1
|
Singh RK, Torne AS, Robertson ES. Hypoxic reactivation of Kaposi's sarcoma associated herpesvirus. CELL INSIGHT 2024; 3:100200. [PMID: 39391006 PMCID: PMC11466537 DOI: 10.1016/j.cellin.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024]
Abstract
Hypoxic reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) refers to the phenomenon under low oxygen where the virus goes from latent to lytic replication. Typically, healthy cells generally cease cell division and DNA replication under hypoxic conditions due to limited resources, and the presence of physiological inhibitors. This restricted replication under hypoxic conditions is considered an employed strategy of the cell to minimize energy consumption. However, cancerous cells continuously replicate and divide in hypoxic conditions by reprogramming several aspects of their cell physiology, including but not limited to metabolism, cell cycle, DNA replication, transcription, translation, and the epigenome. KSHV infection, similar to cancerous cells, is known to bypass hypoxia-induced restrictions and undergo reactivation to produce progeny viruses. In previous studies we have mapped several aspects of cell physiology that are manipulated by KSHV through its latent antigens during hypoxic conditions, which allows for a permissive environment for its replication. We discuss the major strategies utilized by KSHV to bypass hypoxia-induced repression. We also describe the KSHV-encoded antigens responsible for modulating these cellular processes important for successful viral replication and persistence in hypoxia.
Collapse
Affiliation(s)
- Rajnish Kumar Singh
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Atharva S Torne
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| |
Collapse
|
2
|
Wan L, Xie B, Shuda M, Delgoffe G, Chang Y, Moore PS. Engineered protein destabilization reverses intrinsic immune evasion for candidate vaccine pan-strain KSHV and SARS-CoV-2 antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619692. [PMID: 39484438 PMCID: PMC11526888 DOI: 10.1101/2024.10.22.619692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Both Kaposi sarcoma herpesvirus LANA and SARS coronavirus 2 RdRp/nsp12 are highly conserved replication proteins that evade immune processing. By deleting the LANA central repeat 1 domain (LANA ΔCR1 ) or by dividing RdRp into two separated fragments (RdRp Frag ) to maximize nascent protein mis-folding, cis peptide presentation was increased. Native LANA or RdRp SIINFEKL fusion proteins expressed in MC38 cancer cells were not recognized by activated OT-1 CD8 + cells against SIINFEKL but cytotoxic recognition was restored by expression of the corresponding modified proteins. Immunocompetent syngeneic mice injected with LANA- or RdRp-SIINFEKL MC38 cells developed rapidly-growing tumors with short median survival times. Mice injected with LANA ΔCR1 - or RdRp Frag -SIINFEKL had partial tumor regression, slower tumor growth, longer median survival, as well as increased effector-specific tumor-infiltrating lymphocytes. These mice developed robust T cell responses lasting at least 90 days post-injection that recognized native viral protein epitopes. Engineered vaccine candidate antigens can unmask virus-specific CTL responses that are typically suppressed during native viral infection.
Collapse
|
3
|
Lurain KA, Ramaswami R, Krug LT, Whitby D, Ziegelbauer JM, Wang HW, Yarchoan R. HIV-associated cancers and lymphoproliferative disorders caused by Kaposi sarcoma herpesvirus and Epstein-Barr virus. Clin Microbiol Rev 2024; 37:e0002223. [PMID: 38899877 PMCID: PMC11391709 DOI: 10.1128/cmr.00022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYWithin weeks of the first report of acquired immunodeficiency syndrome (AIDS) in 1981, it was observed that these patients often had Kaposi sarcoma (KS), a hitherto rarely seen skin tumor in the USA. It soon became apparent that AIDS was also associated with an increased incidence of high-grade lymphomas caused by Epstein-Barr virus (EBV). The association of AIDS with KS remained a mystery for more than a decade until Kaposi sarcoma-associated herpesvirus (KSHV) was discovered and found to be the cause of KS. KSHV was subsequently found to cause several other diseases associated with AIDS and human immunodeficiency virus (HIV) infection. People living with HIV/AIDS continue to have an increased incidence of certain cancers, and many of these cancers are caused by EBV and/or KSHV. In this review, we discuss the epidemiology, virology, pathogenesis, clinical manifestations, and treatment of cancers caused by EBV and KSHV in persons living with HIV.
Collapse
Affiliation(s)
- Kathryn A Lurain
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Ramya Ramaswami
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Laurie T Krug
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joseph M Ziegelbauer
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert Yarchoan
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Moore PS, Chang Y. Are There More Human Cancer Viruses Left to Be Found? Annu Rev Virol 2024; 11:239-259. [PMID: 39326883 DOI: 10.1146/annurev-virology-111821-103721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Of the thousands of viruses infecting humans, only seven cause cancer in the general population. Tumor sequencing is now a common cancer medicine procedure, and so it seems likely that more human cancer viruses already would have been found if they exist. Here, we review cancer characteristics that can inform a dedicated search for new cancer viruses, focusing on Kaposi sarcoma herpesvirus and Merkel cell polyomavirus as the most recent examples of successful genomic and transcriptomic searches. We emphasize the importance of epidemiology in determining which cancers to examine and describe approaches to virus discovery. Barriers to virus discovery, such as novel genomes and viral suppression of messenger RNA expression, may exist that prevent virus discovery using existing approaches. Optimally virus hunting should be performed in such a way that if no virus is found, the tumor can be reasonably excluded from having an infectious etiology and new information about the biology of the tumor can be found.
Collapse
Affiliation(s)
- Patrick S Moore
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
| | - Yuan Chang
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
| |
Collapse
|
5
|
Bland WA, Mitra D, Owens S, McEvoy K, Hogan CH, Boccuzzi L, Kirillov V, Meyer TJ, Khairallah C, Sheridan BS, Forrest JC, Krug LT. A replication-deficient gammaherpesvirus vaccine protects mice from lytic disease and reduces latency establishment. NPJ Vaccines 2024; 9:116. [PMID: 38914546 PMCID: PMC11196663 DOI: 10.1038/s41541-024-00908-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/11/2024] [Indexed: 06/26/2024] Open
Abstract
Gammaherpesviruses are oncogenic viruses that establish lifelong infections and are significant causes of morbidity and mortality. Vaccine strategies to limit gammaherpesvirus infection and disease are in development, but there are no FDA-approved vaccines for Epstein-Barr or Kaposi sarcoma herpesvirus. As a new approach to gammaherpesvirus vaccination, we developed and tested a replication-deficient virus (RDV) platform, using murine gammaherpesvirus 68 (MHV68), a well-established mouse model for gammaherpesvirus pathogenesis studies and preclinical therapeutic evaluations. We employed codon-shuffling-based complementation to generate revertant-free RDV lacking expression of the essential replication and transactivator protein encoded by ORF50 to arrest viral gene expression early after de novo infection. Inoculation with RDV-50.stop exposes the host to intact virion particles and leads to limited lytic gene expression in infected cells yet does not produce additional infectious particles. Prime-boost vaccination of mice with RDV-50.stop elicited virus-specific neutralizing antibody and effector T cell responses in the lung and spleen. In contrast to vaccination with heat-inactivated WT MHV68, vaccination with RDV-50.stop resulted in a near complete abolishment of virus replication in the lung 7 days post-challenge and reduction of latency establishment in the spleen 16 days post-challenge with WT MHV68. Ifnar1-/- mice, which lack the type I interferon receptor, exhibit severe disease and high mortality upon infection with WT MHV68. RDV-50.stop vaccination of Ifnar1-/- mice prevented wasting and mortality upon challenge with WT MHV68. These results demonstrate that prime-boost vaccination with a gammaherpesvirus that is unable to undergo lytic replication offers protection against acute replication, impairs the establishment of latency, and prevents severe disease upon the WT virus challenge. Our study also reveals that the ability of a gammaherpesvirus to persist in vivo despite potent pre-existing immunity is an obstacle to obtaining sterilizing immunity.
