1
|
Shen C, Pandey A, Enosi Tuipulotu D, Mathur A, Liu L, Yang H, Adikari NK, Ngo C, Jing W, Feng S, Hao Y, Zhao A, Kirkby M, Kurera M, Zhang J, Venkataraman S, Liu C, Song R, Wong JJL, Schumann U, Natoli R, Wen J, Zhang L, Kaakoush NO, Man SM. Inflammasome protein scaffolds the DNA damage complex during tumor development. Nat Immunol 2024; 25:2085-2096. [PMID: 39402152 DOI: 10.1038/s41590-024-01988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/13/2024] [Indexed: 10/30/2024]
Abstract
Inflammasome sensors activate cellular signaling machineries to drive inflammation and cell death processes. Inflammasomes also control the development of certain diseases independently of canonical functions. Here, we show that the inflammasome protein NLR family CARD domain-containing protein 4 (NLRC4) attenuated the development of tumors in the Apcmin/+ mouse model. This response was independent of inflammasome signaling by NLRP3, NLRP6, NLR family apoptosis inhibitory proteins, absent in melanoma 2, apoptosis-associated speck-like protein containing a caspase recruitment domain, caspase-1 and caspase-11. NLRC4 interacted with the DNA-damage-sensing ataxia telangiectasia and Rad3-related (ATR)-ATR-interacting protein (ATRIP)-Ewing tumor-associated antigen 1 (ETAA1) complex to promote the recruitment of the checkpoint adapter protein claspin, licensing the activation of the kinase checkpoint kinase-1 (CHK1). Genotoxicity-induced activation of the NLRC4-ATR-ATRIP-ETAA1 complex drove the tumor-suppressing DNA damage response and CHK1 activation, and further attenuated the accumulation of DNA damage. These findings demonstrate a noninflammatory function of an inflammasome protein in promoting the DNA damage response and mediating protection against cancer.
Collapse
Affiliation(s)
- Cheng Shen
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Abhimanu Pandey
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Anukriti Mathur
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lixinyu Liu
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, Canberra, Australian Capital Territory, Australia
| | - Haoyu Yang
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, Canberra, Australian Capital Territory, Australia
| | - Nilanthi K Adikari
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Chinh Ngo
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Weidong Jing
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Shouya Feng
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yuwei Hao
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Anyang Zhao
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Max Kirkby
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Melan Kurera
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jing Zhang
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Shweta Venkataraman
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Cheng Liu
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Medicine, University of Queensland, Herston, Queensland, Australia
- Mater Pathology, Mater Hospital, South Brisbane, Queensland, Australia
| | - Renhua Song
- Epigenetics and RNA Biology Laboratory, The School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Justin J-L Wong
- Epigenetics and RNA Biology Laboratory, The School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Ulrike Schumann
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- The Shine Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- The Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- The Shine Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- School of Medicine and Psychology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jiayu Wen
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, Canberra, Australian Capital Territory, Australia
| | - Liman Zhang
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Nadeem O Kaakoush
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
2
|
Chen P, Ning X, Feng W, Li Y, Chen G, Shi X, Pan Y, Shi X, Xiao Y, Liu Y, Zhang G, Zhou F, Ou C. Chronic Exposure to Bioaerosols in PM2.5 from Garbage Stations Accelerates Vascular Aging via the NF-κB/NLRP3 Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404142. [PMID: 39435761 DOI: 10.1002/advs.202404142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/25/2024] [Indexed: 10/23/2024]
Abstract
The fine particulate matter (PM2.5) in air pollution is a critical risk factor influencing human health. Our study included 8144 participants and showed that the risk of major adverse cardiovascular events increases by 35% (HR, 1.35; 95% CI, 1.14-1.60) for participants with the highest quartile to PM2.5 exposure as compared to those with lowest quartile. Bioaerosols, as an important environmental exposure in PM2.5, can induce systemic chronic inflammation leading to vascular aging. Thus, the effects of bioaerosols are investigated from household garbage stations in PM2.5 on vascular aging, and the underlying mechanisms are explored. In vivo, chronic exposure to bioaerosols upregulated senescence marker expression levels while causing vascular dysfunction and remodeling. In vitro, bioaerosol exposure induced decreased proliferation, G0/G1 arrest, and impaired migration of human umbilical vein endothelial cells (HUVECs). Furthermore, a single bacterium (AS22a) from the bioaerosol community was isolated and demonstrated that it upregulated inflammatory factors and accelerated cell senescence and vascular aging by activating the NF-κB/NLRP3 signaling pathway, which may serve as a primary mechanism underlying vascular aging induced by bioaerosols in PM2.5. These findings suggest that high levels of bioaerosols in household garbage stations may adversely affect cardiovascular health.
Collapse
Affiliation(s)
- Peier Chen
- The Tenth Affiliated Hospital (Dongguan People's Hospital), The First School of Clinical Medicine, Southern Medical University, Dongguan, 523059, China
| | - Xiaodong Ning
- The Tenth Affiliated Hospital (Dongguan People's Hospital), The First School of Clinical Medicine, Southern Medical University, Dongguan, 523059, China
| | - Weijing Feng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yajing Li
- The Tenth Affiliated Hospital (Dongguan People's Hospital), The First School of Clinical Medicine, Southern Medical University, Dongguan, 523059, China
| | - Guoqin Chen
- Department of Cardiology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, China
| | - Xu Shi
- The Tenth Affiliated Hospital (Dongguan People's Hospital), The First School of Clinical Medicine, Southern Medical University, Dongguan, 523059, China
| | - YuXuan Pan
- The Tenth Affiliated Hospital (Dongguan People's Hospital), The First School of Clinical Medicine, Southern Medical University, Dongguan, 523059, China
| | - Xueqin Shi
- The Tenth Affiliated Hospital (Dongguan People's Hospital), The First School of Clinical Medicine, Southern Medical University, Dongguan, 523059, China
| | - Yafang Xiao
- The Tenth Affiliated Hospital (Dongguan People's Hospital), The First School of Clinical Medicine, Southern Medical University, Dongguan, 523059, China
| | - Yuhua Liu
- Department of General Practice, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| | - Guoxia Zhang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Feiran Zhou
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Caiwen Ou
- The Tenth Affiliated Hospital (Dongguan People's Hospital), The First School of Clinical Medicine, Southern Medical University, Dongguan, 523059, China
| |
Collapse
|
3
|
Shan Q, Wang X, Yang H, Zhu Y, Wang J, Yang G. Bacillus cereus CwpFM induces colonic tissue damage and inflammatory responses through oxidative stress and the NLRP3/NF-κB pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173079. [PMID: 38735331 DOI: 10.1016/j.scitotenv.2024.173079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/30/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Bacillus cereus (B. cereus) from cow milk poses a threat to public health, causing food poisoning and gastrointestinal disorders in humans. We identified CwpFM, an enterotoxin from B. cereus, caused oxidative stress and inflammatory responses in mouse colon and colonic epithelial cells. Colon proteomics revealed that CwpFM elevated proteins associated with inflammation and oxidative stress. Notably, CwpFM induced activation of the NLRP3/NF-κB signaling, but suppressed antioxidant NFE2L2/HO-1 expression in the intestine and epithelial cells. Consistently, CwpFM exposure led to cytotoxicity and ROS accumulation in Caco-2 cells in a dose-dependent manner. Further, NAC (ROS inhibitor) treatment abolished NLRP3/NF-κB activation due to CwpFM. Moreover, overexpression of Nfe2l2 or activation of NFE2L2 by NK-252 reduced ROS production and inhibited activation of the NLRP3/NF-κB pathway. Inhibition of NF-κB by ADPC and/or suppression of NLRP3 by MCC950 attenuated CwpFM-induced inflammatory responses in Caco-2 cells. Collectively, CwpFM induced oxidative stress and NLRP3/NF-κB activation by inhibiting the NFE2L2/HO-1 signaling and ROS accumulation, leading to the development of intestinal inflammation. Our data elucidate the role of oxidative stress and innate immunity in CwpFM enterotoxicity and contribute to developing diagnostic and therapeutic products for B. cereus-related food safety issues.
Collapse
Affiliation(s)
- Qiang Shan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Xue Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Hao Yang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Yaohong Zhu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Jiufeng Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China.
| | - Guiyan Yang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Alipour S, Mardi A, Shajari N, Kazemi T, Sadeghi MR, Ahmadian Heris J, Masoumi J, Baradaran B. Unmasking the NLRP3 inflammasome in dendritic cells as a potential therapeutic target for autoimmunity, cancer, and infectious conditions. Life Sci 2024; 348:122686. [PMID: 38710282 DOI: 10.1016/j.lfs.2024.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Proper and functional immune response requires a complex interaction between innate and adaptive immune cells, which dendritic cells (DCs) are the primary actors in this coordination as professional antigen-presenting cells. DCs are armed with numerous pattern recognition receptors (PRRs) such as nucleotide-binding and oligomerization domain-like receptors (NLRs) like NLRP3, which influence the development of their activation state upon sensation of ligands. NLRP3 is a crucial component of the immune system for protection against tumors and infectious agents, because its activation leads to the assembly of inflammasomes that cause the formation of active caspase-1 and stimulate the maturation and release of proinflammatory cytokines. But, when NLRP3 becomes overactivated, it plays a pathogenic role in the progression of several autoimmune disorders. So, NLRP3 activation is strictly regulated by diverse signaling pathways that are mentioned in detail in this review. Furthermore, the role of NLRP3 in all of the diverse immune cells' subsets is briefly mentioned in this study because NLRP3 plays a pivotal role in modulating other immune cells which are accompanied by DCs' responses and subsequently influence differentiation of T cells to diverse T helper subsets and even impact on cytotoxic CD8+ T cells' responses. This review sheds light on the functional and therapeutic role of NLRP3 in DCs and its contribution to the occurrence and progression of autoimmune disorders, prevention of diverse tumors' development, and recognition and annihilation of various infectious agents. Furthermore, we highlight NLRP3 targeting potential for improving DC-based immunotherapeutic approaches, to be used for the benefit of patients suffering from these disorders.
Collapse
Affiliation(s)
- Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Shan Q, Ma W, Li B, Li Q, Wang X, Li Y, Wang J, Zhu Y, Liu N. Revealing the Mechanism of NLRP3 Inflammatory Pathway Activation through K + Efflux Induced by PLO via Signal Point Mutations. Int J Mol Sci 2024; 25:6703. [PMID: 38928408 PMCID: PMC11203744 DOI: 10.3390/ijms25126703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Trueperella pyogenes is an important opportunistic pathogenic bacterium widely distributed in the environment. Pyolysin (PLO) is a primary virulence factor of T. pyogenes and capable of lysing many different cells. PLO is a member of the cholesterol-dependent cytolysin (CDC) family of which the primary structure only presents a low level of homology with other members from 31% to 45%. By deeply studying PLO, we can understand the overall pathogenic mechanism of CDC family proteins. This study established a mouse muscle tissue model infected with recombinant PLO (rPLO) and its single-point mutations, rPLO N139K and rPLO F240A, and explored its mechanism of causing inflammatory damage. The inflammatory injury abilities of rPLO N139K and rPLO F240A are significantly reduced compared to rPLO. This study elaborated on the inflammatory mechanism of PLO by examining its unit point mutations in detail. Our data also provide a theoretical basis and practical significance for future research on toxins and bacteria.
Collapse
Affiliation(s)
- Qiang Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Q.S.); (W.M.); (B.L.); (Q.L.); (Y.L.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100093, China; (X.W.); (J.W.); (Y.Z.)
| | - Wenbo Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Q.S.); (W.M.); (B.L.); (Q.L.); (Y.L.)
| | - Bolin Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Q.S.); (W.M.); (B.L.); (Q.L.); (Y.L.)
| | - Qian Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Q.S.); (W.M.); (B.L.); (Q.L.); (Y.L.)
| | - Xue Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100093, China; (X.W.); (J.W.); (Y.Z.)
| | - Yanan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Q.S.); (W.M.); (B.L.); (Q.L.); (Y.L.)
