1
|
Li H, Shen N, Ren J, Yang S, Chen Y, Gao Z. Biotransformation characteristics of urate-lowering probiotic fermented apple juice and potential regulatory mechanisms for ameliorating hyperuricemia via mediating gut microbiota and metabolic pathways. Food Chem 2024; 460:140462. [PMID: 39032298 DOI: 10.1016/j.foodchem.2024.140462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/16/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Hyperuricemia has evolved into a global public health concern, and applying probiotics fermented apple juice holds promise for alleviating this condition. This study aimed to investigate the biotransformation and metabolic features of urate-lowering probiotics sequentially fermented dealcoholized apple juice (PSFA), and assess its ameliorative effects and potential mechanisms on hyperuricemia mice. Results showed that CICC 6074 and 20,292 possessed excellent purine, nucleotide and nucleoside degradation and acid and bile salt resistance; sequential fermentation decreased the fructose in apple juice, and viable counts reached 3.76 × 108 CFU/mL. Histopathological analysis showed that PSFA ameliorated kidney damage in hyperuricemia mice. Furthermore, PSFA significantly reduced Urea, Creatinine and Uric acid levels in hyperuricemia mice; and inhibited xanthine oxidase activity and the expression of pro-inflammatory factors. Importantly, PSFA reversed gut microbiota dysbiosis and raised the abundance of beneficial bacteria (Lactobacillush, Faecalibaculum and Lachnospiraceae_NK4A136_group). KEGG and COG functional prediction results revealed that the potential mechanism of PSFA to ameliorate hyperuricemia may be lipid metabolism and glycolysis pathways.
Collapse
Affiliation(s)
- Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Ning Shen
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Jiani Ren
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Shuang Yang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Yue Chen
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
2
|
Ooi QE, Nguyen CTT, Laloo AE, Koh YZ, Swarup S. Soil-sediment connectivity through Bayesian source tracking in an urban naturalised waterway via microbial and isotopic markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175152. [PMID: 39097031 DOI: 10.1016/j.scitotenv.2024.175152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/27/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Riverine sediments are important habitats for microbial activity in naturalised waterways to provide potential ecosystem services that improve stormwater quality. Yet, little is known about the sources of these sediment microbes, and the factors shaping them. This study investigated the dominant source of sediments in a tropical naturalised urban waterway, using two Bayesian methods for microbial and isotopic 13C/15N markers concurrently. Additionally, key factors shaping microbial communities from the surrounding landscape were evaluated. A comprehensive two-year field survey identified source land covers of interest based on topology and soil context. Among these land covers, riverbanks were the dominant source of sediments contribution for both edaphic and microbial components. The physico-chemical environment explains most of the variation in sediment communities compared to inter-location distances and microbial source contribution. As microbes provide ecosystem services important for rewilding waterways, management strategies that establish diverse sediment microbial communities are encouraged. Since riverbanks play a disproportionately important role in material contribution to sediment beds, management practices aimed at controlling soil erosion from riverbanks can improve overall functioning of waterway systems.
Collapse
Affiliation(s)
- Qi En Ooi
- National University of Singapore Environmental Research Institute, National University of Singapore, 117411, Singapore; Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| | - Canh Tien Trinh Nguyen
- Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore; Centre for Radiation Research Education and Innovation, The University of Adelaide, 5005, Australia
| | - Andrew Elohim Laloo
- National University of Singapore Environmental Research Institute, National University of Singapore, 117411, Singapore; Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore.
| | - Yi Zi Koh
- Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore
| | - Sanjay Swarup
- National University of Singapore Environmental Research Institute, National University of Singapore, 117411, Singapore; Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
3
|
Wang L, Ducoste JJ, de los Reyes FL. Perturbations to common gardens of anaerobic co-digesters reveal relationships between functional resilience and microbial community composition. Appl Environ Microbiol 2024; 90:e0029824. [PMID: 39189736 PMCID: PMC11409718 DOI: 10.1128/aem.00298-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
We report the relationship between enrichment of adapted populations and enhancement of community functional resilience in methanogenic bioreactors. Although previous studies have shown the positive effects of acclimation, this work directly investigated the relationships between microbiome dynamics and performance of anaerobic co-digesting reactors in response to different levels of an environmental perturbation (loading of grease interceptor waste [GIW]). Using the methanogenic microbiome from a full-scale digester, we developed eight sets of microbial communities in triplicate using different feed sources. These substrate-specific microbiomes were then exposed to three independent disturbance events of low-, mid- and high-GIW loading rates. This approach allowed us to directly attribute differences in community responses to differences in community composition. Despite identical inocula, environment (digester operation, substrate loading rate, and feeding patterns) and general whole-community function (methane production and effluent quality) during the cultivation period, different substrates led to different microbial community assemblies. Lipid pre-acclimation led to enrichment of a pool of specialized populations, along with thriving of sub-dominant communities. The enrichment of these populations improved functional resilience and process performance when exposed to a low level of lipid-rich perturbation compared with less-acclimated communities. At higher levels of perturbation, the communities were not able to recover methanogenesis, indicating a loading limit to the resilience response. This study extends our current understanding of environmental perturbations, feed-specific adaptation, and functional resilience in methanogenic bioreactors.IMPORTANCEThis study demonstrates, for the first time for GIW co-digestion, how applying similar perturbations to different microbial communities was used to directly identify the causal relationships between microbial community, function, and environment in triplicate anaerobic microbiomes. We evaluated the impact of feed-specific adaptation on methanogenic microbiomes and demonstrated how microbiomes can be influenced to improve their functional (methanogenic) resilience to GIW inhibition. These findings demonstrate how an ecological framework can help improve a biological engineering application, and more specifically, increase the potential of anaerobic co-digestion for converting wastes to energy.
Collapse
Affiliation(s)
- Ling Wang
- Department of Civil Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Joel J. Ducoste
- Department of Civil Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Francis L. de los Reyes
- Department of Civil Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Cui Y, Hu J, Peng S, Delgado-Baquerizo M, Moorhead DL, Sinsabaugh RL, Xu X, Geyer KM, Fang L, Smith P, Peñuelas J, Kuzyakov Y, Chen J. Limiting Resources Define the Global Pattern of Soil Microbial Carbon Use Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308176. [PMID: 39024521 PMCID: PMC11425281 DOI: 10.1002/advs.202308176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/30/2024] [Indexed: 07/20/2024]
Abstract
Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant-derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant-derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource-specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.
Collapse
Affiliation(s)
- Yongxing Cui
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
- Department of Agroecology, Aarhus University, Tjele, 8830, Denmark
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Junxi Hu
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shushi Peng
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, Sevilla, E-41012, Spain
| | - Daryl L Moorhead
- Department of Environmental Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Robert L Sinsabaugh
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Xiaofeng Xu
- Biology Department, San Diego State University, San Diego, CA, 92182, USA
| | - Kevin M Geyer
- Department of Biology, Young Harris College, Young Harris, GA, 30582, USA
| | - Linchuan Fang
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, 23 St. Machar Drive, Aberdeen, AB24 3UU, UK
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08913, Spain
- CREAF, 08913 Cerdanyola del Vallès, Barcelona, Catalonia, 08193, Spain
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, 37077, Göttingen, Germany
- Peoples Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, 8830, Denmark
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
- Institute of Global Environmental Change, Department of Earth and Environmental Science, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| |
Collapse
|
5
|
Larkin AA, Brock ML, Fagan AJ, Moreno AR, Gerace SD, Lees LE, Suarez SA, Eloe-Fadrosh EA, Martiny A. Climate-driven succession in marine microbiome biodiversity and biogeochemical function. RESEARCH SQUARE 2024:rs.3.rs-4682733. [PMID: 39184082 PMCID: PMC11343179 DOI: 10.21203/rs.3.rs-4682733/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Seasonal and El Niño-Southern Oscillation (ENSO) warming result in similar ocean changes as predicted with climate change. Climate-driven environmental cycles have strong impacts on microbiome diversity, but impacts on microbiome function are poorly understood. We quantified changes in microbial genomic diversity and functioning over 11 years covering seasonal and ENSO cycles at a coastal site in the southern California Current. We observed seasonal oscillations between large genome lineages during cold, nutrient rich conditions in winter and spring versus small genome lineages, including Prochlorococcus and Pelagibacter , in summer and fall. Parallel interannual changes separated communities depending on ENSO condition. Biodiversity shifts translated into clear oscillations in microbiome functional potential. Ocean warming induced an ecosystem with less iron but more macronutrient stress genes, depressed organic carbon degradation potential and biomass, and elevated carbon-to-nutrient biomass ratios. The consistent microbial response observed across time-scales points towards large climate-driven changes in marine ecosystems and biogeochemical cycles.
Collapse
|
6
|
Osburn ED, McBride SG, Bahram M, Strickland MS. Global patterns in the growth potential of soil bacterial communities. Nat Commun 2024; 15:6881. [PMID: 39128916 PMCID: PMC11317499 DOI: 10.1038/s41467-024-50382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Despite the growing catalogue of studies detailing the taxonomic and functional composition of soil bacterial communities, the life history traits of those communities remain largely unknown. This study analyzes a global dataset of soil metagenomes to explore environmental drivers of growth potential, a fundamental aspect of bacterial life history. We find that growth potential, estimated from codon usage statistics, was highest in forested biomes and lowest in arid latitudes. This indicates that bacterial productivity generally reflects ecosystem productivity globally. Accordingly, the strongest environmental predictors of growth potential were productivity indicators, such as distance to the equator, and soil properties that vary along productivity gradients, such as pH and carbon to nitrogen ratios. We also observe that growth potential was negatively correlated with the relative abundances of genes involved in carbohydrate metabolism, demonstrating tradeoffs between growth and resource acquisition in soil bacteria. Overall, we identify macroecological patterns in bacterial growth potential and link growth rates to soil carbon cycling.
Collapse
Affiliation(s)
- Ernest D Osburn
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA.