Collapse
Affiliation(s)
- Wesley A Bland
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Environment, Health and Safety, University of North Carolina, Chapel Hill, NC, USA
| | - Dipanwita Mitra
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
| | - Shana Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kyle McEvoy
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Chad H Hogan
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, USA
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luciarita Boccuzzi
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
- Doctor of Medicine Program, Rush University Medical Center, 1650, West Harrison Street, Chicago, IL, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Thomas J Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - J Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA.
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
6
|
Muniraju M, Mutsvunguma LZ, Reidel IG, Escalante GM, Cua S, Musonda W, Calero-Landa J, Farelo MA, Rodriguez E, Li Z, Ogembo JG. Kaposi sarcoma-associated herpesvirus complement control protein (KCP) and glycoprotein K8.1 are not required for viral infection in vitro or in vivo. J Virol 2024; 98:e0057624. [PMID: 38767375 PMCID: PMC11237445 DOI: 10.1128/jvi.00576-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causal agent of Kaposi sarcoma, a cancer that appears as tumors on the skin or mucosal surfaces, as well as primary effusion lymphoma and KSHV-associated multicentric Castleman disease, which are B-cell lymphoproliferative disorders. Effective prophylactic and therapeutic strategies against KSHV infection and its associated diseases are needed. To develop these strategies, it is crucial to identify and target viral glycoproteins involved in KSHV infection of host cells. Multiple KSHV glycoproteins expressed on the viral envelope are thought to play a pivotal role in viral infection, but the infection mechanisms involving these glycoproteins remain largely unknown. We investigated the role of two KSHV envelope glycoproteins, KSHV complement control protein (KCP) and K8.1, in viral infection in various cell types in vitro and in vivo. Using our newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP, K8.1, or both, we demonstrated the presence of KCP and K8.1 on the surface of both virions and KSHV-infected cells. We showed that KSHV lacking KCP and/or K8.1 remained infectious in KSHV-susceptible cell lines, including epithelial, endothelial, and fibroblast, when compared to wild-type recombinant KSHV. We also provide the first evidence that KSHV lacking K8.1 or both KCP and K8.1 can infect human B cells in vivo in a humanized mouse model. Thus, these results suggest that neither KCP nor K8.1 is required for KSHV infection of various host cell types and that these glycoproteins do not determine KSHV cell tropism. IMPORTANCE Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic human gamma-herpesvirus associated with the endothelial malignancy Kaposi sarcoma and the lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman disease. Determining how KSHV glycoproteins such as complement control protein (KCP) and K8.1 contribute to the establishment, persistence, and transmission of viral infection will be key for developing effective anti-viral vaccines and therapies to prevent and treat KSHV infection and KSHV-associated diseases. Using newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP and/or K8.1, we show that KCP and K8.1 can be found on the surface of both virions and KSHV-infected cells. Furthermore, we show that KSHV lacking KCP and/or K8.1 remains infectious to diverse cell types susceptible to KSHV in vitro and to human B cells in vivo in a humanized mouse model, thus providing evidence that these viral glycoproteins are not required for KSHV infection.
Collapse
Affiliation(s)
- Murali Muniraju
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Lorraine Z Mutsvunguma
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ivana G Reidel
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Gabriela M Escalante
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Simeon Cua
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Webster Musonda
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Jonathan Calero-Landa
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
- Irell & Manella Graduate School of Biological Sciences of City of Hope, Duarte, California, USA
| | - Mafalda A Farelo
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Esther Rodriguez
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
- Irell & Manella Graduate School of Biological Sciences of City of Hope, Duarte, California, USA
| | - Zhou Li
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Javier Gordon Ogembo
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
7
|
Caduff N, Rieble L, Böni M, McHugh D, Roshan R, Miley W, Labo N, Barman S, Trivett M, Bosma DMT, Rühl J, Goebels N, Whitby D, Münz C. KSHV infection of B cells primes protective T cell responses in humanized mice. Nat Commun 2024; 15:4841. [PMID: 38844783 PMCID: PMC11156630 DOI: 10.1038/s41467-024-49209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Kaposi sarcoma associated herpesvirus (KSHV) is associated with around 1% of all human tumors, including the B cell malignancy primary effusion lymphoma (PEL), in which co-infection with the Epstein Barr virus (EBV) can almost always be found in malignant cells. Here, we demonstrate that KSHV/EBV co-infection of mice with reconstituted human immune systems (humanized mice) leads to IgM responses against both latent and lytic KSHV antigens, and expansion of central and effector memory CD4+ and CD8+ T cells. Among these, KSHV/EBV dual-infection allows for the priming of CD8+ T cells that are specific for the lytic KSHV antigen K6 and able to kill KSHV/EBV infected B cells. This suggests that K6 may represent a vaccine antigen for the control of KSHV and its associated pathologies in high seroprevalence regions, such as Sub-Saharan Africa.
