1
|
Gamba D, Lorts CM, Haile A, Sahay S, Lopez L, Xia T, Takou M, Kulesza E, Elango D, Kerby J, Yifru M, Bulafu CE, Wondimu T, Glowacka K, Lasky JR. The genomics and physiology of abiotic stressors associated with global elevational gradients in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 244:2062-2077. [PMID: 39307956 DOI: 10.1111/nph.20138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/29/2024] [Indexed: 11/08/2024]
Abstract
Phenotypic and genomic diversity in Arabidopsis thaliana may be associated with adaptation along its wide elevational range, but it is unclear whether elevational clines are consistent among different mountain ranges. We took a multi-regional view of selection associated with elevation. In a diverse panel of ecotypes, we measured plant traits under alpine stressors (low CO2 partial pressure, high light, and night freezing) and conducted genome-wide association studies. We found evidence of contrasting locally adaptive regional clines. Western Mediterranean ecotypes showed low water use efficiency (WUE)/early flowering at low elevations to high WUE/late flowering at high elevations. Central Asian ecotypes showed the opposite pattern. We mapped different candidate genes for each region, and some quantitative trait loci (QTL) showed elevational and climatic clines likely maintained by selection. Consistent with regional heterogeneity, trait and QTL clines were evident at regional scales (c. 2000 km) but disappeared globally. Antioxidants and pigmentation rarely showed elevational clines. High elevation east African ecotypes might have higher antioxidant activity under night freezing. Physiological and genomic elevational clines in different regions can be unique, underlining the complexity of local adaptation in widely distributed species, while hindering global trait-environment or genome-environment associations. To tackle the mechanisms of range-wide local adaptation, regional approaches are thus warranted.
Collapse
Affiliation(s)
- Diana Gamba
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Claire M Lorts
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Asnake Haile
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, 1176, Ethiopia
| | - Seema Sahay
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Lua Lopez
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, California State University San Bernardino, San Bernardino, CA, 92407, USA
| | - Tian Xia
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Margarita Takou
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Evelyn Kulesza
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Plant Science, Pennsylvania State University, University Park, PA, 16802, USA
| | - Dinakaran Elango
- Department of Plant Science, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Jeffrey Kerby
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Mistire Yifru
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, 1176, Ethiopia
| | - Collins E Bulafu
- Department of Plant Sciences, Microbiology and Biotechnology, Makarere University, Kampala, 7062, Uganda
| | - Tigist Wondimu
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, 1176, Ethiopia
| | - Katarzyna Glowacka
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
2
|
Luo X, Jiang JH, Liu SL, Gao JY, Zhou LW. Metabolomics analysis of rice fermented by medicinal fungi providing insights into the preparation of functional food. Food Chem 2024; 459:140372. [PMID: 38986207 DOI: 10.1016/j.foodchem.2024.140372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Rice, a primary staple food, may be improved in value via fermentation. Here, ten medicinal basidiomycetous fungi were separately applied for rice fermentation. After preliminary screening, Ganoderma boninense, Phylloporia pulla, Sanghuangporus sanghuang and Sanghuangporus weigelae were selected for further LC-MS based determination of the changes in metabolic profile after their fermentation with rice, and a total of 261, 296, 312, and 355 differential compounds were identified, respectively. Most of these compounds were up-regulated and involved in the metabolic pathways of amino acid metabolism, lipid metabolism, carbohydrate metabolism and the biosynthesis of other secondary metabolites. Sanghuangporus weigelae endowed the rice with the highest nutritional and bioactive values. The metabolic network of the identified differential compounds in rice fermented by S. weigelae illustrated their close relationships. In summary, this study provides insights into the preparation and application of potential functional food via the fermentation of rice with medicinal fungi.
Collapse
Affiliation(s)
- Xing Luo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Hang Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shi-Liang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Yun Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Han S, Wang Y, Li Y, Zhu R, Gu Y, Li J, Guo H, Ye W, Nabi HG, Yang T, Wang Y, Liu P, Duan J, Sun X, Zhang Z, Zhang H, Li Z, Li J. The OsNAC41-RoLe1-OsAGAP module promotes root development and drought resistance in upland rice. MOLECULAR PLANT 2024; 17:1573-1593. [PMID: 39228126 DOI: 10.1016/j.molp.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/25/2024] [Accepted: 09/01/2024] [Indexed: 09/05/2024]
Abstract
Drought is a major environmental stress limiting crop yields worldwide. Upland rice (Oryza sativa) has evolved complex genetic mechanisms for adaptative growth under drought stress. However, few genetic variants that mediate drought resistance in upland rice have been identified, and little is known about the evolution of this trait during rice domestication. In this study, using a genome-wide association study we identified ROOT LENGTH 1 (RoLe1) that controls rice root length and drought resistance. We found that a G-to-T polymorphism in the RoLe1 promoter causes increased binding of the transcription factor OsNAC41 and thereby enhanced expression of RoLe1. We further showed that RoLe1 interacts with OsAGAP, an ARF-GTPase activating protein involved in auxin-dependent root development, and interferes with its function to modulate root development. Interestingly, RoLe1 could enhance crop yield by increasing the seed-setting rate under moderate drought conditions. Genomic evolutionary analysis revealed that a newly arisen favorable allelic variant, proRoLe1-526T, originated from the midwest Asia and was retained in upland rice during domestication. Collectively, our study identifies an OsNAC41-RoLe1-OsAGAP module that promotes upland rice root development and drought resistance, providing promising genetic targets for molecular breeding of drought-resistant rice varieties.
Collapse
Affiliation(s)
- Shichen Han
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yulong Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yingxiu Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Rui Zhu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yunsong Gu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jin Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Haifeng Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wei Ye
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hafiz Ghualm Nabi
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Tao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yanming Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Pengli Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Junzhi Duan
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xingming Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhanying Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hongliang Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zichao Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jinjie Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
van de Loosdrecht MS, Pinas NM, Dongstra E, Tjoe Awie JR, Becker FFM, Maat H, van Velzen R, van Andel T, Schranz ME. Maroon Rice Genomic Diversity Reflects 350 Years of Colonial History. Mol Biol Evol 2024; 41:msae204. [PMID: 39462521 PMCID: PMC11495330 DOI: 10.1093/molbev/msae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/01/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Maroons in Suriname and French Guiana descend from enslaved Africans who escaped the plantations during colonial times. Maroon farmers still cultivate a large diversity of rice, their oldest staple crop. The oral history and written records of Maroons by colonial authorities provide contrasting perspectives on the origins of Maroon rice. Here, we analyzed the genomic ancestry of 136 newly sequenced Maroon rice varieties and found seven genomic groups that differ in their geographical associations. We interpreted these findings in light of ethnobotanical and archival investigations to reconstruct the historical contexts associated with the introduction of rice varieties to the Guianas. We found that two rice groups trace to West Africa, which we propose are linked to the transatlantic slave trade (c. 1526 to 1825). We posit that the Maroon rice stock additionally contains varieties that derive from rice introduced by indentured laborers from Java (1890 onwards), USA rice breeders (1932 onwards), and Hmong refugees who fled the Vietnam War (1991). Furthermore, on the Maroon fields, we found rice types never documented before that were derived from crosses. Overall, our results demonstrate that the Maroon farmers prioritize maintenance of a high stock diversity, which we posit reflects the expertise they inherited from their (African) ancestors. Ignored by agricultural modernization initiatives, Maroon farmers today are custodians of a unique cultural heritage. Notably, the genomic findings underline many Maroon stories about their past. We anticipate that a similar study approach can be applied to other heirloom crops of (Indigenous) communities that may have preserved their history on their farms to reconstruct, acknowledge, and honor the past.
Collapse
Affiliation(s)
| | - Nicholaas M Pinas
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Evanne Dongstra
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands
| | - Jerry R Tjoe Awie
- Anne van Dijk Rijst Onderzoekscentrum Nickerie (SNRI/ADRON), Nickerie, Suriname
| | - Frank F M Becker
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Harro Maat
- Knowledge, Technology & Innovation group, Wageningen University, Wageningen, The Netherlands
| | - Robin van Velzen
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands
| | - Tinde van Andel
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Clusius chair in History of Botany and Gardens, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
5
|
Gamba D, Vahsen ML, Maxwell TM, Pirtel N, Romero S, Ee JJV, Penn A, Das A, Ben-Zeev R, Baughman O, Blaney CS, Bodkins R, Budha-Magar S, Copeland SM, Davis-Foust SL, Diamond A, Donnelly RC, Dunwiddie PW, Ensing DJ, Everest TA, Hoitink H, Holdrege MC, Hufbauer RA, Juzėnas S, Kalwij JM, Kashirina E, Kim S, Klisz M, Klyueva A, Langeveld M, Lutfy S, Martin D, Merkord CL, Morgan JW, Nagy DU, Ott JP, Puchalka R, Pyle LA, Rasran L, Rector BG, Rosche C, Sadykova M, Shriver RK, Stanislavschi A, Starzomski BM, Stone RL, Turner KG, Urza AK, VanWallendael A, Wegenschimmel CA, Zweck J, Brown CS, Leger EA, Blumenthal DM, Germino MJ, Porensky LM, Hooten MB, Adler PB, Lasky JR. Local adaptation to climate facilitates a global invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612725. [PMID: 39345363 PMCID: PMC11429938 DOI: 10.1101/2024.09.12.612725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Local adaptation may facilitate range expansion during invasions, but the mechanisms promoting destructive invasions remain unclear. Cheatgrass (Bromus tectorum), native to Eurasia and Africa, has invaded globally, with particularly severe impacts in western North America. We sequenced 307 genotypes and conducted controlled experiments. We found that diverse lineages invaded North America, where long-distance gene flow is common. Ancestry and phenotypic clines in the native range predicted those in the invaded range, indicating pre-adapted genotypes colonized different regions. Common gardens showed directional selection on flowering time that reversed between warm and cold sites, potentially maintaining clines. In the Great Basin, genomic predictions of strong local adaptation identified sites where cheatgrass is most dominant. Preventing new introductions that may fuel adaptation is critical for managing ongoing invasions.