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, USA.
| | | | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | |
Collapse
|
7
|
Wang T, Wang X, Hadibi T, Ma X, Yao H, Tang Z, Fan F, Huang Y. Effects of exogenous copper on microbial metabolic function and carbon use efficiency of Panax notoginseng planting soil. Front Microbiol 2024; 15:1390921. [PMID: 39050633 PMCID: PMC11266184 DOI: 10.3389/fmicb.2024.1390921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Soil copper (Cu) pollution is a serious environmental risk in the Panax notoginseng planting area. However, the effect of Cu on soil microbial metabolism and nutrient cycling in this area remains unknown. Therefore, Biolog ECO-plate and enzyme stoichiometry methods were utilized in this study to investigate the impact of exogenous Cu (control: 0 mg·kg-1; Cu100: 100 mg·kg-1; Cu400: 400 mg·kg-1; and Cu600: 600 mg·kg-1) on the metabolic function of soil microbial and nutrient limitation in the P. notoginseng soil. The results indicated that Cu100 significantly increased soil organic carbon (SOC), total phosphorus (TP), soil C:N, microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN) 9.89%, 15.65%, 17.91%, 61.87%, and 90.56% higher than the control, respectively. Moreover, the carbon source utilization ratio of carbohydrates, amino acids, and amphiphilic compounds of Cu100 also increased by 7.16%, 25.47%, and 84.68%, respectively, compared with the control. The activities of β-1,4-glucosidase, cellobiohyrolase, leucine amino peptidase, β-1,4-N-acetylglucosaminidase, and phosphatase significantly decreased with increasing Cu concentration. Soil enzyme stoichiometry showed that all treatments were limited by nitrogen (vector angle < 45°; 19.045-22.081). Cu600 led to the lowest carbon limitation (1.798) and highest carbon use efficiency (CUE:0.267). The PLS-SEM model also showed that MBC, MBN, MBP, and microbial diversity positively affected carbon and nitrogen limitation (0.654 and 0.424). Soil carbon, nitrogen, phosphorus, stoichiometric ratio, MBC, MBN, and MBP positively affected CUE (0.527 and 0.589). The microbial diversity index significantly negatively affected CUE (-1.490). Multiple linear stepwise regression analyses showed that CUE was mainly influenced by MBC, AP, C:P, and LAP. Thus, P. notoginseng soil can benefit soil microbial carbon and nitrogen limitations at low Cu concentrations. Clarifying the metabolic activity and nutritional status of microorganisms under Cu stress can provide some theoretical basis for realizing China's comprehensive and effective management and control policies for environmental risks from metals by 2035.
Collapse
Affiliation(s)
- Tong Wang
- School of Energy and Environment Science, Yunnan Normal University, Kunming, China
| | - Xu Wang
- School of Energy and Environment Science, Yunnan Normal University, Kunming, China
| | - Tarik Hadibi
- School of Energy and Environment Science, Yunnan Normal University, Kunming, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, China
| | - Xun Ma
- School of Energy and Environment Science, Yunnan Normal University, Kunming, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, China
| | - Haoyi Yao
- School of Energy and Environment Science, Yunnan Normal University, Kunming, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, China
| | - Zhenya Tang
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, China
| | - Fangling Fan
- School of Energy and Environment Science, Yunnan Normal University, Kunming, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, China
| | - Yizong Huang
- School of Energy and Environment Science, Yunnan Normal University, Kunming, China
| |
Collapse
|
8
|
Graham EB, Garayburu-Caruso VA, Wu R, Zheng J, McClure R, Jones GD. Genomic fingerprints of the world's soil ecosystems. mSystems 2024; 9:e0111223. [PMID: 38722174 PMCID: PMC11237643 DOI: 10.1128/msystems.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/25/2024] [Indexed: 06/19/2024] Open
Abstract
Despite the explosion of soil metagenomic data, we lack a synthesized understanding of patterns in the distribution and functions of soil microorganisms. These patterns are critical to predictions of soil microbiome responses to climate change and resulting feedbacks that regulate greenhouse gas release from soils. To address this gap, we assay 1,512 manually curated soil metagenomes using complementary annotation databases, read-based taxonomy, and machine learning to extract multidimensional genomic fingerprints of global soil microbiomes. Our objective is to uncover novel biogeographical patterns of soil microbiomes across environmental factors and ecological biomes with high molecular resolution. We reveal shifts in the potential for (i) microbial nutrient acquisition across pH gradients; (ii) stress-, transport-, and redox-based processes across changes in soil bulk density; and (iii) greenhouse gas emissions across biomes. We also use an unsupervised approach to reveal a collection of soils with distinct genomic signatures, characterized by coordinated changes in soil organic carbon, nitrogen, and cation exchange capacity and in bulk density and clay content that may ultimately reflect soil environments with high microbial activity. Genomic fingerprints for these soils highlight the importance of resource scavenging, plant-microbe interactions, fungi, and heterotrophic metabolisms. Across all analyses, we observed phylogenetic coherence in soil microbiomes-more closely related microorganisms tended to move congruently in response to soil factors. Collectively, the genomic fingerprints uncovered here present a basis for global patterns in the microbial mechanisms underlying soil biogeochemistry and help beget tractable microbial reaction networks for incorporation into process-based models of soil carbon and nutrient cycling.IMPORTANCEWe address a critical gap in our understanding of soil microorganisms and their functions, which have a profound impact on our environment. We analyzed 1,512 global soils with advanced analytics to create detailed genetic profiles (fingerprints) of soil microbiomes. Our work reveals novel patterns in how microorganisms are distributed across different soil environments. For instance, we discovered shifts in microbial potential to acquire nutrients in relation to soil acidity, as well as changes in stress responses and potential greenhouse gas emissions linked to soil structure. We also identified soils with putative high activity that had unique genomic characteristics surrounding resource acquisition, plant-microbe interactions, and fungal activity. Finally, we observed that closely related microorganisms tend to respond in similar ways to changes in their surroundings. Our work is a significant step toward comprehending the intricate world of soil microorganisms and its role in the global climate.
Collapse
Affiliation(s)
- Emily B. Graham
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | | | - Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jianqiu Zheng
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ryan McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Gerrad D. Jones
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
9
|
Camenzind T, Aguilar-Trigueros CA, Hempel S, Lehmann A, Bielcik M, Andrade-Linares DR, Bergmann J, Dela Cruz J, Gawronski J, Golubeva P, Haslwimmer H, Lartey L, Leifheit E, Maaß S, Marhan S, Pinek L, Powell JR, Roy J, Veresoglou SD, Wang D, Wulf A, Zheng W, Rillig MC. Towards establishing a fungal economics spectrum in soil saprobic fungi. Nat Commun 2024; 15:3321. [PMID: 38637578 PMCID: PMC11026409 DOI: 10.1038/s41467-024-47705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Trait-based frameworks are promising tools to understand the functional consequences of community shifts in response to environmental change. The applicability of these tools to soil microbes is limited by a lack of functional trait data and a focus on categorical traits. To address this gap for an important group of soil microorganisms, we identify trade-offs underlying a fungal economics spectrum based on a large trait collection in 28 saprobic fungal isolates, derived from a common grassland soil and grown in culture plates. In this dataset, ecologically relevant trait variation is best captured by a three-dimensional fungal economics space. The primary explanatory axis represents a dense-fast continuum, resembling dominant life-history trade-offs in other taxa. A second significant axis reflects mycelial flexibility, and a third one carbon acquisition traits. All three axes correlate with traits involved in soil carbon cycling. Since stress tolerance and fundamental niche gradients are primarily related to the dense-fast continuum, traits of the 2nd (carbon-use efficiency) and especially the 3rd (decomposition) orthogonal axes are independent of tested environmental stressors. These findings suggest a fungal economics space which can now be tested at broader scales.
Collapse
Affiliation(s)
- Tessa Camenzind
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
| | - Carlos A Aguilar-Trigueros
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Stefan Hempel
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Anika Lehmann
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Milos Bielcik
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Diana R Andrade-Linares
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
| | - Joana Bergmann
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany
| | - Jeane Dela Cruz
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Jessie Gawronski
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Polina Golubeva
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Heike Haslwimmer
- Institute of Soil Science and Land Evaluation, Soil Biology department, University of Hohenheim, Emil-Wolff-Str. 27, 70599, Stuttgart, Germany
| | - Linda Lartey
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Eva Leifheit
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Stefanie Maaß
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Sven Marhan
- Institute of Soil Science and Land Evaluation, Soil Biology department, University of Hohenheim, Emil-Wolff-Str. 27, 70599, Stuttgart, Germany
| | - Liliana Pinek
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Julien Roy
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Stavros D Veresoglou
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dongwei Wang
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Anja Wulf
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Weishuang Zheng
- Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, 518057, China
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
10
|
Logares R. Decoding populations in the ocean microbiome. MICROBIOME 2024; 12:67. [PMID: 38561814 PMCID: PMC10983722 DOI: 10.1186/s40168-024-01778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024]
Abstract
Understanding the characteristics and structure of populations is fundamental to comprehending ecosystem processes and evolutionary adaptations. While the study of animal and plant populations has spanned a few centuries, microbial populations have been under scientific scrutiny for a considerably shorter period. In the ocean, analyzing the genetic composition of microbial populations and their adaptations to multiple niches can yield important insights into ecosystem function and the microbiome's response to global change. However, microbial populations have remained elusive to the scientific community due to the challenges associated with isolating microorganisms in the laboratory. Today, advancements in large-scale metagenomics and metatranscriptomics facilitate the investigation of populations from many uncultured microbial species directly from their habitats. The knowledge acquired thus far reveals substantial genetic diversity among various microbial species, showcasing distinct patterns of population differentiation and adaptations, and highlighting the significant role of selection in structuring populations. In the coming years, population genomics is expected to significantly increase our understanding of the architecture and functioning of the ocean microbiome, providing insights into its vulnerability or resilience in the face of ongoing global change. Video Abstract.
Collapse
Affiliation(s)
- Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Catalonia, 08003, Spain.
| |
Collapse
|
11
|
Hussain A, Patwekar U, Mongad DS, Nimonkar Y, Mundhe S, Paul D, Prakash O, Shouche YS. Functional antagonism and insights into the biosynthetic potential of human gut-derived microbes. Int J Antimicrob Agents 2024; 63:107091. [PMID: 38242249 DOI: 10.1016/j.ijantimicag.2024.107091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 12/09/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The specialised small molecules encoded by commensal microbes mediate distinct functional interactions. However, there is a landscape of antagonistic interactions mediated by specialised strains and their small molecules. Herein, the antagonistic landscape within a collection of 330 human gut-derived commensal microbial strains was elucidated to evaluate antimicrobial interactions as a defensive contributor, and gain new insights into structure-related functions. The potential antagonistic gut-derived strains displayed strain-specific selective inhibition. This is in contrast to common antimicrobial drugs, which typically wipe out a broad range of species and are usually found in environmental microbes. Genome sequencing of representative gut strains revealed the presence of significant biosynthetic gene clusters (BGCs) encoding compound families that contribute to antagonistic activities, and are important in host defence and maintaining gut homeostasis. Subsets of these BGCs were abundant in metagenomic sequencing data from healthy individuals. Furthermore, the cell culture secretome of these strains revealed potential biomarkers linked to hallmark pathways. These microorganisms have biosynthetic novelty and are a source of biologically significant natural products. Such natural products are essential in the development of new antimicrobial agents to reduce the usage of broad-spectrum antibiotics and combat antimicrobial resistance.
