1
|
Manjula-Basavanna A, Duraj-Thatte AM, Joshi NS. Mechanically Tunable, Compostable, Healable and Scalable Engineered Living Materials. Nat Commun 2024; 15:9179. [PMID: 39532836 PMCID: PMC11557937 DOI: 10.1038/s41467-024-53052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Advanced design strategies are essential to realize the full potential of engineered living materials, including their biodegradability, manufacturability, sustainability, and ability to tailor functional properties. Toward these goals, we present mechanically engineered living material with compostability, healability, and scalability - a material that integrates these features in the form of a stretchable plastic that is simultaneously flushable, compostable, and exhibits the characteristics of paper. This plastic/paper-like material is produced in scalable quantities (0.5-1 g L-1), directly from cultured bacterial biomass (40%) containing engineered curli protein nanofibers. The elongation at break (1-160%) and Young's modulus (6-450 MPa) is tuned to more than two orders of magnitude. By genetically encoded covalent crosslinking of curli nanofibers, we increase the Young's modulus by two times. The designed engineered living materials biodegrade completely in 15-75 days, while its mechanical properties are comparable to petrochemical plastics and thus may find use as compostable materials for primary packaging.
Collapse
Affiliation(s)
- Avinash Manjula-Basavanna
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA.
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA.
| | - Anna M Duraj-Thatte
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Neel S Joshi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA.
| |
Collapse
|
2
|
Yuan Y, Yu B, Zhou X, Qiao H, Lian J, Lang X, Yao Y. Engineering Living Material for Controlled Fragrance Release Utilizing Kluyveromyces marxianus CBS6556 and Adaptive Hydrogel. ACS Synth Biol 2024; 13:3188-3196. [PMID: 39099325 DOI: 10.1021/acssynbio.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The demand for controllable fragrance materials is substantial owing to their potential to impart enduring scents in a variety of applications. However, the practical application of such materials has been limited by challenges in tunable morphogenesis, structural variability, and adaptability to diverse conditions. In our study, we introduce a hybrid living material that integrates a genetically engineered strain of Kluyveromyces marxianus CBS6556 with an adaptive hydrogel. The engineered K. marxianus achieved temperature stability in 2-phenylethanol (2-PE) and 2-phenylethyl acetate (2-PEAc) production by expressing relevant genes in the 2-PE metabolic pathway using the high-temperature preferential promoter SSE1. The enhanced water retention capacity supports the metabolic activities of the encapsulated yeast cells, ensuring their survival and functionality over an extended period. Fragrance-releasing living material (FLM) is designed to controllably emit fragrance 2-PE by adjusting the microbial concentration within the hydrogel matrix. The FLM exhibits versatile adhesion capabilities, effectively binding to a spectrum of surfaces such as wood, textiles, and glass as well as to natural substrates like leaves. This adaptability enhances the material's applicability across various settings. Furthermore, FLM can be crafted into various forms, including microbeads, fibers, and films. This research opens up new horizons for controlled fragrance release of living materials.
Collapse
Affiliation(s)
- Yichen Yuan
- Zhejiang Lab, Zhejiang, Hangzhou 311121, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Bofan Yu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Xinzhi Zhou
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - He Qiao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Jiazhang Lian
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Xuye Lang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Yuan Yao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang, Hangzhou 310027, China
| |
Collapse
|
3
|
Wobill C, Azzari P, Fischer P, Rühs PA. Host Material Viscoelasticity Determines Wrinkling of Fungal Films. ACS Biomater Sci Eng 2024; 10:6241-6249. [PMID: 39316510 PMCID: PMC11480942 DOI: 10.1021/acsbiomaterials.4c01373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Microbial organisms react to their environment and are able to change it through biological and physical processes. For example, fungi exhibit various growth morphologies depending on their host material. Here, we show how the rheological properties of the host material influence the fungal wrinkling morphology. Rheological data of the host material was set in relation to the growth morphology. On host material with high storage modulus, the fungal film was flat, whereas on host material with low storage modulus, the fungus showed a morphology made of folds and wrinkles. We combined our findings with mechanical instability theories and found that the formation of wrinkles and folds is dependent on the storage modulus of the host material. The connection between the wrinkling morphology and the storage modulus of the host material is shown with simple scaling theories. The amplitude, number of wrinkles, and wrinkle length follow geometrical laws, and the mechanical properties of the fungal film are expected to increase with increasing host material elasticity. The obtained results show the connection between living biological films, how they react to their surroundings, and the underlying physical mechanisms. They can provide a framework to further design fungal materials with specific surface morphologies.
Collapse
Affiliation(s)
- Ciatta Wobill
- Institute of Food, Nutrition
and Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Paride Azzari
- Institute of Food, Nutrition
and Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Peter Fischer
- Institute of Food, Nutrition
and Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Patrick A. Rühs
- Institute of Food, Nutrition
and Health, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
4
|
Mishra AK, Kim J, Baghdadi H, Johnson BR, Hodge KT, Shepherd RF. Sensorimotor control of robots mediated by electrophysiological measurements of fungal mycelia. Sci Robot 2024; 9:eadk8019. [PMID: 39196952 DOI: 10.1126/scirobotics.adk8019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 07/30/2024] [Indexed: 08/30/2024]
Abstract
Living tissues are still far from being used as practical components in biohybrid robots because of limitations in life span, sensitivity to environmental factors, and stringent culture procedures. Here, we introduce fungal mycelia as an easy-to-use and robust living component in biohybrid robots. We constructed two biohybrid robots that use the electrophysiological activity of living mycelia to control their artificial actuators. The mycelia sense their environment and issue action potential-like spiking voltages as control signals to the motors and valves of the robots that we designed and built. The paper highlights two key innovations: first, a vibration- and electromagnetic interference-shielded mycelium electrical interface that allows for stable, long-term electrophysiological bioelectric recordings during untethered, mobile operation; second, a control architecture for robots inspired by neural central pattern generators, incorporating rhythmic patterns of positive and negative spikes from the living mycelia. We used these signals to control a walking soft robot as well as a wheeled hard one. We also demonstrated the use of mycelia to respond to environmental cues by using ultraviolet light stimulation to augment the robots' gaits.
Collapse
Affiliation(s)
- Anand Kumar Mishra
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jaeseok Kim
- Department of Industrial Engineering, University of Florence, Florence, Tuscany 50139, Italy
| | - Hannah Baghdadi
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Bruce R Johnson
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Kathie T Hodge
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Robert F Shepherd
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Lu C, Huang Y, Cui J, Wu J, Jiang C, Gu X, Cao Y, Yin S. Toward Practical Applications of Engineered Living Materials with Advanced Fabrication Techniques. ACS Synth Biol 2024; 13:2295-2312. [PMID: 39002162 DOI: 10.1021/acssynbio.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Engineered Living Materials (ELMs) are materials composed of or incorporating living cells as essential functional units. These materials can be created using bottom-up approaches, where engineered cells spontaneously form well-defined aggregates. Alternatively, top-down methods employ advanced materials science techniques to integrate cells with various kinds of materials, creating hybrids where cells and materials are intricately combined. ELMs blend synthetic biology with materials science, allowing for dynamic responses to environmental stimuli such as stress, pH, humidity, temperature, and light. These materials exhibit unique "living" properties, including self-healing, self-replication, and environmental adaptability, making them highly suitable for a wide range of applications in medicine, environmental conservation, and manufacturing. Their inherent biocompatibility and ability to undergo genetic modifications allow for customized functionalities and prolonged sustainability. This review highlights the transformative impact of ELMs over recent decades, particularly in healthcare and environmental protection. We discuss current preparation methods, including the use of endogenous and exogenous scaffolds, living assembly, 3D bioprinting, and electrospinning. Emphasis is placed on ongoing research and technological advancements necessary to enhance the safety, functionality, and practical applicability of ELMs in real-world contexts.
