institute, Department of Forest Resource Assessment, Nairobi, Kenya
| | - Hyun Seok Kim
- Department of Forest Sciences, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, Republic of Korea
- National Center for Agro Meteorology, Seoul, Republic of Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Carine Klauberg
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food & Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Yannick Klomberg
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Henn Korjus
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Subashree Kothandaraman
- Department of Botany, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Madhya Pradesh, India
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India
| | - Florian Kraxner
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Amit Kumar
- Department of Geoinformatics, Central University of Jharkhand, Ranchi, India
| | - Relawan Kuswandi
- Balai Penelitian dan Pengembangan Lingkungan Hidup dan Kehutanan, Manokwari, Indonesia
| | - Mait Lang
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
- Tartu Observatory, University of Tartu, Tõravere, Estonia
| | - Michael J Lawes
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Rodrigo V Leite
- Department of Forest Engineering, Federal University of Viçosa (UFV), Viçosa, Brazil
| | - Geoffrey Lentner
- Rosen Center for Advanced Computing (RCAC), Purdue University, West Lafayette, IN, USA
| | - Simon L Lewis
- School of Geography, University of Leeds, Leeds, UK
- Department of Geography, University College London, London, UK
| | - Moses B Libalah
- Department of Plant Biology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- Plant Systematics and Ecology Laboratory (LaBosystE), Higher Teacher's Training College, University of Yaoundé I, Yaoundé, Cameroon
| | - Janvier Lisingo
- Laboratoire d'Écologie et Aménagement Forestier, Département d'Ecologie et de Gestion des Ressources Végétales, Université de Kisangani, Kisangani, Democratic Republic of Congo
| | | | - Huicui Lu
- Faculty of Forestry, Qingdao Agricultural University, Qingdao, China
| | - Natalia V Lukina
- Center for Forest Ecology and Productivity RAS (CEPF RAS), Moscow, Russia
| | | | - Vincent Maicher
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Brian S Maitner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Eric Marcon
- Cirad, UMR EcoFoG (AgroParistech, CNRS, Inrae, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
- AgroParisTech, UMR AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Andrew R Marshall
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- University of York, York, UK
- Flamingo Land Ltd., North Yorkshire, UK
| | - Emanuel H Martin
- Department of Wildlife Management, College of African Wildlife Management, Mweka, Tanzania
| | - Olga Martynenko
- Forestry Faculty, Bauman Moscow State Technical University, Mytischi, Russia
| | - Faustin M Mbayu
- Faculté de Gestion de Ressources Naturelles Renouvelables, Université de Kisangani, Kisangani, Democratic Republic of Congo
| | | | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cory Merow
- Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Stanislaw Miscicki
- Department of Forest Management and Forest Economics, Warsaw University of Life Sciences, Warsaw, Poland
| | - Vanessa S Moreno
- Department of Forestry Sciences, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Albert Morera
- Joint Research Unit CTFC-Agrotecnio-CERCA, Solsona, Spain
| | - Sharif A Mukul
- Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Jörg C Müller
- Fieldstation Fabrikschleichach, Julius-Maximilians University Würzburg, Würzburg, Germany
- Bavarian Forest Nationalpark, Grafenau, Germany
| | - Agustinus Murdjoko
- Fakultas Kehutanan, Universitas Papua, Jalan Gunung Salju Amban, Manokwari Papua Barat, Indonesia
| | | | | | - Victor J Neldner
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | | | - Louis N Nforbelie
- Department of Plant Biology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Michael L Ngoh
- Tropical Plant Exploration Group (TroPEG), Buea, Cameroon
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Anny E N'Guessan
- UFR Biosciences, University Félix Houphouët-Boigny, Abidjan, Ivory Coast
| | - Michael R Ngugi
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | - Alain S K Ngute
- Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- Applied Biology and Ecology Research Unit, University of Dschang, Dschang, Cameroon
| | - Emile Narcisse N Njila
- Department of Plant Biology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Melanie C Nyako
- Department of Plant Biology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Thomas O Ochuodho
- Department of Forestry and Natural Resources, University of Kentucky, Lexington, KY, USA
| | - Jacek Oleksyn
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Alain Paquette
- UQAM, Centre for Forest Research, Montreal, Quebec, Canada
| | - Elena I Parfenova
- V.N. Sukachev Forest Institute of FRC KSC SB RAS, Krasnoyarsk, Russia
| | - Minjee Park
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Marc Parren
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | | | - Sebastian Pfautsch
- Urban Management and Planning, School of Social Sciences, Western Sydney University, Penrith, New South Wales, Australia
| | | | - Maria T F Piedade
- Instituto Nacional de Pesquisas da Amazônia-INPA, Grupo Ecologia. Monitoramento e Uso Sustentável de Áreas Úmidas MAUA, Manaus, Brazil
| | - Daniel Piotto
- Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Ilhéus, Brazil
| | - Martina Pollastrini
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, Firenze, Italy
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | - John R Poulsen
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - Hans Pretzsch
- Technical University of Munich, School of Life Sciences Weihenstephan, Chair of Forest Growth and Yield Science, Munich, Germany
| | - Mirco Rodeghiero
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Centro Agricoltura, Alimenti, Ambiente, University of Trento, San Michele all'Adige, Italy
| | - Samir G Rolim
- Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Ilhéus, Brazil
| | - Francesco Rovero
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- MUSE-Museo delle Scienze, Trento, Italy
| | | | - Khosro Sagheb-Talebi
- Agricultural Research, Education and Extension Organization (AREEO), Research Institute of Forests and Rangelands (RIFR), Tehran, Iran
| | - Purabi Saikia
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Moses Nsanyi Sainge
- Tropical Plant Exploration Group (TroPEG), Buea, Cameroon
- Institute of International Education Scholar Rescue Fund (IIE-SRF), One World Trade Center, New York, NY, USA
| | - Christian Salas-Eljatib
- Centro de Modelación y Monitoreo de Ecosistemas, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Vicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco, Chile
- Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
| | - Antonello Salis
- Forestry Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Goettingen, Germany
| | - Dmitry Schepaschenko
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- V.N. Sukachev Forest Institute of FRC KSC SB RAS, Krasnoyarsk, Russia
- Рeoples Friendship University of Russia (RUDN University), Moscow, Russia
| | | | - Bernhard Schmid
- Institution with City, Department of Geography, University of Zurich, Zurich, Switzerland
| | - Jochen Schöngart
- Instituto Nacional de Pesquisas da Amazônia-INPA, Grupo Ecologia. Monitoramento e Uso Sustentável de Áreas Úmidas MAUA, Manaus, Brazil
| | | | - Giacomo Sellan
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- CNRS-UMR LEEISA, Campus Agronomique, Kourou, French Guiana
| | - Federico Selvi
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, Firenze, Italy
| | | | - Douglas Sheil
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
- Center for International Forestry Research (CIFOR), Situ Gede, Bogor Barat, Indonesia
| | | | - Plinio Sist
- Cirad, University of Montpellier, Montpellier, France
| | - Alexandre F Souza
- Universidade Federal do Rio Grande do Norte, Departamento de Ecologia, Natal, Brazil
| | | | - Martin J P Sullivan
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Somaiah Sundarapandian
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Praha-Suchdol, Czech Republic
| | - Mike D Swaine
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Natalia Targhetta
- Instituto Nacional de Pesquisas da Amazônia-INPA, Grupo Ecologia. Monitoramento e Uso Sustentável de Áreas Úmidas MAUA, Manaus, Brazil
| | - Nadja Tchebakova
- V.N. Sukachev Forest Institute of FRC KSC SB RAS, Krasnoyarsk, Russia
| | | | - Robert Tropek
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - John Tshibamba Mukendi
- Faculté des Sciences Appliquées, Université de Mbujimayi, Mbujimayi, Democratic Republic of Congo
| | | | - Vladimir A Usoltsev
- Ural State Forest Engineering University, Botanical Garden, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | | | | | | | - Fons van der Plas
- Plant Ecology and Nature Conservation Group, Wageningen University, AA Wageningen, Netherlands
| | - Daniel José Vega-Nieva
- Facultad de Ciencias Forestales, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Hans Verbeeck
- Computational and Applied Vegetation Ecology Lab, Ghent University, Ghent, Belgium
| | - Helder Viana
- Agricultural High School, ESAV, Polytechnic Institute of Viseu, IPV, Viseu, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, Vila Real, Portugal
| | - Alexander C Vibrans
- Department of Forest Engineering, Universidade Regional de Blumenau, Blumenau, Brazil
| | - Simone A Vieira
- Nucleo de Estudos e Pesquisas Ambientais, Universidade Estadual de Campinas, Campinas (UNICAMP), SP, Campinas, Brazil
| | - Jason Vleminckx
- International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Catherine E Waite
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Hua-Feng Wang
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, China
| | - Eric Katembo Wasingya
- Faculté de Gestion de Ressources Naturelles Renouvelables, Université de Kisangani, Kisangani, Democratic Republic of Congo
| | - Chemuku Wekesa
- Kenya Forestry Research Institute, Taita Taveta Research Centre, Wundanyi, Kenya
| | - Bertil Westerlund
- Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umea, Sweden
| | - Florian Wittmann
- Department of Wetland Ecology, Institute for Geography and Geoecology, Karlsruhe Institute for Technology, Rastatt, Germany
| | - Verginia Wortel
- Department of Forest Management, Centre for Agricultural Research in Suriname, Paramaribo, Suriname
| | | | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Jun Zhu
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiao Zhu
- Rosen Center for Advanced Computing (RCAC), Purdue University, West Lafayette, IN, USA
| | - Zhi-Xin Zhu
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, China
| | - Irie C Zo-Bi
- Institut National Polytechnique Félix Houphouët-Boigny, DFR Eaux, Forêts et Environnement, BP, Yamoussoukro, Ivory Coast
| | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland, South Africa.