Collapse
Affiliation(s)
| | - Umera Patwekar
- NCMR- National Centre for Cell Science (NCCS), Pune- 411007, India
| | | | - Yogesh Nimonkar
- NCMR- National Centre for Cell Science (NCCS), Pune- 411007, India
| | - Swapnil Mundhe
- NCMR- National Centre for Cell Science (NCCS), Pune- 411007, India
| | - Dhiraj Paul
- NCMR- National Centre for Cell Science (NCCS), Pune- 411007, India
| | - Om Prakash
- NCMR- National Centre for Cell Science (NCCS), Pune- 411007, India
| | - Yogesh S Shouche
- NCMR- National Centre for Cell Science (NCCS), Pune- 411007, India
| |
Collapse
|
12
|
Marschmann GL, Tang J, Zhalnina K, Karaoz U, Cho H, Le B, Pett-Ridge J, Brodie EL. Predictions of rhizosphere microbiome dynamics with a genome-informed and trait-based energy budget model. Nat Microbiol 2024; 9:421-433. [PMID: 38316928 PMCID: PMC10847045 DOI: 10.1038/s41564-023-01582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/08/2023] [Indexed: 02/07/2024]
Abstract
Soil microbiomes are highly diverse, and to improve their representation in biogeochemical models, microbial genome data can be leveraged to infer key functional traits. By integrating genome-inferred traits into a theory-based hierarchical framework, emergent behaviour arising from interactions of individual traits can be predicted. Here we combine theory-driven predictions of substrate uptake kinetics with a genome-informed trait-based dynamic energy budget model to predict emergent life-history traits and trade-offs in soil bacteria. When applied to a plant microbiome system, the model accurately predicted distinct substrate-acquisition strategies that aligned with observations, uncovering resource-dependent trade-offs between microbial growth rate and efficiency. For instance, inherently slower-growing microorganisms, favoured by organic acid exudation at later plant growth stages, exhibited enhanced carbon use efficiency (yield) without sacrificing growth rate (power). This insight has implications for retaining plant root-derived carbon in soils and highlights the power of data-driven, trait-based approaches for improving microbial representation in biogeochemical models.
Collapse
Affiliation(s)
- Gianna L Marschmann
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jinyun Tang
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kateryna Zhalnina
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ulas Karaoz
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Heejung Cho
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Beatrice Le
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life and Environmental Sciences Department, University of California Merced, Merced, CA, USA
| | - Eoin L Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
13
|
Berrios L, Venturini AM, Ansell TB, Tok E, Johnson W, Willing CE, Peay KG. Co-inoculations of bacteria and mycorrhizal fungi often drive additive plant growth responses. ISME COMMUNICATIONS 2024; 4:ycae104. [PMID: 39188310 PMCID: PMC11346365 DOI: 10.1093/ismeco/ycae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
Controlled greenhouse studies have shown the numerous ways that soil microbes can impact plant growth and development. However, natural soil communities are highly complex, and plants interact with many bacterial and fungal taxa simultaneously. Due to logistical challenges associated with manipulating more complex microbiome communities, how microbial communities impact emergent patterns of plant growth therefore remains poorly understood. For instance, do the interactions between bacteria and fungi generally yield additive (i.e. sum of their parts) or nonadditive, higher order plant growth responses? Without this information, our ability to accurately predict plant responses to microbial inoculants is weakened. To address these issues, we conducted a meta-analysis to determine the type (additive or higher-order, nonadditive interactions), frequency, direction (positive or negative), and strength that bacteria and mycorrhizal fungi (arbuscular and ectomycorrhizal) have on six phenotypic plant growth responses. Our results demonstrate that co-inoculations of bacteria and mycorrhizal fungi tend to have positive additive effects on many commonly reported plant responses. However, ectomycorrhizal plant shoot height responds positively and nonadditively to co-inoculations of bacteria and ectomycorrhizal fungi, and the strength of additive effects also differs between mycorrhizae type. These findings suggest that inferences from greenhouse studies likely scale to more complex field settings and that inoculating plants with diverse, beneficial microbes is a sound strategy to support plant growth.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, United States
| | - Andressa M Venturini
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, United States
| | - Tillson Bertie Ansell
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, United States
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Esther Tok
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, United States
| | - William Johnson
- Oceans Department, Hopkins Marine Station of Stanford University, 120 Ocean View Blvd., Pacific Grove, CA 93950, United States
| | - Claire E Willing
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, United States
| | - Kabir G Peay
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, United States
- Department of Earth System Science, Stanford University, Stanford, CA 94305, United States
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
14
|
Huang W, Dong X, Tu C, Yang H, Chang Y, Yang X, Chen H, Che F. Response mechanism of sediment endogenous phosphorus release to functional microorganisms and its cyanobacterial growth and disappearance effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167676. [PMID: 37816408 DOI: 10.1016/j.scitotenv.2023.167676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
Endogenous phosphorus (P) release from lake sediments is an important factor in the eutrophication of overlying waters, as P is the limiting nutrient salt affecting cyanobacterial growth. Microorganisms are also key to the evolution of cyanobacterial growth and disappearance, as they can influence the release of endogenous P. Meanwhile, endogenous phosphorus can also have an impact on microbial structure. However, there is a lack of studies on the response mechanisms between endogenous P release and microorganisms, as well as the exploration of endogenous P release on the whole cyanobacterial growth and disappearance evolution process. In this study, metagenome sequencing was used to characterize the microbial community structure at different times and to explain the P cycle from the perspective of functional genes. The results showed that the number of sediment microorganisms (genes) gradually increased with the P release capacity, and the outbreak with the strongest P release capacity possessed the most abundant microorganisms (genes). Proteobacteria with P solubilizing functions were consistently the most abundant phylum in all four periods and were positively correlated with P release potential assessment factors EPC0, EPC0F, and NAP. Functional genes affect the P cycle by acting primarily on inorganic P solubilization, organic P mineralization, and P transport. These P-functional genes are mainly found in Proteobacteria, Acidobacteria, Chloroflexi, and Actinobacteria microorganisms. In addition, the P form in the sediments was dominated by IP, with the highest concentration (704.86 mg/kg) occurring during the dormant period. Sediments from this period acted as a strong P "sink", creating a precondition for cyanobacterial recovery and outbreaks to provide a source of P. The results of this study can provide a theoretical basis for controlling endogenous P release at the microscopic level of cyanobacterial growth and disappearance.
Collapse
Affiliation(s)
- Wei Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoshuang Dong
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chengqi Tu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoran Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yongsheng Chang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xixi Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haojie Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Feifei Che
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
15
|
Egidi E, Coleine C, Delgado-Baquerizo M, Singh BK. Assessing critical thresholds in terrestrial microbiomes. Nat Microbiol 2023; 8:2230-2233. [PMID: 38030908 DOI: 10.1038/s41564-023-01536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Affiliation(s)
- Eleonora Egidi
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia.
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
16
|
Wang C, Yu QY, Ji NN, Zheng Y, Taylor JW, Guo LD, Gao C. Bacterial genome size and gene functional diversity negatively correlate with taxonomic diversity along a pH gradient. Nat Commun 2023; 14:7437. [PMID: 37978289 PMCID: PMC10656551 DOI: 10.1038/s41467-023-43297-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Bacterial gene repertoires reflect adaptive strategies, contribute to ecosystem functioning and are limited by genome size. However, gene functional diversity does not necessarily correlate with taxonomic diversity because average genome size may vary by community. Here, we analyse gene functional diversity (by shotgun metagenomics) and taxonomic diversity (by 16S rRNA gene amplicon sequencing) to investigate soil bacterial communities along a natural pH gradient in 12 tropical, subtropical, and temperate forests. We find that bacterial average genome size and gene functional diversity decrease, whereas taxonomic diversity increases, as soil pH rises from acid to neutral; as a result, bacterial taxonomic and functional diversity are negatively correlated. The gene repertoire of acid-adapted oligotrophs is enriched in functions of signal transduction, cell motility, secretion system, and degradation of complex compounds, while that of neutral pH-adapted copiotrophs is enriched in functions of energy metabolism and membrane transport. Our results indicate that a mismatch between taxonomic and functional diversity can arise when environmental factors (such as pH) select for adaptive strategies that affect genome size distributions.
Collapse
Affiliation(s)
- Cong Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qing-Yi Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- School of Geographical Sciences, Fujian Normal University, 350007, Fuzhou, China
| | - John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
17
|
Ustick LJ, Larkin AA, Martiny AC. Global scale phylogeography of functional traits and microdiversity in Prochlorococcus. THE ISME JOURNAL 2023; 17:1671-1679. [PMID: 37454234 PMCID: PMC10504305 DOI: 10.1038/s41396-023-01469-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Prochlorococcus is the most numerically abundant photosynthetic organism in the surface ocean. The Prochlorococcus high-light and warm-water adapted ecotype (HLII) is comprised of extensive microdiversity, but specific functional differences between microdiverse sub-clades remain elusive. Here we characterized both functional and phylogenetic diversity within the HLII ecotype using Bio-GO-SHIP metagenomes. We found widespread variation in gene frequency connected to local environmental conditions. Metagenome-assembled marker genes and genomes revealed a globally distributed novel HLII haplotype defined by adaptation to chronically low P conditions (HLII-P). Environmental correlation analysis revealed different factors were driving gene abundances verses phylogenetic differences. An analysis of cultured HLII genomes and metagenome-assembled genomes revealed a subclade within HLII, which corresponded to the novel HLII-P haplotype. This work represents the first global assessment of the HLII ecotype's phylogeography and corresponding functional differences. These findings together expand our understanding of how microdiversity structures functional differences and reveals the importance of nutrients as drivers of microdiversity in Prochlorococcus.
Collapse
Affiliation(s)
- Lucas J Ustick
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
- Structural and Computational Biology Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alyse A Larkin
- Department of Earth System Science, University of California Irvine, Irvine, CA, 92697, USA
- Global Ocean Monitoring and Observing, National Oceanic and Atmospheric Administration, Washington, DC, USA
| | - Adam C Martiny
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Earth System Science, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
18
|
Osburn ED, Yang G, Rillig MC, Strickland MS. Evaluating the role of bacterial diversity in supporting soil ecosystem functions under anthropogenic stress. ISME COMMUNICATIONS 2023; 3:66. [PMID: 37400524 PMCID: PMC10318037 DOI: 10.1038/s43705-023-00273-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Ecosystem functions and services are under threat from anthropogenic global change at a planetary scale. Microorganisms are the dominant drivers of nearly all ecosystem functions and therefore ecosystem-scale responses are dependent on responses of resident microbial communities. However, the specific characteristics of microbial communities that contribute to ecosystem stability under anthropogenic stress are unknown. We evaluated bacterial drivers of ecosystem stability by generating wide experimental gradients of bacterial diversity in soils, applying stress to the soils, and measuring responses of several microbial-mediated ecosystem processes, including C and N cycling rates and soil enzyme activities. Some processes (e.g., C mineralization) exhibited positive correlations with bacterial diversity and losses of diversity resulted in reduced stability of nearly all processes. However, comprehensive evaluation of all potential bacterial drivers of the processes revealed that bacterial α diversity per se was never among the most important predictors of ecosystem functions. Instead, key predictors included total microbial biomass, 16S gene abundance, bacterial ASV membership, and abundances of specific prokaryotic taxa and functional groups (e.g., nitrifying taxa). These results suggest that bacterial α diversity may be a useful indicator of soil ecosystem function and stability, but that other characteristics of bacterial communities are stronger statistical predictors of ecosystem function and better reflect the biological mechanisms by which microbial communities influence ecosystems. Overall, our results provide insight into the role of microorganisms in supporting ecosystem function and stability by identifying specific characteristics of bacterial communities that are critical for understanding and predicting ecosystem responses to global change.