Collapse
Affiliation(s)
- Nicole Caduff
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
- Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Lisa Rieble
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Michelle Böni
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Donal McHugh
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
- Pfizer, Medical Department, Schärenmoosstrasse 99, 8052, Zürich, Switzerland
| | - Romin Roshan
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wendell Miley
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nazzarena Labo
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sumanta Barman
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Matthew Trivett
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Douwe M T Bosma
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Julia Rühl
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Norbert Goebels
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
8
|
Sanchez-Martinez ZV, Alpuche-Lazcano SP, Stuible M, Durocher Y. CHO cells for virus-like particle and subunit vaccine manufacturing. Vaccine 2024; 42:2530-2542. [PMID: 38503664 DOI: 10.1016/j.vaccine.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Chinese Hamster Ovary (CHO) cells, employed primarily for manufacturing monoclonal antibodies and other recombinant protein (r-protein) therapeutics, are emerging as a promising host for vaccine antigen production. This is exemplified by the recently approved CHO cell-derived subunit vaccines (SUV) against respiratory syncytial virus (RSV) and varicella-zoster virus (VZV), as well as the enveloped virus-like particle (eVLP) vaccine against hepatitis B virus (HBV). Here, we summarize the design, production, and immunogenicity features of these vaccine and review the most recent progress of other CHO-derived vaccines in pre-clinical and clinical development. We also discuss the challenges associated with vaccine production in CHO cells, with a focus on ensuring viral clearance for eVLP products.
Collapse
Affiliation(s)
- Zalma V Sanchez-Martinez
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Sergio P Alpuche-Lazcano
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université du Québec à Montréal, 201 Avenue du Président Kennedy, Montréal, QC H2X 3Y7, Canada.
| |
Collapse
|
9
|
Bencina G, Sabale U, Morais E, Ovcinnikova O, Oliver E, Shoel H, Meiwald A, Hughes R, Weston G, Sundström K. Burden and indirect cost of vaccine-preventable cancer mortality in Europe. J Med Econ 2024; 27:30-40. [PMID: 39010684 DOI: 10.1080/13696998.2024.2374684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND The economic and mortality burden of cancer is high worldwide. In Europe, cancer was responsible for 1.3 million deaths in 2020 and incurred an estimated cost of €50 billion from premature mortality. Human papillomavirus (HPV) and hepatitis B virus (HBV) are among the leading causes of infection-related cancers despite the availability of effective vaccines against these infections. This analysis estimated the mortality and productivity loss of HBV- and HPV-associated cancers that could be preventable through vaccination across European regions. MATERIALS AND METHODS Institute for Health Metrics Evaluation (IHME) data were used to estimate mortality, years of life lost (YLL), and the value of years of life lost (VYLL) from five HBV- and HPV-related cancers (oral cavity, oropharynx, larynx, cervical, and liver cancers) across 40 European countries in 2019. Preventable deaths and YLL were estimated based on fractions attributable to infections. Data from the World Bank on GDP per capita were used to estimate the VYLL. The robustness of these results was explored with sensitivity and scenario analyses. RESULTS In 2019, 31,906 cancer deaths resulted in an economic burden of €18,521,614,725 due to productivity losses across Europe. HPV-related cervical cancer had the highest mortality (19,473 deaths) and economic burden (€10,706,253,185). HBV-related liver cancer and HPV-related larynx, oral cavity, and oropharynx cancers also had a substantial burden, particularly in males. Eastern Europe had the highest YLL (308,179; 39%) and Western Europe was responsible for the greatest VYLL (€8,281,306,504; 45%), although the highest VYLL per death was in Northern Europe (€923,638). HPV-related oropharynx cancer had the highest VYLL per death (€656,607). CONCLUSION HPV- and HBV-related cancer deaths are associated with substantial mortality and productivity losses in Europe, which could be reduced by the continued prioritization and implementation of prophylactic public health measures including systematic awareness, vaccination, and screening efforts.
Collapse
Affiliation(s)
- Goran Bencina
- Center for Observational and Real-World Evidence, MSD, Madrid, Spain
| | - Ugne Sabale
- Center for Observational and Real-World Evidence, MSD, Vilnius, Lithuania
| | | | | | | | | | | | | | | | - Karin Sundström
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Medical Diagnostics Karolinska, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Bencina G, Oliver E, Meiwald A, Hughes R, Morais E, Weston G, Sundström K. Global burden and economic impact of vaccine-preventable cancer mortality. J Med Econ 2024; 27:9-19. [PMID: 38721643 DOI: 10.1080/13696998.2024.2350877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Infections are responsible for approximately 13% of cancer cases worldwide and many of these infections can be prevented by vaccination. Human papillomavirus (HPV) and hepatitis B virus (HBV) are among the most common infections that cause cancer deaths globally, despite effective prophylactic vaccines being available. This analysis aims to estimate the global burden and economic impact of vaccine-preventable cancer mortality across World Health Organization (WHO) regions. METHODS The number of deaths and years of life lost (YLL) due to five different vaccine-preventable cancer forms (oral cavity, liver, laryngeal, cervical, and oropharyngeal cancer) in each of the WHO regions (African, Eastern Mediterranean, European, the Americas, South-East Asia Pacific, and Western Pacific) were obtained from the Institute for Health Metrics Evaluation global burden of disease dataset. Vaccine-preventable mortality was estimated considering the fraction attributable to infection, to estimate the number of deaths and YLL potentially preventable through vaccination. Data from the World Bank on GDP per capita were used to estimate the value of YLL (VYLL). The robustness of these results was explored with sensitivity analysis. Given that several Epstein-Barr virus (EBV) vaccines are in development, but not yet available, the impact of a potential vaccine for EBV was evaluated in a scenario analysis. RESULTS In 2019, there were 465,740 potentially vaccine-preventable cancer deaths and 14,171,397 YLL across all WHO regions. The estimated economic impact due to this mortality was $106.3 billion globally. The sensitivity analysis calculated a range of 403,025-582,773 deaths and a range in productivity cost of $78.8-129.0 billion. In the scenario analysis EBV-related cancer mortality increased the global burden by 159,723 deaths and $32.4 billion. CONCLUSION Overall, the findings from this analysis illustrate the high economic impact of premature cancer mortality that could be potentially preventable by vaccination which may assist decision-makers in allocating limited resources among competing priorities. Improved implementation and increased vaccination coverage of HPV and HBV should be prioritized to decrease this burden.
Collapse
Affiliation(s)
- Goran Bencina
- Center for Observational and Real-World Evidence, MSD Spain, Madrid, Spain
| | | | | | | | - Edith Morais
- Center for Observational and Real-World Evidence, MSD France, Puteaux, France
| | | | - Karin Sundström
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Medical Diagnostics Karolinska, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Stanfield BA, Ruiz E, Chouljenko VN, Kousoulas KG. Guinea pig herpes like virus is a gamma herpesvirus. Virus Genes 2024; 60:148-158. [PMID: 38340271 PMCID: PMC10978641 DOI: 10.1007/s11262-024-02054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/21/2024] [Indexed: 02/12/2024]
Abstract
Guinea Pig Herpes-Like Virus (GPHLV) is a virus isolated from leukemic guinea pigs with herpes virus-like morphology described by Hsiung and Kaplow in 1969. GPHLV transformed embryonic cells from Syrian hamsters or rats, which were tumorigenic in adult animals. Herein, we present the genomic sequence of GPHLV strain LK40 as a reference for future molecular analysis. GPHLV has a broad host tropism and replicates efficiently in Guinea pig, Cat, and Green African Monkey-derived cell lines. GPHLV has a GC content of 35.45%. The genome is predicted to encode at least 75 open-reading frames (ORFs) with 84% (63 ORFs) sharing homology to human Kaposi Sarcoma Associated Herpes Virus (KSHV). Importantly, GPHLV encodes homologues of the KSHV oncogenes, vBCL2 (ORF16), vPK (ORF36), viral cyclin (v-cyclin, ORF72), the latency associated nuclear antigen (LANA, ORF73), and vGPCR (ORF74). GPHLV is a Rhadinovirus of Cavia porcellus, and we propose the formal name of Caviid gamma herpesvirus 1 (CaGHV-1). GPHLV can be a novel small animal model of Rhadinovirus pathogenesis with broad host tropism.
