1
|
Fan TF, Luan YY, Xiang S, Shi YX, Xie XW, Chai AL, Li L, Li BJ. Seed coating with biocontrol bacteria encapsulated in sporopollenin exine capsules for the control of soil-borne plant diseases. Int J Biol Macromol 2024; 281:136093. [PMID: 39341327 DOI: 10.1016/j.ijbiomac.2024.136093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Coating seeds with biocontrol agents represents an effective approach for managing soil-borne plant diseases. However, improving the viability of biocontrol microorganisms on the seed surface or in the rhizosphere remains a big challenge due to biotic and abiotic stresses. In this work, we developed a microbial seed coating strategy that uses sporopollenin exine capsules (SECs) as carriers for the encapsulation of the biofilm-like biocontrol bacteria. SECs was extracted from camellia bee pollen, and then characterized by Fourier Transform infrared spectroscopy (FTIR), elemental analysis and thermal gravity analysis (TG). The Paenibacillus polymyxa ZF129, a biocontrol bacterium, was introduced into SECs using the vacuum-incubation method and characterized by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Notably, the ZF129 cell formed a biofilm-like structure inside the SECs, which enhanced their tolerance to acidic stress. As a proof of concept, we applied ZF129-loaded SECs to coat pak choi seeds using a straightforward plate-shaking technique. The coated seeds demonstrated a high control efficacy of up to 60.46 % against clubroot disease. Overall, this study sheds light on the application of SECs as promising carrier for the encapsulation of biofilm-like biocontrol bacteria, further augmenting the biocontrol functionality of microbial seed coating.
Collapse
Affiliation(s)
- Teng-Fei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National South Breeding Research Institute of the Chinese Academy of Agricultural Sciences in Sanya, Sanya 572000, China.
| | - Yu-Yang Luan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sheng Xiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan-Xia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue-Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - A-Li Chai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Bao-Ju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Min KH, Kim DH, Kim KH, Seo JH, Pack SP. Biomimetic Scaffolds of Calcium-Based Materials for Bone Regeneration. Biomimetics (Basel) 2024; 9:511. [PMID: 39329533 PMCID: PMC11430767 DOI: 10.3390/biomimetics9090511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Calcium-based materials, such as calcium carbonate, calcium phosphate, and calcium silicate, have attracted significant attention in biomedical research, owing to their unique physicochemical properties and versatile applications. The distinctive characteristics of these materials, including their inherent biocompatibility and tunable structures, hold significant promise for applications in bone regeneration and tissue engineering. This review explores the biomedical applications of calcium-containing materials, particularly for bone regeneration. Their remarkable biocompatibility, tunable nanostructures, and multifaceted functionalities make them pivotal for advancing regenerative medicine, drug delivery system, and biomimetic scaffold applications. The evolving landscape of biomedical research continues to uncover new possibilities, positioning calcium-based materials as key contributors to the next generation of innovative biomaterial scaffolds.
Collapse
Affiliation(s)
- Ki Ha Min
- Institute of Industrial Technology, Korea University, Sejong 30019, Republic of Korea;
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.H.K.); (K.H.K.); (J.-H.S.)
| | - Koung Hee Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.H.K.); (K.H.K.); (J.-H.S.)
| | - Joo-Hyung Seo
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.H.K.); (K.H.K.); (J.-H.S.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.H.K.); (K.H.K.); (J.-H.S.)
| |
Collapse
|
3
|
Montaño MD, Goodman AJ, Ranville JF. Past progress in environmental nanoanalysis and a future trajectory for atomic mass-spectrometry methods. NANOIMPACT 2024; 35:100518. [PMID: 38906249 DOI: 10.1016/j.impact.2024.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/14/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
The development of engineered nanotechnology has necessitated a commensurate maturation of nanoanalysis capabilities. Building off a legacy established by electron microscopy and light-scattering, environmental nanoanalysis has now benefited from ongoing advancements in instrumentation and data analysis, which enable a deeper understanding of nanomaterial properties, behavior, and impacts. Where once environmental nanoparticles and colloids were grouped into broad 'dissolved or particulate' classes that are dependent on a filter size cut-off, now size distributions of submicron particles can be separated and characterized providing a more comprehensive examination of the nanoscale. Inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS), directly coupled to field flow fractionation (FFF-ICP-QMS) or operated in single particle mode (spICP-MS) have spearheaded a revolution in nanoanalysis, enabling research into nanomaterial behavior in environmental and biological systems at expected release concentrations. However, the complexity of the nanoparticle population drives a need to characterize and quantify the multi-element composition of nanoparticles, which has begun to be realized through the application of time-of-flight MS (spICP-TOFMS). Despite its relative infancy, this technique has begun to make significant strides in more fully characterizing particulate systems and expanding our understanding of nanoparticle behavior. Though there is still more work to be done with regards to improving instrumentation and data processing, it is possible we are on the cusp of a new nanoanalysis revolution, capable of broadening our understanding of the size regime between dissolved and bulk particulate compartments of the environment.