- African Institute for Mathematical Sciences, Muizenberg, South Africa.
| |
Collapse
|
8
|
Pinanga palms revisited 20 years on: what can changes in Pinanga species populations tell us about rainforest understory palm persistence? JOURNAL OF TROPICAL ECOLOGY 2022. [DOI: 10.1017/s0266467422000256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Borneo is the centre of diversity of the palm genus Pinanga. At least 13 understory species have been recorded in the Ulu Temburong National Park in Brunei, but little is known of their persistence. Changes in populations of Pinanga understory palms may be indicative of more widespread changes due to climate change, such as changes in rainfall, which may be important for the palm diversity in the protected area. However, we know little about the population dynamics of these palms, how persistent their populations are or if they behave similarly over long time frames. In 1998, populations of five co-occurring species of Pinanga at several locations in the Ulu Temburong National Park were documented. This project aimed to undertake a comprehensive resurvey of the original five Pinanga palm species populations in order to assess if they showed similar population changes across sites and species after two decades. Overall, most species maintained their population size in the surveyed region but not consistently among sites, and one species significantly declined in abundance. There was considerable variation in population growth rate (R) within and among species and sites that was significantly correlated with density and the percentage of multi-stemmed plants. There was evidence of pulsed recruitment in some species and or sites rather than steady or exponential patterns of population growth.
Collapse
|
9
|
Piponiot C, Anderson-Teixeira KJ, Davies SJ, Allen D, Bourg NA, Burslem DFRP, Cárdenas D, Chang-Yang CH, Chuyong G, Cordell S, Dattaraja HS, Duque Á, Ediriweera S, Ewango C, Ezedin Z, Filip J, Giardina CP, Howe R, Hsieh CF, Hubbell SP, Inman-Narahari FM, Itoh A, Janík D, Kenfack D, Král K, Lutz JA, Makana JR, McMahon SM, McShea W, Mi X, Bt Mohamad M, Novotný V, O'Brien MJ, Ostertag R, Parker G, Pérez R, Ren H, Reynolds G, Md Sabri MD, Sack L, Shringi A, Su SH, Sukumar R, Sun IF, Suresh HS, Thomas DW, Thompson J, Uriarte M, Vandermeer J, Wang Y, Ware IM, Weiblen GD, Whitfeld TJS, Wolf A, Yao TL, Yu M, Yuan Z, Zimmerman JK, Zuleta D, Muller-Landau HC. Distribution of biomass dynamics in relation to tree size in forests across the world. THE NEW PHYTOLOGIST 2022; 234:1664-1677. [PMID: 35201608 DOI: 10.1111/nph.17995] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among-site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large-scale (4-52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter. We examined how the median, dispersion, and skewness of these size-related distributions vary with mean annual temperature and precipitation. In warmer forests, aboveground biomass, woody productivity, and woody mortality were more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground biomass and woody productivity were more right skewed, with a long tail towards large trees. Small trees (1-10 cm diameter) contributed more to productivity and mortality than to biomass, highlighting the importance of including these trees in analyses of forest dynamics. Our findings provide an improved characterization of climate-driven forest differences in the size structure of aboveground biomass and dynamics of that biomass, as well as refined benchmarks for capturing climate influences in vegetation demographic models.
