1
|
Zhang X, Morozova E, Rimbach-Russ M, Jirovec D, Hsiao TK, Fariña PC, Wang CA, Oosterhout SD, Sammak A, Scappucci G, Veldhorst M, Vandersypen LMK. Universal control of four singlet-triplet qubits. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01817-9. [PMID: 39482413 DOI: 10.1038/s41565-024-01817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/26/2024] [Indexed: 11/03/2024]
Abstract
The coherent control of interacting spins in semiconductor quantum dots is of strong interest for quantum information processing and for studying quantum magnetism from the bottom up. Here we present a 2 × 4 germanium quantum dot array with full and controllable interactions between nearest-neighbour spins. As a demonstration of the level of control, we define four singlet-triplet qubits in this system and show two-axis single-qubit control of each qubit and SWAP-style two-qubit gates between all neighbouring qubit pairs, yielding average single-qubit gate fidelities of 99.49(8)-99.84(1)% and Bell state fidelities of 73(1)-90(1)%. Combining these operations, we experimentally implement a circuit designed to generate and distribute entanglement across the array. A remote Bell state with a fidelity of 75(2)% and concurrence of 22(4)% is achieved. These results highlight the potential of singlet-triplet qubits as a competing platform for quantum computing and indicate that scaling up the control of quantum dot spins in extended bilinear arrays can be feasible.
Collapse
Affiliation(s)
- Xin Zhang
- QuTech, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Elizaveta Morozova
- QuTech, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Maximilian Rimbach-Russ
- QuTech, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Daniel Jirovec
- QuTech, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Tzu-Kan Hsiao
- QuTech, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Pablo Cova Fariña
- QuTech, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Chien-An Wang
- QuTech, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Stefan D Oosterhout
- QuTech, Delft University of Technology, Delft, Netherlands
- Netherlands Organisation for Applied Scientific Research (TNO), Delft, Netherlands
| | - Amir Sammak
- QuTech, Delft University of Technology, Delft, Netherlands
- Netherlands Organisation for Applied Scientific Research (TNO), Delft, Netherlands
| | - Giordano Scappucci
- QuTech, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Menno Veldhorst
- QuTech, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Lieven M K Vandersypen
- QuTech, Delft University of Technology, Delft, Netherlands.
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands.
| |
Collapse
|
2
|
Ruggiero L, Nigro A, Zardo I, Hofmann A. A Backgate for Enhanced Tunability of Holes in Planar Germanium. NANO LETTERS 2024; 24:13263-13268. [PMID: 39401049 PMCID: PMC11505393 DOI: 10.1021/acs.nanolett.4c03493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Planar semiconductor heterostructures offer versatile device designs and are promising candidates for scalable quantum computing. Notably, heterostructures based on strained germanium have been extensively studied in recent years, with an emphasis on their strong and tunable spin-orbit interaction, low effective mass, and high hole mobility. However, planar systems are still limited by the fact that the shape of the confinement potential is directly related to the density. In this work, we present the successful implementation of a backgate for a planar germanium heterostructure. The backgate, in combination with a topgate, enables independent control over the density and the electric field, which determines important state properties such as the effective mass, the g-factor, and the quantum lifetime. This unparalleled degree of control paves the way toward engineering qubit properties and facilitates the targeted tuning of bilayer quantum wells, which promise denser qubit packing.
Collapse
Affiliation(s)
- Luigi Ruggiero
- Physics
Department, University of Basel, Klingelbergstrasse 82, CH-4055 Basel, Switzeland
| | - Arianna Nigro
- Physics
Department, University of Basel, Klingelbergstrasse 82, CH-4055 Basel, Switzeland
| | - Ilaria Zardo
- Physics
Department, University of Basel, Klingelbergstrasse 82, CH-4055 Basel, Switzeland
- Swiss
Nanoscience Institute, Klingelbergstrasse 82, CH-4055 Basel, Switzeland
| | - Andrea Hofmann
- Physics
Department, University of Basel, Klingelbergstrasse 82, CH-4055 Basel, Switzeland
- Swiss
Nanoscience Institute, Klingelbergstrasse 82, CH-4055 Basel, Switzeland
| |
Collapse
|
3
|
Liles SD, Halverson DJ, Wang Z, Shamim A, Eggli RS, Jin IK, Hillier J, Kumar K, Vorreiter I, Rendell MJ, Huang JY, Escott CC, Hudson FE, Lim WH, Culcer D, Dzurak AS, Hamilton AR. A singlet-triplet hole-spin qubit in MOS silicon. Nat Commun 2024; 15:7690. [PMID: 39227367 PMCID: PMC11372177 DOI: 10.1038/s41467-024-51902-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024] Open
Abstract
Holes in silicon quantum dots are promising for spin qubit applications due to the strong intrinsic spin-orbit coupling. The spin-orbit coupling produces complex hole-spin dynamics, providing opportunities to further optimise spin qubits. Here, we demonstrate a singlet-triplet qubit using hole states in a planar metal-oxide-semiconductor double quantum dot. We demonstrate rapid qubit control with singlet-triplet oscillations up to 400 MHz. The qubit exhibits promising coherence, with a maximum dephasing time of 600 ns, which is enhanced to 1.3 μs using refocusing techniques. We investigate the magnetic field anisotropy of the eigenstates, and determine a magnetic field orientation to improve the qubit initialisation fidelity. These results present a step forward for spin qubit technology, by implementing a high quality singlet-triplet hole-spin qubit in planar architecture suitable for scaling up to 2D arrays of coupled qubits.
Collapse
Affiliation(s)
- S D Liles
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - D J Halverson
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Z Wang
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - A Shamim
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - R S Eggli
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
| | - I K Jin
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
- Center for Emergent Matter Science, RIKEN, 2-1, Hirosawa, Wako-shi, 351-0198, Saitama, Japan
| | - J Hillier
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - K Kumar
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - I Vorreiter
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - M J Rendell
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - J Y Huang
- School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia
- Diraq, Sydney, NSW, Australia
| | - C C Escott
- School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia
- Diraq, Sydney, NSW, Australia
| | - F E Hudson
- School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia
- Diraq, Sydney, NSW, Australia
| | - W H Lim
- School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia
- Diraq, Sydney, NSW, Australia
| | - D Culcer
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - A S Dzurak
- School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia
- Diraq, Sydney, NSW, Australia
| | - A R Hamilton
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
4
|
Massai L, Hetényi B, Mergenthaler M, Schupp FJ, Sommer L, Paredes S, Bedell SW, Harvey-Collard P, Salis G, Fuhrer A, Hendrickx NW. Impact of interface traps on charge noise and low-density transport properties in Ge/SiGe heterostructures. COMMUNICATIONS MATERIALS 2024; 5:151. [PMID: 39157449 PMCID: PMC11324522 DOI: 10.1038/s43246-024-00563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024]
Abstract
Hole spins in Ge/SiGe heterostructures have emerged as an interesting qubit platform with favourable properties such as fast electrical control and noise-resilient operation at sweet spots. However, commonly observed gate-induced electrostatic disorder, drifts, and hysteresis hinder reproducible tune-up of SiGe-based quantum dot arrays. Here, we study Hall bar and quantum dot devices fabricated on Ge/SiGe heterostructures and present a consistent model for the origin of gate hysteresis and its impact on transport metrics and charge noise. As we push the accumulation voltages more negative, we observe non-monotonous changes in the low-density transport metrics, attributed to the induced gradual filling of a spatially varying density of charge traps at the SiGe-oxide interface. With each gate voltage push, we find local activation of a transient low-frequency charge noise component that completely vanishes again after 30 hours. Our results highlight the resilience of the SiGe material platform to interface-trap-induced disorder and noise and pave the way for reproducible tuning of larger multi-dot systems.