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100093, China; (X.W.); (J.W.); (Y.Z.)
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing 100093, China; (X.W.); (J.W.); (Y.Z.)
| | - Ning Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Q.S.); (W.M.); (B.L.); (Q.L.); (Y.L.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100093, China; (X.W.); (J.W.); (Y.Z.)
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Li PR, Wang ZX, Xu ZK, Wang J, Li B, Shen X, Xu ZL. An RPA-Assisted CRISPR/Cas12a Assay Combining Fluorescence and Lateral Flow Strips for the Rapid Detection of Enterotoxigenic Bacillus cereus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38857358 DOI: 10.1021/acs.jafc.4c03601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Bacillus cereus (B. cereus) is a foodborne pathogen that can produce tripartite enterotoxins, which can cause a variety of diseases after infection. It is critical to rapidly and accurately detect strains with enteropathogenic potential to safeguard human health. In this study, a dual-signal visualized detection platform with fluorescence assay and paper-based lateral flow assay (LFA) based on recombinase polymerase amplification (RPA), CRISPR/Cas12a system, and self-developed CRISPR nucleic acid test strips was constructed for enterotoxigenic B. cereus. The genes that encode two tripartite enterotoxins─nheA, nheB, and nheC for nonhemolytic enterotoxin and hblA, hblC, and hblD for hemolysin BL─were utilized as detection targets. The platform was capable of detecting six enterotoxin genes at the same genomic DNA level. The limits of detection for each gene were 10-3 ng/μL in fluorescence assay and 10-4 ng/μL in LFA. Furthermore, 101-102 CFU/mL of B. cereus in pure culture was detected. Additionally, a smartphone miniprogram could assist in evaluating the results in LFA. The platform demonstrated good utility by detecting B. cereus in food samples, including milk and rice. The results indicate that our RPA-CRISPR/Cas12a dual-signal visualized detection platform can quickly and easily detect B. cereus with three-component enterotoxin-producing potentials. The whole analytic process took less than 60 min without complex operation or expensive equipment.
Collapse
Affiliation(s)
- Peng-Ru Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Xuan Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Ze-Ke Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bin Li
- Guangzhou Wanlian Biotechnology Co., Ltd., Guangzhou 510670, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Wang Y, Luo J, Zhao Y, Zhang J, Guan X, Sun L. Haemolysins are essential to the pathogenicity of deep-sea Vibrio fluvialis. iScience 2024; 27:109558. [PMID: 38650982 PMCID: PMC11033176 DOI: 10.1016/j.isci.2024.109558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/19/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Vibrio fluvialis is an emerging foodborne pathogen that produces VFH (Vibrio fluvialis hemolysin) and δVFH (delta-Vibrio fluvialis hemolysin). The function of δVFH is unclear. Currently, no pathogenic V. fluvialis from deep sea has been reported. In this work, a deep-sea V. fluvialis isolate (V13) was examined for pathogenicity. V13 was most closely related to V. fluvialis ATCC 33809, a human isolate, but possessed 262 unique genes. V13 caused lethal infection in fish and induced pyroptosis involving activation of the NLRP3 inflammasome, caspase 1 (Casp1), and gasdermin D (GSDMD). V13 defective in VFH or VFH plus δVFH exhibited significantly weakened cytotoxicity. Recombinant δVFH induced NLRP3-Casp1-GSDMD-mediated pyroptosis in a manner that depended on K+ efflux and intracellular Ca2+ accumulation. δVFH bound several plasma membrane lipids, and these bindings were crucial for δVFH cytotoxicity. Together these results provided new insights into the function of δVFH and the virulence mechanism of V. fluvialis.
Collapse
Affiliation(s)
- Yujian Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jingchang Luo
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhao
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai 264005, China
| | - Xiaolu Guan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Jastrab JB, Kagan JC. Strategies of bacterial detection by inflammasomes. Cell Chem Biol 2024; 31:835-850. [PMID: 38636521 PMCID: PMC11103797 DOI: 10.1016/j.chembiol.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Mammalian innate immunity is regulated by pattern-recognition receptors (PRRs) and guard proteins, which use distinct strategies to detect infections. PRRs detect bacterial molecules directly, whereas guards detect host cell manipulations by microbial virulence factors. Despite sensing infection through different mechanisms, both classes of innate immune sensors can activate the inflammasome, an immune complex that can mediate cell death and inflammation. Inflammasome-mediated immune responses are crucial for host defense against many bacterial pathogens and prevent invasion by non-pathogenic organisms. In this review, we discuss the mechanisms by which inflammasomes are stimulated by PRRs and guards during bacterial infection, and the strategies used by virulent bacteria to evade inflammasome-mediated immunity.
Collapse
Affiliation(s)
- Jordan B Jastrab
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Zhu C, Xu S, Jiang R, Yu Y, Bian J, Zou Z. The gasdermin family: emerging therapeutic targets in diseases. Signal Transduct Target Ther 2024; 9:87. [PMID: 38584157 PMCID: PMC10999458 DOI: 10.1038/s41392-024-01801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.
Collapse
Affiliation(s)
- Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Ruoyu Jiang
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
10
|
Chen H, Ye L, Wang Y, Chen J, Wang J, Li X, Lei H, Liu Y. Aflatoxin B 1 exposure causes splenic pyroptosis by disturbing the gut microbiota-immune axis. Food Funct 2024; 15:3615-3628. [PMID: 38470843 DOI: 10.1039/d3fo04717b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Aflatoxin B1 (AFB1) causes serious immunotoxicity and has attracted considerable attention owing to its high sensitivity and common chemical-viral interactions in living organisms. However, the sensitivity of different species to AFB1 widely varies, which cannot be explained by the different metabolism in species. The gut microbiota plays a crucial role in the immune system, but the interaction of the microbiota with AFB1-induced immunotoxicity still needs to be determined. Our results indicated that AFB1 exposure disrupted the structure of the gut microbiota and damaged the gut barrier, which caused translocation of microbiota metabolites, lipopolysaccharides, to the spleen. Subsequently, pyroptosis of the spleen was activated. Interestingly, AFB1 exposure had little effect on the splenic pyroptosis of pseudo-germfree mice (antibiotic mixtures eliminated their gut microbiota, ABX). Then, fecal microbiota transplant (FMT) and sterile fecal filtrate (SFF) were employed to validate the function of the gut microbiota and its metabolites in AFB1-induced splenic pyroptosis. The AFB1-disrupted microbiota and its metabolites significantly promoted splenic pyroptosis, which was worse than that in control mice. Overall, AFB1-induced splenic pyroptosis is associated with the gut microbiota and its metabolites, which was further demonstrated by FMT and SFF. The mechanism of AFB1-induced splenic pyroptosis was explored for the first time, which paves a new way for preventing and treating the immunotoxicity from mycotoxins by regulating the gut microbiota.
Collapse
Affiliation(s)
- Huodai Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Lin Ye
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Yurun Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Jiahong Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Xueling Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, 517000, China
| | - Yunle Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, 517000, China
| |
Collapse
|
11
|
Wang Y, Luo J, Guan X, Zhao Y, Sun L. Bacillus cereus cereolysin O induces pyroptosis in an undecapeptide-dependent manner. Cell Death Discov 2024; 10:122. [PMID: 38458999 PMCID: PMC10923922 DOI: 10.1038/s41420-024-01887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024] Open
Abstract
Bacillus cereus is a clinically significant foodborne pathogen that causes severe gastrointestinal and non-gastrointestinal disease. Cereolysin O (CLO) is a putative virulence factor of B. cereus, and its function remains to be investigated. In this study, we examined the biological activity of CLO from a deep sea B. cereus isolate. CLO was highly toxic to mammalian cells and triggered pyroptosis through NLRP3 inflammasome-mediated caspase 1 and gasdermin D activation. CLO-induced cell death involved ROS accumulation and K+ efflux, and was blocked by serum lipids. CLO bound specifically to cholesterol, and this binding was essential to CLO cytotoxicity. The structural integrity of the three tryptophan residues in the C-terminal undecapeptide was vital for CLO to interact with membrane lipids and cause membrane perforation. Taken together, these results provided new insights into the molecular mechanism of B. cereus CLO-mediated cytotoxicity.
Collapse
Affiliation(s)
- Yujian Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jingchang Luo
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China
| | - Xiaolu Guan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China
| | - Yan Zhao
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China.
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
12
|
McMahon E, El-Sayed S, Green J, Hoyle C, FitzPatrick L, Jones EV, Corrie E, Kelly RL, Challinor M, Freeman S, Bryce RA, Lawrence CB, Brough D, Kasher PR. Brazilin is a natural product inhibitor of the NLRP3 inflammasome. iScience 2024; 27:108968. [PMID: 38327788 PMCID: PMC10847679 DOI: 10.1016/j.isci.2024.108968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Excessive or aberrant NLRP3 inflammasome activation has been implicated in the progression and initiation of many inflammatory conditions; however, currently no NLRP3 inflammasome inhibitors have been approved for therapeutic use in the clinic. Here we have identified that the natural product brazilin effectively inhibits both priming and activation of the NLRP3 inflammasome in cultured murine macrophages, a human iPSC microglial cell line and in a mouse model of acute peritoneal inflammation. Through computational modeling, we predict that brazilin can adopt a favorable binding pose within a site of the NLRP3 protein which is essential for its conformational activation. Our results not only encourage further evaluation of brazilin as a therapeutic agent for NLRP3-related inflammatory diseases, but also introduce this small-molecule as a promising scaffold structure for the development of derivative NLRP3 inhibitor compounds.
Collapse
Affiliation(s)
- Emily McMahon
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and the University of Manchester, Manchester M6 8HD, UK
| | - Sherihan El-Sayed
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road M13 9PT, UK
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Jack Green
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and the University of Manchester, Manchester M6 8HD, UK
| | - Christopher Hoyle
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and the University of Manchester, Manchester M6 8HD, UK
| | - Lorna FitzPatrick
- Medicines Discovery Catapult, Alderley Park, Macclesfield SK10 4ZF, UK
| | - Emma V. Jones
- Medicines Discovery Catapult, Alderley Park, Macclesfield SK10 4ZF, UK
| | - Eve Corrie
- Medicines Discovery Catapult, Alderley Park, Macclesfield SK10 4ZF, UK
| | - Rebecca L. Kelly
- Medicines Discovery Catapult, Alderley Park, Macclesfield SK10 4ZF, UK
| | - Mairi Challinor
- Medicines Discovery Catapult, Alderley Park, Macclesfield SK10 4ZF, UK
| | - Sally Freeman
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road M13 9PT, UK
| | - Richard A. Bryce
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road M13 9PT, UK
| | - Catherine B. Lawrence
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and the University of Manchester, Manchester M6 8HD, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and the University of Manchester, Manchester M6 8HD, UK
| | - Paul R. Kasher
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and the University of Manchester, Manchester M6 8HD, UK
| |
Collapse
|
13
|
Singh S, Sharma S, Sharma H. Potential Impact of Bioactive Compounds as NLRP3 Inflammasome Inhibitors: An Update. Curr Pharm Biotechnol 2024; 25:1719-1746. [PMID: 38173061 DOI: 10.2174/0113892010276859231125165251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024]
Abstract
The inflammasome NLRP3 comprises a caspase recruitment domain, a pyrin domain containing receptor 3, an apoptosis-linked protein like a speck containing a procaspase-1, and an attached nucleotide domain leucine abundant repeat. There are a wide variety of stimuli that can activate the inflammasome NLRP3. When activated, the protein NLRP3 appoints the adapter protein ASC. Adapter ASC protein then recruits the procaspase-1 protein, which causes the procaspase- 1 protein to be cleaved and activated, which induces cytokines. At the same time, abnormal activation of inflammasome NLRP3 is associated with many diseases, such as diabetes, atherosclerosis, metabolic syndrome, cardiovascular and neurodegenerative diseases. As a result, a significant amount of effort has been put into comprehending the mechanisms behind its activation and looking for their specific inhibitors. In this review, we primarily focused on phytochemicals that inhibit the inflammasome NLRP3, as well as discuss the defects caused by NLRP3 signaling. We conducted an in-depth research review by searching for relevant articles in the Scopus, Google Scholar, and PubMed databases. By gathering information on phytochemical inhibitors that block NLRP3 inflammasome activation, a complicated balance between inflammasome activation or inhibition with NLRP3 as a key role was revealed in NLRP3-driven clinical situations.
