1
|
Lim CP, Leow CH, Lim HT, Kok BH, Chuah C, Oliveira JIN, Jones M, Leow CY. Insights into structural vaccinology harnessed for universal coronavirus vaccine development. Clin Exp Vaccine Res 2024; 13:202-217. [PMID: 39144127 PMCID: PMC11319108 DOI: 10.7774/cevr.2024.13.3.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 08/16/2024] Open
Abstract
Structural vaccinology is pivotal in expediting vaccine design through high-throughput screening of immunogenic antigens. Leveraging the structural and functional characteristics of antigens and immune cell receptors, this approach employs protein structural comparison to identify conserved patterns in key pathogenic components. Molecular modeling techniques, including homology modeling and molecular docking, analyze specific three-dimensional (3D) structures and protein interactions and offer valuable insights into the 3D interactions and binding affinity between vaccine candidates and target proteins. In this review, we delve into the utilization of various immunoinformatics and molecular modeling tools to streamline the development of broad-protective vaccines against coronavirus disease 2019 variants. Structural vaccinology significantly enhances our understanding of molecular interactions between hosts and pathogens. By accelerating the pace of developing effective and targeted vaccines, particularly against the rapidly mutating severe acute respiratory syndrome coronavirus 2 and other prevalent infectious diseases, this approach stands at the forefront of advancing immunization strategies. The combination of computational techniques and structural insights not only facilitates the identification of potential vaccine candidates but also contributes to the rational design of vaccines, fostering a more efficient and targeted approach to combatting infectious diseases.
Collapse
Affiliation(s)
- Chin Peng Lim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Hui Ting Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Candy Chuah
- Faculty of Medicine, Asian Institute of Medical Science and Technology University, Bedong, Malaysia
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Malcolm Jones
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
2
|
Abela IA, Schwarzmüller M, Ulyte A, Radtke T, Haile SR, Ammann P, Raineri A, Rueegg S, Epp S, Berger C, Böni J, Manrique A, Audigé A, Huber M, Schreiber PW, Scheier T, Fehr J, Weber J, Rusert P, Günthard HF, Kouyos RD, Puhan MA, Kriemler S, Trkola A, Pasin C. Cross-protective HCoV immunity reduces symptom development during SARS-CoV-2 infection. mBio 2024; 15:e0272223. [PMID: 38270455 PMCID: PMC10865973 DOI: 10.1128/mbio.02722-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Numerous clinical parameters link to severe coronavirus disease 2019, but factors that prevent symptomatic disease remain unknown. We investigated the impact of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and endemic human coronavirus (HCoV) antibody responses on symptoms in a longitudinal children cohort (n = 2,917) and a cross-sectional cohort including children and adults (n = 882), all first exposed to SARS-CoV-2 (March 2020 to March 2021) in Switzerland. Saliva (n = 4,993) and plasma (n = 7,486) antibody reactivity to the four HCoVs (subunit S1 [S1]) and SARS-CoV-2 (S1, receptor binding domain, subunit S2 [S2], nucleocapsid protein) was determined along with neutralizing activity against SARS-CoV-2 Wuhan, Alpha, Delta, and Omicron (BA.2) in a subset of individuals. Inferred recent SARS-CoV-2 infection was associated with a strong correlation between mucosal and systemic SARS-CoV-2 anti-spike responses. Individuals with pre-existing HCoV-S1 reactivity exhibited significantly higher antibody responses to SARS-CoV-2 in both plasma (IgG regression coefficients = 0.20, 95% CI = [0.09, 0.32], P < 0.001) and saliva (IgG regression coefficient = 0.60, 95% CI = [0.088, 1.11], P = 0.025). Saliva neutralization activity was modest but surprisingly broad, retaining activity against Wuhan (median NT50 = 32.0, 1Q-3Q = [16.4, 50.2]), Alpha (median NT50 = 34.9, 1Q-3Q = [26.0, 46.6]), and Delta (median NT50 = 28.0, 1Q-3Q = [19.9, 41.7]). In line with a rapid mucosal defense triggered by cross-reactive HCoV immunity, asymptomatic individuals presented with higher pre-existing HCoV-S1 activity in plasma (IgG HKU1, odds ratio [OR] = 0.53, 95% CI = [0.29,0.97], P = 0.038) and saliva (total HCoV, OR = 0.55, 95% CI = [0.33, 0.91], P = 0.019) and higher SARS-CoV-2 reactivity in saliva (IgG S2 fold change = 1.26, 95% CI = [1.03, 1.54], P = 0.030). By investigating the systemic and mucosal immune responses to SARS-CoV-2 and HCoVs in a population without prior exposure to SARS-CoV-2 or vaccination, we identified specific antibody reactivities associated with lack of symptom development.IMPORTANCEKnowledge of the interplay between human coronavirus (HCoV) immunity and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is critical to understanding the coexistence of current endemic coronaviruses and to building knowledge potential future zoonotic coronavirus transmissions. This study, which retrospectively analyzed a large cohort of individuals first exposed to SARS-CoV-2 in Switzerland in 2020-2021, revealed several key findings. Pre-existing HCoV immunity, particularly mucosal antibody responses, played a significant role in improving SARS-CoV-2 immune response upon infection and reducing symptoms development. Mucosal neutralizing activity against SARS-CoV-2, although low in magnitude, retained activity against SARS-CoV-2 variants underlining the importance of maintaining local mucosal immunity to SARS-CoV-2. While the cross-protective effect of HCoV immunity was not sufficient to block infection by SARS-CoV-2, the present study revealed a remarkable impact on limiting symptomatic disease. These findings support the feasibility of generating pan-protective coronavirus vaccines by inducing potent mucosal immune responses.