Collapse
Affiliation(s)
- Diana Gamba
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | - Megan L. Vahsen
- Department of Wildland Resources and the Ecology Center, Utah State University; Logan, UT, USA
| | - Toby M. Maxwell
- Department of Biological Sciences, Boise State University; Boise, ID, USA
| | - Nikki Pirtel
- Department of Wildland Resources and the Ecology Center, Utah State University; Logan, UT, USA
| | - Seth Romero
- US Department of Agriculture, Agricultural Research Service, Rangeland Resources and Systems Research Unit; Fort Collins, CO, USA
| | - Justin J. Van Ee
- Department of Agricultural Biology, Colorado State University; Fort Collins, CO, USA
| | - Amanda Penn
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | - Aayudh Das
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | - Rotem Ben-Zeev
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | | | - C. Sean Blaney
- Atlantic Canada Conservation Data Centre; Sackville, NB, Canada
| | | | | | - Stella M. Copeland
- US Department of Agriculture, Agricultural Research Service, Eastern Oregon Agricultural Research Center; Burns, OR, USA
| | | | - Alvin Diamond
- Department of Biological and Environmental Sciences, Troy University; Troy, Alabama, USA
| | - Ryan C. Donnelly
- Division of Biology, Kansas State University; Manhattan, KS, USA
| | | | - David J. Ensing
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada; Summerland, BC, Canada
| | | | | | - Martin C. Holdrege
- Northern Arizona University, Center for Adaptable Western Landscapes; Flagstaff, AZ, USA
| | - Ruth A. Hufbauer
- Department of Agricultural Biology, Colorado State University; Fort Collins, CO, USA
| | - Sigitas Juzėnas
- Department of Botany and Genetics, Institute of Biosciences, Life Sciences Center, Vilnius University; Vilnius, Lithuania
| | - Jesse M. Kalwij
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology; Karlsruhe, Germany
| | | | - Sangtae Kim
- Department of Biology, Sungshin Women’s University; Seoul, Republic of Korea
| | - Marcin Klisz
- Department of Silviculture and Genetics of Forest Trees, Forest Research Institute; Raszyn, Poland
| | - Alina Klyueva
- Bryansk State University named after Academician I. G. Petrovsky; Bryansk, Russia
| | | | - Samuel Lutfy
- Caesar Kleberg Wildlife Research Institute, Texas A&M University - Kingsville; Kingsville, TX, USA
| | | | | | - John W. Morgan
- Department of Environment and Genetics, La Trobe University; Bundoora, Victoria, Australia
| | - Dávid U. Nagy
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg; Halle, Saale, Germany
| | - Jacqueline P. Ott
- USDA Forest Service, Rocky Mountain Research Station, Rapid City, SD, USA
| | - Radoslaw Puchalka
- Department of Ecology and Biogeography, Nicolaus Copernicus University; Torun, Poland
| | | | - Leonid Rasran
- University of Natural Resources and Life Sciences, Vienna; Vienna, Austria
| | - Brian G. Rector
- US Department of Agriculture, Agricultural Research Service, Invasive Species and Pollinator Health Research Unit; Albany, CA, USA
| | - Christoph Rosche
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg; Halle, Saale, Germany
| | | | - Robert K. Shriver
- Department of Natural Resources and Environmental Science, University of Nevada; Reno, NV, USA
| | - Alexandr Stanislavschi
- Department of Organic, Biochemical, and Food Engineering, Gheorghe Asachi Technical University of Iasi; Iasi, Romania
| | - Brian M. Starzomski
- School of Environmental Studies, University of Victoria; Victoria, BC, Canada
| | - Rachel L. Stone
- Department of Biology, Case Western Reserve University; Cleveland, OH, USA
| | - Kathryn G. Turner
- Department of Biological Sciences, Idaho State University; Pocatello, ID, USA
| | | | - Acer VanWallendael
- Department of Horticultural Science, North Carolina State University; Raleigh, NC, USA
| | | | - Justin Zweck
- Department of Ecosystem Science and Management, Pennsylvania State University; University Park, PA, USA
| | - Cynthia S. Brown
- Department of Agricultural Biology, Colorado State University; Fort Collins, CO, USA
| | | | - Dana M. Blumenthal
- US Department of Agriculture, Agricultural Research Service, Rangeland Resources and Systems Research Unit; Fort Collins, CO, USA
| | - Matthew J. Germino
- US Geological Survey, Forest and Rangeland Ecosystem Science Center; Boise, Idaho, USA
| | - Lauren M. Porensky
- US Department of Agriculture, Agricultural Research Service, Rangeland Resources and Systems Research Unit; Fort Collins, CO, USA
| | - Mevin B. Hooten
- Department of Statistics and Data Sciences, The University of Texas at Austin; Austin, TX, USA
| | - Peter B. Adler
- Department of Wildland Resources and the Ecology Center, Utah State University; Logan, UT, USA
| | - Jesse R. Lasky
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| |
Collapse
|
6
|
Kehinde BO, Xie L, Song BK, Zheng X, Fan L. African Cultivated, Wild and Weedy Rice ( Oryza spp.): Anticipating Further Genomic Studies. BIOLOGY 2024; 13:697. [PMID: 39336124 PMCID: PMC11428565 DOI: 10.3390/biology13090697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Rice is a staple crop in sub-Saharan Africa, and it is mostly produced by Asian cultivars of Oryza sativa that were introduced to the continent around the fifteenth or sixteenth century. O. glaberrima, the native African rice, has also been planted due to its valuable traits of insect and drought tolerance. Due to competition and resistance evolution, weedy rice has evolved from O. sativa and O. glaberrima, posing an increasing threat to rice production. This paper provides an overview of current knowledge on the introduction and domestication history of cultivated rice in Africa, as well as the genetic properties of African weedy rice that invades paddy fields. Recent developments in genome sequencing have made it possible to uncover findings about O. glaberrima's population structure, stress resilience genes, and domestication bottleneck. Future rice genomic research in Africa should prioritize producing more high-quality reference genomes, quantifying the impact of crop-wild hybridization, elucidating weed adaptation mechanisms through resequencing, and establishing a connection between genomic variation and stress tolerance phenotypes to accelerate breeding efforts.
Collapse
Affiliation(s)
- Babatunde O Kehinde
- Institute of Crop Science, Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
- Department of Zoology, University of Lagos, Akoka-Yaba, Lagos 101245, Nigeria
| | - Lingjuan Xie
- Institute of Crop Science, Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Beng-Kah Song
- School of Science, Monash University Malaysia, Bandar Sunway 46150, Selangor, Malaysia
| | - Xiaoming Zheng
- Yazhouwan National Laboratory, Yazhou District, Sanya 572024, China
| | - Longjiang Fan
- Institute of Crop Science, Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
- Yazhouwan National Laboratory, Yazhou District, Sanya 572024, China
| |
Collapse
|
7
|
Hamann E, Groen SC, Dunivant TS, Ćalić I, Cochran C, Konshok R, Purugganan MD, Franks SJ. Selection on genome-wide gene expression plasticity of rice in wet and dry field environments. Mol Ecol 2024:e17522. [PMID: 39215462 DOI: 10.1111/mec.17522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Gene expression can be highly plastic in response to environmental variation. However, we know little about how expression plasticity is shaped by natural selection and evolves in wild and domesticated species. We used genotypic selection analysis to characterize selection on drought-induced plasticity of over 7,500 leaf transcripts of 118 rice accessions (genotypes) from different environmental conditions grown in a field experiment. Gene expression plasticity was neutral for most gradually plastic transcripts, but transcripts with discrete patterns of expression showed stronger selection on expression plasticity. Whether plasticity was adaptive and co-gradient or maladaptive and counter-gradient varied among varietal groups. No transcripts that experienced selection for plasticity across environments showed selection against plasticity within environments, indicating a lack of evidence for costs of adaptive plasticity that may constrain its evolution. Selection on expression plasticity was influenced by degree of plasticity, transcript length and gene body methylation. We observed positive selection on plasticity of co-expression modules containing transcripts involved in photosynthesis, translation and responsiveness to abiotic stress. Taken together, these results indicate that patterns of selection on expression plasticity were context-dependent and likely associated with environmental conditions of varietal groups, but that the evolution of adaptive plasticity would likely not be constrained by opposing patterns of selection on plasticity within compared to across environments. These results offer a genome-wide view of patterns of selection and ecological constraints on gene expression plasticity and provide insights into the interplay between plastic and evolutionary responses to drought at the molecular level.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
- Department of Biology, Institute of Plant Ecology and Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon C Groen
- Department of Nematology, University of California Riverside, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, USA
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - Taryn S Dunivant
- Department of Nematology, University of California Riverside, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, USA
| | - Irina Ćalić
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | - Colleen Cochran
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | - Rachel Konshok
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
- Center for Genomics and Systems Biology, NYU Abu Dhabi Research Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Steven J Franks
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| |
Collapse
|
8
|
Duan S, Yan L, Shen Z, Li X, Chen B, Li D, Qin H, Meegahakumbura MK, Wambulwa MC, Gao L, Chen W, Dong Y, Sheng J. Genomic analyses of agronomic traits in tea plants and related Camellia species. FRONTIERS IN PLANT SCIENCE 2024; 15:1449006. [PMID: 39253572 PMCID: PMC11381259 DOI: 10.3389/fpls.2024.1449006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
The genus Camellia contains three types of domesticates that meet various needs of ancient humans: the ornamental C. japonica, the edible oil-producing C. oleifera, and the beverage-purposed tea plant C. sinensis. The genomic drivers of the functional diversification of Camellia domesticates remain unknown. Here, we present the genomic variations of 625 Camellia accessions based on a new genome assembly of C. sinensis var. assamica ('YK10'), which consists of 15 pseudo-chromosomes with a total length of 3.35 Gb and a contig N50 of 816,948 bp. These accessions were mainly distributed in East Asia, South Asia, Southeast Asia, and Africa. We profiled the population and subpopulation structure in tea tree Camellia to find new evidence for the parallel domestication of C. sinensis var. assamica (CSA) and C. sinensis var. sinensis (CSS). We also identified candidate genes associated with traits differentiating CSA, CSS, oilseed Camellia, and ornamental Camellia cultivars. Our results provide a unique global view of the genetic diversification of Camellia domesticates and provide valuable resources for ongoing functional and molecular breeding research.
Collapse
Affiliation(s)
- Shengchang Duan
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| | - Liang Yan
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, China
- Pu'er Institute of Pu-erh Tea, Pu'er, China
| | - Zongfang Shen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- University of Chinese Academy of Science, Beijing, China
| | - Xuzhen Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Baozheng Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dawei Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Hantao Qin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- University of Chinese Academy of Science, Beijing, China
| | - Muditha K Meegahakumbura
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka
| | - Moses C Wambulwa
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Department of Life Sciences, School of Science and Computing, South Eastern Kenya University, Kitui, Kenya
| | - Lianming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| | - Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| | - Jun Sheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| |
Collapse
|
9
|
Wang P, Yang Y, Li D, Yu Z, zhang B, Zhou X, Xiong L, Zhang J, Wang L, Xing Y. Powerful QTL mapping and favorable allele mining in an all-in-one population: a case study of heading date. Natl Sci Rev 2024; 11:nwae222. [PMID: 39210988 PMCID: PMC11360186 DOI: 10.1093/nsr/nwae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 09/04/2024] Open
Abstract
The multiparent advanced generation intercross (MAGIC) population is characterized with great potentials in power and resolution of quantitative trait locus (QTL) mapping, but single nucleotide polymorphism (SNP)-based GWAS does not fully reach its potential. In this study, a MAGIC population of 1021 lines was developed from four Xian and four Geng varieties from five subgroups of rice. A total of 44 000 genes showed functional polymorphisms among eight parents, including frameshift variations or premature stop codon variations, which provides the potential to map almost all genes of the MAGIC population. Principal component analysis results showed that the MAGIC population had a weak population structure. A high-density bin map of 24 414 bins was constructed. Segregation distortion occurred in the regions possessing the genes underlying genetic incompatibility and gamete development. SNP-based association analysis and bin-based linkage analysis identified 25 significant loci and 47 QTLs for heading date, including 14 known heading date genes. The mapping resolution of genes is dependent on genetic effects with offset distances of <55 kb for major effect genes and <123 kb for moderate effect genes. Four causal variants and noncoding structure variants were identified to be associated with heading date. Three to four types of alleles with strong, intermediate, weak, and no genetic effects were identified from eight parents, providing flexibility for the improvement of rice heading date. In most cases, japonica rice carries weak alleles, and indica rice carries strong alleles and nonfunctional alleles. These results confirm that the MAGIC population provides the exceptional opportunity to detect QTLs, and its use is encouraged for mapping genes and mining favorable alleles for breeding.
Collapse
Affiliation(s)
- Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ying Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Daoyang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhichao Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangchun Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572024, China
| |
Collapse
|
10
|
Gutaker RM, Purugganan MD. Adaptation and the Geographic Spread of Crop Species. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:679-706. [PMID: 38012052 DOI: 10.1146/annurev-arplant-060223-030954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Crops are plant species that were domesticated starting about 11,000 years ago from several centers of origin, most prominently the Fertile Crescent, East Asia, and Mesoamerica. From their domestication centers, these crops spread across the globe and had to adapt to differing environments as a result of this dispersal. We discuss broad patterns of crop spread, including the early diffusion of crops associated with the rise and spread of agriculture, the later movement via ancient trading networks, and the exchange between the Old and New Worlds over the last ∼550 years after the European colonization of the Americas. We also examine the various genetic mechanisms associated with the evolutionary adaptation of crops to their new environments after dispersal, most prominently seasonal adaptation associated with movement across latitudes, as well as altitudinal, temperature, and other environmental factors.
Collapse
Affiliation(s)
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY, USA;
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Institute for the Study of the Ancient World, New York University, New York, NY, USA
| |
Collapse
|
11
|
Li X, Li P, Tang W, Zheng J, Fan F, Jiang X, Li Z, Fang Y. Simultaneous determination of subspecies and geographic origins of 110 rice cultivars by microsatellite markers. Food Chem 2024; 445:138657. [PMID: 38354640 DOI: 10.1016/j.foodchem.2024.138657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Rice varieties of different subspecies types (indica rice and japonica rice) across various geographical origins (Hunan, Jiangsu, and Northeast China) were monitored using microsatellite markers (simple sequence repeats, SSR). 110 representative rice cultivars were collected from the main crop areas. Multiple methods including clustering analysis (neighbor-joining (NJ) method, unweighted pair-group method with arithmetic mean (UPGMA) method), principal component analysis (PCA) and model-based grouping were applied. The study revealed that 25 pairs of SSR markers exhibited a broad range of polymorphism information content (PIC) values, ranging from 0.240 to 0.830. Furthermore, our study successfully achieved a higher overall mean correct rate of 99.09% in determining the geographical origin of rice. Simultaneously, it accurately classified indica rice and japonica rice. These findings are significant as they provide an SSR fingerprint of 110 high-quality rice cultivars, serving as a valuable scientific resource for the detection of rice adulteration and traceability of its origin.