Collapse
Affiliation(s)
- Camille Piponiot
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, 22630, USA
- UR Forests and Societies, Cirad, Université de Montpellier, Montpellier, 34000, France
| | - Kristina J Anderson-Teixeira
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, 22630, USA
| | - Stuart J Davies
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, 20560, USA
- Department of Botany, National Museum of Natural History, Washington, DC, 20560, USA
| | - David Allen
- Department of Biology, Middlebury College, Middlebury, VT, 05753, USA
| | - Norman A Bourg
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, 22630, USA
| | - David F R P Burslem
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Dairon Cárdenas
- Instituto Amazónico de Investigaciones Científicas Sinchi, Bogota, DC, Colombia
| | - Chia-Hao Chang-Yang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung City, 80424
| | - George Chuyong
- Department of Botany and Plant Physiology, University of Buea, Buea, Cameroon
| | - Susan Cordell
- Institute of Pacific Islands Forestry, USDA Forest Service, Hilo, HI, 96720, USA
| | | | - Álvaro Duque
- Departamento de Ciencias Forestales, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | - Sisira Ediriweera
- Department of Science and Technology, Faculty of Applied Sciences, Uva Wellassa University, Badulla, 90000, Sri Lanka
| | - Corneille Ewango
- Faculty of Sciences, University of Kisangani, BP 2012, Kisangani, Democratic Republic of the Congo
| | - Zacky Ezedin
- Department of Plant & Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Jonah Filip
- Binatang Research Centre, Madang, Papua New Guinea
| | - Christian P Giardina
- Institute of Pacific Islands Forestry, USDA Forest Service, Hilo, HI, 96720, USA
| | - Robert Howe
- Department of Natural and Applied Sciences, University of Wisconsin-Green Bay, Green Bay, WI, 54311-7001, USA
| | - Chang-Fu Hsieh
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617
| | - Stephen P Hubbell
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Akira Itoh
- Graduate School of Science, Osaka City University, Osaka, 5588585, Japan
| | - David Janík
- Department of Forest Ecology, Silva Tarouca Research Institute, Brno, 602 00, Czech Republic
| | - David Kenfack
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
- Department of Botany, National Museum of Natural History, Washington, DC, 20560, USA
| | - Kamil Král
- Department of Forest Ecology, Silva Tarouca Research Institute, Brno, 602 00, Czech Republic
| | - James A Lutz
- Wildland Resources Department, Utah State University, Logan, UT, 84322, USA
| | - Jean-Remy Makana
- Faculty of Sciences, University of Kisangani, BP 2012, Kisangani, Democratic Republic of the Congo
| | - Sean M McMahon
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
- Forest Global Earth Observatory, Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - William McShea
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, 22630, USA
| | - Xiangcheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093
| | - Mohizah Bt Mohamad
- Research Development and Innovation Division, Forest Department Sarawak, Bangunan Baitul Makmur 2, Medanraya, Petrajaya, Kuching, 93050, Malaysia
| | - Vojtěch Novotný
- Binatang Research Centre, Madang, Papua New Guinea
- Biology Centre, Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Michael J O'Brien
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, 28933, Spain
| | - Rebecca Ostertag
- Department of Biology, University of Hawaii, Hilo, HI, 96720, USA
| | - Geoffrey Parker
- Forest Ecology Group, Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - Rolando Pérez
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
| | - Haibao Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093
| | - Glen Reynolds
- The Royal Society SEARRP (UK/Malaysia), Danum Valley Field Centre, Lahad Datu, Sabah, Malaysia
| | - Mohamad Danial Md Sabri
- Forestry and Environment Division, Forest Research Institute Malaysia, Kepong, Selangor, 52109, Malaysia
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ankur Shringi
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - Raman Sukumar
- Centre for Ecological Sciences and Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, Karnataka, India
| | - I-Fang Sun
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, 974301
| | - Hebbalalu S Suresh
- Centre for Ecological Sciences and Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, Karnataka, India
| | - Duncan W Thomas
- School of Biological Sciences, Washington State University, Vancouver, WA, 99164, USA
| | - Jill Thompson
- UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0SB, UK
| | - Maria Uriarte
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, 10027, USA
| | - John Vandermeer
- Department of Ecology and Evolutionary Biology and Herbarium, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yunquan Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004
| | - Ian M Ware
- Institute of Pacific Islands Forestry, USDA Forest Service, Hilo, HI, 96720, USA
| | - George D Weiblen
- Department of Plant & Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | | | - Amy Wolf
- Department of Natural and Applied Sciences, University of Wisconsin-Green Bay, Green Bay, WI, 54311-7001, USA
| | - Tze Leong Yao
- Forestry and Environment Division, Forest Research Institute Malaysia, Kepong, Selangor, 52109, Malaysia
| | - Mingjian Yu
- College of Life Sciences, Zhejiang University, Hangzhou
| | - Zuoqiang Yuan
- CAS Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, San Juan, PR, USA
| | - Daniel Zuleta
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, 20560, USA
| | - Helene C Muller-Landau
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
| |
Collapse
|
10
|
Liu J, Xia S, Zeng D, Liu C, Li Y, Yang W, Yang B, Zhang J, Slik F, Lindenmayer DB. Age and spatial distribution of the world's oldest trees. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36. [PMID: 35288993 DOI: 10.1111/cobi.13907] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Extremely old trees have important roles in providing insights about historical climatic events and supporting cultural values. Yet there has been limited work on the global distribution and conservation of these trees. We extracted information on 197,855 tree cores at 4,854 sites, and combined it with other tree age data from a further 156 sites, to determine the age of the world's oldest trees and quantify the factors influencing their global distribution. We found that extremely old trees >1,000 years are rare. Among 30 individual trees that exceeded 2,000 years old, 27 occurred in high mountains. Our model suggests that many of the existing oldest trees occur in high-elevation, cold and arid mountains with limited human disturbance. This pattern is markedly different from that of the tallest trees, which are more likely to occur in more mesic and productive locations. Global warming and expansion of human activities may induce rapid population declines of extremely old trees. New strategies, including targeted establishment of conservation reserves in remote regions, especially those in western Table 1 parts of China and USA, are required to protect these trees. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jiajia Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Shangwen Xia
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, China
| | - Di Zeng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Cong Liu
- Department of Organismic and Evolutional Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Yingjun Li
- Research Centre for Scientific Development in Fenhe River Valley, Taiyuan Normal University, Jinzhong, China
| | - Wenjing Yang
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Bao Yang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- CAS Centre for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China
- Qinghai Research Centre of Qilian Mountain National Park, Academy of Plateau Science and Sustainability and Qinghai Normal University, Xining, 810008, China
| | - Jian Zhang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ferry Slik
- Environmental and Life Sciences Department, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - David B Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, Australia
| |
Collapse
|
11
|
Giles AL, Rowland L, Bittencourt PRL, Bartholomew DC, Coughlin I, Costa PB, Domingues T, Miatto RC, Barros FV, Ferreira LV, Groenendijk P, Oliveira AAR, da Costa ACL, Meir P, Mencuccini M, Oliveira RS. Small understorey trees have greater capacity than canopy trees to adjust hydraulic traits following prolonged experimental drought in a tropical forest. TREE PHYSIOLOGY 2022; 42:537-556. [PMID: 34508606 DOI: 10.1093/treephys/tpab121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Future climate change predictions for tropical forests highlight increased frequency and intensity of extreme drought events. However, it remains unclear whether large and small trees have differential strategies to tolerate drought due to the different niches they occupy. The future of tropical forests is ultimately dependent on the capacity of small trees (<10 cm in diameter) to adjust their hydraulic system to tolerate drought. To address this question, we evaluated whether the drought tolerance of neotropical small trees can adjust to experimental water stress and was different from tall trees. We measured multiple drought resistance-related hydraulic traits across nine common neotropical genera at the world's longest-running tropical forest throughfall-exclusion experiment and compared their responses with surviving large canopy trees. Small understorey trees in both the control and the throughfall-exclusion treatment had lower minimum stomatal conductance and maximum hydraulic leaf-specific conductivity relative to large trees of the same genera, as well as a greater hydraulic safety margin (HSM), percentage loss of conductivity and embolism resistance, demonstrating that they occupy a distinct hydraulic niche. Surprisingly, in response to the drought treatment, small trees increased specific hydraulic conductivity by 56.3% and leaf:sapwood area ratio by 45.6%. The greater HSM of small understorey trees relative to large canopy trees likely enabled them to adjust other aspects of their hydraulic systems to increase hydraulic conductivity and take advantage of increases in light availability in the understorey resulting from the drought-induced mortality of canopy trees. Our results demonstrate that differences in hydraulic strategies between small understorey and large canopy trees drive hydraulic niche segregation. Small understorey trees can adjust their hydraulic systems in response to changes in water and light availability, indicating that natural regeneration of tropical forests following long-term drought may be possible.