Collapse
Affiliation(s)
- Irene A. Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Agne Ulyte
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Thomas Radtke
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Sarah R. Haile
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Priska Ammann
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Alessia Raineri
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Sonja Rueegg
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Amapola Manrique
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Annette Audigé
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter W. Schreiber
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jan Fehr
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roger D. Kouyos
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Milo A. Puhan
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Susi Kriemler
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Chloé Pasin
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Collegium Helveticum, Zurich, Switzerland
| |
Collapse
|
3
|
Mayes CM, Santarpia JL. Pan-Coronavirus CRISPR-CasRx Effector System Significantly Reduces Viable Titer in HCoV-OC43, HCoV-229E, and SARS-CoV-2. CRISPR J 2023; 6:359-368. [PMID: 36912815 PMCID: PMC10457650 DOI: 10.1089/crispr.2022.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
CRISPR-based technology has become widely used as an antiviral strategy, including as a broad-spectrum human coronavirus (HCoV) therapeutic. In this work, we have designed a CRISPR-CasRx effector system with guide RNAs (gRNAs) that are cross-reactive among several HCoV species. We tested the efficacy of this pan-coronavirus effector system by evaluating the reduction in viral viability associated with different CRISPR targets in HCoV-OC43, HCoV-229E, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We determined that several CRISPR targets significantly reduce viral titer, despite the presence of single nucleotide polymorphisms in the gRNA when compared with a non-targeting, negative control gRNA. CRISPR targets reduced viral titer between 85% and >99% in HCoV-OC43, between 78% and >99% in HCoV-229E, and between 70% and 94% in SARS-CoV-2 when compared with an untreated virus control. These data establish a proof-of-concept for a pan-coronavirus CRISPR effector system that is capable of reducing viable virus in both Risk Group 2 and Risk Group 3 HCoV pathogens.
Collapse
Affiliation(s)
- Cathryn M. Mayes
- WMD Threats and Aerosol Science, Sandia National Laboratories, Albuquerque, New Mexico, USA; National Strategic Research Institute, Omaha, Nebraska, USA
| | - Joshua L. Santarpia
- University of Nebraska Medical Center, Omaha, Nebraska, USA; and National Strategic Research Institute, Omaha, Nebraska, USA
- Chemical & Biological Threat Detection & Countermeasure Development, National Strategic Research Institute, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Abdelaziz MO, Raftery MJ, Weihs J, Bielawski O, Edel R, Köppke J, Vladimirova D, Adler JM, Firsching T, Voß A, Gruber AD, Hummel LV, Fernandez Munoz I, Müller-Marquardt F, Willimsky G, Elleboudy NS, Trimpert J, Schönrich G. Early protective effect of a ("pan") coronavirus vaccine (PanCoVac) in Roborovski dwarf hamsters after single-low dose intranasal administration. Front Immunol 2023; 14:1166765. [PMID: 37520530 PMCID: PMC10372429 DOI: 10.3389/fimmu.2023.1166765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the danger posed by human coronaviruses. Rapid emergence of immunoevasive variants and waning antiviral immunity decrease the effect of the currently available vaccines, which aim at induction of neutralizing antibodies. In contrast, T cells are marginally affected by antigen evolution although they represent the major mediators of virus control and vaccine protection against virus-induced disease. Materials and methods We generated a multi-epitope vaccine (PanCoVac) that encodes the conserved T cell epitopes from all structural proteins of coronaviruses. PanCoVac contains elements that facilitate efficient processing and presentation of PanCoVac-encoded T cell epitopes and can be uploaded to any available vaccine platform. For proof of principle, we cloned PanCoVac into a non-integrating lentivirus vector (NILV-PanCoVac). We chose Roborovski dwarf hamsters for a first step in evaluating PanCoVac in vivo. Unlike mice, they are naturally susceptible to SARS-CoV-2 infection. Moreover, Roborovski dwarf hamsters develop COVID-19-like disease after infection with SARS-CoV-2 enabling us to look at pathology and clinical symptoms. Results Using HLA-A*0201-restricted reporter T cells and U251 cells expressing a tagged version of PanCoVac, we confirmed in vitro that PanCoVac is processed and presented by HLA-A*0201. As mucosal immunity in the respiratory tract is crucial for protection against respiratory viruses such as SARS-CoV-2, we tested the protective effect of single-low dose of NILV-PanCoVac administered via the intranasal (i.n.) route in the Roborovski dwarf hamster model of COVID-19. After infection with ancestral SARS-CoV-2, animals immunized with a single-low dose of NILV-PanCoVac i.n. did not show symptoms and had significantly decreased viral loads in the lung tissue. This protective effect was observed in the early phase (2 days post infection) after challenge and was not dependent on neutralizing antibodies. Conclusion PanCoVac, a multi-epitope vaccine covering conserved T cell epitopes from all structural proteins of coronaviruses, might protect from severe disease caused by SARS-CoV-2 variants and future pathogenic coronaviruses. The use of (HLA-) humanized animal models will allow for further efficacy studies of PanCoVac-based vaccines in vivo.
Collapse
Affiliation(s)
- Mohammed O. Abdelaziz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Martin J. Raftery
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julian Weihs
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pediatrics, Division of Gastroenterology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olivia Bielawski
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Edel
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Köppke
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Julia M. Adler
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Theresa Firsching
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Anne Voß
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Achim D. Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Luca V. Hummel
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivan Fernandez Munoz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Francesca Müller-Marquardt
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerald Willimsky
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Partner Site Berlin, Berlin, Germany
| | - Nooran S. Elleboudy
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Al-Hatamleh MA, Abusalah MA, Hatmal MM, Alshaer W, Ahmad S, Mohd-Zahid MH, Rahman ENSE, Yean CY, Alias IZ, Uskoković V, Mohamud R. Understanding the challenges to COVID-19 vaccines and treatment options, herd immunity and probability of reinfection. J Taibah Univ Med Sci 2023; 18:600-638. [PMID: 36570799 PMCID: PMC9758618 DOI: 10.1016/j.jtumed.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Unlike pandemics in the past, the outbreak of coronavirus disease 2019 (COVID-19), which rapidly spread worldwide, was met with a different approach to control and measures implemented across affected countries. The lack of understanding of the fundamental nature of the outbreak continues to make COVID-19 challenging to manage for both healthcare practitioners and the scientific community. Challenges to vaccine development and evaluation, current therapeutic options, convalescent plasma therapy, herd immunity, and the emergence of reinfection and new variants remain the major obstacles to combating COVID-19. This review discusses these challenges in the management of COVID-19 at length and highlights the mechanisms needed to provide better understanding of this pandemic.
