1
|
Liang J, Liu S, Du Z, Zhang R, Lv L, Sun L, Nabi M, Zhang G, Zhang P. Recent advances in methane and hydrogen production from lignocellulosic degradation with anaerobic fungi. BIORESOURCE TECHNOLOGY 2024; 413:131544. [PMID: 39341426 DOI: 10.1016/j.biortech.2024.131544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Anaerobic fungi (AF) efficiently degrade lignocellulosic biomass with unique pseudoroot system and enzymatic properties that can remove polysaccharides and some lignified components from plant cell walls, further releasing acetate, lactate, ethanol, hydrogen (H2), etc. As research on AF for bioengineering has become a hot topic, a review of lignocellulosic conversion with AF for methane (CH4) and H2 production is needed. Efficient degradation of lignocellulose with AF mainly relies on multiple free carbohydrate-active enzymes and cellulosomes in the free and bound state. Meanwhile, co-cultivation of AF and methanogens significantly improves the lignocellulose degradation and CH4 production, and the maximum CH4 yield reached 315 mL/g. Bioaugmentation of AF in anaerobic digestion increases the maximum CH4 yield by 330 %. Also, AF show H2 production potential, however, H2 yield from anaerobic fungal fermentation of lignocellulose remains low. Therefore, anaerobic fungi have great potential in the conversion of lignocellulosic biomass to CH4 and H2.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Shiqi Liu
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zhangping Du
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ru Zhang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Longyi Lv
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Li Sun
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Mohammad Nabi
- Environmental Science and Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Panyue Zhang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Li S, Wu T, Wu J, Chen W, Zhang D. Recognizing the biological barriers and pathophysiological characteristics of the gastrointestinal tract for the design and application of nanotherapeutics. Drug Deliv 2024; 31:2415580. [PMID: 39404464 PMCID: PMC11485891 DOI: 10.1080/10717544.2024.2415580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The gastrointestinal tract (GIT) is an important and complex system by which humans to digest food and absorb nutrients. The GIT is vulnerable to diseases, which may led to discomfort or even death in humans. Therapeutics for GIT disease treatment face multiple biological barriers, which significantly decrease the efficacy of therapeutics. Recognizing the biological barriers and pathophysiological characteristics of GIT may be helpful to design innovative therapeutics. Nanotherapeutics, which have special targeting and controlled therapeutic release profiles, have been widely used for the treatment of GIT diseases. Herein, we provide a comprehensive review of the biological barrier and pathophysiological characteristics of GIT, which may aid in the design of promising nanotherapeutics for GIT disease treatment. Furthermore, several typical diseases of the upper and lower digestive tracts, such as Helicobacter pylori infection and inflammatory bowel disease, were selected to investigate the application of nanotherapeutics for GIT disease treatment.
Collapse
Affiliation(s)
- Shan Li
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, Tibet Autonomous Region, China
| | - Tianyu Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingfeng Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
3
|
Han C, You J, Zhao A, Liao K, Ren H, Hu H. Intermittent polarization: A promising strategy for microbial electricity driven reduction of DOM toxicity in actual industrial wastewater. WATER RESEARCH 2024; 262:122099. [PMID: 39024670 DOI: 10.1016/j.watres.2024.122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Dissolved organic matter (DOM) in actual industrial wastewater comprises various compounds that trigger toxicity in aquatic organisms; thus, advanced treatment for reducing DOM toxicity is urgently needed to ensure safe effluent discharge. Herein, we successfully reduced the toxicity of DOM in actual industrial wastewater without external chemical addition by applying intermittent polarization to electrochemical bioreactors. The bioreactor operated under intermittent polarization effectively reduced the toxicity of DOM by 76.7 %, resulting in the toxicity of effluent DOM (determined by malformation rate of zebrafish larvae) reaching less than 3.5 %. Notably, DOM compounds with high double-bond equivalence (DBE ≥ 8) were identified as the key components responsible for the toxicity of DOM through ultrahigh-resolution mass spectrometry analysis. Insight into microbe-DOM interactions revealed that intermittent polarization promoted the microbial consumption of high-DBE components of DOM by both affecting microbial composition (β = -0.5421, p < 0.01) and function (β = -0.4831, p < 0.01), thus regulating effluent DOM toxicity. The study findings demonstrate that intermittent polarization is a promising strategy for microbial electricity-driven reduction of DOM toxicity in actual industrial wastewater to meet the increasing safety requirements of receiving waters.
Collapse
Affiliation(s)
- Chenglong Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Jiaqian You
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Aixia Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Kewei Liao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
4
|
Li Y, Guo Z, Liu X, Xu L, Zhu W, Cheng Y, Longland AC, Theodorou MK. Bioaugmentation protocols involving Methanobrevibacter thaueri and Pecoramyces ruminantium for investigating lignocellulose degradation and methane production from alfalfa stalks. BIORESOURCE TECHNOLOGY 2024; 408:131172. [PMID: 39079572 DOI: 10.1016/j.biortech.2024.131172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Two protocols involving batch cultures were used to investigate the bioaugmentation of methane production by Pecoramyces ruminantium, and Methanobrevibacter thaueri. Protocol I examined the effect of altering the proportion of the microbial constituents in inoculum on alfalfa stalk fermentations and showed a 25 % improvement in dry matter loss in cultures where the inoculum contained just 30 % of co-culture and 70 % of fungal monoculture. Protocol II involved consecutive cultures and alternating inoculations. This protocol resulted in 17-22 mL/g DM methane production with co-cultures a 30 % increase in methane relative to the fungal monoculture. Both protocols indicate that the co-culture rapidly dominated and was more resilient than the monoculture. Synergistic interaction between fungus and methanogen, promoted more efficient lignocellulose degradation and higher methane yield. This study highlighted the potential of microbial co-cultures for enhancing methane production from lignocellulosic biomass, offering a promising bioaugmentation strategy for improving biogas yields and waste valorization.
Collapse
Affiliation(s)
- Yuqi Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziqi Guo
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Liu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Xu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
| | | | - Michael K Theodorou
- Department of Agriculture and Environment, Harper Adams University, Newport TF10 8NB, UK
| |
Collapse
|
5
|
Zhang G, Li B, Yang Y, Zhang Z, Cheng D, Wang F, Wei Z, Mao N, Wang S, Liu X, Sun Y. Biodegradation of humic acids by Streptomyces rochei to promote the growth and yield of corn. Microbiol Res 2024; 286:127826. [PMID: 38964074 DOI: 10.1016/j.micres.2024.127826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Humic acids (HAs) are organic macromolecules that play an important role in improving soil properties, plant growth and agronomic parameters. However, the feature of relatively complex aromatic structure makes it difficult to be degraded, which restricts the promotion to the crop growth. Thus, exploring microorganisms capable of degrading HAs may be a potential solution. Here, a HAs-degrading strain, Streptomyces rochei L1, and its potential for biodegradation was studied by genomics, transcriptomics, and targeted metabolomics analytical approaches. The results showed that the high molecular weight HAs were cleaved to low molecular aliphatic and aromatic compounds and their derivatives. This cleavage may be associated with the laccase (KatE). In addition, the polysaccharide deacetylase (PdgA) catalyzes the removal of acetyl groups from specific sites on the HAs molecule, resulting in structural changes. The field experiment showed that the degraded HAs significantly promote the growth of corn seedlings and increase the corn yield by 3.6 %. The HAs-degrading products, including aromatic and low molecular weight aliphatic substances as well as secondary metabolites from S. rochei L1, might be the key components responsible for the corn promotion. Our findings will advance the application of HAs as soil nutrients for the green and sustainable agriculture.
Collapse
Affiliation(s)
- Guangming Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Baolei Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Yong Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Zhen Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Dujuan Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Furong Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ziyi Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ning Mao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Shiwei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| | - Xiaobo Liu
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Yanmei Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
6
|
Su Q, Zhuang DH, Li YC, Chen Y, Wang XY, Ge MX, Xue TY, Zhang QY, Liu XY, Yin FQ, Han YM, Gao ZL, Zhao L, Li YX, Lv MJ, Yang LQ, Xia TR, Luo YJ, Zhang Z, Kong QP. Gut microbiota contributes to high-altitude hypoxia acclimatization of human populations. Genome Biol 2024; 25:232. [PMID: 39198826 PMCID: PMC11350960 DOI: 10.1186/s13059-024-03373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The relationship between human gut microbiota and high-altitude hypoxia acclimatization remains highly controversial. This stems primarily from uncertainties regarding both the potential temporal changes in the microbiota under such conditions and the existence of any dominant or core bacteria that may assist in host acclimatization. RESULTS To address these issues, and to control for variables commonly present in previous studies which significantly impact the results obtained, namely genetic background, ethnicity, lifestyle, and diet, we conducted a 108-day longitudinal study on the same cohort comprising 45 healthy Han adults who traveled from lowland Chongqing, 243 masl, to high-altitude plateau Lhasa, Xizang, 3658 masl, and back. Using shotgun metagenomic profiling, we study temporal changes in gut microbiota composition at different timepoints. The results show a significant reduction in the species and functional diversity of the gut microbiota, along with a marked increase in functional redundancy. These changes are primarily driven by the overgrowth of Blautia A, a genus that is also abundant in six independent Han cohorts with long-term duration in lower hypoxia environment in Shigatse, Xizang, at 4700 masl. Further animal experiments indicate that Blautia A-fed mice exhibit enhanced intestinal health and a better acclimatization phenotype to sustained hypoxic stress. CONCLUSIONS Our study underscores the importance of Blautia A species in the gut microbiota's rapid response to high-altitude hypoxia and its potential role in maintaining intestinal health and aiding host adaptation to extreme environments, likely via anti-inflammation and intestinal barrier protection.
Collapse
Affiliation(s)
- Qian Su
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dao-Hua Zhuang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Yu-Chun Li
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yu Chen
- Department of Military Medical Geography, Army Health Service Training Base, Third Military Medical University, Chongqing, 400038, China
| | - Xia-Yan Wang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Ming-Xia Ge
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Ting-Yue Xue
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Qi-Yuan Zhang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xin-Yuan Liu
- Department of Military Medical Geography, Army Health Service Training Base, Third Military Medical University, Chongqing, 400038, China
| | - Fan-Qian Yin
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yi-Ming Han
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Zong-Liang Gao
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Long Zhao
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yong-Xuan Li
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Meng-Jiao Lv
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Li-Qin Yang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Tian-Rui Xia
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yong-Jun Luo
- Department of Military Medical Geography, Army Health Service Training Base, Third Military Medical University, Chongqing, 400038, China.
| | - Zhigang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Qing-Peng Kong
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
7
|
Chen X, Wang M, Luo L, Liu X, An L, Nie Y, Wu XL. The evolution of autonomy from two cooperative specialists in fluctuating environments. Proc Natl Acad Sci U S A 2024; 121:e2317182121. [PMID: 39172793 PMCID: PMC11363282 DOI: 10.1073/pnas.2317182121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
From microbes to humans, organisms perform numerous tasks for their survival, including food acquisition, migration, and reproduction. A complex biological task can be performed by either an autonomous organism or by cooperation among several specialized organisms. However, it remains unclear how autonomy and cooperation evolutionarily switch. Specifically, it remains unclear whether and how cooperative specialists can repair deleted genes through direct genetic exchange, thereby regaining metabolic autonomy. Here, we address this question by experimentally evolving a mutualistic microbial consortium composed of two specialists that cooperatively degrade naphthalene. We observed that autonomous genotypes capable of performing the entire naphthalene degradation pathway evolved from two cooperative specialists and dominated the community. This evolutionary transition was driven by the horizontal gene transfer (HGT) between the two specialists. However, this evolution was exclusively observed in the fluctuating environment alternately supplied with naphthalene and pyruvate, where mutualism and competition between the two specialists alternated. The naphthalene-supplied environment exerted selective pressure that favors the expansion of autonomous genotypes. The pyruvate-supplied environment promoted the coexistence and cell density of the cooperative specialists, thereby increasing the likelihood of HGT. Using a mathematical model, we quantitatively demonstrate that environmental fluctuations facilitate the evolution of autonomy through HGT when the relative growth rate and carrying capacity of the cooperative specialists allow enhanced coexistence and higher cell density in the competitive environment. Together, our results demonstrate that cooperative specialists can repair deleted genes through a direct genetic exchange under specific conditions, thereby regaining metabolic autonomy.