Collapse
Affiliation(s)
- Brent A Stanfield
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Emmanuelle Ruiz
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Vladimir N Chouljenko
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
12
|
Engels EA, Shiels MS, Barnabas RV, Bohlius J, Brennan P, Castilho J, Chanock SJ, Clarke MA, Coghill AE, Combes JD, Dryden-Peterson S, D'Souza G, Gopal S, Jaquet A, Lurain K, Makinson A, Martin J, Muchengeti M, Newton R, Okuku F, Orem J, Palefsky JM, Ramaswami R, Robbins HA, Sigel K, Silver S, Suneja G, Yarchoan R, Clifford GM. State of the science and future directions for research on HIV and cancer: Summary of a joint workshop sponsored by IARC and NCI. Int J Cancer 2024; 154:596-606. [PMID: 37715370 PMCID: PMC11133517 DOI: 10.1002/ijc.34727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 09/17/2023]
Abstract
An estimated 38 million people live with human immunodeficiency virus (HIV) worldwide and are at excess risk for multiple cancer types. Elevated cancer risks in people living with HIV (PLWH) are driven primarily by increased exposure to carcinogens, most notably oncogenic viruses acquired through shared transmission routes, plus acceleration of viral carcinogenesis by HIV-related immunosuppression. In the era of widespread antiretroviral therapy (ART), life expectancy of PLWH has increased, with cancer now a leading cause of co-morbidity and death. Furthermore, the types of cancers occurring among PLWH are shifting over time and vary in their relative burden in different parts of the world. In this context, the International Agency for Research on Cancer (IARC) and the US National Cancer Institute (NCI) convened a meeting in September 2022 of multinational and multidisciplinary experts to focus on cancer in PLWH. This report summarizes the proceedings, including a review of the state of the science of cancer descriptive epidemiology, etiology, molecular tumor characterization, primary and secondary prevention, treatment disparities and survival in PLWH around the world. A consensus of key research priorities and recommendations in these domains is also presented.
Collapse
Affiliation(s)
- Eric A Engels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Meredith S Shiels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Ruanne V Barnabas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Julia Bohlius
- University of Basel, Basel, Switzerland
- Department for Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Jessica Castilho
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Megan A Clarke
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Anna E Coghill
- Department of Cancer Epidemiology and Center for Immunization and Infection Research in Cancer, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jean-Damien Combes
- International Agency for Research on Cancer (IARC/WHO), Early Detection, Prevention and Infections Branch, Lyon, France
| | - Scott Dryden-Peterson
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard School of Public Health, Boston, Massachusetts, USA
| | - Gypsyamber D'Souza
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Satish Gopal
- Center for Global Health, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Antoine Jaquet
- National Institute for Health and Medical Research (INSERM), UMR, 1219, Research Institute for Sustainable Development (IRD), EMR 271, Bordeaux Population, Health Centre, University of Bordeaux, Bordeaux, France
| | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alain Makinson
- Infectious Disease Department, CHU La Colombière, Montpellier & Inserm U1175, University of Montpellier, Montpellier, France
| | - Jeffrey Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Mazvita Muchengeti
- National Cancer Registry, National Health Laboratory Service, Johannesburg, South Africa
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
- South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
| | - Robert Newton
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- University of York, York, UK
| | - Fred Okuku
- Uganda Cancer Institute, Kampala, Uganda
| | | | - Joel M Palefsky
- Department of Medicine, University of California, San Francisco, California, USA
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hilary A Robbins
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Keith Sigel
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Gita Suneja
- Department of Radiation Oncology, Huntsman Cancer Institute at the University of Utah, Salt Lake City, Utah, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gary M Clifford
- International Agency for Research on Cancer (IARC/WHO), Early Detection, Prevention and Infections Branch, Lyon, France
| |
Collapse
|
13
|
Chen L, Ding L, Wang X, Huang Y, Gao SJ. Activation of glucocorticoid receptor signaling inhibits KSHV-induced inflammation and tumorigenesis. mBio 2024; 15:e0301123. [PMID: 38117084 PMCID: PMC10790708 DOI: 10.1128/mbio.03011-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Kaposi's sarcoma (KS) is the most common cancer in HIV-infected patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Hyperinflammation is the hallmark of KS. In this study, we have shown that KSHV mediates hyperinflammation by inducing IL-1α and suppressing IL-1Ra. Mechanistically, KSHV miRNAs and vFLIP induce hyperinflammation by activating the NF-κB pathway. A common anti-inflammatory agent dexamethasone blocks KSHV-induced hyperinflammation and tumorigenesis by activating glucocorticoid receptor signaling to suppress IL-1α and induce IL-1Ra. This work has identified IL-1-mediated inflammation as a potential therapeutic target and dexamethasone as a potential therapeutic agent for KSHV-induced malignancies.
