1
|
Vega Rojas LJ, Ruíz-Manzano RA, Velasco-Elizondo MA, Carbajo-Mata MA, Hernández-Silva DJ, Rocha-Solache M, Hernández J, Pérez-Serrano RM, Zaldívar-Lelo de Larrea G, García-Gasca T, Mosqueda J. An Evaluation of the Cellular and Humoral Response of a Multi-Epitope Vaccine Candidate Against COVID-19 with Different Alum Adjuvants. Pathogens 2024; 13:1081. [PMID: 39770342 PMCID: PMC11728595 DOI: 10.3390/pathogens13121081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
SARS-CoV-2 (Betacoronavirus pandemicum) is responsible for the disease identified by the World Health Organization (WHO) as COVID-19. We designed "CHIVAX 2.1", a multi-epitope vaccine, containing ten immunogenic peptides with conserved B-cell and T-cell epitopes in the receceptor binding domain (RBD) sequences of different SARS-CoV-2 variants of concern (VoCs). We evaluated the immune response of mice immunized with 20 or 60 µg of the chimeric protein with two different alum adjuvants (Alhydrogel® and Adju-Phos®), plus PHAD®, in a two-immunization regimen (0 and 21 days). Serum samples were collected on days 0, 21, 31, and 72 post first immunization, with antibody titers determined by indirect ELISA, while lymphoproliferation assays and cytokine production were evaluated by flow cytometry. The presence of neutralizing antibodies was assessed by surrogate neutralization assays. Higher titers of total IgG, IgG1, and IgG2a antibodies, as well as increased proliferation rates of specific CD4+ and CD8+ T cells, were observed in mice immunized with 60 μg of protein plus Adju-Phos®/PHAD®. This formulation also generated the highest levels of TNF-α and IFN-γ, in addition to the presence of neutralizing antibodies against Delta and Omicron VoC. These findings indicate the potential of this chimeric multi-epitope vaccine with combined adjuvants as a promising platform against viral infections, eliciting a TH1 or TH1:TH2 balanced cell response.
Collapse
MESH Headings
- Animals
- Mice
- COVID-19 Vaccines/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- SARS-CoV-2/immunology
- Alum Compounds/pharmacology
- Alum Compounds/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Immunity, Humoral/drug effects
- Immunity, Humoral/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Female
- Epitopes, T-Lymphocyte/immunology
- Immunity, Cellular/drug effects
- Immunity, Cellular/immunology
- Mice, Inbred BALB C
- Adjuvants, Vaccine/pharmacology
- Epitopes, B-Lymphocyte/immunology
- Humans
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cytokines/metabolism
- Spike Glycoprotein, Coronavirus/immunology
Collapse
Affiliation(s)
- Lineth Juliana Vega Rojas
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Campus Aeropuerto, Carretera a Chichimequillas, Ejido Bolaños, Querétaro 76140, Mexico; (L.J.V.R.); (R.A.R.-M.); (M.A.V.-E.); (D.J.H.-S.); (M.R.-S.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Av. Insurgentes Sur 1582, Alcaldía Benito Juárez, Crédito Constructor, Ciudad de México 03940, Mexico
| | - Rocío Alejandra Ruíz-Manzano
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Campus Aeropuerto, Carretera a Chichimequillas, Ejido Bolaños, Querétaro 76140, Mexico; (L.J.V.R.); (R.A.R.-M.); (M.A.V.-E.); (D.J.H.-S.); (M.R.-S.)
| | - Miguel Andrés Velasco-Elizondo
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Campus Aeropuerto, Carretera a Chichimequillas, Ejido Bolaños, Querétaro 76140, Mexico; (L.J.V.R.); (R.A.R.-M.); (M.A.V.-E.); (D.J.H.-S.); (M.R.-S.)
| | - María Antonieta Carbajo-Mata
- Instituto de Neurobiología UNAM, Laboratorio Universitario del Bioterio, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Diego Josimar Hernández-Silva
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Campus Aeropuerto, Carretera a Chichimequillas, Ejido Bolaños, Querétaro 76140, Mexico; (L.J.V.R.); (R.A.R.-M.); (M.A.V.-E.); (D.J.H.-S.); (M.R.-S.)
| | - Mariana Rocha-Solache
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Campus Aeropuerto, Carretera a Chichimequillas, Ejido Bolaños, Querétaro 76140, Mexico; (L.J.V.R.); (R.A.R.-M.); (M.A.V.-E.); (D.J.H.-S.); (M.R.-S.)
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo 83304, Mexico;
| | - Rosa Martha Pérez-Serrano
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Querétaro 76176, Mexico; (R.M.P.-S.); (G.Z.-L.d.L.)
| | - Guadalupe Zaldívar-Lelo de Larrea
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Querétaro 76176, Mexico; (R.M.P.-S.); (G.Z.-L.d.L.)
| | - Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro 76230, Mexico
| | - Juan Mosqueda
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Campus Aeropuerto, Carretera a Chichimequillas, Ejido Bolaños, Querétaro 76140, Mexico; (L.J.V.R.); (R.A.R.-M.); (M.A.V.-E.); (D.J.H.-S.); (M.R.-S.)
| |
Collapse
|
2
|
Vakhrusheva AV, Romanovskaya-Romanko EA, Stukova MA, Sukhova MM, Kuznetsova KS, Kudriavtsev AV, Frolova ME, Ivanishin TV, Krasilnikov IV, Isaev AA. Comparative Analysis of the Neutralizing Capacity of Monovalent and Bivalent Formulations of Betuvax-CoV-2, a Subunit Recombinant COVID-19 Vaccine, Against Various Strains of SARS-CoV-2. Vaccines (Basel) 2024; 12:1200. [PMID: 39460365 PMCID: PMC11512205 DOI: 10.3390/vaccines12101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
SARS-CoV-2, the causal agent of the COVID-19 pandemic, is characterized by rapid evolution, which poses a significant public health challenge. Effective vaccines that provide robust protection, elicit strong immune responses, exhibit favorable safety profiles, and enable cost-effective large-scale production are crucial. The RBD-Fc-based Betuvax-CoV-2 vaccine has previously demonstrated a favorable safety profile and induced a significant anti-SARS-CoV-2 humoral immune response in clinical trials. Due to the rapid evolution and emergence of new SARS-CoV-2 strains, the relevance of bivalent vaccine formulations has increased. METHODS This study compared the neutralizing capacity of monovalent and bivalent vaccine formulations against different SARS-CoV-2 strains detected with a SARS-CoV-2 microneutralization assay (MNT). FINDINGS The monovalent Wuhan-based vaccine generated neutralizing antibodies against the Wuhan and Omicron BA.2 variants but not the distinct Omicron BQ.1 strain. Conversely, the monovalent BA.2-based vaccine induced neutralizing antibodies against both Omicron strains but not Wuhan. While the bivalent Wuhan and BA.2-based vaccine was effective against strains containing the same antigens, it was insufficient to neutralize the distinctive BQ.1 strain at a small dosage. INTERPRETATION These findings suggest that the vaccine composition should closely match the circulating SARS-CoV-2 strain to elicit the optimal neutralizing antibody response and include the appropriate dosage. Moreover, this study did not find additional advantages of using the bivalent form over the monovalent form for the vaccination against a single prevailing SARS-CoV-2 strain.
Collapse
Affiliation(s)
| | - Ekaterina A. Romanovskaya-Romanko
- Department of Vaccinology, Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia; (E.A.R.-R.); (M.A.S.)
| | - Marina A. Stukova
- Department of Vaccinology, Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia; (E.A.R.-R.); (M.A.S.)
| | | | | | | | | | | | | | - Artur A. Isaev
- Artgen Biotech, 119571 Moscow, Russia; (M.E.F.); (A.A.I.)
| |
Collapse
|
3
|
Ahmadivand S, Fux R, Palić D. Ferritin Vaccine Platform for Animal and Zoonotic Viruses. Vaccines (Basel) 2024; 12:1112. [PMID: 39460279 PMCID: PMC11511493 DOI: 10.3390/vaccines12101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Viral infections in animals continue to pose a significant challenge, affecting livestock health, welfare, and food safety, and, in the case of zoonotic viruses, threatening global public health. The control of viral diseases currently relies on conventional approaches such as inactivated or attenuated vaccines produced via platforms with inherent limitations. Self-assembling ferritin nanocages represent a novel vaccine platform that has been utilized for several viruses, some of which are currently undergoing human clinical trials. Experimental evidence also supports the potential of this platform for developing commercial vaccines for veterinary viruses. In addition to improved stability and immunogenicity, ferritin-based vaccines are safe and DIVA-compatible, and can be rapidly deployed in response to emerging epidemics or pandemics. This review discusses the structural and functional properties of ferritin proteins, followed by an overview of the design and production of ferritin-based vaccines, the mechanisms of immune responses, and their applications in developing vaccines against animal and zoonotic viruses.
Collapse
Affiliation(s)
- Sohrab Ahmadivand
- Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Robert Fux
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, 80539 Munich, Germany;
| | - Dušan Palić
- Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| |
Collapse
|
4
|
Brook B, Duval V, Barman S, Speciner L, Sweitzer C, Khanmohammed A, Menon M, Foster K, Ghosh P, Abedi K, Koster J, Nanishi E, Baden LR, Levy O, VanCott T, Micol R, Dowling DJ. Adjuvantation of a SARS-CoV-2 mRNA vaccine with controlled tissue-specific expression of an mRNA encoding IL-12p70. Sci Transl Med 2024; 16:eadm8451. [PMID: 39047117 DOI: 10.1126/scitranslmed.adm8451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/18/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Messenger RNA (mRNA) vaccines were pivotal in reducing severe acute respiratory syndrome 2 (SARS-CoV-2) infection burden, yet they have not demonstrated robust durability, especially in older adults. Here, we describe a molecular adjuvant comprising a lipid nanoparticle (LNP)-encapsulated mRNA encoding interleukin-12p70 (IL-12p70). The bioactive adjuvant was engineered with a multiorgan protection (MOP) sequence to restrict transcript expression to the intramuscular injection site. Admixing IL-12-MOP (CTX-1796) with the BNT162b2 SARS-CoV-2 vaccine increased spike protein-specific immune responses in mice. Specifically, the benefits of IL-12-MOP adjuvantation included amplified humoral and cellular immunity and increased immune durability for 1 year after vaccination in mice. An additional benefit included the restoration of immunity in aged mice to amounts comparable to those achieved in young adult animals, alongside amplification with a single immunization. Associated enhanced dendritic cell and germinal center responses were observed. Together, these data demonstrate that an LNP-encapsulated IL-12-MOP mRNA-encoded adjuvant can amplify immunogenicity independent of age, demonstrating translational potential to benefit vulnerable populations.