Collapse
Affiliation(s)
- Leonardo Massai
- IBM Research Europe - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Bence Hetényi
- IBM Research Europe - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | | | - Felix J. Schupp
- IBM Research Europe - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Lisa Sommer
- IBM Research Europe - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Stephan Paredes
- IBM Research Europe - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Stephen W. Bedell
- IBM Quantum, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 USA
| | | | - Gian Salis
- IBM Research Europe - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Andreas Fuhrer
- IBM Research Europe - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Nico W. Hendrickx
- IBM Research Europe - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| |
Collapse
|
5
|
Sagi O, Crippa A, Valentini M, Janik M, Baghumyan L, Fabris G, Kapoor L, Hassani F, Fink J, Calcaterra S, Chrastina D, Isella G, Katsaros G. A gate tunable transmon qubit in planar Ge. Nat Commun 2024; 15:6400. [PMID: 39080279 PMCID: PMC11289319 DOI: 10.1038/s41467-024-50763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Gate-tunable transmons (gatemons) employing semiconductor Josephson junctions have recently emerged as building blocks for hybrid quantum circuits. In this study, we present a gatemon fabricated in planar Germanium. We induce superconductivity in a two-dimensional hole gas by evaporating aluminum atop a thin spacer, which separates the superconductor from the Ge quantum well. The Josephson junction is then integrated into an Xmon circuit and capacitively coupled to a transmission line resonator. We showcase the qubit tunability in a broad frequency range with resonator and two-tone spectroscopy. Time-domain characterizations reveal energy relaxation and coherence times up to 75 ns. Our results, combined with the recent advances in the spin qubit field, pave the way towards novel hybrid and protected qubits in a group IV, CMOS-compatible material.
Collapse
Affiliation(s)
- Oliver Sagi
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | - Alessandro Crippa
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Marco Valentini
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Marian Janik
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Levon Baghumyan
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Giorgio Fabris
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Lucky Kapoor
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Farid Hassani
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Johannes Fink
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | | | - Giovanni Isella
- L-NESS, Physics Department, Politecnico di Milano, Como, Italy
| | - Georgios Katsaros
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
6
|
Severin B, Lennon DT, Camenzind LC, Vigneau F, Fedele F, Jirovec D, Ballabio A, Chrastina D, Isella G, de Kruijf M, Carballido MJ, Svab S, Kuhlmann AV, Geyer S, Froning FNM, Moon H, Osborne MA, Sejdinovic D, Katsaros G, Zumbühl DM, Briggs GAD, Ares N. Cross-architecture tuning of silicon and SiGe-based quantum devices using machine learning. Sci Rep 2024; 14:17281. [PMID: 39068242 PMCID: PMC11283483 DOI: 10.1038/s41598-024-67787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
The potential of Si and SiGe-based devices for the scaling of quantum circuits is tainted by device variability. Each device needs to be tuned to operation conditions and each device realisation requires a different tuning protocol. We demonstrate that it is possible to automate the tuning of a 4-gate Si FinFET, a 5-gate GeSi nanowire and a 7-gate Ge/SiGe heterostructure double quantum dot device from scratch with the same algorithm. We achieve tuning times of 30, 10, and 92 min, respectively. The algorithm also provides insight into the parameter space landscape for each of these devices, allowing for the characterization of the regions where double quantum dot regimes are found. These results show that overarching solutions for the tuning of quantum devices are enabled by machine learning.
Collapse
Affiliation(s)
- B Severin
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - D T Lennon
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - L C Camenzind
- Department of Physics, University of Basel, Basel, 4056, Switzerland
| | - F Vigneau
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - F Fedele
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - D Jirovec
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria
| | - A Ballabio
- L-NESS, Dipartimento di Fisica, Politecnico di Milano, Polo di Como, ViaAnzani 42, Como, 22100, Italy
| | - D Chrastina
- L-NESS, Dipartimento di Fisica, Politecnico di Milano, Polo di Como, ViaAnzani 42, Como, 22100, Italy
| | - G Isella
- L-NESS, Dipartimento di Fisica, Politecnico di Milano, Polo di Como, ViaAnzani 42, Como, 22100, Italy
| | - M de Kruijf
- Department of Physics, University of Basel, Basel, 4056, Switzerland
| | - M J Carballido
- Department of Physics, University of Basel, Basel, 4056, Switzerland
| | - S Svab
- Department of Physics, University of Basel, Basel, 4056, Switzerland
| | - A V Kuhlmann
- Department of Physics, University of Basel, Basel, 4056, Switzerland
| | - S Geyer
- Department of Physics, University of Basel, Basel, 4056, Switzerland
| | - F N M Froning
- Department of Physics, University of Basel, Basel, 4056, Switzerland
| | - H Moon
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - M A Osborne
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - D Sejdinovic
- Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK
| | - G Katsaros
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria
| | - D M Zumbühl
- Department of Physics, University of Basel, Basel, 4056, Switzerland
| | - G A D Briggs
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - N Ares
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| |
Collapse
|
7
|
Nigro A, Jutzi E, Oppliger F, De Palma F, Olsen C, Ruiz-Caridad A, Gadea G, Scarlino P, Zardo I, Hofmann A. Demonstration of Microwave Resonators and Double Quantum Dots on Optimized Reverse-Graded Ge/SiGe Heterostructures. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:5094-5100. [PMID: 39070085 PMCID: PMC11270818 DOI: 10.1021/acsaelm.4c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024]
Abstract
One of the most promising platforms for the realization of spin-based quantum computing are planar germanium quantum wells embedded between silicon-germanium barriers. To achieve comparably thin stacks with little surface roughness, this type of heterostructure can be grown using the so-called reverse linear grading approach, where the growth starts with a virtual germanium substrate followed by a graded silicon-germanium alloy with an increasing silicon content. However, the compatibility of such reverse-graded heterostructures with superconducting microwave resonators has not yet been demonstrated. Here, we report on the successful realization of well-controlled double quantum dots and high-quality coplanar waveguide resonators on the same reverse-graded Ge/SiGe heterostructure.
Collapse
Affiliation(s)
- Arianna Nigro
- Physics
Department, University of Basel, Klingelbergstrasse 82, Basel CH-4056, Switzerland
| | - Eric Jutzi
- Physics
Department, University of Basel, Klingelbergstrasse 82, Basel CH-4056, Switzerland
| | - Fabian Oppliger
- Hybrid
Quantum Circuits Laboratory, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Franco De Palma
- Hybrid
Quantum Circuits Laboratory, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Christian Olsen
- Physics
Department, University of Basel, Klingelbergstrasse 82, Basel CH-4056, Switzerland
| | - Alicia Ruiz-Caridad
- Physics
Department, University of Basel, Klingelbergstrasse 82, Basel CH-4056, Switzerland
| | - Gerard Gadea
- Physics
Department, University of Basel, Klingelbergstrasse 82, Basel CH-4056, Switzerland
- Swiss
Nanoscience Institute, Klingelbergstrasse 82, Basel CH-4056, Switzerland
| | - Pasquale Scarlino
- Hybrid
Quantum Circuits Laboratory, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Ilaria Zardo
- Physics
Department, University of Basel, Klingelbergstrasse 82, Basel CH-4056, Switzerland
- Swiss
Nanoscience Institute, Klingelbergstrasse 82, Basel CH-4056, Switzerland
| | - Andrea Hofmann
- Physics
Department, University of Basel, Klingelbergstrasse 82, Basel CH-4056, Switzerland
- Swiss
Nanoscience Institute, Klingelbergstrasse 82, Basel CH-4056, Switzerland
| |
Collapse
|
8
|
Adelsberger C, Bosco S, Klinovaja J, Loss D. Valley-Free Silicon Fins Caused by Shear Strain. PHYSICAL REVIEW LETTERS 2024; 133:037001. [PMID: 39094129 DOI: 10.1103/physrevlett.133.037001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/04/2024] [Accepted: 06/05/2024] [Indexed: 08/04/2024]
Abstract
Electron spins confined in silicon quantum dots are promising candidates for large-scale quantum computers. However, the degeneracy of the conduction band of bulk silicon introduces additional levels dangerously close to the window of computational energies, where the quantum information can leak. The energy of the valley states-typically 0.1 meV-depends on hardly controllable atomistic disorder and still constitutes a fundamental limit to the scalability of these architectures. In this work, we introduce designs of complementary metal-oxide-semiconductor (CMOS)-compatible silicon fin field-effect transistors that enhance the energy gap to noncomputational states by more than one order of magnitude. Our devices comprise realistic silicon-germanium nanostructures with a large shear strain, where troublesome valley degrees of freedom are completely removed. The energy of noncomputational states is therefore not affected by unavoidable atomistic disorder and can further be tuned in situ by applied electric fields. Our design ideas are directly applicable to a variety of setups and will offer a blueprint toward silicon-based large-scale quantum processors.