Collapse
Affiliation(s)
- Luping Chen
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ling Ding
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xian Wang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Münz C. Modulation of Epstein-Barr-Virus (EBV)-Associated Cancers by Co-Infections. Cancers (Basel) 2023; 15:5739. [PMID: 38136285 PMCID: PMC10741436 DOI: 10.3390/cancers15245739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The oncogenic and persistent Epstein Barr virus (EBV) is carried by more than 95% of the human adult population. While asymptomatic in most of these, EBV can cause a wide variety of malignancies of lymphoid or epithelial cell origin. Some of these are also associated with co-infections that either increase EBV-induced tumorigenesis or weaken its immune control. The respective pathogens include Kaposi-sarcoma-associated herpesvirus (KSHV), Plasmodium falciparum and human immunodeficiency virus (HIV). In this review, I will discuss the respective tumor entities and possible mechanisms by which co-infections increase the EBV-associated cancer burden. A better understanding of the underlying mechanisms could allow us to identify crucial features of EBV-associated malignancies and defects in their immune control. These could then be explored to develop therapies against the respective cancers by targeting EBV and/or the respective co-infections with pathogen-specific therapies or vaccinations.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
15
|
Caro-Vegas C, Peng A, Juarez A, Silverstein A, Kamiyango W, Villiera J, McAtee CL, Mzikamanda R, Tomoka T, Peckham-Gregory EC, Moorad R, Kovarik CL, Campbell LR, Mehta PS, Kazembe PN, Allen CE, Scheurer ME, Ozuah NW, Dittmer DP, El-Mallawany NK. Pediatric HIV+ Kaposi sarcoma exhibits clinical, virological, and molecular features different from the adult disease. JCI Insight 2023; 8:e167854. [PMID: 37991023 PMCID: PMC10721314 DOI: 10.1172/jci.insight.167854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/13/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUNDKaposi sarcoma (KS) is among the most common childhood cancers in Eastern and Central Africa. Pediatric KS has a distinctive clinical presentation compared with adult KS, which includes a tendency for primary lymph node involvement, a considerable proportion of patients lacking cutaneous lesions, and a potential for fulminant disease. The molecular mechanisms or correlates for these disease features are unknown.METHODSThis was a cross-sectional study. All cases were confirmed by IHC for KS-associated herpesvirus (KSHV) LANA protein. Baseline blood samples were profiled for HIV and KSHV genome copy numbers by qPCR and secreted cytokines by ELISA. Biopsies were characterized for viral and human transcription, and KSHV genomes were determined when possible.RESULTSSeventy participants with pediatric KS were enrolled between June 2013 and August 2019 in Malawi and compared with adult patients with KS. They exhibited high KSHV genome copy numbers and IL-6/IL-10 levels. Four biopsies (16%) had a viral transcription pattern consistent with lytic viral replication.CONCLUSIONThe unique features of pediatric KS may contribute to the specific clinical manifestations and may direct future treatment options.FUNDINGUS National Institutes of Health U54-CA-254569, PO1-CA019014, U54-CA254564, RO1-CA23958.
Collapse
Affiliation(s)
- Carolina Caro-Vegas
- UNC Lineberger Comprehensive Cancer Center and Center for AIDS Research, Chapel Hill, North Carolina, USA
| | - Alice Peng
- UNC Lineberger Comprehensive Cancer Center and Center for AIDS Research, Chapel Hill, North Carolina, USA
| | - Angelica Juarez
- UNC Lineberger Comprehensive Cancer Center and Center for AIDS Research, Chapel Hill, North Carolina, USA
| | - Allison Silverstein
- Texas Children’s Cancer & Hematology Center Global HOPE (Hematology-Oncology Pediatric Excellence) Program Malawi, Lilongwe, Malawi
- University of Colorado, Department of Pediatrics, Denver, Colorado, USA
| | - William Kamiyango
- Texas Children’s Cancer & Hematology Center Global HOPE (Hematology-Oncology Pediatric Excellence) Program Malawi, Lilongwe, Malawi
| | - Jimmy Villiera
- Texas Children’s Cancer & Hematology Center Global HOPE (Hematology-Oncology Pediatric Excellence) Program Malawi, Lilongwe, Malawi
| | - Casey L. McAtee
- Texas Children’s Cancer & Hematology Center Global HOPE (Hematology-Oncology Pediatric Excellence) Program Malawi, Lilongwe, Malawi
- Baylor College of Medicine (BCM), Department of Pediatrics, Houston, Texas, USA
- Texas Children’s Hospital Cancer & Hematology Center, Houston, Texas, USA
| | - Rizine Mzikamanda
- Texas Children’s Cancer & Hematology Center Global HOPE (Hematology-Oncology Pediatric Excellence) Program Malawi, Lilongwe, Malawi
| | - Tamiwe Tomoka
- University of North Carolina Project-Malawi, Kamuzu Central Hospital Pathology Laboratory, Lilongwe, Malawi
| | - Erin C. Peckham-Gregory
- Texas Children’s Cancer & Hematology Center Global HOPE (Hematology-Oncology Pediatric Excellence) Program Malawi, Lilongwe, Malawi
- Baylor College of Medicine (BCM), Department of Pediatrics, Houston, Texas, USA
- Texas Children’s Hospital Cancer & Hematology Center, Houston, Texas, USA
| | - Razia Moorad
- UNC Lineberger Comprehensive Cancer Center and Center for AIDS Research, Chapel Hill, North Carolina, USA
| | | | - Liane R. Campbell
- Baylor College of Medicine (BCM), Department of Pediatrics, Houston, Texas, USA
- BCM International Pediatric AIDS Initiative Children’s Foundation Tanzania, Mbeya, Tanzania
| | - Parth S. Mehta
- Texas Children’s Cancer & Hematology Center Global HOPE (Hematology-Oncology Pediatric Excellence) Program Malawi, Lilongwe, Malawi
- Baylor College of Medicine (BCM), Department of Pediatrics, Houston, Texas, USA
- Texas Children’s Hospital Cancer & Hematology Center, Houston, Texas, USA
| | - Peter N. Kazembe
- BCM International Pediatric AIDS Initiative Children’s Foundation Malawi, Lilongwe, Malawi
| | - Carl E. Allen
- Texas Children’s Cancer & Hematology Center Global HOPE (Hematology-Oncology Pediatric Excellence) Program Malawi, Lilongwe, Malawi
- Baylor College of Medicine (BCM), Department of Pediatrics, Houston, Texas, USA
- Texas Children’s Hospital Cancer & Hematology Center, Houston, Texas, USA
| | - Michael E. Scheurer
- Texas Children’s Cancer & Hematology Center Global HOPE (Hematology-Oncology Pediatric Excellence) Program Malawi, Lilongwe, Malawi
- Baylor College of Medicine (BCM), Department of Pediatrics, Houston, Texas, USA
- Texas Children’s Hospital Cancer & Hematology Center, Houston, Texas, USA
| | - Nmazuo W. Ozuah
- Texas Children’s Cancer & Hematology Center Global HOPE (Hematology-Oncology Pediatric Excellence) Program Malawi, Lilongwe, Malawi
- Baylor College of Medicine (BCM), Department of Pediatrics, Houston, Texas, USA
- Texas Children’s Hospital Cancer & Hematology Center, Houston, Texas, USA
| | - Dirk P. Dittmer
- UNC Lineberger Comprehensive Cancer Center and Center for AIDS Research, Chapel Hill, North Carolina, USA
| | - Nader Kim El-Mallawany
- Texas Children’s Cancer & Hematology Center Global HOPE (Hematology-Oncology Pediatric Excellence) Program Malawi, Lilongwe, Malawi
- Baylor College of Medicine (BCM), Department of Pediatrics, Houston, Texas, USA
- Texas Children’s Hospital Cancer & Hematology Center, Houston, Texas, USA
| |
Collapse
|
16
|
Atamna A, Yahav D, Hirzel C. Prevention of Oncogenic Gammaherpesvirinae (EBV and HHV8) Associated Disease in Solid Organ Transplant Recipients. Transpl Int 2023; 36:11856. [PMID: 38046068 PMCID: PMC10689273 DOI: 10.3389/ti.2023.11856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023]
Abstract
Long-term risk for malignancy is higher among solid organ transplant (SOT) recipients compared to the general population. Four non-hepatitis viruses have been recognized as oncogenic in SOT recipients-EBV, cause of EBV-associated lymphoproliferative diseases; human herpes virus 8 (HHV8), cause of Kaposi sarcoma, primary effusion lymphoma and multicentric Castleman disease; human papilloma virus, cause of squamous cell skin cancers, and Merkel cell polyomavirus, cause of Merkel cell carcinoma. Two of these viruses (EBV and HHV8) belong to the human herpes virus family. In this review, we will discuss key aspects regarding the clinical presentation, diagnosis, treatment, and prevention of diseases in SOT recipients associated with the two herpesviruses.