Collapse
Affiliation(s)
- A L Giles
- Instituto de Biologia, University of Campinas (UNICAMP), R. Monteiro Lobato, 255 - Barão Geraldo, Campinas SP 13083-970, Brazil
| | - L Rowland
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK
| | - P R L Bittencourt
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK
| | - D C Bartholomew
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK
| | - I Coughlin
- Departamento de Biologia, FFCLRP, Universidade de São Paulo, Av. Bandeirantes, 3900 - Vila Monte Alegre, Ribeirão Preto SP 14040-900, Brazil
- Research School of Biology, Australian National University, 134 Linnaeus Way, Canberra ACT 2601, Australia
| | - P B Costa
- Instituto de Biologia, University of Campinas (UNICAMP), R. Monteiro Lobato, 255 - Barão Geraldo, Campinas SP 13083-970, Brazil
- Biological Sciences, Stirling Highway, Perth, WA 6009, Australia
| | - T Domingues
- Departamento de Biologia, FFCLRP, Universidade de São Paulo, Av. Bandeirantes, 3900 - Vila Monte Alegre, Ribeirão Preto SP 14040-900, Brazil
| | - R C Miatto
- Departamento de Biologia, FFCLRP, Universidade de São Paulo, Av. Bandeirantes, 3900 - Vila Monte Alegre, Ribeirão Preto SP 14040-900, Brazil
| | - F V Barros
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK
| | - L V Ferreira
- Museu Paraense Emílio Goeldi, Av. Gov Magalhães Barata, 376 - São Brás, Belém PA 66040-170, Brazil
| | - P Groenendijk
- Instituto de Biologia, University of Campinas (UNICAMP), R. Monteiro Lobato, 255 - Barão Geraldo, Campinas SP 13083-970, Brazil
| | - A A R Oliveira
- Museu Paraense Emílio Goeldi, Av. Gov Magalhães Barata, 376 - São Brás, Belém PA 66040-170, Brazil
| | - A C L da Costa
- Museu Paraense Emílio Goeldi, Av. Gov Magalhães Barata, 376 - São Brás, Belém PA 66040-170, Brazil
- Biological Sciences, Stirling Highway, Perth, WA 6009, Australia
| | - P Meir
- Research School of Biology, Australian National University, 134 Linnaeus Way, Canberra ACT 2601, Australia
- School of GeoSciences, University of Edinburgh, Drummond St Edinburgh EH9 3FF, UK
| | - M Mencuccini
- CREAF, Campus UAB, Edifici C Campus de Bellaterra Cerdanyola del Vallés 08193, Spain
- ICREA, Passeig de Lluís Companys, 23, Barcelona 08010, Spain
| | - R S Oliveira
- Instituto de Biologia, University of Campinas (UNICAMP), R. Monteiro Lobato, 255 - Barão Geraldo, Campinas SP 13083-970, Brazil
| |
Collapse
|
12
|
Batumike R, Imani G, Bisimwa B, Mambo H, Kalume J, Kavuba F, Cuni‐Sanchez A. Lomami Buffer Zone (DRC): Forest composition, structure, and the sustainability of its use by local communities. Biotropica 2021. [DOI: 10.1111/btp.13045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rodrigue Batumike
- Environment Department Faculty of Sciences Université du Cinquantenaire de Lwiro Kabare Democratic Republic of the Congo
| | - Gérard Imani
- Biology Department Faculty of Sciences and Applied Sciences Université Officielle de Bukavu Bukavu Democratic Republic of the Congo
| | - Benjamin Bisimwa
- Forestry and Water Management Department Faculty of Agriculture Université Catholique de Bukavu Bukavu Democratic Republic of the Congo
- Center For International Forestry Research (CIFOR) Kisangani Democratic Republic of the Congo
| | - Hwaba Mambo
- Geology Department Faculty of Sciences and Applied Sciences Université Officielle de Bukavu Bukavu Democratic Republic of the Congo
| | - John Kalume
- Biology Department Faculty of Sciences and Applied Sciences Université Officielle de Bukavu Bukavu Democratic Republic of the Congo
| | - Fidele Kavuba
- Recherche Action pour la Conservation et le Développement Bukavu Democratic Republic of the Congo
| | - Aida Cuni‐Sanchez
- Department of Environment and Geography York Institute for Tropical Ecosystems University of York York UK
- Department of International Environment and Development Studies (Noragric) Norwegian University of Life Sciences Ås Norway
| |
Collapse
|
13
|
Luambua NK, Hubau W, Salako KV, Amani C, Bonyoma B, Musepena D, Rousseau M, Bourland N, Nshimba HS, Ewango C, Beeckman H, Hardy OJ. Spatial patterns of light-demanding tree species in the Yangambi rainforest (Democratic Republic of Congo). Ecol Evol 2021; 11:18691-18707. [PMID: 35003702 PMCID: PMC8717288 DOI: 10.1002/ece3.8443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/25/2021] [Accepted: 11/23/2021] [Indexed: 12/02/2022] Open
Abstract
Most Central African rainforests are characterized by a remarkable abundance of light-demanding canopy species: long-lived pioneers (LLP) and non-pioneer light demanders (NPLD). A popular explanation is that these forests are still recovering from intense slash-and-burn farming activities, which abruptly ended in the 19th century. This "human disturbance" hypothesis has never been tested against spatial distribution patterns of these light demanders. Here, we focus on the 28 most abundant LLP and NPLD from 250 one-ha plots distributed along eight parallel transects (~50 km) in the Yangambi forest. Four species of short-lived pioneers (SLP) and a single abundant shade-tolerant species (Gilbertiodendron dewevrei) were used as reference because they are known to be strongly aggregated in recently disturbed patches (SLP) or along watercourses (G. dewevrei). Results show that SLP species are strongly aggregated with clear spatial autocorrelation of their diameter. This confirms that they colonized the patch following a one-time disturbance event. In contrast, LLP and NPLD species have random or weakly aggregated distribution, mostly without spatial autocorrelation of their diameter. This does not unambiguously confirm the "human disturbance" hypothesis. Alternatively, their abundance might be explained by their deciduousness, which gave them a competitive advantage during long-term drying of the late Holocene. Additionally, a canonical correspondence analysis showed that the observed LLP and NPLD distributions are not explained by environmental variables, strongly contrasting with the results for the reference species G. dewevrei, which is clearly aggregated along watercourses. We conclude that the abundance of LLP and NPLD species in Yangambi cannot be unambiguously attributed to past human disturbances or environmental variables. An alternative explanation is that present-day forest composition is a result of adaptation to late-Holocene drying. However, results are inconclusive and additional data are needed to confirm this alternative hypothesis.