Collapse
Affiliation(s)
- Ernest D Osburn
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, USA.
| | - Gaowen Yang
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | | |
Collapse
|
19
|
Guan X, Guo Z, Wang X, Xiang S, Sun T, Zhao R, He J, Liu F. Transfer route and driving forces of antibiotic resistance genes from reclaimed water to groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121800. [PMID: 37169235 DOI: 10.1016/j.envpol.2023.121800] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The infiltration of reclaimed water has created a significant environmental risk due to the spread of antibiotic resistance genes (ARGs) in riparian groundwater. Reclaimed water from wastewater treatment plants (WWTPs) had been identified as a source of both antibiotics and ARGs in groundwater, based on their spatial and temporal distribution. The assembly process of microbial communities in the groundwater of the infiltration zone was more influenced by deterministic processes. Co-occurrence network analysis revealed that Thermotoga, Desulfotomaculum, Methanobacterium, and other such genera were dominant shared genera. These were considered core genera and hosts of ARGs for transport from reclaimed water to groundwater. The most abundant ARG in these shared genera was MacB, enriched in groundwater point G3 and potentially transferred from reclaimed water to groundwater by Acidovorax, Hydrogenophaga, Methylotenera, Dechloromonas, and Nitrospira. During the infiltration process, environmental factors and the tradeoff between energy metabolism and antibiotic defense strategy may have affected ARG transfer. Understanding the transfer route and driving forces of ARGs from reclaimed water to groundwater provided a new perspective for evaluating the spread risk of ARGs in reclaimed water infiltration.
Collapse
Affiliation(s)
- Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Zining Guo
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Xusheng Wang
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Shizheng Xiang
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Tongxin Sun
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Ruoyu Zhao
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jiangtao He
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Fei Liu
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
20
|
Eisenhauer N, Hines J, Maestre FT, Rillig MC. Reconsidering functional redundancy in biodiversity research. NPJ BIODIVERSITY 2023; 2:9. [PMID: 39242717 PMCID: PMC11332098 DOI: 10.1038/s44185-023-00015-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/04/2023] [Indexed: 09/09/2024]
Affiliation(s)
- Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Institute of Biology, Leipzig University, Leipzig, Germany.
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Universidad de Alicante, Alicante, Spain
- Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | - Matthias C Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
21
|
Robbins CJ, Manning DWP, Halvorson HM, Norman BC, Eckert RA, Pastor A, Dodd AK, Jabiol J, Bastias E, Gossiaux A, Mehring AS. Nutrient and stoichiometry dynamics of decomposing litter in stream ecosystems: A global synthesis. Ecology 2023:e4060. [PMID: 37186091 DOI: 10.1002/ecy.4060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Decomposing organic matter forms a substantial resource base fueling the biogeochemical function and secondary production of most aquatic ecosystems. However, detrital N (nitrogen) and P (phosphorus) dynamics remain relatively unexplored in aquatic relative to terrestrial ecosystems, despite fundamentally linking microbial processes to ecosystem function across broad spatial scales. We synthesized 217 published time series of detrital carbon (C), N, P, and their stoichiometric ratios (C:N, C:P, N:P) from stream ecosystems to analyze the temporal nutrient dynamics of decomposing litter using generalized additive models. Model results indicated that detritus was a net source of N (irrespective of inorganic or organic form) to the environment regardless of initial N content. In contrast, P sink/source dynamics were more strongly influenced by initial P content, where P-poor litters were sinks of nutrients until shifting to net P mineralization after ~40% mass loss. However, large variation surrounded both N and P predictions, suggesting the importance of non-microbial factors such as fragmentation by invertebrates. Detrital C:N ratios converged and became more similar toward the end of decomposition, suggesting predictable microbial functional effects throughout detrital ontogeny. C:P and N:P ratios also converged to some degree, but these model predictions were less robust than for C:N, due in part to the lower number of published detrital C:P time series. Explorations of environmental covariate effects were frequently limited by few coincident covariate measurements across studies, but temperature, N availability, and P tended to accelerate existing ontogenetic patterns in C:N. Our analysis helps unite organic matter decomposition across aquatic-terrestrial boundaries by describing basic patterns of elemental flows catalyzed by decomposition in streams, and points to a research agenda to continue addressing gaps in our knowledge of detrital nutrient dynamics across ecosystems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Caleb J Robbins
- Department of Biology, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - David W P Manning
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | | | - Beth C Norman
- Lacawac Sanctuary Field Station and Environmental Education Center, Lake Ariel, PA, USA
| | - Rebecca A Eckert
- Biology Department, Environmental Studies Department, Gettysburg College, Gettysburg, PA, USA
| | - Ada Pastor
- Group of Continental Aquatic Ecology Research (GRECO), Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Allyn K Dodd
- Arkansas School for Math, Sciences, and the Arts, Hot Springs, AR, USA
| | - Jérémy Jabiol
- HYFE - Hydrobiologie et Fonctionnement des Ecosystèmes, Elven, France
| | - Elliot Bastias
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | | | - Andrew S Mehring
- Department of Biology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
22
|
Liu H, Li FY, Liu J, Shi C, Tang K, Yang Q, Liu Y, Fu Q, Gao X, Wang N, Guo W. The reciprocal changes in dominant species with complete metabolic functions explain the decoupling phenomenon of microbial taxonomic and functional composition in a grassland. Front Microbiol 2023; 14:1113157. [PMID: 37007478 PMCID: PMC10060659 DOI: 10.3389/fmicb.2023.1113157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
The decoupling of microbial functional and taxonomic components refers to the phenomenon that a drastic change in microbial taxonomic composition leads to no or only a gentle change in functional composition. Although many studies have identified this phenomenon, the mechanisms underlying it are still unclear. Here we demonstrate, using metagenomics data from a steppe grassland soil under different grazing and phosphorus addition treatments, that there is no “decoupling” in the variation of taxonomic and metabolic functional composition of the microbial community within functional groups at species level. In contrast, the high consistency and complementarity between the abundance and functional gene diversity of two dominant species made metabolic functions unaffected by grazing and phosphorus addition. This complementarity between the two dominant species shapes a bistability pattern that differs from functional redundancy in that only two species cannot form observable redundancy in a large microbial community. In other words, the “monopoly” of metabolic functions by the two most abundant species leads to the disappearance of functional redundancy. Our findings imply that for soil microbial communities, the impact of species identity on metabolic functions is much greater than that of species diversity, and it is more important to monitor the dynamics of key dominant microorganisms for accurately predicting the changes in the metabolic functions of the ecosystems.
Collapse
Affiliation(s)
- Huaiqiang Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Frank Yonghong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Hohhot, China
- *Correspondence: Frank Yonghong Li,
| | - Jiayue Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Chunjun Shi
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Kuanyan Tang
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Qianhui Yang
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yu Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Qiang Fu
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Xiaotian Gao
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Ning Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Wei Guo
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
23
|
Ustick LJ, Larkin AA, Martiny AC. Global scale phylogeography of functional traits and microdiversity in Prochlorococcus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525399. [PMID: 36747826 PMCID: PMC9900765 DOI: 10.1101/2023.01.24.525399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prochlorococcus is the most numerically abundant photosynthetic organism in the surface ocean. The Prochlorococcus high-light and warm-water adapted ecotype (HLII) is comprised of extensive microdiversity, but specific functional differences between microdiverse sub-clades remain elusive. Here we characterized both functional and phylogenetic diversity within the HLII ecotype using Bio-GO-SHIP metagenomes. We found widespread variation in gene frequency connected to local environmental conditions. Metagenomically assembled marker genes and genomes revealed a globally distributed novel HLII haplotype defined by adaptation to chronically low P conditions (HLII-P). Environmental correlation analysis revealed different factors were driving gene abundances verses phylogenetic differences. An analysis of cultured HLII genomes and metagenomically assembled genomes revealed a subclade within HLII, which corresponded to the novel HLII-P haplotype. This work represents the first global assessment of the HLII ecotype’s phylogeography and corresponding functional differences. These findings together expand our understanding of how microdiversity structures functional differences and reveals the importance of nutrients as drivers of microdiversity in Prochlorococcus .
Collapse
|
24
|
Pu J, Li Z, Tang H, Zhou G, Wei C, Dong W, Jin Z, He T. Response of soil microbial communities and rice yield to nitrogen reduction with green manure application in karst paddy areas. Front Microbiol 2023; 13:1070876. [PMID: 36699610 PMCID: PMC9869043 DOI: 10.3389/fmicb.2022.1070876] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Fertilizer application practices are one of the major challenges facing agroecology. The agrobenefits of combined application of green manure and chemical fertilizers, and the potential of green manure to replace chemical fertilizers are now well documented. However, little is known about the impact of fertilization practices on microbial communities and tice yield. In this study, the diversity of bacterial and fungal communities, symbiotic networks and their relationship with soil function were analyzed in five fertilization treatments (N: 100% nitrogen fertilizer alone; M: green manure alone; MN60: green manure couple with 60% nitrogen fertilizer, MN80: green manure couple with 80% nitrogen fertilizer; and MN100: green manure couple with 100% nitrogen fertilizer). First, early rice yield was significantly higher by 12.6% in MN100 treatment in 2021 compared with N. Secondly, soil bacterial diversity showed an increasing trend with increasing N fertilizer application after green manure input, however, the opposite was true for fungal diversity. Microbial interaction analysis showed that different fertilizer applications changed soil microbial network complexity and fertilizer-induced changes in soil microbial interactions were closely related to soil environmental changes. Random forest models further predicted the importance of soil environment, microorganisms and rice yield. Overall, nitrogen fertilizer green manure altered rice yield due to its effects on soil environment and microbial communities. In the case of combined green manure and N fertilizer application, bacteria and fungi showed different responses to fertilization method, and the full amount of N fertilizer in combination with green manure reduced the complexity of soil microbial network. In contrast, for more ecologically sensitive karst areas, we recommend fertilization practices with reduced N by 20-40% for rice production. Graphical Abstract.
Collapse
Affiliation(s)
- Junyu Pu
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning, Guangxi, China,The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Zhongyi Li
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning, Guangxi, China,*Correspondence: Zhongyi Li, ✉
| | - Hongqin Tang
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning, Guangxi, China
| | - Guopeng Zhou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caihui Wei
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning, Guangxi, China
| | - Wenbin Dong
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning, Guangxi, China
| | - Zhenjiang Jin
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Tieguang He
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning, Guangxi, China,Tieguang He, ✉
| |
Collapse
|
25
|
Jia Y, Liu Y, Hu W, Cai W, Zheng Z, Luo C, Li D. Development of Candida autochthonous starter for cigar fermentation via dissecting the microbiome. Front Microbiol 2023; 14:1138877. [PMID: 36910204 PMCID: PMC9998997 DOI: 10.3389/fmicb.2023.1138877] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction The main goal of tobacco fermentation technology is to minimize the alkaloid content while improving flavor substance content. Methods This study revealed the microbial community structure and their metabolic functions during cigar leaf fermentation by high-throughput sequencing and correlation analysis, and evaluated the fermentation performance of functional microbes based on in vitro isolation and bioaugmentation fermentation. Results The relative abundance of Staphylococcus and Aspergillus increased first but then decreased during the fermentation, and would occupy the dominant position of bacterial and fungal communities, respectively, on the 21st day. Correlation analysis predicted that Aspergillus, Staphylococcus and Filobasidium could contribute to the formation of saccharide compounds, Bacillus might have degradation effects on nitrogenous substances. In particular, Candida, as a co-occurring taxa and biomarker in the later stage of fermentation, could not only degrade nitrogenous substrates and synthesize flavor substances, but also contribute to maintaining the stability of microbial community. Moreover, based on in vitro isolation and bioaugmentation inoculation, it was found that Candida parapsilosis and Candida metapsilosis could significantly reduce the alkaloids content and increase the content of flavor components in tobacco leaves. Discussion This study found and validated the critical role of Candida in the fermentation of cigar tobacco leaves through high-throughput sequencing and bioaugmentation inoculation, which would help guide the development of microbial starters and directional regulation of cigar tobacco quality.