Collapse
Affiliation(s)
- Byron Brook
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Valerie Duval
- Combined Therapeutics Incorporated, Boston, MA 02135, USA
| | - Soumik Barman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Cali Sweitzer
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Manisha Menon
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Pallab Ghosh
- Combined Therapeutics Incorporated, Boston, MA 02135, USA
| | - Kimia Abedi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jacob Koster
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Etsuro Nanishi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lindsey R Baden
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas VanCott
- Combined Therapeutics Incorporated, Boston, MA 02135, USA
| | - Romain Micol
- Combined Therapeutics Incorporated, Boston, MA 02135, USA
| | - David J Dowling
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Hao X, Yuan F, Yao X. Advances in virus-like particle-based SARS-CoV-2 vaccines. Front Cell Infect Microbiol 2024; 14:1406091. [PMID: 38988812 PMCID: PMC11233461 DOI: 10.3389/fcimb.2024.1406091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has incurred devastating human and economic losses. Vaccination remains the most effective approach for controlling the COVID-19 pandemic. Nonetheless, the sustained evolution of SARS-CoV-2 variants has provoked concerns among the scientific community regarding the development of next-generation COVID-19 vaccines. Among these, given their safety, immunogenicity, and flexibility to display varied and native epitopes, virus-like particle (VLP)-based vaccines represent one of the most promising next-generation vaccines. In this review, we summarize the advantages and characteristics of VLP platforms, strategies for antigen display, and current clinical trial progress of SARS-CoV-2 vaccines based on VLP platforms. Importantly, the experience and lessons learned from the development of SARS-CoV-2 VLP vaccines provide insights into the development of strategies based on VLP vaccines to prevent future coronavirus pandemics and other epidemics.
Collapse
Affiliation(s)
- Xiaoting Hao
- Department of Teaching Administration, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Feifei Yuan
- Department of Reproductive Medicine, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xuan Yao
- Department of Neurology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
6
|
Garmeh Motlagh F, Azimzadeh Irani M, Masoomi Nomandan SZ, Assadizadeh M. Computational design and investigation of the monomeric spike SARS-CoV-2-ferritin nanocage vaccine stability and interactions. Front Mol Biosci 2024; 11:1403635. [PMID: 38933369 PMCID: PMC11199398 DOI: 10.3389/fmolb.2024.1403635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Since the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbreak, several solutions have been proposed to manage the disease. The most viable option for controlling this virus is to produce effective vaccines. Most of the current SARS-CoV-2 vaccines have focused on the infusion spike protein. Spike exists as a trimer and plays a vital role in infecting host cells by binding to the Angiotensin-Converting Enzyme 2 (ACE2) receptor through its Receptor Binding Domain (RBD). Ferritin protein, a naturally occurring iron-storage protein, has gained attention for vaccine production due to its self-assembling property, non-toxic nature, and biocompatibility. Ferritin nanocages have recently been employed in the development of a SARS-CoV-2 vaccination eliciting not only long-term protective memory cells but also a sustained antibody response. In this study, a combination of in silico investigations including molecular docking, molecular dynamics simulations, and immune simulations were carried out to computationally model the monomeric spike protein on the ferritin nanocage as well as to evaluate its stability and interactions for the first time. The structural dynamics of the modeled complex demonstrated noticeable stability. In particular, the Receptor Binding Domain (RBD) and ferritin within the monomeric spike-ferritin complex illustrated significant stability. The lack of alterations in the secondary structure further supported the overall steadiness of the complex. The decline in the distance between ferritin and spike suggests a strong interaction over time. The cross-correlation matrices revealed that the monomeric spike and ferritin move towards each other supporting the stable interaction between spike and ferritin. Further, the orientation of monomeric spike protein within the ferritin unit facilitated the exposure of critical epitopes, specifically upward active Receptor Binding Domain (RBD), enabling effective interactions with the ACE2 receptor. The immune simulations of the model indicated high-level stimulations of both cellular and humoral immunity in the human body. It was also found that the employed model is effective regardless of the mutated spikes in different variants. These findings shed light on the current status of the SARS-CoV-2-ferritin nanoparticle vaccines and could be used as a framework for other similar vaccine designs.
Collapse
|
7
|
Pandey KK, Sahoo BR, Pattnaik AK. Protein Nanoparticles as Vaccine Platforms for Human and Zoonotic Viruses. Viruses 2024; 16:936. [PMID: 38932228 PMCID: PMC11209504 DOI: 10.3390/v16060936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Vaccines are one of the most effective medical interventions, playing a pivotal role in treating infectious diseases. Although traditional vaccines comprise killed, inactivated, or live-attenuated pathogens that have resulted in protective immune responses, the negative consequences of their administration have been well appreciated. Modern vaccines have evolved to contain purified antigenic subunits, epitopes, or antigen-encoding mRNAs, rendering them relatively safe. However, reduced humoral and cellular responses pose major challenges to these subunit vaccines. Protein nanoparticle (PNP)-based vaccines have garnered substantial interest in recent years for their ability to present a repetitive array of antigens for improving immunogenicity and enhancing protective responses. Discovery and characterisation of naturally occurring PNPs from various living organisms such as bacteria, archaea, viruses, insects, and eukaryotes, as well as computationally designed structures and approaches to link antigens to the PNPs, have paved the way for unprecedented advances in the field of vaccine technology. In this review, we focus on some of the widely used naturally occurring and optimally designed PNPs for their suitability as promising vaccine platforms for displaying native-like antigens from human viral pathogens for protective immune responses. Such platforms hold great promise in combating emerging and re-emerging infectious viral diseases and enhancing vaccine efficacy and safety.
Collapse
Affiliation(s)
- Kush K. Pandey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.K.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Bikash R. Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.K.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.K.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
8
|
Bai D, Kim H, Wang P. Development of semisynthetic saponin immunostimulants. Med Chem Res 2024; 33:1292-1306. [PMID: 39132259 PMCID: PMC11315725 DOI: 10.1007/s00044-024-03227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/20/2024] [Indexed: 08/13/2024]
Abstract
Many natural saponins demonstrate immunostimulatory adjuvant activities, but they also have some inherent drawbacks that limit their clinical use. To overcome these limitations, extensive structure-activity-relationship (SAR) studies have been conducted. The SAR studies of QS-21 and related saponins reveal that their respective fatty side chains are crucial for potentiating a strong cellular immune response. Replacing the hydrolytically unstable ester side chain in the C28 oligosaccharide domain with an amide side chain in the same domain or in the C3 branched trisaccharide domain is a viable approach for generating robust semisynthetic saponin immunostimulants. Given the striking resemblance of natural momordica saponins (MS) I and II to the deacylated Quillaja Saponaria (QS) saponins (e.g., QS-17, QS-18, and QS-21), incorporating an amide side chain into the more sustainable MS, instead of deacylated QS saponins, led to the discovery of MS-derived semisynthetic immunostimulatory adjuvants VSA-1 and VSA-2. This review focuses on the authors' previous work on SAR studies of QS and MS saponins.
Collapse
Affiliation(s)
- Di Bai
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| | - Hyunjung Kim
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| | - Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| |
Collapse
|
9
|
DaMata JP, Zelkoski AE, Nhan PB, Ennis KHE, Kim JS, Lu Z, Malloy AMW. Dissociation protocols influence the phenotypes of lymphocyte and myeloid cell populations isolated from the neonatal lymph node. Front Immunol 2024; 15:1368118. [PMID: 38756770 PMCID: PMC11097666 DOI: 10.3389/fimmu.2024.1368118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Frequencies and phenotypes of immune cells differ between neonates and adults in association with age-specific immune responses. Lymph nodes (LN) are critical tissue sites to quantify and define these differences. Advances in flow cytometry have enabled more multifaceted measurements of complex immune responses. Tissue processing can affect the immune cells under investigation that influence key findings. To understand the impact on immune cells in the LN after processing for single-cell suspension, we compared three dissociation protocols: enzymatic digestion, mechanical dissociation with DNase I treatment, and mechanical dissociation with density gradient separation. We analyzed cell yields, viability, phenotypic and maturation markers of immune cells from the lung-draining LN of neonatal and adult mice two days after intranasal respiratory syncytial virus (RSV) infection. While viability was consistent across age groups, the protocols influenced the yield of subsets defined by important phenotypic and activation markers. Moreover, enzymatic digestion did not show higher overall yields of conventional dendritic cells and macrophages from the LN. Together, our findings show that the three dissociation protocols have similar impacts on the number and viability of cells isolated from the neonatal and adult LN. However, enzymatic digestion impacts the mean fluorescence intensity of key lineage and activation markers that may influence experimental findings.
Collapse
Affiliation(s)
- Jarina P. DaMata
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, Uniformed Services University of Health Sciences (USUHS), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Amanda E. Zelkoski
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, Uniformed Services University of Health Sciences (USUHS), Bethesda, MD, United States
| | - Paula B. Nhan
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, Uniformed Services University of Health Sciences (USUHS), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Katherine H. E. Ennis
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, Uniformed Services University of Health Sciences (USUHS), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Ji Sung Kim
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, Uniformed Services University of Health Sciences (USUHS), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Zhongyan Lu
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, Uniformed Services University of Health Sciences (USUHS), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Allison M. W. Malloy
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, Uniformed Services University of Health Sciences (USUHS), Bethesda, MD, United States
| |
Collapse
|
10
|
Xia X, Li H, Zang J, Cheng S, Du M. Advancements of the Molecular Directed Design and Structure-Activity Relationship of Ferritin Nanocage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7629-7654. [PMID: 38518374 DOI: 10.1021/acs.jafc.3c09903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Ferritin nanocages possess remarkable structural properties and biological functions, making them highly attractive for applications in functional materials and biomedicine. This comprehensive review presents an overview of the molecular characteristics, extraction and identification of ferritin, ferritin receptors, as well as the advancements in the directional design of high-order assemblies of ferritin and the applications based on its unique structural properties. Specifically, this Review focuses on the regulation of ferritin assembly from one to three dimensions, leveraging the symmetry of ferritin and modifications on key interfaces. Furthermore, it discusses targeted delivery of nutrition and drugs through facile loading and functional modification of ferritin. The aim of this Review is to inspire the design of micro/nano functional materials using ferritin and the development of nanodelivery vehicles for nutritional fortification and disease treatment.
Collapse
Affiliation(s)
- Xiaoyu Xia
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Han Li
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuzhen Cheng
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
11
|
Wang W, Meng X, Cui H, Zhang C, Wang S, Feng N, Zhao Y, Wang T, Yan F, Xia X. Self-assembled ferritin-based nanoparticles elicit a robust broad-spectrum protective immune response against SARS-CoV-2 variants. Int J Biol Macromol 2024; 264:130820. [PMID: 38484812 DOI: 10.1016/j.ijbiomac.2024.130820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants has resulted in global economic losses and posed a threat to human health. The pandemic highlights the urgent need for an efficient, easily producible, and broad-spectrum vaccine. Here, we present a potentially universal strategy for the rapid and general design of vaccines, focusing on the design and testing of omicron BA.5 RBD-conjugated self-assembling ferritin nanoparticles (NPs). The covalent bonding of RBD-Fc to protein A-ferritin was easily accomplished through incubation, resulting in fully multivalent RBD-conjugated NPs that exhibited high structural uniformity, stability, and efficient assembly. The ferritin nanoparticle vaccine synergistically stimulated the innate immune response, Tfh-GCB-plasma cell-mediated activation of humoral immunity and IFN-γ-driven cellular immunity. This nanoparticle vaccine induced a high level of cross-neutralizing responses and protected golden hamsters challenged with multiple mutant strains from infection-induced clinical disease, providing a promising strategy for broad-spectrum vaccine development for SARS-CoV-2 prophylaxis. In conclusion, the nanoparticle conjugation platform holds promise for its potential universality and competitive immunization efficacy and is expected to facilitate the rapid manufacturing and broad application of next-generation vaccines.