Collapse
Affiliation(s)
- M D Montaño
- Department of Environmental Sciences, Western Washington University, Bellingham, WA 98225, United States of America
| | - A J Goodman
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, United States of America
| | - J F Ranville
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, United States of America.
| |
Collapse
|
4
|
Parvin N, Kumar V, Joo SW, Mandal TK. Emerging Trends in Nanomedicine: Carbon-Based Nanomaterials for Healthcare. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1085. [PMID: 38998691 PMCID: PMC11243447 DOI: 10.3390/nano14131085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
Carbon-based nanomaterials, such as carbon quantum dots (CQDs) and carbon 2D nanosheets (graphene, graphene oxide, and graphdiyne), have shown remarkable potential in various biological applications. CQDs offer tunable photoluminescence and excellent biocompatibility, making them suitable for bioimaging, drug delivery, biosensing, and photodynamic therapy. Additionally, CQDs' unique properties enable bioimaging-guided therapy and targeted imaging of biomolecules. On the other hand, carbon 2D nanosheets exhibit exceptional physicochemical attributes, with graphene excelling in biosensing and bioimaging, also in drug delivery and antimicrobial applications, and graphdiyne in tissue engineering. Their properties, such as tunable porosity and high surface area, contribute to controlled drug release and enhanced tissue regeneration. However, challenges, including long-term biocompatibility and large-scale synthesis, necessitate further research. Potential future directions encompass theranostics, immunomodulation, neural interfaces, bioelectronic medicine, and expanding bioimaging capabilities. In summary, both CQDs and carbon 2D nanosheets hold promise to revolutionize biomedical sciences, offering innovative solutions and improved therapies in diverse biological contexts. Addressing current challenges will unlock their full potential and can shape the future of medicine and biotechnology.
Collapse
Affiliation(s)
| | | | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| |
Collapse
|
5
|
Tang K, Cui X. A Review on Investigating the Interactions between Nanoparticles and the Pulmonary Surfactant Monolayer with Coarse-Grained Molecular Dynamics Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11829-11842. [PMID: 38809819 DOI: 10.1021/acs.langmuir.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Pulmonary drug delivery has garnered significant attention due to its targeted local lung action, minimal toxic side effects, and high drug utilization. However, the physicochemical properties of inhaled nanoparticles (NPs) used as drug carriers can influence their interactions with the pulmonary surfactant (PS) monolayer, potentially altering the fate of the NPs and impairing the biophysical function of the PS monolayer. Thus, the objective of this review is to summarize how the physicochemical properties of NPs affect their interactions with the PS monolayer. Initially, the definition and properties of NPs, as well as the composition and characteristics of the PS monolayer, are introduced. Subsequently, the coarse-grained molecular dynamics (CGMD) simulation method for studying the interactions between NPs and the PS monolayer is presented. Finally, the implications of the hydrophobicity, size, shape, surface charge, surface modification, and aggregation of NPs on their interactions with the PS monolayer and on the composition of biomolecular corona are discussed. In conclusion, gaining a deeper understanding of the effects of the physicochemical properties of NPs on their interactions with the PS monolayer will contribute to the development of safer and more effective nanomedicines for pulmonary drug delivery.