Collapse
Affiliation(s)
- Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Shiwangi Sharma
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University, Uttar Pradesh-281406, India
| |
Collapse
|
14
|
Zhang Z, Zhang Y, Zhang M, Yu C, Yang P, Xu M, Ling J, Wu Y, Zhu Z, Chen Y, Shi A, Liu X, Zhang J, Yu P, Zhang D. Food-derived peptides as novel therapeutic strategies for NLRP3 inflammasome-related diseases: a systematic review. Crit Rev Food Sci Nutr 2023:1-32. [PMID: 38153262 DOI: 10.1080/10408398.2023.2294164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), a member of the nucleotide-binding domain (NOD) and leucine-rich repeat sequence (LRR) protein (NLR) family, plays an essential role in the inflammation initiation and inflammatory mediator secretion, and thus is also associated with many disease progressions. Food-derived bioactive peptides (FDBP) exhibit excellent anti-inflammatory activity in both in vivo and in vitro models. They are encrypted in plant, meat, and milk proteins and can be released under enzymatic hydrolysis or fermentation conditions, thereby hindering the progression of hyperuricemia, inflammatory bowel disease, chronic liver disease, neurological disorders, lung injury and periodontitis by inactivating the NLRP3. However, there is a lack of systematic review around FDBP, NLRP3, and NLRP3-related diseases. Therefore, this review summarized FDBP that exert inhibiting effects on NLRP3 inflammasome from different protein sources and detailed their preparation and purification methods. Additionally, this paper also compiled the possible inhibitory mechanisms of FDBP on NLRP3 inflammasomes and its regulatory role in NLRP3 inflammasome-related diseases. Finally, the progress of cutting-edge technologies, including nanoparticle, computer-aided screening strategy and recombinant DNA technology, in the acquisition or encapsulation of NLRP3 inhibitory FDBP was discussed. This review provides a scientific basis for understanding the anti-inflammatory mechanism of FDBP through the regulation of the NLRP3 inflammasome and also provides guidance for the development of therapeutic adjuvants or functional foods enriched with these FDBP.
Collapse
Affiliation(s)
- Ziqi Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan Zhang
- School of Public Health, Nanchang University, Jiangxi, China
| | - Meiying Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Chenfeng Yu
- Huankui College, Nanchang University, Jiangxi, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ao Shi
- School of Medicine, St. George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Deju Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
15
|
Krantz M, Eklund D, Särndahl E, Hedbrant A. A detailed molecular network map and model of the NLRP3 inflammasome. Front Immunol 2023; 14:1233680. [PMID: 38077364 PMCID: PMC10699087 DOI: 10.3389/fimmu.2023.1233680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
The NLRP3 inflammasome is a key regulator of inflammation that responds to a broad range of stimuli. The exact mechanism of activation has not been determined, but there is a consensus on cellular potassium efflux as a major common denominator. Once NLRP3 is activated, it forms high-order complexes together with NEK7 that trigger aggregation of ASC into specks. Typically, there is only one speck per cell, consistent with the proposal that specks form - or end up at - the centrosome. ASC polymerisation in turn triggers caspase-1 activation, leading to maturation and release of IL-1β and pyroptosis, i.e., highly inflammatory cell death. Several gain-of-function mutations in the NLRP3 inflammasome have been suggested to induce spontaneous activation of NLRP3 and hence contribute to development and disease severity in numerous autoinflammatory and autoimmune diseases. Consequently, the NLRP3 inflammasome is of significant clinical interest, and recent attention has drastically improved our insight in the range of involved triggers and mechanisms of signal transduction. However, despite recent progress in knowledge, a clear and comprehensive overview of how these mechanisms interplay to shape the system level function is missing from the literature. Here, we provide such an overview as a resource to researchers working in or entering the field, as well as a computational model that allows for evaluating and explaining the function of the NLRP3 inflammasome system from the current molecular knowledge. We present a detailed reconstruction of the molecular network surrounding the NLRP3 inflammasome, which account for each specific reaction and the known regulatory constraints on each event as well as the mechanisms of drug action and impact of genetics when known. Furthermore, an executable model from this network reconstruction is generated with the aim to be used to explain NLRP3 activation from priming and activation to the maturation and release of IL-1β and IL-18. Finally, we test this detailed mechanistic model against data on the effect of different modes of inhibition of NLRP3 assembly. While the exact mechanisms of NLRP3 activation remains elusive, the literature indicates that the different stimuli converge on a single activation mechanism that is additionally controlled by distinct (positive or negative) priming and licensing events through covalent modifications of the NLRP3 molecule. Taken together, we present a compilation of the literature knowledge on the molecular mechanisms on NLRP3 activation, a detailed mechanistic model of NLRP3 activation, and explore the convergence of diverse NLRP3 activation stimuli into a single input mechanism.
Collapse
Affiliation(s)
- Marcus Krantz
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Daniel Eklund
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Alexander Hedbrant
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| |
Collapse
|
16
|
Jovanovic J, Rajkovic A. Bacillus cereus Sensu Lato Accelerate Cellular Bioenergetic Metabolism of Human Colorectal Adenocarcinoma Caco-2 Cell Line. Foodborne Pathog Dis 2023; 20:514-520. [PMID: 37831922 DOI: 10.1089/fpd.2023.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
How foodborne enterotoxigenic Bacillus cereus rewires energy metabolism during intestinal tract infection is still not understood. In this study, we used the Seahorse XFe technology to simultaneously analyze oxygen consumption and acidification rates to estimate bioenergetic changes in the intestinal Caco-2 cell line after exposure to the B. cereus sensu lato (s.l.) enterotoxin-producing pathotypes, American Type Culture Collection (ATCC) 14579 (836), NVH0391-98 (828), and NVH0075/95 (825). Infection of Caco-2 led to a more energetic phenotype due to increased flux through oxidative phosphorylation and glycolysis. Strain 836 caused the most pronounced effects toward the specific energy phenotype, followed by strains 828 and 825. However, the metabolic potential of Caco-2 cells was most strongly induced by the 828 strain. Furthermore, infected cells manifested an increased adenosine triphosphate (ATP) production rate. Strain 828 caused the highest glycolytic and mitochondrial ATP production rates, followed by the 836 and 825 B. cereus s.l. strains. The glycolytic stress assay showed that strains 828 and 826 slightly increased compensatory glycolysis, providing a better understanding of the pathogenicity of this versatile pathogen. The results of this study underline that extracellular flux measurement can be used to accurately estimate bioenergetic perturbations of Caco-2 cells as a consequence of infection. Our findings enhance our understanding of how intestinal cells adjust their metabolism during infection with B. cereus s.l.
Collapse
Affiliation(s)
- Jelena Jovanovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Peng T, Zhang C, Chen WJ, Zhao XF, Wu WB, Yang WJ, Liang RJ. Pyroptosis: the dawn of a new era in endometrial cancer treatment. Front Oncol 2023; 13:1277639. [PMID: 37965452 PMCID: PMC10642841 DOI: 10.3389/fonc.2023.1277639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Endometrial cancer (EC) is a malignancy of the inner epithelial lining of the uterus. While early-stage EC is often curable through surgery, the management of advanced, recurrent and metastatic EC poses significant challenges and is associated with a poor prognosis. Pyroptosis, an emerging form of programmed cell death, is characterized by the cleavage of gasdermin proteins, inducing the formation of extensive gasdermin pores in the cell membrane and the leakage of interleukin-1β (IL-1β) and interleukin-18 (IL-18), consequently causing cell swelling, lysis and death. It has been found to be implicated in the occurrence and progression of almost all tumors. Recent studies have demonstrated that regulating tumor cells pyroptosis can exploit synergies function with traditional tumor treatments. This paper provides an overview of the research progress made in molecular mechanisms of pyroptosis. It then discusses the role of pyroptosis and its components in initiation and progression of endometrial cancer, emphasizing recent insights into the underlying mechanisms and highlighting unresolved questions. Furthermore, it explores the potential value of pyroptosis in the treatment of endometrial cancer, considering its current application in tumor radiotherapy, chemotherapy, targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Tian Peng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wen-Jun Chen
- School of Nursing, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xue-Fei Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Bo Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Ji Yang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruo-Jia Liang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Hseu JH, Chan CI, Vadivalagan C, Chen SJ, Yen HR, Hseu YC, Yang HL, Wu PY. Tranexamic acid improves psoriasis-like skin inflammation: Evidence from in vivo and in vitro studies. Biomed Pharmacother 2023; 166:115307. [PMID: 37573659 DOI: 10.1016/j.biopha.2023.115307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
The chronic disease psoriasis is associated with severe inflammation and abnormal keratinocyte propagation in the skin. Tranexamic acid (TXA), a plasmin inhibitor, is used to cure serious bleeding. We investigated whether TXA ointment mitigated Imiquimod (IMQ)-induced psoriasis-like inflammation. Furthermore, this study investigated the effect of noncytotoxic concentrations of TXA on IL-17-induced human keratinocyte (HaCaT) cells to determine the status of proliferative psoriatic keratinocytes. We found that TXA reduced IMQ-induced psoriasis-like erythema, thickness, scaling, and cumulative scores (erythema plus thickness plus scaling) on the back skin of BALB/c mice. Additionally, TXA decreased ear thickness and suppressed hyperkeratosis, hyperplasia, and inflammation of the ear epidermis in IMQ-induced BALB/c mice. Furthermore, TXA inhibited IMQ-induced splenomegaly in BALB/c mouse models. In IL-17-induced HaCaT cells, TXA inhibited ROS production and IL-8 secretion. Interestingly, TXA suppressed the IL-17-induced NFκB signaling pathway via IKK-mediated IκB degradation. TXA inhibited IL-17-induced activation of the NLRP3 inflammasome through caspase-1 and IL1β expression. TXA inhibited IL-17-induced NLRP3 inflammasome activation by enhancing autophagy, as indicated by LC3-II accumulation, p62/SQSTM1 expression, ATG4B inhibition, and Beclin-1/Bcl-2 dysregulation. Notably, TXA suppressed IL-17-induced Nrf2-mediated keratin 17 expression. N-acetylcysteine pretreatment reversed the effects of TXA on NFκB, NLRP3 inflammasomes, and the Nrf2-mediated keratin 17 pathway in IL-17-induced HaCaT cells. Results further confirmed that in the ear skin of IMQ-induced mice, psoriasis biomarkers such as NLRP3, IL1β, Nrf2, and keratin 17 expression were downregulated by TXA treatment. TXA improves IMQ-induced psoriasis-like inflammation in vivo and psoriatic keratinocytes in vitro. Tranexamic acid is a promising future treatment for psoriasis.