Collapse
Affiliation(s)
- Chenjing Lu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yaying Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jian Cui
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Medical School, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Medical School, Nanjing University, Nanjing 210093, China
| | - Xiaosong Gu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine innovation center, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine innovation center, MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sheng Yin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
6
|
Yang S, Li Y, Nie M, Liu X, Wang Q, Chen N, Zhang C. Lifecycle Management for Sustainable Plastics: Recent Progress from Synthesis, Processing to Upcycling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404115. [PMID: 38869422 DOI: 10.1002/adma.202404115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Plastics, renowned for their outstanding properties and extensive applications, assume an indispensable and irreplaceable role in modern society. However, the ubiquitous consumption of plastic items has led to a growing accumulation of plastic waste. Unreasonable practices in the production, utilization, and recycling of plastics have led to substantial energy resource depletion and environmental pollution. Herein, the state-of-the-art advancements in the lifecycle management of plastics are timely reviewed. Unlike typical reviews focused on plastic recycling, this work presents an in-depth analysis of the entire lifecycle of plastics, covering the whole process from synthesis, processing, to ultimate disposal. The primary emphasis lies on selecting judicious strategies and methodologies at each lifecycle stage to mitigate the adverse environmental impact of waste plastics. Specifically, the article delineates the rationale, methods, and advancements realized in various lifecycle stages through both physical and chemical recycling pathways. The focal point is the attainment of optimal recycling rates for waste plastics, thereby alleviating the ecological burden of plastic pollution. By scrutinizing the entire lifecycle of plastics, the article aims to furnish comprehensive solutions for reducing plastic pollution and fostering sustainability across all facets of plastic production, utilization, and disposal.
Collapse
Affiliation(s)
- Shuangqiao Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Yijun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Min Nie
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
| | - Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| |
Collapse
|
7
|
Han G, Khosla K, Smith KT, Ng DWH, Lee J, Ouyang X, Bischof JC, McAlpine MC. 3D Printed Organisms Enabled by Aspiration-Assisted Adaptive Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404617. [PMID: 39031674 PMCID: PMC11348114 DOI: 10.1002/advs.202404617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Indexed: 07/22/2024]
Abstract
Devising an approach to deterministically position organisms can impact various fields such as bioimaging, cybernetics, cryopreservation, and organism-integrated devices. This requires continuously assessing the locations of randomly distributed organisms to collect and transfer them to target spaces without harm. Here, an aspiration-assisted adaptive printing system is developed that tracks, harvests, and relocates living and moving organisms on target spaces via a pick-and-place mechanism that continuously adapts to updated visual and spatial information about the organisms and target spaces. These adaptive printing strategies successfully positioned a single static organism, multiple organisms in droplets, and a single moving organism on target spaces. Their capabilities are exemplified by printing vitrification-ready organisms in cryoprotectant droplets, sorting live organisms from dead ones, positioning organisms on curved surfaces, organizing organism-powered displays, and integrating organisms with materials and devices in customizable shapes. These printing strategies can ultimately lead to autonomous biomanufacturing methods to evaluate and assemble organisms for a variety of single and multi-organism-based applications.
Collapse
Affiliation(s)
- Guebum Han
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
| | - Kanav Khosla
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
| | - Kieran T. Smith
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
- Department of FisheriesWildlife and Conservation BiologyUniversity of MinnesotaMinneapolisMN55108USA
| | - Daniel Wai Hou Ng
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - JiYong Lee
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Xia Ouyang
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - John C. Bischof
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Michael C. McAlpine
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| |
Collapse
|
8
|
Schyck S, Marchese P, Amani M, Ablonczy M, Spoelstra L, Jones M, Bathaei Y, Bismarck A, Masania K. Harnessing Fungi Signaling in Living Composites. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400104. [PMID: 39469481 PMCID: PMC11514302 DOI: 10.1002/gch2.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/07/2024] [Indexed: 10/30/2024]
Abstract
Signaling pathways in fungi offer a profound avenue for harnessing cellular communication and have garnered considerable interest in biomaterial engineering. Fungi respond to environmental stimuli through intricate signaling networks involving biochemical and electrical pathways, yet deciphering these mechanisms remains a challenge. In this review, an overview of fungal biology and their signaling pathways is provided, which can be activated in response to external stimuli and direct fungal growth and orientation. By examining the hyphal structure and the pathways involved in fungal signaling, the current state of recording fungal electrophysiological signals as well as the landscape of fungal biomaterials is explored. Innovative applications are highlighted, from sustainable materials to biomonitoring systems, and an outlook on the future of harnessing fungi signaling in living composites is provided.
Collapse
Affiliation(s)
- Sarah Schyck
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Pietro Marchese
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Muhamad Amani
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Mark Ablonczy
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Linde Spoelstra
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Mitchell Jones
- Polymer and Composite Engineering GroupInstitute of Materials ChemistryUniversity of ViennaWaehringer Straße 42Vienna1090Austria
| | - Yaren Bathaei
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Alexander Bismarck
- Polymer and Composite Engineering GroupInstitute of Materials ChemistryUniversity of ViennaWaehringer Straße 42Vienna1090Austria
| | - Kunal Masania
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| |
Collapse
|
9
|
Deng C, Qin C, Li Z, Lu L, Tong Y, Yuan J, Yin F, Cheng Y, Wu C. Diatomite-incorporated hierarchical scaffolds for osteochondral regeneration. Bioact Mater 2024; 38:305-320. [PMID: 38745590 PMCID: PMC11091463 DOI: 10.1016/j.bioactmat.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Osteochondral regeneration involves the highly challenging and complex reconstruction of cartilage and subchondral bone. Silicon (Si) ions play a crucial role in bone development. Current research on Si ions mainly focuses on bone repair, by using silicate bioceramics with complex ion compositions. However, it is unclear whether the Si ions have important effect on cartilage regeneration. Developing a scaffold that solely releases Si ions to simultaneously promote subchondral bone repair and stimulate cartilage regeneration is critically important. Diatomite (DE) is a natural diatomaceous sediment that can stably release Si ions, known for its abundant availability, low cost, and environmental friendliness. Herein, a hierarchical osteochondral repair scaffold is uniquely designed by incorporating gradient DE into GelMA hydrogel. The adding DE microparticles provides a specific Si source for controlled Si ions release, which not only promotes osteogenic differentiation of rBMSCs (rabbit bone marrow mesenchymal stem cells) but also enhances proliferation and maturation of chondrocytes. Moreover, DE-incorporated hierarchical scaffolds significantly promoted the regeneration of cartilage and subchondral bone. The study suggests the significant role of Si ions in promoting cartilage regeneration and solidifies their foundational role in enhancing bone repair. Furthermore, it offers an economic and eco-friendly strategy for developing high value-added osteochondral regenerative bioscaffolds from low-value ocean natural materials.
Collapse
Affiliation(s)
- Cuijun Deng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, PR China
| | - Chen Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Zhenguang Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Laiya Lu
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai, 200032, PR China
| | - Yifan Tong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Jiaqi Yuan
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai, 200032, PR China
| | - Yu Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| |
Collapse
|
10
|
Laurent JM, Jain A, Kan A, Steinacher M, Enrriquez Casimiro N, Stavrakis S, deMello AJ, Studart AR. Directed evolution of material-producing microorganisms. Proc Natl Acad Sci U S A 2024; 121:e2403585121. [PMID: 39042685 PMCID: PMC11295069 DOI: 10.1073/pnas.2403585121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Nature is home to a variety of microorganisms that create materials under environmentally friendly conditions. While this offers an attractive approach for sustainable manufacturing, the production of materials by native microorganisms is usually slow and synthetic biology tools to engineer faster microorganisms are only available when prior knowledge of genotype-phenotype links is available. Here, we utilize a high-throughput directed evolution platform to enhance the fitness of whole microorganisms under selection pressure and identify genetic pathways to enhance the material production capabilities of native species. Using Komagataeibacter sucrofermentans as a model cellulose-producing microorganism, we show that our droplet-based microfluidic platform enables the directed evolution of these bacteria toward a small number of cellulose overproducers from an initial pool of 40,000 random mutants. Sequencing of the evolved strains reveals an unexpected link between the cellulose-forming ability of the bacteria and a gene encoding a protease complex responsible for protein turnover in the cell. The ability to enhance the fitness of microorganisms toward a specific phenotype and to unravel genotype-phenotype links makes this high-throughput directed evolution platform a promising tool for the development of new strains for the sustainable manufacturing of materials.