Collapse
Affiliation(s)
- Kailiang Tang
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinguang Cui
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Rasmussen K, Riego Sintes J, Rauscher H. How nanoparticles are counted in global regulatory nanomaterial definitions. NATURE NANOTECHNOLOGY 2024; 19:132-138. [PMID: 38308175 DOI: 10.1038/s41565-023-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Affiliation(s)
| | | | - Hubert Rauscher
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
7
|
Bian X, Xia G, Xin JH, Jiang S, Ma K. Applications of waste polyethylene terephthalate (PET) based nanostructured materials: A review. CHEMOSPHERE 2024; 350:141076. [PMID: 38169200 DOI: 10.1016/j.chemosphere.2023.141076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
While polyethylene terephthalate (PET) has enjoyed widespread use, a large volume of plastic waste has also been produced as a result, which is detrimental to the environment. Traditional treatment of plastic waste, such as landfilling and incinerating waste, causes environmental pollution and poses risks to public health. Recycling PET waste into useful chemicals or upcycling the waste into high value-added materials can be remedies. This review first provides a brief introduction of the synthesis, structure, properties, and applications of virgin PET. Then the conversion process of waste PET into high value-added materials for different applications are introduced. The conversion mechanisms (including degradation, recycling and upcycling) are detailed. The advanced applications of these upgraded materials in energy storage devices (supercapacitors, lithium-ion batteries, and microbial fuel cells), and for water treatment (to remove dyes, heavy metals, and antibiotics), environmental remediation (for air filtration, CO2 adsorption, and oil removal) and catalysis (to produce H2, photoreduce CO2, and remove toxic chemicals) are discussed at length. In general, this review details the exploration of advanced technologies for the transformation of waste PET into nanostructured materials for various applications, and provides insights into the role of high value-added waste products in sustainability and economic development.
Collapse
Affiliation(s)
- Xueyan Bian
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Gang Xia
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - John H Xin
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Shouxiang Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Kaikai Ma
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
8
|
Shi Y, Zhang Y, Zhu L, Miao Y, Zhu Y, Yue B. Tailored Drug Delivery Platforms: Stimulus-Responsive Core-Shell Structured Nanocarriers. Adv Healthc Mater 2024; 13:e2301726. [PMID: 37670419 DOI: 10.1002/adhm.202301726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Indexed: 09/07/2023]
Abstract
Core-shell structured nanocarriers have come into the scientific spotlight in recent years due to their intriguing properties and wide applications in materials chemistry, biology, and biomedicine. Tailored core-shell structures to achieve desired performance have emerged as a research frontier in the development of smart drug delivery system. However, systematic reviews on the design and loading/release mechanisms of stimulus-responsive core-shell structured nanocarriers are uncommon. This review starts with the categories of core-shell structured nanocarriers with different means of drug payload, and then highlights the controlled release mechanism realized through stimulus-response processes triggered under different environments. Finally, some multifaceted perspectives on the design of core-shell structured materials as drug carriers are addressed. This work aims to provide new enlightenments and prospects in the drug delivery field for further developing advanced and smart nanocarriers.
Collapse
Affiliation(s)
- Yulong Shi
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yiran Zhang
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yueqi Zhu
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Bingbing Yue
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
| |
Collapse
|
9
|
Jin L, Mao Z. Living virus-based nanohybrids for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1923. [PMID: 37619605 DOI: 10.1002/wnan.1923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Living viruses characterized by distinctive biological functions including specific targeting, gene invasion, immune modulation, and so forth have been receiving intensive attention from researchers worldwide owing to their promising potential for producing numerous theranostic modalities against diverse pathological conditions. Nevertheless, concerns during applications, such as rapid immune clearance, altering immune activation modes, insufficient gene transduction efficiency, and so forth, highlight the crucial issues of excessive therapeutic doses and the associated biosafety risks. To address these concerns, synthetic nanomaterials featuring unique physical/chemical properties are frequently exploited as efficient drug delivery vehicles or treatments in biomedical domains. By constant endeavor, researchers nowadays can create adaptable living virus-based nanohybrids (LVN) that not only overcome the limitations of virotherapy, but also combine the benefits of natural substances and nanotechnology to produce novel and promising therapeutic and diagnostic agents. In this review, we discuss the fundamental physiochemical properties of the viruses, and briefly outline the basic construction methodologies of LVN. We then emphasize their distinct diagnostic and therapeutic performances for various diseases. Furthermore, we survey the foreseeable challenges and future perspectives in this interdisciplinary area to offer insights. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Bhattacharya S, Gupta S, Saha J. Nanoparticles regulate redox metabolism in plants during abiotic stress within hormetic boundaries. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:850-869. [PMID: 37757867 DOI: 10.1071/fp23068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Abiotic stress management remains under scrutiny because of the unpredictable nature of climate, which undergoes abrupt alterations. Population pressure, loss of cultivable lands, environmental pollution and other anthropogenic disturbances add to the problem and grossly hinder ongoing management strategies. This has driven increasing effort to find better performing, eco-friendly and reliable alternatives that can contribute to sustainable agricultural practices to manage abiotic stress. Nanotechnology and its implementation in agriculture have emerged as a promising option to cater to the problem of abiotic stress. Induction of reactive oxygen species (ROS) is an inevitable phenomenon linked to stress. Nanoparticles (NPs) perform dual actions in regulating ROS biology. The bidirectional roles of NPs in modulating ROS generation and/or ROS detoxification is tightly coupled within the hormetic boundaries. Nonetheless, how these NPs control the ROS metabolism within hormetic limits demands extensive investigation. This review focuses on the details of ROS metabolism under normal versus stressed conditions. It shall elaborate on the types, modes and process of uptake and translocation of NPs. The molecular dissection of the role of NPs in controlling transcriptomic expressions and modulating molecular crosstalks with other growth regulators, ions, reactive nitrogen species and other signalling molecules shall also be detailed. Throughout, this review aims to summarise the potential roles and regulation of NPs and consider how they can be used for green synthesis within a sustainable agricultural industry.