Collapse
Affiliation(s)
- Nestor K. Luambua
- Faculty of Renewable Natural Resources ManagementUniversity of KisanganiKisanganiDemocratic Republic of Congo
- Service of Wood BiologyRoyal Museum for Central AfricaTervurenBelgium
- Faculté des sciences AgronomiquesUniversité Officielle de MbujimayiMbujimayiDemocratic Republic of Congo
| | - Wannes Hubau
- Service of Wood BiologyRoyal Museum for Central AfricaTervurenBelgium
- Department of EnvironmentLaboratory of Wood TechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
- School of GeographyUniversity of LeedsLeedsUK
| | - Kolawolé Valère Salako
- Laboratoire de Biomathématiques et d’Estimations ForestièresFaculty of Agronomic SciencesUniversity of Abomey‐CalaviCotonouBenin
- Service d'Évolution Biologique et ÉcologieUniversité Libre de BruxellesBrusselsBelgium
| | - Christian Amani
- Faculty of Sciences and Applied SciencesUniversité Officielle de Bukavu Departement de la BiologieBukavuDemocratic Republic of Congo
- Center for International Forestry ResearchBogor (Barat)Indonesia
| | - Bernard Bonyoma
- Section de la ForesterieInstitut National pour l'Etude et la Recherche AgronomiqueYangambiDemocratic Republic of Congo
| | - Donatien Musepena
- Section de la ForesterieInstitut National pour l'Etude et la Recherche AgronomiqueYangambiDemocratic Republic of Congo
| | - Mélissa Rousseau
- Service of Wood BiologyRoyal Museum for Central AfricaTervurenBelgium
| | - Nils Bourland
- Service of Wood BiologyRoyal Museum for Central AfricaTervurenBelgium
- Center for International Forestry ResearchBogor (Barat)Indonesia
- Resources & Synergies Development Pte LtdSingaporeSingapore
| | - Hippolyte S.M. Nshimba
- Department of Ecology and Flora Resources ManagementFaculty of SciencesUniversity of KisanganiKisanganiDemocratic Republic of Congo
| | - Corneille Ewango
- Faculty of Renewable Natural Resources ManagementUniversity of KisanganiKisanganiDemocratic Republic of Congo
| | - Hans Beeckman
- Service of Wood BiologyRoyal Museum for Central AfricaTervurenBelgium
| | - Olivier J. Hardy
- Service d'Évolution Biologique et ÉcologieUniversité Libre de BruxellesBrusselsBelgium
| |
Collapse
|
14
|
Piovesan G, Biondi F. On tree longevity. THE NEW PHYTOLOGIST 2021; 231:1318-1337. [PMID: 33305422 DOI: 10.1111/nph.17148] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/25/2020] [Indexed: 05/03/2023]
Abstract
Large, majestic trees are iconic symbols of great age among living organisms. Published evidence suggests that trees do not die because of genetically programmed senescence in their meristems, but rather are killed by an external agent or a disturbance event. Long tree lifespans are therefore allowed by specific combinations of life history traits within realized niches that support resistance to, or avoidance of, extrinsic mortality. Another requirement for trees to achieve their maximum longevity is either sustained growth over extended periods of time or at least the capacity to increase their growth rates when conditions allow it. The growth plasticity and modularity of trees can then be viewed as an evolutionary advantage that allows them to survive and reproduce for centuries and millennia. As more and more scientific information is systematically collected on tree ages under various ecological settings, it is becoming clear that tree longevity is a key trait for global syntheses of life history strategies, especially in connection with disturbance regimes and their possible future modifications. In addition, we challenge the long-held notion that shade-tolerant, late-successional species have longer lifespans than early-successional species by pointing out that tree species with extreme longevity do not fit this paradigm. Identifying extremely old trees is therefore the groundwork not only for protecting and/or restoring entire landscapes, but also to revisit and update classic ecological theories that shape our understanding of environmental change.
Collapse
Affiliation(s)
- Gianluca Piovesan
- Dendrology Lab, Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, 01100, Italy
| | - Franco Biondi
- DendroLab, Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
15
|
Gora EM, Esquivel-Muelbert A. Implications of size-dependent tree mortality for tropical forest carbon dynamics. NATURE PLANTS 2021; 7:384-391. [PMID: 33782580 DOI: 10.1038/s41477-021-00879-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/11/2021] [Indexed: 05/25/2023]
Abstract
Tropical forests are mitigating the ongoing climate crisis by absorbing more atmospheric carbon than they emit. However, widespread increases in tree mortality rates are decreasing the ability of tropical forests to assimilate and store carbon. A relatively small number of large trees dominate the contributions of these forests to the global carbon budget, yet we know remarkably little about how these large trees die. Here, we propose a cohesive and empirically informed framework for understanding and investigating size-dependent drivers of tree mortality. This theory-based framework enables us to posit that abiotic drivers of tree mortality-particularly drought, wind and lightning-regulate tropical forest carbon cycling via their disproportionate effects on large trees. As global change is predicted to increase the pressure from abiotic drivers, the associated deaths of large trees could rapidly and lastingly reduce tropical forest biomass stocks. Focused investigations of large tree death are needed to understand how shifting drivers of mortality are restructuring carbon cycling in tropical forests.
Collapse
Affiliation(s)
- Evan M Gora
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama.
| | - Adriane Esquivel-Muelbert
- School of Geography, University of Birmingham, Birmingham, UK.
- Birmingham Institute of Forest Research, Birmingham, UK.
| |
Collapse
|
16
|
Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proc Natl Acad Sci U S A 2020; 117:33358-33364. [PMID: 33318167 DOI: 10.1073/pnas.2003873117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Forests are the largest terrestrial biomass pool, with over half of this biomass stored in the highly productive tropical lowland forests. The future evolution of forest biomass depends critically on the response of tree longevity and growth rates to future climate. We present an analysis of the variation in tree longevity and growth rate using tree-ring data of 3,343 populations and 438 tree species and assess how climate controls growth and tree longevity across world biomes. Tropical trees grow, on average, two times faster compared to trees from temperate and boreal biomes and live significantly shorter, on average (186 ± 138 y compared to 322 ± 201 y outside the tropics). At the global scale, growth rates and longevity covary strongly with temperature. Within the warm tropical lowlands, where broadleaf species dominate the vegetation, we find consistent decreases in tree longevity with increasing aridity, as well as a pronounced reduction in longevity above mean annual temperatures of 25.4 °C. These independent effects of temperature and water availability on tree longevity in the tropics are consistent with theoretical predictions of increases in evaporative demands at the leaf level under a warmer and drier climate and could explain observed increases in tree mortality in tropical forests, including the Amazon, and shifts in forest composition in western Africa. Our results suggest that conditions supporting only lower tree longevity in the tropical lowlands are likely to expand under future drier and especially warmer climates.
Collapse
|
17
|
Using photography to estimate above-ground biomass of small trees. JOURNAL OF TROPICAL ECOLOGY 2020. [DOI: 10.1017/s0266467420000139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractQuantifying tree biomass is an important research and management goal across many disciplines. For species that exhibit predictable relationships between structural metrics (e.g. diameter, height, crown breadth) and total weight, allometric calculations produce accurate estimates of above-ground biomass. However, such methods may be insufficient where inter-individual variation is large relative to individual biomass and is itself of interest (for example, variation due to herbivory). In an East African savanna bushland, we analysed photographs of small (<5 m) trees from perpendicular angles and fixed distances to estimate above-ground biomass. Pixel area of trees in photos and diameter were more strongly related to measured, above-ground biomass of destructively sampled trees than biomass estimated using a published allometric relation based on diameter alone (R2 = 0.86 versus R2 = 0.68). When tested on trees in herbivore-exclusion plots versus unfenced (open) plots, our predictive equation based on photos confirmed higher above-ground biomass in the exclusion plots than in unfenced (open) plots (P < 0.001), in contrast to no significant difference based on the allometric equation (P = 0.43). As such, our new technique based on photographs offers an accurate and cost-effective complement to existing methods for tree biomass estimation at small scales with potential application across a wide variety of settings.
Collapse
|
18
|
Forest Understorey Vegetation: Colonization and the Availability and Heterogeneity of Resources. FORESTS 2019. [DOI: 10.3390/f10110944] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understorey vegetation comprises a major portion of plant diversity and contributes greatly to nutrient cycling and energy flow. This review examines the mechanisms involved in the response of understorey vegetation to stand development and the overstorey canopy following disturbances. The overall abundance and diversity of the understorey is enhanced with the availability and heterogeneity of light, soil nutrients, soil moisture, and substrates. Vascular plants are positively impacted by the availability and heterogeneity of light and soil nutrients, whereas non-vascular vegetation is more strongly influenced by colonization time, soil moisture, and substrates, and is decreased with a higher proportion of broadleaf overstorey. The availability of resources is a prominent driver toward the abundance and diversity of understorey vegetation, from the stand initiation to stem exclusion stage under a single-species dominated overstorey. However, resource heterogeneity dominates at the later stages of succession under a mixed overstorey. Climate and site conditions modify resource availability and heterogeneity in the understorey layer, but the extent of their influences requires more investigation. Forest management practices (clearcutting and partial harvesting) tend to increase light availability and heterogeneity, which facilitates the abundance and diversity of understorey vascular plants; however, these factors reduce the occurrence of non-vascular plants. Nevertheless, in the landscape context, anthropogenic disturbances homogenize environmental conditions and reduce beta-diversity, as well, the long-term effects of anthropogenic disturbances on understorey vegetation remain unclear, particularly compared with those in primary forests.