Collapse
Affiliation(s)
- Julie M. Laurent
- Department of Materials, Complex Materials, ETH Zürich, Zürich8093, Switzerland
| | - Ankit Jain
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich8093, Switzerland
| | - Anton Kan
- Department of Materials, Complex Materials, ETH Zürich, Zürich8093, Switzerland
| | - Mathias Steinacher
- Department of Materials, Complex Materials, ETH Zürich, Zürich8093, Switzerland
| | | | - Stavros Stavrakis
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich8093, Switzerland
| | - Andrew J. deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich8093, Switzerland
| | - André R. Studart
- Department of Materials, Complex Materials, ETH Zürich, Zürich8093, Switzerland
| |
Collapse
|
11
|
Filippi M, Mekkattu M, Katzschmann RK. Sustainable biofabrication: from bioprinting to AI-driven predictive methods. Trends Biotechnol 2024:S0167-7799(24)00180-X. [PMID: 39069377 DOI: 10.1016/j.tibtech.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Biofabrication is potentially an inherently sustainable manufacturing process of bio-hybrid systems based on biomaterials embedded with cell communities. These bio-hybrids promise to augment the sustainability of various human activities, ranging from tissue engineering and robotics to civil engineering and ecology. However, as routine biofabrication practices are laborious and energetically disadvantageous, our society must refine production and validation processes in biomanufacturing. This opinion highlights the research trends in sustainable material selection and biofabrication techniques. By modeling complex biosystems, the computational prediction will allow biofabrication to shift from an error-trial method to an efficient, target-optimized approach with minimized resource and energy consumption. We envision that implementing bionomic rationality in biofabrication will render bio-hybrid products fruitful for greening human activities.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland.
| | - Manuel Mekkattu
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland.
| |
Collapse
|
12
|
Lu Y, Mehling M, Huan S, Bai L, Rojas OJ. Biofabrication with microbial cellulose: from bioadaptive designs to living materials. Chem Soc Rev 2024; 53:7363-7391. [PMID: 38864385 DOI: 10.1039/d3cs00641g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Nanocellulose is not only a renewable material but also brings functions that are opening new technological opportunities. Here we discuss a special subset of this material, in its fibrillated form, which is produced by aerobic microorganisms, namely, bacterial nanocellulose (BNC). BNC offers distinct advantages over plant-derived counterparts, including high purity and high degree of polymerization as well as crystallinity, strength, and water-holding capacity, among others. More remarkably, beyond classical fermentative protocols, it is possible to grow BNC on non-planar interfaces, opening new possibilities in the assembly of advanced bottom-up structures. In this review, we discuss the recent advances in the area of BNC-based biofabrication of three-dimensional (3D) designs by following solid- and soft-material templating. These methods are shown as suitable platforms to achieve bioadaptive constructs comprising highly interlocked biofilms that can be tailored with precise control over nanoscale morphological features. BNC-based biofabrication opens applications that are not possible by using traditional manufacturing routes, including direct ink writing of hydrogels. This review emphasizes the critical contributions of microbiology, colloid and surface science, as well as additive manufacturing in achieving bioadaptive designs from living matter. The future impact of BNC biofabrication is expected to take advantage of material and energy integration, residue utilization, circularity and social latitudes. Leveraging existing infrastructure, the scaleup of biofabrication routes will contribute to a new generation of advanced materials rooted in exciting synergies that combine biology, chemistry, engineering and material sciences.
Collapse
Affiliation(s)
- Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Marina Mehling
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Siqi Huan
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China.
| | - Long Bai
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China.
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Chemistry, The University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Department of Wood Science, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
13
|
Hong Y, Liu S, Yang X, Hong W, Shan Y, Wang B, Zhang Z, Yan X, Lin W, Li X, Peng Z, Xu X, Yang Z. A bioinspired surface tension-driven route toward programmed cellular ceramics. Nat Commun 2024; 15:5030. [PMID: 38866735 PMCID: PMC11169415 DOI: 10.1038/s41467-024-49345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
The intriguing biomineralization process in nature endows the mineralized biological materials with intricate microarchitected structures in a facile and orderly way, which provides an inspiration for processing ceramics. Here, we propose a simple and efficient manufacturing process to fabricate cellular ceramics in programmed cell-based 3D configurations, inspired by the biomineralization process of the diatom frustule. Our approach separates the ingredient synthesis from architecture building, enabling the programmable manufacturing of cellular ceramics with various cell sizes, geometries, densities, metastructures, and constituent elements. Our approach exploits surface tension to capture precursor solutions in the architected cellular lattices, allowing us to control the liquid geometry and manufacture cellular ceramics with high precision. We investigate the geometry parameters for the architected lattices assembled by unit cells and unit columns, both theoretically and experimentally, to guide the 3D fluid interface creation in arranged configurations. We manufacture a series of globally cellular and locally compact piezoceramics, obtaining an enhanced piezoelectric constant and a designed piezoelectric anisotropy. This bioinspired, surface tension-assisted approach has the potential to revolutionize the design and processing of multifarious ceramic materials for structural and functional applications in energy, electronics and biomedicine.
Collapse
Affiliation(s)
- Ying Hong
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Shiyuan Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiaodan Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Wang Hong
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China
| | - Yao Shan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Biao Wang
- Institute of Artificial Intelligence, School of Future Technology, Shanghai University, Shanghai, China
| | - Zhuomin Zhang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaodong Yan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Weikang Lin
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xuemu Li
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zehua Peng
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaote Xu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
14
|
Wang H, Tao J, Wu Z, Weiland K, Wang Z, Masania K, Wang B. Fabrication of Living Entangled Network Composites Enabled by Mycelium. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309370. [PMID: 38477443 PMCID: PMC11200020 DOI: 10.1002/advs.202309370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Organic polymer-based composite materials with favorable mechanical performance and functionalities are keystones to various modern industries; however, the environmental pollution stemming from their processing poses a great challenge. In this study, by finding an autonomous phase separating ability of fungal mycelium, a new material fabrication approach is introduced that leverages such biological metabolism-driven, mycelial growth-induced phase separation to bypass high-energy cost and labor-intensive synthetic methods. The resulting self-regenerative composites, featuring an entangled network structure of mycelium and assembled organic polymers, exhibit remarkable self-healing properties, being capable of reversing complete separation and restoring ≈90% of the original strength. These composites further show exceptional mechanical strength, with a high specific strength of 8.15 MPa g.cm-3, and low water absorption properties (≈33% after 15 days of immersion). This approach spearheads the development of state-of-the-art living composites, which directly utilize bioactive materials to "self-grow" into materials endowed with exceptional mechanical and functional properties.
Collapse
Affiliation(s)
- Hao Wang
- Department of Mechanical EngineeringCity University of Hong KongKowloonHong Kong
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyDelft2629 HSNetherlands
| | - Jie Tao
- School of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingJiangsu211106China
| | - Zhangyu Wu
- School of Materials Science and EngineeringSoutheast UniversityNanjing211189China
| | - Kathrin Weiland
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyDelft2629 HSNetherlands
| | - Zuankai Wang
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Kunal Masania
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyDelft2629 HSNetherlands
| | - Bin Wang
- Department of Mechanical EngineeringCity University of Hong KongKowloonHong Kong
| |
Collapse
|
15
|
Zhang M, Zhao X, Bai M, Xue J, Liu R, Huang Y, Wang M, Cao J. High-Performance Engineered Composites Biofabrication Using Fungi. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309171. [PMID: 38196296 DOI: 10.1002/smll.202309171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/21/2023] [Indexed: 01/11/2024]
Abstract
Various natural polymers offer sustainable alternatives to petroleum-based adhesives, enabling the creation of high-performance engineered materials. However, additional chemical modifications and complicated manufacturing procedures remain unavoidable. Here, a sustainable high-performance engineered composite that benefits from bonding strategies with multiple energy dissipation mechanisms dominated by chemical adhesion and mechanical interlocking is demonstrated via the fungal smart creative platform. Chemical adhesion is predominantly facilitated by the extracellular polymeric substrates and glycosylated proteins present in the fungal outer cell walls. The dynamic feature of non-covalent interactions represented by hydrogen bonding endows the composite with extensive unique properties including healing, recyclability, and scalable manufacturing. Mechanical interlocking involves multiple mycelial networks (elastic modulus of 2.8 GPa) binding substrates, and the fungal inner wall skeleton composed of chitin and β-glucan imparts product stability. The physicochemical properties of composite (modulus of elasticity of 1455.3 MPa, internal bond strength of 0.55 MPa, hardness of 82.8, and contact angle of 110.2°) are comparable or even superior to those of engineered lignocellulosic materials created using petroleum-based polymers or bioadhesives. High-performance composite biofabrication using fungi may inspire the creation of other sustainable engineered materials with the assistance of the extraordinary capabilities of living organisms.