Collapse
Affiliation(s)
- Yun Jia
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanrong Hu
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| | - Wen Cai
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| | - Zhaojun Zheng
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cheng Luo
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| | - Dongliang Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| |
Collapse
|
26
|
Identification and validation of core microbes associated with key aroma formation in fermented pepper paste (Capsicum annuumL.). Food Res Int 2023; 163:112194. [PMID: 36596132 DOI: 10.1016/j.foodres.2022.112194] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Fermented peppers are usually obtained by the spontaneous fermentation of microorganisms attached to fresh peppers, and the variable microbial composition would lead to inconsistencies in flavor between batches. To demonstrate the roles of microorganisms in flavor formation, the core microbes closely associated with the key aroma compounds of fermented pepper paste were screened and validated in this study. Lactobacillus was the dominant bacterial genus in fermented pepper paste, whereas the main fungal genera were Alternaria and Kazachstania. Nine strains of the genera Lactobacillus, Weissella, Bacillus, Zygosaccharomyces, Kazachstania, Debaryomyces, and Pichia were isolated from fermented pepper paste. Eleven key aroma compounds were identified using gas chromatography combined with olfactometry and relative odor activity values. Correlation analysis showed that Zygosaccharomyces and Kazachstania were positively correlated with the majority of the key aroma compounds, whereas Lactobacillus was negatively correlated with them. Thus, Zygosaccharomyces and Kazachstania were identified as core genera associated with the key odorants. Finally, Zygosaccharomyces bisporus, Kazachstania humilis, and Lactiplantibacillus plantarum were used as starter cultures for fermented peppers, confirming that Z. bisporus and K. humilis were more beneficial for the key aroma compounds (e.g., acetate, linalool, and phenyl ethanol) rather than L. plantarum. This study contributed to understanding the flavor formation mechanism and provided references for the quality control of food fermentation.
Collapse
|
27
|
Lee RM, Griffin N, Jones E, Abbott BW, Frei RJ, Bratsman S, Proteau M, Errigo IM, Shogren A, Bowden WB, Zarnetske JP, Aanderud ZT. Bacterioplankton dispersal and biogeochemical function across Alaskan Arctic catchments. Environ Microbiol 2022; 24:5690-5706. [PMID: 36273269 DOI: 10.1111/1462-2920.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/21/2022] [Indexed: 01/12/2023]
Abstract
In Arctic catchments, bacterioplankton are dispersed through soils and streams, both of which freeze and thaw/flow in phase, seasonally. To characterize this dispersal and its potential impact on biogeochemistry, we collected bacterioplankton and measured stream physicochemistry during snowmelt and after vegetation senescence across multiple stream orders in alpine, tundra, and tundra-dominated-by-lakes catchments. In all catchments, differences in community composition were associated with seasonal thaw, then attachment status (i.e. free floating or sediment associated), and then stream order. Bacterioplankton taxonomic diversity and richness were elevated in sediment-associated fractions and in higher-order reaches during snowmelt. Families Chthonomonadaceae, Pyrinomonadaceae, and Xiphinematobacteraceae were abundantly different across seasons, while Flavobacteriaceae and Microscillaceae were abundantly different between free-floating and sediment-associated fractions. Physicochemical data suggested there was high iron (Fe+ ) production (alpine catchment); Fe+ production and chloride (Cl- ) removal (tundra catchment); and phosphorus (SRP) removal and ammonium (NH4 + ) production (lake catchment). In tundra landscapes, these 'hot spots' of Fe+ production and Cl- removal accompanied shifts in species richness, while SRP promoted the antecedent community. Our findings suggest that freshet increases bacterial dispersal from headwater catchments to receiving catchments, where bacterioplankton-mineral relations stabilized communities in free-flowing reaches, but bacterioplankton-nutrient relations stabilized those punctuated by lakes.
Collapse
Affiliation(s)
- Raymond M Lee
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| | - Natasha Griffin
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvalis, Oregon, USA
| | - Erin Jones
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| | - Benjamin W Abbott
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| | - Rebecca J Frei
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Samuel Bratsman
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| | - Mary Proteau
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| | - Isabella M Errigo
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| | - Arial Shogren
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - William B Bowden
- The Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, USA
| | - Jay P Zarnetske
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Zachary T Aanderud
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
28
|
Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms. Nat Commun 2022; 13:4260. [PMID: 35871070 PMCID: PMC9308766 DOI: 10.1038/s41467-022-31936-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
Biodiversity is crucial for the provision of ecosystem functions. However, ecosystems are now exposed to a rapidly growing number of anthropogenic pressures, and it remains unknown whether biodiversity can still promote ecosystem functions under multifaceted pressures. Here we investigated the effects of soil microbial diversity on soil functions and properties when faced with an increasing number of simultaneous global change factors in experimental microcosms. Higher soil microbial diversity had a positive effect on soil functions and properties when no or few (i.e., 1–4) global change factors were applied, but this positive effect was eliminated by the co-occurrence of numerous global change factors. This was attributable to the reduction of soil fungal abundance and the relative abundance of an ecological cluster of coexisting soil bacterial and fungal taxa. Our study indicates that reducing the number of anthropogenic pressures should be a goal in ecosystem management, in addition to biodiversity conservation. It is unclear whether the positive effects of biodiversity on ecosystem functioning are maintained under multifaceted anthropogenic disturbance. In this experiment, the authors show that multiple simultaneous stressors can negate the positive effect of microbial diversity on soil functions.
Collapse
|
29
|
Corander J, Hanage WP, Pensar J. Causal discovery for the microbiome. THE LANCET. MICROBE 2022; 3:e881-e887. [PMID: 36152674 PMCID: PMC9680137 DOI: 10.1016/s2666-5247(22)00186-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/17/2022] [Accepted: 06/09/2022] [Indexed: 01/14/2023]
Abstract
Measurement and manipulation of the microbiome is generally considered to have great potential for understanding the causes of complex diseases in humans, developing new therapies, and finding preventive measures. Many studies have found significant associations between the microbiome and various diseases; however, Koch's classical postulates remind us about the importance of causative reasoning when considering the relationship between microbes and a disease manifestation. Although causal discovery in observational microbiome data faces many challenges, methodological advances in causal structure learning have improved the potential of data-driven prediction of causal effects in large-scale biological systems. In this Personal View, we show the capability of existing methods for inferring causal effects from metagenomic data, and we highlight ways in which the introduction of causal structures that are more flexible than existing structures offers new opportunities for causal reasoning. Our observations suggest that microbiome research can further benefit from tools developed in the past 5 years in causal discovery and learn from their applications elsewhere.
Collapse
Affiliation(s)
- Jukka Corander
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Parasites and Microbes, The Wellcome Sanger Institute, Cambridge, UK; Helsinki Institute for Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
| | - William P Hanage
- Center for Communicable Disease Dynamics, Harvard T.H Chan School of Public Health, Boston, MA, USA.
| | - Johan Pensar
- Department of Mathematics, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Short-Term Vegetation Restoration Enhances the Complexity of Soil Fungal Network and Decreased the Complexity of Bacterial Network. J Fungi (Basel) 2022; 8:jof8111122. [PMID: 36354889 PMCID: PMC9695196 DOI: 10.3390/jof8111122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Different vegetation restoration methods may affect the soil’s physicochemical properties and microbial communities. However, it is not known how the microbial network’s complexity of the bacterial and fungal communities respond to short-term vegetation restoration. We conducted a short-term ecological restoration experiment to reveal the response of the soil’s microbial community and microbial network’s stability to initial vegetation restoration during the restoration of the degraded grassland ecosystem. The two restoration methods (sowing alfalfa (Medicago sativa, AF) and smooth brome (Bromus inermis, SB)) had no significant effect on the alpha diversity of the fungal community, but the SB significantly increased the alpha diversity of the soil surface bacterial community (p < 0.01). The results of NMDS showed that the soil’s fungal and bacterial communities were altered by a short-term vegetation restoration, and they showed that the available phosphorus (AP), available potassium (AK), and nitrate nitrogen (nitrate-N) were closely related to changes in bacterial and fungal communities. Moreover, a short-term vegetation restoration significantly increased the complexity and stability of fungi ecological networks, but the opposite was the case with the bacteria. Our findings confirm that ecological restoration by sowing may be favorable to the amelioration of soil fungi complexity and stability in the short-term. Such findings may have important implications for soil microbial processes in vegetation recovery.
Collapse
|
31
|
Ernakovich JG, Barbato RA, Rich VI, Schädel C, Hewitt RE, Doherty SJ, Whalen E, Abbott BW, Barta J, Biasi C, Chabot CL, Hultman J, Knoblauch C, Vetter M, Leewis M, Liebner S, Mackelprang R, Onstott TC, Richter A, Schütte U, Siljanen HMP, Taş N, Timling I, Vishnivetskaya TA, Waldrop MP, Winkel M. Microbiome assembly in thawing permafrost and its feedbacks to climate. GLOBAL CHANGE BIOLOGY 2022; 28:5007-5026. [PMID: 35722720 PMCID: PMC9541943 DOI: 10.1111/gcb.16231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/24/2022] [Indexed: 05/15/2023]
Abstract
The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost-climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post-thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose that Assembly Theory provides a framework to better understand thaw-mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well-suited to thrive in changing environmental conditions. We predict that on a short timescale and following high-disturbance thaw (e.g., thermokarst), stochasticity dominates post-thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower-intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post-thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change.