Collapse
|
19
|
Schepaschenko D, Chave J, Phillips OL, Lewis SL, Davies SJ, Réjou-Méchain M, Sist P, Scipal K, Perger C, Herault B, Labrière N, Hofhansl F, Affum-Baffoe K, Aleinikov A, Alonso A, Amani C, Araujo-Murakami A, Armston J, Arroyo L, Ascarrunz N, Azevedo C, Baker T, Bałazy R, Bedeau C, Berry N, Bilous AM, Bilous SY, Bissiengou P, Blanc L, Bobkova KS, Braslavskaya T, Brienen R, Burslem DFRP, Condit R, Cuni-Sanchez A, Danilina D, Del Castillo Torres D, Derroire G, Descroix L, Sotta ED, d'Oliveira MVN, Dresel C, Erwin T, Evdokimenko MD, Falck J, Feldpausch TR, Foli EG, Foster R, Fritz S, Garcia-Abril AD, Gornov A, Gornova M, Gothard-Bassébé E, Gourlet-Fleury S, Guedes M, Hamer KC, Susanty FH, Higuchi N, Coronado ENH, Hubau W, Hubbell S, Ilstedt U, Ivanov VV, Kanashiro M, Karlsson A, Karminov VN, Killeen T, Koffi JCK, Konovalova M, Kraxner F, Krejza J, Krisnawati H, Krivobokov LV, Kuznetsov MA, Lakyda I, Lakyda PI, Licona JC, Lucas RM, Lukina N, Lussetti D, Malhi Y, Manzanera JA, Marimon B, Junior BHM, Martinez RV, Martynenko OV, Matsala M, Matyashuk RK, Mazzei L, Memiaghe H, Mendoza C, Mendoza AM, Moroziuk OV, Mukhortova L, Musa S, Nazimova DI, Okuda T, Oliveira LC, Ontikov PV, Osipov AF, Pietsch S, Playfair M, Poulsen J, Radchenko VG, Rodney K, Rozak AH, Ruschel A, Rutishauser E, See L, Shchepashchenko M, Shevchenko N, Shvidenko A, Silveira M, Singh J, Sonké B, Souza C, Stereńczak K, Stonozhenko L, Sullivan MJP, Szatniewska J, Taedoumg H, Ter Steege H, Tikhonova E, Toledo M, Trefilova OV, Valbuena R, Gamarra LV, Vasiliev S, Vedrova EF, Verhovets SV, Vidal E, Vladimirova NA, Vleminckx J, Vos VA, Vozmitel FK, Wanek W, West TAP, Woell H, Woods JT, Wortel V, Yamada T, Nur Hajar ZS, Zo-Bi IC. The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Sci Data 2019; 6:198. [PMID: 31601817 PMCID: PMC6787017 DOI: 10.1038/s41597-019-0196-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/19/2019] [Indexed: 11/09/2022] Open
Abstract
Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.
Collapse
Affiliation(s)
- Dmitry Schepaschenko
- Ecosystems Services and Management Program, International Institute for Applied Systems Analysis, Laxenburg, A-2361, Austria.
- Forestry faculty, Bauman Moscow State Technical University, Mytischi, 141005, Russia.
| | - Jérôme Chave
- Laboratoire Evolution et Diversité Biologique CNRS/Université Paul Sabatier, Toulouse, France
| | | | - Simon L Lewis
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
- University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Stuart J Davies
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, P.O. Box 37012, Washington 20013, USA
| | | | - Plinio Sist
- CIRAD, Forêts et Sociétés, Campus International de Baillarguet, Montpellier, F-34398, France
- Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, F-34398, France
| | - Klaus Scipal
- European Space Agency, ESTEC, Noordwijk, The Netherlands
| | - Christoph Perger
- Ecosystems Services and Management Program, International Institute for Applied Systems Analysis, Laxenburg, A-2361, Austria
- Spatial Focus GmbH, Vienna, Austria
| | - Bruno Herault
- CIRAD, Forêts et Sociétés, Campus International de Baillarguet, Montpellier, F-34398, France
- Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, F-34398, France
- Department Foresterie et Environnement (DFR FOREN), Institut National Polytechnique Félix Houphouët-Boigny, INP-HB, Yamoussoukro, BP 2661, Côte d'Ivoire
| | - Nicolas Labrière
- Laboratoire Evolution et Diversité Biologique CNRS/Université Paul Sabatier, Toulouse, France
| | - Florian Hofhansl
- Ecosystems Services and Management Program, International Institute for Applied Systems Analysis, Laxenburg, A-2361, Austria
| | - Kofi Affum-Baffoe
- Mensuration Unit, Forestry Commission of Ghana, 4 Third Avenue Ridge, Kumasi, POB M434, Ghana
| | - Alexei Aleinikov
- Center of Forest Ecology and Productivity of the Russian Academy of Sciences, Profsoyuznaya 84/32/14, Moscow, 117997, Russia
| | - Alfonso Alonso
- Smithsonian Conservation Biology Institute, 1100 Jefferson Dr SW, Suite 3123, Washington, DC, 20560-0705, USA
| | - Christian Amani
- Centre for International Forestry Research, CIFOR, Jalan CIFOR, Situ Gede, Bogor, 16115, Indonesia
| | | | - John Armston
- Department of Geographical Sciences, University of Maryland, 2181 Lefrak Hall, College Park, MD, 20742, USA
- Joint Remote Sensing Research Program, School of Earth and Environmental Sciences, University of Queensland, Chamberlain Building (35), Campbell Road, St Lucia Campus, Brisbane, 4072, Australia
| | - Luzmila Arroyo
- Museo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel Rene Moreno Av. Irala 565 - casilla, 2489, Santa Cruz, Bolivia
| | - Nataly Ascarrunz
- IBIF, Instituto Boliviano de Investigacion Forestal, Av. 6 de agosto # 28, Km 14 doble via La Guardia, Santa Cruz, Casilla, 6204, Bolivia
| | - Celso Azevedo
- Embrapa, Rodovia AM 10, km 29, Manaus, AM, 69010-970, Brazil
| | - Timothy Baker
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Radomir Bałazy
- Forest Research Institute, Department of Geomatics, Braci Leśnej 3, Sękocin Stary, Raszyn, 05-090, Poland
| | - Caroline Bedeau
- ONF, ONF-Réserve de Montabo Cayenne Cedex, Cayenne, BP 7002; 97307, French Guiana
| | - Nicholas Berry
- The Landscapes and Livelihoods Group, 20 Chambers St, Edinburgh, EH1 1JZ, UK
| | - Andrii M Bilous
- National University of Life and Environmental Sciences of Ukraine, General Rodimtsev 19, Kyiv, 3041, Ukraine
| | - Svitlana Yu Bilous
- National University of Life and Environmental Sciences of Ukraine, General Rodimtsev 19, Kyiv, 3041, Ukraine
| | | | - Lilian Blanc
- CIRAD, Forêts et Sociétés, Campus International de Baillarguet, Montpellier, F-34398, France
- Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, F-34398, France
| | - Kapitolina S Bobkova
- Institute of Biology, Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Kommunisticheskaya 28, Syktyvkar, 167982, Russia
| | - Tatyana Braslavskaya
- Center of Forest Ecology and Productivity of the Russian Academy of Sciences, Profsoyuznaya 84/32/14, Moscow, 117997, Russia
| | - Roel Brienen
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - David F R P Burslem
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, UK
| | - Richard Condit
- Morton Arboretum, 4100 Illinois Rte. 53, Lisle, 60532, IL, USA
| | - Aida Cuni-Sanchez
- Department of Environment and Geography, University of York, Heslington, York, YO10 5NG, UK
| | - Dilshad Danilina
- V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Science, Academgorodok 50(28), Krasnoyarsk, 660036, Russia