Collapse
|
9
|
van Riggelen-Doelman F, Wang CA, de Snoo SL, Lawrie WIL, Hendrickx NW, Rimbach-Russ M, Sammak A, Scappucci G, Déprez C, Veldhorst M. Coherent spin qubit shuttling through germanium quantum dots. Nat Commun 2024; 15:5716. [PMID: 38977681 PMCID: PMC11231167 DOI: 10.1038/s41467-024-49358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/30/2024] [Indexed: 07/10/2024] Open
Abstract
Quantum links can interconnect qubit registers and are therefore essential in networked quantum computing. Semiconductor quantum dot qubits have seen significant progress in the high-fidelity operation of small qubit registers but establishing a compelling quantum link remains a challenge. Here, we show that a spin qubit can be shuttled through multiple quantum dots while preserving its quantum information. Remarkably, we achieve these results using hole spin qubits in germanium, despite the presence of strong spin-orbit interaction. In a minimal quantum dot chain, we accomplish the shuttling of spin basis states over effective lengths beyond 300 microns and demonstrate the coherent shuttling of superposition states over effective lengths corresponding to 9 microns, which we can extend to 49 microns by incorporating dynamical decoupling. These findings indicate qubit shuttling as an effective approach to route qubits within registers and to establish quantum links between registers.
Collapse
Affiliation(s)
- Floor van Riggelen-Doelman
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - Chien-An Wang
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - Sander L de Snoo
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - William I L Lawrie
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - Nico W Hendrickx
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - Maximilian Rimbach-Russ
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - Amir Sammak
- QuTech and Netherlands Organisation for Applied Scientific Research (TNO), 2628 CK, Delft, The Netherlands
| | - Giordano Scappucci
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - Corentin Déprez
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands.
| | - Menno Veldhorst
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands.
| |
Collapse
|
10
|
Hendrickx NW, Massai L, Mergenthaler M, Schupp FJ, Paredes S, Bedell SW, Salis G, Fuhrer A. Sweet-spot operation of a germanium hole spin qubit with highly anisotropic noise sensitivity. NATURE MATERIALS 2024; 23:920-927. [PMID: 38760518 PMCID: PMC11230914 DOI: 10.1038/s41563-024-01857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/11/2024] [Indexed: 05/19/2024]
Abstract
Spin qubits defined by valence band hole states are attractive for quantum information processing due to their inherent coupling to electric fields, enabling fast and scalable qubit control. Heavy holes in germanium are particularly promising, with recent demonstrations of fast and high-fidelity qubit operations. However, the mechanisms and anisotropies that underlie qubit driving and decoherence remain mostly unclear. Here we report the highly anisotropic heavy-hole g-tensor and its dependence on electric fields, revealing how qubit driving and decoherence originate from electric modulations of the g-tensor. Furthermore, we confirm the predicted Ising-type hyperfine interaction and show that qubit coherence is ultimately limited by 1/f charge noise, where f is the frequency. Finally, operating the qubit at low magnetic field, we measure a dephasing time ofT 2 * = 17.6 μs, maintaining single-qubit gate fidelities well above 99% even at elevated temperatures of T > 1 K. This understanding of qubit driving and decoherence mechanisms is key towards realizing scalable and highly coherent hole qubit arrays.
Collapse
Affiliation(s)
- N W Hendrickx
- IBM Research Europe - Zurich, Rüschlikon, Switzerland.
| | - L Massai
- IBM Research Europe - Zurich, Rüschlikon, Switzerland
| | | | - F J Schupp
- IBM Research Europe - Zurich, Rüschlikon, Switzerland
| | - S Paredes
- IBM Research Europe - Zurich, Rüschlikon, Switzerland
| | - S W Bedell
- IBM Quantum, T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - G Salis
- IBM Research Europe - Zurich, Rüschlikon, Switzerland
| | - A Fuhrer
- IBM Research Europe - Zurich, Rüschlikon, Switzerland.
| |
Collapse
|
11
|
Gao H, Kong ZZ, Zhang P, Luo Y, Su H, Liu XF, Wang GL, Wang JY, Xu HQ. Gate-defined quantum point contacts in a germanium quantum well. NANOSCALE 2024; 16:10333-10339. [PMID: 38738596 DOI: 10.1039/d4nr00712c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
We report an experimental study of quantum point contacts defined in a high-quality strained germanium quantum well with layered electric gates. At a zero magnetic field, we observed quantized conductance plateaus in units of 2e2/h. Bias-spectroscopy measurements reveal that the energy spacing between successive one-dimensional subbands ranges from 1.5 to 5 meV as a consequence of the small effective mass of the holes and the narrow gate constrictions. At finite magnetic fields perpendicular to the device plane, the edges of the conductance plateaus get split due to the Zeeman effect and Landé g factors were estimated to be ∼6.6 for the holes in the germanium quantum well. We demonstrate that all quantum point contacts in the same device have comparable performances, indicating a reliable and reproducible device fabrication process. Thus, our work lays a foundation for investigating multiple forefronts of physics in germanium-based quantum devices that require quantum point contacts as building blocks.
Collapse
Affiliation(s)
- Han Gao
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices, and School of Electronics, Peking University, Beijing 100871, China.
| | - Zhen-Zhen Kong
- Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Po Zhang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China.
| | - Yi Luo
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices, and School of Electronics, Peking University, Beijing 100871, China.
- Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing 100871, China
| | - Haitian Su
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices, and School of Electronics, Peking University, Beijing 100871, China.
- Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing 100871, China
| | - Xiao-Fei Liu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China.
| | - Gui-Lei Wang
- Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
- Beijing Superstring Academy of Memory Technology, Beijing 100176, China
| | - Ji-Yin Wang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China.
| | - H Q Xu
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices, and School of Electronics, Peking University, Beijing 100871, China.
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China.
| |
Collapse
|
12
|
Zhang Y, Fan W, Yang J, Guan H, Zhang Q, Qin X, Duan C, de Boo GG, Johnson BC, McCallum JC, Sellars MJ, Rogge S, Yin C, Du J. Photoionisation detection of a single Er 3+ ion with sub-100-ns time resolution. Natl Sci Rev 2024; 11:nwad134. [PMID: 38487492 PMCID: PMC10939366 DOI: 10.1093/nsr/nwad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 05/04/2023] [Indexed: 03/17/2024] Open
Abstract
Efficient detection of single optical centres in solids is essential for quantum information processing, sensing and single-photon generation applications. In this work, we use radio-frequency (RF) reflectometry to electrically detect the photoionisation induced by a single Er3+ ion in Si. The high bandwidth and sensitivity of the RF reflectometry provide sub-100-ns time resolution for the photoionisation detection. With this technique, the optically excited state lifetime of a single Er3+ ion in a Si nano-transistor is measured for the first time to be [Formula: see text]s. Our results demonstrate an efficient approach for detecting a charge state change induced by Er excitation and relaxation. This approach could be used for fast readout of other single optical centres in solids and is attractive for large-scale integrated optical quantum systems thanks to the multi-channel RF reflectometry demonstrated with frequency multiplexing techniques.