Collapse
Affiliation(s)
- Mohammad A.I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mai A. Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
| | - Ma'mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Manali H. Mohd-Zahid
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Engku Nur Syafirah E.A. Rahman
- Department of Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Chan Y. Yean
- Department of Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Iskandar Z. Alias
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
6
|
Moore KA, Leighton T, Ostrowsky JT, Anderson CJ, Danila RN, Ulrich AK, Lackritz EM, Mehr AJ, Baric RS, Baylor NW, Gellin BG, Gordon JL, Krammer F, Perlman S, Rees HV, Saville M, Weller CL, Osterholm MT. A research and development (R&D) roadmap for broadly protective coronavirus vaccines: A pandemic preparedness strategy. Vaccine 2023; 41:2101-2112. [PMID: 36870874 PMCID: PMC9941884 DOI: 10.1016/j.vaccine.2023.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Broadly protective coronavirus vaccines are an important tool for protecting against future SARS-CoV-2 variants and could play a critical role in mitigating the impact of future outbreaks or pandemics caused by novel coronaviruses. The Coronavirus Vaccines Research and Development (R&D) Roadmap (CVR) is aimed at promoting the development of such vaccines. The CVR, funded by the Bill & Melinda Gates Foundation and The Rockefeller Foundation, was generated through a collaborative and iterative process, which was led by the Center for Infectious Disease Research and Policy (CIDRAP) at the University of Minnesota and involved 50 international subject matter experts and recognized leaders in the field. This report summarizes the major issues and areas of research outlined in the CVR and identifies high-priority milestones. The CVR covers a 6-year timeframe and is organized into five topic areas: virology, immunology, vaccinology, animal and human infection models, and policy and finance. Included in each topic area are key barriers, gaps, strategic goals, milestones, and additional R&D priorities. The roadmap includes 20 goals and 86 R&D milestones, 26 of which are ranked as high priority. By identifying key issues, and milestones for addressing them, the CVR provides a framework to guide funding and research campaigns that promote the development of broadly protective coronavirus vaccines.
Collapse
Affiliation(s)
- Kristine A Moore
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA; Center for Infectious Disease Research and Policy, C315 Mayo Memorial Building, MMC 263, 420 Delaware Street, SE, Minneapolis, Minnesota 55455, USA.
| | - Tabitha Leighton
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia T Ostrowsky
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cory J Anderson
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Angela K Ulrich
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eve M Lackritz
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Angela J Mehr
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ralph S Baric
- University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | - Jennifer L Gordon
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Florian Krammer
- Department of Microbiology, Department of Pathology, Molecular and Cell-Based Medicine, and Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | | | - Helen V Rees
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Melanie Saville
- Coalition for Epidemic Preparedness Innovations, London, United Kingdom
| | | | - Michael T Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Rodriguez-Aponte SA, Dalvie NC, Wong TY, Johnston RS, Naranjo CA, Bajoria S, Kumru OS, Kaur K, Russ BP, Lee KS, Cyphert HA, Barbier M, Rao HD, Rajurkar MP, Lothe RR, Shaligram US, Batwal S, Chandrasekaran R, Nagar G, Kleanthous H, Biswas S, Bevere JR, Joshi SB, Volkin DB, Damron FH, Love JC. Molecular engineering of a cryptic epitope in Spike RBD improves manufacturability and neutralizing breadth against SARS-CoV-2 variants. Vaccine 2023; 41:1108-1118. [PMID: 36610932 PMCID: PMC9797419 DOI: 10.1016/j.vaccine.2022.12.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
There is a continued need for sarbecovirus vaccines that can be manufactured and distributed in low- and middle-income countries (LMICs). Subunit protein vaccines are manufactured at large scales at low costs, have less stringent temperature requirements for distribution in LMICs, and several candidates have shown protection against SARS-CoV-2. We previously reported an engineered variant of the SARS-CoV-2 Spike protein receptor binding domain antigen (RBD-L452K-F490W; RBD-J) with enhanced manufacturability and immunogenicity compared to the ancestral RBD. Here, we report a second-generation engineered RBD antigen (RBD-J6) with two additional mutations to a hydrophobic cryptic epitope in the RBD core, S383D and L518D, that further improved expression titers and biophysical stability. RBD-J6 retained binding affinity to human convalescent sera and to all tested neutralizing antibodies except antibodies that target the class IV epitope on the RBD core. K18-hACE2 transgenic mice immunized with three doses of a Beta variant of RBD-J6 displayed on a virus-like particle (VLP) generated neutralizing antibodies (nAb) to nine SARS-CoV-2 variants of concern at similar levels as two doses of Comirnaty. The vaccinated mice were also protected from challenge with Alpha or Beta SARS-CoV-2. This engineered antigen could be useful for modular RBD-based subunit vaccines to enhance manufacturability and global access, or for further development of variant-specific or broadly acting booster vaccines.