Collapse
Affiliation(s)
- Xinyue Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Wenqian Tang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jiayu Zheng
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Xiaoyi Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Ziqian Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
12
|
Gupta S, Groen SC, Zaidem ML, Sajise AGC, Calic I, Natividad MA, McNally KL, Vergara GV, Satija R, Franks SJ, Singh RK, Joly-Lopez Z, Purugganan MD. Systems genomics of salinity stress response in rice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596807. [PMID: 38895411 PMCID: PMC11185513 DOI: 10.1101/2024.05.31.596807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Populations can adapt to stressful environments through changes in gene expression. However, the role of gene regulation in mediating stress response and adaptation remains largely unexplored. Here, we use an integrative field dataset obtained from 780 plants of Oryza sativa ssp. indica (rice) grown in a field experiment under normal or moderate salt stress conditions to examine selection and evolution of gene expression variation under salinity stress conditions. We find that salinity stress induces increased selective pressure on gene expression. Further, we show that trans-eQTLs rather than cis-eQTLs are primarily associated with rice's gene expression under salinity stress, potentially via a few master-regulators. Importantly, and contrary to the expectations, we find that cis-trans reinforcement is more common than cis-trans compensation which may be reflective of rice diversification subsequent to domestication. We further identify genetic fixation as the likely mechanism underlying this compensation/reinforcement. Additionally, we show that cis- and trans-eQTLs are under different selection regimes, giving us insights into the evolutionary dynamics of gene expression variation. By examining genomic, transcriptomic, and phenotypic variation across a rice population, we gain insights into the molecular and genetic landscape underlying adaptive salinity stress responses, which is relevant for other crops and other stresses.
Collapse
Affiliation(s)
- Sonal Gupta
- Center for Genomics and Systems Biology, New York University, New York, NY USA
| | - Simon C Groen
- Center for Genomics and Systems Biology, New York University, New York, NY USA
- Department of Nematology and Department of Botany & Plant Sciences, University of California, Riverside, CA USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA USA
| | - Maricris L. Zaidem
- Center for Genomics and Systems Biology, New York University, New York, NY USA
- Department of Biology, University of Oxford, Oxford, England
| | | | - Irina Calic
- Department of Biological Sciences, Fordham University, Bronx, NY USA
- Inari Agriculture Nv, Gent, Belgium
| | | | | | - Georgina V. Vergara
- International Rice Research Institute, Los Baños, Philippines
- Institute of Crop Science, University of the Philippines, Los Baños, Philippines
| | - Rahul Satija
- Center for Genomics and Systems Biology, New York University, New York, NY USA
- New York Genome Center, New York, NY USA
| | - Steven J. Franks
- Department of Biological Sciences, Fordham University, Bronx, NY USA
| | - Rakesh K. Singh
- International Rice Research Institute, Los Baños, Philippines
- International Center for Biosaline Agriculture, Dubai, UAE (current affiliation)
| | - Zoé Joly-Lopez
- Center for Genomics and Systems Biology, New York University, New York, NY USA
- Département de Chimie, Université du Quebéc à Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|
13
|
Fan Y, Shi B. Endophytic Fungi from the Four Staple Crops and Their Secondary Metabolites. Int J Mol Sci 2024; 25:6057. [PMID: 38892244 PMCID: PMC11173346 DOI: 10.3390/ijms25116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Endophytic fungi are present in every plant, and crops are no exception. There are more than 50,000 edible plant species on the planet, but only 15 crops provide 90 percent of the global energy intake, and "the big four"-wheat, rice, maize and potato-are staples for about 5 billion people. Not only do the four staple crops contribute to global food security, but the endophytic fungi within their plant tissues are complex ecosystems that have been under scrutiny. This review presents an outline of the endophytic fungi and their secondary metabolites in four staple crops: wheat, rice, maize and potato. A total of 292 endophytic fungi were identified from the four major crops, with wheat having the highest number of 157 endophytic fungi. Potato endophytic fungi had the highest number of secondary metabolites, totaling 204 compounds, compared with only 23 secondary metabolites from the other three crops containing endophytic fungi. Some of the compounds are those with specific structural and pharmacological activities, which may be beneficial to agrochemistry and medicinal chemistry.
Collapse
Affiliation(s)
| | - Baobao Shi
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China;
| |
Collapse
|
14
|
Mascher M, Marone MP, Schreiber M, Stein N. Are cereal grasses a single genetic system? NATURE PLANTS 2024; 10:719-731. [PMID: 38605239 PMCID: PMC7616769 DOI: 10.1038/s41477-024-01674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
In 1993, a passionate and provocative call to arms urged cereal researchers to consider the taxon they study as a single genetic system and collaborate with each other. Since then, that group of scientists has seen their discipline blossom. In an attempt to understand what unity of genetic systems means and how the notion was borne out by later research, we survey the progress and prospects of cereal genomics: sequence assemblies, population-scale sequencing, resistance gene cloning and domestication genetics. Gene order may not be as extraordinarily well conserved in the grasses as once thought. Still, several recurring themes have emerged. The same ancestral molecular pathways defining plant architecture have been co-opted in the evolution of different cereal crops. Such genetic convergence as much as cross-fertilization of ideas between cereal geneticists has led to a rich harvest of genes that, it is hoped, will lead to improved varieties.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Marina Püpke Marone
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Mona Schreiber
- University of Marburg, Department of Biology, Marburg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
15
|
Hu QL, Zhuo JC, Fang GQ, Lu JB, Ye YX, Li DT, Lou YH, Zhang XY, Chen X, Wang SL, Wang ZC, Zhang YX, Mazlan N, OO SS, Thet T, Sharma PN, Jauharlina J, Sukorini IH, Ibisate MT, Rahman SM, Ansari NA, Chen AD, Zhu ZR, Heong KL, Lu G, Huang HJ, Li JM, Chen JP, Zhan S, Zhang CX. The genomic history and global migration of a windborne pest. SCIENCE ADVANCES 2024; 10:eadk3852. [PMID: 38657063 PMCID: PMC11042747 DOI: 10.1126/sciadv.adk3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Many insect pests, including the brown planthopper (BPH), undergo windborne migration that is challenging to observe and track. It remains controversial about their migration patterns and largely unknown regarding the underlying genetic basis. By analyzing 360 whole genomes from around the globe, we clarify the genetic sources of worldwide BPHs and illuminate a landscape of BPH migration showing that East Asian populations perform closed-circuit journeys between Indochina and the Far East, while populations of Malay Archipelago and South Asia undergo one-way migration to Indochina. We further find round-trip migration accelerates population differentiation, with highly diverged regions enriching in a gene desert chromosome that is simultaneously the speciation hotspot between BPH and related species. This study not only shows the power of applying genomic approaches to demystify the migration in windborne migrants but also enhances our understanding of how seasonal movements affect speciation and evolution in insects.
Collapse
Affiliation(s)
- Qing-Ling Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Ji-Chong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Gang-Qi Fang
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yu-Xuan Ye
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Dan-Ting Li
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yi-Han Lou
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Ya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Xuan Chen
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Si-Liang Wang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Zhe-Chao Wang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yi-Xiang Zhang
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Norida Mazlan
- Institute of Tropical Agriculture and Food Security, and Faculty of Agriculture, University Putra Malaysia, 43400 Serdang, Malaysia
| | - San San OO
- Taungoo University, Taungoo 05063, Myanmar
| | - Thet Thet
- Taungoo University, Taungoo 05063, Myanmar
| | - Prem Nidhi Sharma
- Entomology Division, Nepal Agricultural Research Council, Khumaltar, Lalitpur, Kathmandu 44600, Nepal
| | - Jauharlina Jauharlina
- Department of Plant Protection, Faculty of Agriculture, Syiah Kuala University, Banda Aceh 23111, Indonesia
| | - Ir Henik Sukorini
- Agrotechnology Study Program, Muhammadiyah University of Malang, Malang 65145, Indonesia
| | - Michael T. Ibisate
- College of Agriculture, Forestry and Environmental Sciences, Aklan State University, Banga, Aklan 5601, Philippines
| | - S.M. Mizanur Rahman
- Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Naved Ahmad Ansari
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
- Department of Zoology, Aligarh Muslim University, Aligarh, U.P. 202002, India
| | - Ai-Dong Chen
- Agriculture Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Zeng-Rong Zhu
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Kong Luen Heong
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Shuai Zhan
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Ferrero-Serrano Á, Chakravorty D, Kirven KJ, Assmann SM. Oryza CLIMtools: A genome-environment association resource reveals adaptive roles for heterotrimeric G proteins in the regulation of rice agronomic traits. PLANT COMMUNICATIONS 2024; 5:100813. [PMID: 38213027 PMCID: PMC11009157 DOI: 10.1016/j.xplc.2024.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/12/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Modern crop varieties display a degree of mismatch between their current distributions and the suitability of the local climate for their productivity. To address this issue, we present Oryza CLIMtools (https://gramene.org/CLIMtools/oryza_v1.0/), the first resource for pan-genome prediction of climate-associated genetic variants in a crop species. Oryza CLIMtools consists of interactive web-based databases that enable the user to (1) explore the local environments of traditional rice varieties (landraces) in South-East Asia and (2) investigate the environment by genome associations for 658 Indica and 283 Japonica rice landrace accessions collected from georeferenced local environments and included in the 3K Rice Genomes Project. We demonstrate the value of these resources by identifying an interplay between flowering time and temperature in the local environment that is facilitated by adaptive natural variation in OsHD2 and disrupted by a natural variant in OsSOC1. Prior quantitative trait locus analysis has suggested the importance of heterotrimeric G proteins in the control of agronomic traits. Accordingly, we analyzed the climate associations of natural variants in the different heterotrimeric G protein subunits. We identified a coordinated role of G proteins in adaptation to the prevailing potential evapotranspiration gradient and revealed their regulation of key agronomic traits, including plant height and seed and panicle length. We conclude by highlighting the prospect of targeting heterotrimeric G proteins to produce climate-resilient crops.
Collapse
Affiliation(s)
- Ángel Ferrero-Serrano
- Biology Department, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| | - David Chakravorty
- Biology Department, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| | - Kobie J Kirven
- Intercollege Graduate Degree Program in Bioinformatics and Genomics, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| | - Sarah M Assmann
- Biology Department, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| |
Collapse
|
17
|
Ohdachi SD, Fujiwara K, Shekhar C, Sơn NT, Suzuki H, Osada N. Phylogenetics and Population Genetics of the Asian House Shrew, Suncus murinus-S. montanus Species Complex, Inferred From Whole-Genome and Mitochondrial DNA Sequences, with Special Reference to the Ryukyu Archipelago, Japan. Zoolog Sci 2024; 41:216-229. [PMID: 38587917 DOI: 10.2108/zs230030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/09/2023] [Indexed: 04/10/2024]
Abstract
The house shrew (Suncus murinus-S. montanus species complex) colonized regions across southern Asia and the Indian Ocean following human activity. The house shrew is distributed on islands of the Ryukyu Archipelago, the southernmost part of Japan, but the evolutionary history of the shrew on those islands and possible associations between these populations and humans remain unknown. In this study, we conducted phylogenetic and population genetic analyses based on both nuclear and mitochondrial genome sequences of house shrews. Phylogenetic analyses based on mitochondrial cytochrome b (cytb) sequences revealed that shrews from the Ryukyu Archipelago showed strong genetic affinity to Vietnamese and southern Chinese shrews. Demographic analyses of cytb sequences indicated a rapid population expansion event affecting the haplotype group in Vietnam, southern China, and the Ryukyu Archipelago 3300-7900 years ago. Furthermore, gene flow between Ryukyu (Yonaguni Island) and Taiwan and between Ryukyu and Vietnam inferred from f4 statistics of the nuclear genomes suggested repeated immigration to Ryukyu in recent years. The present study demonstrates that the Nagasaki population has a different origin from the Ryukyu population. These findings elucidate the complex pattern of genetic admixture in house shrews and provide insights into their evolutionary history.
Collapse
Affiliation(s)
- Satoshi D Ohdachi
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan,
| | - Kazumichi Fujiwara
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Chandra Shekhar
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Nguyn Trưng Sơn
- Institute of Ecology and Biological Resources and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hitoshi Suzuki
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Naoki Osada
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| |
Collapse
|
18
|
Sar P, Gupta S, Behera M, Chakraborty K, Ngangkham U, Verma BC, Banerjee A, Hanjagi PS, Bhaduri D, Shil S, Kumar J, Mandal NP, Kole PC, Purugganan MD, Roy S. Exploring Genetic Diversity within aus Rice Germplasm: Insights into the Variations in Agro-morphological Traits. RICE (NEW YORK, N.Y.) 2024; 17:20. [PMID: 38526679 DOI: 10.1186/s12284-024-00700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024]
Abstract
The aus (Oryza sativa L.) varietal group comprises of aus, boro, ashina and rayada seasonal and/or field ecotypes, and exhibits unique stress tolerance traits, making it valuable for rice breeding. Despite its importance, the agro-morphological diversity and genetic control of yield traits in aus rice remain poorly understood. To address this knowledge gap, we investigated the genetic structure of 181 aus accessions using 399,115 SNP markers and evaluated them for 11 morpho-agronomic traits. Through genome-wide association studies (GWAS), we aimed to identify key loci controlling yield and plant architectural traits.Our population genetic analysis unveiled six subpopulations with strong geographical patterns. Subpopulation-specific differences were observed in most phenotypic traits. Principal component analysis (PCA) of agronomic traits showed that principal component 1 (PC1) was primarily associated with panicle traits, plant height, and heading date, while PC2 and PC3 were linked to primary grain yield traits. GWAS using PC1 identified OsSAC1 on Chromosome 7 as a significant gene influencing multiple agronomic traits. PC2-based GWAS highlighted the importance of OsGLT1 and OsPUP4/ Big Grain 3 in determining grain yield. Haplotype analysis of these genes in the 3,000 Rice Genome Panel revealed distinct genetic variations in aus rice.In summary, this study offers valuable insights into the genetic structure and phenotypic diversity of aus rice accessions. We have identified significant loci associated with essential agronomic traits, with GLT1, PUP4, and SAC1 genes emerging as key players in yield determination.