Collapse
Affiliation(s)
- Saswati Bhattacharya
- Department of Botany, Dr. A.P.J. Abdul Kalam Government College, New Town, Rajarhat, India
| | - Sumanti Gupta
- Department of Botany, Rabindra Mahavidyalaya, Champadanga, Hooghly, West Bengal, India
| | - Jayita Saha
- Department of Botany, Rabindra Mahavidyalaya, Champadanga, Hooghly, West Bengal, India
| |
Collapse
|
11
|
Sell M, Lopes AR, Escudeiro M, Esteves B, Monteiro AR, Trindade T, Cruz-Lopes L. Application of Nanoparticles in Cancer Treatment: A Concise Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2887. [PMID: 37947732 PMCID: PMC10650201 DOI: 10.3390/nano13212887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Timely diagnosis and appropriate antitumoral treatments remain of utmost importance, since cancer remains a leading cause of death worldwide. Within this context, nanotechnology offers specific benefits in terms of cancer therapy by reducing its adverse effects and guiding drugs to selectively target cancer cells. In this comprehensive review, we have summarized the most relevant novel outcomes in the range of 2010-2023, covering the design and application of nanosystems for cancer therapy. We have established the general requirements for nanoparticles to be used in drug delivery and strategies for their uptake in tumor microenvironment and vasculature, including the reticuloendothelial system uptake and surface functionalization with protein corona. After a brief review of the classes of nanovectors, we have covered different classes of nanoparticles used in cancer therapies. First, the advances in the encapsulation of drugs (such as paclitaxel and fisetin) into nanoliposomes and nanoemulsions are described, as well as their relevance in current clinical trials. Then, polymeric nanoparticles are presented, namely the ones comprising poly lactic-co-glycolic acid, polyethylene glycol (and PEG dilemma) and dendrimers. The relevance of quantum dots in bioimaging is also covered, namely the systems with zinc sulfide and indium phosphide. Afterwards, we have reviewed gold nanoparticles (spheres and anisotropic) and their application in plasmon-induced photothermal therapy. The clinical relevance of iron oxide nanoparticles, such as magnetite and maghemite, has been analyzed in different fields, namely for magnetic resonance imaging, immunotherapy, hyperthermia, and drug delivery. Lastly, we have covered the recent advances in the systems using carbon nanomaterials, namely graphene oxide, carbon nanotubes, fullerenes, and carbon dots. Finally, we have compared the strategies of passive and active targeting of nanoparticles and their relevance in cancer theranostics. This review aims to be a (nano)mark on the ongoing journey towards realizing the remarkable potential of different nanoparticles in the realm of cancer therapeutics.
Collapse
Affiliation(s)
- Mariana Sell
- Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal; (M.S.); (B.E.)
| | - Ana Rita Lopes
- Faculty of Dental Medicine, Portuguese Catholic University, 3504-505 Viseu, Portugal;
| | - Maria Escudeiro
- Abel Salazar Biomedical Institute, University of Porto, 4050-313 Porto, Portugal;
| | - Bruno Esteves
- Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal; (M.S.); (B.E.)