Collapse
Affiliation(s)
- Yangbo Zhang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wenda Fan
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jiliang Yang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Hao Guan
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Qi Zhang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xi Qin
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Changkui Duan
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Gabriele G de Boo
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, NSW 2052, Australia
| | - Brett C Johnson
- Centre of Excellence for Quantum Computation and Communication Technology, School of Engineering, RMIT University, Victoria 3001, Australia
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Victoria 3010, Australia
| | - Jeffrey C McCallum
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Victoria 3010, Australia
| | - Matthew J Sellars
- Centre of Excellence for Quantum Computation and Communication Technology, Research School of Physics and Engineering, Australian National University, ACT 0200, Australia
| | - Sven Rogge
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, NSW 2052, Australia
| | - Chunming Yin
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
13
|
Ungerer JH, Pally A, Kononov A, Lehmann S, Ridderbos J, Potts PP, Thelander C, Dick KA, Maisi VF, Scarlino P, Baumgartner A, Schönenberger C. Strong coupling between a microwave photon and a singlet-triplet qubit. Nat Commun 2024; 15:1068. [PMID: 38316779 PMCID: PMC10844229 DOI: 10.1038/s41467-024-45235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Combining superconducting resonators and quantum dots has triggered tremendous progress in quantum information, however, attempts at coupling a resonator to even charge parity spin qubits have resulted only in weak spin-photon coupling. Here, we integrate a zincblende InAs nanowire double quantum dot with strong spin-orbit interaction in a magnetic-field resilient, high-quality resonator. The quantum confinement in the nanowire is achieved using deterministically grown wurtzite tunnel barriers. Our experiments on even charge parity states and at large magnetic fields, allow us to identify the relevant spin states and to measure the spin decoherence rates and spin-photon coupling strengths. We find an anti-crossing between the resonator mode in the single photon limit and a singlet-triplet qubit with a spin-photon coupling strength of g/2π = 139 ± 4 MHz. This coherent coupling exceeds the resonator decay rate κ/2π = 19.8 ± 0.2 MHz and the qubit dephasing rate γ/2π = 116 ± 7 MHz, putting our system in the strong coupling regime.
Collapse
Affiliation(s)
- J H Ungerer
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland.
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland.
| | - A Pally
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland.
| | - A Kononov
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
| | - S Lehmann
- Solid State Physics and NanoLund, Lund University, Box 118, S-22100, Lund, Sweden
| | - J Ridderbos
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - P P Potts
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
| | - C Thelander
- Solid State Physics and NanoLund, Lund University, Box 118, S-22100, Lund, Sweden
| | - K A Dick
- Centre for Analysis and Synthesis, Lund University, Box 124, S-22100, Lund, Sweden
| | - V F Maisi
- Solid State Physics and NanoLund, Lund University, Box 118, S-22100, Lund, Sweden
| | - P Scarlino
- Institute of Physics and Center for Quantum Science and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - A Baumgartner
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
| | - C Schönenberger
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
| |
Collapse
|
14
|
Valentini M, Sagi O, Baghumyan L, de Gijsel T, Jung J, Calcaterra S, Ballabio A, Aguilera Servin J, Aggarwal K, Janik M, Adletzberger T, Seoane Souto R, Leijnse M, Danon J, Schrade C, Bakkers E, Chrastina D, Isella G, Katsaros G. Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium. Nat Commun 2024; 15:169. [PMID: 38167818 PMCID: PMC10762135 DOI: 10.1038/s41467-023-44114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Superconductor/semiconductor hybrid devices have attracted increasing interest in the past years. Superconducting electronics aims to complement semiconductor technology, while hybrid architectures are at the forefront of new ideas such as topological superconductivity and protected qubits. In this work, we engineer the induced superconductivity in two-dimensional germanium hole gas by varying the distance between the quantum well and the aluminum. We demonstrate a hard superconducting gap and realize an electrically and flux tunable superconducting diode using a superconducting quantum interference device (SQUID). This allows to tune the current phase relation (CPR), to a regime where single Cooper pair tunneling is suppressed, creating a [Formula: see text] CPR. Shapiro experiments complement this interpretation and the microwave drive allows to create a diode with ≈ 100% efficiency. The reported results open up the path towards integration of spin qubit devices, microwave resonators and (protected) superconducting qubits on the same silicon technology compatible platform.
Collapse
Affiliation(s)
- Marco Valentini
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | - Oliver Sagi
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Levon Baghumyan
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Thijs de Gijsel
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jason Jung
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Andrea Ballabio
- L-NESS, Physics Department, Politecnico di Milano, Como, Italy
| | | | - Kushagra Aggarwal
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Department of Materials, University of Oxford, Oxford, UK
| | - Marian Janik
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Rubén Seoane Souto
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Madrid, Spain
| | - Martin Leijnse
- NanoLund and Solid State Physics, Lund University, Lund, Sweden
| | - Jeroen Danon
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Constantin Schrade
- Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, USA
| | - Erik Bakkers
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Giovanni Isella
- L-NESS, Physics Department, Politecnico di Milano, Como, Italy
| | - Georgios Katsaros
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
15
|
Lawrie WIL, Rimbach-Russ M, Riggelen FV, Hendrickx NW, Snoo SLD, Sammak A, Scappucci G, Helsen J, Veldhorst M. Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nat Commun 2023; 14:3617. [PMID: 37336892 DOI: 10.1038/s41467-023-39334-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
Practical Quantum computing hinges on the ability to control large numbers of qubits with high fidelity. Quantum dots define a promising platform due to their compatibility with semiconductor manufacturing. Moreover, high-fidelity operations above 99.9% have been realized with individual qubits, though their performance has been limited to 98.67% when driving two qubits simultaneously. Here we present single-qubit randomized benchmarking in a two-dimensional array of spin qubits, finding native gate fidelities as high as 99.992(1)%. Furthermore, we benchmark single qubit gate performance while simultaneously driving two and four qubits, utilizing a novel benchmarking technique called N-copy randomized benchmarking, designed for simple experimental implementation and accurate simultaneous gate fidelity estimation. We find two- and four-copy randomized benchmarking fidelities of 99.905(8)% and 99.34(4)% respectively, and that next-nearest neighbor pairs are highly robust to cross-talk errors. These characterizations of single-qubit gate quality are crucial for scaling up quantum information technology.
Collapse
Affiliation(s)
- W I L Lawrie
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - M Rimbach-Russ
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - F van Riggelen
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - N W Hendrickx
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - S L de Snoo
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - A Sammak
- QuTech and Netherlands Organisation for Applied Scientific Research (TNO), Delft, the Netherlands
| | - G Scappucci
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - J Helsen
- QuSoft and CWI, Amsterdam, the Netherlands
| | - M Veldhorst
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
16
|
Jang W, Kim J, Park J, Kim G, Cho MK, Jang H, Sim S, Kang B, Jung H, Umansky V, Kim D. Wigner-molecularization-enabled dynamic nuclear polarization. Nat Commun 2023; 14:2948. [PMID: 37221217 DOI: 10.1038/s41467-023-38649-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Multielectron semiconductor quantum dots (QDs) provide a novel platform to study the Coulomb interaction-driven, spatially localized electron states of Wigner molecules (WMs). Although Wigner-molecularization has been confirmed by real-space imaging and coherent spectroscopy, the open system dynamics of the strongly correlated states with the environment are not yet well understood. Here, we demonstrate efficient control of spin transfer between an artificial three-electron WM and the nuclear environment in a GaAs double QD. A Landau-Zener sweep-based polarization sequence and low-lying anticrossings of spin multiplet states enabled by Wigner-molecularization are utilized. Combined with coherent control of spin states, we achieve control of magnitude, polarity, and site dependence of the nuclear field. We demonstrate that the same level of control cannot be achieved in the non-interacting regime. Thus, we confirm the spin structure of a WM, paving the way for active control of correlated electron states for application in mesoscopic environment engineering.