Collapse
Affiliation(s)
- Puranjoy Sar
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribag, Jharkhand, 825 301, India
| | - Sonal Gupta
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Motilal Behera
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India
| | - Koushik Chakraborty
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India
| | - Umakanta Ngangkham
- Manipur Center, ICAR Research Complex for NEH Region, Imphal, Manipur, 795 004, India
| | - Bibhash Chandra Verma
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribag, Jharkhand, 825 301, India
| | - Amrita Banerjee
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribag, Jharkhand, 825 301, India
| | - Prashantkumar S Hanjagi
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India
| | - Debarati Bhaduri
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India
| | - Sandip Shil
- Research Centre - Mohitnagar, ICAR-Central Plantation Crops Research Institute, Jalpaiguri, West Bengal, 735 101, India
| | - Jitendra Kumar
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribag, Jharkhand, 825 301, India
| | - Nimai Prasad Mandal
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribag, Jharkhand, 825 301, India
| | - Paresh Chandra Kole
- Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati, Sriniketan, West Bengal, 731236, India
| | | | - Somnath Roy
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribag, Jharkhand, 825 301, India.
| |
Collapse
|
19
|
Zhao X, Yu J, Chanda B, Zhao J, Wu S, Zheng Y, Sun H, Levi A, Ling KS, Fei Z. Genomic and pangenomic analyses provide insights into the population history and genomic diversification of bottle gourd. THE NEW PHYTOLOGIST 2024. [PMID: 38503725 DOI: 10.1111/nph.19673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
Bottle gourd (Lagenaria siceraria (Mol.) Strandl.) is an economically important vegetable crop and one of the earliest domesticated crops. However, the population history and genomic diversification of bottle gourd have not been extensively studied. We generated a comprehensive bottle gourd genome variation map from genome sequences of 197 world-wide representative accessions, which enables a genome-wide association study for identifying genomic loci associated with resistance to zucchini yellow mosaic virus, and constructed a bottle gourd pangenome that harbors 1534 protein-coding genes absent in the reference genome. Demographic analyses uncover that domesticated bottle gourd originated in Southern Africa c. 12 000 yr ago, and subsequently radiated to the New World via the Atlantic drift and to Eurasia through the efforts of early farmers in the initial Holocene. The identified highly differentiated genomic regions among different bottle gourd populations harbor many genes contributing to their local adaptations such as those related to disease resistance and stress tolerance. Presence/absence variation analysis of genes in the pangenome reveals numerous genes including those involved in abiotic/biotic stress responses that have been under selection during the world-wide expansion of bottle gourds. The bottle gourd variation map and pangenome provide valuable resources for future functional studies and genomics-assisted breeding.
Collapse
Affiliation(s)
- Xuebo Zhao
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Jingyin Yu
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Bidisha Chanda
- USDA-ARS, US Vegetable Laboratory, Charleston, SC, 29414, USA
| | - Jiantao Zhao
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Shan Wu
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Yi Zheng
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Honghe Sun
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Amnon Levi
- USDA-ARS, US Vegetable Laboratory, Charleston, SC, 29414, USA
| | - Kai-Shu Ling
- USDA-ARS, US Vegetable Laboratory, Charleston, SC, 29414, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| |
Collapse
|
20
|
Yu B, Geng M, Xue Y, Yu Q, Lu B, Liu M, Shao Y, Li C, Xu J, Li J, Hu W, Tang H, Li P, Liu Q, Jing S. Combined miRNA and mRNA sequencing reveals the defensive strategies of resistant YHY15 rice against differentially virulent brown planthoppers. FRONTIERS IN PLANT SCIENCE 2024; 15:1366515. [PMID: 38562566 PMCID: PMC10982320 DOI: 10.3389/fpls.2024.1366515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Introduction The brown planthopper (BPH) poses a significant threat to rice production in Asia. The use of resistant rice varieties has been effective in managing this pest. However, the adaptability of BPH to resistant rice varieties has led to the emergence of virulent populations, such as biotype Y BPH. YHY15 rice, which carries the BPH resistance gene Bph15, exhibits notable resistance to biotype 1 BPH but is susceptible to biotype Y BPH. Limited information exists regarding how resistant rice plants defend against BPH populations with varying levels of virulence. Methods In this study, we integrated miRNA and mRNA expression profiling analyses to study the differential responses of YHY15 rice to both avirulent (biotype 1) and virulent (biotype Y) BPH. Results YHY15 rice demonstrated a rapid response to biotype Y BPH infestation, with significant transcriptional changes occurring within 6 hours. The biotype Y-responsive genes were notably enriched in photosynthetic processes. Accordingly, biotype Y BPH infestation induced more intense transcriptional responses, affecting miRNA expression, defenserelated metabolic pathways, phytohormone signaling, and multiple transcription factors. Additionally, callose deposition was enhanced in biotype Y BPH-infested rice seedlings. Discussion These findings provide comprehensive insights into the defense mechanisms of resistant rice plants against virulent BPH, and may potentially guide the development of insect-resistant rice varieties.
Collapse
Affiliation(s)
- Bin Yu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Mengjia Geng
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Yu Xue
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Qingqing Yu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Bojie Lu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Miao Liu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Yuhan Shao
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Chenxi Li
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jingang Xu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jintao Li
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Wei Hu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hengmin Tang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Peng Li
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Qingsong Liu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Shengli Jing
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
21
|
Xie L, Wu D, Fang Y, Ye C, Zhu QH, Wei X, Fan L. Population genomic analysis unravels the evolutionary roadmap of pericarp color in rice. PLANT COMMUNICATIONS 2024; 5:100778. [PMID: 38062703 PMCID: PMC10943583 DOI: 10.1016/j.xplc.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024]
Abstract
Pigmented rice stands out for its nutritional value and is gaining more and more attention. Wild rice, domesticated red rice, and weedy rice all have a red pericarp and a comprehensive genetic background in terms of the red-pericarp phenotype. We performed population genetic analyses using 5104 worldwide rice accessions, including 2794 accessions with red or black pericarps, 85 of which were newly sequenced in this study. The results suggested an evolutionary trajectory of red landraces originating from wild rice, and the split times of cultivated red and white rice populations were estimated to be within the past 3500 years. Cultivated red rice was found to feralize to weedy rice, and weedy rice could be further re-domesticated to cultivated red rice. A genome-wide association study based on the 2794 accessions with pigmented pericarps revealed several new candidate genes associated with the red-pericarp trait for further functional characterization. Our results provide genomic evidence for the origin of pigmented rice and a valuable genomic resource for genetic investigation and breeding of pigmented rice.
Collapse
Affiliation(s)
- Lingjuan Xie
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 310014, China
| | - Dongya Wu
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Yu Fang
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Shanghai ZKW Molecular Breeding Technology Co., Ltd., Shanghai 200234, China
| | - Chuyu Ye
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Xinghua Wei
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China
| | - Longjiang Fan
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 310014, China.
| |
Collapse
|
22
|
Zhao Y, Hu J, Zhou Z, Li L, Zhang X, He Y, Zhang C, Wang J, Hong G. Biofortified Rice Provides Rich Sakuranetin in Endosperm. RICE (NEW YORK, N.Y.) 2024; 17:19. [PMID: 38430431 PMCID: PMC10908774 DOI: 10.1186/s12284-024-00697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
Sakuranetin plays a key role as a phytoalexin in plant resistance to biotic and abiotic stresses, and possesses diverse health-promoting benefits. However, mature rice seeds do not contain detectable levels of sakuranetin. In the present study, a transgenic rice plant was developed in which the promoter of an endosperm-specific glutelin gene OsGluD-1 drives the expression of a specific enzyme naringenin 7-O-methyltransferase (NOMT) for sakuranetin biosynthesis. The presence of naringenin, which serves as the biosynthetic precursor of sakuranetin made this modification feasible in theory. Liquid chromatography tandem mass spectrometry (LC-MS/MS) validated that the seeds of transgenic rice accumulated remarkable sakuranetin at the mature stage, and higher at the filling stage. In addition, the panicle blast resistance of transgenic rice was significantly higher than that of the wild type. Specially, the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging was performed to detect the content and spatial distribution of sakuranetin and other nutritional metabolites in transgenic rice seeds. Notably, this genetic modification also did not change the nutritional and quality indicators such as soluble sugars, total amino acids, total flavonoids, amylose, total protein, and free amino acid content in rice. Meanwhile, the phenotypes of the transgenic plant during the whole growth and developmental periods and agricultural traits such as grain width, grain length, and 1000-grain weight exhibited no significant differences from the wild type. Collectively, the study provides a conceptual advance on cultivating sakuranetin-rich biofortified rice by metabolic engineering. This new breeding idea may not only enhance the disease resistance of cereal crop seeds but also improve the nutritional value of grains for human health benefits.
Collapse
Affiliation(s)
- Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jitao Hu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Zhongjing Zhou
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Chi Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Junmin Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
23
|
Rojas-Vásquez R, Hernández-Soto A, Arrieta-Espinoza G, Gatica-Arias A. CRISPR/Cas9-Mediated Genome Editing in Indica Rice (Oryza sativa L. subsp. indica var. CR-5272). Methods Mol Biol 2024; 2788:257-271. [PMID: 38656519 DOI: 10.1007/978-1-0716-3782-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Tissue culture optimization protocols limit indica rice breeding. Such a challenge is vital because emergent techniques still rely on tissue culture methods and could allow the breeding of new varieties with higher production and toleration of adverse environmental effects caused by climate change. Genome editing technology, using CRISPR/Cas9, is a fast and precise method for accelerated plant breeding. It limited its use in indica subspecies because of the recalcitrant response to in vitro culture methods. This chapter describes a protocol for CRISPR/Cas9 editing in indica subspecies, specifically in the CR-5272 variety derived from parental lines IR-822, using Agrobacterium tumefaciens and biolistic transformation.
Collapse
Affiliation(s)
- Randall Rojas-Vásquez
- Programa de Posgrado en Ciencias Agrícolas y Recursos Naturales con Énfasis en Biotecnología (PPCARN), Universidad de Costa Rica, San José, Costa Rica
- Laboratorio de Biotecnología Vegetal, Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- Vitroflora Labs, Palmares, Alajuela, Costa Rica
- Laboratorio Biotecnología Aplicada a Mejoramiento de Cultivo, Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica , San José, Costa Rica
| | | | - Griselda Arrieta-Espinoza
- Programa de Posgrado en Ciencias Agrícolas y Recursos Naturales con Énfasis en Biotecnología (PPCARN), Universidad de Costa Rica, San José, Costa Rica.
- Laboratorio Biotecnología Aplicada a Mejoramiento de Cultivo, Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica , San José, Costa Rica.
| | - Andrés Gatica-Arias
- Programa de Posgrado en Ciencias Agrícolas y Recursos Naturales con Énfasis en Biotecnología (PPCARN), Universidad de Costa Rica, San José, Costa Rica.
- Laboratorio de Biotecnología Vegetal, Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
24
|
Ferrero-Serrano Á, Chakravorty D, Kirven KJ, Assmann SM. Oryza CLIMtools: A Genome-Environment Association Resource Reveals Adaptive Roles for Heterotrimeric G Proteins in the Regulation of Rice Agronomic Traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540241. [PMID: 37214799 PMCID: PMC10197702 DOI: 10.1101/2023.05.10.540241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Modern crop varieties display a degree of mismatch between their current distributions and the suitability of the local climate for their productivity. To this end, we present Oryza CLIMtools (https://gramene.org/CLIMtools/oryza_v1.0/), the first resource for pan-genome prediction of climate-associated genetic variants in a crop species. Oryza CLIMtools consists of interactive web-based databases that allow the user to: i) explore the local environments of traditional rice varieties (landraces) in South-Eastern Asia, and; ii) investigate the environment by genome associations for 658 Indica and 283 Japonica rice landrace accessions collected from georeferenced local environments and included in the 3K Rice Genomes Project. We exemplify the value of these resources, identifying an interplay between flowering time and temperature in the local environment that is facilitated by adaptive natural variation in OsHD2 and disrupted by a natural variant in OsSOC1. Prior QTL analysis has suggested the importance of heterotrimeric G proteins in the control of agronomic traits. Accordingly, we analyzed the climate associations of natural variants in the different heterotrimeric G protein subunits. We identified a coordinated role of G proteins in adaptation to the prevailing Potential Evapotranspiration gradient and their regulation of key agronomic traits including plant height and seed and panicle length. We conclude by highlighting the prospect of targeting heterotrimeric G proteins to produce crops that are climate resilient.