Collapse
Affiliation(s)
- Mingchang Zhang
- MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Xiaoqi Zhao
- MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Mingyang Bai
- MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Jing Xue
- MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
- Public Analysis and Test Center, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Ru Liu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, P. R. China
| | - Yuxiang Huang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, P. R. China
| | - Mingzhi Wang
- MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Jinzhen Cao
- MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| |
Collapse
|
16
|
Liu H, Yu S, Liu B, Xiang S, Jiang M, Yang F, Tan W, Zhou J, Xiao M, Li X, Richardson JJ, Lin W, Zhou J. Space-Efficient 3D Microalgae Farming with Optimized Resource Utilization for Regenerative Food. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401172. [PMID: 38483347 DOI: 10.1002/adma.202401172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Photosynthetic microalgae produce valuable metabolites and are a source of sustainable food that supports life without compromising arable land. However, the light self-shading, excessive water supply, and insufficient space utilization in microalgae farming have limited its potential in the inland areas most in need of regenerative food solutions. Herein, this work develops a 3D polysaccharide-based hydrogel scaffold for vertically farming microalgae without needing liquid media. This liquid-free strategy is compatible with diverse microalgal species and enables the design of living microalgal frameworks with customizable architectures that enhance light and water utilization. This approach significantly increases microalgae yield per unit water consumption, with an 8.8-fold increase compared to traditional methods. Furthermore, the dehydrated hydrogels demonstrate a reduced size and weight (≈70% reduction), but readily recover their vitality upon rehydration. Importantly, valuable natural products can be produced in this system including proteins, carbohydrates, lipids, and carotenoids. This study streamlines microalgae regenerative farming for low-carbon biomanufacturing by minimizing light self-shading, relieving water supply, and reducing physical footprints, and democratizing access to efficient aquatic food production.
Collapse
Affiliation(s)
- Hai Liu
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Siqin Yu
- Department of Energy Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shuhong Xiang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Minwen Jiang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Fan Yang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Weiwei Tan
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Jianfei Zhou
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
- Research Institute of Leather and Footwear Industry of Wenzhou, Wenzhou, 325000, China
| | - Ming Xiao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaojie Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Joseph J Richardson
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Wei Lin
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
- Research Institute of Leather and Footwear Industry of Wenzhou, Wenzhou, 325000, China
| |
Collapse
|
17
|
Wang Y, Di Z, Qin M, Qu S, Zhong W, Yuan L, Zhang J, Hibberd JM, Yu Z. Advancing Engineered Plant Living Materials through Tobacco BY-2 Cell Growth and Transfection within Tailored Granular Hydrogel Scaffolds. ACS CENTRAL SCIENCE 2024; 10:1094-1104. [PMID: 38799669 PMCID: PMC11117683 DOI: 10.1021/acscentsci.4c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
In this study, an innovative approach is presented in the field of engineered plant living materials (EPLMs), leveraging a sophisticated interplay between synthetic biology and engineering. We detail a 3D bioprinting technique for the precise spatial patterning and genetic transformation of the tobacco BY-2 cell line within custom-engineered granular hydrogel scaffolds. Our methodology involves the integration of biocompatible hydrogel microparticles (HMPs) primed for 3D bioprinting with Agrobacterium tumefaciens capable of plant cell transfection, serving as the backbone for the simultaneous growth and transformation of tobacco BY-2 cells. This system facilitates the concurrent growth and genetic modification of tobacco BY-2 cells within our specially designed scaffolds. These scaffolds enable the cells to develop into predefined patterns while remaining conducive to the uptake of exogenous DNA. We showcase the versatility of this technology by fabricating EPLMs with unique structural and functional properties, exemplified by EPLMs exhibiting distinct pigmentation patterns. These patterns are achieved through the integration of the betalain biosynthetic pathway into tobacco BY-2 cells. Overall, our study represents a groundbreaking shift in the convergence of materials science and plant synthetic biology, offering promising avenues for the evolution of sustainable, adaptive, and responsive living material systems.
Collapse
Affiliation(s)
- Yujie Wang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Zhengao Di
- Department
of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K.
- Earlham
Institute, Norwich Research Park, Norwich NR4 7UG, U.K.
| | - Minglang Qin
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Shenming Qu
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Wenbo Zhong
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Lingfeng Yuan
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Jing Zhang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Julian M. Hibberd
- Department
of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K.
| | - Ziyi Yu
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| |
Collapse
|
18
|
Lin N, Taghizadehmakoei A, Polovina L, McLean I, Santana-Martínez JC, Naese C, Moraes C, Hallam SJ, Dahmen J. 3D Bioprinting of Food Grade Hydrogel Infused with Living Pleurotus ostreatus Mycelium in Non-sterile Conditions. ACS APPLIED BIO MATERIALS 2024; 7:2982-2992. [PMID: 38587496 DOI: 10.1021/acsabm.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Mycelium is the root-like network of fungi. Mycelium biocomposites prepared by template replication (molding) can function as environmentally friendly alternatives to conventional polystyrene foams, which are energy- and carbon-intensive to manufacture. Recently, several studies have shown that 3D bioprinting technologies can be used to produce high value functional mycelium products with intricate geometries that are otherwise difficult or impossible to achieve via template replication. A diverse range of nutrients, thickeners, and gelling agents can be combined to produce hydrogels suitable for 3D bioprinting. 3D bioprinting with hydrogel formulations infused with living fungi produces engineered living materials that continue to grow after bioprinting is complete. However, a hydrogel formulation optimized for intricate 3D bioprinting of Pleurotus ostreatus mycelium, which is among the strains most commonly used in mycelium biocomposite fabrication, has yet to be described. Here, we design and evaluate a versatile hydrogel formulation consisting of malt extract (nutrient), carboxymethylcellulose and cornstarch (thickeners), and agar (gelling agent), all of which are easily sourced food grade reagents. We also outline a reproducible workflow to infuse this hydrogel with P. ostreatus liquid culture for 3D bioprinting of intricate structures comprised of living P. ostreatus mycelium and characterize the changes in height and mass as well as hardness of the prints during mycelium growth. Finally, we demonstrate that the workflow does not require a sterile bioprinting environment to achieve successful prints and that the same mycelium-infused hydrogel can be supplemented with additives such as sawdust to produce mycelium biocomposite objects. These findings demonstrate that 3D bioprinting using mycelium-based feedstocks could be a promising biofabrication technique to produce engineered living materials for applications such as mushroom cultivation, food preparation, or construction of the built environment.
Collapse
Affiliation(s)
- Nicholas Lin
- School of Architecture and Landscape Architecture, University of British Columbia, 6333 Memorial Road, Vancouver, British Columbia V6T 1Z2, Canada
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec H3A 0C5, Canada
| | - Alireza Taghizadehmakoei
- School of Architecture and Landscape Architecture, University of British Columbia, 6333 Memorial Road, Vancouver, British Columbia V6T 1Z2, Canada
| | - Lorena Polovina
- School of Architecture and Landscape Architecture, University of British Columbia, 6333 Memorial Road, Vancouver, British Columbia V6T 1Z2, Canada
| | - Isobel McLean
- School of Architecture and Landscape Architecture, University of British Columbia, 6333 Memorial Road, Vancouver, British Columbia V6T 1Z2, Canada
| | - Juan C Santana-Martínez
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Chloe Naese
- School of Architecture and Landscape Architecture, University of British Columbia, 6333 Memorial Road, Vancouver, British Columbia V6T 1Z2, Canada
| | - Christopher Moraes
- School of Architecture and Landscape Architecture, University of British Columbia, 6333 Memorial Road, Vancouver, British Columbia V6T 1Z2, Canada
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec H3A 0C5, Canada
- Department of Biomedical Engineering, McGill University, 3775 University Street, Montréal, Québec H3A 2B4, Canada
- Rosalind and Morris Goodman Cancer Research Center, McGill University, 1160 Pine Avenue West, Montréal, Québec H3A 1A3, Canada
- Division of Experimental Medicine, McGill University, 1001 Décarie Boulevard, Montréal, Québec H4A 3J1, Canada
| | - Steven James Hallam
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Graduate Program in Bioinformatics, University of British Columbia, 570 West seventh Avenue, Vancouver, British Columbia V6T 1Z4, Canada
- Genome Science and Technology Program, University of British Columbia, 2329 West Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
- ECOSCOPE Training Program, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Joseph Dahmen
- School of Architecture and Landscape Architecture, University of British Columbia, 6333 Memorial Road, Vancouver, British Columbia V6T 1Z2, Canada
| |
Collapse
|
19
|
Yuan J, Wang S, Yang J, Schneider KH, Xie M, Chen Y, Zheng Z, Wang X, Zhao Z, Yu J, Li G, Kaplan DL. Recent advances in harnessing biological macromolecules for wound management: A review. Int J Biol Macromol 2024; 266:130989. [PMID: 38508560 DOI: 10.1016/j.ijbiomac.2024.130989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Wound dressings (WDs) are an essential component of wound management and serve as an artificial barrier to isolate the injured site from the external environment, thereby helping to prevent exogenous infections and supporting healing. However, maintaining a moist wound environment, providing protection from infection, good biocompatibility, and allowing for gas exchange, remain a challenge in device design. Functional wound dressings (FWDs) prepared from hybrid biological macromolecule-based materials can enhance efficacy of these systems for skin wound management. This review aims to provide an overview of the state-of-the-art FWDs within the field of wound management, with a specific focus on hybrid biomaterials, techniques, and applications developed over the past five years. In addition, we highlight the incorporation of biological macromolecules in WDs, the emergence of smart WDs, and discuss the existing challenges and future prospects for the development of advanced WDs.