Collapse
Affiliation(s)
- Weiqi Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Xianyong Meng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China; College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Huan Cui
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding 071000, China
| | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding 071000, China
| | - Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| |
Collapse
|
12
|
Agbayani G, Akache B, Renner TM, Tran A, Stuible M, Dudani R, Harrison BA, Duque D, Bavananthasivam J, Deschatelets L, Hemraz UD, Régnier S, Durocher Y, McCluskie MJ. Intranasal administration of unadjuvanted SARS-CoV-2 spike antigen boosts antigen-specific immune responses induced by parenteral protein subunit vaccine prime in mice and hamsters. Eur J Immunol 2024:e2350620. [PMID: 38561974 DOI: 10.1002/eji.202350620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
With the continued transmission of SARS-CoV-2 across widely vaccinated populations, it remains important to develop new vaccines and vaccination strategies capable of providing protective immunity and limiting the spread of disease. Heterologous prime-boost vaccination based on the selection of different vaccine formulations and administration routes for priming and booster doses presents a promising strategy for inducing broader immune responses in key systemic and respiratory mucosal compartments. Intranasal vaccination can induce mucosal immune responses at the site of SARS-CoV-2 infection; however, the lack of clinically approved mucosal adjuvants makes it difficult to induce robust immune responses with protein subunit vaccines. Herein, we evaluated the immunogenicity of heterologous prime-boost regimens in mice and hamsters based on a parenteral vaccination of the antigen in combination with sulfated lactosylarchaeol (SLA) archaeosomes, a liposome adjuvant comprised of a single semisynthetic archaeal lipid, followed by an intranasally administered unadjuvanted SARS-CoV-2 spike antigen. Intranasal administration of unadjuvanted spike to mice and hamsters increased serum spike-specific IgG titers and spike-neutralizing activity compared with nonboosted animals. Spike-specific IgA responses were also detected in the bronchoalveolar lavage fluid in the lungs of mice that received an intranasal boost. In hamsters, the intranasal boost showed high efficacy against SARS-CoV-2 infection by protecting from body weight loss and reducing viral titers in the lungs and nasal turbinate. Overall, our heterologous intramuscular prime-intranasal boost with SLA-adjuvanted and unadjuvanted spike, respectively, demonstrated the potential of protein subunit formulations to promote antigen-specific systemic and mucosal immune responses.
Collapse
Affiliation(s)
- Gerard Agbayani
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Bassel Akache
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Tyler M Renner
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anh Tran
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Renu Dudani
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Blair A Harrison
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Diana Duque
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jegarubee Bavananthasivam
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Lise Deschatelets
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Usha D Hemraz
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Sophie Régnier
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Michael J McCluskie
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Cankat S, Demael MU, Swadling L. In search of a pan-coronavirus vaccine: next-generation vaccine design and immune mechanisms. Cell Mol Immunol 2024; 21:103-118. [PMID: 38148330 PMCID: PMC10805787 DOI: 10.1038/s41423-023-01116-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
Members of the coronaviridae family are endemic to human populations and have caused several epidemics and pandemics in recent history. In this review, we will discuss the feasibility of and progress toward the ultimate goal of creating a pan-coronavirus vaccine that can protect against infection and disease by all members of the coronavirus family. We will detail the unmet clinical need associated with the continued transmission of SARS-CoV-2, MERS-CoV and the four seasonal coronaviruses (HCoV-OC43, NL63, HKU1 and 229E) in humans and the potential for future zoonotic coronaviruses. We will highlight how first-generation SARS-CoV-2 vaccines and natural history studies have greatly increased our understanding of effective antiviral immunity to coronaviruses and have informed next-generation vaccine design. We will then consider the ideal properties of a pan-coronavirus vaccine and propose a blueprint for the type of immunity that may offer cross-protection. Finally, we will describe a subset of the diverse technologies and novel approaches being pursued with the goal of developing broadly or universally protective vaccines for coronaviruses.
Collapse
Affiliation(s)
- S Cankat
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - M U Demael
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - L Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK.
| |
Collapse
|
14
|
Sankhala RS, Lal KG, Jensen JL, Dussupt V, Mendez-Rivera L, Bai H, Wieczorek L, Mayer SV, Zemil M, Wagner DA, Townsley SM, Hajduczki A, Chang WC, Chen WH, Donofrio GC, Jian N, King HAD, Lorang CG, Martinez EJ, Rees PA, Peterson CE, Schmidt F, Hart TJ, Duso DK, Kummer LW, Casey SP, Williams JK, Kannan S, Slike BM, Smith L, Swafford I, Thomas PV, Tran U, Currier JR, Bolton DL, Davidson E, Doranz BJ, Hatziioannou T, Bieniasz PD, Paquin-Proulx D, Reiley WW, Rolland M, Sullivan NJ, Vasan S, Collins ND, Modjarrad K, Gromowski GD, Polonis VR, Michael NL, Krebs SJ, Joyce MG. Diverse array of neutralizing antibodies elicited upon Spike Ferritin Nanoparticle vaccination in rhesus macaques. Nat Commun 2024; 15:200. [PMID: 38172512 PMCID: PMC10764318 DOI: 10.1038/s41467-023-44265-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
The repeat emergence of SARS-CoV-2 variants of concern (VoC) with decreased susceptibility to vaccine-elicited antibodies highlights the need to develop next-generation vaccine candidates that confer broad protection. Here we describe the antibody response induced by the SARS-CoV-2 Spike Ferritin Nanoparticle (SpFN) vaccine candidate adjuvanted with the Army Liposomal Formulation including QS21 (ALFQ) in non-human primates. By isolating and characterizing several monoclonal antibodies directed against the Spike Receptor Binding Domain (RBD), N-Terminal Domain (NTD), or the S2 Domain, we define the molecular recognition of vaccine-elicited cross-reactive monoclonal antibodies (mAbs) elicited by SpFN. We identify six neutralizing antibodies with broad sarbecovirus cross-reactivity that recapitulate serum polyclonal antibody responses. In particular, RBD mAb WRAIR-5001 binds to the conserved cryptic region with high affinity to sarbecovirus clades 1 and 2, including Omicron variants, while mAb WRAIR-5021 offers complete protection from B.1.617.2 (Delta) in a murine challenge study. Our data further highlight the ability of SpFN vaccination to stimulate cross-reactive B cells targeting conserved regions of the Spike with activity against SARS CoV-1 and SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kerri G Lal
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jaime L Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Letzibeth Mendez-Rivera
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Hongjun Bai
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lindsay Wieczorek
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandra V Mayer
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Michelle Zemil
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Danielle A Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samantha M Townsley
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gina C Donofrio
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ningbo Jian
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Hannah A D King
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Cynthia G Lorang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Phyllis A Rees
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | | | | | | | | | | | | | - Bonnie M Slike
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lauren Smith
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Isabella Swafford
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Paul V Thomas
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ursula Tran
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Diane L Bolton
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Dominic Paquin-Proulx
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Morgane Rolland
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandhya Vasan
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Natalie D Collins
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Vaccine Research and Development, Pfizer, Pearl River, New York, NY, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shelly J Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| |
Collapse
|
15
|
Kumru OS, Sanyal M, Friedland N, Hickey JM, Joshi R, Weidenbacher P, Do J, Cheng YC, Kim PS, Joshi SB, Volkin DB. Formulation development and comparability studies with an aluminum-salt adjuvanted SARS-CoV-2 spike ferritin nanoparticle vaccine antigen produced from two different cell lines. Vaccine 2023; 41:6502-6513. [PMID: 37620203 PMCID: PMC11181998 DOI: 10.1016/j.vaccine.2023.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The development of safe and effective second-generation COVID-19 vaccines to improve affordability and storage stability requirements remains a high priority to expand global coverage. In this report, we describe formulation development and comparability studies with a self-assembled SARS-CoV-2 spike ferritin nanoparticle vaccine antigen (called DCFHP), when produced in two different cell lines and formulated with an aluminum-salt adjuvant (Alhydrogel, AH). Varying levels of phosphate buffer altered the extent and strength of antigen-adjuvant interactions, and these formulations were evaluated for their (1) in vivo performance in mice and (2) in vitro stability profiles. Unadjuvanted DCFHP produced minimal immune responses while AH-adjuvanted formulations elicited greatly enhanced pseudovirus neutralization titers independent of ∼100%, ∼40% or ∼10% of the DCFHP antigen adsorbed to AH. These formulations differed, however, in their in vitro stability properties as determined by biophysical studies and a competitive ELISA for measuring ACE2 receptor binding of AH-bound antigen. Interestingly, after one month of 4°C storage, small increases in antigenicity with concomitant decreases in the ability to desorb the antigen from the AH were observed. Finally, we performed a comparability assessment of DCFHP antigen produced in Expi293 and CHO cells, which displayed expected differences in their N-linked oligosaccharide profiles. Despite consisting of different DCFHP glycoforms, these two preparations were highly similar in their key quality attributes including molecular size, structural integrity, conformational stability, binding to ACE2 receptor and mouse immunogenicity profiles. Taken together, these studies support future preclinical and clinical development of an AH-adjuvanted DCFHP vaccine candidate produced in CHO cells.
Collapse
Affiliation(s)
- Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Mrinmoy Sanyal
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Natalia Friedland
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Richa Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Payton Weidenbacher
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Do
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Ya-Chen Cheng
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Peter S Kim
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
16
|
Lamontagne F, Arpin D, Côté‐Cyr M, Khatri V, St‐Louis P, Gauthier L, Archambault D, Bourgault S. Engineered Curli Nanofilaments as a Self-Adjuvanted Antigen Delivery Platform. Adv Healthc Mater 2023; 12:e2300224. [PMID: 37031161 PMCID: PMC11468023 DOI: 10.1002/adhm.202300224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/22/2023] [Indexed: 04/10/2023]
Abstract
Proteinaceous nanoparticles constitute efficient antigen delivery systems in vaccine formulations due to their size and repetitive nature that mimic most invading pathogens and promote immune activation. Nonetheless, the coadministration of an adjuvant with subunit nanovaccines is usually required to induce a robust, long-lasting, and protective immune response. Herein, the protein Curli-specific gene A (CsgA), which is known to self-assemble into nanofilaments contributing to bacterial biofilm, is exploited to engineer an intrinsically immunostimulatory antigen delivery platform. Three repeats of the M2e antigenic sequence from the influenza A virus matrix 2 protein are merged to the N-terminal domain of engineered CsgA proteins. These chimeric 3M2e-CsgA spontaneously self-assemble into antigen-displaying cross-β-sheet nanofilaments that activate the heterodimeric toll-like receptors 2 and 1. The resulting nanofilaments are avidly internalized by antigen-presenting cells and stimulate the maturation of dendritic cells. Without the need of any additional adjuvants, both assemblies show robust humoral and cellular immune responses, which translate into complete protection against a lethal experimental infection with the H1N1 influenza virus. Notably, these CsgA-based nanovaccines induce neither overt systemic inflammation, nor reactogenicity, upon mice inoculation. These results highlight the potential of engineered CsgA nanostructures as self-adjuvanted, safe, and versatile antigen delivery systems to fight infectious diseases.