Collapse
Affiliation(s)
- Jhih-Hsuan Hseu
- Department of Dermatology, China Medical University Hospital, Taichung 404327, Taiwan
| | - Chon-I Chan
- Institute of Nutrition, College of health Care, China Medical University, Taichung 406040, Taiwan
| | - Chithravel Vadivalagan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, United States
| | - Siang-Jyun Chen
- Institute of Nutrition, College of health Care, China Medical University, Taichung 406040, Taiwan
| | - Hung-Rong Yen
- Chinese Medicine Research Center, China Medical University, Taichung 404333, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 404333, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung 404333, Taiwan; School of Chinese Medicine, China Medical University, Taichung 404333, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 406040, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 404333, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 404333, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 413305, Taiwan.
| | - Hsin-Ling Yang
- Institute of Nutrition, College of health Care, China Medical University, Taichung 406040, Taiwan.
| | - Po-Yuan Wu
- Department of Dermatology, China Medical University Hospital, Taichung 404327, Taiwan; Department of Dermatology, School of Medicine, China Medical University, Taichung 404333, Taiwan.
| |
Collapse
|
19
|
Matsuda Y, Yamauchi H, Hara H. Activation of inflammasomes and mechanisms for intracellular recognition of Listeria monocytogenes. Microbiol Immunol 2023; 67:429-437. [PMID: 37461376 DOI: 10.1111/1348-0421.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 10/06/2023]
Abstract
The high mortality rate associated with Listeria monocytogenes can be attributed to its ability to invade the body systemically and to activate inflammasomes. Both of these processes are facilitated by expressing a major virulence factor known as listeriolysin O, a 56 kDa pore-forming protein encoded by the hly gene. Listeriolysin O plays a crucial role in the pathogenesis of the bacterium by facilitating the escape of the pathogen from the phagosome into the cytosol. This process is essential for the successful establishment of infection. In addition, listeriolysin O is known as an immunomodulator that activates host signal transduction. In addition to listeriolysin O, Listeria expresses a variety of bacterial ligands, such as lipoteichoic acid, nucleotide, and flagellin, that are recognized by host intracellular pattern-recognition receptors including Nod-like receptors, AIM2-like receptors, and RIG-I-like receptors. This review introduces intracellular recognition of Listeria monocytogenes since recent studies have revealed that the activation of inflammasome exacerbates Gram-positive bacteria infection.
Collapse
Affiliation(s)
- Yasuyuki Matsuda
- Department of Infectious Diseases, Division of Microbiology and Immunochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Hajime Yamauchi
- Department of Infectious Diseases, Division of Microbiology and Immunochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Hideki Hara
- Department of Infectious Diseases, Division of Microbiology and Immunochemistry, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
20
|
Sun S, Xu Z, Hu H, Zheng M, Zhang L, Xie W, Sun L, Liu P, Li T, Zhang L, Chen M, Zhu X, Liu M, Yang Y, Zhou J. The Bacillus cereus toxin alveolysin disrupts the intestinal epithelial barrier by inducing microtubule disorganization through CFAP100. Sci Signal 2023; 16:eade8111. [PMID: 37192300 DOI: 10.1126/scisignal.ade8111] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/18/2023] [Indexed: 05/18/2023]
Abstract
Bacillus cereus is a Gram-positive bacterium that mainly causes self-limiting emetic or diarrheal illness but can also cause skin infections and bacteremia. Symptoms of B. cereus ingestion depend on the production of various toxins that target the gastric and intestinal epithelia. From a screen of bacterial isolates from human stool samples that compromised intestinal barrier function in mice, we identified a strain of B. cereus that disrupted tight and adherens junctions in the intestinal epithelium. This activity was mediated by the pore-forming exotoxin alveolysin, which increased the production of the membrane-anchored protein CD59 and of cilia- and flagella-associated protein 100 (CFAP100) in intestinal epithelial cells. In vitro, CFAP100 interacted with microtubules and promoted microtubule polymerization. CFAP100 overexpression stabilized microtubules in intestinal epithelial cells, leading to disorganization of the microtubule network and perturbation of tight and adherens junctions. The disruption of cell junctions by alveolysin depended on the increase in CFAP100, which in turn depended on CD59 and the activation of PI3K-AKT signaling. These findings demonstrate that, in addition to forming membrane pores, B. cereus alveolysin can permeabilize the intestinal epithelium by disrupting epithelial cell junctions in a manner that is consistent with intestinal symptoms and may allow the bacteria to escape the intestine and cause systemic infections. Our results suggest the potential value of targeting alveolysin or CFAP100 to prevent B. cereus-associated intestinal diseases and systemic infections.
Collapse
Affiliation(s)
- Shuang Sun
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhaoyang Xu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Haijie Hu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Manxi Zheng
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Liang Zhang
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Wei Xie
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lei Sun
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Peiwei Liu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Tianliang Li
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Liangran Zhang
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Min Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min Liu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yunfan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jun Zhou
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Oh S, Lee S. Recent advances in ZBP1-derived PANoptosis against viral infections. Front Immunol 2023; 14:1148727. [PMID: 37261341 PMCID: PMC10228733 DOI: 10.3389/fimmu.2023.1148727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Innate immunity is an important first line of defense against pathogens, including viruses. These pathogen- and damage-associated molecular patterns (PAMPs and DAMPs, respectively), resulting in the induction of inflammatory cell death, are detected by specific innate immune sensors. Recently, Z-DNA binding protein 1 (ZBP1), also called the DNA-dependent activator of IFN regulatory factor (DAI) or DLM1, is reported to regulate inflammatory cell death as a central mediator during viral infection. ZBP1 is an interferon (IFN)-inducible gene that contains two Z-form nucleic acid-binding domains (Zα1 and Zα2) in the N-terminus and two receptor-interacting protein homotypic interaction motifs (RHIM1 and RHIM2) in the middle, which interact with other proteins with the RHIM domain. By sensing the entry of viral RNA, ZBP1 induces PANoptosis, which protects host cells against viral infections, such as influenza A virus (IAV) and herpes simplex virus (HSV1). However, some viruses, particularly coronaviruses (CoVs), induce PANoptosis to hyperactivate the immune system, leading to cytokine storm, organ failure, tissue damage, and even death. In this review, we discuss the molecular mechanism of ZBP1-derived PANoptosis and pro-inflammatory cytokines that influence the double-edged sword of results in the host cell. Understanding the ZBP1-derived PANoptosis mechanism may be critical for improving therapeutic strategies.
Collapse
|
22
|
Buchacher T, Digruber A, Kranzler M, Del Favero G, Ehling-Schulz M. Bacillus cereus extracellular vesicles act as shuttles for biologically active multicomponent enterotoxins. Cell Commun Signal 2023; 21:112. [PMID: 37189133 PMCID: PMC10184354 DOI: 10.1186/s12964-023-01132-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) from Gram-positive bacteria have gained considerable importance as a novel transport system of virulence factors in host-pathogen interactions. Bacillus cereus is a Gram-positive human pathogen, causing gastrointestinal toxemia as well as local and systemic infections. The pathogenicity of enteropathogenic B. cereus has been linked to a collection of virulence factors and exotoxins. Nevertheless, the exact mechanism of virulence factor secretion and delivery to target cells is poorly understood. RESULTS Here, we investigate the production and characterization of enterotoxin-associated EVs from the enteropathogenic B. cereus strain NVH0075-95 by using a proteomics approach and studied their interaction with human host cells in vitro. For the first time, comprehensive analyses of B. cereus EV proteins revealed virulence-associated factors, such as sphingomyelinase, phospholipase C, and the three-component enterotoxin Nhe. The detection of Nhe subunits was confirmed by immunoblotting, showing that the low abundant subunit NheC was exclusively detected in EVs as compared to vesicle-free supernatant. Cholesterol-dependent fusion and predominantly dynamin-mediated endocytosis of B. cereus EVs with the plasma membrane of intestinal epithelial Caco2 cells represent entry routes for delivery of Nhe components to host cells, which was assessed by confocal microscopy and finally led to delayed cytotoxicity. Furthermore, we could show that B. cereus EVs elicit an inflammatory response in human monocytes and contribute to erythrocyte lysis via a cooperative interaction of enterotoxin Nhe and sphingomyelinase. CONCLUSION Our results provide insights into the interaction of EVs from B. cereus with human host cells and add a new layer of complexity to our understanding of multicomponent enterotoxin assembly, offering new opportunities to decipher molecular processes involved in disease development. Video Abstract.
Collapse
Affiliation(s)
- Tanja Buchacher
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Astrid Digruber
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Markus Kranzler
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
23
|
Thapa P, Upadhyay SP, Singh V, Boinpelly VC, Zhou J, Johnson DK, Gurung P, Lee ES, Sharma R, Sharma M. Chalcone: A potential scaffold for NLRP3 inflammasome inhibitors. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2023; 7:100100. [PMID: 37033416 PMCID: PMC10081147 DOI: 10.1016/j.ejmcr.2022.100100] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Overactivated NLRP3 inflammasome has been shown to associate with an increasing number of disease conditions. Activation of the NLRP3 inflammasome results in caspase-1-catalyzed formation of active pro-inflammatory cytokines (IL-1β and IL-18) resulting in pyroptosis. The multi-protein composition of the NLRP3 inflammasome and its sensitivity to several damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) make this extensively studied inflammasome an attractive target to treat chronic conditions. However, none of the known NLRP3 inhibitors has been approved for clinical use. Sulfonylurea and covalent inhibitors with electrophilic warhead (Michael acceptor) are among the prominent classes of compounds explored for their NLRP3 inhibitory effects. Chalcone, a small molecule with α, β unsaturated carbonyl group (Michael acceptor), has also been studied as a promising scaffold for the development of NLRP3 inhibitors. Low molecular weight, easy to manipulate lipophilicity and cost-effectiveness have attracted many to use chalcone scaffold for drug development. In this review, we highlight chalcone derivatives with NLRP3 inflammasome inhibitory activities. Recent developments and potential new directions summarized here will, hopefully, serve as valuable perspectives for investigators including medicinal chemists and drug discovery researchers to utilize chalcone as a scaffold for developing novel NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Pritam Thapa
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO, 64128, USA
| | - Sunil P. Upadhyay
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO, 64128, USA
| | - Vikas Singh
- Division of Neurology, KCVA Medical Center, Kansas City, MO, USA
| | - Varun C. Boinpelly
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Jianping Zhou
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO, USA
| | - David K. Johnson
- Department of Computational Chemical Biology Core, Molecular Graphics and Modeling Core, University of Kansas, KS, 66047, USA
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Eung Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Ram Sharma
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO, 64128, USA
| | - Mukut Sharma
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO, 64128, USA
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO, USA
| |
Collapse
|
24
|
Enosi Tuipulotu D, Feng S, Pandey A, Zhao A, Ngo C, Mathur A, Lee J, Shen C, Fox D, Xue Y, Kay C, Kirkby M, Lo Pilato J, Kaakoush NO, Webb D, Rug M, Robertson AAB, Tessema MB, Pang S, Degrandi D, Pfeffer K, Augustyniak D, Blumenthal A, Miosge LA, Brüstle A, Yamamoto M, Reading PC, Burgio G, Man SM. Immunity against Moraxella catarrhalis requires guanylate-binding proteins and caspase-11-NLRP3 inflammasomes. EMBO J 2023; 42:e112558. [PMID: 36762431 PMCID: PMC10015372 DOI: 10.15252/embj.2022112558] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Moraxella catarrhalis is an important human respiratory pathogen and a major causative agent of otitis media and chronic obstructive pulmonary disease. Toll-like receptors contribute to, but cannot fully account for, the complexity of the immune response seen in M. catarrhalis infection. Using primary mouse bone marrow-derived macrophages to examine the host response to M. catarrhalis infection, our global transcriptomic and targeted cytokine analyses revealed activation of immune signalling pathways by both membrane-bound and cytosolic pattern-recognition receptors. We show that M. catarrhalis and its outer membrane vesicles or lipooligosaccharide (LOS) can activate the cytosolic innate immune sensor caspase-4/11, gasdermin-D-dependent pyroptosis, and the NLRP3 inflammasome in human and mouse macrophages. This pathway is initiated by type I interferon signalling and guanylate-binding proteins (GBPs). We also show that inflammasomes and GBPs, particularly GBP2, are required for the host defence against M. catarrhalis in mice. Overall, our results reveal an essential role for the interferon-inflammasome axis in cytosolic recognition and immunity against M. catarrhalis, providing new molecular targets that may be used to mitigate pathological inflammation triggered by this pathogen.