Collapse
Affiliation(s)
- Sergio A Rodriguez-Aponte
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil C Dalvie
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | - Ryan S Johnston
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher A Naranjo
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sakshi Bajoria
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Kawaljit Kaur
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Brynnan P Russ
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | - Katherine S Lee
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | - Holly A Cyphert
- Department of Biological Sciences, Marshall University, Huntington, WV 26506, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | - Harish D Rao
- Serum Institute of India Pvt. Ltd., Pune 411028, India
| | | | | | | | | | | | - Gaurav Nagar
- Serum Institute of India Pvt. Ltd., Pune 411028, India
| | | | - Sumi Biswas
- SpyBiotech Limited, Oxford Business Park North, Oxford OX4 2JZ, UK
| | - Justin R Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | - J Christopher Love
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Prevention of SARS-CoV-2 and respiratory viral infections in healthcare settings: current and emerging concepts. Curr Opin Infect Dis 2022; 35:353-362. [PMID: 35849526 DOI: 10.1097/qco.0000000000000839] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW COVID-19 has catalyzed a wealth of new data on the science of respiratory pathogen transmission and revealed opportunities to enhance infection prevention practices in healthcare settings. RECENT FINDINGS New data refute the traditional division between droplet vs airborne transmission and clarify the central role of aerosols in spreading all respiratory viruses, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), even in the absence of so-called 'aerosol-generating procedures' (AGPs). Indeed, most AGPs generate fewer aerosols than talking, labored breathing, or coughing. Risk factors for transmission include high viral loads, symptoms, proximity, prolonged exposure, lack of masking, and poor ventilation. Testing all patients on admission and thereafter can identify early occult infections and prevent hospital-based clusters. Additional prevention strategies include universal masking, encouraging universal vaccination, preferential use of N95 respirators when community rates are high, improving native ventilation, utilizing portable high-efficiency particulate air filters when ventilation is limited, and minimizing room sharing when possible. SUMMARY Multifaceted infection prevention programs that include universal testing, masking, vaccination, and enhanced ventilation can minimize nosocomial SARS-CoV-2 infections in patients and workplace infections in healthcare personnel. Extending these insights to other respiratory viruses may further increase the safety of healthcare and ready hospitals for novel respiratory viruses that may emerge in the future.
Collapse
|
9
|
Ye Q, Wu M, Zhou C, Lu X, Huang B, Zhang N, Zhao H, Chi H, Zhang X, Ling D, Zhang RR, Li Z, Luo D, Huang YJ, Qiu HY, Song H, Tan W, Xu K, Ying B, Qin CF. Rational development of a combined mRNA vaccine against COVID-19 and influenza. NPJ Vaccines 2022; 7:84. [PMID: 35882870 PMCID: PMC9315335 DOI: 10.1038/s41541-022-00478-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
As the world continues to experience the COVID-19 pandemic, seasonal influenza remain a cause of severe morbidity and mortality globally. Worse yet, coinfection with SARS-CoV-2 and influenza A virus (IAV) leads to more severe clinical outcomes. The development of a combined vaccine against both COVID-19 and influenza is thus of high priority. Based on our established lipid nanoparticle (LNP)-encapsulated mRNA vaccine platform, we developed and characterized a novel mRNA vaccine encoding the HA antigen of influenza A (H1N1) virus, termed ARIAV. Then, ARIAV was combined with our COVID-19 mRNA vaccine ARCoV, which encodes the receptor-binding domain (RBD) of the SARS-CoV-2 S protein, to formulate the final combined vaccine, AR-CoV/IAV. Further characterization demonstrated that immunization with two doses of AR-CoV/IAV elicited robust protective antibodies as well as antigen-specific cellular immune responses against SARS-CoV-2 and IAV. More importantly, AR-CoV/IAV immunization protected mice from coinfection with IAV and the SARS-CoV-2 Alpha and Delta variants. Our results highlight the potential of the LNP-mRNA vaccine platform in preventing COVID-19 and influenza, as well as other respiratory diseases.
Collapse
Affiliation(s)
- Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Mei Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Chao Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xishan Lu
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, 215123, China
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ning Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hang Chi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xiaojing Zhang
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, 215123, China
| | - Dandan Ling
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, 215123, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhuofan Li
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, 215123, China
| | - Dan Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yi-Jiao Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hong-Ying Qiu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Haifeng Song
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, 215123, China
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Ke Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Bo Ying
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, 215123, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China. .,Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
10
|
Rayati Damavandi A, Dowran R, Al Sharif S, Kashanchi F, Jafari R. Molecular variants of SARS-CoV-2: antigenic properties and current vaccine efficacy. Med Microbiol Immunol 2022; 211:79-103. [PMID: 35235048 PMCID: PMC8889515 DOI: 10.1007/s00430-022-00729-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/09/2022] [Indexed: 12/30/2022]
Abstract
An ongoing pandemic of newly emerged SARS-CoV-2 has puzzled many scientists and health care policymakers around the globe. The appearance of the virus was accompanied by several distinct antigenic changes, specifically spike protein which is a key element for host cell entry of virus and major target of currently developing vaccines. Some of these mutations enable the virus to attach to receptors more firmly and easily. Moreover, a growing number of trials are demonstrating higher transmissibility and, in some of them, potentially more serious forms of illness related to novel variants. Some of these lineages, especially the Beta variant of concern, were reported to diminish the neutralizing activity of monoclonal and polyclonal antibodies present in both convalescent and vaccine sera. This could imply that these independently emerged variants could make antiviral strategies prone to serious threats. The rapid changes in the mutational profile of new clades, especially escape mutations, suggest the convergent evolution of the virus due to immune pressure. Nevertheless, great international efforts have been dedicated to producing efficacious vaccines with cutting-edge technologies. Despite the partial decrease in vaccines efficacy against worrisome clades, most current vaccines are still effective at preventing mild to severe forms of disease and hospital admission or death due to coronavirus disease 2019 (COVID-19). Here, we summarize existing evidence about newly emerged variants of SARS-CoV-2 and, notably, how well vaccines work against targeting new variants and modifications of highly flexible mRNA vaccines that might be required in the future.