Collapse
Affiliation(s)
- Jessica G. Ernakovich
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew HampshireUSA
- Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute
| | - Robyn A. Barbato
- U.S. Army Cold Regions Research and Engineering LaboratoryHanoverNew HampshireUSA
| | - Virginia I. Rich
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute
- Microbiology DepartmentOhio State UniversityColumbusOhioUSA
- Byrd Polar and Climate Research CenterOhio State UniversityColombusOhioUSA
- Center of Microbiome ScienceOhio State UniversityColombusOhioUSA
| | - Christina Schädel
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Rebecca E. Hewitt
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffArizonaUSA
- Department of Environmental StudiesAmherst CollegeAmherstMassachusettsUSA
| | - Stacey J. Doherty
- Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
- U.S. Army Cold Regions Research and Engineering LaboratoryHanoverNew HampshireUSA
| | - Emily D. Whalen
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew HampshireUSA
| | - Benjamin W. Abbott
- Department of Plant and Wildlife SciencesBrigham Young UniversityProvoUtahUSA
| | - Jiri Barta
- Centre for Polar EcologyUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Christina Biasi
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Chris L. Chabot
- California State University NorthridgeNorthridgeCaliforniaUSA
| | | | - Christian Knoblauch
- Institute of Soil ScienceUniversität HamburgHamburgGermany
- Center for Earth System Research and SustainabilityUniversität HamburgHamburgGermany
| | - Maggie C. Y. Lau Vetter
- Department of GeosciencesPrinceton UniversityPrincetonNew JerseyUSA
- Laboratory of Extraterrestrial Ocean Systems (LEOS)Institute of Deep‐sea Science and EngineeringChinese Academy of SciencesSanyaChina
| | - Mary‐Cathrine Leewis
- U.S. Geological Survey, GeologyMinerals, Energy and Geophysics Science CenterMenlo ParkCaliforniaUSA
- Agriculture and Agri‐Food CanadaQuebec Research and Development CentreQuebecQuebecCanada
| | - Susanne Liebner
- GFZ German Research Centre for GeosciencesSection GeomicrobiologyPotsdamGermany
| | | | | | - Andreas Richter
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
- Austrian Polar Research InstituteViennaAustria
| | | | - Henri M. P. Siljanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Neslihan Taş
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | | | - Tatiana A. Vishnivetskaya
- University of TennesseeKnoxvilleTennesseeUSA
- Institute of Physicochemical and Biological Problems of Soil SciencePushchinoRussia
| | - Mark P. Waldrop
- U.S. Geological Survey, GeologyMinerals, Energy and Geophysics Science CenterMenlo ParkCaliforniaUSA
| | - Matthias Winkel
- GFZ German Research Centre for GeosciencesInterface GeochemistryPotsdamGermany
- BfR Federal Institute for Risk AssessmentBerlinGermany
| |
Collapse
|
32
|
Marín C, Rubio J, Godoy R. Chilean blind spots in soil biodiversity and ecosystem function research. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- César Marín
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC) Universidad Santo Tomás Av. Ramón Picarte 1130 5090000 Valdivia Chile
| | - Javiera Rubio
- Escuela de Geografía, Facultad de Ciencias Universidad Austral de Chile Valdivia Chile
| | - Roberto Godoy
- Instituto Ciencias Ambientales y Evolutivas, Facultad de Ciencias Universidad Austral de Chile Valdivia Chile
| |
Collapse
|
33
|
Pilgrim EM, Smucker NJ, Wu H, Martinson J, Nietch CT, Molina M, Darling JA, Johnson BR. Developing Indicators of Nutrient Pollution in Streams Using 16S rRNA Gene Metabarcoding of Periphyton-Associated Bacteria. WATER 2022; 14:1-24. [PMID: 36213613 PMCID: PMC9534034 DOI: 10.3390/w14152361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Indicators based on nutrient-biota relationships in streams can inform water quality restoration and protection programs. Bacterial assemblages could be particularly useful indicators of nutrient effects because they are species-rich, important contributors to ecosystem processes in streams, and responsive to rapidly changing conditions. Here, we sampled 25 streams weekly (12-14 times each) and used 16S rRNA gene metabarcoding of periphyton-associated bacteria to quantify the effects of total phosphorus (TP) and total nitrogen (TN). Threshold indicator taxa analysis identified assemblage-level changes and amplicon sequence variants (ASVs) that increased or decreased with increasing TP and TN concentrations (i.e., low P, high P, low N, and high N ASVs). Boosted regression trees confirmed that relative abundances of gene sequence reads for these four indicator groups were associated with nutrient concentrations. Gradient forest analysis complemented these results by using multiple predictors and random forest models for each ASV to identify portions of TP and TN gradients at which the greatest changes in assemblage structure occurred. Synthesized statistical results showed bacterial assemblage structure began changing at 24 μg TP/L with the greatest changes occurring from 110 to 195 μg/L. Changes in the bacterial assemblages associated with TN gradually occurred from 275 to 855 μg/L. Taxonomic and phylogenetic analyses showed that low nutrient ASVs were commonly Firmicutes, Verrucomicrobiota, Flavobacteriales, and Caulobacterales, Pseudomonadales, and Rhodobacterales of Proteobacteria, whereas other groups, such as Chitinophagales of Bacteroidota, and Burkholderiales, Rhizobiales, Sphingomonadales, and Steroidobacterales of Proteobacteria comprised the high nutrient ASVs. Overall, the responses of bacterial ASV indicators in this study highlight the utility of metabarcoding periphyton-associated bacteria for quantifying biotic responses to nutrient inputs in streams.
Collapse
Affiliation(s)
- Erik M. Pilgrim
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Nathan J. Smucker
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Huiyun Wu
- School of Public Health & Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - John Martinson
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Christopher T. Nietch
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Marirosa Molina
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - John A. Darling
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Brent R. Johnson
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| |
Collapse
|
34
|
Smucker NJ, Pilgrim EM, Wu H, Nietch CT, Darling JA, Molina M, Johnson BR, Yuan LL. Characterizing temporal variability in streams supports nutrient indicator development using diatom and bacterial DNA metabarcoding. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154960. [PMID: 35378187 PMCID: PMC9169572 DOI: 10.1016/j.scitotenv.2022.154960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 05/26/2023]
Abstract
Interest in developing periphytic diatom and bacterial indicators of nutrient effects continues to grow in support of the assessment and management of stream ecosystems and their watersheds. However, temporal variability could confound relationships between indicators and nutrients, subsequently affecting assessment outcomes. To document how temporal variability affects measures of diatom and bacterial assemblages obtained from DNA metabarcoding, we conducted weekly periphyton and nutrient sampling from July to October 2016 in 25 streams in a 1293 km2 mixed land use watershed. Measures of both diatom and bacterial assemblages were strongly associated with the percent agriculture in upstream watersheds and total phosphorus (TP) and total nitrogen (TN) concentrations. Temporal variability in TP and TN concentrations increased with greater amounts of agriculture in watersheds, but overall diatom and bacterial assemblage variability within sites-measured as mean distance among samples to corresponding site centroids in ordination space-remained consistent. This consistency was due in part to offsets between decreasing variability in relative abundances of taxa typical of low nutrient conditions and increasing variability in those typical of high nutrient conditions as mean concentrations of TP and TN increased within sites. Weekly low and high nutrient diatom and bacterial metrics were more strongly correlated with site mean nutrient concentrations over the sampling period than with same day measurements and more strongly correlated with TP than with TN. Correlations with TP concentrations were consistently strong throughout the study except briefly following two major precipitation events. Following these events, biotic relationships with TP reestablished within one to three weeks. Collectively, these results can strengthen interpretations of survey results and inform monitoring strategies and decision making. These findings have direct applications for improving the use of diatoms and bacteria, and the use of DNA metabarcoding, in monitoring programs and stream site assessments.
Collapse
Affiliation(s)
- Nathan J Smucker
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA.
| | - Erik M Pilgrim
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Huiyun Wu
- Oak Ridge Institute for Science and Education, P.O. Box 117, Oak Ridge, Tennessee 37831 USA c/o United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Christopher T Nietch
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - John A Darling
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Marirosa Molina
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Brent R Johnson
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Lester L Yuan
- United States Environmental Protection Agency, Office of Water, Washington, DC 20460, USA
| |
Collapse
|
35
|
Microbial Remediation: A Promising Tool for Reclamation of Contaminated Sites with Special Emphasis on Heavy Metal and Pesticide Pollution: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10071358] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Heavy metal and pesticide pollution have become an inevitable part of the modern industrialized environment that find their way into all ecosystems. Because of their persistent nature, recalcitrance, high toxicity and biological enrichment, metal and pesticide pollution has threatened the stability of the environment as well as the health of living beings. Due to the environmental persistence of heavy metals and pesticides, they get accumulated in the environs and consequently lead to food chain contamination. Therefore, remediation of heavy metals and pesticide contaminations needs to be addressed as a high priority. Various physico-chemical approaches have been employed for this purpose, but they have significant drawbacks such as high expenses, high labor, alteration in soil properties, disruption of native soil microflora and generation of toxic by-products. Researchers worldwide are focusing on bioremediation strategies to overcome this multifaceted problem, i.e., the removal, immobilization and detoxification of pesticides and heavy metals, in the most efficient and cost-effective ways. For a period of millions of evolutionary years, microorganisms have become resistant to intoxicants and have developed the capability to remediate heavy metal ions and pesticides, and as a result, they have helped in the restoration of the natural state of degraded environs with long term environmental benefits. Keeping in view the environmental and health concerns imposed by heavy metals and pesticides in our society, we aimed to present a generalized picture of the bioremediation capacity of microorganisms. We explore the use of bacteria, fungi, algae and genetically engineered microbes for the remediation of both metals and pesticides. This review summarizes the major detoxification pathways and bioremediation technologies; in addition to that, a brief account is given of molecular approaches such as systemic biology, gene editing and omics that have enhanced the bioremediation process and widened its microbiological techniques toward the remediation of heavy metals and pesticides.
Collapse
|
36
|
Bulk and Spatially Resolved Extracellular Metabolome of Free-Living Nitrogen Fixation. Appl Environ Microbiol 2022; 88:e0050522. [PMID: 35652664 PMCID: PMC9238392 DOI: 10.1128/aem.00505-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Soil nitrogen (N) transformations constrain terrestrial net primary productivity and are driven by the activity of soil microorganisms. Free-living N fixation (FLNF) is an important soil N transformation and key N input to terrestrial systems, but the forms of N contributed to soil by FLNF are poorly understood. To address this knowledge gap, a focus on microorganisms and microbial scale processes is needed that links N-fixing bacteria and their contributed N sources to FLNF process rates. However, studying the activity of soil microorganisms in situ poses inherent challenges, including differences in sampling scale between microorganism and process rates, which can be addressed with culture-based studies and an emphasis on microbial-scale measurements. Culture conditions can differ significantly from soil conditions, so it also important that such studies include multiple culture conditions like liquid and solid media as proxies for soil environments like soil pore water and soil aggregate surfaces. Here we characterized extracellular N-containing metabolites produced by two common, diazotrophic soil bacteria in liquid and solid media, with or without N, across two sampling scales (bulk via GC-MS and spatially resolved via MALDI mass spec imaging). We found extracellular production of inorganic and organic N during FLNF, indicating terrestrial N contributions from FLNF occur in multiple forms not only as ammonium as previously thought. Extracellular metabolite profiles differed between liquid and solid media supporting previous work indicating environmental structure influences microbial function. Metabolite profiles also differed between sampling scales underscoring the need to quantify microbial scale conditions to accurately interpret microbial function. IMPORTANCE Free-living nitrogen-fixing bacteria contribute significantly to terrestrial nitrogen availability; however, the forms of nitrogen contributed by this process are poorly understood. This is in part because of inherent challenges to studying soil microorganisms in situ, such as vast differences in scale between microorganism and ecosystem and complexities of the soil system (e.g., opacity, chemical complexity). Thus, upscaling important ecosystem processes driven by soil microorganisms, like free-living nitrogen fixation, requires microbial-scale measurements in controlled systems. Our work generated bulk and spatially resolved measurements of nitrogen released during free-living nitrogen fixation under two contrasting growth conditions analogous to soil pores and aggregates. This work allowed us to determine that diverse forms of nitrogen are likely contributed to terrestrial systems by free-living nitrogen bacteria. We also demonstrated that microbial habitat (e.g., liquid versus solid media) alters microbial activity and that measurement of microbial activity is altered by sampling scale (e.g., bulk versus spatially resolved) highlighting the critical importance of quantifying microbial-scale processes to upscaling of ecosystem function.