Collapse
Affiliation(s)
- Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Shouya Feng
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Abhimanu Pandey
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Anyang Zhao
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Chinh Ngo
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Anukriti Mathur
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Jiwon Lee
- Centre for Advanced MicroscopyThe Australian National UniversityCanberraACTAustralia
| | - Cheng Shen
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Daniel Fox
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Yansong Xue
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Callum Kay
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Max Kirkby
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Jordan Lo Pilato
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | | | - Daryl Webb
- Centre for Advanced MicroscopyThe Australian National UniversityCanberraACTAustralia
| | - Melanie Rug
- Centre for Advanced MicroscopyThe Australian National UniversityCanberraACTAustralia
| | - Avril AB Robertson
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQLDAustralia
| | - Melkamu B Tessema
- Department of Microbiology and ImmunologyThe University of Melbourne, The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Stanley Pang
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research LaboratoryMurdoch UniversityMurdochWAAustralia
- Department of Microbiology, PathWest Laboratory Medicine‐WAFiona Stanley HospitalMurdochWAAustralia
| | - Daniel Degrandi
- Institute of Medical Microbiology and Hospital HygieneHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital HygieneHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Daria Augustyniak
- Department of Pathogen Biology and Immunology, Faculty of Biological SciencesUniversity of WroclawWroclawPoland
| | - Antje Blumenthal
- Frazer InstituteThe University of QueenslandQLDBrisbaneAustralia
| | - Lisa A Miosge
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Anne Brüstle
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial DiseasesOsaka UniversityOsakaJapan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research CenterOsaka UniversityOsakaJapan
| | - Patrick C Reading
- Department of Microbiology and ImmunologyThe University of Melbourne, The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- WHO Collaborating Centre for Reference and Research on InfluenzaVictorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Gaetan Burgio
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| |
Collapse
|
25
|
Vigneron C, Py BF, Monneret G, Venet F. The double sides of NLRP3 inflammasome activation in sepsis. Clin Sci (Lond) 2023; 137:333-351. [PMID: 36856019 DOI: 10.1042/cs20220556] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction induced by a dysregulated host immune response to infection. Immune response induced by sepsis is complex and dynamic. It is schematically described as an early dysregulated systemic inflammatory response leading to organ failures and early deaths, followed by the development of persistent immune alterations affecting both the innate and adaptive immune responses associated with increased risk of secondary infections, viral reactivations, and late mortality. In this review, we will focus on the role of NACHT, leucin-rich repeat and pyrin-containing protein 3 (NLRP3) inflammasome in the pathophysiology of sepsis. NLRP3 inflammasome is a multiproteic intracellular complex activated by infectious pathogens through a two-step process resulting in the release of the pro-inflammatory cytokines IL-1β and IL-18 and the formation of membrane pores by gasdermin D, inducing a pro-inflammatory form of cell death called pyroptosis. The role of NLRP3 inflammasome in the pathophysiology of sepsis can be ambivalent. Indeed, although it might protect against sepsis when moderately activated after initial infection, excessive NLRP3 inflammasome activation can induce dysregulated inflammation leading to multiple organ failure and death during the acute phase of the disease. Moreover, this activation might become exhausted and contribute to post-septic immunosuppression, driving impaired functions of innate and adaptive immune cells. Targeting the NLRP3 inflammasome could thus be an attractive option in sepsis either through IL-1β and IL-18 antagonists or through inhibition of NLRP3 inflammasome pathway downstream components. Available treatments and results of first clinical trials will be discussed.
Collapse
Affiliation(s)
- Clara Vigneron
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Bénédicte F Py
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Guillaume Monneret
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Edouard Herriot Hospital, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Fabienne Venet
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
26
|
Di Q, Zhao X, Tang H, Li X, Xiao Y, Wu H, Wu Z, Quan J, Chen W. USP22 suppresses the NLRP3 inflammasome by degrading NLRP3 via ATG5-dependent autophagy. Autophagy 2023; 19:873-885. [PMID: 35900990 PMCID: PMC9980574 DOI: 10.1080/15548627.2022.2107314] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/02/2022] Open
Abstract
The NLRP3 inflammasome is involved in a diverse range of inflammatory diseases. The activation of inflammasomes must be tightly regulated to prevent excessive inflammation, and the protein ubiquitination system is reported to be one of the ways in which inflammasome activation is regulated. However, the deubiquitination regulatory mechanisms of inflammasome activation remain elusive. Here, we demonstrated that USP22 (ubiquitin specific peptidase 22) promotes NLRP3 degradation and inhibits NLRP3 inflammasome activation. USP22 deficiency or in vivo silencing significantly increases alum-induced peritonitis and lipopolysaccharide-induced systemic inflammation. Mechanistically, USP22 inhibits NLRP3 inflammasome activation via the promotion of ATG5-mediated macroautophagy/autophagy. USP22 stabilizes ATG5 via decreasing K27- and K48-linked ubiquitination of ATG5 at the Lys118 site. Taken together, these findings reveal the role USP22 plays in the regulation of NLRP3 inflammasome activation and suggest a potential therapeutic target to treat NLRP3 inflammasome-related diseases.Abbreviations: ATG5: autophagy related 5; ATP: adenosine triphosphate; CASP1: caspase 1; IL18: interleukin 18; IL1B/IL-1β: interleukin 1 beta; LPS: lipopolysaccharide; NLRC4: NLR family, CARD domain containing 4; NLRP3: NLR family, pyrin domain containing 3; PYCARD/ASC: PYD and CARD domain containing; TNF/TNF-α: tumor necrosis factor; USP22: ubiquitin specific peptidase 22.
Collapse
Affiliation(s)
- Qianqian Di
- Guangdong Provincial Key Laboratory for Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory for Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Haimei Tang
- Guangdong Provincial Key Laboratory for Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xunwei Li
- Guangdong Provincial Key Laboratory for Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yue Xiao
- Guangdong Provincial Key Laboratory for Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Han Wu
- Guangdong Provincial Key Laboratory for Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Zherui Wu
- Guangdong Provincial Key Laboratory for Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jiazheng Quan
- Guangdong Provincial Key Laboratory for Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Weilin Chen
- Guangdong Provincial Key Laboratory for Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
27
|
Ali FE, Ibrahim IM, Ghogar OM, Abd-alhameed EK, Althagafy HS, Hassanein EH. Therapeutic interventions target the NLRP3 inflammasome in ulcerative colitis: Comprehensive study. World J Gastroenterol 2023; 29:1026-1053. [PMID: 36844140 PMCID: PMC9950862 DOI: 10.3748/wjg.v29.i6.1026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/29/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
One of the significant health issues in the world is the prevalence of ulcerative colitis (UC). UC is a chronic disorder that mainly affects the colon, beginning with the rectum, and can progress from asymptomatic mild inflammation to extensive inflammation of the entire colon. Understanding the underlying molecular mechanisms of UC pathogenesis emphasizes the need for innovative therapeutic approaches based on identifying molecular targets. Interestingly, in response to cellular injury, the NLR family pyrin domain containing 3 (NLRP3) inflammasome is a crucial part of the inflammation and immunological reaction by promoting caspase-1 activation and the release of interleukin-1β. This review discusses the mechanisms of NLRP3 inflammasome activation by various signals and its regulation and impact on UC.
Collapse
Affiliation(s)
- Fares E.M Ali
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Islam M. Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Osama M Ghogar
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esraa K. Abd-alhameed
- Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 12345, Egypt
| | - Hanan S. Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 12345, Saudi Arabia
| | - Emad H.M. Hassanein
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
28
|
Wang Y, Zhang J, Yuan Z, Sun L. Characterization of the pathogenicity of a Bacillus cereus isolate from the Mariana Trench. Virulence 2022; 13:1062-1075. [PMID: 35733351 PMCID: PMC9235904 DOI: 10.1080/21505594.2022.2088641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Bacillus cereus is an important opportunistic pathogen widely distributed in the environment. In this study, we reported the isolation and characterization of a B. cereus isolate, MB1, from the Challenger Deep of the Mariana Trench. MB1 is aerobic, motile, and able to form endospores. It possesses 5966 genes distributed on a circular chromosome and two plasmids. The MB1 genome contains 14 sets of 23S, 5S, and 16S ribosomal RNA operons, 106 tRNA genes, 4 sRNA genes, 12 genomic islands, 13 prophages, and 302 putative virulence genes, including enterotoxins and cytolysins. Infection studies showed that MB1 was able to cause acute and lethal infection in fish and mice, and was highly toxic to mammalian cells. MB1 induced, in a dose-dependent manner, pyroptotic cell death, characterized by activation of caspase-1, cleavage of gasdermin D, and release of IL-1β and IL-18. MB1 spores exhibited swimming and haemolytic capacity, but were severely attenuated in pathogenicity, which, however, was regained to the full extent when the spores germinated under suitable conditions. Taken together, these results provide new insights into the biological and pathogenic mechanism of deep sea B. cereus.
Collapse
Affiliation(s)
- Yujian Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- School of Ocean, Yan tai University, Yantai, China
| | - Zihao Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Li FJ, Starrs L, Mathur A, Ishii H, Man SM, Burgio G. Differential activation of NLRP3 inflammasome by Acinetobacter baumannii strains. PLoS One 2022; 17:e0277019. [PMID: 36318583 PMCID: PMC9624416 DOI: 10.1371/journal.pone.0277019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Acinetobacter baumannii is an emerging nosocomial, opportunistic pathogen with growing clinical significance globally. A. baumannii has an exceptional ability to rapidly develop drug resistance. It is frequently responsible for ventilator-associated pneumonia in clinical settings and inflammation resulting in severe sepsis. The inflammatory response is mediated by host pattern-recognition receptors and the inflammasomes. Inflammasome activation triggers inflammatory responses, including the secretion of the pro-inflammatory cytokines IL-1β and IL-18, the recruitment of innate immune effectors against A. baumannii infection, and the induction programmed cell death by pyroptosis. An important knowledge gap is how variation among clinical isolates affects the host’s innate response and activation of the inflammasome during A. baumannii infection. In this study, we compared nine A. baumannii strains, including clinical locally-acquired isolates, in their ability to induce activation of the inflammasome and programmed cell death in primary macrophages, epithelial lung cell line and mice. We found a variation in survival outcomes of mice and bacterial dissemination in organs among three commercially available A. baumannii strains, likely due to the differences in virulence between strains. Interestingly, we found variability among A. baumannii strains in activation of the NLRP3 inflammasome, non-canonical Caspase-11 pathway, plasmatic secretion of the pro-inflammatory cytokine IL-1β and programmed cell death. Our study highlights the importance of utilising multiple bacterial strains and clinical isolates with different virulence to investigate the innate immune response to A. baumannii infection.