Collapse
Affiliation(s)
- Jingxuan Yuan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Shuo Wang
- School of Physical Education, Orthopaedic Institute, Soochow University, 50 Donghuan Rd, Suzhou 215006, Jiangsu, P.R. China
| | - Jie Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Karl H Schneider
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 23 Spitalgasse, Austria
| | - Maobin Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, 11 Yukchoi Rd, Hung Hom, Kowloon, Hong Kong.
| | - Jia Yu
- School of Physical Education, Orthopaedic Institute, Soochow University, 50 Donghuan Rd, Suzhou 215006, Jiangsu, P.R. China.
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| |
Collapse
|
20
|
Kim HS, Noh MH, White EM, Kandefer MV, Wright AF, Datta D, Lim HG, Smiggs E, Locklin JJ, Rahman MA, Feist AM, Pokorski JK. Biocomposite thermoplastic polyurethanes containing evolved bacterial spores as living fillers to facilitate polymer disintegration. Nat Commun 2024; 15:3338. [PMID: 38688899 PMCID: PMC11061138 DOI: 10.1038/s41467-024-47132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
The field of hybrid engineered living materials seeks to pair living organisms with synthetic materials to generate biocomposite materials with augmented function since living systems can provide highly-programmable and complex behavior. Engineered living materials have typically been fabricated using techniques in benign aqueous environments, limiting their application. In this work, biocomposite fabrication is demonstrated in which spores from polymer-degrading bacteria are incorporated into a thermoplastic polyurethane using high-temperature melt extrusion. Bacteria are engineered using adaptive laboratory evolution to improve their heat tolerance to ensure nearly complete cell survivability during manufacturing at 135 °C. Furthermore, the overall tensile properties of spore-filled thermoplastic polyurethanes are substantially improved, resulting in a significant improvement in toughness. The biocomposites facilitate disintegration in compost in the absence of a microbe-rich environment. Finally, embedded spores demonstrate a rationally programmed function, expressing green fluorescent protein. This research provides a scalable method to fabricate advanced biocomposite materials in industrially-compatible processes.
Collapse
Affiliation(s)
- Han Sol Kim
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Myung Hyun Noh
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30 Jongga-ro, Ulsan, 44429, Republic of Korea
| | - Evan M White
- New Materials Institute, University of Georgia, Athens, GA, 30602, USA
| | | | - Austin F Wright
- New Materials Institute, University of Georgia, Athens, GA, 30602, USA
| | - Debika Datta
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Hyun Gyu Lim
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Ethan Smiggs
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Jason J Locklin
- New Materials Institute, University of Georgia, Athens, GA, 30602, USA
| | - Md Arifur Rahman
- Thermoplastic Polyurethane Research, BASF Corporation, 1609 Biddle Ave., Wyandotte, MI, 48192, USA.
| | - Adam M Feist
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs, Lyngby, Denmark.
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
| |
Collapse
|
21
|
Qu H, Gao C, Liu K, Fu H, Liu Z, Kouwer PHJ, Han Z, Ruan C. Gradient matters via filament diameter-adjustable 3D printing. Nat Commun 2024; 15:2930. [PMID: 38575640 PMCID: PMC10994943 DOI: 10.1038/s41467-024-47360-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Gradient matters with hierarchical structures endow the natural world with excellent integrity and diversity. Currently, direct ink writing 3D printing is attracting tremendous interest, and has been used to explore the fabrication of 1D and 2D hierarchical structures by adjusting the diameter, spacing, and angle between filaments. However, it is difficult to generate complex 3D gradient matters owing to the inherent limitations of existing methods in terms of available gradient dimension, gradient resolution, and shape fidelity. Here, we report a filament diameter-adjustable 3D printing strategy that enables conventional extrusion 3D printers to produce 1D, 2D, and 3D gradient matters with tunable heterogeneous structures by continuously varying the volume of deposited ink on the printing trajectory. In detail, we develop diameter-programmable filaments by customizing the printing velocity and height. To achieve high shape fidelity, we specially add supporting layers at needed locations. Finally, we showcase multi-disciplinary applications of our strategy in creating horizontal, radial, and axial gradient structures, letter-embedded structures, metastructures, tissue-mimicking scaffolds, flexible electronics, and time-driven devices. By showing the potential of this strategy, we anticipate that it could be easily extended to a variety of filament-based additive manufacturing technologies and facilitate the development of functionally graded structures.
Collapse
Affiliation(s)
- Huawei Qu
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
| | - Chongjian Gao
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kaizheng Liu
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongya Fu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
| | - Zhiyuan Liu
- Research Center for Neural Engineering, Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Zhenyu Han
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China.
| | - Changshun Ruan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
Shen SC, Lee NA, Lockett WJ, Acuil AD, Gazdus HB, Spitzer BN, Buehler MJ. Robust myco-composites: a biocomposite platform for versatile hybrid-living materials. MATERIALS HORIZONS 2024; 11:1689-1703. [PMID: 38315077 DOI: 10.1039/d3mh01277h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Fungal mycelium, a living network of filamentous threads, thrives on lignocellulosic waste and exhibits rapid growth, hydrophobicity, and intrinsic regeneration, offering a potential means to create next-generation sustainable and functional composites. However, existing hybrid-living mycelium composites (myco-composites) are tremendously constrained by conventional mold-based manufacturing processes, which are only compatible with simple geometries and coarse biomass substrates that enable gas exchange. Here we introduce a class of structural myco-composites manufactured with a novel platform that harnesses high-resolution biocomposite additive manufacturing and robust mycelium colonization with indirect inoculation. We leverage principles of hierarchical composite design and selective nutritional provision to create a robust myco-composite that is scalable, tunable, and compatible with complex geometries. To illustrate the versatility of this platform, we characterize the impact of mycelium colonization on mechanical and surface properties of the composite. We found that our method yields the strongest mycelium composite reported to date with a modulus of 160 MPa and tensile strength of 0.72 MPa, which represents over a 15-fold improvement over typical mycelium composites, and further demonstrate unique applications with fabrication of foldable bio-welded containers and flexible mycelium textiles. This study bridges the gap between biocomposite and hybrid-living materials research, opening the door to advanced structural mycelium applications and demonstrating a novel platform for development of diverse hybrid-living materials.
Collapse
Affiliation(s)
- Sabrina C Shen
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave. 1-165, Cambridge, MA, 02139, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Nicolas A Lee
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave. 1-165, Cambridge, MA, 02139, USA.
- School of Architecture and Planning, Media Lab, Massachusetts Institute of Technology, 75 Amherst Street, Cambridge, MA, 02139, USA
| | - William J Lockett
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave. 1-165, Cambridge, MA, 02139, USA.
- MIT Center for Art, Science & Technology (CAST), Massachusetts Institute of Technology, 77 Massachusetts Ave. 10-183, Cambridge, MA 02139, USA
- Department of Media, Culture, and Communication, New York University, 239 Greene Street, New York, NY, 10003, USA
| | - Aliai D Acuil
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave. 1-165, Cambridge, MA, 02139, USA.
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Hannah B Gazdus
- School of Architecture and Planning, Media Lab, Massachusetts Institute of Technology, 75 Amherst Street, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Branden N Spitzer
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave. 1-165, Cambridge, MA, 02139, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave. 1-165, Cambridge, MA, 02139, USA.