Collapse
Affiliation(s)
- Alaa Atamna
- Infectious Diseases Unit, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dafna Yahav
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Infectious Diseases Unit, Sheba Medical Center, Ramat-Gan, Israel
| | - Cédric Hirzel
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Chen L, Ding L, Wang X, Huang Y, Gao SJ. Activation of glucocorticoid receptor signaling inhibits KSHV-induced inflammation and tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566578. [PMID: 38014281 PMCID: PMC10680621 DOI: 10.1101/2023.11.10.566578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hyperinflammation is the hallmark of Kaposi's sarcoma (KS), the most common cancer in AIDS patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. However, the role and mechanism of induction of inflammation in KS remain unclear. In a screening for inhibitors of KSHV-induced oncogenesis, over half of the identified candidates were anti-inflammatory agents including dexamethasone functions by activating glucocorticoid receptor (GR) signaling. Here, we examined the mechanism mediating KSHV-induced inflammation. We found that numerous inflammatory pathways were activated in KSHV-transformed cells. Particularly, interleukin-1 alpha (IL-1α) and IL-1 receptor antagonist (IL-1Ra) from the IL-1 family were the most induced and suppressed cytokines, respectively. We found that KSHV miRNAs mediated IL-1α induction while both miRNAs and vFLIP mediated IL-1Ra suppression. Furthermore, GR signaling was inhibited in KSHV-transformed cells, which was mediated by vFLIP and vCyclin. Dexamethasone treatment activated GR signaling, and inhibited cell proliferation and colony formation in soft agar of KSHV-transformed cells but had a minimal effect on matched primary cells. Consequently, dexamethasone suppressed the initiation and growth of KSHV-induced tumors in mice. Mechanistically, dexamethasone suppressed IL-1α but induced IL-1Ra expression. Treatment with recombinant IL-1α protein rescued the inhibitory effect of dexamethasone while overexpression of IL-1Ra caused a weak growth inhibition of KSHV-transformed cells. Furthermore, dexamethasone induced IκBα expression resulting in inhibition of NF-κB pathway and IL-1α expression. These results reveal an important role of IL-1 pathway in KSHV-induced inflammation and oncogenesis, which can be inhibited by dexamethasone-activated GR signaling, and identify IL-1-mediated inflammation as a potential therapeutic target for KSHV-induced malignancies.
Collapse
Affiliation(s)
- Luping Chen
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ling Ding
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xian Wang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Calhoun JC, Damania B, Griffith JD, Costantini LM. Electron microscopy mapping of the DNA-binding sites of monomeric, dimeric, and multimeric KSHV RTA protein. J Virol 2023; 97:e0063723. [PMID: 37750723 PMCID: PMC10617422 DOI: 10.1128/jvi.00637-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/19/2023] [Indexed: 09/27/2023] Open
Abstract
IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a human herpesvirus associated with several human cancers, typically in patients with compromised immune systems. Herpesviruses establish lifelong infections in hosts in part due to the two phases of infection: the dormant and active phases. Effective antiviral treatments to prevent the production of new viruses are needed to treat KSHV. A detailed microscopy-based investigation of the molecular interactions between viral protein and viral DNA revealed how protein-protein interactions play a role in DNA-binding specificity. This analysis will lead to a more in-depth understanding of KSHV DNA replication and serve as the basis for anti-viral therapies that disrupt and prevent the protein-DNA interactions, thereby decreasing spread to new hosts.
Collapse
Affiliation(s)
- Jayla C. Calhoun
- Biological and Biomedical Sciences Department, North Carolina Central University, Durham, North Carolina, USA
| | - Blossom Damania
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jack D. Griffith
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lindsey M. Costantini
- Biological and Biomedical Sciences Department, North Carolina Central University, Durham, North Carolina, USA
| |
Collapse
|
19
|
Bland WA, Owens S, McEvoy K, Hogan CH, Boccuzzi L, Kirillov V, Khairallah C, Sheridan BS, Forrest JC, Krug LT. Replication-dead gammaherpesvirus vaccine protects against acute replication, reactivation from latency, and lethal challenge in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559621. [PMID: 37808844 PMCID: PMC10557649 DOI: 10.1101/2023.09.26.559621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Gammaherpesviruses (GHVs) are oncogenic viruses that establish lifelong infections and are significant causes of human morbidity and mortality. While several vaccine strategies to limit GHV infection and disease are in development, there are no FDA-approved vaccines for human GHVs. As a new approach to gammaherpesvirus vaccination, we developed and tested a replication-dead virus (RDV) platform, using murine gammaherpesvirus 68 (MHV68), a well-established mouse model for gammaherpesvirus pathogenesis studies and preclinical therapeutic evaluations. We employed codon-shuffling-based complementation to generate revertant-free RDV lacking expression of the essential replication and transactivator protein (RTA) encoded by ORF50 to arrest viral gene expression early after de novo infection. Inoculation with RDV-50.stop exposes the host to intact virion particles and leads to limited lytic gene expression in infected cells. Prime-boost vaccination of mice with RDV-50.stop elicited virus-specific neutralizing antibody and effector T cell responses in the lung and spleen. Vaccination with RDV-50.stop resulted in a near complete abolishment of virus replication in the lung 7 days post-challenge and virus reactivation from spleen 16 days post-challenge with WT MHV68. Ifnar1-/- mice, which lack the type I interferon receptor, exhibit severe disease upon infection with WT MHV68. RDV-50.stop vaccination of Ifnar1-/- mice prevented wasting and mortality upon challenge with WT MHV68. These results demonstrate that prime-boost vaccination with a GHV that is unable to undergo lytic replication offers protection against acute replication, reactivation, and severe disease upon WT virus challenge.