| | - Dennis Del Castillo Torres
- Instituto de Investigaciones de la Amazonía Peruana, Av. Abelardo Quiñones km 2.5, Iquitos, Apartado Postal 784, Peru
| | - Géraldine Derroire
- CIRAD, UMR EcoFoG, Campus Agronomique - BP 701, Kourou, 97387, France, French Guiana
| | - Laurent Descroix
- ONF, ONF-Réserve de Montabo Cayenne Cedex, Cayenne, BP 7002; 97307, French Guiana
| | - Eleneide Doff Sotta
- Embrapa, Rodovia Juscelino Kubitscheck, Km 5, no 2.600, Macapa, Caixa Postal 10, CEP: 68903-419, Brazil
| | | | - Christopher Dresel
- Ecosystems Services and Management Program, International Institute for Applied Systems Analysis, Laxenburg, A-2361, Austria
- Spatial Focus GmbH, Vienna, Austria
| | - Terry Erwin
- SI Entomology, Smithsonian Institution, PO Box 37012, MRC 187, Washington, DC, DC 20013-7012, USA
| | - Mikhail D Evdokimenko
- V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Science, Academgorodok 50(28), Krasnoyarsk, 660036, Russia
| | - Jan Falck
- Department Forest Ecology and Management, The Swedish University of Agricultural Sciences, SLU, Umeå, SE-901 83, Sweden
| | - Ted R Feldpausch
- Geography, College of Life and Environmental Sciences, University of Exeter,Laver Building, North Park Road, Exeter, EX4 4QE, UK
| | - Ernest G Foli
- Forestry Research Institute of Ghana, UP Box 63, KNUST, Kumasi, Ghana
| | - Robin Foster
- The Field Musium, 1400S Lake Shore Dr, Chicago, IL, 60605, USA
| | - Steffen Fritz
- Ecosystems Services and Management Program, International Institute for Applied Systems Analysis, Laxenburg, A-2361, Austria
| | | | - Aleksey Gornov
- Center of Forest Ecology and Productivity of the Russian Academy of Sciences, Profsoyuznaya 84/32/14, Moscow, 117997, Russia
| | - Maria Gornova
- Center of Forest Ecology and Productivity of the Russian Academy of Sciences, Profsoyuznaya 84/32/14, Moscow, 117997, Russia
| | - Ernest Gothard-Bassébé
- Institut Centrafricain de Recherche Agronomique, ICRA, BP 122, Bangui, Central African Republic
| | - Sylvie Gourlet-Fleury
- CIRAD, Forêts et Sociétés, Campus International de Baillarguet, Montpellier, F-34398, France
- Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, F-34398, France
| | - Marcelino Guedes
- Embrapa, Rodovia Juscelino Kubitscheck, Km 5, no 2.600, Macapa, Caixa Postal 10, CEP: 68903-419, Brazil
| | - Keith C Hamer
- School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Farida Herry Susanty
- FOERDIA, Forestry and Environment Research Development and Innovation Agency, Jalan Gunung Batu No 5, Bogor, 16610, Indonesia
| | - Niro Higuchi
- Instituto Nacional de Pesquisas da Amazônia - Coordenação de Pesquisas em Silvicultura Tropical, Manaus, 69060-001, Brazil
| | - Eurídice N Honorio Coronado
- Instituto de Investigaciones de la Amazonía Peruana, Av. Abelardo Quiñones km 2.5, Iquitos, Apartado Postal 784, Peru
| | - Wannes Hubau
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
- U Gent-Woodlab, Laboratory of Wood Technology, Department of Environment, Ghent University, Ghent, 9000, Belgium
| | - Stephen Hubbell
- Department of Ecology and Evolutionary Biology, University of California, 621 Charles E. Young Dr. South, Los Angeles, CA, 90095-1606, USA
| | - Ulrik Ilstedt
- Department Forest Ecology and Management, The Swedish University of Agricultural Sciences, SLU, Umeå, SE-901 83, Sweden
| | - Viktor V Ivanov
- V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Science, Academgorodok 50(28), Krasnoyarsk, 660036, Russia
| | - Milton Kanashiro
- Embrapa Amazonia Oriental, Travessa Doutor Enéas Pinheiro, Belém, PA, 66095-903, Brazil
| | - Anders Karlsson
- Department Forest Ecology and Management, The Swedish University of Agricultural Sciences, SLU, Umeå, SE-901 83, Sweden
| | - Viktor N Karminov
- Center of Forest Ecology and Productivity of the Russian Academy of Sciences, Profsoyuznaya 84/32/14, Moscow, 117997, Russia
| | - Timothy Killeen
- World Wildlife Fund, Calle Diego de Mendoza 299, Santa Cruz de la Sierra, Bolivia
| | | | - Maria Konovalova
- V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Science, Academgorodok 50(28), Krasnoyarsk, 660036, Russia
| | - Florian Kraxner
- Ecosystems Services and Management Program, International Institute for Applied Systems Analysis, Laxenburg, A-2361, Austria
| | - Jan Krejza
- Global Change Research Institute CAS, Bělidla 986/4a, Brno, 603 00, Czech Republic
| | - Haruni Krisnawati
- FOERDIA, Forestry and Environment Research Development and Innovation Agency, Jalan Gunung Batu No 5, Bogor, 16610, Indonesia
| | - Leonid V Krivobokov
- V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Science, Academgorodok 50(28), Krasnoyarsk, 660036, Russia
| | - Mikhail A Kuznetsov
- Institute of Biology, Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Kommunisticheskaya 28, Syktyvkar, 167982, Russia
| | - Ivan Lakyda
- National University of Life and Environmental Sciences of Ukraine, General Rodimtsev 19, Kyiv, 3041, Ukraine
| | - Petro I Lakyda
- National University of Life and Environmental Sciences of Ukraine, General Rodimtsev 19, Kyiv, 3041, Ukraine
| | - Juan Carlos Licona
- IBIF, Instituto Boliviano de Investigacion Forestal, Av. 6 de agosto # 28, Km 14 doble via La Guardia, Santa Cruz, Casilla, 6204, Bolivia
| | - Richard M Lucas
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK
| | - Natalia Lukina
- Center of Forest Ecology and Productivity of the Russian Academy of Sciences, Profsoyuznaya 84/32/14, Moscow, 117997, Russia
| | - Daniel Lussetti
- Department Forest Ecology and Management, The Swedish University of Agricultural Sciences, SLU, Umeå, SE-901 83, Sweden
| | - Yadvinder Malhi
- School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | | | - Beatriz Marimon
- Laboratório de Ecologia Vegetal, Universidade do Estado de Mato Grosso, UNEMAT, Campus de Nova Xavantina, Nova Xavantina, Mato Grosso, 78.690-000, Brazil
| | - Ben Hur Marimon Junior
- Laboratório de Ecologia Vegetal, Universidade do Estado de Mato Grosso, UNEMAT, Campus de Nova Xavantina, Nova Xavantina, Mato Grosso, 78.690-000, Brazil
| | | | - Olga V Martynenko
- Russian Institute of Continuous Education in Forestry, Institutskaya 17, Pushkino, 141200, Russia
| | - Maksym Matsala
- National University of Life and Environmental Sciences of Ukraine, General Rodimtsev 19, Kyiv, 3041, Ukraine
| | - Raisa K Matyashuk
- Institute for Evolutionary Ecology of the National Academy of Sciences of Ukraine, Lebedev 37, Kyiv, 03143, Ukraine
| | - Lucas Mazzei