Collapse
Affiliation(s)
- Xiaoli Chen
- College of Engineering, Peking University, Beijing100871, China
- Institute of Ocean Research, Peking University, Beijing100871, China
| | - Miaoxiao Wang
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
| | - Laipeng Luo
- College of Engineering, Peking University, Beijing100871, China
| | - Xiaonan Liu
- College of Engineering, Peking University, Beijing100871, China
| | - Liyun An
- College of Architecture and Environment, Sichuan University, Chengdu610000, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing100871, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing100871, China
- Institute of Ocean Research, Peking University, Beijing100871, China
- Institute of Ecology, Peking University, Beijing100871, China
| |
Collapse
|
8
|
Anthony WE, Allison SD, Broderick CM, Chavez Rodriguez L, Clum A, Cross H, Eloe-Fadrosh E, Evans S, Fairbanks D, Gallery R, Gontijo JB, Jones J, McDermott J, Pett-Ridge J, Record S, Rodrigues JLM, Rodriguez-Reillo W, Shek KL, Takacs-Vesbach T, Blanchard JL. From soil to sequence: filling the critical gap in genome-resolved metagenomics is essential to the future of soil microbial ecology. ENVIRONMENTAL MICROBIOME 2024; 19:56. [PMID: 39095861 PMCID: PMC11295382 DOI: 10.1186/s40793-024-00599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Soil microbiomes are heterogeneous, complex microbial communities. Metagenomic analysis is generating vast amounts of data, creating immense challenges in sequence assembly and analysis. Although advances in technology have resulted in the ability to easily collect large amounts of sequence data, soil samples containing thousands of unique taxa are often poorly characterized. These challenges reduce the usefulness of genome-resolved metagenomic (GRM) analysis seen in other fields of microbiology, such as the creation of high quality metagenomic assembled genomes and the adoption of genome scale modeling approaches. The absence of these resources restricts the scale of future research, limiting hypothesis generation and the predictive modeling of microbial communities. Creating publicly available databases of soil MAGs, similar to databases produced for other microbiomes, has the potential to transform scientific insights about soil microbiomes without requiring the computational resources and domain expertise for assembly and binning.
Collapse
Affiliation(s)
| | - Steven D Allison
- University of California Irvine, Irvine, CA, USA
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Caitlin M Broderick
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | | | - Alicia Clum
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hugh Cross
- National Ecological Observatory Network - Battelle, Boulder, CO, USA
| | | | - Sarah Evans
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Dawson Fairbanks
- University of California Riverside, Riverside, CA, USA
- The University of Arizona, Tucson, AZ, USA
| | | | | | - Jennifer Jones
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Jason McDermott
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jennifer Pett-Ridge
- Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, 95343, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Kim M, Cha IT, Li M, Park SJ. Unraveling interspecies cross-feeding during anaerobic lignin degradation for bioenergy applications. CHEMOSPHERE 2024; 361:142588. [PMID: 38866340 DOI: 10.1016/j.chemosphere.2024.142588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Lignin, a major component of plant biomass, remains underutilized for renewable biofuels due to its complex and heterogeneous structure. Although investigations into depolymerizing lignin using fungi are well-established, studies of microbial pathways that enable anaerobic lignin breakdown linked with methanogenesis are limited. Through an enrichment cultivation approach with inoculation of freshwater sediment, we enriched a microbial community capable of producing methane during anaerobic lignin degradation. We reconstructed the near-complete population genomes of key lignin degraders and methanogens using metagenome-assembled genomes finally selected in this study (MAGs; 92 bacterial and 4 archaeal MAGs affiliated into 45 and 2 taxonomic groups, respectively). This study provides genetic evidence of microbial interdependence in conversion of lignin to methane in a syntrophic community. Metagenomic analysis revealed metabolic linkages, with lignin-hydrolyzing and/or fermentative bacteria such as the genera Alkalibaculum and Propionispora transforming lignin breakdown products into compounds such as acetate to feed methanogens (two archaeal MAGs classified into the genus Methanosarcina or UBA6 of the family Methanomassiliicoccaceae). Understanding the synergistic relationships between microbes that convert lignin could inform strategies for producing renewable bioenergy and treating aromatic-contaminated environments through anaerobic biodegradation processes. Overall, this study offers fundamental insights into complex community-level anaerobic lignin metabolism, highlighting hitherto unknown players, interactions, and pathways in this biotechnologically valuable process.
Collapse
Affiliation(s)
- Minji Kim
- Department of Biology, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, South Korea
| | - In-Tae Cha
- Climate Change and Environmental Biology Research Division, National Institute of Biological Resources, Incheon, 22689, South Korea
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Soo-Je Park
- Department of Biology, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, South Korea.
| |
Collapse
|
10
|
Gruninger RJ, Kevorkova M, Low KE, Jones DR, Worrall L, McAllister TA, Abbott DW. Structural, Biochemical, and Phylogenetic Analysis of Bacterial and Fungal Carbohydrate Esterase Family 15 Glucuronoyl Esterases in the Rumen. Protein J 2024; 43:910-922. [PMID: 39153129 PMCID: PMC11345330 DOI: 10.1007/s10930-024-10221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/19/2024]
Abstract
Glucuronoyl esterases (GEs) are carbohydrate active enzymes in carbohydrate esterase family 15 which are involved in the hydrolysis of lignin-carbohydrate complexes. They are encoded by a wide range of aerobic and anaerobic fungi and bacteria inhabiting diverse environments. The rumen microbiome is a complex microbial community with a wide array of enzymes that specialize in deconstructing plant cell wall carbohydrates. Enzymes from the rumen tend to show low similarity to homologues found in other environments, making the rumen microbiome a promising source for the discovery of novel enzymes. Using a combination of phylogenetic and structural analysis, we investigated the structure-function relationship of GEs from the rumen bacteria Fibrobacter succinogenes and Ruminococcus flavefaciens, and from the rumen fungus, Piromyces rhizinflata. All adopt a canonical α/β hydrolase fold and possess a structurally conserved Ser-His-Glu/Asp catalytic triad. Structural variations in the enzymes are localized to loops surrounding the active site. Analysis of the active site structures in these enzymes emphasized the importance of structural plasticity in GEs with non-canonical active site conformations. We hypothesize that interkingdom HGT events may have contributed to the diversity of GEs in the rumen, and this is demonstrated by the phylogenetic and structural similarity observed between rumen bacterial and fungal GEs. This study advances our understanding of the structure-function relationship in glucuronoyl esterases and illuminates the evolutionary dynamics that contribute to enzyme diversity in the rumen microbiome.
Collapse
Affiliation(s)
- Robert J Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
| | - Maya Kevorkova
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Darryl R Jones
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Liam Worrall
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
11
|
Nanetti E, Scicchitano D, Palladino G, Interino N, Corlatti L, Pedrotti L, Zanetti F, Pagani E, Esposito E, Brambilla A, Grignolio S, Marotti I, Turroni S, Fiori J, Rampelli S, Candela M. The Alpine ibex (Capra ibex) gut microbiome, seasonal dynamics, and potential application in lignocellulose bioconversion. iScience 2024; 27:110194. [PMID: 38989465 PMCID: PMC11233967 DOI: 10.1016/j.isci.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Aiming to shed light on the biology of wild ruminants, we investigated the gut microbiome seasonal dynamics of the Alpine ibex (Capra ibex) from the Central Italian Alps. Feces were collected in spring, summer, and autumn during non-invasive sampling campaigns. Samples were analyzed by 16S rRNA amplicon sequencing, shotgun metagenomics, as well as targeted and untargeted metabolomics. Our findings revealed season-specific compositional and functional profiles of the ibex gut microbiome that may allow the host to adapt to seasonal changes in available forage, by fine-tuning the holobiont catabolic layout to fully exploit the available food. Besides confirming the importance of the host-associated microbiome in providing the phenotypic plasticity needed to buffer dietary changes, we obtained species-level genome bins and identified minimal gut microbiome community modules of 11-14 interacting strains as a possible microbiome-based solution for the bioconversion of lignocellulose to high-value compounds, such as volatile fatty acids.
Collapse
Affiliation(s)
- Enrico Nanetti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Daniel Scicchitano
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032 Fano, Italy
| | - Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032 Fano, Italy
| | - Nicolò Interino
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Luca Corlatti
- Stelvio National Park, 23032 Bormio, Italy
- University of Freiburg, 79098 Freiburg, Germany
| | | | - Federica Zanetti
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127 Bologna, Italy
| | - Elena Pagani
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127 Bologna, Italy
| | - Erika Esposito
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Alice Brambilla
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (CH), Switzerland
- Centro Studi Fauna Alpina, Parco Nazionale Gran Paradiso, Loc. Degioz 11, 11010 Valsavarenche, Aosta, Italy
| | - Stefano Grignolio
- University of Ferrara, Department of Life Science and Biotechnology, via Borsari 46, I-44121 Ferrara, Italy
| | - Ilaria Marotti
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127 Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Jessica Fiori
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032 Fano, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032 Fano, Italy
| |
Collapse
|
12
|
Mubayi V, Ahern CB, Calusinska M, O’Malley MA. Toward a Circular Bioeconomy: Designing Microbes and Polymers for Biodegradation. ACS Synth Biol 2024; 13:1978-1993. [PMID: 38918080 PMCID: PMC11264326 DOI: 10.1021/acssynbio.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Polymer production is rapidly increasing, but there are no large-scale technologies available to effectively mitigate the massive accumulation of these recalcitrant materials. One potential solution is the development of a carbon-neutral polymer life cycle, where microorganisms convert plant biomass to chemicals, which are used to synthesize biodegradable materials that ultimately contribute to the growth of new plants. Realizing a circular carbon life cycle requires the integration of knowledge across microbiology, bioengineering, materials science, and organic chemistry, which itself has hindered large-scale industrial advances. This review addresses the biodegradation status of common synthetic polymers, identifying novel microbes and enzymes capable of metabolizing these recalcitrant materials and engineering approaches to enhance their biodegradation pathways. Design considerations for the next generation of biodegradable polymers are also reviewed, and finally, opportunities to apply findings from lignocellulosic biodegradation to the design and biodegradation of similarly recalcitrant synthetic polymers are discussed.
Collapse
Affiliation(s)
- Vikram Mubayi
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Colleen B. Ahern
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Magdalena Calusinska
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Environmental
Research and Innovation Department, Luxembourg
Institute of Science and Technology, L-4422 Belvaux, Luxembourg
| | - Michelle A. O’Malley
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department
of Bioengineering, University of California, Santa Barbara, California 93106, United States
- Joint
BioEnergy Institute (JBEI), Emeryville, California 94608, United States
| |
Collapse
|
13
|
Li K, Du H, Guo W, Na M, Na R. Alfalfa supplementation timing changes the rumen archaeal and fungal community composition and colonization in pre-weaning lambs. Front Microbiol 2024; 15:1380322. [PMID: 38784814 PMCID: PMC11112515 DOI: 10.3389/fmicb.2024.1380322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The establishment of the rumen microbiota plays an important role in the rumen development. However, little is known about the effects of alfalfa supplementation time on rumen microbiota establishment. Here, a total of 42 Hu lambs, seven-day-old, were chosen for the study. After a week of adjustment, six lambs were sacrificed to establish a baseline. The remaining 36 lambs were randomly split into two groups: one receiving alfalfa hay at 14 days (EAF), the other at 42 days (LAF), both groups received milk replacer and starter pellets. Introducing alfalfa at 14 days of age significantly improved total dry matter intake between 28 and 42 days (p = 0.04) and average daily gain from both 14 to 28 days (p = 0.04) and 28 to 42 days (p < 0.01), but this effect disappears from 56 to 70 days (p > 0.05). At 42 days, the abundances of Naganishia, Ascochyta, and Neosetophoma in the EAF group were significantly higher (p < 0.05) than those in the LAF group (17.8% vs. 3.97, 10.89% vs. 1.77, and 1.27% vs. 0.09%, respectively). At 56 days, the abundances of Ascochyta, Wallemia, and Aspergillus in the EAF group were significantly lower (p < 0.05) than in the LAF group (3.53% vs. 16.40, 8.78% vs. 18.89, and 2.14% vs. 4.69%). At 70 days, Aspergillus abundance in the EAF group was significantly higher (p < 0.05) than in the LAF group (2.69% vs. 0.85%). The LEfSe analysis showed that Methanobrevibacter_smithii was the archaeal biomarker at 14 days in both groups. Methanobrevibacter_sp_AbM4 was enriched at 56 days in the LAF group. Compared to the LAF group, the specific fungal biomarkers in the EAF group included Sporobolomyces and Bullera at 14 days, Naganishia, Didymella, Cleistothelebolus, and Alloleptosphaeria at 42 days, Ascochyta, Neoascochyta, and Alfaria at 70 days. Correlation analysis results showed strong patterns of association both within and between archaea and fungi, which were influenced by alfalfa supplementation time. In summary, alfalfa supplementation at 14 days of age promotes the growth performance of lambs before weaning, and alfalfa supplementation timing significantly affects rumen archaeal and fungal communities and dynamical changes.
Collapse
Affiliation(s)
| | | | | | | | - Renhua Na
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
14
|
Ma M, An N, Wang Y, Zhao C, Cui Z, Zhou W, Gu M, Li Q. Sulfur-containing iron carbon nanocomposites activate persulfate for combined chemical oxidation and microbial remediation of petroleum-polluted soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133889. [PMID: 38422735 DOI: 10.1016/j.jhazmat.2024.133889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
In this study, sulfur-containing iron carbon nanocomposites (S@Fe-CN) were synthesized by calcining iron-loaded biomass and utilized to activate persulfate (PS) for the combined chemical oxidation and microbial remediation of petroleum-polluted soil. The highest removal efficiency of total petroleum hydrocarbons (TPHs) was achieved at 0.2% of activator, 1% of PS and 1:1 soil-water ratio. The EPR and quenching experiments demonstrated that the degradation of TPHs was caused by the combination of 1O2,·OH, SO4·-, and O2·-. In the S@Fe-CN activated PS (S@Fe-CN/PS) system, the degradation of TPHs underwent two phases: chemical oxidation (days 0 to 3) and microbial degradation (days 3 to 28), with kinetic constants consistent with the pseudo-first-order kinetics of chemical and microbial remediation, respectively. In the S@Fe-CN/PS system, soil enzyme activities decreased and then increased, indicating that microbial activities were restored after chemical oxidation under the protection of the activators. The microbial community analysis showed that the S@Fe-CN/PS group affected the abundance and structure of microorganisms, with the relative abundance of TPH-degrading bacteria increased after 28 days. Moreover, S@Fe-CN/PS enhanced the microbial interactions and mitigated microbial competition, thereby improving the ability of indigenous microorganisms to degrade TPHs.