Collapse
Affiliation(s)
- Wesley A Bland
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Shana Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kyle McEvoy
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Chad H Hogan
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, USA
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Luciarita Boccuzzi
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - J Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laurie T Krug
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Gopal S. The case for prioritizing malignant hematology services in low- and middle-income countries. Semin Hematol 2023; 60:189-191. [PMID: 37723025 PMCID: PMC10840687 DOI: 10.1053/j.seminhematol.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
A clear case for can be made for prioritizing malignant hematology services in low- and middle-income countries based on large public health burden, convincing demonstrations of cure and control, innovation opportunities with likely worldwide implications, and sizable returns on investment for health systems and societies. We must now ensure that need and opportunity are matched by commensurate levels of investment and attention.
Collapse
Affiliation(s)
- Satish Gopal
- Center for Global Health, National Cancer Institute, Rockville, MD.
| |
Collapse
|
21
|
Laupland KB, Keynan Y. Are blood cultures the infectious diseases faecal immunochemical test? JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2023; 8:111-115. [PMID: 38250288 PMCID: PMC10795695 DOI: 10.3138/jammi-2023-01-31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Affiliation(s)
- Kevin B Laupland
- Department of Intensive Care Services, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Queensland University of Technology, Brisbane, Queensland, Australia
- Department of Medicine, Royal Inland Hospital, Kamloops, British Columbia, Canada
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- National Collaborating Centre for Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Community Health Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- The Manitoba HIV Program, Winnipeg, Manitoba, Canada
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
22
|
Ruzzi F, Semprini MS, Scalambra L, Palladini A, Angelicola S, Cappello C, Pittino OM, Nanni P, Lollini PL. Virus-like Particle (VLP) Vaccines for Cancer Immunotherapy. Int J Mol Sci 2023; 24:12963. [PMID: 37629147 PMCID: PMC10454695 DOI: 10.3390/ijms241612963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer vaccines are increasingly being studied as a possible strategy to prevent and treat cancers. While several prophylactic vaccines for virus-caused cancers are approved and efficiently used worldwide, the development of therapeutic cancer vaccines needs to be further implemented. Virus-like particles (VLPs) are self-assembled protein structures that mimic native viruses or bacteriophages but lack the replicative material. VLP platforms are designed to display single or multiple antigens with a high-density pattern, which can trigger both cellular and humoral responses. The aim of this review is to provide a comprehensive overview of preventive VLP-based vaccines currently approved worldwide against HBV and HPV infections or under evaluation to prevent virus-caused cancers. Furthermore, preclinical and early clinical data on prophylactic and therapeutic VLP-based cancer vaccines were summarized with a focus on HER-2-positive breast cancer.
Collapse
Affiliation(s)
- Francesca Ruzzi
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Maria Sofia Semprini
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Laura Scalambra
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Arianna Palladini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Stefania Angelicola
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Chiara Cappello
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Olga Maria Pittino
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Patrizia Nanni
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Pier-Luigi Lollini
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| |
Collapse
|
23
|
Buonaguro L, Cavalluzzo B, Mauriello A, Ragone C, Tornesello AL, Buonaguro FM, Tornesello ML, Tagliamonte M. Microorganisms-derived antigens for preventive anti-cancer vaccines. Mol Aspects Med 2023; 92:101192. [PMID: 37295175 DOI: 10.1016/j.mam.2023.101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Cancer prevention is one of the aim with the highest priority in order to reduce the burden of cancer diagnosis and treatment on individuals as well as on healthcare systems. To this aim, vaccines represent the most efficient primary cancer prevention strategy. Indeed, anti-cancer immunological memory elicited by preventive vaccines might promptly expand and prevent tumor from progressing. Antigens derived from microorganisms (MoAs), represent the obvious target for developing highly effective preventive vaccines for virus-induced cancers. In this respect, the drastic reduction in cancer incidence following HBV and HPV preventive vaccines are the paradigmatic example of such evidence. More recently, experimental evidences suggest that MoAs may represent a "natural" anti-cancer preventive vaccination or can be exploited for developing vaccines to prevent cancers presenting highly homologous tumor-associated antigens (TAAs) (e.g. molecular mimicry). The present review describes the different preventive anti-cancer vaccines based on antigens derived from pathogens at the different stages of development.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Beatrice Cavalluzzo
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Angela Mauriello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Concetta Ragone
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy.
| |
Collapse
|
24
|
Kannampuzha S, Gopalakrishnan AV, Padinharayil H, Alappat RR, Anilkumar KV, George A, Dey A, Vellingiri B, Madhyastha H, Ganesan R, Ramesh T, Jayaraj R, Prabakaran DS. Onco-Pathogen Mediated Cancer Progression and Associated Signaling Pathways in Cancer Development. Pathogens 2023; 12:770. [PMID: 37375460 DOI: 10.3390/pathogens12060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Infection with viruses, bacteria, and parasites are thought to be the underlying cause of about 8-17% of the world's cancer burden, i.e., approximately one in every five malignancies globally is caused by an infectious pathogen. Oncogenesis is thought to be aided by eleven major pathogens. It is crucial to identify microorganisms that potentially act as human carcinogens and to understand how exposure to such pathogens occur as well as the following carcinogenic pathways they induce. Gaining knowledge in this field will give important suggestions for effective pathogen-driven cancer care, control, and, ultimately, prevention. This review will mainly focus on the major onco-pathogens and the types of cancer caused by them. It will also discuss the major pathways which, when altered, lead to the progression of these cancers.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Kavya V Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, Sonipat 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
| | - D S Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Republic of Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College, Srivilliputhur Main Road, Sivakasi 626124, India
| |
Collapse
|
25
|
Calhoun JC, Damania B, Griffith JD, Costantini LM. Electron microscopy mapping of the DNA-binding sites of monomeric, dimeric, and multimeric KSHV RTA protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538939. [PMID: 37205529 PMCID: PMC10187201 DOI: 10.1101/2023.05.01.538939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Molecular interactions between viral DNA and viral-encoded protein are a prerequisite for successful herpesvirus replication and production of new infectious virions. Here, we examined how the essential Kaposi's sarcoma-associated herpesvirus (KSHV) protein, RTA, binds to viral DNA using transmission electron microscopy (TEM). Previous studies using gel-based approaches to characterize RTA binding are important for studying the predominant form(s) of RTA within a population and identifying the DNA sequences that RTA binds with high affinity. However, using TEM we were able to examine individual protein-DNA complexes and capture the various oligomeric states of RTA when bound to DNA. Hundreds of images of individual DNA and protein molecules were collected and then quantified to map the DNA binding positions of RTA bound to the two KSHV lytic origins of replication encoded within the KSHV genome. The relative size of RTA or RTA bound to DNA were then compared to protein standards to determine whether RTA complexed with DNA was monomeric, dimeric, or formed larger oligomeric structures. We successfully analyzed a highly heterogenous dataset and identified new binding sites for RTA. This provides direct evidence that RTA forms dimers and high order multimers when bound to KSHV origin of replication DNA sequences. This work expands our understanding of RTA binding, and demonstrates the importance of employing methodologies that can characterize highly heterogenic populations of proteins. Importance Kaposi's sarcoma-associated herpesvirus (KSHV) is a human herpesvirus associated with several human cancers, typically in patients with compromised immune systems. Herpesviruses establish lifelong infections in hosts in part due to the two phases of infection: the dormant and active phases. Effective antiviral treatments to prevent the production of new viruses are needed to treat KSHV. A detailed microscopy-based investigation of the molecular interactions between viral protein and viral DNA revealed how protein-protein interactions play a role in DNA binding specificity. This analysis will lead to a more in depth understanding of KSHV DNA replication and serve as the basis for anti-viral therapies that disrupt and prevent the protein-DNA interactions, thereby decreasing spread to new hosts.