Collapse
Affiliation(s)
- Fei-Ju Li
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Lora Starrs
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Anukriti Mathur
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Hikari Ishii
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Gaetan Burgio
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- * E-mail:
| |
Collapse
|
30
|
Liu N, Wang X, Shan Q, Li S, Li Y, Chu B, Wang J, Zhu Y. Single Point Mutation and Its Role in Specific Pathogenicity to Reveal the Mechanism of Related Protein Families. Microbiol Spectr 2022; 10:e0092322. [PMID: 36214694 PMCID: PMC9603606 DOI: 10.1128/spectrum.00923-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/21/2022] [Indexed: 12/30/2022] Open
Abstract
Pyolysin (PLO) is secreted by Trueperella pyogenes as a water-soluble monomer after forming transmembrane β-barrel channels in the cell membrane by binding cholesterol. Two significantly conserved residues at domain 1 of PLO are mutated, which provides novel evidence of a relationship between conformational change and interaction with the cell membrane and uncovers the pore formation mechanism of the cholesterol-dependent cytolysin (CDC) family. Moreover, PLO is a special member of the CDCs, which the percentage of sequence identities between PLO and other CDC members is from 31% to 45%, while others are usually from 40% to 70%. It is important to understand that at very low sequence identities, models can be different in the pathogenic mechanisms of these CDC members, which are dedicated to a large number of Gram-positive bacterial pathogens. Our studies, for the first time, located and mutated two different highly conserved structural sites in the primary structure critical for PLO structure and function that proved the importance of these sites. Together, novel and repeatable observations into the pore formation mechanism of CDCs are provided by our findings. IMPORTANCE Postpartum disease of dairy cows caused by persistent bacterial infection is a global disease, which has a serious impact on the development of the dairy industry and brings huge economic losses. As one of the most relevant pathogenic bacteria for postpartum diseases in dairy cows, Trueperella pyogenes can secrete pyolysin (PLO), a member of the cholesterol-dependent cytolysin (CDC) family and recognized as the most important toxin of T. pyogenes. However, the current research work on PLO is still insufficient. The pathogenic mechanism of this toxin can be fully explored by changing the local structure and overall function of the toxin by a previously unidentified single point mutation. These studies lay the groundwork for future studies that will explore the contribution of this large family of CDC proteins to microbial survival and human disease.
Collapse
Affiliation(s)
- Ning Liu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xue Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiang Shan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuxian Li
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanan Li
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bingxin Chu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiufeng Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yaohong Zhu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Vafaei S, Taheri H, Hajimomeni Y, Fakhre Yaseri A, Abolhasani Zadeh F. The role of NLRP3 inflammasome in colorectal cancer: potential therapeutic target. Clin Transl Oncol 2022; 24:1881-1889. [PMID: 35689136 DOI: 10.1007/s12094-022-02861-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022]
Abstract
All phases of carcinogenesis are affected by inflammation. Activation of the inflammasome is a crucial signaling mechanism that leads to acute and chronic inflammation. When specific nucleotide-binding domains, leucine-rich repeat-containing proteins (NLRs) are activated, inflammasomes are formed. The NLRP3 is one of the NLR family members with the most functional characterization. NLRP3 can modulate the immune systems, apoptosis, growth, and/or the gut microbiome to impact cancer development. Colorectal cancer (CRC) is one of the most common cancers, and it begins as a tissue overgrowth on the internal part of the rectum or colon. In vivo and in vitro studies showed that the NLRP3 inflammasome has a role in CRC development due to its broad activity in shaping immune responses. Here, onwards, we focus on the NLRP3 inflammasome role in CRC development, as well as the therapeutic prospective of modifying NLRP3 inflammasome in the context of anti-cancer therapy.
Collapse
Affiliation(s)
- Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Taheri
- Internal Medicine Cellular and Molecular, Research Center, Zahedan University of Medical Sciences, Fellowship of GI in Mashhad University of Medical Sciences, Zahedan, Iran
| | - Yasamin Hajimomeni
- Islamic Azad University of Medical Science, Qeshm International Branch, Qeshm, Iran
| | | | | |
Collapse
|
32
|
Shan Q, Liu N, Wang X, Zhu Y, Yin J, Wang J. Lactobacillus rhamnosus GR-1 attenuates foodborne Bacillus cereus-induced NLRP3 inflammasome activity in bovine mammary epithelial cells by protecting intercellular tight junctions. J Anim Sci Biotechnol 2022; 13:101. [PMID: 36076276 PMCID: PMC9461272 DOI: 10.1186/s40104-022-00752-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background Bacillus cereus is an important pathogen that causes human food poisoning, specifically diarrhea and vomiting. B. cereus can also induce mastitis in dairy cows and has a strong survival ability in milk, as it cannot be inactivated by high-temperature short-time pasteurization. Therefore, B. cereus can enter the market through pasteurized milk and other dairy products, imposing enormous hidden dangers on food safety and human health. Results In this study, B. cereus 2101 (BC) was isolated from milk samples of cows with mastitis. BC grew rapidly with strong hemolysis, making it difficult to prevent mastitis and ensure food security. MAC-T cells were treated with BC and/or Lactobacillus rhamnosus GR-1 (LGR-1). Pretreatment with LGR-1 protected the integrity of tight junctions and the expression of zonula occludens-1 (ZO-1) and occludin destroyed by BC. Furthermore, LGR-1 pretreatment reduced the expression of NOD-like receptor family member pyrin domain-containing protein 3 (NLRP3), caspase recruitment and activation domain (ASC), Caspase-1 p20, gasdermin D (GSDMD) p30, inflammatory factors (interleukin (IL)-1β and IL-18), and cell death induced by BC. Moreover, LGR-1 pretreatment reduced NLRP3 inflammasome activity and increased expressions of ZO-1 and occludin induced by lipopolysaccharides (LPS) + ATP stimulation. MAC-T cells were transfected with NLRP3 siRNA or MCC950 and/or treated with BC and/or LGR-1. NLRP3-siRNA transfection and MCC950 attenuated BC-induced NLRP3 inflammasome activity. Expression of inflammatory cytokines and cell death suggested that the inflammatory pathway might play an important role in the induction of the NLRP3 inflammasome by BC and the protection of LGR-1. Conclusions These results suggest that LGR-1 might be a probiotic alternative to antibiotics and could be administered to prevent mastitis in dairy cows, thus ensuring food security. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00752-w.
Collapse
Affiliation(s)
- Qiang Shan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ning Liu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xue Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yaohong Zhu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jinhua Yin
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. .,College of Animal Science and Technology, Tarim University, Alar, 843300, China.
| | - Jiufeng Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
33
|
Ebrahimnezhaddarzi S, Bird CH, Allison CC, Tuipulotu DE, Kostoulias X, Macri C, Stutz MD, Abraham G, Kaiserman D, Pang SS, Man SM, Mintern JD, Naderer T, Peleg AY, Pellegrini M, Whisstock JC, Bird PI. Mpeg1 is not essential for antibacterial or antiviral immunity, but is implicated in antigen presentation. Immunol Cell Biol 2022; 100:529-546. [PMID: 35471730 PMCID: PMC9545170 DOI: 10.1111/imcb.12554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
To control infections phagocytes can directly kill invading microbes. Macrophage‐expressed gene 1 (Mpeg1), a pore‐forming protein sometimes known as perforin‐2, is reported to be essential for bacterial killing following phagocytosis. Mice homozygous for the mutant allele Mpeg1tm1Pod succumb to bacterial infection and exhibit deficiencies in bacterial killing in vitro. Here we describe a new Mpeg mutant allele Mpeg1tm1.1Pib on the C57BL/6J background. Mice homozygous for the new allele are not abnormally susceptible to bacterial or viral infection, and irrespective of genetic background show no perturbation in bacterial killing in vitro. Potential reasons for these conflicting findings are discussed. In further work, we show that cytokine responses to inflammatory mediators, as well as antibody generation, are also normal in Mpeg1tm1.1Pib/tm1.1Pib mice. We also show that Mpeg1 is localized to a CD68‐positive endolysosomal compartment, and that it exists predominantly as a processed, two‐chain disulfide‐linked molecule. It is abundant in conventional dendritic cells 1, and mice lacking Mpeg1 do not present the model antigen ovalbumin efficiently. We conclude that Mpeg1 is not essential for innate antibacterial protection or antiviral immunity, but may play a focused role early in the adaptive immune response.
Collapse
Affiliation(s)
- Salimeh Ebrahimnezhaddarzi
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Catherina H Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Cody C Allison
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Daniel E Tuipulotu
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research The Australian National University Canberra ACT Australia
| | - Xenia Kostoulias
- Department of Microbiology, Monash Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Christophe Macri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Parkville VIC Australia
| | - Michael D Stutz
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Parkville VIC Australia
| | - Gilu Abraham
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Dion Kaiserman
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Siew Siew Pang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Si Ming Man
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research The Australian National University Canberra ACT Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Parkville VIC Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Anton Y Peleg
- Department of Microbiology, Monash Biomedicine Discovery Institute Monash University Clayton VIC Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School Monash University Prahran VIC Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Parkville VIC Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| |
Collapse
|
34
|
Pathogen-selective killing by guanylate-binding proteins as a molecular mechanism leading to inflammasome signaling. Nat Commun 2022; 13:4395. [PMID: 35906252 PMCID: PMC9338265 DOI: 10.1038/s41467-022-32127-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Inflammasomes are cytosolic signaling complexes capable of sensing microbial ligands to trigger inflammation and cell death responses. Here, we show that guanylate-binding proteins (GBPs) mediate pathogen-selective inflammasome activation. We show that mouse GBP1 and GBP3 are specifically required for inflammasome activation during infection with the cytosolic bacterium Francisella novicida. We show that the selectivity of mouse GBP1 and GBP3 derives from a region within the N-terminal domain containing charged and hydrophobic amino acids, which binds to and facilitates direct killing of F. novicida and Neisseria meningitidis, but not other bacteria or mammalian cells. This pathogen-selective recognition by this region of mouse GBP1 and GBP3 leads to pathogen membrane rupture and release of intracellular content for inflammasome sensing. Our results imply that GBPs discriminate between pathogens, confer activation of innate immunity, and provide a host-inspired roadmap for the design of synthetic antimicrobial peptides that may be of use against emerging and re-emerging pathogens. Guanylate-binding proteins (GBP) have a function in inflammasome formation and pathogen defence. Here the authors show that these GBP proteins are able to kill certain bacteria and promote selective inflammasome activation and that this is mediated by specific GBP protein regions.
Collapse
|
35
|
Kienes I, Johnston EL, Bitto NJ, Kaparakis-Liaskos M, Kufer TA. Bacterial subversion of NLR-mediated immune responses. Front Immunol 2022; 13:930882. [PMID: 35967403 PMCID: PMC9367220 DOI: 10.3389/fimmu.2022.930882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Members of the mammalian Nod-like receptor (NLR) protein family are important intracellular sensors for bacteria. Bacteria have evolved under the pressure of detection by host immune sensing systems, leading to adaptive subversion strategies to dampen immune responses for their benefits. These include modification of microbe-associated molecular patterns (MAMPs), interception of innate immune pathways by secreted effector proteins and sophisticated instruction of anti-inflammatory adaptive immune responses. Here, we summarise our current understanding of subversion strategies used by bacterial pathogens to manipulate NLR-mediated responses, focusing on the well-studied members NOD1/2, and the inflammasome forming NLRs NLRC4, and NLRP3. We discuss how bacterial pathogens and their products activate these NLRs to promote inflammation and disease and the range of mechanisms used by bacterial pathogens to evade detection by NLRs and to block or dampen NLR activation to ultimately interfere with the generation of host immunity. Moreover, we discuss how bacteria utilise NLRs to facilitate immunotolerance and persistence in the host and outline how various mechanisms used to attenuate innate immune responses towards bacterial pathogens can also aid the host by reducing immunopathologies. Finally, we describe the therapeutic potential of harnessing immune subversion strategies used by bacteria to treat chronic inflammatory conditions.