Collapse
Affiliation(s)
- Amirmasoud Rayati Damavandi
- Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Dowran
- Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sarah Al Sharif
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA USA
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Hematology, Immune Cell Therapy, and Stem Cell Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
11
|
Abstract
There is a common preconception that reaching an estimated herd immunity threshold through vaccination will end the COVID-19 pandemic. However, the mathematical models underpinning this estimate make numerous assumptions that may not be met in the real world. The protection afforded by vaccines is imperfect, particularly against asymptomatic infection, which can still result in transmission and propagate pandemic viral spread. Immune responses wane and SARS-COV-2 has the capacity to mutate over time to become more infectious and resistant to vaccine elicited immunity. Human behavior and public health restrictions also vary over time and among different populations, impacting the transmissibility of infection. These ever-changing factors modify the number of secondary cases produced by an infected individual, thereby necessitating constant revision of the herd immunity threshold. Even so, vaccination remains a powerful strategy to slow down the pandemic, save lives, and alleviate the burden on limited health care resources.
Collapse
|
12
|
Zhuo SH, Wu JJ, Zhao L, Li WH, Zhao YF, Li YM. A chitosan-mediated inhalable nanovaccine against SARS-CoV-2. NANO RESEARCH 2022; 15:4191-4200. [PMID: 35126879 PMCID: PMC8809230 DOI: 10.1007/s12274-021-4012-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with several antigenic variants, has grown into a global challenge, and the rapid establishment of an immune barrier is crucial to achieving long-term control of the virus. This has led to a great demand for easy preparation and scalable vaccines, especially in low-income countries. Here, we present an inhalable nanovaccine comprising chitosan and SARS-CoV-2 spike protein. The chitosan-mediated nanovaccine enabled a strong spike-specific antibody immune response and augmented local mucosal immunity in bronchoalveolar lavage and lungs, which might be capable of protecting the host from infection without systemic toxicity. In addition, the enhanced adaptive immunity stimulated by chitosan showed potential protection against SARS-CoV-2. Furthermore, inhalation of the nanovaccine induced a comparable antibody response compared to intramuscular injection. This inhalable nanovaccine against SARS-CoV-2 offers a convenient and compliant strategy to reduce the use of needles and the need for medical staff. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (the immune activation of CS-mediated nanovacccine on BMDCs, cell viability, immune responses in lungs and BALF, serum chemistry and H&E histopathological analysis.) is available in the online version of this article at 10.1007/s12274-021-4012-9.
Collapse
Affiliation(s)
- Shao-Hua Zhuo
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Jun-Jun Wu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Lang Zhao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Wen-Hao Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Yu-Fen Zhao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084 China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315221 China
| | - Yan-Mei Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084 China
- Beijing Institute for Brain Disorders, Beijing, 100069 China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
13
|
Affiliation(s)
- David M Morens
- From the National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | | | - Anthony S Fauci
- From the National Institute of Allergy and Infectious Diseases, Bethesda, MD
| |
Collapse
|
14
|
Karczmarzyk K, Kęsik-Brodacka M. Attacking the Intruder at the Gate: Prospects of Mucosal Anti SARS-CoV-2 Vaccines. Pathogens 2022; 11:pathogens11020117. [PMID: 35215061 PMCID: PMC8876505 DOI: 10.3390/pathogens11020117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
The sudden outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic in December 2019 caused crises and health emergencies worldwide. The rapid spread of the virus created an urgent need for the development of an effective vaccine and mass immunization to achieve herd immunity. Efforts of scientific teams at universities and pharmaceutical companies around the world allowed for the development of various types of preparations and made it possible to start the vaccination process. However, it appears that the developed vaccines are not effective enough and do not guarantee long-lasting immunity, especially for new variants of SARS-CoV-2. Considering this problem, it is promising to focus on developing a Coronavirus Disease 2019 (COVID-19) mucosal vaccine. Such a preparation applied directly to the mucous membranes of the upper respiratory tract might provide an immune barrier at the primary point of virus entry into the human body while inducing systemic immunity. A number of such preparations against SARS-CoV-2 are already in various phases of preclinical and clinical trials, and several of them are very close to being accepted for general use, constituting a milestone toward pandemic containment.
Collapse
Affiliation(s)
- Kacper Karczmarzyk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
- Correspondence:
| | | |
Collapse
|
15
|
Ahamad S, Kanipakam H, Gupta D. Insights into the structural and dynamical changes of spike glycoprotein mutations associated with SARS-CoV-2 host receptor binding. J Biomol Struct Dyn 2022; 40:263-275. [PMID: 32851910 PMCID: PMC7484578 DOI: 10.1080/07391102.2020.1811774] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
Novel Coronavirus or SARS-CoV-2 has received worldwide attention due to the COVID-19 pandemic, which originated in Wuhan, China leading to thousands of deaths to date. The SARS-CoV-2 Spike glycoprotein protein is one of the main focus of COVID-19 related research as it is a structural protein that facilitates its attachment, entry, and infection to the host cells. We have focused our work on mutations in two of the several functional domains in the virus spike glycoprotein, namely, receptor-binding domain (RBD) and heptad repeat 1 (HR1) domain. These domains are majorly responsible for the stability of spike glycoprotein and play a key role in the host cell attachment and infection. In our study, several mutations like R408I, L455Y, F486L, Q493N, Q498Y, N501T of RBD (319-591), and A930V, D936Y of HR1 (912-984) have been studied to examine its role on the spike glycoprotein native structure. Comparisons of MD simulations in the WT and mutants revealed a significant de-stabilization effect of the mutations on RBD and HR1 domains. We have investigated the impact of mapped mutations on the stability of the spike glycoprotein, before binding to the receptor, which may be consequential to its binding properties to the receptor and other ligands.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shahzaib Ahamad
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Hema Kanipakam
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
16
|
Mayburd A. Cross-testing of direct-action antivirals, universal vaccines, or search for host-level antivirals: what will sooner lead to a generic capability to combat the emerging viral pandemics? Expert Rev Anti Infect Ther 2021; 20:507-511. [PMID: 34719314 DOI: 10.1080/14787210.2022.2000859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Mitigation of future viral pandemics is an enormous technical problem, but its solution is essential for preservation of life, economic well-being, and social stability. The author examined host-level, direct action antiviral, and universal vaccine approaches while presenting a specific screening proposal. AREAS COVERED The author examined the most recent biomedical literature publicly available in the databases and identified the publications supporting the principle of cross-applicability of direct-action antivirals (DAA) within similar viral families and at greater phylogenetic distances. EXPERT OPINION Comparing different approaches, the author showed that the cocktails of DAAs, including parent compounds that passed Phase I trials need to be preemptively tested for all major viral families, approved, and stockpiled (or dual-use production facilities designated). The quick distribution of the pre-approved and pre-positioned antiviral cocktails (even of moderate efficiency) reduces mortality and economic damage many-fold, resulting in the trillion-scale savings in a pandemic context. This pre-positioning approach is only one in the combinatorial toolkit that needs to be included in the plan for all viral families of importance. A dedicated international public-private initiative can achieve savings in these proactive preparedness efforts, as well as to keep the focus of politicians and public on the problem.