Collapse
Affiliation(s)
- Mengyu Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Ning An
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Yanqin Wang
- Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Chao Zhao
- Shandong Provincial Soil Pollution Prevention and Control Centre, Jinan 250012, PR China
| | - Zhaojie Cui
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan 250100, PR China
| | - Meixia Gu
- Sinopec Petroleum Engineering & Design Co., Ltd., Dongying 257100, PR China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China.
| |
Collapse
|
15
|
Wu Y, Gao N, Sun C, Feng T, Liu Q, Chen WH. A compendium of ruminant gastrointestinal phage genomes revealed a higher proportion of lytic phages than in any other environments. MICROBIOME 2024; 12:69. [PMID: 38576042 PMCID: PMC10993611 DOI: 10.1186/s40168-024-01784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Ruminants are important livestock animals that have a unique digestive system comprising multiple stomach compartments. Despite significant progress in the study of microbiome in the gastrointestinal tract (GIT) sites of ruminants, we still lack an understanding of the viral community of ruminants. Here, we surveyed its viral ecology using 2333 samples from 10 sites along the GIT of 8 ruminant species. RESULTS We present the Unified Ruminant Phage Catalogue (URPC), a comprehensive survey of phages in the GITs of ruminants including 64,922 non-redundant phage genomes. We characterized the distributions of the phage genomes in different ruminants and GIT sites and found that most phages were organism-specific. We revealed that ~ 60% of the ruminant phages were lytic, which was the highest as compared with those in all other environments and certainly will facilitate their applications in microbial interventions. To further facilitate the future applications of the phages, we also constructed a comprehensive virus-bacteria/archaea interaction network and identified dozens of phages that may have lytic effects on methanogenic archaea. CONCLUSIONS The URPC dataset represents a useful resource for future microbial interventions to improve ruminant production and ecological environmental qualities. Phages have great potential for controlling pathogenic bacterial/archaeal species and reducing methane emissions. Our findings provide insights into the virome ecology research of the ruminant GIT and offer a starting point for future research on phage therapy in ruminants. Video Abstract.
Collapse
Affiliation(s)
- Yingjian Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center for Artificial Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Na Gao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Chuqing Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center for Artificial Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Tong Feng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center for Artificial Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center for Artificial Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
16
|
Baril T, Galbraith J, Hayward A. Earl Grey: A Fully Automated User-Friendly Transposable Element Annotation and Analysis Pipeline. Mol Biol Evol 2024; 41:msae068. [PMID: 38577785 PMCID: PMC11003543 DOI: 10.1093/molbev/msae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/20/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024] Open
Abstract
Transposable elements (TEs) are major components of eukaryotic genomes and are implicated in a range of evolutionary processes. Yet, TE annotation and characterization remain challenging, particularly for nonspecialists, since existing pipelines are typically complicated to install, run, and extract data from. Current methods of automated TE annotation are also subject to issues that reduce overall quality, particularly (i) fragmented and overlapping TE annotations, leading to erroneous estimates of TE count and coverage, and (ii) repeat models represented by short sections of total TE length, with poor capture of 5' and 3' ends. To address these issues, we present Earl Grey, a fully automated TE annotation pipeline designed for user-friendly curation and annotation of TEs in eukaryotic genome assemblies. Using nine simulated genomes and an annotation of Drosophila melanogaster, we show that Earl Grey outperforms current widely used TE annotation methodologies in ameliorating the issues mentioned above while scoring highly in benchmarking for TE annotation and classification and being robust across genomic contexts. Earl Grey provides a comprehensive and fully automated TE annotation toolkit that provides researchers with paper-ready summary figures and outputs in standard formats compatible with other bioinformatics tools. Earl Grey has a modular format, with great scope for the inclusion of additional modules focused on further quality control and tailored analyses in future releases.
Collapse
Affiliation(s)
- Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - James Galbraith
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Alex Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| |
Collapse
|
17
|
Liang J, Zhang R, Chang J, Chen L, Nabi M, Zhang H, Zhang G, Zhang P. Rumen microbes, enzymes, metabolisms, and application in lignocellulosic waste conversion - A comprehensive review. Biotechnol Adv 2024; 71:108308. [PMID: 38211664 DOI: 10.1016/j.biotechadv.2024.108308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
The rumen of ruminants is a natural anaerobic fermentation system that efficiently degrades lignocellulosic biomass and mainly depends on synergistic interactions between multiple microbes and their secreted enzymes. Ruminal microbes have been employed as biomass waste converters and are receiving increasing attention because of their degradation performance. To explore the application of ruminal microbes and their secreted enzymes in biomass waste, a comprehensive understanding of these processes is required. Based on the degradation capacity and mechanism of ruminal microbes and their secreted lignocellulose enzymes, this review concentrates on elucidating the main enzymatic strategies that ruminal microbes use for lignocellulose degradation, focusing mainly on polysaccharide metabolism-related gene loci and cellulosomes. Hydrolysis, acidification, methanogenesis, interspecific H2 transfer, and urea cycling in ruminal metabolism are also discussed. Finally, we review the research progress on the conversion of biomass waste into biofuels (bioethanol, biohydrogen, and biomethane) and value-added chemicals (organic acids) by ruminal microbes. This review aims to provide new ideas and methods for ruminal microbe and enzyme applications, biomass waste conversion, and global energy shortage alleviation.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ru Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Mohammad Nabi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
18
|
Dar MA, Xie R, Zabed HM, Ali S, Zhu D, Sun J. Termite Microbial Symbiosis as a Model for Innovative Design of Lignocellulosic Future Biorefinery: Current Paradigms and Future Perspectives. BIOMASS 2024; 4:180-201. [DOI: 10.3390/biomass4010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The hunt for renewable and alternative fuels has driven research towards the biological conversion of lignocellulosic biomass (LCB) into biofuels, including bioethanol and biohydrogen. Among the natural biomass utilization systems (NBUS), termites represent a unique and easy-to-access model system to study host–microbe interactions towards lignocellulose bioconversion/valorization. Termites have gained significant interest due to their highly efficient lignocellulolytic systems. The wood-feeding termites apply a unique and stepwise process for the hydrolysis of lignin, hemicellulose, and cellulose via biocatalytic processes; therefore, mimicking their digestive metabolism and physiochemical gut environments might lay the foundation for an innovative design of nature-inspired biotechnology. This review highlights the gut system of termites, particularly the wood-feeding species, as a unique model for future biorefinery. The gut system of termites is a treasure-trove for prospecting novel microbial species, including protists, bacteria, and fungi, having higher biocatalytic efficiencies and biotechnological potentials. The significance of potential bacteria and fungi for harnessing the enzymes appropriate for lignocellulosic biorefinery is also discussed. Termite digestomes are rich sources of lignocellulases and related enzymes that could be utilized in various industrial processes and biomass-related applications. Consideration of the host and symbiont as a single functioning unit will be one of the most crucial strategies to expedite developments in termite-modeled biotechnology in the future.
Collapse
Affiliation(s)
- Mudasir A. Dar
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rongrong Xie
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hossain M. Zabed
- School of Life Science, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Shehbaz Ali
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
19
|
Liu N, Kivenson V, Peng X, Cui Z, Lankiewicz TS, Gosselin KM, English CJ, Blair EM, O'Malley MA, Valentine DL. Pontiella agarivorans sp. nov., a novel marine anaerobic bacterium capable of degrading macroalgal polysaccharides and fixing nitrogen. Appl Environ Microbiol 2024; 90:e0091423. [PMID: 38265213 PMCID: PMC10880615 DOI: 10.1128/aem.00914-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024] Open
Abstract
Marine macroalgae produce abundant and diverse polysaccharides, which contribute substantially to the organic matter exported to the deep ocean. Microbial degradation of these polysaccharides plays an important role in the turnover of macroalgal biomass. Various members of the Planctomycetes-Verrucomicrobia-Chlamydia (PVC) superphylum are degraders of polysaccharides in widespread anoxic environments. In this study, we isolated a novel anaerobic bacterial strain NLcol2T from microbial mats on the surface of marine sediments offshore Santa Barbara, CA, USA. Based on 16S ribosomal RNA (rRNA) gene and phylogenomic analyses, strain NLcol2T represents a novel species within the Pontiella genus in the Kiritimatiellota phylum (within the PVC superphylum). Strain NLcol2T is able to utilize various monosaccharides, disaccharides, and macroalgal polysaccharides such as agar and ɩ-carrageenan. A near-complete genome also revealed an extensive metabolic capacity for anaerobic degradation of sulfated polysaccharides, as evidenced by 202 carbohydrate-active enzymes (CAZymes) and 165 sulfatases. Additionally, its ability of nitrogen fixation was confirmed by nitrogenase activity detected during growth on nitrogen-free medium, and the presence of nitrogenases (nifDKH) encoded in the genome. Based on the physiological and genomic analyses, this strain represents a new species of bacteria that may play an important role in the degradation of macroalgal polysaccharides and with relevance to the biogeochemical cycling of carbon, sulfur, and nitrogen in marine environments. Strain NLcol2T (= DSM 113125T = MCCC 1K08672T) is proposed to be the type strain of a novel species in the Pontiella genus, and the name Pontiella agarivorans sp. nov. is proposed.IMPORTANCEGrowth and intentional burial of marine macroalgae is being considered as a carbon dioxide reduction strategy but elicits concerns as to the fate and impacts of this macroalgal carbon in the ocean. Diverse heterotrophic microbial communities in the ocean specialize in these complex polymers such as carrageenan and fucoidan, for example, members of the Kiritimatiellota phylum. However, only four type strains within the phylum have been cultivated and characterized to date, and there is limited knowledge about the metabolic capabilities and functional roles of related organisms in the environment. The new isolate strain NLcol2T expands the known substrate range of this phylum and further reveals the ability to fix nitrogen during anaerobic growth on macroalgal polysaccharides, thereby informing the issue of macroalgal carbon disposal.
Collapse
Affiliation(s)
- Na Liu
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Veronika Kivenson
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Xuefeng Peng
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - Zhisong Cui
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao, China
| | - Thomas S. Lankiewicz
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Kelsey M. Gosselin
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Chance J. English
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Department of Ecology Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| | - Elaina M. Blair
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Michelle A. O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
- Biological Engineering Program, University of California, Santa Barbara, California, USA
| | - David L. Valentine
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Department of Earth Science, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
20
|
Jennings SAV, Clavel T. Synthetic Communities of Gut Microbes for Basic Research and Translational Approaches in Animal Health and Nutrition. Annu Rev Anim Biosci 2024; 12:283-300. [PMID: 37963399 DOI: 10.1146/annurev-animal-021022-025552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Microbes and animals have a symbiotic relationship that greatly influences nutrient uptake and animal health. This relationship can be studied using selections of microbes termed synthetic communities, or SynComs. SynComs are used in many different animal hosts, including agricultural animals, to investigate microbial interactions with nutrients and how these affect animal health. The most common host focuses for SynComs are currently mouse and human, from basic mechanistic research through to translational disease models and live biotherapeutic products (LBPs) as treatments. We discuss SynComs used in basic research models and findings that relate to human and animal health and nutrition. Translational use cases of SynComs are discussed, followed by LBPs, especially within the context of agriculture. SynComs still face challenges, such as standardization for reproducibility and contamination risks. However, the future of SynComs is hopeful, especially in the areas of genome-guided SynCom design and custom SynCom-based treatments.