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Center for Computational Science and Engineering, Schwarzman College of Computing, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| |
Collapse
|
23
|
Oh JJ, Ammu S, Vriend VD, Kieffer R, Kleiner FH, Balasubramanian S, Karana E, Masania K, Aubin-Tam ME. Growth, Distribution, and Photosynthesis of Chlamydomonas Reinhardtii in 3D Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305505. [PMID: 37851509 DOI: 10.1002/adma.202305505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/16/2023] [Indexed: 10/20/2023]
Abstract
Engineered living materials (ELMs) are a novel class of functional materials that typically feature spatial confinement of living components within an inert polymer matrix to recreate biological functions. Understanding the growth and spatial configuration of cellular populations within a matrix is crucial to predicting and improving their responsive potential and functionality. Here, this work investigates the growth, spatial distribution, and photosynthetic productivity of eukaryotic microalga Chlamydomonas reinhardtii (C. reinhardtii) in three-dimensionally shaped hydrogels in dependence of geometry and size. The embedded C. reinhardtii cells photosynthesize and form confined cell clusters, which grow faster when located close to the ELM periphery due to favorable gas exchange and light conditions. Taking advantage of location-specific growth patterns, this work successfully designs and prints photosynthetic ELMs with increased CO2 capturing rate, featuring high surface to volume ratio. This strategy to control cell growth for higher productivity of ELMs resembles the already established adaptations found in multicellular plant leaves.
Collapse
Affiliation(s)
- Jeong-Joo Oh
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Satya Ammu
- Shaping Matter Lab, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, The Netherlands
| | - Vivian Dorine Vriend
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
- Department of Sustainable Design Engineering, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
| | - Roland Kieffer
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Friedrich Hans Kleiner
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Srikkanth Balasubramanian
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
- Department of Sustainable Design Engineering, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
| | - Elvin Karana
- Department of Sustainable Design Engineering, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
| | - Kunal Masania
- Shaping Matter Lab, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, The Netherlands
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| |
Collapse
|
24
|
Sun W. Fungal mycelia: From innovative materials to promising products: Insights and challenges. Biointerphases 2024; 19:018502. [PMID: 38415769 DOI: 10.1116/6.0003441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
In transitioning toward a sustainable economy, mycelial materials are recognized for their adaptability, biocompatibility, and eco-friendliness. This paper updates the exploration of mycelial materials, defining their scope and emphasizing the need for precise terminology. It discusses the importance of mycelial type and characteristics, reviews existing and future research directions, and highlights the need for improved understanding, clarity, and standardization in this emerging field, aiming to foster and guide future research and development in sustainable material science.
Collapse
Affiliation(s)
- Wenjing Sun
- Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
25
|
Boons R, Siqueira G, Grieder F, Kim SJ, Giovanoli D, Zimmermann T, Nyström G, Coulter FB, Studart AR. 3D Bioprinting of Diatom-Laden Living Materials for Water Quality Assessment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300771. [PMID: 37691091 DOI: 10.1002/smll.202300771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/17/2023] [Indexed: 09/12/2023]
Abstract
Diatoms have long been used as living biological indicators for the assessment of water quality in lakes and rivers worldwide. While this approach benefits from the great diversity of these unicellular algae, established protocols are time-consuming and require specialized equipment. Here, this work 3D prints diatom-laden hydrogels that can be used as a simple multiplex bio-indicator for water assessment. The hydrogel-based living materials are created with the help of a desktop extrusion-based printer using a suspension of diatoms, cellulose nanocrystals (CNC) and alginate as bio-ink constituents. Rheology and mechanical tests are employed to establish optimum bio-ink formulations, whereas cell culture experiments are utilized to evaluate the proliferation of the entrapped diatoms in the presence of selected water contaminants. Bioprinting of diatom-laden hydrogels is shown to be an enticing approach to generate living materials that can serve as low-cost bio-indicators for water quality assessment.
Collapse
Affiliation(s)
- Rani Boons
- Cellulose & Wood Materials Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Gilberto Siqueira
- Cellulose & Wood Materials Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Florian Grieder
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Soo-Jeong Kim
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Diego Giovanoli
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Tanja Zimmermann
- Cellulose & Wood Materials Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - Gustav Nyström
- Cellulose & Wood Materials Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Fergal B Coulter
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
26
|
Amini M, Hosseini H, Dutta S, Wuttke S, Kamkar M, Arjmand M. Surfactant-Mediated Highly Conductive Cellulosic Inks for High-Resolution 3D Printing of Robust and Structured Electromagnetic Interference Shielding Aerogels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54753-54765. [PMID: 37787508 DOI: 10.1021/acsami.3c10596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Technological fusion of emerging three-dimensional (3D) printing of aerogels with gel processing enables the fabrication of lightweight and functional materials for diverse applications. However, 3D-printed constructs via direct ink writing for fabricating electrically conductive structured biobased aerogels suffer several limitations, including poor electrical conductivity, inferior mechanical strength, and low printing resolution. This work addresses these limitations via molecular engineering of conductive hydrogels. The hydrogel inks, namely, CNC/PEDOT-DBSA, featured a unique formulation containing well-dispersed cellulose nanocrystal decorated by a poly(3,4-ethylene dioxythiophene) (PEDOT) domain combined with dodecylbenzene sulfonic acid (DBSA). The rheological properties were precisely engineered by manipulating the solid content and the intermolecular interactions among the constituents, resulting in 3D-printed structures with excellent resolution. More importantly, the resultant aerogels following freeze-drying exhibited a high electrical conductivity (110 ± 12 S m-1), outstanding mechanical properties (Young's modulus of 6.98 MPa), and fire-resistance properties. These robust aerogels were employed to address pressing global concerns about electromagnetic pollution with a specific shielding effectiveness of 4983.4 dB cm2 g-1. Importantly, it was shown that the shielding mechanism of the 3D printed aerogels could be manipulated by their geometrical features, unraveling the undeniable role of additive manufacturing in materials design.
Collapse
Affiliation(s)
- Majed Amini
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1 V 1 V7, Canada
| | - Hadi Hosseini
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1 V 1 V7, Canada
| | - Subhajit Dutta
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Milad Kamkar
- Multiscale Materials Design Center, Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Toronto, Ontario N2L 3G1. Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1 V 1 V7, Canada
| |
Collapse
|
27
|
Nussbaum N, von Wyl T, Gandia A, Romanens E, Rühs PA, Fischer P. Impact of malt concentration in solid substrate on mycelial growth and network connectivity in Ganoderma species. Sci Rep 2023; 13:21051. [PMID: 38030880 PMCID: PMC10687231 DOI: 10.1038/s41598-023-48203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
With its distinctive material properties, fungal mycelium has emerged as an innovative material with a diverse array of applications across various industries. This study focuses on how the growth strategies of wood fungi adapt to nutrient availability. The effect of malt extract concentration in the growth medium on radial growth kinetics, morphology, mycelium network connectivity, and mechanical characteristics of mycelium from two Ganoderma species were investigated. While an evident pattern of radial growth rate enhancement with malt concentrations was not apparent, there was a discernible trend towards denser mycelium network characteristics as revealed by spectrophotometry. Increased malt extract contents corresponded to elevated optical density measurements and were visually confirmed by denser mycelium networks in photographic images. Investigating the mechanical characteristics of mycelium cultivated on varying solid substrate concentrations, the Young's modulus exhibited a substantial difference between mycelium grown on 5 wt% malt substrate and samples cultivated on 2 wt% and 0.4 wt% malt substrates. The obtained results represent a new understanding of how malt availability influences mycelial growth of two Ganoderma species, a crucial insight for potentially refining mycelium cultivation across diverse applications, including meat alternatives, smart building materials, and alternative leather.