Collapse
Affiliation(s)
- Ángel Ferrero-Serrano
- Biology Department, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - David Chakravorty
- Biology Department, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - Kobie J. Kirven
- Intercollege Graduate Degree Program in Bioinformatics and Genomics, Pennsylvania State University
| | - Sarah M. Assmann
- Biology Department, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| |
Collapse
|
25
|
Zhao Y, Hu J, Zhang Y, Tao H, Li L, He Y, Zhang X, Zhang C, Hong G. Unveiling targeted spatial metabolome of rice seed at the dough stage using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry imaging. Food Res Int 2023; 174:113578. [PMID: 37986446 DOI: 10.1016/j.foodres.2023.113578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Rice (Oryza sativa) seeds contain a variety of metabolites, which not only provide energy for their own growth and development, but also are an important source of nutrition for humans. It is crucial to study the distribution of metabolites in rice seeds, but the spatial metabolome of rice seeds is rarely investigated. In this study, Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) imaging was used to reveal the spatial distribution of free soluble sugars (glucose, fructose, sucrose, and maltose), amino acids (9 essential amino acids and 2 amino acids affecting rice eating quality: L-aspartic acid and L-glutamic acid), and 4 metabolites in the flavonoids synthesis pathway (cinnamic acid, naringenin chalcone, naringenin, and dihydrokaempferol) in rice seed at the dough stage. It was found that the 4 free soluble sugars present similar spatial distribution, mainly distributed in the seed cortex and embryo with high abundance. The majority of amino acids are also concentrated in the rice cortex and embryo, while the others are abundant in the whole seed. Besides cinnamic acid distributed in the seed cortex and embryo, the naringenin chalcone, naringenin, and dihydrokaempferol were also found in the endosperm and had lower content. Furthermore, a colocalization phylogenetic tree according to the spatial distribution imaging of each metabolite was constructed. This study revealed the distribution diversity of metabolites in different segmentations of rice seed at the dough stage, providing clues for the nutritional differences between brown rice and white rice, and serving as a reference for people to target a healthy diet.
Collapse
Affiliation(s)
- Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jitao Hu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yilin Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Han Tao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chi Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
26
|
Chen T, Xu J, Wang L, Wang H, You E, Deng C, Bian H, Shen Y. Landscape genomics reveals adaptive genetic differentiation driven by multiple environmental variables in naked barley on the Qinghai-Tibetan Plateau. Heredity (Edinb) 2023; 131:316-326. [PMID: 37935814 PMCID: PMC10673939 DOI: 10.1038/s41437-023-00647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 11/09/2023] Open
Abstract
Understanding the local adaptation of crops has long been a concern of evolutionary biologists and molecular ecologists. Identifying the adaptive genetic variability in the genome is crucial not only to provide insights into the genetic mechanism of local adaptation but also to explore the adaptation potential of crops. This study aimed to identify the climatic drivers of naked barley landraces and putative adaptive loci driving local adaptation on the Qinghai-Tibetan Plateau (QTP). To this end, a total of 157 diverse naked barley accessions were genotyped using the genotyping-by-sequencing approach, which yielded 3123 high-quality SNPs for population structure analysis and partial redundancy analysis, and 37,636 SNPs for outlier analysis. The population structure analysis indicated that naked barley landraces could be divided into four groups. We found that the genomic diversity of naked barley landraces could be partly traced back to the geographical and environmental diversity of the landscape. In total, 136 signatures associated with temperature, precipitation, and ultraviolet radiation were identified, of which 13 had pleiotropic effects. We mapped 447 genes, including a known gene HvSs1. Some genes involved in cold stress and regulation of flowering time were detected near eight signatures. Taken together, these results highlight the existence of putative adaptive loci in naked barley on QTP and thus improve our current understanding of the genetic basis of local adaptation.
Collapse
Affiliation(s)
- Tongrui Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinqing Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining, 810000, China
| | - Lei Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining, 810000, China
| | - Handong Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining, 810000, China
| | - En You
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Deng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Bian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhu Shen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining, 810000, China.
| |
Collapse
|
27
|
Tao L, Yuan H, Zhu K, Liu X, Guo J, Min R, He H, Cao D, Yang X, Zhou Z, Wang R, Zhao D, Ma H, Chen J, Zhao J, Li Y, He Y, Suo D, Zhang R, Li S, Li L, Yang F, Li H, Zhang L, Jin L, Wang CC. Ancient genomes reveal millet farming-related demic diffusion from the Yellow River into southwest China. Curr Biol 2023; 33:4995-5002.e7. [PMID: 37852263 DOI: 10.1016/j.cub.2023.09.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/12/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023]
Abstract
The study of southwest China is vital for understanding the dispersal and development of farming because of the coexistence of millet and rice in this region since the Neolithic period.1,2 However, the process of the Neolithic transition in southwest China is largely unknown, mainly due to the lack of ancient DNA from the Neolithic period. Here, we report genome-wide data from 11 human samples from the Gaoshan and Haimenkou sites with mixed farming of millet and rice dating to between 4,500 and 3,000 years before present in southwest China. The two ancient groups derived approximately 90% of their ancestry from the Neolithic Yellow River farmers, suggesting a demic diffusion of millet farming to southwest China. We inferred their remaining ancestry to be derived from a Hòabìnhian-related hunter-gatherer lineage. We did not detect rice farmer-related ancestry in the two ancient groups, which indicates that they likely adopted rice farming without genetic assimilation. We, however, observed rice farmer-related ancestry in the formation of some present-day Tibeto-Burman populations. Our results suggested the occurrence of both demic and cultural diffusion in the development of Neolithic mixed farming in some parts of southwest China.
Collapse
Affiliation(s)
- Le Tao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Haibing Yuan
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China.
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiangyu Liu
- Chengdu Municipal Institute of Cultural Relics and Archaeology, Chengdu 610008, China
| | - Jianxin Guo
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China.
| | - Rui Min
- Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China
| | - Haifeng He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Doudou Cao
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China
| | - Zhiqing Zhou
- Chengdu Municipal Institute of Cultural Relics and Archaeology, Chengdu 610008, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Deyun Zhao
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China; School of Archaeology and Museology, Sichuan University, Chengdu 610064, China; National Demonstration Center for Experimental Archaeology Education, Sichuan University, Chengdu 610064, China
| | - Hao Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jian Chen
- Chengdu Municipal Institute of Cultural Relics and Archaeology, Chengdu 610008, China
| | - Jing Zhao
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China
| | - Yingfu Li
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China; School of Archaeology and Museology, Sichuan University, Chengdu 610064, China; National Demonstration Center for Experimental Archaeology Education, Sichuan University, Chengdu 610064, China
| | - Yuanhong He
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China; School of Archaeology and Museology, Sichuan University, Chengdu 610064, China; National Demonstration Center for Experimental Archaeology Education, Sichuan University, Chengdu 610064, China
| | - Dehao Suo
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China; School of Archaeology and Museology, Sichuan University, Chengdu 610064, China; National Demonstration Center for Experimental Archaeology Education, Sichuan University, Chengdu 610064, China
| | - Ruojing Zhang
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China; School of Archaeology and Museology, Sichuan University, Chengdu 610064, China; National Demonstration Center for Experimental Archaeology Education, Sichuan University, Chengdu 610064, China
| | - Shuai Li
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China; School of Archaeology and Museology, Sichuan University, Chengdu 610064, China; National Demonstration Center for Experimental Archaeology Education, Sichuan University, Chengdu 610064, China
| | - Lan Li
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China; School of Archaeology and Museology, Sichuan University, Chengdu 610064, China; National Demonstration Center for Experimental Archaeology Education, Sichuan University, Chengdu 610064, China
| | - Feng Yang
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China; School of Archaeology and Museology, Sichuan University, Chengdu 610064, China; National Demonstration Center for Experimental Archaeology Education, Sichuan University, Chengdu 610064, China
| | - Haichao Li
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China; School of Archaeology and Museology, Sichuan University, Chengdu 610064, China; National Demonstration Center for Experimental Archaeology Education, Sichuan University, Chengdu 610064, China
| | - Liang Zhang
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China; School of Archaeology and Museology, Sichuan University, Chengdu 610064, China; National Demonstration Center for Experimental Archaeology Education, Sichuan University, Chengdu 610064, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200433, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, China; Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, Fujian, China.
| |
Collapse
|
28
|
Wang T, He W, Li X, Zhang C, He H, Yuan Q, Zhang B, Zhang H, Leng Y, Wei H, Xu Q, Shi C, Liu X, Guo M, Wang X, Chen W, Zhang Z, Yang L, Lv Y, Qian H, Zhang B, Yu X, Liu C, Cao X, Cui Y, Zhang Q, Dai X, Guo L, Wang Y, Zhou Y, Ruan J, Qian Q, Shang L. A rice variation map derived from 10 548 rice accessions reveals the importance of rare variants. Nucleic Acids Res 2023; 51:10924-10933. [PMID: 37843097 PMCID: PMC10639064 DOI: 10.1093/nar/gkad840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/08/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Detailed knowledge of the genetic variations in diverse crop populations forms the basis for genetic crop improvement and gene functional studies. In the present study, we analyzed a large rice population with a total of 10 548 accessions to construct a rice super-population variation map (RSPVM), consisting of 54 378 986 single nucleotide polymorphisms, 11 119 947 insertion/deletion mutations and 184 736 presence/absence variations. Assessment of variation detection efficiency for different population sizes revealed a sharp increase of all types of variation as the population size increased and a gradual saturation of that after the population size reached 10 000. Variant frequency analysis indicated that ∼90% of the obtained variants were rare, and would therefore likely be difficult to detect in a relatively small population. Among the rare variants, only 2.7% were predicted to be deleterious. Population structure, genetic diversity and gene functional polymorphism of this large population were evaluated based on different subsets of RSPVM, demonstrating the great potential of RSPVM for use in downstream applications. Our study provides both a rich genetic basis for understanding natural rice variations and a powerful tool for exploiting great potential of rare variants in future rice research, including population genetics and functional genomics.
Collapse
Affiliation(s)
- Tianyi Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan university, Shenzhen 518000, China
| | - Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaoxia Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Chao Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Huiying He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qiaoling Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bin Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hong Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yue Leng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hua Wei
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qiang Xu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Chuanlin Shi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiangpei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mingliang Guo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xianmeng Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wu Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhipeng Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Longbo Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yang Lv
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hongge Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bintao Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaoman Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Congcong Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xinglan Cao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yan Cui
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qianqian Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaofan Dai
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yuexing Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yongfeng Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jue Ruan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China
| |
Collapse
|
29
|
Tao Y, Wei Y, Ge J, Pan Y, Wang W, Bi Q, Sheng P, Fu C, Pan W, Jin L, Zheng HX, Zhang M. Phylogenetic evidence reveals early Kra-Dai divergence and dispersal in the late Holocene. Nat Commun 2023; 14:6924. [PMID: 37903755 PMCID: PMC10616200 DOI: 10.1038/s41467-023-42761-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Studying language evolution brings a crucial perspective to bear on questions of human prehistory. As the most linguistically diverse region on earth, East and Southeast Asia have witnessed extensive sociocultural and ethnic contacts among different language communities. Especially, the Kra-Dai language family exhibits tremendous socio-cultural importance in these regions. Due to limited historical accounts, however, there are several controversies on their linguistic relatedness, ambiguities regarding the divergence time, and uncertainties on the dispersal patterns. To address these issues, here we apply Bayesian phylogenetic methods to analyze the largest lexical dataset containing 646 cognate sets compiled for 100 Kra-Dai languages. Our dated phylogenetic tree showed their initial divergence occurring approximately 4000 years BP. Phylogeographic results supported the early Kra-Dai language dispersal from the Guangxi-Guangdong area of South China towards Mainland Southeast Asia. Coupled with genetic, archaeological, paleoecologic, and paleoclimatic data, we demonstrated that the Kra-Dai language diversification could have coincided with their demic diffusion and agricultural spread shaped by the global climate change in the late Holocene. The interdisciplinary alignments shed light on reconstructing the prehistory of Kra-Dai languages and provide an indispensable piece of the puzzle for further studying prehistoric human activities in East and Southeast Asia.