Collapse
Affiliation(s)
- Susan A V Jennings
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany;
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany;
| |
Collapse
|
21
|
Liang J, Zhang P, Zhang R, Chang J, Chen L, Wang G, Tian Y, Zhang G. Response of rumen microorganisms to pH during anaerobic hydrolysis and acidogenesis of lignocellulose biomass. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:476-486. [PMID: 38128366 DOI: 10.1016/j.wasman.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Rumen microorganisms can efficiently degrade lignocellulosic wastes to produce volatile fatty acids (VFAs). pH is a key factor in controlling the type and yield of VFAs by affecting the microorganisms involved in rumen fermentation. However, the effects of different pH on rumen microbial diversity, communities, and mechanisms are unclear. In this study, the hydrolysis and acidogenesis of corn straw and diversity, communities, and mechanisms of rumen microorganisms were explored at different initial pHs. Results showed that the highest hemicellulose, cellulose, and lignin degradation efficiency of corn straw was 55.2 %, 38.3 %, and 7.01 %, respectively, and VFA concentration was 10.2 g/L at pH 7.0. Low pH decreased the bacterial diversity and increased the fungal diversity. Rumen bacteria and fungi had different responses to initial pHs, and the community structure of bacteria and fungi had obviously differences at the genus level. The core genera Succiniclasticum, Treponema, and Neocallimastix relative abundance at initial pH 7.0 samples were significantly higher than that at lower initial pHs, reaching 6.01 %, 1.61 %, and 5.35 %, respectively. The bacterial network was more complex than that of fungi. pH, acetic acid, and propionic acid were the main factors influencing the bacterial and fungal community structure. Low pH inhibited the expression of functional genes related to hydrolysis and acidogenesis, explaining the lower hydrolysis and acidogenesis efficiency. These findings will provide a better understanding for rumen fermentation to produce VFAs.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Ru Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jianning Chang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Le Chen
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Gongting Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
22
|
Wang R, Huang D, Chen C, Song D, Peng H, He M, Huang X, Huang Z, Wang B, Lan H, Tang P. From transients to permanent residents: the existence of obligate aerobic microorganisms in the goat rumen. Front Microbiol 2024; 15:1325505. [PMID: 38318339 PMCID: PMC10839086 DOI: 10.3389/fmicb.2024.1325505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
The rumen serves as a complex ecosystem, harboring diverse microbial communities that play crucial ecological roles. Because previous studies have predominantly focused on anaerobic microorganisms, limited attention has been given to aerobic microorganisms in the goat rumen. This study aims to explore the diversity of aerobic microorganisms in the rumen and understand their niche and ecological roles. Rumen fluid samples were collected from 6 goats at different time points post-morning feeding. pH, NH3-N, and volatile fatty acid (TVFA) concentrations were measured, while In vitro cultivation of aerobic microorganisms was performed using PDA medium. Internal Transcribed Spacer (ITS) and 16S sequencing unveiled microbial diversity within the rumen fluid samples. Evidence of obligate aerobic microorganisms in the goat rumen suggests their potential contribution to ecological functionalities. Significantly, certain aerobic microorganisms exhibited correlations with TVFA levels, implying their involvement in TVFA metabolism. This study provides evidence of the existence and potential ecological roles of obligate aerobic microorganisms in the goat rumen. The findings underscore the significance of comprehensively deciphering goat rumen microbial communities and their interactions, with aerobes regarded as permanent residents rather than transients. These insights form a solid foundation for advancing our understanding of the intricate interplay between goat and their aerobic microorganisms in the rumen.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ping Tang
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| |
Collapse
|
23
|
Wang M, Chen X, Fang Y, Zheng X, Huang T, Nie Y, Wu XL. The trade-off between individual metabolic specialization and versatility determines the metabolic efficiency of microbial communities. Cell Syst 2024; 15:63-74.e5. [PMID: 38237552 DOI: 10.1016/j.cels.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/17/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
In microbial systems, a metabolic pathway can be either completed by one autonomous population or distributed among a consortium performing metabolic division of labor (MDOL). MDOL facilitates the system's function by reducing the metabolic burden; however, it may hinder the function by reducing the exchange efficiency of metabolic intermediates among individuals. As a result, the function of a community is influenced by the trade-offs between the metabolic specialization and versatility of individuals. To experimentally test this hypothesis, we deconstructed the naphthalene degradation pathway into four steps and introduced them individually or combinatorically into different strains with varying levels of metabolic specialization. Using these strains, we engineered 1,456 synthetic consortia and found that 74 consortia exhibited higher degradation function than both the autonomous population and rigorous MDOL consortium. Quantitative modeling provides general strategies for identifying the most effective MDOL configuration. Our study provides critical insights into the engineering of high-performance microbial systems.
Collapse
Affiliation(s)
- Miaoxiao Wang
- College of Engineering, Peking University, Beijing 100871, China; Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland; Department of Environmental Microbiology, Eawag, Dübendorf 8600, Switzerland
| | - Xiaoli Chen
- College of Engineering, Peking University, Beijing 100871, China; Institute of Ocean Research, Peking University, Beijing 100871, China
| | - Yuan Fang
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230000, China
| | - Xin Zheng
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230000, China
| | - Ting Huang
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230000, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing 100871, China.
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing 100871, China; Institute of Ocean Research, Peking University, Beijing 100871, China; Institute of Ecology, Peking University, Beijing 100871, China.
| |
Collapse
|
24
|
Zheng J, Huang L, Yi H, Yan Y, Zhang X, Akresi J, Yin Y. Carbohydrate-active enzyme annotation in microbiomes using dbCAN. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575125. [PMID: 38260309 PMCID: PMC10802576 DOI: 10.1101/2024.01.10.575125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
CAZymes or carbohydrate-active enzymes are critically important for human gut health, lignocellulose degradation, global carbon recycling, soil health, and plant disease. We developed dbCAN as a web server in 2012 and actively maintain it for automated CAZyme annotation. Considering data privacy and scalability, we provide run_dbcan as a standalone software package since 2018 to allow users perform more secure and scalable CAZyme annotation on their local servers. Here, we offer a comprehensive computational protocol on automated CAZyme annotation of microbiome sequencing data, covering everything from short read pre-processing to data visualization of CAZyme and glycan substrate occurrence and abundance in multiple samples. Using a real-world metagenomic sequencing dataset, this protocol describes commands for dataset and software preparation, metagenome assembly, gene prediction, CAZyme prediction, CAZyme gene cluster (CGC) prediction, glycan substrate prediction, and data visualization. The expected results include publication-quality plots for the abundance of CAZymes, CGCs, and substrates from multiple CAZyme annotation routes (individual sample assembly, co-assembly, and assembly-free). For the individual sample assembly route, this protocol takes ∼33h on a Linux computer with 40 CPUs, while other routes will be faster. This protocol does not require programming experience from users, but it does assume a familiarity with the Linux command-line interface and the ability to run Python scripts in the terminal. The target audience includes the tens of thousands of microbiome researchers who routinely use our web server. This protocol will encourage them to perform more secure, rapid, and scalable CAZyme annotation on their local computer servers.
Collapse
|
25
|
Jiao J, Wu J, Zhou C, He Z, Tan Z, Wang M. Ecological niches and assembly dynamics of diverse microbial consortia in the gastrointestine of goat kids. THE ISME JOURNAL 2024; 18:wrae002. [PMID: 38365259 PMCID: PMC10872696 DOI: 10.1093/ismejo/wrae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 02/18/2024]
Abstract
Goats are globally invaluable ruminants that balance food security and environmental impacts, and their commensal microbiome residing in the gastrointestinal tract (GIT) is associated with animal health and productivity. However, the reference genomes and functional repertoires of GIT microbes in goat kids have not been fully elucidated. Herein, we performed a comprehensive landscape survey of the GIT microbiome of goat kids using metagenomic sequencing and binning, spanning a dense sampling regime covering three gastrointestinal compartments spatially and five developmental ages temporally. We recovered 1002 high-quality metagenome-assembled genomes (termed the goat kid GIT microbial catalog [GKGMC]), 618 of which were novel. They encode more than 2.3 million nonredundant proteins, and represent a variety of carbohydrate-degrading enzymes and metabolic gene clusters. The GKGMC-enriched microbial taxa, particularly Sodaliphilus, expanded the microbial tree of life in goat kids. Using this GKGMC, we first deciphered the prevalence of fiber-degrading bacteria for carbohydrate decomposition in the rumen and colon, while the ileal microbiota specialized in the uptake and conversion of simple sugars. Moreover, GIT microorganisms were rapidly assembled after birth, and their carbohydrate metabolic adaptation occurred in three phases of progression. Finally, phytobiotics modified the metabolic cascades of the ileal microbiome, underpinned by the enrichment of Sharpea azabuensis and Olsenella spp. implicated in lactate formation and utilization. This GKGMC reference provides novel insights into the early-life microbial developmental dynamics in distinct compartments, and offers expanded resources for GIT microbiota-related research in goat kids.
Collapse
Affiliation(s)
- Jinzhen Jiao
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, P. R. China
| | - Jian Wu
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, P. R. China
| | - Chuanshe Zhou
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zhixiong He
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zhiliang Tan
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Min Wang
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
26
|
Li M, Liang H, Yang H, Ding Q, Xia R, Chen J, Zhou W, Yang Y, Zhang Z, Yao Y, Ran C, Zhou Z. Deciphering the gut microbiome of grass carp through multi-omics approach. MICROBIOME 2024; 12:2. [PMID: 38167330 PMCID: PMC10763231 DOI: 10.1186/s40168-023-01715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/03/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Aquaculture plays an important role in global protein supplies and food security. The ban on antibiotics as feed additive proposes urgent need to develop alternatives. Gut microbiota plays important roles in the metabolism and immunity of fish and has the potential to give rise to novel solutions for challenges confronted by fish culture. However, our understanding of fish gut microbiome is still lacking. RESULTS We identified 575,856 non-redundant genes by metagenomic sequencing of the intestinal content samples of grass carp. Taxonomic and functional annotation of the gene catalogue revealed specificity of the gut microbiome of grass carp compared with mammals. Co-occurrence analysis indicated exclusive relations between the genera belonging to Proteobacteria and Fusobacteria/Firmicutes/Bacteroidetes, suggesting two independent ecological groups of the microbiota. The association pattern of Proteobacteria with the gene expression modules of fish gut and the liver was consistently opposite to that of Fusobacteria, Firmicutes, and Bacteroidetes, implying differential functionality of Proteobacteria and Fusobacteria/Firmicutes/Bacteroidetes. Therefore, the two ecological groups were considered as two functional groups, i.e., Functional Group 1: Proteobacteria and Functional Group 2: Fusobacteria/Firmicutes/Bacteroidetes. Further analysis revealed that the two functional groups differ in genetic capacity for carbohydrate utilization, virulence factors, and antibiotic resistance. Finally, we proposed that the ratio of "Functional Group 2/Functional Group 1" can be used as a biomarker that efficiently reflects the structural and functional characteristics of the microbiota of grass carp. CONCLUSIONS The gene catalogue is an important resource for investigating the gut microbiome of grass carp. Multi-omics analysis provides insights into functional implications of the main phyla that comprise the fish microbiota and shed lights on targets for microbiota regulation. Video Abstract.
Collapse
Affiliation(s)
- Ming Li
- China-Norway Joint Lab On Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Liang
- China-Norway Joint Lab On Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongwei Yang
- China-Norway Joint Lab On Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qianwen Ding
- Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rui Xia
- China-Norway Joint Lab On Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Chen
- China-Norway Joint Lab On Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenhao Zhou
- China-Norway Joint Lab On Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yalin Yang
- Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhen Zhang
- Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuanyuan Yao
- Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Ran
- Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhigang Zhou
- China-Norway Joint Lab On Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
27
|
Díaz-García L, Chuvochina M, Feuerriegel G, Bunk B, Spröer C, Streit WR, Rodriguez-R LM, Overmann J, Jiménez DJ. Andean soil-derived lignocellulolytic bacterial consortium as a source of novel taxa and putative plastic-active enzymes. Syst Appl Microbiol 2024; 47:126485. [PMID: 38211536 DOI: 10.1016/j.syapm.2023.126485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
An easy and straightforward way to engineer microbial environmental communities is by setting up liquid enrichment cultures containing a specific substrate as the sole source of carbon. Here, we analyzed twenty single-contig high-quality metagenome-assembled genomes (MAGs) retrieved from a microbial consortium (T6) that was selected by the dilution-to-stimulation approach using Andean soil as inoculum and lignocellulose as a selection pressure. Based on genomic metrics (e.g., average nucleotide and amino acid identities) and phylogenomic analyses, 15 out of 20 MAGs were found to represent novel bacterial species, with one of those (MAG_26) belonging to a novel genus closely related to Caenibius spp. (Sphingomonadaceae). Following the rules and requirements of the SeqCode, we propose the name Andeanibacterium colombiense gen. nov., sp. nov. for this taxon. A subsequent functional annotation of all MAGs revealed that MAG_7 (Pseudobacter hemicellulosilyticus sp. nov.) contains 20, 19 and 16 predicted genes from carbohydrate-active enzymes families GH43, GH2 and GH92, respectively. Its lignocellulolytic gene profile resembles that of MAG_2 (the most abundant member) and MAG_3858, both of which belong to the Sphingobacteriaceae family. Using a database that contains experimentally verified plastic-active enzymes (PAZymes), twenty-seven putative bacterial polyethylene terephthalate (PET)-active enzymes (i.e., alpha/beta-fold hydrolases) were detected in all MAGs. A maximum of five putative PETases were found in MAG_3858, and two PETases were found to be encoded by A. colombiense. In conclusion, we demonstrate that lignocellulose-enriched liquid cultures coupled with genome-resolved metagenomics are suitable approaches to unveil the hidden bacterial diversity and its polymer-degrading potential in Andean soil ecosystems.