Collapse
Affiliation(s)
- Natalie Nussbaum
- ETH Zürich, Institute of Food, Nutrition and Health, 8092, Zurich, Switzerland.
| | - Tabea von Wyl
- ETH Zürich, Institute of Food, Nutrition and Health, 8092, Zurich, Switzerland
| | - Antoni Gandia
- Planted Foods AG, Kemptpark 32, 8310, Kemptthal, Switzerland
- IBMCP (UPV-CSIC), Institute for Plant Molecular and Cell Biology, 46011, Valencia, Spain
| | - Edwina Romanens
- Planted Foods AG, Kemptpark 32, 8310, Kemptthal, Switzerland
| | | | - Peter Fischer
- ETH Zürich, Institute of Food, Nutrition and Health, 8092, Zurich, Switzerland.
| |
Collapse
|
28
|
Ding Z, Klein T, Barner-Kowollik C, Mirkhalaf M. Multifunctional nacre-like materials. MATERIALS HORIZONS 2023; 10:5371-5390. [PMID: 37882614 DOI: 10.1039/d3mh01015e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Nacre, the iridescent inner layer of seashells, displays an exceptional combination of strength and toughness due to its 'brick-wall' architecture. Significant research has been devoted to replicating nacre's architecture and its associated deformation and failure mechanisms. Using the resulting materials in applications necessitates adding functionalities such as self-healing, force sensing, bioactivity, heat conductivity and resistance, transparency, and electromagnetic interference shielding. Herein, progress in the fabrication, mechanics, and multi-functionality of nacre-like materials, particularly over the past three years is systematically and critically reviewed. The fabrication techniques reviewed include 3D printing, freeze-casting, mixing/coating-assembling, and laser engraving. The mechanical properties of the resulting materials are discussed in comparison with their constituents and previously developed nacre mimics. Subsequently, the progress in incorporating multifunctionalities and the resulting physical, chemical, and biological properties are evaluated. We finally provide suggestions based on 3D/4D printing, advanced modelling techniques, and machine elements to make reprogrammable nacre-like components with complex shapes and small building blocks, tackling some of the main challenges in the science and translation of these materials.
Collapse
Affiliation(s)
- Zizhen Ding
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), 4000 Brisbane, QLD, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 4059 Brisbane, QLD, Australia
| | - Travis Klein
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), 4000 Brisbane, QLD, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 4059 Brisbane, QLD, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 4000 Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 4000 Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mohammad Mirkhalaf
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), 4000 Brisbane, QLD, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 4059 Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 4000 Brisbane, QLD, Australia
| |
Collapse
|
29
|
Shi HH, Pan Y, Xu L, Feng X, Wang W, Potluri P, Hu L, Hasan T, Huang YYS. Sustainable electronic textiles towards scalable commercialization. NATURE MATERIALS 2023; 22:1294-1303. [PMID: 37500958 DOI: 10.1038/s41563-023-01615-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/28/2023] [Indexed: 07/29/2023]
Abstract
Textiles represent a fundamental material format that is extensively integrated into our everyday lives. The quest for more versatile and body-compatible wearable electronics has led to the rise of electronic textiles (e-textiles). By enhancing textiles with electronic functionalities, e-textiles define a new frontier of wearable platforms for human augmentation. To realize the transformational impact of wearable e-textiles, materials innovations can pave the way for effective user adoption and the creation of a sustainable circular economy. We propose a repair, recycle, replacement and reduction circular e-textile paradigm. We envisage a systematic design framework embodying material selection and biofabrication concepts that can unify environmental friendliness, market viability, supply-chain resilience and user experience quality. This framework establishes a set of actionable principles for the industrialization and commercialization of future sustainable e-textile products.
Collapse
Affiliation(s)
- HaoTian Harvey Shi
- Department of Engineering, University of Cambridge, Cambridge, UK
- The Nanoscience Centre, University of Cambridge, Cambridge, UK
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada
| | - Yifei Pan
- Department of Engineering, University of Cambridge, Cambridge, UK
- The Nanoscience Centre, University of Cambridge, Cambridge, UK
| | - Lin Xu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Xueming Feng
- Department of Engineering, University of Cambridge, Cambridge, UK
- The Nanoscience Centre, University of Cambridge, Cambridge, UK
- Micro- and Nano-technology Research Centre, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wenyu Wang
- Department of Engineering, University of Cambridge, Cambridge, UK
- The Nanoscience Centre, University of Cambridge, Cambridge, UK
| | - Prasad Potluri
- Department of Materials, University of Manchester, Manchester, UK
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Tawfique Hasan
- Department of Engineering, University of Cambridge, Cambridge, UK
- Cambridge Graphene Centre, University of Cambridge, Cambridge, UK
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Cambridge, UK.
- The Nanoscience Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
30
|
Li C, Schramma N, Wang Z, Qari NF, Jalaal M, Latz MI, Cai S. Ultrasensitive and robust mechanoluminescent living composites. SCIENCE ADVANCES 2023; 9:eadi8643. [PMID: 37862415 PMCID: PMC10588950 DOI: 10.1126/sciadv.adi8643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/19/2023] [Indexed: 10/22/2023]
Abstract
Mechanosensing, the transduction of extracellular mechanical stimuli into intracellular biochemical signals, is a fundamental property of living cells. However, endowing synthetic materials with mechanosensing capabilities comparable to biological levels is challenging. Here, we developed ultrasensitive and robust mechanoluminescent living composites using hydrogels embedded with dinoflagellates, unicellular microalgae with a near-instantaneous and ultrasensitive bioluminescent response to mechanical stress. Not only did embedded dinoflagellates retain their intrinsic mechanoluminescence, but with hydrophobic coatings, living composites had a lifetime of ~5 months under harsh conditions with minimal maintenance. We 3D-printed living composites into large-scale mechanoluminescent structures with high spatial resolution, and we also enhanced their mechanical properties with double-network hydrogels. We propose a counterpart mathematical model that captured experimental mechanoluminescent observations to predict mechanoluminescence based on deformation and applied stress. We also demonstrated the use of the mechanosensing composites for biomimetic soft actuators that emitted colored light upon magnetic actuation. These mechanosensing composites have substantial potential in biohybrid sensors and robotics.
Collapse
Affiliation(s)
- Chenghai Li
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nico Schramma
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, Amsterdam 1098XH, Netherlands
| | - Zijun Wang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nada F. Qari
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maziyar Jalaal
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, Amsterdam 1098XH, Netherlands
| | - Michael I. Latz
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
31
|
Wang Q, Hu Z, Li Z, Liu T, Bian G. Exploring the Application and Prospects of Synthetic Biology in Engineered Living Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305828. [PMID: 37677048 DOI: 10.1002/adma.202305828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Indexed: 09/09/2023]
Abstract
At the intersection of synthetic biology and materials science, engineered living materials (ELMs) exhibit unprecedented potential. Possessing unique "living" attributes, ELMs represent a significant paradigm shift in material design, showcasing self-organization, self-repair, adaptability, and evolvability, surpassing conventional synthetic materials. This review focuses on reviewing the applications of ELMs derived from bacteria, fungi, and plants in environmental remediation, eco-friendly architecture, and sustainable energy. The review provides a comprehensive overview of the latest research progress and emerging design strategies for ELMs in various application fields from the perspectives of synthetic biology and materials science. In addition, the review provides valuable references for the design of novel ELMs, extending the potential applications of future ELMs. The investigation into the synergistic application possibilities amongst different species of ELMs offers beneficial reference information for researchers and practitioners in this field. Finally, future trends and development challenges of synthetic biology for ELMs in the coming years are discussed in detail.
Collapse
Affiliation(s)
- Qiwen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhehui Hu
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430071, China
| | - Zhixuan Li
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tiangang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Guangkai Bian
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
32
|
Peng Y, Jiang Y, Fu X. Next-generation skin regeneration: opportunities and challenges in biomaterials and bioengineering. Sci Bull (Beijing) 2023; 68:1722-1725. [PMID: 37474446 DOI: 10.1016/j.scib.2023.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Affiliation(s)
- Yu Peng
- Key Laboratory of Tissue Repair and Regeneration, PLA General Hospital, Beijing 100037, China; School of Medicine, Nankai University, Tianjin 300071, China
| | - Yufeng Jiang
- Key Laboratory of Tissue Repair and Regeneration, PLA General Hospital, Beijing 100037, China; Department of Tissue Regeneration and Wound Repair, PLA General Hospital, Beijing 100039, China.
| | - Xiaobing Fu
- Key Laboratory of Tissue Repair and Regeneration, PLA General Hospital, Beijing 100037, China; School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
33
|
Ruggeri M, Miele D, Contardi M, Vigani B, Boselli C, Icaro Cornaglia A, Rossi S, Suarato G, Athanassiou A, Sandri G. Mycelium-based biomaterials as smart devices for skin wound healing. Front Bioeng Biotechnol 2023; 11:1225722. [PMID: 37650039 PMCID: PMC10465301 DOI: 10.3389/fbioe.2023.1225722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction: Recently, mycelia of Ganoderma lucidum and Pleurotus ostreatus, edible fungi, have been characterized in vitro as self-growing biomaterials for tissue engineering since they are constituted of interconnected fibrous networks resembling the dermal collagen structure. Aim: This work aims to investigate the biopharmaceutical properties of G. lucidum and P. ostreatus mycelia to prove their safety and effectiveness in tissue engineering as dermal substitutes. Methods: The mycelial materials were characterized using a multidisciplinary approach, including physicochemical properties (morphology, thermal behavior, surface charge, and isoelectric point). Moreover, preclinical properties such as gene expression and in vitro wound healing assay have been evaluated using fibroblasts. Finally, these naturally-grown substrates were applied in vivo using a murine burn/excisional wound model. Conclusions: Both G. lucidum and P. ostreatus mycelia are biocompatible and able to safely and effectively enhance tissue repair in vivo in our preclinical model.