Collapse
Affiliation(s)
- Wonjin Jang
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Jehyun Kim
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Jaemin Park
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Gyeonghun Kim
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Min-Kyun Cho
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Hyeongyu Jang
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Sangwoo Sim
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Byoungwoo Kang
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Hwanchul Jung
- Department of Physics, Pusan National University, Busan, 46241, Korea
| | - Vladimir Umansky
- Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dohun Kim
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
17
|
Concepción O, Søgaard NB, Bae JH, Yamamoto Y, Tiedemann AT, Ikonic Z, Capellini G, Zhao QT, Grützmacher D, Buca D. Isothermal Heteroepitaxy of Ge 1-x Sn x Structures for Electronic and Photonic Applications. ACS APPLIED ELECTRONIC MATERIALS 2023; 5:2268-2275. [PMID: 37124237 PMCID: PMC10134428 DOI: 10.1021/acsaelm.3c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Epitaxy of semiconductor-based quantum well structures is a challenging task since it requires precise control of the deposition at the submonolayer scale. In the case of Ge1-x Sn x alloys, the growth is particularly demanding since the lattice strain and the process temperature greatly impact the composition of the epitaxial layers. In this paper, the realization of high-quality pseudomorphic Ge1-x Sn x layers with Sn content ranging from 6 at. % up to 15 at. % using isothermal processes in an industry-compatible reduced-pressure chemical vapor deposition reactor is presented. The epitaxy of Ge1-x Sn x layers has been optimized for a standard process offering a high Sn concentration at a large process window. By varying the N2 carrier gas flow, isothermal heterostructure designs suitable for quantum transport and spintronic devices are obtained.
Collapse
Affiliation(s)
- Omar Concepción
- Peter
Gruenberg Institute 9 (PGI-9), Forschungszentrum Juelich, 52428 Juelich, Germany
| | - Nicolaj B. Søgaard
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Jin-Hee Bae
- Peter
Gruenberg Institute 9 (PGI-9), Forschungszentrum Juelich, 52428 Juelich, Germany
| | - Yuji Yamamoto
- IHP
- Leibniz Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| | - Andreas T. Tiedemann
- Peter
Gruenberg Institute 9 (PGI-9), Forschungszentrum Juelich, 52428 Juelich, Germany
| | - Zoran Ikonic
- Pollard
Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Giovanni Capellini
- IHP
- Leibniz Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
- Dipartimento
di Scienze, Università Roma Tre, Viale G. Marconi 446, 00146 Roma, Italy
| | - Qing-Tai Zhao
- Peter
Gruenberg Institute 9 (PGI-9), Forschungszentrum Juelich, 52428 Juelich, Germany
| | - Detlev Grützmacher
- Peter
Gruenberg Institute 9 (PGI-9), Forschungszentrum Juelich, 52428 Juelich, Germany
| | - Dan Buca
- Peter
Gruenberg Institute 9 (PGI-9), Forschungszentrum Juelich, 52428 Juelich, Germany
| |
Collapse
|
18
|
Jin IK, Kumar K, Rendell MJ, Huang JY, Escott CC, Hudson FE, Lim WH, Dzurak AS, Hamilton AR, Liles SD. Combining n-MOS Charge Sensing with p-MOS Silicon Hole Double Quantum Dots in a CMOS platform. NANO LETTERS 2023; 23:1261-1266. [PMID: 36748989 DOI: 10.1021/acs.nanolett.2c04417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Holes in silicon quantum dots are receiving attention due to their potential as fast, tunable, and scalable qubits in semiconductor quantum circuits. Despite this, challenges remain in this material system including difficulties using charge sensing to determine the number of holes in a quantum dot, and in controlling the coupling between adjacent quantum dots. We address these problems by fabricating an ambipolar complementary metal-oxide-semiconductor (CMOS) device using multilayer palladium gates. The device consists of an electron charge sensor adjacent to a hole double quantum dot. We demonstrate control of the spin state via electric dipole spin resonance. We achieve smooth control of the interdot coupling rate over 1 order of magnitude and use the charge sensor to perform spin-to-charge conversion to measure the hole singlet-triplet relaxation time of 11 μs for a known hole occupation. These results provide a path toward improving the quality and controllability of hole spin-qubits.
Collapse
Affiliation(s)
- Ik Kyeong Jin
- School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Krittika Kumar
- School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Matthew J Rendell
- School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jonathan Yue Huang
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Diraq, Sydney, New South Wales 2052, Australia
| | - Chris C Escott
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Diraq, Sydney, New South Wales 2052, Australia
| | - Fay E Hudson
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Diraq, Sydney, New South Wales 2052, Australia
| | - Wee Han Lim
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Diraq, Sydney, New South Wales 2052, Australia
| | - Andrew S Dzurak
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Diraq, Sydney, New South Wales 2052, Australia
| | - Alexander R Hamilton
- School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Scott D Liles
- School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
19
|
Corley-Wiciak C, Richter C, Zoellner MH, Zaitsev I, Manganelli CL, Zatterin E, Schülli TU, Corley-Wiciak AA, Katzer J, Reichmann F, Klesse WM, Hendrickx NW, Sammak A, Veldhorst M, Scappucci G, Virgilio M, Capellini G. Nanoscale Mapping of the 3D Strain Tensor in a Germanium Quantum Well Hosting a Functional Spin Qubit Device. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3119-3130. [PMID: 36598897 PMCID: PMC9869329 DOI: 10.1021/acsami.2c17395] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
A strained Ge quantum well, grown on a SiGe/Si virtual substrate and hosting two electrostatically defined hole spin qubits, is nondestructively investigated by synchrotron-based scanning X-ray diffraction microscopy to determine all its Bravais lattice parameters. This allows rendering the three-dimensional spatial dependence of the six strain tensor components with a lateral resolution of approximately 50 nm. Two different spatial scales governing the strain field fluctuations in proximity of the qubits are observed at <100 nm and >1 μm, respectively. The short-ranged fluctuations have a typical bandwidth of 2 × 10-4 and can be quantitatively linked to the compressive stressing action of the metal electrodes defining the qubits. By finite element mechanical simulations, it is estimated that this strain fluctuation is increased up to 6 × 10-4 at cryogenic temperature. The longer-ranged fluctuations are of the 10-3 order and are associated with misfit dislocations in the plastically relaxed virtual substrate. From this, energy variations of the light and heavy-hole energy maxima of the order of several 100 μeV and 1 meV are calculated for electrodes and dislocations, respectively. These insights over material-related inhomogeneities may feed into further modeling for optimization and design of large-scale quantum processors manufactured using the mainstream Si-based microelectronics technology.