Collapse
Affiliation(s)
- Laura Díaz-García
- Department of Chemical and Biological Engineering, Advanced Biomanufacturing Centre, University of Sheffield, UK
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia
| | - Golo Feuerriegel
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Luis M Rodriguez-R
- Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; Braunschweig University of Technology, Braunschweig, Germany
| | - Diego Javier Jiménez
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia; Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
28
|
Buttar J, Kon E, Lee A, Kaur G, Lunken G. Effect of diet on the gut mycobiome and potential implications in inflammatory bowel disease. Gut Microbes 2024; 16:2399360. [PMID: 39287010 PMCID: PMC11409510 DOI: 10.1080/19490976.2024.2399360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/31/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
The gut microbiome is a complex, unique entity implicated in the prevention, pathogenesis, and progression of common gastrointestinal diseases. While largely dominated by bacterial populations, advanced sequencing techniques have identified co-inhabiting fungal communities, collectively referred to as the mycobiome. Early studies identified that gut inflammation is associated with altered microbial composition, known as gut dysbiosis. Altered microbial profiles are implicated in various pathological diseases, such as inflammatory bowel disease (IBD), though their role as a cause or consequence of systemic inflammation remains the subject of ongoing research. Diet plays a crucial role in the prevention and management of various diseases and is considered to be an essential regulator of systemic inflammation. This review compiles current literature on the impact of dietary modulation on the mycobiome, showing that dietary changes can alter the fungal architecture of the gut. Further research is required to understand the impact of diet on gut fungi, including the metabolic pathways and enzymes involved in fungal fermentation. Additionally, investigating whether dietary modulation of the gut mycobiome could be utilized as a therapy in IBD is essential.
Collapse
Affiliation(s)
- J Buttar
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - E Kon
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| | - A Lee
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| | - G Kaur
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - G Lunken
- Department of Medicine, University of British Columbia, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
29
|
Huang Q, Zhang Y, Chu Q, Song H. The Influence of Polysaccharides on Lipid Metabolism: Insights from Gut Microbiota. Mol Nutr Food Res 2024; 68:e2300522. [PMID: 37933720 DOI: 10.1002/mnfr.202300522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/06/2023] [Indexed: 11/08/2023]
Abstract
SCOPE Polysaccharides are complex molecules of more than ten monosaccharide residues interconnected through glycosidic linkages formed via condensation reactions. Polysaccharides are widely distributed in various food resources and have gained considerable attention due to their diverse biological activities. This review presented a critical analysis of the existing research literature on anti-obesity polysaccharides and investigates the complex interplay between their lipid-lowering activity and the gut microbiota, aiming to provide a comprehensive overview of the lipid-lowering properties of polysaccharides and the underlying mechanisms of action. METHODS AND RESULTS In this review, the study summarized the roles of polysaccharides in improving lipid metabolism via gut microbiota, including the remodeling of the intestinal barrier, reduction of inflammation, inhibition of pathogenic bacteria, reduction of trimethylamine N-oxide (TMAO) production, and regulation of the metabolism of short-chain fatty acids (SCFAs) and bile acids (BAs). CONCLUSION These mechanisms collectively contributed to the beneficial effects of polysaccharides on lipid metabolism and overall metabolic health. Furthermore, polysaccharide-based nanocarriers combined with gut microbiota have broad prospects for developing targeted and personalized therapies for hyperlipidemia and obesity.
Collapse
Affiliation(s)
- Qianqian Huang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Yanhui Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Haizhao Song
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| |
Collapse
|
30
|
Xiang F, Zhang Q, Xu X, Zhang Z. Black soldier fly larvae recruit functional microbiota into the intestines and residues to promote lignocellulosic degradation in domestic biodegradable waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122676. [PMID: 37839685 DOI: 10.1016/j.envpol.2023.122676] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/17/2023]
Abstract
Lignocellulose is an important component of domestic biodegradable waste (DBW), and its complex structure makes it an obstacle in the biological treatment of DBW. Here, we identify black soldier fly larvae (Hermetia illucens L., BSFL) as a bioreactor for lignocellulose degradation in DBW based on their ability to effectively recruit lignocellulose-degrading bacteria. This study mainly examined the lignocellulose degradation, dynamic succession of the microbial community, gene expression of carbohydrate-active enzymes (CAZymes), and co-occurrence network analysis. Investigation of lignocellulose degradation by BSFL within 14 days indicated that the lignocellulose biodegradation rate in the larvae treatment (LT, 26.5%) group was higher than in natural composting (NC, 4.06%). In order to gain a more comprehensive understanding of microbiota, we conducted metagenomic sequencing of larvae intestines (LI), along with the LT and NC. The relative abundance of lignocellulose-degrading bacteria and CAZymes genes in LT and LI were higher than those in NC based on metagenomics sequencing. Importantly, genes coding cellulase and hemicellulase in LI were 3.36- and 2.79-fold higher, respectively, than that in LT, while the ligninase genes in LT were 1.82-fold higher than in LI. A co-occurrence network analysis identified Enterocluster and Luteimonas as keystone taxa in larvae intestines and residues, respectively, with a synergistic relationship to lignocellulose-degrading bacteria. The mechanism of recruiting functional bacteria through the larvae intestines promoted lignocellulose degradation in DBW, improving the efficiency of BSFL biotechnology and resource regeneration.
Collapse
Affiliation(s)
- FangMing Xiang
- College of Environmental and Resource Sciences, ZheJiang University, YuHangTang Ave 866, HangZhou, ZheJiang Province, 310058, PR China; JiaXing FuKang Biotechnology Company Limited, Building 1-19#, Development Ave 133, TongXiang Economic HiTech Zone, TongXiang, 314515, PR China.
| | - Qian Zhang
- JiaXing FuKang Biotechnology Company Limited, Building 1-19#, Development Ave 133, TongXiang Economic HiTech Zone, TongXiang, 314515, PR China; HangZhou GuSheng Technology Company Limited, XiangWang Ave 311118, HangZhou, 311121, PR China.
| | - XinHua Xu
- College of Environmental and Resource Sciences, ZheJiang University, YuHangTang Ave 866, HangZhou, ZheJiang Province, 310058, PR China.
| | - ZhiJian Zhang
- College of Environmental and Resource Sciences, ZheJiang University, YuHangTang Ave 866, HangZhou, ZheJiang Province, 310058, PR China; China Academy of West Region Development, ZheJiang University, YuHangTang Ave 866, HangZhou, 310058, PR China.
| |
Collapse
|
31
|
Heom KA, Wangsanuwat C, Butkovich LV, Tam SC, Rowe AR, O'Malley MA, Dey SS. Targeted rRNA depletion enables efficient mRNA sequencing in diverse bacterial species and complex co-cultures. mSystems 2023; 8:e0028123. [PMID: 37855606 PMCID: PMC10734481 DOI: 10.1128/msystems.00281-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Microbes present one of the most diverse sources of biochemistry in nature, and mRNA sequencing provides a comprehensive view of this biological activity by quantitatively measuring microbial transcriptomes. However, efficient mRNA capture for sequencing presents significant challenges in prokaryotes as mRNAs are not poly-adenylated and typically make up less than 5% of total RNA compared with rRNAs that exceed 80%. Recently developed methods for sequencing bacterial mRNA typically rely on depleting rRNA by tiling large probe sets against rRNAs; however, such approaches are expensive, time-consuming, and challenging to scale to varied bacterial species and complex microbial communities. Therefore, we developed EMBR-seq+, a method that requires fewer than 10 short oligonucleotides per rRNA to achieve up to 99% rRNA depletion in diverse bacterial species. Finally, EMBR-seq+ resulted in a deeper view of the transcriptome, enabling systematic quantification of how microbial interactions result in altering the transcriptional state of bacteria within co-cultures.
Collapse
Affiliation(s)
- Kellie A. Heom
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
| | - Chatarin Wangsanuwat
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
| | - Lazarina V. Butkovich
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| | - Scott C. Tam
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| | - Annette R. Rowe
- Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michelle A. O'Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
| | - Siddharth S. Dey
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
32
|
Chen W, Zeng Y, Liu H, Sun D, Liu X, Xu H, Wu H, Qiu B, Dang Y. Granular activated carbon enhances volatile fatty acid production in the anaerobic fermentation of garden wastes. Front Bioeng Biotechnol 2023; 11:1330293. [PMID: 38146344 PMCID: PMC10749581 DOI: 10.3389/fbioe.2023.1330293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Garden waste, one type of lignocellulosic biomass, holds significant potential for the production of volatile fatty acids (VFAs) through anaerobic fermentation. However, the hydrolysis efficiency of garden waste is limited by the inherent recalcitrance, which further influences VFA production. Granular activated carbon (GAC) could promote hydrolysis and acidogenesis efficiency during anaerobic fermentation. This study developed a strategy to use GAC to enhance the anaerobic fermentation of garden waste without any complex pretreatments and extra enzymes. The results showed that GAC addition could improve VFA production, especially acetate, and reach the maximum total VFA yield of 191.55 mg/g VSadded, which increased by 27.35% compared to the control group. The highest VFA/sCOD value of 70.01% was attained in the GAC-amended group, whereas the control group only reached 49.35%, indicating a better hydrolysis and acidogenesis capacity attributed to the addition of GAC. Microbial community results revealed that GAC addition promoted the enrichment of Caproiciproducens and Clostridium, which are crucial for anaerobic VFA production. In addition, only the GAC-amended group showed the presence of Sphaerochaeta and Oscillibacter genera, which are associated with electron transfer processes. Metagenomics analysis indicated that GAC addition improved the abundance of glycoside hydrolases (GHs) and key functional enzymes related to hydrolysis and acidogenesis. Furthermore, the assessment of major genera influencing functional genes in both groups indicated that Sphaerochaeta, Clostridium, and Caproicibacter were the primary contributors to upregulated genes. These findings underscored the significance of employing GAC to enhance the anaerobic fermentation of garden waste, offering a promising approach for sustainable biomass conversion and VFA production.
Collapse
Affiliation(s)
- Wenwen Chen
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yiwei Zeng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Huanying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Xinying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Haiyu Xu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd., Shanghai, China
| | - Hongbin Wu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd., Shanghai, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| |
Collapse
|
33
|
Chen M, Lan H, Jin K, Chen Y. Responsive nanosystems for targeted therapy of ulcerative colitis: Current practices and future perspectives. Drug Deliv 2023; 30:2219427. [PMID: 37288799 PMCID: PMC10405869 DOI: 10.1080/10717544.2023.2219427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 06/09/2023] Open
Abstract
The pharmacological approach to treating gastrointestinal diseases is suffering from various challenges. Among such gastrointestinal diseases, ulcerative colitis manifests inflammation at the colon site specifically. Patients suffering from ulcerative colitis notably exhibit thin mucus layers that offer increased permeability for the attacking pathogens. In the majority of ulcerative colitis patients, the conventional treatment options fail in controlling the symptoms of the disease leading to distressing effects on the quality of life. Such a scenario is due to the failure of conventional therapies to target the loaded moiety into specific diseased sites in the colon. Targeted carriers are needed to address this issue and enhance the drug effects. Conventional nanocarriers are mostly readily cleared and have nonspecific targeting. To accumulate the desired concentration of the therapeutic candidates at the inflamed area of the colon, smart nanomaterials with responsive nature have been explored recently that include pH responsive, reactive oxygen species responsive (ROS), enzyme responsive and thermo - responsive smart nanocarrier systems. The formulation of such responsive smart nanocarriers from nanotechnology scaffolds has resulted in the selective release of therapeutic drugs, avoiding systemic absorption and limiting the undesired delivery of targeting drugs into healthy tissues. Recent advancements in the field of responsive nanocarrier systems have resulted in the fabrication of multi-responsive systems i.e. dual responsive nanocarriers and derivitization that has increased the biological tissues and smart nanocarrier's interaction. In addition, it has also led to efficient targeting and significant cellular uptake of the therapeutic moieties. Herein, we have highlighted the latest status of the responsive nanocarrier drug delivery system, its applications for on-demand delivery of drug candidates for ulcerative colitis, and the prospects are underpinned.
Collapse
Affiliation(s)
- Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yun Chen
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, China
| |
Collapse
|
34
|
Huang J, Gao K, Yang L, Lu Y. Successional action of Bacteroidota and Firmicutes in decomposing straw polymers in a paddy soil. ENVIRONMENTAL MICROBIOME 2023; 18:76. [PMID: 37838745 PMCID: PMC10576277 DOI: 10.1186/s40793-023-00533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Decomposition of plant biomass is vital for carbon cycling in terrestrial ecosystems. In waterlogged soils including paddy fields and natural wetlands, plant biomass degradation generates the largest natural source of global methane emission. However, the intricate process of plant biomass degradation by diverse soil microorganisms remains poorly characterized. Here we report a chemical and metagenomic investigation into the mechanism of straw decomposition in a paddy soil. RESULTS The chemical analysis of 16-day soil microcosm incubation revealed that straw decomposition could be divided into two stages based on the dynamics of methane, short chain fatty acids, dissolved organic carbon and monosaccharides. Metagenomic analysis revealed that the relative abundance of glucoside hydrolase (GH) encoding genes for cellulose decomposition increased rapidly during the initial stage (3-7 days), while genes involved in hemicellulose decomposition increased in the later stage (7-16 days). The increase of cellulose GH genes in initial stage was derived mainly from Firmicutes while Bacteroidota contributed mostly to the later stage increase of hemicellulose GH genes. Flagella assembly genes were prevalent in Firmicutes but scarce in Bacteroidota. Wood-Ljungdahl pathway (WLP) was present in Firmicutes but not detected in Bacteroidota. Overall, Bacteroidota contained the largest proportion of total GHs and the highest number of carbohydrate active enzymes gene clusters in our paddy soil metagenomes. The strong capacity of the Bacteroidota phylum to degrade straw polymers was specifically attributed to Bacteroidales and Chitinophagales orders, the latter has not been previously recognized. CONCLUSIONS This study revealed a collaborating sequential contribution of microbial taxa and functional genes in the decomposition of straw residues in a paddy soil. Firmicutes with the property of mobility, WLP and cellulose decomposition could be mostly involved in the initial breakdown of straw polymers, while Bacteroidota became abundant and possibly responsible for the decomposition of hemicellulosic polymers during the later stage.