Collapse
Affiliation(s)
- Anatoly Mayburd
- School of System's Biology, George Mason University, Fairfax, VA, USA
| |
Collapse
|
17
|
Nioi M, d’Aloja E, Fossarello M, Napoli PE. Dual Corneal-Graft Rejection after mRNA Vaccine (BNT162b2) for COVID-19 during the First Six Months of Follow-Up: Case Report, State of the Art and Ethical Concerns. Vaccines (Basel) 2021; 9:1274. [PMID: 34835205 PMCID: PMC8620000 DOI: 10.3390/vaccines9111274] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
Present mass vaccination against Coronavirus Disease-19 (COVID-19) is the most widely used health policy and the most promising approach to curb the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic globally. However, new side effects are emerging from the mass vaccination not described during the experimental stages. In the present study, we discuss a case of acute corneal graft rejection, which has occurred 25 years after transplantation and 13 days after the administration of the BNT162b2 vaccine (Comirnaty, BioNTech/Pfizer), which was followed-up for a period of six months. In this period, the corneal inflammation appeared twice but was successfully managed with topical therapy and supplementation of Vitamin D. A risk of corneal graft rejection must be included in the list of potential vaccine complications, in order to inform the transplanted patient to undergo a preliminary and a follow-up ocular examination, and eventually to include corneal graft in the list of contraindications to vaccination.
Collapse
Affiliation(s)
- Matteo Nioi
- Forensic Medicine Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09040 Cagliari, Italy;
| | - Ernesto d’Aloja
- Forensic Medicine Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09040 Cagliari, Italy;
| | - Maurizio Fossarello
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, 09124 Cagliari, Italy;
| | - Pietro Emanuele Napoli
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, 09124 Cagliari, Italy;
| |
Collapse
|
18
|
Abstract
Mucosal vaccines offer the potential to trigger robust protective immune responses at the predominant sites of pathogen infection. In principle, the induction of adaptive immunity at mucosal sites, involving secretory antibody responses and tissue-resident T cells, has the capacity to prevent an infection from becoming established in the first place, rather than only curtailing infection and protecting against the development of disease symptoms. Although numerous effective mucosal vaccines are in use, the major advances seen with injectable vaccines (including adjuvanted subunit antigens, RNA and DNA vaccines) have not yet been translated into licensed mucosal vaccines, which currently comprise solely live attenuated and inactivated whole-cell preparations. The identification of safe and effective mucosal adjuvants allied to innovative antigen discovery and delivery strategies is key to advancing mucosal vaccines. Significant progress has been made in resolving the mechanisms that regulate innate and adaptive mucosal immunity and in understanding the crosstalk between mucosal sites, and this provides valuable pointers to inform mucosal adjuvant design. In particular, increased knowledge on mucosal antigen-presenting cells, innate lymphoid cell populations and resident memory cells at mucosal sites highlights attractive targets for vaccine design. Exploiting these insights will allow new vaccine technologies to be leveraged to facilitate rational mucosal vaccine design for pathogens including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and for cancer.
Collapse
|
19
|
Li X, Zhang L, Chen S, Ouyang H, Ren L. Possible Targets of Pan-Coronavirus Antiviral Strategies for Emerging or Re-Emerging Coronaviruses. Microorganisms 2021; 9:1479. [PMID: 34361915 PMCID: PMC8306356 DOI: 10.3390/microorganisms9071479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which caused Coronaviruses Disease 2019 (COVID-19) and a worldwide pandemic, is the seventh human coronavirus that has been cross-transmitted from animals to humans. It can be predicted that with continuous contact between humans and animals, more viruses will spread from animals to humans. Therefore, it is imperative to develop universal coronavirus or pan-coronavirus vaccines or drugs against the next coronavirus pandemic. However, a suitable target is critical for developing pan-coronavirus antivirals against emerging or re-emerging coronaviruses. In this review, we discuss the latest progress of possible targets of pan-coronavirus antiviral strategies for emerging or re-emerging coronaviruses, including targets for pan-coronavirus inhibitors and vaccines, which will provide prospects for the current and future research and treatment of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Linzhu Ren
- Key Laboratory for Zoonoses Research, College of Animal Sciences, Ministry of Education, Jilin University, 5333 Xi’An Road, Changchun 130062, China; (X.L.); (L.Z.); (S.C.); (H.O.)
| |
Collapse
|
20
|
Kumavath R, Barh D, Andrade BS, Imchen M, Aburjaile FF, Ch A, Rodrigues DLN, Tiwari S, Alzahrani KJ, Góes-Neto A, Weener ME, Ghosh P, Azevedo V. The Spike of SARS-CoV-2: Uniqueness and Applications. Front Immunol 2021; 12:663912. [PMID: 34305894 PMCID: PMC8297464 DOI: 10.3389/fimmu.2021.663912] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
The Spike (S) protein of the SARS-CoV-2 virus is critical for its ability to attach and fuse into the host cells, leading to infection, and transmission. In this review, we have initially performed a meta-analysis of keywords associated with the S protein to frame the outline of important research findings and directions related to it. Based on this outline, we have reviewed the structure, uniqueness, and origin of the S protein of SARS-CoV-2. Furthermore, the interactions of the Spike protein with host and its implications in COVID-19 pathogenesis, as well as drug and vaccine development, are discussed. We have also summarized the recent advances in detection methods using S protein-based RT-PCR, ELISA, point-of-care lateral flow immunoassay, and graphene-based field-effect transistor (FET) biosensors. Finally, we have also discussed the emerging Spike mutants and the efficacy of the Spike-based vaccines against those strains. Overall, we have covered most of the recent advances on the SARS-CoV-2 Spike protein and its possible implications in countering this virus.