Collapse
Affiliation(s)
- Jayla C. Calhoun
- Biological and Biomedical Sciences Department, North Carolina Central University, Durham, North Carolina, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lindsey M. Costantini
- Biological and Biomedical Sciences Department, North Carolina Central University, Durham, North Carolina, USA
| |
Collapse
|
26
|
Desrosiers RC. The Failure of AIDS Vaccine Efficacy Trials: Where to Go from Here. J Virol 2023; 97:e0021123. [PMID: 36916947 PMCID: PMC10062124 DOI: 10.1128/jvi.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The seven AIDS vaccine efficacy trials have yielded extremely disappointing results at great expense. Greater stringency is needed for government support of AIDS vaccine efficacy trials.
Collapse
|
27
|
Diakite M, Shaw-Saliba K, Lau CY. Malignancy and viral infections in Sub-Saharan Africa: A review. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2023; 3:1103737. [PMID: 37476029 PMCID: PMC10358275 DOI: 10.3389/fviro.2023.1103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The burden of malignancy related to viral infection is increasing in Sub-Saharan Africa (SSA). In 2018, approximately 2 million new cancer cases worldwide were attributable to infection. Prevention or treatment of these infections could reduce cancer cases by 23% in less developed regions and about 7% in developed regions. Contemporaneous increases in longevity and changes in lifestyle have contributed to the cancer burden in SSA. African hospitals are reporting more cases of cancer related to infection (e.g., cervical cancer in women and stomach and liver cancer in men). SSA populations also have elevated underlying prevalence of viral infections compared to other regions. Of 10 infectious agents identified as carcinogenic by the International Agency for Research on Cancer, six are viruses: hepatitis B and C viruses (HBV and HCV, respectively), Epstein-Barr virus (EBV), high-risk types of human papillomavirus (HPV), Human T-cell lymphotropic virus type 1 (HTLV-1), and Kaposi's sarcoma herpesvirus (KSHV, also known as human herpesvirus type 8, HHV-8). Human immunodeficiency virus type 1 (HIV) also facilitates oncogenesis. EBV is associated with lymphomas and nasopharyngeal carcinoma; HBV and HCV are associated with hepatocellular carcinoma; KSHV causes Kaposi's sarcoma; HTLV-1 causes T-cell leukemia and lymphoma; HPV causes carcinoma of the oropharynx and anogenital squamous cell cancer. HIV-1, for which SSA has the greatest global burden, has been linked to increasing risk of malignancy through immunologic dysregulation and clonal hematopoiesis. Public health approaches to prevent infection, such as vaccination, safer injection techniques, screening of blood products, antimicrobial treatments and safer sexual practices could reduce the burden of cancer in Africa. In SSA, inequalities in access to cancer screening and treatment are exacerbated by the perception of cancer as taboo. National level cancer registries, new screening strategies for detection of viral infection and public health messaging should be prioritized in SSA's battle against malignancy. In this review, we discuss the impact of carcinogenic viruses in SSA with a focus on regional epidemiology.
Collapse
Affiliation(s)
- Mahamadou Diakite
- University Clinical Research Center, University of Sciences, Techniques, and Technologies, Bamako, Mali
| | - Kathryn Shaw-Saliba
- Collaborative Clinical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Chuen-Yen Lau
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
28
|
Lu Y, You J. Strategy and application of manipulating DCs chemotaxis in disease treatment and vaccine design. Biomed Pharmacother 2023; 161:114457. [PMID: 36868016 DOI: 10.1016/j.biopha.2023.114457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
As the most versatile antigen-presenting cells (APCs), dendritic cells (DCs) function as the cardinal commanders in orchestrating innate and adaptive immunity for either eliciting protective immune responses against canceration and microbial invasion or maintaining immune homeostasis/tolerance. In fact, in physiological or pathological conditions, the diversified migratory patterns and exquisite chemotaxis of DCs, prominently manipulate their biological activities in both secondary lymphoid organs (SLOs) as well as homeostatic/inflammatory peripheral tissues in vivo. Thus, the inherent mechanisms or regulation strategies to modulate the directional migration of DCs even could be regarded as the crucial cartographers of the immune system. Herein, we systemically reviewed the existing mechanistic understandings and regulation measures of trafficking both endogenous DC subtypes and reinfused DCs vaccines towards either SLOs or inflammatory foci (including neoplastic lesions, infections, acute/chronic tissue inflammations, autoimmune diseases and graft sites). Furthermore, we briefly introduced the DCs-participated prophylactic and therapeutic clinical application against disparate diseases, and also provided insights into the future clinical immunotherapies development as well as the vaccines design associated with modulating DCs mobilization modes.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, 291 Fucheng Road, Zhejiang 310018, PR China; Zhejiang-California International NanoSystems Institute, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
29
|
Co-Infection of the Epstein-Barr Virus and the Kaposi Sarcoma-Associated Herpesvirus. Viruses 2022; 14:v14122709. [PMID: 36560713 PMCID: PMC9782805 DOI: 10.3390/v14122709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
The two human tumor viruses, Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV), have been mostly studied in isolation. Recent studies suggest that co-infection with both viruses as observed in one of their associated malignancies, namely primary effusion lymphoma (PEL), might also be required for KSHV persistence. In this review, we discuss how EBV and KSHV might support each other for persistence and lymphomagenesis. Moreover, we summarize what is known about their innate and adaptive immune control which both seem to be required to ensure asymptomatic persistent co-infection with these two human tumor viruses. A better understanding of this immune control might allow us to prepare for vaccination against EBV and KSHV in the future.
Collapse
|