Collapse
Affiliation(s)
- Cedric Corley-Wiciak
- IHP,
Leibniz-Institut für Innovative Mikroelektronik, Im Technologiepark 25, D-15236Frankfurt (Oder), Germany
| | - Carsten Richter
- IKZ,
Leibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, D-12489Berlin, Germany
| | - Marvin H. Zoellner
- IHP,
Leibniz-Institut für Innovative Mikroelektronik, Im Technologiepark 25, D-15236Frankfurt (Oder), Germany
| | - Ignatii Zaitsev
- IHP,
Leibniz-Institut für Innovative Mikroelektronik, Im Technologiepark 25, D-15236Frankfurt (Oder), Germany
| | - Costanza L. Manganelli
- IHP,
Leibniz-Institut für Innovative Mikroelektronik, Im Technologiepark 25, D-15236Frankfurt (Oder), Germany
| | - Edoardo Zatterin
- ESRF,
European Synchrotron Radiation Facility, 71, Avenue des Martyrs, CS 40220, 38043Grenoble Cedex 9, France
| | - Tobias U. Schülli
- ESRF,
European Synchrotron Radiation Facility, 71, Avenue des Martyrs, CS 40220, 38043Grenoble Cedex 9, France
| | - Agnieszka A. Corley-Wiciak
- IHP,
Leibniz-Institut für Innovative Mikroelektronik, Im Technologiepark 25, D-15236Frankfurt (Oder), Germany
| | - Jens Katzer
- IHP,
Leibniz-Institut für Innovative Mikroelektronik, Im Technologiepark 25, D-15236Frankfurt (Oder), Germany
| | - Felix Reichmann
- IHP,
Leibniz-Institut für Innovative Mikroelektronik, Im Technologiepark 25, D-15236Frankfurt (Oder), Germany
| | - Wolfgang M. Klesse
- IHP,
Leibniz-Institut für Innovative Mikroelektronik, Im Technologiepark 25, D-15236Frankfurt (Oder), Germany
| | - Nico W. Hendrickx
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, Lorentzweg 1, 2628
CJDelft, The Netherlands
| | - Amir Sammak
- QuTech
and Netherlands Organisation for Applied Scientific Research (TNO), Stieltjesweg 1, 2628 CKDelft, The Netherlands
| | - Menno Veldhorst
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, Lorentzweg 1, 2628
CJDelft, The Netherlands
| | - Giordano Scappucci
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, Lorentzweg 1, 2628
CJDelft, The Netherlands
| | - Michele Virgilio
- Department
of Physics Enrico Fermi, Università
di Pisa, Pisa56126, Italy
| | - Giovanni Capellini
- IHP,
Leibniz-Institut für Innovative Mikroelektronik, Im Technologiepark 25, D-15236Frankfurt (Oder), Germany
- Dipartimento
di Scienze, Universita Roma Tre, Roma00146, Italy
| |
Collapse
|
20
|
Malkoc O, Stano P, Loss D. Charge-Noise-Induced Dephasing in Silicon Hole-Spin Qubits. PHYSICAL REVIEW LETTERS 2022; 129:247701. [PMID: 36563265 DOI: 10.1103/physrevlett.129.247701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 09/27/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
We investigate, theoretically, charge-noise-induced spin dephasing of a hole confined in a quasi-two-dimensional silicon quantum dot. Central to our treatment is accounting for higher-order corrections to the Luttinger Hamiltonian. Using experimentally reported parameters, we find that the new terms give rise to sweet spots for the hole-spin dephasing, which are sensitive to device details: dot size and asymmetry, growth direction, and applied magnetic and electric fields. Furthermore, we estimate that the dephasing time at the sweet spots is boosted by several orders of magnitude, up to on the order of milliseconds.
Collapse
Affiliation(s)
- Ognjen Malkoc
- RIKEN Center for Emergent Matter Science, Wako-shi, Saitama 351-0198, Japan
| | - Peter Stano
- RIKEN Center for Emergent Matter Science, Wako-shi, Saitama 351-0198, Japan
- Institute of Physics, Slovak Academy of Sciences, 845 11 Bratislava, Slovakia
| | - Daniel Loss
- RIKEN Center for Emergent Matter Science, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing, Wako, Saitama 351-0198, Japan
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| |
Collapse
|
21
|
Botifoll M, Pinto-Huguet I, Arbiol J. Machine learning in electron microscopy for advanced nanocharacterization: current developments, available tools and future outlook. NANOSCALE HORIZONS 2022; 7:1427-1477. [PMID: 36239693 DOI: 10.1039/d2nh00377e] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the last few years, electron microscopy has experienced a new methodological paradigm aimed to fix the bottlenecks and overcome the challenges of its analytical workflow. Machine learning and artificial intelligence are answering this call providing powerful resources towards automation, exploration, and development. In this review, we evaluate the state-of-the-art of machine learning applied to electron microscopy (and obliquely, to materials and nano-sciences). We start from the traditional imaging techniques to reach the newest higher-dimensionality ones, also covering the recent advances in spectroscopy and tomography. Additionally, the present review provides a practical guide for microscopists, and in general for material scientists, but not necessarily advanced machine learning practitioners, to straightforwardly apply the offered set of tools to their own research. To conclude, we explore the state-of-the-art of other disciplines with a broader experience in applying artificial intelligence methods to their research (e.g., high-energy physics, astronomy, Earth sciences, and even robotics, videogames, or marketing and finances), in order to narrow down the incoming future of electron microscopy, its challenges and outlook.
Collapse
Affiliation(s)
- Marc Botifoll
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain.
| | - Ivan Pinto-Huguet
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain.
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain.
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
22
|
Piot N, Brun B, Schmitt V, Zihlmann S, Michal VP, Apra A, Abadillo-Uriel JC, Jehl X, Bertrand B, Niebojewski H, Hutin L, Vinet M, Urdampilleta M, Meunier T, Niquet YM, Maurand R, Franceschi SD. A single hole spin with enhanced coherence in natural silicon. NATURE NANOTECHNOLOGY 2022; 17:1072-1077. [PMID: 36138200 PMCID: PMC9576591 DOI: 10.1038/s41565-022-01196-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
Semiconductor spin qubits based on spin-orbit states are responsive to electric field excitations, allowing for practical, fast and potentially scalable qubit control. Spin electric susceptibility, however, renders these qubits generally vulnerable to electrical noise, which limits their coherence time. Here we report on a spin-orbit qubit consisting of a single hole electrostatically confined in a natural silicon metal-oxide-semiconductor device. By varying the magnetic field orientation, we reveal the existence of operation sweet spots where the impact of charge noise is minimized while preserving an efficient electric-dipole spin control. We correspondingly observe an extension of the Hahn-echo coherence time up to 88 μs, exceeding by an order of magnitude existing values reported for hole spin qubits, and approaching the state-of-the-art for electron spin qubits with synthetic spin-orbit coupling in isotopically purified silicon. Our finding enhances the prospects of silicon-based hole spin qubits for scalable quantum information processing.
Collapse
Affiliation(s)
- N Piot
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France
| | - B Brun
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France.
| | - V Schmitt
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France
| | - S Zihlmann
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France
| | - V P Michal
- Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim, Grenoble, France
| | - A Apra
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France
| | | | - X Jehl
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France
| | - B Bertrand
- Université Grenoble Alpes, CEA, LETI, Minatec Campus, Grenoble, France
| | - H Niebojewski
- Université Grenoble Alpes, CEA, LETI, Minatec Campus, Grenoble, France
| | - L Hutin
- Université Grenoble Alpes, CEA, LETI, Minatec Campus, Grenoble, France
| | - M Vinet
- Université Grenoble Alpes, CEA, LETI, Minatec Campus, Grenoble, France
| | - M Urdampilleta
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France
| | - T Meunier
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France
| | - Y-M Niquet
- Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim, Grenoble, France
| | - R Maurand
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France.
| | - S De Franceschi
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France.
| |
Collapse
|
23
|
Hetényi B, Bosco S, Loss D. Anomalous Zero-Field Splitting for Hole Spin Qubits in Si and Ge Quantum Dots. PHYSICAL REVIEW LETTERS 2022; 129:116805. [PMID: 36154408 DOI: 10.1103/physrevlett.129.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
An anomalous energy splitting of spin triplet states at zero magnetic field has recently been measured in germanium quantum dots. This zero-field splitting could crucially alter the coupling between tunnel-coupled quantum dots, the basic building blocks of state-of-the-art spin-based quantum processors, with profound implications for semiconducting quantum computers. We develop an analytical model linking the zero-field splitting to the Rashba spin-orbit interaction that is cubic in momentum. Such interactions naturally emerge in hole nanostructures, where they can also be tuned by external electric fields, and we find them to be particularly large in silicon and germanium, resulting in a significant zero-field splitting in the μeV range. We confirm our analytical theory by numerical simulations of different quantum dots, also including other possible sources of zero-field splitting. Our findings are applicable to a broad range of current architectures encoding spin qubits and provide a deeper understanding of these materials, paving the way toward the next generation of semiconducting quantum processors.