Collapse
Affiliation(s)
- Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Silva Andrade
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Brazil
| | - Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Flavia Figueira Aburjaile
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Athira Ch
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Diego Lucas Neres Rodrigues
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Aristóteles Góes-Neto
- Laboratório de Biologia Molecular e Computacional de Fungos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
21
|
Ortiz de Lejarazu y Leonardo R. [Future of vaccination against SARS-CoV-2 infection]. OPEN RESPIRATORY ARCHIVES 2021; 3:100117. [PMID: 38620914 PMCID: PMC8240445 DOI: 10.1016/j.opresp.2021.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
22
|
Shapiro RS. COVID-19 vaccines and nanomedicine. Int J Dermatol 2021; 60:1047-1052. [PMID: 34089534 PMCID: PMC8239562 DOI: 10.1111/ijd.15673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
Background The COVID‐19 virus‐induced pandemic has been the deadliest pandemic to have occurred in two generations, besides HIV/AIDS. Epidemiologists predicted that the SARS‐Cov 2 pandemic would not be able to be brought under control until a majority of the world’s population had been inoculated with safe and effective vaccines. A world‐wide effort to expedite vaccine development was successful. Previous research for vaccines to prevent SARS and MERS, also coronaviruses, was vital to this success. Nanotechnology was essential to this vaccine development. Key elements are presented here to better understand the relationship between nanomedicine and the COVID‐19 vaccine development. Methods NLM PubMed searches for COVID‐19 vaccines, nanotechnology and nanomedicine were done. There were 6911 articles screened, 235 of which were deemed appropriate to this subject and utilized here, together with two landmark nanomedicine texts used to expand understanding of the basic science of nanotechnology. Results SARS‐Cov 2, caused by the COVID‐19 virus, was first recognized in China in December of 2019 and was declared as a pandemic in March of 2020. The RNA sequence was identified in January of 2020. Within 4 months of the viral genome being released, over 259 vaccines had been in development. The World Health Organization (WHO) anticipated a vaccine with a 50‐80% efficacy to be developed within 1‐2 years. Ahead of schedule, the Food and Drug Administration (FDA) announced the emergency authorization approval for two mRNA vaccines within 11 month’s time. Nanotechnology was the key to the success of these rapidly developed, safe and effective vaccines. A brief review of pertinent basic science principles of nanomedicine are presented. The development of COVID vaccines is reviewed. Future considerations are discussed. Conclusions Control of the COVID‐19 SARS‐Cov2 pandemic benefitted from nanomedicine principles used to develop highly effective, yet very safe and relatively inexpensive vaccines. These nanovaccines can be much more easily altered to adjust for viral variants than traditional live or inactivated legacy‐type whole virus vaccines.
Collapse
|
23
|
Chakraborty C, Sharma AR, Bhattacharya M, Sharma G, Saha RP, Lee SS. Ongoing Clinical Trials of Vaccines to Fight against COVID-19 Pandemic. Immune Netw 2021; 21:e5. [PMID: 33728098 PMCID: PMC7937508 DOI: 10.4110/in.2021.21.e5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has developed as a pandemic, and it created an outrageous effect on the current healthcare and economic system throughout the globe. To date, there is no appropriate therapeutics or vaccines against the disease. The entire human race is eagerly waiting for the development of new therapeutics or vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Efforts are being taken to develop vaccines at a rapid rate for fighting against the ongoing pandemic situation. Amongst the various vaccines under consideration, some are either in the preclinical stage or in the clinical stages of development (phase-I, -II, and -III). Even, phase-III trials are being conducted for some repurposed vaccines like Bacillus Calmette-Guérin, polio vaccine, and measles-mumps-rubella. We have highlighted the ongoing clinical trial landscape of the COVID-19 as well as repurposed vaccines. An insight into the current status of the available antigenic epitopes for SARS-CoV-2 and different types of vaccine platforms of COVID-19 vaccines has been discussed. These vaccines are highlighted throughout the world by different news agencies. Moreover, ongoing clinical trials for repurposed vaccines for COVID-19 and critical factors associated with the development of COVID-19 vaccines have also been described.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata 700126, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Korea
| | | | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Korea
| | - Rudra P. Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata 700126, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Korea
| |
Collapse
|
24
|
SARS-CoV-2 and other human coronaviruses: Mapping of protease recognition sites, antigenic variation of spike protein and their grouping through molecular phylogenetics. INFECTION GENETICS AND EVOLUTION 2021; 89:104729. [PMID: 33497837 PMCID: PMC7826164 DOI: 10.1016/j.meegid.2021.104729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/10/2020] [Accepted: 01/20/2021] [Indexed: 11/20/2022]
Abstract
In recent years, a total of seven human pathogenic coronaviruses (HCoVs) strains were identified, i.e., SARS-CoV, SARS-CoV-2, MERS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1. Here, we performed an analysis of the protease recognition sites and antigenic variation of the S-protein of these HCoVs. We showed tissue-specific expression pattern, functions, and a number of recognition sites of proteases in S-proteins from seven strains of HCoVs. In the case of SARS-CoV-2, we found two new protease recognition sites, each of calpain-2, pepsin-A, and caspase-8, and one new protease recognition site each of caspase-6, caspase-3, and furin. Our antigenic mapping study of the S-protein of these HCoVs showed that the SARS-CoV-2 virus strain has the most potent antigenic epitopes (highest antigenicity score with maximum numbers of epitope regions). Additionally, the other six strains of HCoVs show common antigenic epitopes (both B-cell and T-cell), with low antigenicity scores compared to SARS-CoV-2. We suggest that the molecular evolution of structural proteins of human CoV can be classified, such as (i) HCoV-NL63 and HCoV-229E, (ii) SARS-CoV-2, and SARS-CoV and (iii) HCoV-OC43 and HCoV-HKU1. In conclusion, we can presume that our study might help to prepare the interventions for the possible HCoVs outbreaks in the future.