Collapse
Affiliation(s)
- Yuxin Tao
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Yuancheng Wei
- School of Chinese Language and Literature, Guangxi Minzu University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jiaqi Ge
- Department of Chinese Language and Literature, Fudan University, Shanghai, China
| | - Yan Pan
- Department of Cultural Heritage and Museology, Fudan University, Shanghai, China
| | - Wenmin Wang
- College of Nationalities, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Qianqi Bi
- College of Communication, East China University of Political Science and Law, Shanghai, China
| | - Pengfei Sheng
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Changzhong Fu
- College of Nationalities, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Wuyun Pan
- Institute of Modern Languages and Linguistics, Fudan University, Shanghai, China
- Institute for Humanities and Social Science Data, School of Data Science, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Hong-Xiang Zheng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China.
| | - Menghan Zhang
- Institute of Modern Languages and Linguistics, Fudan University, Shanghai, China.
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China.
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China.
| |
Collapse
|
30
|
Zhou Z, Tang W, Sun Z, Li J, Yang B, Liu Y, Wang B, Xu D, Yang J, Zhang Y. OsCIPK9 Interacts with OsSOS3 and Affects Salt-Related Transport to Improve Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3723. [PMID: 37960079 PMCID: PMC10647249 DOI: 10.3390/plants12213723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Salt is harmful to crop production. Therefore, it is important to understand the mechanism of salt tolerance in rice. CIPK genes have various functions, including regulating salt tolerance and other types of stress and nitrogen use efficiency. In rice, OsCIPK24 is known to regulate salt tolerance, but other OsCIPKs could also function in salt tolerance. In this study, we identified another OsCIPK-OsCIPK9-that can regulate salt tolerance. Knockout of OsCIPK9 in rice could improve salt tolerance. Through expression analyses, OsCIPK9 was found to be mainly expressed in the roots and less expressed in mature leaves. Meanwhile, OsCIPK9 had the highest expression 6 h after salt treatment. In addition, we proved the interaction between OsCIPK9 and OsSOS3. The RNA-seq data showed that OsCIPK9 strongly responded to salt treatment, and the transporters related to salt tolerance may be downstream genes of OsCIPK9. Finally, haplotype analyses revealed that Hap6 and Hap8 mainly exist in indica, potentially providing a higher salt tolerance. Overall, a negative regulator of salt tolerance, OsCIPK9, which interacted with OsSOS3 similarly to OsCIPK24 and influenced salt-related transporters, was identified, and editing OsCIPK9 potentially could be helpful for breeding salt-tolerant rice.
Collapse
Affiliation(s)
- Zhenling Zhou
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China;
| | - Weijie Tang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Zhiguang Sun
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
| | - Jingfang Li
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
| | - Bo Yang
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
| | - Yan Liu
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
| | - Baoxiang Wang
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
| | - Dayong Xu
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China;
| | - Yunhui Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
31
|
Bedford JA, Carine M, Chapman MA. Detection of locally adapted genomic regions in wild rice (Oryza rufipogon) using environmental association analysis. G3 (BETHESDA, MD.) 2023; 13:jkad194. [PMID: 37619981 PMCID: PMC10542315 DOI: 10.1093/g3journal/jkad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Oryza rufipogon is the wild progenitor of cultivated rice Oryza sativa and exhibits high levels of genetic diversity across its distribution, making it a useful resource for the identification of abiotic stress-tolerant varieties and genes that could limit future climate-changed-induced yield losses. To investigate local adaptation in O. rufipogon, we analyzed single nucleotide polymorphism (SNP) data from a panel of 286 samples located across a diverse range of climates. Environmental association analysis (EAA), a genome-wide association study (GWAS)-based method, was used and revealed 15 regions of the genome significantly associated with various climate factors. Genes within these environmentally associated regions have putative functions in abiotic stress response, phytohormone signaling, and the control of flowering time. This provides an insight into potential local adaptation in O. rufipogon and reveals possible locally adaptive genes that may provide opportunities for breeding novel rice varieties with climate change-resilient phenotypes.
Collapse
Affiliation(s)
- James A Bedford
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Mark Carine
- Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
32
|
Wu D, Xie L, Sun Y, Huang Y, Jia L, Dong C, Shen E, Ye CY, Qian Q, Fan L. A syntelog-based pan-genome provides insights into rice domestication and de-domestication. Genome Biol 2023; 24:179. [PMID: 37537691 PMCID: PMC10401782 DOI: 10.1186/s13059-023-03017-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Asian rice is one of the world's most widely cultivated crops. Large-scale resequencing analyses have been undertaken to explore the domestication and de-domestication genomic history of Asian rice, but the evolution of rice is still under debate. RESULTS Here, we construct a syntelog-based rice pan-genome by integrating and merging 74 high-accuracy genomes based on long-read sequencing, encompassing all ecotypes and taxa of Oryza sativa and Oryza rufipogon. Analyses of syntelog groups illustrate subspecies divergence in gene presence-and-absence and haplotype composition and identify massive genomic regions putatively introgressed from ancient Geng/japonica to ancient Xian/indica or its wild ancestor, including almost all well-known domestication genes and a 4.5-Mbp centromere-spanning block, supporting a single domestication event in main rice subspecies. Genomic comparisons between weedy and cultivated rice highlight the contribution from wild introgression to the emergence of de-domestication syndromes in weedy rice. CONCLUSIONS This work highlights the significance of inter-taxa introgression in shaping diversification and divergence in rice evolution and provides an exploratory attempt by utilizing the advantages of pan-genomes in evolutionary studies.
Collapse
Affiliation(s)
- Dongya Wu
- Hainan Institute of Zhejiang University, Sanya, 572025, China
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
- Center for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou, 310058, China
| | - Lingjuan Xie
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Yanqing Sun
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Yujie Huang
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lei Jia
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Chenfeng Dong
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Enhui Shen
- Hainan Institute of Zhejiang University, Sanya, 572025, China
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Chu-Yu Ye
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Longjiang Fan
- Hainan Institute of Zhejiang University, Sanya, 572025, China.
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
33
|
Jing CY, Zhang FM, Wang XH, Wang MX, Zhou L, Cai Z, Han JD, Geng MF, Yu WH, Jiao ZH, Huang L, Liu R, Zheng XM, Meng QL, Ren NN, Zhang HX, Du YS, Wang X, Qiang CG, Zou XH, Gaut BS, Ge S. Multiple domestications of Asian rice. NATURE PLANTS 2023; 9:1221-1235. [PMID: 37550371 DOI: 10.1038/s41477-023-01476-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/04/2023] [Indexed: 08/09/2023]
Abstract
The origin of domesticated Asian rice (Oryza sativa L.) has been controversial for more than half a century. The debates have focused on two leading hypotheses: a single domestication event in China or multiple domestication events in geographically separate areas. These two hypotheses differ in their predicted history of genes/alleles selected during domestication. Here we amassed a dataset of 1,578 resequenced genomes, including an expanded sample of wild rice from throughout its geographic range. We identified 993 selected genes that generated phylogenetic trees on which japonica and indica formed a monophyletic group, suggesting that the domestication alleles of these genes originated only once in either japonica or indica. Importantly, the domestication alleles of most selected genes (~80%) stemmed from wild rice in China, but the domestication alleles of a substantial minority of selected genes (~20%) originated from wild rice in South and Southeast Asia, demonstrating separate domestication events of Asian rice.
Collapse
Affiliation(s)
- Chun-Yan Jing
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fu-Min Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Hua Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei-Xia Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lian Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhe Cai
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jing-Dan Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Mu-Fan Geng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hao Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Hui Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Huang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Rong Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Ming Zheng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing-Lin Meng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ning-Ning Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Xiang Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Su Du
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Gen Qiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Hui Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
34
|
Lu Y. Gene Genealogy-Based Mutation Analysis Reveals Emergence of Aus, Tropical japonica, and Aromatic of Oryza sativa during the Later Stage of Rice Domestication. Genes (Basel) 2023; 14:1412. [PMID: 37510316 PMCID: PMC10379336 DOI: 10.3390/genes14071412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Asian rice (Oryza sativa L.) has become a model for understanding gene functions and domestication in recent decades; however, its own diversification is still controversial. Although the division of indica and japonica and five subgroups (aus, indica (sensu stricto), japonica (sensu stricto), tropical japonica, and aromatic) are broadly accepted, how they are phylogenetically related is not transparent. To clarify their relationships, a sample of 121 diverse genes was chosen here from 12 Oryza genomes (two parental and ten O. sativa (Os)) in parallel to allow gene genealogy-based mutation (GGM) analysis. From the sample, 361 Os mutations were shared by two or more subgroups (referred to here as trans mutations) from 549 mutations identified at 51 Os loci. The GGM analysis and related tests indicates that aus diverged from indica at a time significantly earlier than when tropical japonica split from japonica. The results also indicate that aromatic was selected from hybrid progeny of aus and tropical japonica and that all five subgroups share a significant number of the early mutations identified previously. The results suggest that aus, tropical japonica, and aromatic emerged sequentially within the most recent 4-5 millennia of rice domestication after the split of indica and japonica.
Collapse
Affiliation(s)
- Yingqing Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Kettenburg AT, Lopez MA, Yogendra K, Prior MJ, Rose T, Bimson S, Heuer S, Roy SJ, Bailey-Serres J. PHOSPHORUS-STARVATION TOLERANCE 1 (OsPSTOL1) is prevalent in upland rice and enhances root growth and hastens low phosphate signaling in wheat. PLANT, CELL & ENVIRONMENT 2023; 46:2187-2205. [PMID: 36946067 DOI: 10.1111/pce.14588] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/07/2023] [Accepted: 03/19/2023] [Indexed: 06/08/2023]
Abstract
PHOSPHORUS-STARVATION TOLERANCE 1 (OsPSTOL1) is a variably present gene that benefits crown root growth and phosphorus (P) sufficiency in rice (Oryza sativa). To explore the ecophysiological importance of this gene, we performed a biogeographic survey of landraces and cultivars, confirming that functional OsPSTOL1 alleles prevail in low nutrient and drought-prone rainfed ecosystems, whereas loss-of-function and absence haplotypes predominate in control-irrigated paddy varieties of east Asia. An evolutionary history analysis of OsPSTOL1 and related genes in cereal, determined it and other genes are kinase-only domain derivatives of membrane-associated receptor like kinases. Finally, to evaluate the potential value of this kinase of unknown function in another Gramineae, wheat (Triticum aestivum) lines overexpressing OsPSTOL1 were evaluated under field and controlled low P conditions. OsPSTOL1 enhances growth, crown root number, and overall root plasticity under low P in wheat. Survey of root and shoot crown transcriptomes at two developmental stages identifies transcription factors that are differentially regulated in OsPSTOL1 wheat that are similarly controlled by the gene in rice. In wheat, OsPSTOL1 alters the timing and amplitude of regulators of root development in dry soils and hastens induction of the core P-starvation response. OsPSTOL1 and related genes may aid more sustainable cultivation of cereal crops.
Collapse
Affiliation(s)
- Alek T Kettenburg
- Botany and Plant Sciences Department, Center for Plant Cell Biology, University of California, Riverside, California, USA
| | - Miguel A Lopez
- Botany and Plant Sciences Department, Center for Plant Cell Biology, University of California, Riverside, California, USA
| | - Kalenahalli Yogendra
- School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, The University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew J Prior
- Botany and Plant Sciences Department, Center for Plant Cell Biology, University of California, Riverside, California, USA
| | - Teresa Rose
- Department of Plant Science, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Sabrina Bimson
- Botany and Plant Sciences Department, Center for Plant Cell Biology, University of California, Riverside, California, USA
| | - Sigrid Heuer
- School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Plant Science, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Stuart J Roy
- School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, The University of Adelaide, Adelaide, South Australia, Australia
| | - Julia Bailey-Serres
- Botany and Plant Sciences Department, Center for Plant Cell Biology, University of California, Riverside, California, USA
| |
Collapse
|
36
|
Li J, Lee CR. The role of gene presence-absence variations on genetic incompatibility in Asian rice. THE NEW PHYTOLOGIST 2023; 239:778-791. [PMID: 37194454 PMCID: PMC7615310 DOI: 10.1111/nph.18969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/18/2023] [Indexed: 05/18/2023]
Abstract
Genetic incompatibilities are widespread between species. However, it remains unclear whether they all originated after population divergence as suggested by the Bateson-Dobzhansky-Muller model, and if not, what is their prevalence and distribution within populations. The gene presence-absence variations (PAVs) provide an opportunity for investigating gene-gene incompatibility. Here, we searched for the repulsion of coexistence between gene PAVs to identify the negative interaction of gene functions separately in two Oryza sativa subspecies. Many PAVs are involved in subspecies-specific negative epistasis and segregate at low-to-intermediate frequencies in focal subspecies but at low or high frequencies in the other subspecies. Incompatible PAVs are enriched in two functional groups, defense response and protein phosphorylation, which are associated with plant immunity and consistent with autoimmunity being a known mechanism of hybrid incompatibility in plants. Genes in the two enriched functional groups are older and seldom directly interact with each other. Instead, they interact with other younger gene PAVs with diverse functions. Our results illustrate the landscape of genetic incompatibility at gene PAVs in rice, where many incompatible pairs have already segregated as polymorphisms within subspecies, and many are novel negative interactions between older defense-related genes and younger genes with diverse functions.