Collapse
Affiliation(s)
- Félix Lamontagne
- Department of ChemistryUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
- Quebec Network for Research on Protein FunctionEngineering and Applications (PROTEO)QuebecH3C 3P8Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA)Saint‐HyacintheJ2S 2M2Canada
- The Center of Excellence in Research on Orphan Diseases – Fondation Courtois (CERMO‐FC)MontrealH3C 3P8Canada
- Department of Biological SciencesUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
| | - Dominic Arpin
- Department of ChemistryUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
- Quebec Network for Research on Protein FunctionEngineering and Applications (PROTEO)QuebecH3C 3P8Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA)Saint‐HyacintheJ2S 2M2Canada
- The Center of Excellence in Research on Orphan Diseases – Fondation Courtois (CERMO‐FC)MontrealH3C 3P8Canada
- Department of Biological SciencesUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
| | - Mélanie Côté‐Cyr
- Department of ChemistryUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
- Quebec Network for Research on Protein FunctionEngineering and Applications (PROTEO)QuebecH3C 3P8Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA)Saint‐HyacintheJ2S 2M2Canada
- The Center of Excellence in Research on Orphan Diseases – Fondation Courtois (CERMO‐FC)MontrealH3C 3P8Canada
- Department of Biological SciencesUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
| | - Vinay Khatri
- Department of ChemistryUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
- Quebec Network for Research on Protein FunctionEngineering and Applications (PROTEO)QuebecH3C 3P8Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA)Saint‐HyacintheJ2S 2M2Canada
- The Center of Excellence in Research on Orphan Diseases – Fondation Courtois (CERMO‐FC)MontrealH3C 3P8Canada
| | - Philippe St‐Louis
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA)Saint‐HyacintheJ2S 2M2Canada
- The Center of Excellence in Research on Orphan Diseases – Fondation Courtois (CERMO‐FC)MontrealH3C 3P8Canada
- Department of Biological SciencesUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
| | - Laurie Gauthier
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA)Saint‐HyacintheJ2S 2M2Canada
- The Center of Excellence in Research on Orphan Diseases – Fondation Courtois (CERMO‐FC)MontrealH3C 3P8Canada
- Department of Biological SciencesUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
| | - Denis Archambault
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA)Saint‐HyacintheJ2S 2M2Canada
- The Center of Excellence in Research on Orphan Diseases – Fondation Courtois (CERMO‐FC)MontrealH3C 3P8Canada
- Department of Biological SciencesUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
| | - Steve Bourgault
- Department of ChemistryUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
- Quebec Network for Research on Protein FunctionEngineering and Applications (PROTEO)QuebecH3C 3P8Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA)Saint‐HyacintheJ2S 2M2Canada
- The Center of Excellence in Research on Orphan Diseases – Fondation Courtois (CERMO‐FC)MontrealH3C 3P8Canada
| |
Collapse
|
17
|
Singh A, Boggiano C, Eller MA, Maciel M, Marovich MA, Mehra VL, Mo AX, Singleton KL, Leitner WW. Optimizing the Immunogenicity of HIV Vaccines by Adjuvants - NIAID Workshop Report. Vaccine 2023; 41:4439-4446. [PMID: 37331838 DOI: 10.1016/j.vaccine.2023.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
This report summarizes the highlights of a workshop convened by the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), on April 4-5, 2022, to provide a discussion forum for sharing insights on the current status, key challenges, and next steps to advance the current landscape of promising adjuvants in preclinical and clinical human immunodeficiency virus (HIV) vaccine studies. A key goal was to solicit and share recommendations on scientific, regulatory, and operational guidelines for bridging the gaps in rational selection, access, and formulation of clinically relevant adjuvants for HIV vaccine candidates. The NIAID Vaccine Adjuvant Program working group remains committed to accentuate promising adjuvants and nurturing collaborations between adjuvant and HIV vaccine developers.
Collapse
Affiliation(s)
- Anjali Singh
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - César Boggiano
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Eller
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Milton Maciel
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary A Marovich
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vijay L Mehra
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Annie X Mo
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kentner L Singleton
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wolfgang W Leitner
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Shesh BP, Connor JR. A novel view of ferritin in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188917. [PMID: 37209958 PMCID: PMC10330744 DOI: 10.1016/j.bbcan.2023.188917] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Since its discovery more than 85 years ago, ferritin has principally been known as an iron storage protein. However, new roles, beyond iron storage, are being uncovered. Novel processes involving ferritin such as ferritinophagy and ferroptosis and as a cellular iron delivery protein not only expand our thinking on the range of contributions of this protein but present an opportunity to target these pathways in cancers. The key question we focus on within this review is whether ferritin modulation represents a useful approach for treating cancers. We discussed novel functions and processes of this protein in cancers. We are not limiting this review to cell intrinsic modulation of ferritin in cancers, but also focus on its utility in the trojan horse approach in cancer therapeutics. The novel functions of ferritin as discussed herein realize the multiple roles of ferritin in cell biology that can be probed for therapeutic opportunities and further research.
Collapse
Affiliation(s)
| | - James R Connor
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
19
|
Bricha S, Côté-Cyr M, Tremblay T, Nguyen PT, St-Louis P, Giguère D, Archambault D, Bourgault S. Synthetic Multicomponent Nanovaccines Based on the Molecular Co-assembly of β-Peptides Protect against Influenza A Virus. ACS Infect Dis 2023; 9:1232-1244. [PMID: 37200051 DOI: 10.1021/acsinfecdis.2c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Peptides with the ability to self-assemble into nanoparticles have emerged as an attractive strategy to design antigen delivery platforms for subunit vaccines. While toll-like receptor (TLR) agonists are promising immunostimulants, their use as soluble agents is limited by their rapid clearance and off-target inflammation. Herein, we harnessed molecular co-assembly to prepare multicomponent cross-β-sheet peptide nanofilaments exposing an antigenic epitope derived from the influenza A virus and a TLR agonist. The TLR7 agonist imiquimod and the TLR9 agonist CpG were respectively functionalized on the assemblies by means of an orthogonal pre- or post-assembly conjugation strategy. The nanofilaments were readily uptaken by dendritic cells, and the TLR agonists retained their activity. Multicomponent nanovaccines induced a robust epitope-specific immune response and completely protected immunized mice from a lethal influenza A virus inoculation. This versatile bottom-up approach is promising for the preparation of synthetic vaccines with customized magnitude and polarization of the immune responses.
Collapse
Affiliation(s)
- Salma Bricha
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Department of Biological Sciences, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
- The Center of Excellence in Research on Orphan Diseases─Fondation Courtois (CERMO-FC), Montréal H3C 3P8, Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
- The Center of Excellence in Research on Orphan Diseases─Fondation Courtois (CERMO-FC), Montréal H3C 3P8, Canada
| | - Thomas Tremblay
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
- Department of Chemistry, Université Laval, 1045 Av. De la Médecine, Québec City QC G1V 0A6, Canada
| | - Phuong Trang Nguyen
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
- The Center of Excellence in Research on Orphan Diseases─Fondation Courtois (CERMO-FC), Montréal H3C 3P8, Canada
| | - Philippe St-Louis
- Department of Biological Sciences, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
- The Center of Excellence in Research on Orphan Diseases─Fondation Courtois (CERMO-FC), Montréal H3C 3P8, Canada
| | - Denis Giguère
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
- Department of Chemistry, Université Laval, 1045 Av. De la Médecine, Québec City QC G1V 0A6, Canada
| | - Denis Archambault
- Department of Biological Sciences, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
- The Center of Excellence in Research on Orphan Diseases─Fondation Courtois (CERMO-FC), Montréal H3C 3P8, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
- The Center of Excellence in Research on Orphan Diseases─Fondation Courtois (CERMO-FC), Montréal H3C 3P8, Canada
| |
Collapse
|
20
|
Perez-Potti A, Rodríguez-Pérez M, Polo E, Pelaz B, Del Pino P. Nanoparticle-based immunotherapeutics: from the properties of nanocores to the differential effects of administration routes. Adv Drug Deliv Rev 2023; 197:114829. [PMID: 37121275 DOI: 10.1016/j.addr.2023.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023]
Abstract
The engagement with the immune system is one of the main cornerstones in the development of nanotechnologies for therapy and diagnostics. Recent advances have made possible the tuning of features like size, shape and biomolecular modifications that influence such interactions, however, the capabilities for immune modulation of nanoparticles are still not well defined and exploited. This review focuses on recent advances made in preclinical research for the application of nanoparticles to modulate immune responses, and the main features making them relevant for such applications. We review and discuss newest evidence in the field, which include in vivo experiments with an extensive physicochemical characterization as well as detailed study of the induced immune response. We emphasize the need of incorporating knowledge about immune response development and regulation in the design and application of nanoparticles, including the effect by parameters such as the administration route and the differential interactions with immune subsets.
Collapse
Affiliation(s)
- André Perez-Potti
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Rodríguez-Pérez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ester Polo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Pablo Del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
21
|
Villarraza J, Fuselli A, Gugliotta A, Garay E, Rodríguez MC, Fontana D, Antuña S, Gastaldi V, Battagliotti JM, Tardivo MB, Alvarez D, Castro E, Cassataro J, Ceaglio N, Prieto C. A COVID-19 vaccine candidate based on SARS-CoV-2 spike protein and immune-stimulating complexes. Appl Microbiol Biotechnol 2023; 107:3429-3441. [PMID: 37093307 PMCID: PMC10124706 DOI: 10.1007/s00253-023-12520-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023]
Abstract
Spike protein from SARS-CoV-2, the etiologic agent of the COVID-19 pandemic disease, constitutes a structural protein that proved to be the main responsible for neutralizing antibody production. Thus, its sequence is highly considered for the design of candidate vaccines. Animal cell culture represents the best option for the production of subunit vaccines based on recombinant proteins since they introduce post-translational modifications that are important to mimic the natural antigenic epitopes. Particularly, the human cell line HEK293T has been explored and used for the production of biotherapeutics since the products derived from them present human-like post-translational modifications that are important for the protein's activity and immunogenicity. The aim of this study was to produce and characterize a potential vaccine for COVID-19 based on the spike ectodomain (S-ED) of SARS-CoV-2 and two different adjuvants: aluminum hydroxide (AH) and immune-stimulating complexes (ISCOMs). The S-ED was produced in sHEK293T cells using a 1-L stirred tank bioreactor operated in perfusion mode and purified. S-ED characterization revealed the expected size and morphology. High N-glycan content was confirmed. S-ED-specific binding with the hACE2 (human angiotensin-converting enzyme 2) receptor was verified. The immunogenicity of S-ED was evaluated using AH and ISCOMs. Both formulations demonstrated the presence of anti-RBD antibodies in the plasma of immunized mice, being significantly higher for the latter adjuvant. Also, higher levels of IFN-γ and IL-4 were detected after the ex vivo immune stimulation of spleen-derived MNCs from ISCOMs immunized mice. Further analysis confirmed that S-ED/ISCOMs elicit neutralizing antibodies against SARS-CoV-2. KEY POINTS: Trimeric SARS-CoV-2 S-ED was produced in stable recombinant sHEK cells in serum-free medium. A novel S-ED vaccine formulation induced potent humoral and cellular immunity. S-ED formulated with ISCOMs adjuvant elicited a highly neutralizing antibody titer.