Collapse
|
37
|
Bertolet BL, Louden SI, Jones SE. Microbial community composition, and not
pH
, influences lake sediment function. Ecosphere 2022. [DOI: 10.1002/ecs2.4091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Brittni L. Bertolet
- Department of Biological Sciences University of Notre Dame Notre Dame Indiana USA
| | - Sydney I. Louden
- Department of Biological Sciences University of Notre Dame Notre Dame Indiana USA
| | - Stuart E. Jones
- Department of Biological Sciences University of Notre Dame Notre Dame Indiana USA
| |
Collapse
|
38
|
Chen H, Ma K, Lu C, Fu Q, Qiu Y, Zhao J, Huang Y, Yang Y, Schadt CW, Chen H. Functional Redundancy in Soil Microbial Community Based on Metagenomics Across the Globe. Front Microbiol 2022; 13:878978. [PMID: 35586865 PMCID: PMC9108720 DOI: 10.3389/fmicb.2022.878978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/13/2022] [Indexed: 12/30/2022] Open
Abstract
Understanding the contribution of soil microbial communities to ecosystem processes is critical for predicting terrestrial ecosystem feedbacks under changing climate. Our current understanding lacks a consistent strategy to formulate the linkage between microbial systems and ecosystem processes due to the presumption of functional redundancy in soil microbes. Here we present a global soil microbial metagenomic analysis to generalize patterns of microbial taxonomic compositions and functional potentials across climate and geochemical gradient. Our analyses show that soil microbial taxonomic composition varies widely in response to climate and soil physicochemical gradients, while microbial functional attributes based on metagenomic gene abundances are redundant. Among 17 climate zones, microbial taxonomic compositions were more distinct than functional potentials, as climate and edaphic properties showed more significant influence on microbial taxonomic compositions than on functional potentials. Microbial taxonomies formed a larger and more complex co-occurrence network with more module structures than functional potentials. Functional network was strongly inter-connected among different categories, whereas taxonomic network was more positively interactive in the same taxonomic groups. This study provides strong evidence to support the hypothesis of functional redundancy in soil microbes, as microbial taxonomic compositions vary to a larger extent than functional potentials based on metagenomic gene abundances in terrestrial ecosystems across the globe.
Collapse
Affiliation(s)
- Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Kayan Ma
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Caiyan Lu
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Key Lab of Conservation Tillage and Ecological Agriculture, Shenyang, China
| | - Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yingbo Qiu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yu Huang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | | | - Hao Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
39
|
Anthony MA, Crowther TW, van der Linde S, Suz LM, Bidartondo MI, Cox F, Schaub M, Rautio P, Ferretti M, Vesterdal L, De Vos B, Dettwiler M, Eickenscheidt N, Schmitz A, Meesenburg H, Andreae H, Jacob F, Dietrich HP, Waldner P, Gessler A, Frey B, Schramm O, van den Bulk P, Hensen A, Averill C. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. THE ISME JOURNAL 2022; 16:1327-1336. [PMID: 35001085 PMCID: PMC9038731 DOI: 10.1038/s41396-021-01159-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 11/08/2022]
Abstract
Most trees form symbioses with ectomycorrhizal fungi (EMF) which influence access to growth-limiting soil resources. Mesocosm experiments repeatedly show that EMF species differentially affect plant development, yet whether these effects ripple up to influence the growth of entire forests remains unknown. Here we tested the effects of EMF composition and functional genes relative to variation in well-known drivers of tree growth by combining paired molecular EMF surveys with high-resolution forest inventory data across 15 European countries. We show that EMF composition was linked to a three-fold difference in tree growth rate even when controlling for the primary abiotic drivers of tree growth. Fast tree growth was associated with EMF communities harboring high inorganic but low organic nitrogen acquisition gene proportions and EMF which form contact versus medium-distance fringe exploration types. These findings suggest that EMF composition is a strong bio-indicator of underlying drivers of tree growth and/or that variation of forest EMF communities causes differences in tree growth. While it may be too early to assign causality or directionality, our study is one of the first to link fine-scale variation within a key component of the forest microbiome to ecosystem functioning at a continental scale.
Collapse
Affiliation(s)
- Mark A Anthony
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Thomas W Crowther
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Sietse van der Linde
- Netherlands Food and Consumer Product Safety Authority, National Reference Centre, Wageningen, The Netherlands
| | | | - Martin I Bidartondo
- Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, Ascot, SL5 7PY, UK
| | - Filipa Cox
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pasi Rautio
- Natural Resources Institute Finland, Rovaniemi, Finland
| | - Marco Ferretti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Lars Vesterdal
- Department of Geosciences and Natural Resource Management, University of Copenhagen, DK-1958, Frederiksberg C, Denmark
| | - Bruno De Vos
- Environment & Climate Unit, Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Mike Dettwiler
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Nadine Eickenscheidt
- State Agency for Nature, Environment and Consumer Protection of North Rhine-Westphalia, 45657, Recklinghausen, Germany
| | - Andreas Schmitz
- State Agency for Nature, Environment and Consumer Protection of North Rhine-Westphalia, 45657, Recklinghausen, Germany
- Thuenen Institut of Forest Ecosystems, 16225, Eberswalde, Germany
| | | | | | - Frank Jacob
- Sachsenforst State Forest, 01796, Pirna OT Graupa, Germany
| | | | - Peter Waldner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Oliver Schramm
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pim van den Bulk
- The Netherlands Organization for Applied Scientific Research at Petten, 1755LE, Petten, The Netherlands
| | - Arjan Hensen
- The Netherlands Organization for Applied Scientific Research at Petten, 1755LE, Petten, The Netherlands
| | - Colin Averill
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
40
|
Smercina D, Zambare N, Hofmockel K, Sadler N, Bredeweg EL, Nicora C, Markillie LM, Aufrecht J. Synthetic Soil Aggregates: Bioprinted Habitats for High-Throughput Microbial Metaphenomics. Microorganisms 2022; 10:microorganisms10050944. [PMID: 35630387 PMCID: PMC9146112 DOI: 10.3390/microorganisms10050944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
The dynamics of microbial processes are difficult to study in natural soil, owing to the small spatial scales on which microorganisms operate and to the opacity and chemical complexity of the soil habitat. To circumvent these challenges, we have created a 3D-bioprinted habitat that mimics aspects of natural soil aggregates while providing a chemically defined and translucent alternative culturing method for soil microorganisms. Our Synthetic Soil Aggregates (SSAs) retain the porosity, permeability, and patchy resource distribution of natural soil aggregates—parameters that are expected to influence emergent microbial community interactions. We demonstrate the printability and viability of several different microorganisms within SSAs and show how the SSAs can be integrated into a multi-omics workflow for single SSA resolution genomics, metabolomics, proteomics, lipidomics, and biogeochemical assays. We study the impact of the structured habitat on the distribution of a model co-culture microbial community and find that it is significantly different from the spatial organization of the same community in liquid culture, indicating a potential for SSAs to reproduce naturally occurring emergent community phenotypes. The SSAs have the potential as a tool to help researchers quantify microbial scale processes in situ and achieve high-resolution data from the interplay between environmental properties and microbial ecology.
Collapse
|
41
|
Ahmad S, Ahmad HW, Bhatt P. Microbial adaptation and impact into the pesticide's degradation. Arch Microbiol 2022; 204:288. [PMID: 35482163 DOI: 10.1007/s00203-022-02899-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
The imprudent use of agrochemicals to control agriculture and household pests is unsafe for the environment. Hence, to protect the environment and diversity of living organisms, the degradation of pesticides has received widespread attention. There are different physical, chemical, and biological methods used to remediate pesticides in contaminated sites. Compared to other methods, biological approaches and their associated techniques are more effective, less expensive and eco-friendly. Microbes secrete several enzymes that can attach pesticides, break down organic compounds, and then convert toxic substances into carbon and water. Thus, there is a lack of knowledge regarding the functional genes and genomic potential of microbial species for the removal of emerging pollutants. Here we address the knowledge gaps by highlighting systematic biology and their role in adaptation of microbial species from agricultural soils with a history of pesticide usage and profiling shifts in functional genes and microbial taxa abundance. Moreover, by co-metabolism, the microbial species fulfill their nutritional requirements and perform more efficiently than single microbial-free cells. But in an open environment, free cells of microbes are not much prominent in the degradation process due to environmental conditions, incompatibilities with mechanical equipment and difficulties associated with evenly distributing inoculum through the agroecosystem. This review highlights emerging techniques involving the removal of pesticides in a field-scale environment like immobilization, biobed, biocomposites, biochar, biofilms, and bioreactors. In these techniques, different microbial cells, enzymes, natural fibers, and strains are used for the effective biodegradation of xenobiotic pesticides.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Hafiz Waqas Ahmad
- Department of Food Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Pankaj Bhatt
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
42
|
Zhong Y, Liu J, Jia X, Tang Z, Shangguan Z, Wang R, Yan W. Environmental stress-discriminatory taxa are associated with high C and N cycling functional potentials in dryland grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152991. [PMID: 35026259 DOI: 10.1016/j.scitotenv.2022.152991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/03/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Increasing environmental stress strongly affects soil microbial communities, but the responses of the microbial assembly and the functional potential of the dominant microbial community in the presence of environmental stress in drylands are still poorly understood. Here, we undertook a broad appraisal of the abundance, diversity, similarity, community assembly, network properties and functions of soil microbiomes in 82 dryland grasslands along environmental gradients. We found that the bacterial and fungal diversity and community similarity showed different sensitivities to environmental stress (decreased mean annual precipitation (MAP) and soil nutrient levels and increased soil pH), and MAP was the most important factor influencing microbial community patterns. In addition, the dominant subcommunity of both bacteria and fungi was more sensitive to environmental stress than the nondominant subcommunity. Although increasing environmental stress decreased microbial phylogenetic clustering, it had no effects on the stochastic and deterministic assembly process balance. Moreover, we identified 101 bacterial and 34 fungal environmental stress-discriminatory taxa that were sensitive to environmental stress, and these bacterial markers showed a high correlation with the abundance of carbon (C) and nitrogen (N) cycling-related genes, whereas the taxa classified as connectors in the network were mainly correlated with C degradation genes. Our study shows that the different responses of bacteria and fungi to environmental stress bring challenges to predicting microbial function, but a relatively small number of taxa play an important role in driving C and N cycling-related functional genes, indicating that identifying an organism's phenotypic characteristics or traits of key taxa may improve our knowledge of the microbial response to ongoing global changes.