Collapse
Affiliation(s)
- Bence Hetényi
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Stefano Bosco
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Daniel Loss
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| |
Collapse
|
24
|
Bosco S, Scarlino P, Klinovaja J, Loss D. Fully Tunable Longitudinal Spin-Photon Interactions in Si and Ge Quantum Dots. PHYSICAL REVIEW LETTERS 2022; 129:066801. [PMID: 36018647 DOI: 10.1103/physrevlett.129.066801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Spin qubits in silicon and germanium quantum dots are promising platforms for quantum computing, but entangling spin qubits over micrometer distances remains a critical challenge. Current prototypical architectures maximize transversal interactions between qubits and microwave resonators, where the spin state is flipped by nearly resonant photons. However, these interactions cause backaction on the qubit that yields unavoidable residual qubit-qubit couplings and significantly affects the gate fidelity. Strikingly, residual couplings vanish when spin-photon interactions are longitudinal and photons couple to the phase of the qubit. We show that large and tunable spin-photon interactions emerge naturally in state-of-the-art hole spin qubits and that they change from transversal to longitudinal depending on the magnetic field direction. We propose ways to electrically control and measure these interactions, as well as realistic protocols to implement fast high-fidelity two-qubit entangling gates. These protocols work also at high temperatures, paving the way toward the implementation of large-scale quantum processors.
Collapse
Affiliation(s)
- Stefano Bosco
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Pasquale Scarlino
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jelena Klinovaja
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Daniel Loss
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
25
|
Assali S, Attiaoui A, Vecchio PD, Mukherjee S, Nicolas J, Moutanabbir O. A Light-Hole Germanium Quantum Well on Silicon. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201192. [PMID: 35510856 DOI: 10.1002/adma.202201192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The quiet quantum environment of holes in solid-state devices is at the core of increasingly reliable architectures for quantum processors and memories. However, due to the lack of scalable materials to properly tailor the valence band character and its energy offsets, the precise engineering of light-hole (LH) states remains a serious obstacle toward coherent optical photon-spin interfaces needed for a direct mapping of the quantum information encoded in photon flying qubits to stationary spin processors. Herein, to alleviate this long-standing limitation, an all-group-IV low-dimensional system is demonstrated, consisting of a highly tensile strained germanium quantum well grown on silicon allowing new degrees of freedom to control and manipulate the hole states. Wafer-level, high bi-isotropic in-plane tensile strain (<1%) is achieved using strain-engineered, metastable germanium-tin alloyed buffer layers yielding quantum wells with LH ground state, high g-factor anisotropy, and a tunable splitting of the hole sub-bands. The epitaxial heterostructures display sharp interfaces with sub-nanometer broadening and show room-temperature excitonic transitions that are modulated and extended to the mid-wave infrared by controlling strain and thickness. This ability to engineer quantum structures with LH selective confinement and controllable optical response enables manufacturable silicon-compatible platforms relevant to integrated quantum communication and sensing technologies.
Collapse
Affiliation(s)
- Simone Assali
- Department of Engineering Physics, École Polytechnique de Montréal, C.P. 6079, Succursale Centre-Ville, Montréal, Québec, H3C 3A7, Canada
| | - Anis Attiaoui
- Department of Engineering Physics, École Polytechnique de Montréal, C.P. 6079, Succursale Centre-Ville, Montréal, Québec, H3C 3A7, Canada
| | - Patrick Del Vecchio
- Department of Engineering Physics, École Polytechnique de Montréal, C.P. 6079, Succursale Centre-Ville, Montréal, Québec, H3C 3A7, Canada
| | - Samik Mukherjee
- Department of Engineering Physics, École Polytechnique de Montréal, C.P. 6079, Succursale Centre-Ville, Montréal, Québec, H3C 3A7, Canada
| | - Jérôme Nicolas
- Department of Engineering Physics, École Polytechnique de Montréal, C.P. 6079, Succursale Centre-Ville, Montréal, Québec, H3C 3A7, Canada
| | - Oussama Moutanabbir
- Department of Engineering Physics, École Polytechnique de Montréal, C.P. 6079, Succursale Centre-Ville, Montréal, Québec, H3C 3A7, Canada
| |
Collapse
|
26
|
DFT Analysis of Hole Qubits Spin State in Germanium Thin Layer. NANOMATERIALS 2022; 12:nano12132244. [PMID: 35808079 PMCID: PMC9268541 DOI: 10.3390/nano12132244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023]
Abstract
Due to the presence of a strong spin–orbit interaction, hole qubits in germanium are increasingly being considered as candidates for quantum computing. These objects make it possible to create electrically controlled logic gates with the basic properties of scalability, a reasonable quantum error correction, and the necessary speed of operation. In this paper, using the methods of quantum-mechanical calculations and considering the non-collinear magnetic interactions, the quantum states of the system 2D structure of Ge in the presence of even and odd numbers of holes were investigated. The spatial localizations of hole states were calculated, favorable quantum states were revealed, and the magnetic structural characteristics of the system were analyzed.
Collapse
|
27
|
Mutter PM, Burkard G. Fingerprints of Qubit Noise in Transient Cavity Transmission. PHYSICAL REVIEW LETTERS 2022; 128:236801. [PMID: 35749203 DOI: 10.1103/physrevlett.128.236801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Noise affects the coherence of qubits and thereby places a bound on the performance of quantum computers. We theoretically study a generic two-level system with fluctuating control parameters in a photonic cavity and find that basic features of the noise spectral density are imprinted in the transient transmission through the cavity. We obtain analytical expressions for generic noise and proceed to study the cases of quasistatic, white and 1/f^{α} noise in more detail. Additionally, we propose a way of extracting the noise power spectral density in a frequency band only bounded by the range of the qubit-cavity detuning and with an exponentially decaying error due to finite measurement times. Our results suggest that measurements of the time-dependent transmission probability represent a novel way of extracting noise characteristics.
Collapse
Affiliation(s)
- Philipp M Mutter
- Department of Physics, University of Konstanz, D-78457 Konstanz, Germany
| | - Guido Burkard
- Department of Physics, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
28
|
Ramanandan S, Tomić P, Morgan NP, Giunto A, Rudra A, Ensslin K, Ihn T, Fontcuberta i Morral A. Coherent Hole Transport in Selective Area Grown Ge Nanowire Networks. NANO LETTERS 2022; 22:4269-4275. [PMID: 35507698 PMCID: PMC9136922 DOI: 10.1021/acs.nanolett.2c00358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/23/2022] [Indexed: 05/28/2023]
Abstract
Holes in germanium nanowires have emerged as a realistic platform for quantum computing based on spin qubit logic. On top of the large spin-orbit coupling that allows fast qubit operation, nanowire geometry and orientation can be tuned to cancel out charge noise and hyperfine interaction. Here, we demonstrate a scalable approach to synthesize and organize Ge nanowires on silicon (100)-oriented substrates. Germanium nanowire networks are obtained by selectively growing on nanopatterned slits in a metalorganic vapor phase epitaxy system. Low-temperature electronic transport measurements are performed on nanowire Hall bar devices revealing high hole doping of ∼1018 cm-3 and mean free path of ∼10 nm. Quantum diffusive transport phenomena, universal conductance fluctuations, and weak antilocalization are revealed through magneto transport measurements yielding a coherence and a spin-orbit length of the order of 100 and 10 nm, respectively.