Collapse
Affiliation(s)
- Javier Villarraza
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | - Antonela Fuselli
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | - Agustina Gugliotta
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina.
| | - Ernesto Garay
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | | | - Diego Fontana
- Biotecnofe S.A. PTLC, Santa Fe, Pcia., Santa Fe, Argentina
- UNL, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | | | - Victoria Gastaldi
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
- Biotecnofe S.A. PTLC, Santa Fe, Pcia., Santa Fe, Argentina
| | | | | | - Diego Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Eliana Castro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Natalia Ceaglio
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | - Claudio Prieto
- Biotecnofe S.A. PTLC, Santa Fe, Pcia., Santa Fe, Argentina
- UNL, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
- Cellargen Biotech SRL, Santa Fe, Pcia., Santa Fe, Argentina
| |
Collapse
|
22
|
Weidenbacher PAB, Sanyal M, Friedland N, Tang S, Arunachalam PS, Hu M, Kumru OS, Morris MK, Fontenot J, Shirreff L, Do J, Cheng YC, Vasudevan G, Feinberg MB, Villinger FJ, Hanson C, Joshi SB, Volkin DB, Pulendran B, Kim PS. A ferritin-based COVID-19 nanoparticle vaccine that elicits robust, durable, broad-spectrum neutralizing antisera in non-human primates. Nat Commun 2023; 14:2149. [PMID: 37069151 PMCID: PMC10110616 DOI: 10.1038/s41467-023-37417-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/16/2023] [Indexed: 04/19/2023] Open
Abstract
While the rapid development of COVID-19 vaccines has been a scientific triumph, the need remains for a globally available vaccine that provides longer-lasting immunity against present and future SARS-CoV-2 variants of concern (VOCs). Here, we describe DCFHP, a ferritin-based, protein-nanoparticle vaccine candidate that, when formulated with aluminum hydroxide as the sole adjuvant (DCFHP-alum), elicits potent and durable neutralizing antisera in non-human primates against known VOCs, including Omicron BQ.1, as well as against SARS-CoV-1. Following a booster ~one year after the initial immunization, DCFHP-alum elicits a robust anamnestic response. To enable global accessibility, we generated a cell line that can enable production of thousands of vaccine doses per liter of cell culture and show that DCFHP-alum maintains potency for at least 14 days at temperatures exceeding standard room temperature. DCFHP-alum has potential as a once-yearly (or less frequent) booster vaccine, and as a primary vaccine for pediatric use including in infants.
Collapse
Affiliation(s)
- Payton A-B Weidenbacher
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Mrinmoy Sanyal
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Natalia Friedland
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Shaogeng Tang
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Ozan S Kumru
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | | | - Jane Fontenot
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Lisa Shirreff
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Jonathan Do
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ya-Chen Cheng
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Francois J Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Carl Hanson
- California Department of Public Health, Richmond, CA, USA
| | - Sangeeta B Joshi
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - David B Volkin
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter S Kim
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
23
|
Pattnaik A, Sahoo BR, Struble LR, Borgstahl GEO, Zhou Y, Franco R, Barletta RG, Osorio FA, Petro TM, Pattnaik AK. A Ferritin Nanoparticle-Based Zika Virus Vaccine Candidate Induces Robust Humoral and Cellular Immune Responses and Protects Mice from Lethal Virus Challenge. Vaccines (Basel) 2023; 11:821. [PMID: 37112733 PMCID: PMC10143468 DOI: 10.3390/vaccines11040821] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The severe consequences of the Zika virus (ZIKV) infections resulting in congenital Zika syndrome in infants and the autoimmune Guillain-Barre syndrome in adults warrant the development of safe and efficacious vaccines and therapeutics. Currently, there are no approved treatment options for ZIKV infection. Herein, we describe the development of a bacterial ferritin-based nanoparticle vaccine candidate for ZIKV. The viral envelope (E) protein domain III (DIII) was fused in-frame at the amino-terminus of ferritin. The resulting nanoparticle displaying the DIII was examined for its ability to induce immune responses and protect vaccinated animals upon lethal virus challenge. Our results show that immunization of mice with a single dose of the nanoparticle vaccine candidate (zDIII-F) resulted in the robust induction of neutralizing antibody responses that protected the animals from the lethal ZIKV challenge. The antibodies neutralized infectivity of other ZIKV lineages indicating that the zDIII-F can confer heterologous protection. The vaccine candidate also induced a significantly higher frequency of interferon (IFN)-γ positive CD4 T cells and CD8 T cells suggesting that both humoral and cell-mediated immune responses were induced by the vaccine candidate. Although our studies showed that a soluble DIII vaccine candidate could also induce humoral and cell-mediated immunity and protect from lethal ZIKV challenge, the immune responses and protection conferred by the nanoparticle vaccine candidate were superior. Further, passive transfer of neutralizing antibodies from the vaccinated animals to naïve animals protected against lethal ZIKV challenge. Since previous studies have shown that antibodies directed at the DIII region of the E protein do not to induce antibody-dependent enhancement (ADE) of ZIKV or other related flavivirus infections, our studies support the use of the zDIII-F nanoparticle vaccine candidate for safe and enhanced immunological responses against ZIKV.
Collapse
Affiliation(s)
- Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Bikash R. Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Lucas R. Struble
- The Eppley Institute for Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.R.S.); (G.E.O.B.)
| | - Gloria E. O. Borgstahl
- The Eppley Institute for Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.R.S.); (G.E.O.B.)
| | - You Zhou
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Raul G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Fernando A. Osorio
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Thomas M. Petro
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
24
|
Kumru OS, Sanyal M, Friedland N, Hickey J, Joshi R, Weidenbacher P, Do J, Cheng YC, Kim PS, Joshi SB, Volkin DB. Formulation development and comparability studies with an aluminum-salt adjuvanted SARS-CoV-2 Spike ferritin nanoparticle vaccine antigen produced from two different cell lines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535447. [PMID: 37066156 PMCID: PMC10103975 DOI: 10.1101/2023.04.03.535447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The development of safe and effective second-generation COVID-19 vaccines to improve affordability and storage stability requirements remains a high priority to expand global coverage. In this report, we describe formulation development and comparability studies with a self-assembled SARS-CoV-2 spike ferritin nanoparticle vaccine antigen (called DCFHP), when produced in two different cell lines and formulated with an aluminum-salt adjuvant (Alhydrogel, AH). Varying levels of phosphate buffer altered the extent and strength of antigen-adjuvant interactions, and these formulations were evaluated for their (1) in vivo performance in mice and (2) in vitro stability profiles. Unadjuvanted DCFHP produced minimal immune responses while AH-adjuvanted formulations elicited greatly enhanced pseudovirus neutralization titers independent of ∼100%, ∼40% or ∼10% of the DCFHP antigen adsorbed to AH. These formulations differed, however, in their in vitro stability properties as determined by biophysical studies and a competitive ELISA for measuring ACE2 receptor binding of AH-bound antigen. Interestingly, after one month of 4°C storage, small increases in antigenicity with concomitant decreases in the ability to desorb the antigen from the AH were observed. Finally, we performed a comparability assessment of DCFHP antigen produced in Expi293 and CHO cells, which displayed expected differences in their N-linked oligosaccharide profiles. Despite consisting of different DCFHP glycoforms, these two preparations were highly similar in their key quality attributes including molecular size, structural integrity, conformational stability, binding to ACE2 receptor and mouse immunogenicity profiles. Taken together, these studies support future preclinical and clinical development of an AH-adjuvanted DCFHP vaccine candidate produced in CHO cells.
Collapse
Affiliation(s)
- Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Mrinmoy Sanyal
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA, 94305 USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Natalia Friedland
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA, 94305 USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - John Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Richa Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Payton Weidenbacher
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA, 94305 USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Jonathan Do
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA, 94305 USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Ya-Chen Cheng
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA, 94305 USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Peter S Kim
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA, 94305 USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
25
|
Shrivastava S, Carmen JM, Lu Z, Basu S, Sankhala RS, Chen WH, Nguyen P, Chang WC, King J, Corbitt C, Mayer S, Bolton JS, Anderson A, Swafford I, Terriquez GD, Trinh HV, Kim J, Jobe O, Paquin-Proulx D, Matyas GR, Gromowski GD, Currier JR, Bergmann-Leitner E, Modjarrad K, Michael NL, Joyce MG, Malloy AMW, Rao M. SARS-CoV-2 spike-ferritin-nanoparticle adjuvanted with ALFQ induces long-lived plasma cells and cross-neutralizing antibodies. NPJ Vaccines 2023; 8:43. [PMID: 36934088 PMCID: PMC10024299 DOI: 10.1038/s41541-023-00638-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/28/2023] [Indexed: 03/20/2023] Open
Abstract
This study demonstrates the impact of adjuvant on the development of T follicular helper (Tfh) and B cells, and their influence on antibody responses in mice vaccinated with SARS-CoV-2-spike-ferritin-nanoparticle (SpFN) adjuvanted with either Army Liposome Formulation containing QS-21 (SpFN + ALFQ) or Alhydrogel® (SpFN + AH). SpFN + ALFQ increased the size and frequency of germinal center (GC) B cells in the vaccine-draining lymph nodes and increased the frequency of antigen-specific naive B cells. A single vaccination with SpFN + ALFQ resulted in a higher frequency of IL-21-producing-spike-specific Tfh and GC B cells in the draining lymph nodes and spleen, S-2P protein-specific IgM and IgG antibodies, and elicitation of robust cross-neutralizing antibodies against SARS-CoV-2 variants as early as day 7, which was enhanced by a second vaccination. This was associated with the generation of high titer, high avidity binding antibodies. The third vaccination with SpFN + ALFQ elicited high levels of neutralizing antibodies against the Omicron variant. No cross-neutralizing antibodies against Omicron were induced with SpFN + AH. These findings highlight the importance of ALFQ in orchestrating early induction of antigen-specific Tfh and GC B cell responses and long-lived plasma cells in the bone marrow. The early engagement of S-2P specific naive B cells and high titer IgM antibodies shape the development of long-term neutralization breadth.
Collapse
Affiliation(s)
- Shikha Shrivastava
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Joshua M Carmen
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Zhongyan Lu
- Department of Pediatrics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Shraddha Basu
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Rajeshwer S Sankhala
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Wei-Hung Chen
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Phuong Nguyen
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jocelyn King
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Courtney Corbitt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandra Mayer
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jessica S Bolton
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, USA
| | - Alexander Anderson
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Oak Ridge Institute of Science and Education, Oak Ridge, TN, 37831, USA
| | - Isabella Swafford
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Guillermo D Terriquez
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Hung V Trinh
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jiae Kim
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ousman Jobe
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dominic Paquin-Proulx
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gregory D Gromowski
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jeffrey R Currier
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Elke Bergmann-Leitner
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, USA
| | - Kayvon Modjarrad
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - M Gordon Joyce
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Allison M W Malloy
- Department of Pediatrics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
26
|
He C, Chen L, Yang J, Chen Z, Lei H, Hong W, Song X, Yang L, Li J, Wang W, Shen G, Lu G, Wei X. Trimeric protein vaccine based on Beta variant elicits robust immune response against BA.4/5-included SARS-CoV-2 Omicron variants. MOLECULAR BIOMEDICINE 2023; 4:9. [PMID: 36894743 PMCID: PMC9998262 DOI: 10.1186/s43556-023-00121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
The current Coronavirus Disease 2019 (COVID-19) pandemic, induced by newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants, posed great threats to global public health security. There is an urgent need to design effective next‑generation vaccines against Omicron lineages. Here, we investigated the immunogenic capacity of the vaccine candidate based on the receptor binding domain (RBD). An RBDβ-HR self-assembled trimer vaccine including RBD of Beta variant (containing K417, E484 and N501) and heptad repeat (HR) subunits was developed using an insect cell expression platform. Sera obtained from immunized mice effectively blocked RBD-human angiotensin-converting enzyme 2 (hACE2) binding for different viral variants, showing robust inhibitory activity. In addition, RBDβ-HR/trimer vaccine durably exhibited high titers of specific binding antibodies and high levels of cross-protective neutralizing antibodies against newly emerging Omicron lineages, as well as other major variants including Alpha, Beta, and Delta. Consistently, the vaccine also promoted a broad and potent cellular immune response involving the participation of T follicular helper (Tfh) cells, germinal center (GC) B cells, activated T cells, effector memory T cells, and central memory T cells, which are critical facets of protective immunity. These results demonstrated that RBDβ-HR/trimer vaccine candidates provided an attractive next-generation vaccine strategy against Omicron variants in the global effort to halt the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zimin Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiangrong Song
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guobo Shen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guangwen Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
27
|
Tapia D, Reyes-Sandoval A, Sanchez-Villamil JI. Protein-based Nanoparticle Vaccine Approaches Against Infectious Diseases. Arch Med Res 2023; 54:168-175. [PMID: 36894463 DOI: 10.1016/j.arcmed.2023.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/10/2023] [Accepted: 02/02/2023] [Indexed: 03/09/2023]
Abstract
The field of vaccine development has seen an increase in the number of rationally designed technologies that increase effectiveness against vaccine-resistant pathogens, while not compromising safety. Yet, there is still an urgent need to expand and further understand these platforms against complex pathogens that often evade protective responses. Nanoscale platforms have been at the center of new studies, especially in the wake of the coronavirus disease 2019 (COVID-19), with the aim of deploying safe and effective vaccines in a short time period. The intrinsic properties of protein-based nanoparticles, such as biocompatibility, flexible physicochemical characteristics, and variety have made them an attractive platform against different infectious disease agents. In the past decade, several studies have tested both lumazine synthase-, ferritin-, and albumin-based nanoplatforms against a wide range of complex pathogens in pre-clinical studies. Owed to their success in pre-clinical studies, several studies are undergoing human clinical trials or are near an initial phase. In this review we highlight the different protein-based platforms, mechanisms of synthesis, and effectiveness of these over the past decade. In addition, some challenges, and future directions to increase their effectiveness are also highlighted. Taken together, protein-based nanoscaffolds have proven to be an effective means to design rationally designed vaccines, especially against complex pathogens and emerging infectious diseases.