Collapse
Affiliation(s)
- Yangquanwei Zhong
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Jin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoyu Jia
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhuangsheng Tang
- College of Grassland Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Lanzhou 730070, PR China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling, Shaanxi 712100, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ruiwu Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Weiming Yan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling, Shaanxi 712100, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
43
|
Rocca JD, Yammine A, Simonin M, Gibert JP. Protist Predation Influences the Temperature Response of Bacterial Communities. Front Microbiol 2022; 13:847964. [PMID: 35464948 PMCID: PMC9022080 DOI: 10.3389/fmicb.2022.847964] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 01/04/2023] Open
Abstract
Temperature strongly influences microbial community structure and function, in turn contributing to global carbon cycling that can fuel further warming. Recent studies suggest that biotic interactions among microbes may play an important role in determining the temperature responses of these communities. However, how predation regulates these microbiomes under future climates is still poorly understood. Here, we assess whether predation by a key global bacterial consumer-protists-influences the temperature response of the community structure and function of a freshwater microbiome. To do so, we exposed microbial communities to two cosmopolitan protist species-Tetrahymena thermophila and Colpidium sp.-at two different temperatures, in a month-long microcosm experiment. While microbial biomass and respiration increased with temperature due to community shifts, these responses changed over time and in the presence of protists. Protists influenced microbial biomass and respiration rate through direct and indirect effects on bacterial community structure, and predator presence actually reduced microbial respiration at elevated temperature. Indicator species analyses showed that these predator effects were mostly determined by phylum-specific bacterial responses to protist density and cell size. Our study supports previous findings that temperature is an important driver of microbial communities but also demonstrates that the presence of a large predator can mediate these responses to warming.
Collapse
Affiliation(s)
- Jennifer D. Rocca
- Department of Biology, Duke University, Durham, NC, United States
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Andrea Yammine
- Department of Biology, Duke University, Durham, NC, United States
| | - Marie Simonin
- Department of Biology, Duke University, Durham, NC, United States
- University of Angers, Institut Agro, Institut National de la Recherche Agronomique, L’Institut de Recherche en Horticulture et Semences, Structure Fédérative de Recherche Qualité et Santé du Végétal, Angers, France
| | - Jean P. Gibert
- Department of Biology, Duke University, Durham, NC, United States
| |
Collapse
|
44
|
Bernier LS, Junier P, Stan GB, Stanley CE. Spores-on-a-chip: new frontiers for spore research. Trends Microbiol 2022; 30:515-518. [PMID: 35346553 DOI: 10.1016/j.tim.2022.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022]
Abstract
In recent years, microfluidic technologies have become widespread in biological science. However, the suitability of this technique for understanding different aspects of spore research has hardly been considered. Herein, we review recent developments in 'spores-on-a-chip' technologies, highlighting how they could be exploited to drive new frontiers in spore research.
Collapse
Affiliation(s)
- Léa S Bernier
- Department of Bioengineering, Imperial College, South Kensington, London SW7 2AZ, UK
| | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Guy-Bart Stan
- Department of Bioengineering, Imperial College, South Kensington, London SW7 2AZ, UK
| | - Claire E Stanley
- Department of Bioengineering, Imperial College, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|
45
|
Nugent A, Allison SD. A framework for soil microbial ecology in urban ecosystems. Ecosphere 2022. [DOI: 10.1002/ecs2.3968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Andie Nugent
- Department of Ecology and Evolutionary Biology University of California–Irvine Irvine California USA
| | - Steven D. Allison
- Department of Ecology and Evolutionary Biology University of California–Irvine Irvine California USA
- Department of Earth System Science University of California–Irvine Irvine California USA
| |
Collapse
|
46
|
Coban O, De Deyn GB, van der Ploeg M. Soil microbiota as game-changers in restoration of degraded lands. Science 2022; 375:abe0725. [PMID: 35239372 DOI: 10.1126/science.abe0725] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Land degradation reduces soil functioning and, consequently, the services that soil provides. Soil hydrological functions are critical to combat soil degradation and promote soil restoration. Soil microorganisms affect soil hydrology, but the role of soil microbiota in forming and sustaining soil is not well explored. Case studies indicate the potential of soil microorganisms as game-changers in restoring soil functions. We review the state of the art of microorganism use in land restoration technology, the groups of microorganisms with the greatest potential for soil restoration, knowledge of the effect of microorganisms on soil physical properties, and proposed strategies for the long-term restoration of degraded lands. We also emphasize the need to advance the emerging research field of biophysical landscape interactions to support soil-plant ecosystem restoration practices.
Collapse
Affiliation(s)
- Oksana Coban
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Gerlinde B De Deyn
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Martine van der Ploeg
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
47
|
Akbar S, Gu L, Sun Y, Zhang L, Lyu K, Huang Y, Yang Z. Understanding host-microbiome-environment interactions: Insights from Daphnia as a model organism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152093. [PMID: 34863741 DOI: 10.1016/j.scitotenv.2021.152093] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/21/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Microbes perform a variety of vital functions that are essential for healthy ecosystems, ranging from nutrient recycling, antibiotic production and waste decomposition. In many animals, microbes become an integral part by establishing diverse communities collectively termed as "microbiome/s". Microbiomes defend their hosts against pathogens and provide essential nutrients necessary for their growth and reproduction. The microbiome is a polygenic trait that is dependent on host genotype and environmental variables. However, the alteration of microbiomes by stressful condition and their recovery is still poorly understood. Despite rapid growth in host-associated microbiome studies, very little is known about how they can shape ecological processes. Here, we review current knowledge on the microbiome of Daphnia, its role in fitness, alteration by different stressors, and the ecological and evolutionary aspects of host microbiome interactions. We further discuss how variation in Daphnia physiology, life history traits, and microbiome interactive responses to biotic and abiotic factors could impact patterns of microbial diversity in the total environment, which drives ecosystem function in many freshwater environments. Our literature review provides evidence that microbiome is essential for Daphnia growth, reproduction and tolerance against stressors. Though the core and flexible microbiome of Daphnia is still debatable, it is clear that the Daphnia microbiome is highly dependent on interactions among host genotype, diet and the environment. Different environmental factors alter the microbiome composition and diversity of Daphnia and reduce their fitness. These interactions could have important implications in shaping microbial patterns and their recycling as Daphnia are keystone species in freshwater ecosystem. This review provides a framework for studying these complex relationships to gain a better understanding of the ecological and evolutionary roles of the microbiome.
Collapse
Affiliation(s)
- Siddiq Akbar
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
48
|
Moossavi S, Arrieta MC, Sanati-Nezhad A, Bishehsari F. Gut-on-chip for ecological and causal human gut microbiome research. Trends Microbiol 2022; 30:710-721. [DOI: 10.1016/j.tim.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
|
49
|
Ran W, Lian J, Zhang J. Evaluation and modeling of fungi towards wood degradation. Bioengineered 2022; 13:3284-3299. [PMID: 35100087 PMCID: PMC8974183 DOI: 10.1080/21655979.2022.2025699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fungi play a significant role in wood fiber degradation since they possess enzymatic tools for the degradation of recalcitrant plant polymers. The study aims to demonstrate the interactive fungal traits when they grow together and its development with total dead wood fiber degradation speed. A lab experiment was designed to describe decomposition rates and fungal properties using nonlinear fitting model and logistic equation from preliminary data sets. The degradation speed of five (A, B, C, D, and E) different types of fungi with different growth rates were calculated at various relative humidity’s (35, 50, 65, 80, and 95 g.kg−). Results showed that the mycelium length of fungus A, has faster ideal growth rate than that of fungus B, with ecological niche width A < B. Besides this the growth rate of fungus 1 was vg1 = 0.12 and the environmental-holding capacity k1 = 3000; vg2 = 0.15 and k2 = 2000 for fungus 2. Comparing the results of fiber decomposition with a single fungus, we were able to find that the overall efficiency of the two-fungal system decomposition model was higher in a defined environment. Besides this the successfully simulated the competitive relationship between different species of fungi and the effect of different environments on the decomposition rate of fungi, with a good fit and in accordance with the biological laws. Our model is well generalizable and can be extended to multiple environmental variables (light, temperature, and heat) with good accuracy.
Collapse
Affiliation(s)
- Weichen Ran
- Department of International, Beijing University of Posts and Telecommunications, Beijing, China
| | - Junhong Lian
- Department of International, Beijing University of Posts and Telecommunications, Beijing, China
| | - Jiaqi Zhang
- Department of International, Beijing University of Posts and Telecommunications, Beijing, China
| |
Collapse
|
50
|
Zafeiropoulos H, Paragkamian S, Ninidakis S, Pavlopoulos GA, Jensen LJ, Pafilis E. PREGO: A Literature and Data-Mining Resource to Associate Microorganisms, Biological Processes, and Environment Types. Microorganisms 2022; 10:microorganisms10020293. [PMID: 35208748 PMCID: PMC8879827 DOI: 10.3390/microorganisms10020293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
To elucidate ecosystem functioning, it is fundamental to recognize what processes occur in which environments (where) and which microorganisms carry them out (who). Here, we present PREGO, a one-stop-shop knowledge base providing such associations. PREGO combines text mining and data integration techniques to mine such what-where-who associations from data and metadata scattered in the scientific literature and in public omics repositories. Microorganisms, biological processes, and environment types are identified and mapped to ontology terms from established community resources. Analyses of comentions in text and co-occurrences in metagenomics data/metadata are performed to extract associations and a level of confidence is assigned to each of them thanks to a scoring scheme. The PREGO knowledge base contains associations for 364,508 microbial taxa, 1090 environmental types, 15,091 biological processes, and 7971 molecular functions with a total of almost 58 million associations. These associations are available through a web portal, an Application Programming Interface (API), and bulk download. By exploring environments and/or processes associated with each other or with microbes, PREGO aims to assist researchers in design and interpretation of experiments and their results. To demonstrate PREGO’s capabilities, a thorough presentation of its web interface is given along with a meta-analysis of experimental results from a lagoon-sediment study of sulfur-cycle related microbes.
Collapse
Affiliation(s)
- Haris Zafeiropoulos
- Department of Biology, University of Crete, Voutes University Campus, P.O. Box 2208, 70013 Heraklion, Crete, Greece; (H.Z.); (S.P.)
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Former U.S. Base of Gournes, P.O. Box 2214, 71003 Heraklion, Crete, Greece;
| | - Savvas Paragkamian
- Department of Biology, University of Crete, Voutes University Campus, P.O. Box 2208, 70013 Heraklion, Crete, Greece; (H.Z.); (S.P.)
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Former U.S. Base of Gournes, P.O. Box 2214, 71003 Heraklion, Crete, Greece;
| | - Stelios Ninidakis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Former U.S. Base of Gournes, P.O. Box 2214, 71003 Heraklion, Crete, Greece;
| | - Georgios A. Pavlopoulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece;
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Evangelos Pafilis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Former U.S. Base of Gournes, P.O. Box 2214, 71003 Heraklion, Crete, Greece;
- Correspondence: or ; Tel.: +30-2810-337748
| |
Collapse
|