Collapse
Affiliation(s)
- Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Dalila Miele
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Genova, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Giulia Suarato
- Smart Materials, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | |
Collapse
|
34
|
Dong X, Wu W, Pan P, Zhang XZ. Engineered Living Materials for Advanced Diseases Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304963. [PMID: 37436776 DOI: 10.1002/adma.202304963] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Natural living materials serving as biotherapeutics exhibit great potential for treating various diseases owing to their immunoactivity, tissue targeting, and other biological activities. In this review, the recent developments in engineered living materials, including mammalian cells, bacteria, viruses, fungi, microalgae, plants, and their active derivatives that are used for treating various diseases are summarized. Further, the future perspectives and challenges of such engineered living material-based biotherapeutics are discussed to provide considerations for future advances in biomedical applications.
Collapse
Affiliation(s)
- Xue Dong
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Wei Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
35
|
Mohseni A, Vieira FR, Pecchia JA, Gürsoy B. Three-Dimensional Printing of Living Mycelium-Based Composites: Material Compositions, Workflows, and Ways to Mitigate Contamination. Biomimetics (Basel) 2023; 8:257. [PMID: 37366852 DOI: 10.3390/biomimetics8020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023] Open
Abstract
The construction industry makes a significant contribution to global CO2 emissions. Material extraction, processing, and demolition account for most of its environmental impact. As a response, there is an increasing interest in developing and implementing innovative biomaterials that support a circular economy, such as mycelium-based composites. The mycelium is the network of hyphae of fungi. Mycelium-based composites are renewable and biodegradable biomaterials obtained by ceasing mycelial growth on organic substrates, including agricultural waste. Cultivating mycelium-based composites within molds, however, is often wasteful, especially if molds are not reusable or recyclable. Shaping mycelium-based composites using 3D printing can minimize mold waste while allowing intricate forms to be fabricated. In this research, we explore the use of waste cardboard as a substrate for cultivating mycelium-based composites and the development of extrudable mixtures and workflows for 3D-printing mycelium-based components. In this paper, existing research on the use of mycelium-based material in recent 3D printing efforts was reviewed. This review is followed by the MycoPrint experiments that we conducted, and we focus on the main challenges that we faced (i.e., contamination) and the ways in which we addressed them. The results of this research demonstrate the feasibility of using waste cardboard as a substrate for cultivating mycelia and the potential for developing extrudable mixtures and workflows for 3D-printing mycelium-based components.
Collapse
Affiliation(s)
- Alale Mohseni
- Department of Architecture, Penn State University, University Park, PA 16802, USA
| | - Fabricio Rocha Vieira
- Department of Plant Pathology and Environmental Microbiology, Penn State University, University Park, PA 16802, USA
| | - John A Pecchia
- Department of Plant Pathology and Environmental Microbiology, Penn State University, University Park, PA 16802, USA
| | - Benay Gürsoy
- Department of Architecture, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
36
|
Ho G, Kubušová V, Irabien C, Li V, Weinstein A, Chawla S, Yeung D, Mershin A, Zolotovsky K, Mogas-Soldevila L. Multiscale design of cell-free biologically active architectural structures. Front Bioeng Biotechnol 2023; 11:1125156. [PMID: 37064226 PMCID: PMC10100494 DOI: 10.3389/fbioe.2023.1125156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
Cell-free protein expression systems are here combined with 3D-printed structures to study the challenges and opportunities as biofabrication enters the spaces of architecture and design. Harnessing large-scale additive manufacturing of biological materials, we examined the addition of cell-free protein expression systems ("TXTL" i.e., biological transcription-translation machinery without the use of living cells) to printed structures. This allowed us to consider programmable, living-like, responsive systems for product design and indoor architectural applications. This emergent, pluripotent technology offers exciting potential in support of health, resource optimization, and reduction of energy use in the built environment, setting a new path to interactivity with mechanical, optical, and (bio) chemical properties throughout structures. We propose a roadmap towards creating healthier, functional and more durable systems by deploying a multiscale platform containing biologically-active components encapsulated within biopolymer lattices operating at three design scales: (i) supporting cell-free protein expression in a biopolymer matrix (microscale), (ii) varying material properties of porosity and strength within two-dimensional lattices to support biological and structural functions (mesoscale), and (iii) obtaining folded indoor surfaces that are structurally sound at the meter scale and biologically active (we label that regime macroscale). We embedded commercially available cell-free protein expression systems within silk fibroin and sodium alginate biopolymer matrices and used green fluorescent protein as the reporter to confirm their compatibility. We demonstrate mechanical attachment of freeze-dried bioactive pellets into printed foldable fibrous biopolymer lattices showing the first steps towards modular multiscale fabrication of large structures with biologically active zones. Our results discuss challenges to experimental setup affecting expression levels and show the potential of robust cell-free protein-expressing biosites within custom-printed structures at scales relevant to everyday consumer products and human habitats.
Collapse
Affiliation(s)
- G. Ho
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - V. Kubušová
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
- Department of Architecture and Design, Slovak University of Technology, Bratislava, Slovakia
| | - C. Irabien
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
| | - V. Li
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
| | - A. Weinstein
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
| | - Sh. Chawla
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
| | - D. Yeung
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
| | - A. Mershin
- Label Free Research Group, Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - K. Zolotovsky
- Spatial Dynamics Program, Division of Experimental and Foundational Studies, Rhode Island School of Design, Providence, RI, United States
| | - L. Mogas-Soldevila
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
37
|
Pylkkänen R, Werner D, Bishoyi A, Weil D, Scoppola E, Wagermaier W, Safeer A, Bahri S, Baldus M, Paananen A, Penttilä M, Szilvay GR, Mohammadi P. The complex structure of Fomes fomentarius represents an architectural design for high-performance ultralightweight materials. SCIENCE ADVANCES 2023; 9:eade5417. [PMID: 36812306 PMCID: PMC9946349 DOI: 10.1126/sciadv.ade5417] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
High strength, hardness, and fracture toughness are mechanical properties that are not commonly associated with the fleshy body of a fungus. Here, we show with detailed structural, chemical, and mechanical characterization that Fomes fomentarius is an exception, and its architectural design is a source of inspiration for an emerging class of ultralightweight high-performance materials. Our findings reveal that F. fomentarius is a functionally graded material with three distinct layers that undergo multiscale hierarchical self-assembly. Mycelium is the primary component in all layers. However, in each layer, mycelium exhibits a very distinct microstructure with unique preferential orientation, aspect ratio, density, and branch length. We also show that an extracellular matrix acts as a reinforcing adhesive that differs in each layer in terms of quantity, polymeric content, and interconnectivity. These findings demonstrate how the synergistic interplay of the aforementioned features results in distinct mechanical properties for each layer.
Collapse
Affiliation(s)
- Robert Pylkkänen
- VTT Technical Research Centre of Finland Ltd., Espoo, FI-02044 VTT, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Daniel Werner
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14476 Potsdam, Germany
| | - Ajit Bishoyi
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Dominik Weil
- KLA-Tencor GmbH, Moritzburger Weg 67, Dresden 01109, Germany
| | - Ernesto Scoppola
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14476 Potsdam, Germany
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14476 Potsdam, Germany
| | - Adil Safeer
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Salima Bahri
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Arja Paananen
- VTT Technical Research Centre of Finland Ltd., Espoo, FI-02044 VTT, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland Ltd., Espoo, FI-02044 VTT, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Géza R. Szilvay
- VTT Technical Research Centre of Finland Ltd., Espoo, FI-02044 VTT, Finland
| | - Pezhman Mohammadi
- VTT Technical Research Centre of Finland Ltd., Espoo, FI-02044 VTT, Finland
| |
Collapse
|