Collapse
Affiliation(s)
- Daniel Tapia
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Arturo Reyes-Sandoval
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio Nacional de Vacunología y Virus Tropicales, Ciudad de México, México
| | - Javier I Sanchez-Villamil
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Morelos, Atlacholoaya, Morelos, México.
| |
Collapse
|
28
|
Reutovich AA, Srivastava AK, Arosio P, Bou-Abdallah F. Ferritin nanocages as efficient nanocarriers and promising platforms for COVID-19 and other vaccines development. Biochim Biophys Acta Gen Subj 2023; 1867:130288. [PMID: 36470367 PMCID: PMC9721431 DOI: 10.1016/j.bbagen.2022.130288] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The development of safe and effective vaccines against SARS-CoV-2 and other viruses with high antigenic drift is of crucial importance to public health. Ferritin is a well characterized and ubiquitous iron storage protein that has emerged not only as a useful nanoreactor and nanocarrier, but more recently as an efficient platform for vaccine development. SCOPE OF REVIEW This review discusses ferritin structure-function properties, self-assembly, and novel bioengineering strategies such as interior cavity and exterior surface modifications for cargo encapsulation and delivery. It also discusses the use of ferritin as a scaffold for biomedical applications, especially for vaccine development against influenza, Epstein-Barr, HIV, hepatitis-C, Lyme disease, and respiratory viruses such as SARS-CoV-2. The use of ferritin for the synthesis of mosaic vaccines to deliver a cocktail of antigens that elicit broad immune protection against different viral variants is also explored. MAJOR CONCLUSIONS The remarkable stability, biocompatibility, surface functionalization, and self-assembly properties of ferritin nanoparticles make them very attractive platforms for a wide range of biomedical applications, including the development of vaccines. Strong immune responses have been observed in pre-clinical studies against a wide range of pathogens and have led to the exploration of ferritin nanoparticles-based vaccines in multiple phase I clinical trials. GENERAL SIGNIFICANCE The broad protective antibody response of ferritin nanoparticles-based vaccines demonstrates the usefulness of ferritin as a highly promising and effective approaches for vaccine development.
Collapse
Affiliation(s)
| | - Ayush K Srivastava
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| |
Collapse
|
29
|
Recombinant Protein Vaccines Formulated with Enantio-Specific Cationic Lipid R-DOTAP Induce Protective Cellular and Antibody-Mediated Immune Responses in Mice. Viruses 2023; 15:v15020432. [PMID: 36851646 PMCID: PMC9965888 DOI: 10.3390/v15020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Adjuvants are essential components of subunit vaccines added to enhance immune responses to antigens through immunomodulation. Very few adjuvants have been approved for human use by regulatory agencies due to safety concerns. Current subunit vaccine adjuvants approved for human use are very effective in promoting humoral immune responses but are less effective at promoting T-cell immunity. In this study, we evaluated a novel pure enantio-specific cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (R-DOTAP) as an immunomodulator for subunit vaccines capable of inducing both humoral- and cellular-mediated immunity. Using recombinant protein antigens derived from SARS-CoV2 spike or novel computationally optimized broadly reactive influenza antigen (COBRA) proteins, we demonstrated that R-DOTAP nanoparticles promoted strong cellular- and antibody-mediated immune responses in both monovalent and bivalent vaccines. R-DOTAP-based vaccines induced antigen-specific and polyfunctional CD8+ and CD4+ effector T cells and memory T cells, respectively. Antibody responses induced by R-DOTAP showed a balanced Th1/Th2 type immunity, neutralizing activity and protection of mice from challenge with live SARS-CoV2 or influenza viruses. R-DOTAP also facilitated significant dose sparing of the vaccine antigens. These studies demonstrate that R-DOTAP is an excellent immune stimulator for the production of next-generation subunit vaccines containing multiple recombinant proteins.
Collapse
|
30
|
Khaleeq S, Sengupta N, Kumar S, Patel UR, Rajmani RS, Reddy P, Pandey S, Singh R, Dutta S, Ringe RP, Varadarajan R. Neutralizing Efficacy of Encapsulin Nanoparticles against SARS-CoV2 Variants of Concern. Viruses 2023; 15:346. [PMID: 36851560 PMCID: PMC9961482 DOI: 10.3390/v15020346] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Rapid emergence of the SARS-CoV-2 variants has dampened the protective efficacy of existing authorized vaccines. Nanoparticle platforms offer a means to improve vaccine immunogenicity by presenting multiple copies of desired antigens in a repetitive manner which closely mimics natural infection. We have applied nanoparticle display combined with the SpyTag-SpyCatcher system to design encapsulin-mRBD, a nanoparticle vaccine displaying 180 copies of the monomeric SARS-CoV-2 spike receptor-binding domain (RBD). Here we show that encapsulin-mRBD is strongly antigenic and thermotolerant for long durations. After two immunizations, squalene-in-water emulsion (SWE)-adjuvanted encapsulin-mRBD in mice induces potent and comparable neutralizing antibody titers of 105 against wild-type (B.1), alpha, beta, and delta variants of concern. Sera also neutralizes the recent Omicron with appreciable neutralization titers, and significant neutralization is observed even after a single immunization.
Collapse
Affiliation(s)
- Sara Khaleeq
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India
| | - Nayanika Sengupta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India
| | - Sahil Kumar
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh 160036, India
| | - Unnatiben Rajeshbhai Patel
- Mynvax Private Limited, 3rd Floor, Brigade MLR Centre, No. 50, Vani Vilas Road, Basavanagudi, Bengaluru 560004, India
| | - Raju S. Rajmani
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India
| | - Poorvi Reddy
- Mynvax Private Limited, 3rd Floor, Brigade MLR Centre, No. 50, Vani Vilas Road, Basavanagudi, Bengaluru 560004, India
| | - Suman Pandey
- Mynvax Private Limited, 3rd Floor, Brigade MLR Centre, No. 50, Vani Vilas Road, Basavanagudi, Bengaluru 560004, India
| | - Randhir Singh
- Mynvax Private Limited, 3rd Floor, Brigade MLR Centre, No. 50, Vani Vilas Road, Basavanagudi, Bengaluru 560004, India
| | - Somnath Dutta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India
| | - Rajesh P. Ringe
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh 160036, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
31
|
Kovalenko A, Ryabchevskaya E, Evtushenko E, Nikitin N, Karpova O. Recombinant Protein Vaccines against Human Betacoronaviruses: Strategies, Approaches and Progress. Int J Mol Sci 2023; 24:1701. [PMID: 36675218 PMCID: PMC9863728 DOI: 10.3390/ijms24021701] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Betacoronaviruses have already troubled humanity more than once. In 2002-2003 and 2012, the SARS-CoV and MERS-CoV, respectively, caused outbreaks of respiratory syndromes with a fatal outcome. The spread of the SARS-CoV-2 coronavirus has become a pandemic. These three coronaviruses belong to the genus Betacoronavirus and have a zoonotic origin. The emergence of new coronavirus infections in the future cannot be ruled out, and vaccination is the main way to prevent the spread of the infection. Previous experience in the development of vaccines against SARS and MERS has helped to develop a number of vaccines against SARS-CoV-2 in a fairly short time. Among them, there are quite a few recombinant protein vaccines, which seem to be very promising in terms of safety, minimization of side effects, storage and transportation conditions. The problem of developing a universal betacoronavirus vaccine is also still relevant. Here, we summarize the information on the designing of vaccines based on recombinant proteins against highly pathogenic human betacoronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | - Nikolai Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | |
Collapse
|
32
|
Kim SA, Lee Y, Ko Y, Kim S, Kim GB, Lee NK, Ahn W, Kim N, Nam GH, Lee EJ, Kim IS. Protein-based nanocages for vaccine development. J Control Release 2023; 353:767-791. [PMID: 36516900 DOI: 10.1016/j.jconrel.2022.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Protein nanocages have attracted considerable attention in various fields of nanomedicine due to their intrinsic properties, including biocompatibility, biodegradability, high structural stability, and ease of modification of their surfaces and inner cavities. In vaccine development, these protein nanocages are suited for efficient targeting to and retention in the lymph nodes and can enhance immunogenicity through various mechanisms, including excellent uptake by antigen-presenting cells and crosslinking with multiple B cell receptors. This review highlights the superiority of protein nanocages as antigen delivery carriers based on their physiological and immunological properties such as biodistribution, immunogenicity, stability, and multifunctionality. With a focus on design, we discuss the utilization and efficacy of protein nanocages such as virus-like particles, caged proteins, and artificial caged proteins against cancer and infectious diseases such as coronavirus disease 2019 (COVID-19). In addition, we summarize available knowledge on the protein nanocages that are currently used in clinical trials and provide a general outlook on conventional distribution techniques and hurdles faced, particularly for therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Seong A Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea; Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yeram Lee
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Yeju Ko
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Seohyun Kim
- Department of Research and Development, SHIFTBIO INC., Seoul, Republic of Korea
| | - Gi Beom Kim
- Department of Research and Development, SHIFTBIO INC., Seoul, Republic of Korea
| | - Na Kyeong Lee
- Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Wonkyung Ahn
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Nayeon Kim
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Gi-Hoon Nam
- Department of Research and Development, SHIFTBIO INC., Seoul, Republic of Korea; Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Lee
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea; Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
33
|
Yu J, Thomas PV, McMahan K, Jacob-Dolan C, Liu J, He X, Hope D, Martinez EJ, Chen WH, Sciacca M, Hachmann NP, Lifton M, Miller J, Powers OC, Hall K, Wu C, Barrett J, Swafford I, Currier JR, King J, Corbitt C, Chang WC, Golub E, Rees PA, Peterson CE, Hajduczki A, Hussin E, Lange C, Gong H, Matyas GR, Rao M, Paquin-Proulx D, Gromowski GD, Lewis MG, Andersen H, Davis-Gardner M, Suthar MS, Michael NL, Bolton DL, Joyce MG, Modjarrad K, Barouch DH. Protection against SARS-CoV-2 Omicron BA.1 variant challenge in macaques by prime-boost vaccination with Ad26.COV2.S and SpFN. SCIENCE ADVANCES 2022; 8:eade4433. [PMID: 36417525 PMCID: PMC9683731 DOI: 10.1126/sciadv.ade4433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and waning immunity call for next-generation vaccine strategies. Here, we assessed the immunogenicity and protective efficacy of two SARS-CoV-2 vaccines targeting the WA1/2020 spike protein, Ad26.COV2.S (Ad26) and Spike ferritin Nanoparticle (SpFN), in nonhuman primates, delivered as either a homologous (SpFN/SpFN and Ad26/Ad26) or heterologous (Ad26/SpFN) prime-boost regimen. The Ad26/SpFN regimen elicited the highest CD4 T cell and memory B cell responses, the SpFN/SpFN regimen generated the highest binding and neutralizing antibody responses, and the Ad26/Ad26 regimen generated the most robust CD8 T cell responses. Despite these differences, protective efficacy against SARS-CoV-2 Omicron BA.1 challenge was similar for all three regimens. After challenge, all vaccinated monkeys showed significantly reduced peak and day 4 viral loads in both bronchoalveolar lavage and nasal swabs as compared with sham animals. The efficacy conferred by these three immunologically distinct vaccine regimens suggests that both humoral and cellular immunity contribute to protection against SARS-CoV-2 Omicron challenge.