Collapse
Affiliation(s)
- Ioannis Kienes
- Department of Immunology, University of Hohenheim, Stuttgart, Germany
| | - Ella L. Johnston
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Natalie J. Bitto
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Thomas A. Kufer
- Department of Immunology, University of Hohenheim, Stuttgart, Germany
- *Correspondence: Thomas A. Kufer,
| |
Collapse
|
36
|
Regulation of Enterotoxins Associated with Bacillus cereus Sensu Lato Toxicoinfection. Appl Environ Microbiol 2022; 88:e0040522. [PMID: 35730937 PMCID: PMC9275247 DOI: 10.1128/aem.00405-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacillus cereus sensu lato (s.l.) includes foodborne pathogens, as well as beneficial microorganisms, such as bioinsecticides. Some of the beneficial and commercially used B. cereus s.l. strains have been shown to carry enterotoxin genes, the products of which can cause toxicoinfection in humans. Furthermore, recent epidemiological reports indicated that some bioinsecticidal strains have been linked with foodborne illness outbreaks. This demonstrates the need for improved surveillance of B. cereus s.l., which includes characterization of isolates' virulence capacity. However, the prediction of virulence capacity of B. cereus s.l. strains is challenging. Genetic screening for enterotoxin gene presence has proven to be insufficient for accurate discrimination between virulent and avirulent strains, given that nearly all B. cereus s.l. strains carry at least one enterotoxin gene. Furthermore, complex regulatory networks governing the expression of enterotoxins, and potential synergistic interactions between enterotoxins and other virulence factors make the prediction of toxicoinfection based on isolates' genome sequences challenging. In this review, we summarize and synthesize the current understanding of the regulation of enterotoxins associated with the B. cereus s.l. toxicoinfection and identify gaps in the knowledge that need to be addressed to facilitate identification of genetic markers predictive of cytotoxicity and toxicoinfection.
Collapse
|
37
|
Zhao Y, Sun L. Bacillus cereus cytotoxin K triggers gasdermin D-dependent pyroptosis. Cell Death Dis 2022; 8:305. [PMID: 35788609 PMCID: PMC9253000 DOI: 10.1038/s41420-022-01091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022]
Abstract
Bacillus cereus is well known as a causative agent of foodborne gastrointestinal diseases and systemic non-gastrointestinal diseases. We have recently identified a pathogenic B. cereus (named H2) from a deep-sea cold-seep. H2 possesses the pyroptosis-inducing capacity and contains a number of enterotoxins including cytotoxin K (CytK). In the present work, we examined the cytotoxicity of the CytK of H2 to human macrophages. CytK bound macrophages by interaction with the plasma membrane and caused cellular structure damage. CytK−cell interaction triggered rapid pyroptosis mediated by caspase 1-activated gasdermin D (GSDMD). CytK-induced pyroptosis required NLRP3 inflammasome activation, K+ efflux, and intracellular Ca2+ accumulation. CytK exhibited apparent binding to several cytomembrane lipids, in particular phosphatidic acid, which proved to be essential to CytK-elicited cell death. Together, these results add new insights into the cytotoxic mechanism of CytK.
Collapse
Affiliation(s)
- Yan Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China. .,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
38
|
Song L, Hu X, Ren X, Liu J, Liu X. Antibacterial Modes of Herbal Flavonoids Combat Resistant Bacteria. Front Pharmacol 2022; 13:873374. [PMID: 35847042 PMCID: PMC9278433 DOI: 10.3389/fphar.2022.873374] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
The increasing dissemination of multidrug resistant (MDR) bacterial infections endangers global public health. How to develop effective antibacterial agents against resistant bacteria is becoming one of the most urgent demands to solve the drug resistance crisis. Traditional Chinese medicine (TCM) with multi-target antibacterial actions are emerging as an effective way to combat the antibacterial resistance. Based on the innovative concept of organic wholeness and syndrome differentiation, TCM use in antibacterial therapies is encouraging. Herein, advances on flavonoid compounds of heat-clearing Chinese medicine exhibit their potential for the therapy of resistant bacteria. In this review, we focus on the antibacterial modes of herbal flavonoids. Additionally, we overview the targets of flavonoid compounds and divide them into direct-acting antibacterial compounds (DACs) and host-acting antibacterial compounds (HACs) based on their modes of action. We also discuss the associated functional groups of flavonoid compounds and highlight recent pharmacological activities against diverse resistant bacteria to provide the candidate drugs for the clinical infection.
Collapse
Affiliation(s)
- Lianyu Song
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
| | - Xin Hu
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
| | - Xiaomin Ren
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
| | - Jing Liu
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
| | - Xiaoye Liu
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
- *Correspondence: Xiaoye Liu,
| |
Collapse
|
39
|
Liang F, Qin W, Zeng Y, Wang D. Modulation of Autoimmune and Autoinflammatory Diseases by Gasdermins. Front Immunol 2022; 13:841729. [PMID: 35720396 PMCID: PMC9199384 DOI: 10.3389/fimmu.2022.841729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/05/2022] [Indexed: 12/29/2022] Open
Abstract
Autoimmune diseases and autoinflammatory diseases are two types of the immune system disorders. Pyroptosis, a highly inflammatory cell death, plays an important role in diseases of immune system. The gasdermins belong to a pore-forming protein gene family which are mainly expressed in immune cells, gastrointestinal tract, and skin. Gasdermins are regarded as an executor of pyroptosis and have been shown to possess various cellular functions and pathological effects such as pro-inflammatory, immune activation, mediation of tumor, etc. Except for infectious diseases, the vital role of gasdermins in autoimmune diseases, autoinflammatory diseases, and immune-related neoplastic diseases has been proved recently. Therefore, gasdermins have been served as a potential therapeutic target for immune disordered diseases. The review summarizes the basic molecular structure and biological function of gasdermins, mainly discusses their role in autoimmune and autoinflammatory diseases, and highlights the recent research on gasdermin family inhibitors so as to provide potential therapeutic prospects.
Collapse
Affiliation(s)
- Fang Liang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Weixiao Qin
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yilan Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dan Wang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
40
|
Begum R, Thota S, Abdulkadir A, Kaur G, Bagam P, Batra S. NADPH oxidase family proteins: signaling dynamics to disease management. Cell Mol Immunol 2022; 19:660-686. [PMID: 35585127 DOI: 10.1038/s41423-022-00858-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/12/2022] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) are pervasive signaling molecules in biological systems. In humans, a lack of ROS causes chronic and extreme bacterial infections, while uncontrolled release of these factors causes pathologies due to excessive inflammation. Professional phagocytes such as neutrophils (PMNs), eosinophils, monocytes, and macrophages use superoxide-generating NADPH oxidase (NOX) as part of their arsenal of antimicrobial mechanisms to produce high levels of ROS. NOX is a multisubunit enzyme complex composed of five essential subunits, two of which are localized in the membrane, while three are localized in the cytosol. In resting phagocytes, the oxidase complex is unassembled and inactive; however, it becomes activated after cytosolic components translocate to the membrane and are assembled into a functional oxidase. The NOX isoforms play a variety of roles in cellular differentiation, development, proliferation, apoptosis, cytoskeletal control, migration, and contraction. Recent studies have identified NOX as a major contributor to disease pathologies, resulting in a shift in focus on inhibiting the formation of potentially harmful free radicals. Therefore, a better understanding of the molecular mechanisms and the transduction pathways involved in NOX-mediated signaling is essential for the development of new therapeutic agents that minimize the hyperproduction of ROS. The current review provides a thorough overview of the various NOX enzymes and their roles in disease pathophysiology, highlights pharmacological strategies, and discusses the importance of computational modeling for future NOX-related studies.
Collapse
Affiliation(s)
- Rizwana Begum
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Shilpa Thota
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Abubakar Abdulkadir
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Division of Systems Biology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
41
|
Jing W, Pilato JL, Kay C, Feng S, Tuipulotu DE, Mathur A, Shen C, Ngo C, Zhao A, Miosge LA, Ali SA, Gardiner EE, Awad MM, Lyras D, Robertson AAB, Kaakoush NO, Man SM. Clostridium septicum α-toxin activates the NLRP3 inflammasome by engaging GPI-anchored proteins. Sci Immunol 2022; 7:eabm1803. [PMID: 35594341 DOI: 10.1126/sciimmunol.abm1803] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clostridium species are a group of Gram-positive bacteria that cause diseases in humans, such as food poisoning, botulism, and tetanus. Here, we analyzed 10 different Clostridium species and identified that Clostridium septicum, a pathogen that causes sepsis and gas gangrene, activates the mammalian cytosolic inflammasome complex in mice and humans. Mechanistically, we demonstrate that α-toxin secreted by C. septicum binds to glycosylphosphatidylinositol (GPI)-anchored proteins on the host plasma membrane, oligomerizing and forming a membrane pore that is permissive to efflux of magnesium and potassium ions. Efflux of these cytosolic ions triggers the activation of the innate immune sensor NLRP3, inducing activation of caspase-1 and gasdermin D, secretion of the proinflammatory cytokines interleukin-1β and interleukin-18, pyroptosis, and plasma membrane rupture via ninjurin-1. Furthermore, α-toxin of C. septicum induces rapid inflammasome-mediated lethality in mice and pharmacological inhibition of the NLRP3 inflammasome using MCC950 prevents C. septicum-induced lethality. Overall, our results reveal that cytosolic innate sensing of α-toxin is central to the recognition of C. septicum infection and that therapeutic blockade of the inflammasome pathway may prevent sepsis and death caused by toxin-producing pathogens.
Collapse
Affiliation(s)
- Weidong Jing
- Division of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Jordan Lo Pilato
- Division of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Callum Kay
- Division of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Shouya Feng
- Division of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Daniel Enosi Tuipulotu
- Division of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Anukriti Mathur
- Division of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Cheng Shen
- Division of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Chinh Ngo
- Division of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Anyang Zhao
- Division of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Lisa A Miosge
- Division of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Sidra A Ali
- Division of Genome Science and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Elizabeth E Gardiner
- Division of Genome Science and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Milena M Awad
- Infection and Immunity Program and Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Dena Lyras
- Infection and Immunity Program and Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | | | - Si Ming Man
- Division of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
42
|
A Genomic Island of Vibrio cholerae Encodes a Three-Component Cytotoxin with Monomer and Protomer Forms Structurally Similar to Alpha-Pore-Forming Toxins. J Bacteriol 2022; 204:e0055521. [PMID: 35435721 DOI: 10.1128/jb.00555-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alpha-pore-forming toxins (α-PFTs) are secreted by many species of bacteria, including Escherichia coli, Aeromonas hydrophila, and Bacillus thuringiensis, as part of their arsenal of virulence factors, and are often cytotoxic. In particular, for α-PFTs, the membrane-spanning channel they form is composed of hydrophobic α-helices. These toxins oligomerize at the surface of target cells and transition from a soluble to a protomer state in which they expose their hydrophobic regions and insert into the membrane to form a pore. The pores may be composed of homooligomers of one component or heterooligomers with two or three components, resulting in bi- or tripartite toxins. The multicomponent α-PFTs are often expressed from a single operon. Recently, motility-associated killing factor A (MakA), an α-PFT, was discovered in Vibrio cholerae. We report that makA is found on the V. cholerae GI-10 genomic island within an operon containing genes for two other potential α-PFTs, MakB and MakE. We determined the X-ray crystal structures for MakA, MakB, and MakE and demonstrated that all three are structurally related to the α-PFT family in the soluble state, and we modeled their protomer state based on the α-PFT AhlB from A. hydrophila. We found that MakA alone is cytotoxic at micromolar concentrations. However, combining MakA with MakB and MakE is cytotoxic at nanomolar concentrations, with specificity for J774 macrophage cells. Our data suggest that MakA, -B, and -E are α-PFTs that potentially act as a tripartite pore-forming toxin with specificity for phagocytic cells. IMPORTANCE The bacterium Vibrio cholerae causes gastrointestinal, wound, and skin infections. The motility-associated killing factor A (MakA) was recently shown to be cytotoxic against colon, prostate, and other cancer cells. However, at the outset of this study, the capacity of MakA to damage cells in combination with other Mak proteins encoded in the same operon had not been elucidated. We determined the structures of three Mak proteins and established that they are structurally related to the α-PFTs. Compared to MakA alone, the combination of all three toxins was more potent specifically in mouse macrophages. This study highlights the idea that the Mak toxins are selectively cytotoxic and thus may function as a tripartite toxin with cell type specificity.