Collapse
Affiliation(s)
- Junjie Huang
- College of Urban and Environmental Sciences, Peking University, No. 5, Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Kailin Gao
- College of Urban and Environmental Sciences, Peking University, No. 5, Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Lu Yang
- College of Urban and Environmental Sciences, Peking University, No. 5, Yiheyuan Road, Haidian District, Beijing, 100871, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs/Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, No. 5, Yiheyuan Road, Haidian District, Beijing, 100871, China.
| |
Collapse
|
35
|
Wang B, Qi M, Ma Y, Zhang B, Hu Y. Microbiome Diversity and Cellulose Decomposition Processes by Microorganisms on the Ancient Wooden Seawall of Qiantang River of Hangzhou, China. MICROBIAL ECOLOGY 2023; 86:2109-2119. [PMID: 37099155 DOI: 10.1007/s00248-023-02221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Archaeological wood, also known as wooden cultural relics, refers to ancient wood that has been worked by humans. Further insights into the decomposition mechanism of archaeological wood are needed for its preventive conservation. In this study, we assessed the microbiome diversity and cellulose decomposition processes on a 200-year-old ancient wooden seawall - the Qiantang River of Hangzhou, China. We used high-throughput sequencing (HTS) to deduce the metagenomic functions, particularly the cellulose-decomposing pathway of the microbial communities, through bioinformatical approaches. The predominant cellulose-decomposing microorganisms were then verified with traditional isolation, culture, and identification method. The results showed that the excavation of archaeological wood significantly altered the environment, accelerating the deterioration process of the archaeological wood through the carbohydrate metabolism and the xenobiotic biodegradation and metabolism pathways, under the comprehensive metabolism of complex ecosystem formed by bacteria, archaea, fungi, microfauna, plants, and algae. Bacteroidetes, Proteobacteria, Firmicutes, and Actinobacteria were found to be the predominant source of bacterial cellulose-decomposing enzymes. Accordingly, we suggest relocating the wooden seawall to an indoor environment with controllable conditions to better preserve it. In addition, these results provide further evidence for our viewpoints that HTS techniques, combined with rational bioinformatical data interpretation approaches, can serve as powerful tools for the preventive protection of cultural heritage.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Archaeology, Cultural Heritage and Museology, Zhejiang University, Hangzhou, 310028, China
| | - Miaoyi Qi
- Department of Archaeology, Cultural Heritage and Museology, Zhejiang University, Hangzhou, 310028, China
| | - Yonghua Ma
- The Traditional Architecture Design and Research Institute of Zhejiang Province, Hangzhou, 310030, China
| | - Bingjian Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, China.
| | - Yulan Hu
- Department of Archaeology, Cultural Heritage and Museology, Zhejiang University, Hangzhou, 310028, China.
| |
Collapse
|
36
|
Ma W, Lin L, Peng Q. Origin, Selection, and Succession of Coastal Intertidal Zone-Derived Bacterial Communities Associated with the Degradation of Various Lignocellulose Substrates. MICROBIAL ECOLOGY 2023; 86:1589-1603. [PMID: 36717391 DOI: 10.1007/s00248-023-02170-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Terrestrial microbial consortia were reported to play fundamental roles in the global carbon cycle and renewable energy production through the breakdown of complex organic carbon. However, we have a poor understanding of how biotic/abiotic factors combine to influence consortia assembly and lignocellulose degradation in aquatic ecosystems. In this study, we used 96 in situ lignocellulose enriched, coastal intertidal zone-derived bacterial consortia as the initial inoculating consortia and developed 384 cultured consortia under different lignocellulose substrates (aspen, pine, rice straw, and purified Norway spruce lignin) with gradients of salinity and temperature. As coastal consortia, salinity was the strongest driver for assembly, followed by Norway spruce lignin, temperature, and aspen. Moreover, a conceptual model was proposed to demonstrate different succession dynamics between consortia under herbaceous and woody lignocelluloses. The succession of consortium under Norway spruce lignin is greatly related with abiotic factors, while its substrate degradation is mostly correlated with biotic factors. A discrepant pattern was observed in the consortium under rice straw. Finally, we developed four groups of versatile, yet specific consortia. Our study not only reveals that coastal intertidal wetlands are important natural resources to enrich lignocellulolytic degrading consortia but also provides insights into the succession and ecological function of coastal consortium.
Collapse
Affiliation(s)
- Wenwen Ma
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Lu Lin
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
| | - Qiannan Peng
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| |
Collapse
|
37
|
Cheng X, Du X, Liang Y, Degen AA, Wu X, Ji K, Gao Q, Xin G, Cong H, Yang G. Effect of grape pomace supplement on growth performance, gastrointestinal microbiota, and methane production in Tan lambs. Front Microbiol 2023; 14:1264840. [PMID: 37840727 PMCID: PMC10569316 DOI: 10.3389/fmicb.2023.1264840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Grape pomace (GP), a by-product in wine production, is nutritious and can be used as a feed ingredient for ruminants; however, its role in shaping sheep gastrointestinal tract (GIT) microbiota is unclear. We conducted a controlled trial using a randomized block design with 10 Tan lambs fed a control diet (CD) and 10 Tan lambs fed a pelleted diet containing 8% GP (dry matter basis) for 46 days. Rumen, jejunum, cecum, and colon bacterial and archaeal composition were identified by 16S rRNA gene sequencing. Dry matter intake (DMI) was greater (p < 0.05) in the GP than CD group; however, there was no difference in average daily gain (ADG, p < 0.05) and feed conversion ratio (FCR, p < 0.05) between the two groups. The GP group had a greater abundance of Prevotella 1 and Prevotella 7 in the rumen; of Sharpe, Ruminococcaceae 2, and [Ruminococcus] gauvreauii group in the jejunum; of Ruminococcaceae UCG-014 and Romboutsia in the cecum, and Prevotella UCG-001 in the colon; but lesser Rikenellaceae RC9 gut group in the rumen and cecum, and Ruminococcaceae UCG-005 and Ruminococcaceae UCG-010 in the colon than the CD group. The pathways of carbohydrate metabolism, such as L-rhamnose degradation in the rumen, starch and glycogen degradation in the jejunum, galactose degradation in the cecum, and mixed acid fermentation and mannan degradation in the colon were up-graded; whereas, the pathways of tricarboxylic acid (TCA) cycle VIII, and pyruvate fermentation to acetone in the rumen and colon were down-graded with GP. The archaeal incomplete reductive TCA cycle was enriched in the rumen, jejunum, and colon; whereas, the methanogenesis from H2 and CO2, the cofactors of methanogenesis, including coenzyme M, coenzyme B, and factor 420 biosynthesis were decreased in the colon. The study concluded that a diet including GP at 8% DM did not affect ADG or FCR in Tan lambs. However, there were some potential benefits, such as enhancing propionate production by microbiota and pathways in the GIT, promoting B-vitamin production in the rumen, facilitating starch degradation and amino acid biosynthesis in the jejunum, and reducing methanogenesis in the colon.
Collapse
Affiliation(s)
- Xindong Cheng
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Du
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Liang
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Xiukun Wu
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Kaixi Ji
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoxian Gao
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
| | - Guosheng Xin
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
| | - Haitao Cong
- Shandong Huakun Rural Revitalization Institute Co., Ltd., Jinan, China
| | - Guo Yang
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Yellow River Estuary Tan Sheep Institute of Industrial Technology, Dongying, China
| |
Collapse
|
38
|
Li M, Zi X, Lv R, Zhang L, Ou W, Chen S, Hou G, Zhou H. Cassava Foliage Effects on Antioxidant Capacity, Growth, Immunity, and Ruminal Microbial Metabolism in Hainan Black Goats. Microorganisms 2023; 11:2320. [PMID: 37764163 PMCID: PMC10535588 DOI: 10.3390/microorganisms11092320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Cassava (Manihot esculenta Crantz) foliage is a byproduct of cassava production characterized by high biomass and nutrient content. In this study, we investigated the effects of cassava foliage on antioxidant capacity, growth performance, and immunity status in goats, as well as rumen fermentation and microbial metabolism. Twenty-five Hainan black goats were randomly divided into five groups (n = 5 per group) and accepted five treatments: 0% (T1), 25% (T2), 50% (T3), 75% (T4), and 100% (T5) of the cassava foliage silage replaced king grass, respectively. The feeding experiment lasted for 70 d (including 10 d adaptation period and 60 d treatment period). Feeding a diet containing 50% cassava foliage resulted in beneficial effects for goat growth and health, as reflected by the higher average daily feed intake (ADFI), average daily gain (ADG) and better feed conversion rate (FCR), as well as by the reduced serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (CRE), and triglycerides (TG). Meanwhile, cassava foliage improved antioxidant activity by increasing the level of glutathion peroxidase (GSH-Px), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) and lowering malondialdehyde (MDA). Moreover, feeding cassava foliage was also beneficial to immunity status by enhancing complement 3 (C3), complement 4 (C4), immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM). Furthermore, the addition of dietary cassava foliage also altered rumen fermentation, rumen bacterial community composition, and metabolism. The abundance of Butyrivibrio_2 and Prevotella_1 was elevated, as were the concentrations of beneficial metabolites such as butyric acid; there was a concomitant decline in metabolites that hindered nutrient metabolism and harmed host health. In summary, goats fed a diet containing 50% cassava foliage silage demonstrated a greater abundance of Butyrivibrio_2, which enhanced the production of butyric acid; these changes led to greater antioxidant capacity, growth performance, and immunity in the goats.
Collapse
Affiliation(s)
- Mao Li
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Xuejuan Zi
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Renlong Lv
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Lidong Zhang
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Wenjun Ou
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Songbi Chen
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Guanyu Hou
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Hanlin Zhou
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| |
Collapse
|
39
|
Seppälä S, Gierke T, Schauer EE, Brown JL, O'Malley MA. Identification and expression of small multidrug resistance transporters in early-branching anaerobic fungi. Protein Sci 2023; 32:e4730. [PMID: 37470750 PMCID: PMC10443351 DOI: 10.1002/pro.4730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Membrane-embedded transporters impart essential functions to cells as they mediate sensing and the uptake and extrusion of nutrients, waste products, and effector molecules. Promiscuous multidrug exporters are implicated in resistance to drugs and antibiotics and are highly relevant for microbial engineers who seek to enhance the tolerance of cell factory strains to hydrophobic bioproducts. Here, we report on the identification of small multidrug resistance (SMR) transporters in early-branching anaerobic fungi (Neocallimastigomycetes). The SMR class of transporters is commonly found in bacteria but has not previously been reported in eukaryotes. In this study, we show that SMR transporters from anaerobic fungi can be produced heterologously in the model yeast Saccharomyces cerevisiae, demonstrating the potential of these proteins as targets for further characterization. The discovery of these novel anaerobic fungal SMR transporters offers a promising path forward to enhance bioproduction from engineered microbial strains.