Collapse
Affiliation(s)
- Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Paul V. Thomas
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Katherine McMahan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Catherine Jacob-Dolan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Jinyan Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Xuan He
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - David Hope
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Elizabeth J. Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Michaela Sciacca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Nicole P. Hachmann
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Michelle Lifton
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jessica Miller
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Olivia C. Powers
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Kevin Hall
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Cindy Wu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Julia Barrett
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Isabella Swafford
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Jeffrey R. Currier
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Jocelyn King
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Courtney Corbitt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - William C. Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
| | - Emily Golub
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Phyllis A. Rees
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Caroline E. Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Elizabeth Hussin
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Camille Lange
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Hua Gong
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gary R. Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Dominic Paquin-Proulx
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Gregory D. Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | | | | - Mehul S. Suthar
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Nelson L. Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
| | - Diane L. Bolton
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - M. Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
34
|
Heng WT, Yew JS, Poh CL. Nanovaccines against Viral Infectious Diseases. Pharmaceutics 2022; 14:2554. [PMID: 36559049 PMCID: PMC9784285 DOI: 10.3390/pharmaceutics14122554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Infectious diseases have always been regarded as one of the greatest global threats for the last century. The current ongoing COVID-19 pandemic caused by SARS-CoV-2 is living proof that the world is still threatened by emerging infectious diseases. Morbidity and mortality rates of diseases caused by Coronavirus have inflicted devastating social and economic outcomes. Undoubtedly, vaccination is the most effective method of eradicating infections and infectious diseases that have been eradicated by vaccinations, including Smallpox and Polio. To date, next-generation vaccine candidates with novel platforms are being approved for emergency use, such as the mRNA and viral vectored vaccines against SARS-CoV-2. Nanoparticle based vaccines are the perfect candidates as they demonstrated targeted antigen delivery, improved antigen presentation, and sustained antigen release while providing self-adjuvanting functions to stimulate potent immune responses. In this review, we discussed most of the recent nanovaccines that have found success in immunization and challenge studies in animal models in comparison with their naked vaccine counterparts. Nanovaccines that are currently in clinical trials are also reviewed.
Collapse
Affiliation(s)
| | | | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
| |
Collapse
|
35
|
Wang Z, An J, Liu K, Yu P, Fang X, Li J, Zhu H, Zhu Q, Huang C, Zhang C, Zhao B, Bao L, Song Y, Cao X, Hu D, Jiang Y, Shi L, Zhou L, Fan J, Guan W, Zhou C, Hu Z, Yuan Z, Liu J, Shan C, Liu G. A potent, broadly protective vaccine against SARS-CoV-2 variants of concern. NPJ Vaccines 2022; 7:144. [PMID: 36371432 PMCID: PMC9653380 DOI: 10.1038/s41541-022-00571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Since the first outbreak in December 2019, SARS-CoV-2 has been constantly evolving and five variants have been classified as Variant of Concern (VOC) by the World Health Organization (WHO). These VOCs were found to enhance transmission and/or decrease neutralization capabilities of monoclonal antibodies and vaccine-induced antibodies. Here, we successfully designed and produced a recombinant COVID-19 vaccine in CHO cells at a high yield. The vaccine antigen contains four hot spot substitutions, K417N, E484K, N501Y and D614G, based on a prefusion-stabilized spike trimer of SARS-CoV-2 (S-6P) and formulated with an Alum/CpG 7909 dual adjuvant system. Results of immunogenicity studies showed that the variant vaccine elicited robust cross-neutralizing antibody responses against SARS-CoV-2 prototype (Wuhan) strain and all 5 VOCs. It further, stimulated a TH1 (T Helper type 1) cytokine profile and substantial CD4+ T cell responses in BALB/c mice and rhesus macaques were recorded. Protective efficacy of the vaccine candidate was evaluated in hamster and rhesus macaque models of SARS-CoV-2. In Golden Syrian hamsters challenged with Beta or Delta strains, the vaccine candidate reduced the viral loads in nasal turbinates and lung tissues, accompanied by significant weight gain and relieved inflammation in the lungs. In rhesus macaque challenged with prototype SARS-CoV-2, the vaccine candidate decreased viral shedding in throat, anal, blood swabs over time, reduced viral loads of bronchus and lung tissue, and effectively relieved the lung pathological inflammatory response. Together, our data demonstrated the broadly neutralizing activity and efficacy of the variant vaccine against both prototype and current VOCs of SARS-CoV-2, justifying further clinical development.
Collapse
Affiliation(s)
- Ziyan Wang
- Shanghai Zerun Biotech Co., Ltd., Shanghai, 201203, China
| | - Jiao An
- Shanghai Zerun Biotech Co., Ltd., Shanghai, 201203, China
| | - Kunpeng Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Pin Yu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Xin Fang
- National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, China
| | - Jiadai Li
- Shanghai Zerun Biotech Co., Ltd., Shanghai, 201203, China
| | - Hua Zhu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Qianjun Zhu
- Shanghai Zerun Biotech Co., Ltd., Shanghai, 201203, China
| | - Chuanqi Huang
- Shanghai Zerun Biotech Co., Ltd., Shanghai, 201203, China
| | - Chao Zhang
- Shanghai Zerun Biotech Co., Ltd., Shanghai, 201203, China
| | - Binbin Zhao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Linlin Bao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Yujiao Song
- Shanghai Zerun Biotech Co., Ltd., Shanghai, 201203, China
| | - Xiayao Cao
- Shanghai Zerun Biotech Co., Ltd., Shanghai, 201203, China
| | - Dongdong Hu
- Shanghai Zerun Biotech Co., Ltd., Shanghai, 201203, China
| | | | - Likang Shi
- Shanghai Zerun Biotech Co., Ltd., Shanghai, 201203, China
| | - Lingyun Zhou
- Shanghai Zerun Biotech Co., Ltd., Shanghai, 201203, China
| | - Jiang Fan
- Shanghai Zerun Biotech Co., Ltd., Shanghai, 201203, China
| | - Wuxiang Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China
| | - Chenliang Zhou
- Shanghai Zerun Biotech Co., Ltd., Shanghai, 201203, China.
| | - Zhongyu Hu
- National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, China.
| | - Zhiming Yuan
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430271, China.
| | - Jiangning Liu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China.
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China.
| | - Ge Liu
- Shanghai Zerun Biotech Co., Ltd., Shanghai, 201203, China.
| |
Collapse
|
36
|
Gombos J, Balejcikova L, Kopcansky P, Batkova M, Siposova K, Kovac J, Zolochevska K, Safarik I, Lokajova A, Garamus VM, Dobrota D, Strbak O. Destruction of Lysozyme Amyloid Fibrils Induced by Magnetoferritin and Reconstructed Ferritin. Int J Mol Sci 2022; 23:ijms232213926. [PMID: 36430405 PMCID: PMC9696235 DOI: 10.3390/ijms232213926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), or systemic amyloidosis, are characterized by the specific protein transformation from the native state to stable insoluble deposits, e.g., amyloid plaques. The design of potential therapeutic agents and drugs focuses on the destabilization of the bonds in their beta-rich structures. Surprisingly, ferritin derivatives have recently been proposed to destabilize fibril structures. Using atomic force microscopy (AFM) and fluorescence spectrophotometry, we confirmed the destructive effect of reconstructed ferritin (RF) and magnetoferritin (MF) on lysosome amyloid fibrils (LAF). The presence of iron was shown to be the main factor responsible for the destruction of LAF. Moreover, we found that the interaction of RF and MF with LAF caused a significant increase in the release of potentially harmful ferrous ions. Zeta potential and UV spectroscopic measurements of LAF and ferritin derivative mixtures revealed a considerable difference in RF compared to MF. Our results contribute to a better understanding of the mechanism of fibril destabilization by ferritin-like proteins. From this point of view, ferritin derivatives seem to have a dual effect: therapeutic (fibril destruction) and adverse (oxidative stress initiated by increased Fe2+ release). Thus, ferritins may play a significant role in various future biomedical applications.
Collapse
Affiliation(s)
- Jan Gombos
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, 036 01 Martin, Slovakia
- Correspondence: (J.G.); (O.S.)
| | - Lucia Balejcikova
- Institute of Hydrology, Slovak Academy of Sciences, 841 01 Bratislava, Slovakia
| | - Peter Kopcansky
- Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
| | - Marianna Batkova
- Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
| | - Katarina Siposova
- Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
| | - Jozef Kovac
- Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
| | - Kristina Zolochevska
- Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, 779 00 Olomouc, Czech Republic
| | - Alica Lokajova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, 036 01 Martin, Slovakia
| | - Vasil M. Garamus
- Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Dusan Dobrota
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, 036 01 Martin, Slovakia
| | - Oliver Strbak
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, 036 01 Martin, Slovakia
- Correspondence: (J.G.); (O.S.)
| |
Collapse
|
37
|
DeWolf S, Laracy JC, Perales MA, Kamboj M, van den Brink MRM, Vardhana S. SARS-CoV-2 in immunocompromised individuals. Immunity 2022; 55:1779-1798. [PMID: 36182669 PMCID: PMC9468314 DOI: 10.1016/j.immuni.2022.09.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Immunocompromised individuals and particularly those with hematologic malignancies are at increased risk for SARS-CoV-2-associated morbidity and mortality due to immunologic deficits that limit prevention, treatment, and clearance of the virus. Understanding the natural history of viral infections in people with impaired immunity due to underlying conditions, immunosuppressive therapy, or a combination thereof has emerged as a critical area of investigation during the COVID-19 pandemic. Studies focused on these individuals have provided key insights into aspects of innate and adaptive immunity underlying both the antiviral immune response and excess inflammation in the setting of COVID-19. This review presents what is known about distinct states of immunologic vulnerability to SARS-CoV-2 and how this information can be harnessed to improve prevention and treatment strategies for immunologically high-risk populations.