Collapse
|
43
|
Bacillus cereus Invasive Infections in Preterm Neonates: an Up-to-Date Review of the Literature. Clin Microbiol Rev 2022; 35:e0008821. [PMID: 35138121 PMCID: PMC8826972 DOI: 10.1128/cmr.00088-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus cereus group species are widespread, Gram-positive, spore-forming environmental bacteria. B. cereus sensu stricto is one of the major causes of food poisoning worldwide. In high-risk individuals, such as preterm neonates, B. cereus infections can cause fatal infections. It is important to note that the phenotypic identification methods commonly used in clinical microbiology laboratories make no distinction between B. cereus sensu stricto and the other members of the group (Bacillus anthracis excluded). As a result, all the invasive infections attributed to B. cereus are not necessarily due to B. cereus sensu stricto but likely to other closely related species of the B. cereus group. Next-generation sequencing (NGS) should be used to characterize the whole genome of the strains belonging to the B. cereus group. This could confirm whether the strains involved in previously reported B. cereus invasive infections preferentially belong to formerly known or emerging individual species. Moreover, infections related to B. cereus group species have probably been overlooked, since their isolation in human bacteriological samples has for a long time been regarded as an environmental contaminant of the cultures. Recent studies have questioned the emergence or reemergence of B. cereus invasive infections in preterm infants. This review reports our current understanding of B. cereus infections in neonates, including taxonomical updates, microbiological characteristics, bacterial identification, clinical features, host-pathogen interactions, environmental sources of contamination, and antimicrobial resistance.
Collapse
|
44
|
Ulhuq FR, Mariano G. Bacterial pore-forming toxins. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001154. [PMID: 35333704 PMCID: PMC9558359 DOI: 10.1099/mic.0.001154] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022]
Abstract
Pore-forming toxins (PFTs) are widely distributed in both Gram-negative and Gram-positive bacteria. PFTs can act as virulence factors that bacteria utilise in dissemination and host colonisation or, alternatively, they can be employed to compete with rival microbes in polymicrobial niches. PFTs transition from a soluble form to become membrane-embedded by undergoing large conformational changes. Once inserted, they perforate the membrane, causing uncontrolled efflux of ions and/or nutrients and dissipating the protonmotive force (PMF). In some instances, target cells intoxicated by PFTs display additional effects as part of the cellular response to pore formation. Significant progress has been made in the mechanistic description of pore formation for the different PFTs families, but in several cases a complete understanding of pore structure remains lacking. PFTs have evolved recognition mechanisms to bind specific receptors that define their host tropism, although this can be remarkably diverse even within the same family. Here we summarise the salient features of PFTs and highlight where additional research is necessary to fully understand the mechanism of pore formation by members of this diverse group of protein toxins.
Collapse
Affiliation(s)
- Fatima R. Ulhuq
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
45
|
Liu X, Wu Y, Mao C, Shen J, Zhu K. Host-acting antibacterial compounds combat cytosolic bacteria. Trends Microbiol 2022; 30:761-777. [DOI: 10.1016/j.tim.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 01/25/2023]
|
46
|
Yu M, Li L, Ren Q, Feng H, Tao S, Cheng L, Ma L, Gou SJ, Fu P. Understanding the Gut-Kidney Axis in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis: An Analysis of Gut Microbiota Composition. Front Pharmacol 2022; 13:783679. [PMID: 35140612 PMCID: PMC8819146 DOI: 10.3389/fphar.2022.783679] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/07/2022] [Indexed: 01/05/2023] Open
Abstract
Increasing evidence suggested that gut microbiota played critical roles in developing autoimmune diseases. This study investigated the correlation between gut microbiota and antineutrophil cytoplasmic antibody-associated vasculitis (AAV) with kidney injury. We analyzed the fecal samples of 23 AAV patients with kidney injury using a 16s RNA microbial profiling approach. The alpha-diversity indexes were significantly lower in AAV patients with kidney injury than healthy controls (Sobs P < 0.001, Shannon P < 0.001, Chao P < 0.001). The beta-diversity difference demonstrated a significant difference among AAV patients with kidney injury, patients with lupus nephritis (LN), and health controls (ANOSIM, p = 0.001). Among these AAV patients, the Deltaproteobacteria, unclassified_o_Bacteroidales, Prevotellaceae, Desulfovibrionaceae Paraprevotella, and Lachnospiraceae_NK4A136_group were correlated negatively with serum creatinine, and the proportion of Deltaproteobacteria, unclassified_o_Bacteroidales, Desulfovibrionaceae, Paraprevotella, and Lachnospiraceae_NK4A136_group had a positive correlation with eGFR. In conclusion, the richness and diversity of gut microbiota were reduced in AAV patients with kidney injury, and the alteration of gut microbiota might be related with the severity of kidney injury of AAV patients. Targeted regulation of gut microbiota disorder might be a potential treatment for AAV patients with kidney injury.
Collapse
Affiliation(s)
- Meilian Yu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Lingzhi Li
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Qian Ren
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Han Feng
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sibei Tao
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Cheng
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Liang Ma, ; Shen-Ju Gou,
| | - Shen-Ju Gou
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Liang Ma, ; Shen-Ju Gou,
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Lactobacillus rhamnosus Ameliorates Multi-Drug-Resistant Bacillus cereus-Induced Cell Damage through Inhibition of NLRP3 Inflammasomes and Apoptosis in Bovine Endometritis. Microorganisms 2022; 10:microorganisms10010137. [PMID: 35056585 PMCID: PMC8777719 DOI: 10.3390/microorganisms10010137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 01/09/2023] Open
Abstract
Bacillus cereus, considered a worldwide human food-borne pathogen, has brought serious health risks to humans and animals and huge losses to animal husbandry. The plethora of diverse toxins and drug resistance are the focus for B. cereus. As an alternative treatment to antibiotics, probiotics can effectively alleviate the hazards of super bacteria, food safety, and antibiotic resistance. This study aimed to investigate the frequency and distribution of B. cereus in dairy cows and to evaluate the effects of Lactobacillus rhamnosus in a model of endometritis induced by multi-drug-resistant B. cereus. A strong poisonous strain with a variety of drug resistances was used to establish an endometrial epithelial cell infection model. B. cereus was shown to cause damage to the internal structure, impair the integrity of cells, and activate the inflammatory response, while L. rhamnosus could inhibit cell apoptosis and alleviate this damage. This study indicates that the B. cereus-induced activation of the NLRP3 signal pathway involves K+ efflux. We conclude that LGR-1 may relieve cell destruction by reducing K+ efflux to the extracellular caused by the perforation of the toxins secreted by B. cereus on the cell membrane surface.
Collapse
|
48
|
Li X, Xiao GY, Guo T, Song YJ, Li QM. Potential therapeutic role of pyroptosis mediated by the NLRP3 inflammasome in type 2 diabetes and its complications. Front Endocrinol (Lausanne) 2022; 13:986565. [PMID: 36387904 PMCID: PMC9646639 DOI: 10.3389/fendo.2022.986565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
As a new way of programmed cell death, pyroptosis plays a vital role in many diseases. In recent years, the relationship between pyroptosis and type 2 diabetes (T2D) has received increasing attention. Although the current treatment options for T2D are abundant, the occurrence and development of T2D appear to continue, and the poor prognosis and high mortality of patients with T2D remain a considerable burden in the global health system. Numerous studies have shown that pyroptosis mediated by the NLRP3 inflammasome can affect the progression of T2D and its complications; targeting the NLRP3 inflammasome has potential therapeutic effects. In this review, we described the molecular mechanism of pyroptosis more comprehensively, discussed the most updated progress of pyroptosis mediated by NLRP3 inflammasome in T2D and its complications, and listed some drugs and agents with potential anti-pyroptosis effects. Based on the available evidence, exploring more mechanisms of the NLRP3 inflammasome pathway may bring more options and benefits for preventing and treating T2D and drug development.
Collapse
|
49
|
Dutta D, Liu J, Xiong H. NLRP3 inflammasome activation and SARS-CoV-2-mediated hyperinflammation, cytokine storm and neurological syndromes. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2022; 14:138-160. [PMID: 35891930 PMCID: PMC9301183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 04/13/2023]
Abstract
Despite the introduction of vaccines and drugs for SARS-CoV-2, the COVID-19 pandemic continues to spread throughout the world. In severe COVID-19 patients, elevated levels of proinflammatory cytokines have been detected in the blood, lung cells, and bronchoalveolar lavage, which is referred to as a cytokine storm, a consequence of overactivation of the NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome and resultant excessive cytokine production. The hyperinflammatory response and cytokine storm cause multiorgan impairment including the central nervous system, in addition to a detriment to the respiratory system. Hyperactive NLRP3 inflammasome, due to dysregulated immune response, is the primary cause of COVID-19 severity. The severity could be enhanced due to viral evolution leading to the emergence of mutated variants of concern, such as delta and omicron. In this review, we elaborate on the inflammatory responses associated with the NLRP3 inflammasome activation in COVID-19 pathogenesis, the mechanisms for the NLRP3 inflammasome activation and pathway involved, cytokine storm, and neurological complications as long-term consequences of SARS-CoV-2 infection. Also discussed is the therapeutic potential of NLRP3 inflammasome inhibitors for the treatment of COVID-19.
Collapse
Affiliation(s)
- Debashis Dutta
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE 68198-5880, USA
| | - Jianuo Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE 68198-5880, USA
| | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE 68198-5880, USA
| |
Collapse
|
50
|
Wu Y, Jiang W, Huo S, Li S, Xu Y, Ding S, Zhou J, Liu H, Lv W, Wang Y. Nano-metal-organic-frameworks for treating H 2O 2-Secreting bacteria alleviate pulmonary injury and prevent systemic sepsis. Biomaterials 2021; 279:121237. [PMID: 34749071 DOI: 10.1016/j.biomaterials.2021.121237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023]
Abstract
As a vital bacteria-secreted toxin, hydrogen peroxide (H2O2) can destroy infected tissues and increase vascular permeability, leading to life-threatening systemic bacteremia or sepsis. No strategy that can alleviate H2O2-induced injury and prevent systemic sepsis has been reported. Herein, as a proof of concept, we demonstrate the use of H2O2-reactive metal-organic framework nanosystems (MOFs) for treating H2O2-secreting bacteria. In mice infected with Streptococcus pneumoniae (S. pneumoniae) isolated from patients, MOFs efficiently accumulate in the lungs after systemic administration due to infection-induced alveolar-capillary barrier dysfunction. Moreover, MOFs sequester pneumococcal H2O2, reduce endothelial DNA damage, and prevent systemic dissemination of bacteria. In addition, this nanosystem exhibits excellent chemodynamic bactericidal effects against drug-resistant bacteria. Through synergistic therapy with the antibiotic ampicillin, MOFs eliminate over 98% of invading S. pneumoniae, resulting in a survival rate of greater than 90% in mice infected with a lethal dose of S. pneumoniae. This work opens up new paths for the clinical treatment of toxin-secreting bacteria.
Collapse
Affiliation(s)
- Yi Wu
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Wei Jiang
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Shaohu Huo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Shuya Li
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Youcui Xu
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Jing Zhou
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Hang Liu
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
| | - Weifu Lv
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China.
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China; Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
| |
Collapse
|