Collapse
Affiliation(s)
- Susanna Seppälä
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Taylor Gierke
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Elizabeth E. Schauer
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Jennifer L. Brown
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Michelle A. O'Malley
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
- Bioengineering ProgramUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Joint BioEnergy Institute (JBEI)EmeryvilleCaliforniaUSA
| |
Collapse
|
40
|
Peng Q, Lin L, Tu Q, Wang X, Zhou Y, Chen J, Jiao N, Zhou J. Unraveling the roles of coastal bacterial consortia in degradation of various lignocellulosic substrates. mSystems 2023; 8:e0128322. [PMID: 37417747 PMCID: PMC10469889 DOI: 10.1128/msystems.01283-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/12/2023] [Indexed: 07/08/2023] Open
Abstract
Lignocellulose, as the most abundant natural organic carbon on earth, plays a key role in regulating the global carbon cycle, but there have been only few studies in marine ecosystems. Little information is available about the extant lignin-degrading bacteria in coastal wetlands, limiting our understanding of their ecological roles and traits in lignocellulose degradation. We utilized in situ lignocellulose enrichment experiments coupled with 16S rRNA amplicon and shotgun metagenomics sequencing to identify and characterize bacterial consortia attributed to different lignin/lignocellulosic substrates in the southern-east intertidal zone of East China Sea. We found the consortia enriched on woody lignocellulose showed higher diversity than those on herbaceous substrate. This also revealed substrate-dependent taxonomic groups. A time-dissimilarity pattern with increased alpha diversity over time was observed. Additionally, this study identified a comprehensive set of genes associated with lignin degradation potential, containing 23 gene families involved in lignin depolymerization, and 371 gene families involved in aerobic/anaerobic lignin-derived aromatic compound pathways, challenging the traditional view of lignin recalcitrance within marine ecosystems. In contrast to similar cellulase genes among the lignocellulose substrates, significantly different ligninolytic gene groups were observed between consortia under woody and herbaceous substrates. Importantly, we not only observed synergistic degradation of lignin and hemi-/cellulose, but also pinpointed the potential biological actors at the levels of taxa and functional genes, which indicated that the alternation of aerobic and anaerobic catabolism could facilitate lignocellulose degradation. Our study advances the understanding of coastal bacterial community assembly and metabolic potential for lignocellulose substrates. IMPORTANCE It is essential for the global carbon cycle that microorganisms drive lignocellulose transformation, due to its high abundance. Previous studies were primarily constrained to terrestrial ecosystems, with limited information about the role of microbes in marine ecosystems. Through in situ lignocellulose enrichment experiment coupled with high-throughput sequencing, this study demonstrated different impacts that substrates and exposure times had on long-term bacterial community assembly and pinpointed comprehensive, yet versatile, potential decomposers at the levels of taxa and functional genes in response to different lignocellulose substrates. Moreover, the links between ligninolytic functional traits and taxonomic groups of substrate-specific populations were revealed. It showed that the synergistic effect of lignin and hemi-/cellulose degradation could enhance lignocellulose degradation under alternation of aerobic and anaerobic conditions. This study provides valuable taxonomic and genomic insights into coastal bacterial consortia for lignocellulose degradation.
Collapse
Affiliation(s)
- Qiannan Peng
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Lu Lin
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xiaopeng Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Yueyue Zhou
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Jiyu Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Joint Lab for Ocean Research and Education at Shandong University, Xiamen University and Dalhousie University, Qingdao, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma, USA
- School of Computer Science, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
41
|
Deng F, Wang C, Li D, Peng Y, Deng L, Zhao Y, Zhang Z, Wei M, Wu K, Zhao J, Li Y. The unique gut microbiome of giant pandas involved in protein metabolism contributes to the host's dietary adaption to bamboo. MICROBIOME 2023; 11:180. [PMID: 37580828 PMCID: PMC10424351 DOI: 10.1186/s40168-023-01603-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/19/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND The gut microbiota of the giant panda (Ailuropoda melanoleuca), a global symbol of conservation, are believed to be involved in the host's dietary switch to a fibrous bamboo diet. However, their exact roles are still largely unknown. RESULTS In this study, we first comprehensively analyzed a large number of gut metagenomes giant pandas (n = 322), including 98 pandas sequenced in this study with deep sequencing (Illumina) and third-generation sequencing (nanopore). We reconstructed 408 metagenome-assembled genomes (MAGs), and 148 of which (36.27%) were near complete. The most abundant MAG was classified as Streptococcus alactolyticus. A pairwise comparison of the metagenomes and meta-transcriptomes in 14 feces revealed genes involved in carbohydrate metabolism were lower, but those involved in protein metabolism were greater in abundance and expression in giant pandas compared to those in herbivores and omnivores. Of note, S. alactolyticus was positively correlated to the KEGG modules of essential amino-acid biosynthesis. After being isolated from pandas and gavaged to mice, S. alactolyticus significantly increased the relative abundance of essential amino acids in mice jejunum. CONCLUSIONS The study highlights the unique protein metabolic profiles in the giant panda's gut microbiome. The findings suggest that S. alactolyticus is an important player in the gut microbiota that contributes to the giant panda's dietary adaptation by more involvement in protein rather than carbohydrate metabolism. Video Abstract.
Collapse
Affiliation(s)
- Feilong Deng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Chengdong Wang
- China Conservation and Research Center of Giant Panda, Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Sichuan, 611830, Dujiangyan, China
| | - Desheng Li
- China Conservation and Research Center of Giant Panda, Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Sichuan, 611830, Dujiangyan, China
| | - Yunjuan Peng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Linhua Deng
- China Conservation and Research Center of Giant Panda, Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Sichuan, 611830, Dujiangyan, China
| | - Yunxiang Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Zhihao Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Ming Wei
- China Conservation and Research Center of Giant Panda, Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Sichuan, 611830, Dujiangyan, China
| | - Kai Wu
- China Conservation and Research Center of Giant Panda, Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Sichuan, 611830, Dujiangyan, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, AR, Fayetteville, USA.
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China.
- School of Life Science and Engineering, Foshan University, Guangdong, China.
| |
Collapse
|
42
|
Feehan B, Ran Q, Dorman V, Rumback K, Pogranichniy S, Ward K, Goodband R, Niederwerder MC, Lee STM. Novel complete methanogenic pathways in longitudinal genomic study of monogastric age-associated archaea. Anim Microbiome 2023; 5:35. [PMID: 37461084 DOI: 10.1186/s42523-023-00256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Archaea perform critical roles in the microbiome system, including utilizing hydrogen to allow for enhanced microbiome member growth and influencing overall host health. With the majority of microbiome research focusing on bacteria, the functions of archaea are largely still under investigation. Understanding methanogenic functions during the host lifetime will add to the limited knowledge on archaeal influence on gut and host health. In our study, we determined lifelong archaea dynamics, including detection and methanogenic functions, while assessing global, temporal and host distribution of our novel archaeal metagenome-assembled genomes (MAGs). We followed 7 monogastric swine throughout their life, from birth to adult (1-156 days of age), and collected feces at 22 time points. The samples underwent gDNA extraction, Illumina sequencing, bioinformatic quality and assembly processes, MAG taxonomic assignment and functional annotation. MAGs were utilized in downstream phylogenetic analysis for global, temporal and host distribution in addition to methanogenic functional potential determination. RESULTS We generated 1130 non-redundant MAGs, representing 588 unique taxa at the species level, with 8 classified as methanogenic archaea. The taxonomic classifications were as follows: orders Methanomassiliicoccales (5) and Methanobacteriales (3); genera UBA71 (3), Methanomethylophilus (1), MX-02 (1), and Methanobrevibacter (3). We recovered the first US swine Methanobrevibacter UBA71 sp006954425 and Methanobrevibacter gottschalkii MAGs. The Methanobacteriales MAGs were identified primarily during the young, preweaned host whereas Methanomassiliicoccales primarily in the adult host. Moreover, we identified our methanogens in metagenomic sequences from Chinese swine, US adult humans, Mexican adult humans, Swedish adult humans, and paleontological humans, indicating that methanogens span different hosts, geography and time. We determined complete metabolic pathways for all three methanogenic pathways: hydrogenotrophic, methylotrophic, and acetoclastic. This study provided the first evidence of acetoclastic methanogenesis in archaea of monogastric hosts which indicated a previously unknown capability for acetate utilization in methanogenesis for monogastric methanogens. Overall, we hypothesized that the age-associated detection patterns were due to differential substrate availability via the host diet and microbial metabolism, and that these methanogenic functions are likely crucial to methanogens across hosts. This study provided a comprehensive, genome-centric investigation of monogastric-associated methanogens which will further improve our understanding of microbiome development and functions.
Collapse
Affiliation(s)
- Brandi Feehan
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Qinghong Ran
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Victoria Dorman
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Kourtney Rumback
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Sophia Pogranichniy
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Kaitlyn Ward
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Robert Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Sonny T M Lee
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
43
|
Meili CH, Jones AL, Arreola AX, Habel J, Pratt CJ, Hanafy RA, Wang Y, Yassin AS, TagElDein MA, Moon CD, Janssen PH, Shrestha M, Rajbhandari P, Nagler M, Vinzelj JM, Podmirseg SM, Stajich JE, Goetsch AL, Hayes J, Young D, Fliegerova K, Grilli DJ, Vodička R, Moniello G, Mattiello S, Kashef MT, Nagy YI, Edwards JA, Dagar SS, Foote AP, Youssef NH, Elshahed MS. Patterns and determinants of the global herbivorous mycobiome. Nat Commun 2023; 14:3798. [PMID: 37365172 PMCID: PMC10293281 DOI: 10.1038/s41467-023-39508-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Despite their role in host nutrition, the anaerobic gut fungal (AGF) component of the herbivorous gut microbiome remains poorly characterized. Here, to examine global patterns and determinants of AGF diversity, we generate and analyze an amplicon dataset from 661 fecal samples from 34 mammalian species, 9 families, and 6 continents. We identify 56 novel genera, greatly expanding AGF diversity beyond current estimates (31 genera and candidate genera). Community structure analysis indicates that host phylogenetic affiliation, not domestication status and biogeography, shapes the community rather than. Fungal-host associations are stronger and more specific in hindgut fermenters than in foregut fermenters. Transcriptomics-enabled phylogenomic and molecular clock analyses of 52 strains from 14 genera indicate that most genera with preferences for hindgut hosts evolved earlier (44-58 Mya) than those with preferences for foregut hosts (22-32 Mya). Our results greatly expand the documented scope of AGF diversity and provide an ecologically and evolutionary-grounded model to explain the observed patterns of AGF diversity in extant animal hosts.
Collapse
Affiliation(s)
- Casey H Meili
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Adrienne L Jones
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Alex X Arreola
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Jeffrey Habel
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Carrie J Pratt
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Radwa A Hanafy
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Yan Wang
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Aymen S Yassin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Moustafa A TagElDein
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Christina D Moon
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Peter H Janssen
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Mitesh Shrestha
- Department of Applied Microbiology and Food Technology, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Prajwal Rajbhandari
- Department of Applied Microbiology and Food Technology, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Magdalena Nagler
- Universität Innsbruck, Faculty of Biology, Department of Microbiology, Innsbruck, Austria
| | - Julia M Vinzelj
- Universität Innsbruck, Faculty of Biology, Department of Microbiology, Innsbruck, Austria
| | - Sabine M Podmirseg
- Universität Innsbruck, Faculty of Biology, Department of Microbiology, Innsbruck, Austria
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | | | | | - Diana Young
- Bavarian State Research Center for Agriculture, Freising, Germany
| | - Katerina Fliegerova
- Institute of Animal Physiology and Genetics Czech Academy of Sciences, Prague, Czechia
| | - Diego Javier Grilli
- Área de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | - Giuseppe Moniello
- Department of Veterinary Medicine, University of Sassari, Sardinia, Italy
| | - Silvana Mattiello
- University of Milan, Dept. of Agricultural and Environmental Sciences, Milan, Italy
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yosra I Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Andrew P Foote
- Oklahoma State University, Department of Animal and Food Sciences, Stillwater, OK, USA
| | - Noha H Youssef
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA.
| | - Mostafa S Elshahed
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA.
| |
Collapse
|
44
|
Liang J, Chang J, Zhang R, Fang W, Chen L, Ma W, Zhang Y, Yang W, Li Y, Zhang P, Zhang G. Metagenomic analysis reveals the efficient digestion mechanism of corn stover in Angus bull rumen: Microbial community succession, CAZyme composition and functional gene expression. CHEMOSPHERE 2023; 336:139242. [PMID: 37330070 DOI: 10.1016/j.chemosphere.2023.139242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Ruminant rumen is a biological fermentation system that can efficiently degrade lignocellulosic biomass. The knowledge about mechanisms of efficient lignocellulose degradation with rumen microorganisms is still limited. In this study, composition and succession of bacteria and fungi, carbohydrate-active enzymes (CAZymes), and functional genes involved in hydrolysis and acidogenesis were revealed during fermentation in Angus bull rumen via metagenomic sequencing. Results showed that degradation efficiency of hemicellulose and cellulose reached 61.2% and 50.4% at 72 h fermentation, respectively. Main bacterial genera were composed of Prevotella, Butyrivibrio, Ruminococcus, Eubacterium, and Fibrobacter, and main fungal genera were composed of Piromyces, Neocallimastix, Anaeromyces, Aspergillus, and Orpinomyces. Principal coordinates analysis indicated that community structure of bacteria and fungi dynamically changed during 72 h fermentation. Bacterial networks with higher complexity had stronger stability than fungal networks. Most CAZyme families showed a significant decrease trend after 48 h fermentation. Functional genes related to hydrolysis decreased at 72 h, while functional genes involved in acidogenesis did not change significantly. These findings provide a in-depth understanding of mechanisms of lignocellulose degradation in Angus bull rumen, and may guide the construction and enrichment of rumen microorganisms in anaerobic fermentation of waste biomass.