Collapse
Affiliation(s)
- Santhanu
Panikar Ramanandan
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne 1015, Switzerland
| | - Petar Tomić
- Solid
State Laboratory, ETH Zurich, 8093 Zurich, Switzerland
| | - Nicholas Paul Morgan
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne 1015, Switzerland
| | - Andrea Giunto
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne 1015, Switzerland
| | - Alok Rudra
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne 1015, Switzerland
| | - Klaus Ensslin
- Solid
State Laboratory, ETH Zurich, 8093 Zurich, Switzerland
- Quantum
Center, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Thomas Ihn
- Solid
State Laboratory, ETH Zurich, 8093 Zurich, Switzerland
- Quantum
Center, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Anna Fontcuberta i Morral
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne 1015, Switzerland
- Institute
of Physics, Faculty of Basic Sciences, Ecole
Polytechnique Fédérale de Lausanne EPFL, Lausanne 1015, Switzerland
- Center
for Quantum Science and Engineering, École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
29
|
Jirovec D, Mutter PM, Hofmann A, Crippa A, Rychetsky M, Craig DL, Kukucka J, Martins F, Ballabio A, Ares N, Chrastina D, Isella G, Burkard G, Katsaros G. Dynamics of Hole Singlet-Triplet Qubits with Large g-Factor Differences. PHYSICAL REVIEW LETTERS 2022; 128:126803. [PMID: 35394319 DOI: 10.1103/physrevlett.128.126803] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The spin-orbit interaction permits to control the state of a spin qubit via electric fields. For holes it is particularly strong, allowing for fast all electrical qubit manipulation, and yet an in-depth understanding of this interaction in hole systems is missing. Here we investigate, experimentally and theoretically, the effect of the cubic Rashba spin-orbit interaction on the mixing of the spin states by studying singlet-triplet oscillations in a planar Ge hole double quantum dot. Landau-Zener sweeps at different magnetic field directions allow us to disentangle the effects of the spin-orbit induced spin-flip term from those caused by strongly site-dependent and anisotropic quantum dot g tensors. Our work, therefore, provides new insights into the hole spin-orbit interaction, necessary for optimizing future qubit experiments.
Collapse
Affiliation(s)
- Daniel Jirovec
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Philipp M Mutter
- Department of Physics, University of Konstanz, D-78457 Konstanz, Germany
| | - Andrea Hofmann
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Alessandro Crippa
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
| | - Marek Rychetsky
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - David L Craig
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Josip Kukucka
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Frederico Martins
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
- Hitachi Cambridge Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Andrea Ballabio
- L-NESS, Physics Department, Politecnico di Milano, via Anzani 42, 22100, Como, Italy
| | - Natalia Ares
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Daniel Chrastina
- L-NESS, Physics Department, Politecnico di Milano, via Anzani 42, 22100, Como, Italy
| | - Giovanni Isella
- L-NESS, Physics Department, Politecnico di Milano, via Anzani 42, 22100, Como, Italy
| | - Guido Burkard
- Department of Physics, University of Konstanz, D-78457 Konstanz, Germany
| | - Georgios Katsaros
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
30
|
Alfieri A, Anantharaman SB, Zhang H, Jariwala D. Nanomaterials for Quantum Information Science and Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2109621. [PMID: 35139247 DOI: 10.1002/adma.202109621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Quantum information science and engineering (QISE)-which entails the use of quantum mechanical states for information processing, communications, and sensing-and the area of nanoscience and nanotechnology have dominated condensed matter physics and materials science research in the 21st century. Solid-state devices for QISE have, to this point, predominantly been designed with bulk materials as their constituents. This review considers how nanomaterials (i.e., materials with intrinsic quantum confinement) may offer inherent advantages over conventional materials for QISE. The materials challenges for specific types of qubits, along with how emerging nanomaterials may overcome these challenges, are identified. Challenges for and progress toward nanomaterials-based quantum devices are condidered. The overall aim of the review is to help close the gap between the nanotechnology and quantum information communities and inspire research that will lead to next-generation quantum devices for scalable and practical quantum applications.
Collapse
Affiliation(s)
- Adam Alfieri
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Surendra B Anantharaman
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Huiqin Zhang
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Deep Jariwala
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
31
|
A silicon singlet-triplet qubit driven by spin-valley coupling. Nat Commun 2022; 13:641. [PMID: 35110561 PMCID: PMC8810768 DOI: 10.1038/s41467-022-28302-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
Spin–orbit effects, inherent to electrons confined in quantum dots at a silicon heterointerface, provide a means to control electron spin qubits without the added complexity of on-chip, nanofabricated micromagnets or nearby coplanar striplines. Here, we demonstrate a singlet–triplet qubit operating mode that can drive qubit evolution at frequencies in excess of 200 MHz. This approach offers a means to electrically turn on and off fast control, while providing high logic gate orthogonality and long qubit dephasing times. We utilize this operational mode for dynamical decoupling experiments to probe the charge noise power spectrum in a silicon metal-oxide-semiconductor double quantum dot. In addition, we assess qubit frequency drift over longer timescales to capture low-frequency noise. We present the charge noise power spectral density up to 3 MHz, which exhibits a 1/fα dependence consistent with α ~ 0.7, over 9 orders of magnitude in noise frequency. Spin-orbit coupling in gate-defined quantum dots in silicon metal-oxide semiconductors provides a promising route for electrical control of spin qubits. Here, the authors demonstrate that intervalley spin–orbit interaction enables fast singlet–triplet qubit rotations in this platform, at frequencies exceeding 200MHz.
Collapse
|
32
|
Bosco S, Loss D. Fully Tunable Hyperfine Interactions of Hole Spin Qubits in Si and Ge Quantum Dots. PHYSICAL REVIEW LETTERS 2021; 127:190501. [PMID: 34797148 DOI: 10.1103/physrevlett.127.190501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Hole spin qubits are frontrunner platforms for scalable quantum computers, but state-of-the-art devices suffer from noise originating from the hyperfine interactions with nuclear defects. We show that these interactions have a highly tunable anisotropy that is controlled by device design and external electric fields. This tunability enables sweet spots where the hyperfine noise is suppressed by an order of magnitude and is comparable to isotopically purified materials. We identify surprisingly simple designs where the qubits are highly coherent and are largely unaffected by both charge and hyperfine noise. We find that the large spin-orbit interaction typical of elongated quantum dots not only speeds up qubit operations, but also dramatically renormalizes the hyperfine noise, altering qualitatively the dynamics of driven qubits and enhancing the fidelity of qubit gates. Our findings serve as guidelines to design high performance qubits for scaling up quantum computers.
Collapse
Affiliation(s)
- Stefano Bosco
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Daniel Loss
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
33
|
Braakman F, Scarlino P. Hole spin qubits work at mT magnetic fields. NATURE MATERIALS 2021; 20:1047-1048. [PMID: 34321655 DOI: 10.1038/s41563-021-01045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Floris Braakman
- Department of Physics, University of Basel, Basel, Switzerland.
| | - Pasquale Scarlino
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|