Collapse
Affiliation(s)
- Juan Li
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 106319, Taiwan
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | - Cheng-Ruei Lee
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 106319, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|
37
|
Xia C, Liang G, Chong K, Xu Y. The COG1-OsSERL2 complex senses cold to trigger signaling network for chilling tolerance in japonica rice. Nat Commun 2023; 14:3104. [PMID: 37248220 PMCID: PMC10227007 DOI: 10.1038/s41467-023-38860-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
Improvement of chilling tolerance is a key strategy to face potential menace from abnormal temperature in rice production, which depends on the signaling network triggered by receptors. However, little is known about the QTL genes encoding membrane complexes for sensing cold. Here, Chilling-tolerance in Gengdao/japonica rice 1 (COG1) is isolated from a chromosome segment substitution line containing a QTL (qCS11-jap) for chilling sensitivity. The major gene COG1 is found to confer chilling tolerance in japonica rice. In natural rice populations, only the haplogroup1 encodes a functional COG1. Evolutionary analysis show that COG1 originates from Chinese O. Rufipogon and is fixed in japonica rice during domestication. COG1, a membrane-localized LRR-RLP, targets and activates the kinase OsSERL2 in a cold-induced manner, promoting chilling tolerance. Furthermore, the cold signal transmitted by COG1-OsSERL2 activates OsMAPK3 in the cytoplasm. Our findings reveal a cold-sensing complex, which mediates signaling network for the chilling defense in rice.
Collapse
Affiliation(s)
- Changxuan Xia
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Kang Chong
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yunyuan Xu
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
38
|
Ong PW, Lin YP, Chen HW, Lo CY, Burlyaeva M, Noble T, Nair RM, Schafleitner R, Vishnyakova M, Bishop-von-Wettberg E, Samsonova M, Nuzhdin S, Ting CT, Lee CR. Environment as a limiting factor of the historical global spread of mungbean. eLife 2023; 12:e85725. [PMID: 37204293 PMCID: PMC10299821 DOI: 10.7554/elife.85725] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/18/2023] [Indexed: 05/20/2023] Open
Abstract
While the domestication process has been investigated in many crops, the detailed route of cultivation range expansion and factors governing this process received relatively little attention. Here, using mungbean (Vigna radiata var. radiata) as a test case, we investigated the genomes of more than 1000 accessions to illustrate climatic adaptation's role in dictating the unique routes of cultivation range expansion. Despite the geographical proximity between South and Central Asia, genetic evidence suggests mungbean cultivation first spread from South Asia to Southeast, East and finally reached Central Asia. Combining evidence from demographic inference, climatic niche modeling, plant morphology, and records from ancient Chinese sources, we showed that the specific route was shaped by the unique combinations of climatic constraints and farmer practices across Asia, which imposed divergent selection favoring higher yield in the south but short-season and more drought-tolerant accessions in the north. Our results suggest that mungbean did not radiate from the domestication center as expected purely under human activity, but instead, the spread of mungbean cultivation is highly constrained by climatic adaptation, echoing the idea that human commensals are more difficult to spread through the south-north axis of continents.
Collapse
Affiliation(s)
- Pei-Wen Ong
- Institute of Plant Biology, National Taiwan UniversityTaipeiTaiwan
| | - Ya-Ping Lin
- Institute of Ecology and Evolutionary Biology, National Taiwan UniversityTaipeiTaiwan
- World Vegetable CenterTainanTaiwan
| | - Hung-Wei Chen
- Institute of Ecology and Evolutionary Biology, National Taiwan UniversityTaipeiTaiwan
| | - Cheng-Yu Lo
- Institute of Ecology and Evolutionary Biology, National Taiwan UniversityTaipeiTaiwan
| | - Marina Burlyaeva
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)St. PetersburgRussian Federation
| | - Thomas Noble
- Department of Agriculture and FisheriesWarwickAustralia
| | | | | | - Margarita Vishnyakova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)St. PetersburgRussian Federation
| | - Eric Bishop-von-Wettberg
- Department of Plant and Soil Science and Gund Institute for the Environment, University of VermontBurlingtonUnited States
- Department of Applied Mathematics, Peter the Great St. Petersburg Polytechnic UniversitySaint PetersburgRussian Federation
| | - Maria Samsonova
- Department of Applied Mathematics, Peter the Great St. Petersburg Polytechnic UniversitySaint PetersburgRussian Federation
| | - Sergey Nuzhdin
- University of Southern CaliforniaLos AngelesUnited States
| | - Chau-Ti Ting
- Department of Life Science, National Taiwan UniversityTaipeiTaiwan
| | - Cheng-Ruei Lee
- Institute of Plant Biology, National Taiwan UniversityTaipeiTaiwan
- Institute of Ecology and Evolutionary Biology, National Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
39
|
Hong J, Rosental L, Xu Y, Xu D, Orf I, Wang W, Hu Z, Su S, Bai S, Ashraf M, Hu C, Zhang C, Li Z, Xu J, Liu Q, Zhang H, Zhang F, Luo Z, Chen M, Chen X, Betts N, Fernie A, Liang W, Chen G, Brotman Y, Zhang D, Shi J. Genetic architecture of seed glycerolipids in Asian cultivated rice. PLANT, CELL & ENVIRONMENT 2023; 46:1278-1294. [PMID: 35698268 DOI: 10.1111/pce.14378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Glycerolipids are essential for rice development and grain quality but its genetic regulation remains unknown. Here we report its genetic base using metabolite-based genome-wide association study and metabolite-based quantitative traits locus (QTL) analyses based on lipidomic profiles of seeds from 587 Asian cultivated rice accessions and 103 chromosomal segment substitution lines, respectively. We found that two genes encoding phosphatidylcholine (PC):diacylglycerol cholinephosphotransferase (OsLP1) and granule-bound starch synthase I (Waxy) contribute to variations in saturated triacylglycerol (TAG) and lyso-PC contents, respectively. We demonstrated that allelic variation in OsLP1 sequence between indica and japonica results in different enzymatic preference for substrate PC-16:0/16:0 and different saturated TAG levels. Further evidence demonstrated that OsLP1 also affects heading date, and that co-selection of OsLP1 and a flooding-tolerant QTL in Aus results in the abundance of saturated TAGs associated with flooding tolerance. Moreover, we revealed that the sequence polymorphisms in Waxy has pleiotropic effects on lyso-PC and amylose content. We proposed that rice seed glycerolipids have been unintentionally shaped during natural and artificial selection for adaptive or import seed quality traits. Collectively, our findings provide valuable genetic resources for rice improvement and evolutionary insights into seed glycerolipid variations in rice.
Collapse
Affiliation(s)
- Jun Hong
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Leah Rosental
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Dawei Xu
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Isabel Orf
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Wengsheng Wang
- Department of Rice Molecular Design Technology and Application, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiqiang Hu
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Su Su
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoxing Bai
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mohammed Ashraf
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaoyang Hu
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Changquan Zhang
- Department of Agronomy, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Zhikang Li
- Department of Rice Molecular Design Technology and Application, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Xu
- Department of Rice Molecular Design Technology and Application, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiaoquan Liu
- Department of Agronomy, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Hui Zhang
- Department of Plant Science, School of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Fengli Zhang
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijing Luo
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjiao Chen
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofei Chen
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Natalie Betts
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Alisdair Fernie
- Department of Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Wanqi Liang
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Dabing Zhang
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Jianxin Shi
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Parida M, Gouda G, Chidambaranathan P, Umakanta N, Katara JL, Sai CB, Samantaray S, Patra BC, Mohapatra T. Mitochondrial markers differentiate two distinct phylogenetic groups in indigenous rice landraces of northeast India: an evolutionary insight. J Genet 2023. [DOI: 10.1007/s12041-023-01422-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
41
|
Abstract
Glacial cycles and wild adaptations shaped grape domestication and the rise of wine.
Collapse
Affiliation(s)
- Robin G Allaby
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Warwick, UK
| |
Collapse
|
42
|
Zhao X, Guo Y, Kang L, Yin C, Bi A, Xu D, Zhang Z, Zhang J, Yang X, Xu J, Xu S, Song X, Zhang M, Li Y, Kear P, Wang J, Liu Z, Fu X, Lu F. Population genomics unravels the Holocene history of bread wheat and its relatives. NATURE PLANTS 2023; 9:403-419. [PMID: 36928772 DOI: 10.1038/s41477-023-01367-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 02/08/2023] [Indexed: 05/06/2023]
Abstract
Deep knowledge of crop biodiversity is essential to improving global food security. Despite bread wheat serving as a keystone crop worldwide, the population history of bread wheat and its relatives, both cultivated and wild, remains elusive. By analysing whole-genome sequences of 795 wheat accessions, we found that bread wheat originated from the southwest coast of the Caspian Sea and underwent a slow speciation process, lasting ~3,300 yr owing to persistent gene flow from its relatives. Soon after, bread wheat spread across Eurasia and reached Europe, South Asia and East Asia ~7,000 to ~5,000 yr ago, shaping a diversified but occasionally convergent adaptive landscape in novel environments. By contrast, the cultivated relatives of bread wheat experienced a population decline by ~82% over the past ~2,000 yr due to the food choice shift of humans. Further biogeographical modelling predicted a continued population shrinking of many bread wheat relatives in the coming decades because of their vulnerability to the changing climate. These findings will guide future efforts in protecting and utilizing wheat biodiversity to enhance global wheat production.
Collapse
Affiliation(s)
- Xuebo Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yafei Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lipeng Kang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Aoyue Bi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daxing Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiliang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jijin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohan Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Song Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyue Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Ming Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiwen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Philip Kear
- International Potato Center-China Center for Asia and the Pacific, Beijing, China
| | - Jing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
43
|
Beye A, Billot C, Ronfort J, McNally KL, Diouf D, Glaszmann JC. Traces of Introgression from cAus into Tropical Japonica Observed in African Upland Rice Varieties. RICE (NEW YORK, N.Y.) 2023; 16:12. [PMID: 36853402 PMCID: PMC9975138 DOI: 10.1186/s12284-023-00625-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Asian rice Oryza sativa, first domesticated in East Asia, has considerable success in African fields. When and where this introduction occurred is unclear. Rice varieties of Asian origin may have evolved locally during and after migration to Africa, resulting in unique adaptations, particularly in relation to upland cultivation as frequently practiced in Africa. METHODS We investigated the genetic differentiation between Asian and African varieties using the 3000 Rice Genomes SNP dataset. African upland cultivars were first characterized using principal component analysis among 292 tropical Japonica accessions from Africa and Asia. The particularities of African accessions were then explored using two inference techniques, PCA-KDE for supervised classification and chromosome painting, and ELAI for individual allelic dosage monitoring. KEY RESULTS Ambiguities of local differentiation between Japonica and other groups pointed at genomic segments that potentially resulted from genetic exchange. Those specific to West African upland accessions were concentrated on chromosome 6 and featured several cAus introgression signals, including a large one between 17.9 and 21.7 Mb. We found iHS statistics in support of positive selection in this region and we provide a list of candidate genes enriched in GO terms that have regulatory functions involved in stress responses that could have facilitated adaptation to harsh upland growing conditions.
Collapse
Affiliation(s)
- Abdoulaye Beye
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, Université de Montpellier, 34398, Montpellier, France
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté Des Sciences Et Techniques, Université Cheikh Anta Diop, 10700, Dakar-Fann, Dakar, Senegal
| | - Claire Billot
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, Université de Montpellier, 34398, Montpellier, France
| | - Joëlle Ronfort
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, Université de Montpellier, 34398, Montpellier, France
| | - Kenneth L McNally
- International Rice Research Institute, DAPO Box 7777, Metro Manila, 1301, The Philippines
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté Des Sciences Et Techniques, Université Cheikh Anta Diop, 10700, Dakar-Fann, Dakar, Senegal
| | - Jean Christophe Glaszmann
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France.