Collapse
Affiliation(s)
- Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin C Laracy
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Mini Kamboj
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcel R M van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Santosha Vardhana
- Weill Cornell Medical College, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
38
|
Masoomi Nomandan SZ, Azimzadeh Irani M, Hosseini SM. In silico design of refined ferritin-SARS-CoV-2 glyco-RBD nanoparticle vaccine. Front Mol Biosci 2022; 9:976490. [PMID: 36148012 PMCID: PMC9486171 DOI: 10.3389/fmolb.2022.976490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
With the onset of Coronavirus disease 2019 (COVID-19) pandemic, all attention was drawn to finding solutions to cure the coronavirus disease. Among all vaccination strategies, the nanoparticle vaccine has been shown to stimulate the immune system and provide optimal immunity to the virus in a single dose. Ferritin is a reliable self-assembled nanoparticle platform for vaccine production that has already been used in experimental studies. Furthermore, glycosylation plays a crucial role in the design of antibodies and vaccines and is an essential element in developing effective subunit vaccines. In this computational study, ferritin nanoparticles and glycosylation, which are two unique facets of vaccine design, were used to model improved nanoparticle vaccines for the first time. In this regard, molecular modeling and molecular dynamics simulation were carried out to construct three atomistic models of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD)-ferritin nanoparticle vaccine, including unglycosylated, glycosylated, and modified with additional O-glycans at the ferritin–RBD interface. It was shown that the ferritin–RBD complex becomes more stable when glycans are added to the ferritin–RBD interface and optimal performance of this nanoparticle can be achieved. If validated experimentally, these findings could improve the design of nanoparticles against all microbial infections.
Collapse
|
39
|
Young A. T cells in SARS-CoV-2 infection and vaccination. Ther Adv Vaccines Immunother 2022; 10:25151355221115011. [PMID: 36051003 PMCID: PMC9425900 DOI: 10.1177/25151355221115011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
While antibodies garner the lion’s share of attention in SARS-CoV-2 immunity, cellular immunity (T cells) may be equally, if not more important, in controlling infection. Both CD8+ and CD4+ T cells are elicited earlier and are associated with milder disease, than antibodies, and T-cell activation appears to be necessary for control of infection. Variants of concern (VOCs) such as Omicron have escaped the neutralizing antibody responses after two mRNA vaccine doses, but T-cell immunity is largely intact. The breadth and patient-specific nature of the latter offers a formidable line of defense that can limit the severity of illness, and are likely to be responsible for most of the protection from natural infection or vaccination against VOCs which have evaded the antibody response. Comprehensive searches for T-cell epitopes, T-cell activation from infection and vaccination of specific patient groups, and elicitation of cellular immunity by various alternative vaccine modalities are here reviewed. Development of vaccines that specifically target T cells is called for, to meet the needs of patient groups for whom cellular immunity is weaker, such as the elderly and the immunosuppressed. While VOCs have not yet fully escaped T-cell immunity elicited by natural infection and vaccines, some early reports of partial escape suggest that future VOCs may achieve the dreaded result, dislodging a substantial proportion of cellular immunity, enough to cause a grave public health burden. A proactive, rather than reactive, solution which identifies and targets immutable sequences in SARS-CoV-2, not just those which are conserved, may be the only recourse humankind has to disarm these future VOCs before they disarm us.
Collapse
Affiliation(s)
- Arthur Young
- InvVax, 2265 E. Foohill Blvd., Pasadena, CA 91107, USA
| |
Collapse
|
40
|
Wang Z, Cui K, Costabel U, Zhang X. Nanotechnology-facilitated vaccine development during the coronavirus disease 2019 (COVID-19) pandemic. EXPLORATION (BEIJING, CHINA) 2022; 2:20210082. [PMID: 35941992 PMCID: PMC9349967 DOI: 10.1002/exp.20210082] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/11/2022] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) continually poses a significant threat to the human race, and prophylactic vaccination is the most potent approach to end this pandemic. Nanotechnology is widely adopted during COVID-19 vaccine development, and the engineering of nanostructured materials such as nanoparticles has opened new possibilities in innovative vaccine development by improving the design and accelerating the development process. This review aims to comprehensively understand the current situation and prospects of nanotechnology-enabled vaccine development against the COVID-19 pandemic, with an emphasis on the interplay between nanotechnology and the host immune system.
Collapse
Affiliation(s)
- Ziqi Wang
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
| | - Kai Cui
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
- Academy of Medical ScienceZhengzhou UniversityZhengzhouHenanP. R. China
| | - Ulrich Costabel
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
- Department of PneumologyRuhrlandklinikUniversity Medicine EssenEssenGermany
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
| |
Collapse
|
41
|
Johnston SC, Ricks KM, Lakhal-Naouar I, Jay A, Subra C, Raymond JL, King HAD, Rossi F, Clements TL, Fetterer D, Tostenson S, Cincotta CM, Hack HR, Kuklis C, Soman S, King J, Peachman KK, Kim D, Chen WH, Sankhala RS, Martinez EJ, Hajduczki A, Chang WC, Choe M, Thomas PV, Peterson CE, Anderson A, Swafford I, Currier JR, Paquin-Proulx D, Jagodzinski LL, Matyas GR, Rao M, Gromowski GD, Peel SA, White L, Smith JM, Hooper JW, Michael NL, Modjarrad K, Joyce MG, Nalca A, Bolton DL, Pitt MLM. A SARS-CoV-2 Spike Ferritin Nanoparticle Vaccine Is Protective and Promotes a Strong Immunological Response in the Cynomolgus Macaque Coronavirus Disease 2019 (COVID-19) Model. Vaccines (Basel) 2022; 10:vaccines10050717. [PMID: 35632473 PMCID: PMC9145473 DOI: 10.3390/vaccines10050717] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 02/04/2023] Open
Abstract
The COVID-19 pandemic has had a staggering impact on social, economic, and public health systems worldwide. Vaccine development and mobilization against SARS-CoV-2 (the etiologic agent of COVID-19) has been rapid. However, novel strategies are still necessary to slow the pandemic, and this includes new approaches to vaccine development and/or delivery that will improve vaccination compliance and demonstrate efficacy against emerging variants. Here, we report on the immunogenicity and efficacy of a SARS-CoV-2 vaccine comprising stabilized, pre-fusion spike protein trimers displayed on a ferritin nanoparticle (SpFN) adjuvanted with either conventional aluminum hydroxide or the Army Liposomal Formulation QS-21 (ALFQ) in a cynomolgus macaque COVID-19 model. Vaccination resulted in robust cell-mediated and humoral responses and a significant reduction in lung lesions following SARS-CoV-2 infection. The strength of the immune response suggests that dose sparing through reduced or single dosing in primates may be possible with this vaccine. Overall, the data support further evaluation of SpFN as a SARS-CoV-2 protein-based vaccine candidate with attention to fractional dosing and schedule optimization.
Collapse
Affiliation(s)
- Sara C. Johnston
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (J.M.S.); (J.W.H.)
- Correspondence:
| | - Keersten M. Ricks
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (K.M.R.); (T.L.C.)
| | - Ines Lakhal-Naouar
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (K.K.P.); (L.L.J.); (S.A.P.)
| | - Alexandra Jay
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (A.J.); (F.R.); (D.F.); (L.W.)
| | - Caroline Subra
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.R.M.); (M.R.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Jo Lynne Raymond
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA;
| | - Hannah A. D. King
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.R.M.); (M.R.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Franco Rossi
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (A.J.); (F.R.); (D.F.); (L.W.)
| | - Tamara L. Clements
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (K.M.R.); (T.L.C.)
| | - David Fetterer
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (A.J.); (F.R.); (D.F.); (L.W.)
| | - Samantha Tostenson
- Core Laboratory Services Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA;
| | - Camila Macedo Cincotta
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (K.K.P.); (L.L.J.); (S.A.P.)
| | - Holly R. Hack
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (K.K.P.); (L.L.J.); (S.A.P.)
| | - Caitlin Kuklis
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (S.S.); (J.K.); (J.R.C.); (G.D.G.)
| | - Sandrine Soman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (S.S.); (J.K.); (J.R.C.); (G.D.G.)
| | - Jocelyn King
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (S.S.); (J.K.); (J.R.C.); (G.D.G.)
| | - Kristina K. Peachman
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (K.K.P.); (L.L.J.); (S.A.P.)
| | - Dohoon Kim
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.R.M.); (M.R.)
| | - Wei-Hung Chen
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Rajeshwer S. Sankhala
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Elizabeth J. Martinez
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Agnes Hajduczki
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - William C. Chang
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Misook Choe
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Paul V. Thomas
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Caroline E. Peterson
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Alexander Anderson
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.R.M.); (M.R.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Isabella Swafford
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.R.M.); (M.R.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Jeffrey R. Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (S.S.); (J.K.); (J.R.C.); (G.D.G.)
| | - Dominic Paquin-Proulx
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.R.M.); (M.R.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Linda L. Jagodzinski
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (K.K.P.); (L.L.J.); (S.A.P.)
| | - Gary R. Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.R.M.); (M.R.)
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.R.M.); (M.R.)
| | - Gregory D. Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (S.S.); (J.K.); (J.R.C.); (G.D.G.)
| | - Sheila A. Peel
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (K.K.P.); (L.L.J.); (S.A.P.)
| | - Lauren White
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (A.J.); (F.R.); (D.F.); (L.W.)
| | - Jeffrey M. Smith
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (J.M.S.); (J.W.H.)
| | - Jay W. Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (J.M.S.); (J.W.H.)
| | - Nelson L. Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - M. Gordon Joyce
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Aysegul Nalca
- Core Support Directorate, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA;
| | - Diane L. Bolton
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.R.M.); (M.R.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Margaret L. M. Pitt
- Office of the Science Advisor, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA;
| |
Collapse
|
42
|
Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev 2022; 51:4287-4336. [PMID: 35471996 DOI: 10.1039/d1cs00343g] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Advanced treatments based on immune system manipulation, gene transcription and regulation, specific organ and cell targeting, and/or photon energy conversion have emerged as promising therapeutic strategies against a range of challenging diseases. Naturally derived macromolecules (e.g., proteins, lipids, polysaccharides, and polyphenols) have increasingly found use as fundamental building blocks for nanostructured particles as their advantageous properties, including biocompatibility, biodegradability, inherent bioactivity, and diverse chemical properties make them suitable for advanced therapeutic applications. This review provides a timely and comprehensive summary of the use of a broad range of natural building blocks in the rapidly developing field of advanced therapeutics with insights specific to nanostructured particles. We focus on an up-to-date overview of the assembly of nanostructured particles using natural building blocks and summarize their key scientific and preclinical milestones for advanced therapies, including adoptive cell therapy, immunotherapy, gene therapy, active targeted drug delivery, photoacoustic therapy and imaging, photothermal therapy, and combinational therapy. A cross-comparison of the advantages and disadvantages of different natural building blocks are highlighted to elucidate the key design principles for such bio-derived nanoparticles toward improving their performance and adoption. Current challenges and future research directions are also discussed, which will accelerate our understanding of designing, engineering, and applying nanostructured particles for advanced therapies.
Collapse
Affiliation(s)
- Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia. .,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Haotian Liao
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan 610065, China
| | - Joseph J Richardson
- Department of Materials Engineering, University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|