Collapse
Affiliation(s)
- Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Ru Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Weifang Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yajie Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wenjing Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yuehan Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| |
Collapse
|
45
|
Li H, Kang X, Yang M, Kasseney BD, Zhou X, Liang S, Zhang X, Wen JL, Yu B, Liu N, Zhao Y, Mo J, Currie CR, Ralph J, Yelle DJ. Molecular insights into the evolution of woody plant decay in the gut of termites. SCIENCE ADVANCES 2023; 9:eadg1258. [PMID: 37224258 DOI: 10.1126/sciadv.adg1258] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/17/2023] [Indexed: 05/26/2023]
Abstract
Plant cell walls represent the most abundant pool of organic carbon in terrestrial ecosystems but are highly recalcitrant to utilization by microbes and herbivores owing to the physical and chemical barrier provided by lignin biopolymers. Termites are a paradigmatic example of an organism's having evolved the ability to substantially degrade lignified woody plants, yet atomic-scale characterization of lignin depolymerization by termites remains elusive. We report that the phylogenetically derived termite Nasutitermes sp. efficiently degrades lignin via substantial depletion of major interunit linkages and methoxyls by combining isotope-labeled feeding experiments and solution-state and solid-state nuclear magnetic resonance spectroscopy. Exploring the evolutionary origin of lignin depolymerization in termites, we reveal that the early-diverging woodroach Cryptocercus darwini has limited capability in degrading lignocellulose, leaving most polysaccharides intact. Conversely, the phylogenetically basal lineages of "lower" termites are able to disrupt the lignin-polysaccharide inter- and intramolecular bonding while leaving lignin largely intact. These findings advance knowledge on the elusive but efficient delignification in natural systems with implications for next-generation ligninolytic agents.
Collapse
Affiliation(s)
- Hongjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, China
| | - Mengyi Yang
- Xiaoshan Management Center of Termite Control, Hangzhou Xiaoshan Housing Security and Real Estate Management Service Center, Hangzhou 311200, China
| | - Boris Dodji Kasseney
- Department of Zoology, Faculty of Sciences, University of Lomé, 1BP1515 Lomé, Togo
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Shiyou Liang
- Agricultural Information Center of Pingyang, Renmin Road 71, Wenzhou 325400, China
| | - Xiaojie Zhang
- Quzhou Management Center of Termite Control, Quzhou Housing Security and Real Estate Management Service Center, Quzhou 311200, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing, Haidian District 100083, China
| | - Baoting Yu
- National Termite Control Center of China, Moganshan Road 695, Hangzhou 310011, China
| | - Ning Liu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, China
| | - Jianchu Mo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Cameron R Currie
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706, USA
- David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison WI 53706, USA
| | - Daniel J Yelle
- US Forest Products Laboratory, Forest Service, Madison, WI 53726, USA
| |
Collapse
|
46
|
Andersen TO, Altshuler I, Vera-Ponce de León A, Walter JM, McGovern E, Keogh K, Martin C, Bernard L, Morgavi DP, Park T, Li Z, Jiang Y, Firkins JL, Yu Z, Hvidsten TR, Waters SM, Popova M, Arntzen MØ, Hagen LH, Pope PB. Metabolic influence of core ciliates within the rumen microbiome. THE ISME JOURNAL 2023:10.1038/s41396-023-01407-y. [PMID: 37169869 DOI: 10.1038/s41396-023-01407-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome-centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants. Initial proteome estimations via total protein counts and label-free quantification highlight that entodiniomorph species Entodinium and Epidinium as well as the holotrichs Dasytricha and Isotricha comprise an extensive fraction of the total rumen metaproteome. Proteomic detection of protozoal metabolism such as hydrogenases (Dasytricha, Isotricha, Epidinium, Enoploplastron), carbohydrate-active enzymes (Epidinium, Diplodinium, Enoploplastron, Polyplastron), microbial predation (Entodinium) and volatile fatty acid production (Entodinium and Epidinium) was observed at increased levels in high methane-emitting animals. Despite certain protozoal species having well-established reputations for digesting starch, they were unexpectedly less detectable in low methane emitting-animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation irrespective of host. Finally, we reaffirmed our abovementioned observations in geographically independent datasets, thus illuminating the substantial metabolic influence that under-explored eukaryotic populations have in the rumen, with greater implications for both digestion and methane metabolism.
Collapse
Affiliation(s)
- Thea O Andersen
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ianina Altshuler
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Arturo Vera-Ponce de León
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Juline M Walter
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Emily McGovern
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County, Meath, Ireland
| | - Kate Keogh
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County, Meath, Ireland
| | - Cécile Martin
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Laurence Bernard
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Diego P Morgavi
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Zongjun Li
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Yu Jiang
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Jeffrey L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sinead M Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County, Meath, Ireland
| | - Milka Popova
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Live H Hagen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip B Pope
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
47
|
Liu YC, Ramiro-Garcia J, Paulo LM, Maria Braguglia C, Cristina Gagliano M, O'Flaherty V. Psychrophilic and mesophilic anaerobic treatment of synthetic dairy wastewater with long chain fatty acids: Process performances and microbial community dynamics. BIORESOURCE TECHNOLOGY 2023; 380:129124. [PMID: 37127168 DOI: 10.1016/j.biortech.2023.129124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Facilitating the anaerobic degradation of long chain fatty acids (LCFA) is the key to unlock the energy potential of lipids-rich wastewater. In this study, the feasibility of psychrophilic anaerobic treatment of LCFA-containing dairy wastewater was assessed and compared to mesophilic anaerobic treatment. The results showed that psychrophilic treatment at 15 ℃ was feasible for LCFA-containing dairy wastewater, with high removal rates of soluble COD (>90%) and LCFA (∼100%). However, efficient long-term treatment required prior acclimation of the biomass to psychrophilic temperatures. The microbial community analysis revealed that putative syntrophic fatty acid bacteria and Methanocorpusculum played a crucial role in LCFA degradation during both mesophilic and psychrophilic treatments. Additionally, a fungal-bacterial biofilm was found to be important during the psychrophilic treatment. Overall, these findings demonstrate the potential of psychrophilic anaerobic treatment for industrial wastewaters and highlight the importance of understanding the microbial communities involved in the process.
Collapse
Affiliation(s)
- Yu-Chen Liu
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Galway, H91 TK33, Ireland.
| | - Javier Ramiro-Garcia
- Instituto de la Grasa. Consejo Superior de Investigaciones Científicas. Campus Universitario Pablo de Olavide- Ed. 46, Ctra. de Utrera, km. 1, Seville 41013, Spain
| | - Lara M Paulo
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Camilla Maria Braguglia
- Water Research institute, CNR, Area di Ricerca RM1-Montelibretti, Via Salaria km 29.300, 00015 Monterotondo (Roma), Italy
| | - Maria Cristina Gagliano
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, MA 8911 Leeuwarden, the Netherlands
| | - Vincent O'Flaherty
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
48
|
Lankiewicz TS, Choudhary H, Gao Y, Amer B, Lillington SP, Leggieri PA, Brown JL, Swift CL, Lipzen A, Na H, Amirebrahimi M, Theodorou MK, Baidoo EEK, Barry K, Grigoriev IV, Timokhin VI, Gladden J, Singh S, Mortimer JC, Ralph J, Simmons BA, Singer SW, O'Malley MA. Lignin deconstruction by anaerobic fungi. Nat Microbiol 2023; 8:596-610. [PMID: 36894634 PMCID: PMC10066034 DOI: 10.1038/s41564-023-01336-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/31/2023] [Indexed: 03/11/2023]
Abstract
Lignocellulose forms plant cell walls, and its three constituent polymers, cellulose, hemicellulose and lignin, represent the largest renewable organic carbon pool in the terrestrial biosphere. Insights into biological lignocellulose deconstruction inform understandings of global carbon sequestration dynamics and provide inspiration for biotechnologies seeking to address the current climate crisis by producing renewable chemicals from plant biomass. Organisms in diverse environments disassemble lignocellulose, and carbohydrate degradation processes are well defined, but biological lignin deconstruction is described only in aerobic systems. It is currently unclear whether anaerobic lignin deconstruction is impossible because of biochemical constraints or, alternatively, has not yet been measured. We applied whole cell-wall nuclear magnetic resonance, gel-permeation chromatography and transcriptome sequencing to interrogate the apparent paradox that anaerobic fungi (Neocallimastigomycetes), well-documented lignocellulose degradation specialists, are unable to modify lignin. We find that Neocallimastigomycetes anaerobically break chemical bonds in grass and hardwood lignins, and we further associate upregulated gene products with the observed lignocellulose deconstruction. These findings alter perceptions of lignin deconstruction by anaerobes and provide opportunities to advance decarbonization biotechnologies that depend on depolymerizing lignocellulose.
Collapse
Affiliation(s)
- Thomas S Lankiewicz
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Hemant Choudhary
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, USA
| | - Yu Gao
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bashar Amer
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Stephen P Lillington
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Patrick A Leggieri
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Jennifer L Brown
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Candice L Swift
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hyunsoo Na
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mojgan Amirebrahimi
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael K Theodorou
- Department of Agriculture and Environment, Harper Adams University, Newport, UK
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - John Gladden
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, USA
| | - Seema Singh
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - John Ralph
- Great Lakes Bioenergy Research Center, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin Madison, Madison, WI, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
- Joint BioEnergy Institute, Emeryville, CA, USA.
| |
Collapse
|
49
|
Zhu G, Chao H, Sun M, Jiang Y, Ye M. Toxicity sharing model of earthworm intestinal microbiome reveals shared functional genes are more powerful than species in resisting pesticide stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130646. [PMID: 36587599 DOI: 10.1016/j.jhazmat.2022.130646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Earthworm intestinal bacteria and indigenous soil bacteria work closely during various biochemical processes and play a crucial role in maintaining the internal stability of the soil environment. However, the response mechanism of these bacterial communities to external pesticide disturbance is unknown. In this study, soil and earthworm gut contents were metagenomically sequenced after exposure to various concentrations of nitrochlorobenzene (0-1026.7 mg kg-1). A high degree of similarity was found between the microbial community composition and abundance in the worm gut and soil, both of which decreased significantly (P < 0.05) under elevated pesticide stress. The toxicity sharing model (TSM) showed that the toxicity sharing capacity was 97.4-125.7 % and 100.4-130.2 % for Egenes (genes in the worm gut) and Emet(degradation genes in the worm gut) in the earthworm intestinal microbiome, respectively. This indicated that the earthworm intestinal microbiome assisted in relieving the pesticide toxicity of the indigenous soil microbiome. This study showed that the TSM could quantitatively describe the toxic effect of pesticides on the earthworm intestinal microbiome. It provides a new analytical model for investigating the ecological alliance between earthworm intestinal microbiome and indigenous soil microbiome under pesticide stress while contributing a more profound understanding of the potential to use earthworms to mitigate pesticide pollution in soils and develop earthworm-based soil remediation techniques.
Collapse
Affiliation(s)
- Guofan Zhu
- National Engineering Laboratort of Soil Nutrients Management, Pollution Control and Remediation Technoligies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huizhen Chao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China
| | - Mao Ye
- National Engineering Laboratort of Soil Nutrients Management, Pollution Control and Remediation Technoligies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
50
|
Klair D, Dobhal S, Ahmad A, Hassan ZU, Uyeda J, Silva J, Wang KH, Kim S, Alvarez AM, Arif M. Exploring taxonomic and functional microbiome of Hawaiian stream and spring irrigation water systems using Illumina and Oxford Nanopore sequencing platforms. Front Microbiol 2023; 14:1039292. [PMID: 36876060 PMCID: PMC9981659 DOI: 10.3389/fmicb.2023.1039292] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/16/2023] [Indexed: 02/19/2023] Open
Abstract
Irrigation water is a common source of contamination that carries plant and foodborne human pathogens and provides a niche for proliferation and survival of microbes in agricultural settings. Bacterial communities and their functions in irrigation water were investigated by analyzing samples from wetland taro farms on Oahu, Hawaii using different DNA sequencing platforms. Irrigation water samples (stream, spring, and storage tank water) were collected from North, East, and West sides of Oahu and subjected to high quality DNA isolation, library preparation and sequencing of the V3-V4 region, full length 16S rRNA, and shotgun metagenome sequencing using Illumina iSeq100, Oxford Nanopore MinION and Illumina NovaSeq, respectively. Illumina reads provided the most comprehensive taxonomic classification at the phylum level where Proteobacteria was identified as the most abundant phylum in the stream source and associated water samples from wetland taro fields. Cyanobacteria was also a dominant phylum in samples from tank and spring water, whereas Bacteroidetes were most abundant in wetland taro fields irrigated with spring water. However, over 50% of the valid short amplicon reads remained unclassified and inconclusive at the species level. In contrast, Oxford Nanopore MinION was a better choice for microbe classification at the genus and species levels as indicated by samples sequenced for full length 16S rRNA. No reliable taxonomic classification results were obtained while using shotgun metagenome data. In functional analyzes, only 12% of the genes were shared by two consortia and 95 antibiotic resistant genes (ARGs) were detected with variable relative abundance. Full descriptions of microbial communities and their functions are essential for the development of better water management strategies aimed to produce safer fresh produce and to protect plant, animal, human and environmental health. Quantitative comparisons illustrated the importance of selecting the appropriate analytical method depending on the level of taxonomic delineation sought in each microbiome.
Collapse
Affiliation(s)
- Diksha Klair
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Shefali Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Amjad Ahmad
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Zohaib Ul Hassan
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
- Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Department of Bio-Medical Measurement, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jensen Uyeda
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Joshua Silva
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Koon-Hui Wang
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Seil Kim
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
- Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Department of Bio-Medical Measurement, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Anne M. Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|