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, Université de Montpellier, 34398, Montpellier, France.
| |
Collapse
|
44
|
Zheng X, Zhong L, Pang H, Wen S, Li F, Lou D, Ge J, Fan W, Wang T, Han Z, Qiao W, Pan X, Zhu Y, Wang J, Tang C, Wang X, Zhang J, Xu Z, Kim SR, Kohli A, Ye G, Olsen KM, Fang W, Yang Q. Lost genome segments associate with trait diversity during rice domestication. BMC Biol 2023; 21:20. [PMID: 36726089 PMCID: PMC9893545 DOI: 10.1186/s12915-023-01512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 01/10/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND DNA mutations of diverse types provide the raw material required for phenotypic variation and evolution. In the case of crop species, previous research aimed to elucidate the changing patterns of repetitive sequences, single-nucleotide polymorphisms (SNPs), and small InDels during domestication to explain morphological evolution and adaptation to different environments. Additionally, structural variations (SVs) encompassing larger stretches of DNA are more likely to alter gene expression levels leading to phenotypic variation affecting plant phenotypes and stress resistance. Previous studies on SVs in rice were hampered by reliance on short-read sequencing limiting the quantity and quality of SV identification, while SV data are currently only available for cultivated rice, with wild rice largely uncharacterized. Here, we generated two genome assemblies for O. rufipogon using long-read sequencing and provide insights on the evolutionary pattern and effect of SVs on morphological traits during rice domestication. RESULTS In this study, we identified 318,589 SVs in cultivated and wild rice populations through a comprehensive analysis of 13 high-quality rice genomes and found that wild rice genomes contain 49% of unique SVs and an average of 1.76% of genes were lost during rice domestication. These SVs were further genotyped for 649 rice accessions, their evolutionary pattern during rice domestication and potential association with the diversity of important agronomic traits were examined. Genome-wide association studies between these SVs and nine agronomic traits identified 413 candidate causal variants, which together affect 361 genes. An 824-bp deletion in japonica rice, which encodes a serine carboxypeptidase family protein, is shown to be associated with grain length. CONCLUSIONS We provide relatively accurate and complete SV datasets for cultivated and wild rice accessions, especially in TE-rich regions, by comparing long-read sequencing data for 13 representative varieties. The integrated rice SV map and the identified candidate genes and variants represent valuable resources for future genomic research and breeding in rice.
Collapse
Affiliation(s)
- Xiaoming Zheng
- grid.410727.70000 0001 0526 1937National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China ,grid.419387.00000 0001 0729 330XInternational Rice Research Institute, DAPO box 7777, Metro Manila, the Philippines ,grid.410727.70000 0001 0526 1937Sanya National Research Institute of Breeding in Hainan, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Limei Zhong
- grid.260463.50000 0001 2182 8825College of life science, Nanchang University, Nanchang, China
| | - Hongbo Pang
- grid.263484.f0000 0004 1759 8467College of Life Science, Shenyang Normal University, Shenyang, China
| | - Siyu Wen
- grid.410727.70000 0001 0526 1937Sanya National Research Institute of Breeding in Hainan, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Li
- grid.410727.70000 0001 0526 1937National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Danjing Lou
- grid.410727.70000 0001 0526 1937National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jinyue Ge
- grid.410727.70000 0001 0526 1937National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Weiya Fan
- grid.410727.70000 0001 0526 1937National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Tianyi Wang
- Smartgenomics Technology Institute, Tianjin, China
| | - Zhenyun Han
- grid.410727.70000 0001 0526 1937National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Weihua Qiao
- grid.410727.70000 0001 0526 1937National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiaowu Pan
- grid.410598.10000 0004 4911 9766Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yebao Zhu
- grid.418033.d0000 0001 2229 4212Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jilin Wang
- grid.464380.d0000 0000 9885 0994Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Cuifeng Tang
- grid.410732.30000 0004 1799 1111Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xinhua Wang
- grid.464347.6Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Jing Zhang
- grid.135769.f0000 0001 0561 6611Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China ,grid.484195.5Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Zhijian Xu
- grid.452720.60000 0004 0415 7259Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Sung Ryul Kim
- grid.419387.00000 0001 0729 330XInternational Rice Research Institute, DAPO box 7777, Metro Manila, the Philippines
| | - Ajay Kohli
- grid.419387.00000 0001 0729 330XInternational Rice Research Institute, DAPO box 7777, Metro Manila, the Philippines
| | - Guoyou Ye
- grid.419387.00000 0001 0729 330XInternational Rice Research Institute, DAPO box 7777, Metro Manila, the Philippines ,grid.289247.20000 0001 2171 7818Crop Biotech Institute & Department of Genetic Engineering, Kyung Hee University, Yongin, 446-701 Republic of Korea
| | - Kenneth M. Olsen
- grid.4367.60000 0001 2355 7002Biology Department, Washington University, Campus Box 1137, St. Louis, MO 63130 USA
| | - Wei Fang
- grid.410727.70000 0001 0526 1937National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Qingwen Yang
- grid.410727.70000 0001 0526 1937National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
45
|
Shi S, Pan K, Zhang G, Zhao D, Zhou H, Liu J, Cao C, Jiang Y. Differences in grain protein content and regional distribution of 706 rice accessions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1593-1599. [PMID: 36326454 DOI: 10.1002/jsfa.12308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Improving rice quality is one of the main goals of global rice breeding programs, and rice protein content is one of the most important factors affecting rice eating quality. The protein content of rice is mainly determined by genetic factors and also affected by environmental factors. However, the differences and regional distribution of protein content during the evolution of different rice varieties are still unclear. RESULTS The purpose of this study was to understand the differences in grain protein content of 706 rice accessions in different regions and different rice subtypes. The influencing factors of grain protein content differences were analyzed from the perspectives of genetic characteristics, environment, rice subtypes, and breeding process. The results showed that the grain protein content of indica rice in most countries and regions was higher than that of japonica rice. From the perspective of the rice breeding process, the protein content of modern varieties in japonica was lower than that of landrace varieties. In most countries, modern varieties of indica rice had higher protein content than landrace varieties did. CONCLUSION The environment and genetic characteristics caused the change in the protein content of rice. This study has improved our understanding of the differences in protein content of rice from different rice varieties. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shijie Shi
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Keqiang Pan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gaoyu Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dan Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Juan Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cougui Cao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, China
| | - Yang Jiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
46
|
Wang F, Li S, Kong F, Lin X, Lu S. Altered regulation of flowering expands growth ranges and maximizes yields in major crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1094411. [PMID: 36743503 PMCID: PMC9892950 DOI: 10.3389/fpls.2023.1094411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/04/2023] [Indexed: 06/14/2023]
Abstract
Flowering time influences reproductive success in plants and has a significant impact on yield in grain crops. Flowering time is regulated by a variety of environmental factors, with daylength often playing an important role. Crops can be categorized into different types according to their photoperiod requirements for flowering. For instance, long-day crops include wheat (Triticum aestivum), barley (Hordeum vulgare), and pea (Pisum sativum), while short-day crops include rice (Oryza sativa), soybean (Glycine max), and maize (Zea mays). Understanding the molecular regulation of flowering and genotypic variation therein is important for molecular breeding and crop improvement. This paper reviews the regulation of flowering in different crop species with a particular focus on how photoperiod-related genes facilitate adaptation to local environments.
Collapse
Affiliation(s)
| | | | | | - Xiaoya Lin
- *Correspondence: Xiaoya Lin, ; Sijia Lu,
| | - Sijia Lu
- *Correspondence: Xiaoya Lin, ; Sijia Lu,
| |
Collapse
|
47
|
Lasky JR, Josephs EB, Morris GP. Genotype-environment associations to reveal the molecular basis of environmental adaptation. THE PLANT CELL 2023; 35:125-138. [PMID: 36005926 PMCID: PMC9806588 DOI: 10.1093/plcell/koac267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/23/2022] [Indexed: 06/14/2023]
Abstract
A fundamental goal in plant biology is to identify and understand the variation underlying plants' adaptation to their environment. Climate change has given new urgency to this goal, as society aims to accelerate adaptation of ecologically important plant species, endangered plant species, and crops to hotter, less predictable climates. In the pre-genomic era, identifying adaptive alleles was painstaking work, leveraging genetics, molecular biology, physiology, and ecology. Now, the rise of genomics and new computational approaches may facilitate this research. Genotype-environment associations (GEAs) use statistical associations between allele frequency and environment of origin to test the hypothesis that allelic variation at a given gene is adapted to local environments. Researchers may scan the genome for GEAs to generate hypotheses on adaptive genetic variants (environmental genome-wide association studies). Despite the rapid adoption of these methods, many important questions remain about the interpretation of GEA findings, which arise from fundamental unanswered questions on the genetic architecture of adaptation and limitations inherent to association-based analyses. We outline strategies to ground GEAs in the underlying hypotheses of genetic architecture and better test GEA-generated hypotheses using genetics and ecophysiology. We provide recommendations for new users who seek to learn about the molecular basis of adaptation. When combined with a rigorous hypothesis testing framework, GEAs may facilitate our understanding of the molecular basis of climate adaptation for plant improvement.
Collapse
Affiliation(s)
- Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Emily B Josephs
- Department of Plant Biology; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Geoffrey P Morris
- Department of Soil and Crop Sciences; Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80526, USA
| |
Collapse
|
48
|
Feng J, Li Z, Luo W, Liang G, Xu Y, Chong K. COG2 negatively regulates chilling tolerance through cell wall components altered in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:19. [PMID: 36680595 DOI: 10.1007/s00122-023-04261-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/10/2022] [Indexed: 06/17/2023]
Abstract
Chilling-tolerant QTL gene COG2 encoded an extensin and repressed chilling tolerance by affecting the compositions of cell wall. Rice as a major crop is susceptible to chilling stress. Chilling tolerance is a complex trait controlled by multiple quantitative trait loci (QTLs). Here, we identify a QTL gene, COG2, that negatively regulates cold tolerance at seedling stage in rice. COG2 overexpression transgenic plants are sensitive to cold, whereas knockout transgenic lines enhance chilling tolerance. Natural variation analysis shows that Hap1 is a specific haplotype in japonica/Geng rice and correlates with chilling tolerance. The SNP1 in COG2 promoter is a specific divergency and leads to the difference in the expression level of COG2 between japonica/Geng and indica/Xian cultivars. COG2 encodes a cell wall-localized extensin and affects the compositions of cell wall, including pectin and cellulose, to defense the chilling stress. The results extend the understanding of the adaptation to the environment and provide an editing target for molecular design breeding of cold tolerance in rice.
Collapse
Affiliation(s)
- Jinglei Feng
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhitao Li
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Luo
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yunyuan Xu
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kang Chong
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
49
|
Pigs as Pets: Early Human Relations with the Sulawesi Warty Pig ( Sus celebensis). Animals (Basel) 2022; 13:ani13010048. [PMID: 36611658 PMCID: PMC9817959 DOI: 10.3390/ani13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
The Sulawesi warty pig (S. celebensis) is a wild and still-extant suid that is endemic to the Indonesian island of Sulawesi. It has long been theorised that S. celebensis was domesticated and/or deliberately introduced to other islands in Indonesia prior to the advent of the Neolithic farming transition in the region. Thus far, however, there has been no empirical support for this idea, nor have scientists critiqued the argument that S. celebensis was a pre-Neolithic domesticate in detail. Here, it is proposed that early foragers could have formed a relationship with S. celebensis that was similar in essence to the close association between Late Pleistocene foragers in Eurasia and the wild wolf ancestors of domestic dogs. That is, a longstanding practice of hunter-gatherers intensively socialising wild-caught S. celebensis piglets for adoption into human society as companion animals ('pets') may have altered the predator-prey dynamic, brought aspects of wild pig behaviour and reproduction under indirect human selection and control, and caused changes that differentiated human-associated pigs from their solely wild-living counterparts.
Collapse
|
50
|
Su C, Xu Z, Shan X, Cai B, Zhao H, Zhang J. Cell-type-specific co-expression inference from single cell RNA-sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.13.520181. [PMID: 36561173 DOI: 10.1101/2022.04.07.487499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The inference of gene co-expressions from microarray and RNA-sequencing data has led to rich insights on biological processes and disease mechanisms. However, the bulk samples analyzed in most studies are a mixture of different cell types. As a result, the inferred co-expressions are confounded by varying cell type compositions across samples and only offer an aggregated view of gene regulations that may be distinct across different cell types. The advancement of single cell RNA-sequencing (scRNA-seq) technology has enabled the direct inference of co-expressions in specific cell types, facilitating our understanding of cell-type-specific biological functions. However, the high sequencing depth variations and measurement errors in scRNA-seq data present significant challenges in inferring cell-type-specific gene co-expressions, and these issues have not been adequately addressed in the existing methods. We propose a statistical approach, CS-CORE, for estimating and testing cell-type-specific co-expressions, built on a general expression-measurement model that explicitly accounts for sequencing depth variations and measurement errors in the observed single cell data. Systematic evaluations show that most existing methods suffer from inflated false positives and biased co-expression estimates and clustering analysis, whereas CS-CORE has appropriate false positive control, unbiased co-expression estimates, good statistical power and satisfactory performance in downstream co-expression analysis. When applied to analyze scRNA-seq data from postmortem brain samples from Alzheimer’s disease patients and controls and blood samples from COVID-19 patients and controls, CS-CORE identified cell-type-specific co-expressions and differential co-expressions that were more reproducible and/or more enriched for relevant biological pathways than those inferred from other methods.
Collapse
|