- Embrapa Amazonia Oriental, Travessa Doutor Enéas Pinheiro, Belém, PA, 66095-903, Brazil
| | - Hervé Memiaghe
- University of Oregon, 1585 E 13th Ave, Eugene, OR, 97403, USA
| | | | - Abel Monteagudo Mendoza
- Jardín Botánico de Missouri; Universidad Nacional de San Antonio Abad del Cusco, Oxapampa, Peru
| | - Olga V Moroziuk
- National University of Life and Environmental Sciences of Ukraine, General Rodimtsev 19, Kyiv, 3041, Ukraine
| | - Liudmila Mukhortova
- V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Science, Academgorodok 50(28), Krasnoyarsk, 660036, Russia
| | - Samsudin Musa
- FRIM Forest Reserach Institute of Malaysia, 52109 Kepong, Selangor, Kuala Lumpur, Malaysia
| | - Dina I Nazimova
- V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Science, Academgorodok 50(28), Krasnoyarsk, 660036, Russia
| | - Toshinori Okuda
- Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | | | - Petr V Ontikov
- Forestry faculty, Bauman Moscow State Technical University, Mytischi, 141005, Russia
| | - Andrey F Osipov
- Institute of Biology, Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Kommunisticheskaya 28, Syktyvkar, 167982, Russia
| | - Stephan Pietsch
- Ecosystems Services and Management Program, International Institute for Applied Systems Analysis, Laxenburg, A-2361, Austria
| | - Maureen Playfair
- Center for Agricultural research in Suriname, CELOS, 1914, Paramaribo, Suriname
| | - John Poulsen
- Nicholas School of the Environment, Duke University, P.O. Box 90328, Durham, NC, 27708, USA
| | - Vladimir G Radchenko
- Institute for Evolutionary Ecology of the National Academy of Sciences of Ukraine, Lebedev 37, Kyiv, 03143, Ukraine
| | - Kenneth Rodney
- IIC, The Iwokrama International Centre for Rain Forest Conservation and Development, 77 High Street, Georgetown, Guyana
| | - Andes H Rozak
- Cibodas Botanic Gardens - Indonesian Institute of Sciences (LIPI), Jl. Kebun Raya Cibodas, Cipanas, Cianjur, 43253, Indonesia
| | - Ademir Ruschel
- Embrapa Amazonia Oriental, Travessa Doutor Enéas Pinheiro, Belém, PA, 66095-903, Brazil
| | - Ervan Rutishauser
- Smithsonian Tropical Research Institute, Balboa, Ancon, Panama 3092, Panama
| | - Linda See
- Ecosystems Services and Management Program, International Institute for Applied Systems Analysis, Laxenburg, A-2361, Austria
| | - Maria Shchepashchenko
- Russian Institute of Continuous Education in Forestry, Institutskaya 17, Pushkino, 141200, Russia
| | - Nikolay Shevchenko
- Center of Forest Ecology and Productivity of the Russian Academy of Sciences, Profsoyuznaya 84/32/14, Moscow, 117997, Russia
| | - Anatoly Shvidenko
- Ecosystems Services and Management Program, International Institute for Applied Systems Analysis, Laxenburg, A-2361, Austria
- V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Science, Academgorodok 50(28), Krasnoyarsk, 660036, Russia
| | - Marcos Silveira
- Museu Universitário, Universidade Federal do Acre, BR 364, Km 04 - Distrito Industrial, Rio Branco, 69915-559, Brazil
| | - James Singh
- Guyana Forestry Commission, 1 Water Street, Kingston Georgetown, Guyana
| | - Bonaventure Sonké
- Plant Systematic and Ecology Laboratory, University of Yaoundé I, P.O. Box 047, Yaounde, Cameroon
| | - Cintia Souza
- Embrapa, Rodovia AM 10, km 29, Manaus, AM, 69010-970, Brazil
| | - Krzysztof Stereńczak
- Forest Research Institute, Department of Geomatics, Braci Leśnej 3, Sękocin Stary, Raszyn, 05-090, Poland
| | - Leonid Stonozhenko
- Russian Institute of Continuous Education in Forestry, Institutskaya 17, Pushkino, 141200, Russia
| | | | - Justyna Szatniewska
- Global Change Research Institute CAS, Bělidla 986/4a, Brno, 603 00, Czech Republic
| | - Hermann Taedoumg
- Plant Systematic and Ecology Laboratory, University of Yaoundé I, P.O. Box 047, Yaounde, Cameroon
- Bioversity international, P.O. Box 2008, Messa, Yaoundé, Cameroun
| | | | - Elena Tikhonova
- Center of Forest Ecology and Productivity of the Russian Academy of Sciences, Profsoyuznaya 84/32/14, Moscow, 117997, Russia
| | - Marisol Toledo
- Museo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel Rene Moreno Av. Irala 565 - casilla, 2489, Santa Cruz, Bolivia
| | - Olga V Trefilova
- V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Science, Academgorodok 50(28), Krasnoyarsk, 660036, Russia
| | - Ruben Valbuena
- School of Natural Sciences, Bangor University, Thoday Building. Deiniol Rd, Bangor, LL57 2UW, United Kingdom
| | - Luis Valenzuela Gamarra
- Jardín Botánico de Missouri; Universidad Nacional de San Antonio Abad del Cusco, Oxapampa, Peru
| | - Sergey Vasiliev
- Forestry faculty, Bauman Moscow State Technical University, Mytischi, 141005, Russia
| | - Estella F Vedrova
- V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Science, Academgorodok 50(28), Krasnoyarsk, 660036, Russia
| | - Sergey V Verhovets
- Siberian Federal University, Svobodnyy Ave, 79, Krasnoyarsk, 660041, Russia
- Reshetnev Siberian state university of science and technology, pr. Mira 82, Krasnoyarsk, 660049, Russia
| | - Edson Vidal
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paolo, PO Box 9, Av. Pádua Dias, 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Nadezhda A Vladimirova
- State Nature Reserve Denezhkin Kamen, Lenina, 6, Sverdlovsk reg, Severouralsk, 624480, Russia
| | - Jason Vleminckx
- International Center for Tropical Botany, Department of Biological Sciences, Florida International University, 11200 S.W. 8th Street, Miami, 33199, FL, USA
| | | | - Foma K Vozmitel
- Forestry faculty, Bauman Moscow State Technical University, Mytischi, 141005, Russia
| | - Wolfgang Wanek
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem research, University of Vienna, Althanstrasse 14, Vienna, A-1090, Austria
| | - Thales A P West
- New Zealand Forest Research Institute (Scion) Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua, 3046, New Zealand
| | - Hannsjorg Woell
- Unaffiliated (retired), Sommersbergseestrasse 291, Bad Aussee, 8990, Austria
| | - John T Woods
- W.R.T College of Agriculture and Forestry, University of Liberia, Capitol Hill, Monrovia, 9020, Liberia
| | - Verginia Wortel
- Center for Agricultural research in Suriname, CELOS, 1914, Paramaribo, Suriname
| | - Toshihiro Yamada
- Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Zamah Shari Nur Hajar
- FRIM Forest Research Institute of Malaysia, 52109 Kepong, Selangor, Kuala Lumpur, Malaysia
| | - Irié Casimir Zo-Bi
- Department Foresterie et Environnement (DFR FOREN), Institut National Polytechnique Félix Houphouët-Boigny, INP-HB, Yamoussoukro, BP 2661, Côte d'Ivoire
| |
Collapse
|