Collapse
|
25
|
The Long-Term Evolutionary History of Gradual Reduction of CpG Dinucleotides in the SARS-CoV-2 Lineage. BIOLOGY 2021; 10:biology10010052. [PMID: 33445785 PMCID: PMC7828247 DOI: 10.3390/biology10010052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 01/09/2021] [Indexed: 12/24/2022]
Abstract
Simple Summary Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19), a pandemic that infected over 81 million people worldwide. This has led the scientific community to characterize the genome of this virus, including its nucleotide composition. Investigation of the dinucleotide frequency revealed that the proportion of CG dinucleotides (CpG) is highly reduced in the viral genomes. Since CpG dinucleotides is the target site for the host antiviral zinc finger protein, it has been suggested that the reduction in the proportion of CpG is the viral response to escape from the host defense machinery. In the present study, we investigated the time of origin of reduction in the CpG content. Whole genome analyses based on all representative viral genomes of the group Betacoronavirus revealed that the CpG content in the lineage of SARS-CoV-2 has been progressively declining over the past 1213 years. The depletion of CpG was found to occur at neutral—as well as selectively constrained—positions of the viral genomes. Abstract Recent studies suggested that the fraction of CG dinucleotides (CpG) is severely reduced in the genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The CpG deficiency was predicted to be the adaptive response of the virus to evade degradation of the viral RNA by the antiviral zinc finger protein that specifically binds to CpG nucleotides. By comparing all representative genomes belonging to the genus Betacoronavirus, this study examined the potential time of origin of CpG depletion. The results of this investigation revealed a highly significant correlation between the proportions of CpG nucleotide (CpG content) of the betacoronavirus species and their times of divergence from SARS-CoV-2. Species that are distantly related to SARS-CoV-2 had much higher CpG contents than that of SARS-CoV-2. Conversely, closely related species had low CpG contents that are similar to or slightly higher than that of SARS-CoV-2. These results suggest a systematic and continuous reduction in the CpG content in the SARS-CoV-2 lineage that might have started since the Sarbecovirus + Hibecovirus clade separated from Nobecovirus, which was estimated to be 1213 years ago. This depletion was not found to be mediated by the GC contents of the genomes. Our results also showed that the depletion of CpG occurred at neutral positions of the genome as well as those under selection. The latter is evident from the progressive reduction in the proportion of arginine amino acid (coded by CpG dinucleotides) in the SARS-CoV-2 lineage over time. The results of this study suggest that shedding CpG nucleotides from their genome is a continuing process in this viral lineage, potentially to escape from their host defense mechanisms.
Collapse
|
26
|
Criscuolo E, Diotti RA, Strollo M, Rolla S, Ambrosi A, Locatelli M, Burioni R, Mancini N, Clementi M, Clementi N. Weak correlation between antibody titers and neutralizing activity in sera from SARS-CoV-2 infected subjects. J Med Virol 2020; 93:2160-2167. [PMID: 33064340 PMCID: PMC7675753 DOI: 10.1002/jmv.26605] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/19/2023]
Abstract
Plenty of serologic tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed so far, thus documenting the importance of evaluating the relevant features of the immune response to this viral agent. The performance of these assays is currently under investigation. Amongst them, LIAISON® SARS-CoV-2 S1/S2 IgG by DiaSorin and Elecsys Anti-SARS-CoV-2 cobas® by Roche are currently used by laboratory medicine hospital departments in Italy and many other countries. In the present study, we firstly compared two serologic tests on serum samples collected at two different time points from 46 laboratory-confirmed coronavirus disease-2019 (COVID-19) subjects. Secondly, 85 negative serum samples collected before the SARS-CoV-2 pandemic were analyzed. Thirdly, possible correlations between antibody levels and the resulting neutralizing activity against a clinical isolate of SARS-CoV-2 were evaluated. Results revealed that both tests are endowed with low sensitivity on the day of hospital admission, which increased to 97.8% and 100% for samples collected after 15 days for DiaSorin and Roche tests, respectively. The specificity evaluated for the two tests ranges from 96.5% to 100%, respectively. Importantly, a poor direct correlation between antibody titers and neutralizing activity levels was evidenced in the present study. These data further shed light on both potentials and possible limitations related to SARS-CoV-2 serology. In this context, great efforts are still necessary for investigating antibody kinetics to develop novel diagnostic algorithms. Moreover, further investigations on the role of neutralizing antibodies and their correlate of protection will be of paramount importance for the development of effective vaccines.
Collapse
Affiliation(s)
- Elena Criscuolo
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Roberta A Diotti
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Strollo
- Laboratory Medicine Service, IRCCS San Raffaele Hospital, Milan, Italy
| | - Serena Rolla
- Laboratory Medicine Service, IRCCS San Raffaele Hospital, Milan, Italy
| | - Alessandro Ambrosi
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Locatelli
- Laboratory Medicine Service, IRCCS San Raffaele Hospital, Milan, Italy
| | - Roberto Burioni
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy.,Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Massimo Clementi
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy.,Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Nicola Clementi
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy.,Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|