- Centre for Natural Resources, Environment and Society-CERNAS-IPV Research Centre, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal
| | - Ana R. Monteiro
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain;
| | - Tito Trindade
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Luísa Cruz-Lopes
- Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal; (M.S.); (B.E.)
- Centre for Natural Resources, Environment and Society-CERNAS-IPV Research Centre, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal
| |
Collapse
|
12
|
Abstract
Primary brain cancer or brain cancer is the overgrowth of abnormal or malignant cells in the brain or its nearby tissues that form unwanted masses called brain tumors. People with malignant brain tumors suffer a lot, and the expected life span of the patients after diagnosis is often only around 14 months, even with the most vigorous therapies. The blood-brain barrier (BBB) is the main barrier in the body that restricts the entry of potential chemotherapeutic agents into the brain. The chances of treatment failure or low therapeutic effects are some significant drawbacks of conventional treatment methods. However, recent advancements in nanotechnology have generated hope in cancer treatment. Nanotechnology has shown a vital role starting from the early detection, diagnosis, and treatment of cancer. These tiny nanomaterials have great potential to deliver drugs across the BBB. Beyond just drug delivery, nanomaterials can be simulated to generate fluorescence to detect tumors. The current Review discusses in detail the challenges of brain cancer treatment and the application of nanotechnology to overcome those challenges. The success of chemotherapeutic treatment or the surgical removal of tumors requires proper imaging. Nanomaterials can provide imaging and therapeutic benefits for cancer. The application of nanomaterials in the diagnosis and treatment of brain cancer is discussed in detail by reviewing past studies.
Collapse
Affiliation(s)
- Yogita Ale
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Prem Nagar, Dehradun, Uttarakhand 248007, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Prem Nagar, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
13
|
Harrison DM, Briffa SM, Mazzonello A, Valsami-Jones E. A Review of the Aquatic Environmental Transformations of Engineered Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2098. [PMID: 37513109 PMCID: PMC10385082 DOI: 10.3390/nano13142098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Once released into the environment, engineered nanomaterials (ENMs) undergo complex interactions and transformations that determine their fate, exposure concentration, form, and likely impact on biota. Transformations are physical, chemical, or biological changes that occur to the ENM or the ENM coating. Over time, these transformations have an impact on their behaviour and properties. The interactions and transformations of ENMs in the environment depend on their pristine physical and chemical characteristics and the environmental or biological compartment into which they are released. The uniqueness of each ENM property or lifecycle results in a great deal of complexity. Even small changes may have a significant impact on their potential transformations. This review outlines the key influences and outcomes of ENM evolution pathways in aquatic environments and provides an assessment of potential environmental transformations, focusing on key chemical, physical, and biological processes. By obtaining a comprehensive understanding of the potential environmental transformations that nanomaterials can undergo, more realistic models of their probable environmental behaviour and potential impact can be developed. This will, in turn, be crucial in supporting regulatory bodies in their efforts to develop environmental policy in the field of nanotechnology.
Collapse
Affiliation(s)
- Daniel Mark Harrison
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT, UK
| | - Sophie M Briffa
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT, UK
- Department of Metallurgy and Materials Engineering, Faculty of Engineering, University of Malta, MSD 2080 Msida, Malta
| | - Antonino Mazzonello
- Department of Metallurgy and Materials Engineering, Faculty of Engineering, University of Malta, MSD 2080 Msida, Malta
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
14
|
Rodríguez-Gómez FD, Penon O, Monferrer D, Rivera-Gil P. Classification system for nanotechnology-enabled health products with both scientific and regulatory application. Front Med (Lausanne) 2023; 10:1212949. [PMID: 37601794 PMCID: PMC10433195 DOI: 10.3389/fmed.2023.1212949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/23/2023] [Indexed: 08/22/2023] Open
Abstract
The lack of specific regulatory guidelines for nanotechnology-enabled health products (NHPs) is hampering development and patient access to these innovative technologies. Namely, there is an urgent need for harmonized regulatory definitions and classification systems that allow establishing a standardized framework for NHPs regulatory assessment. In this work, a novel classification system for NHPs is proposed. This classification can be applied for sorting nano-based innovations and regulatory guidelines according to the type of NHPs they address. Said methodology combines scientific and regulatory principles and it is based on the following criteria: principal mode of action, chemical composition, medical purpose and nanomanufacturing approach. This classification system could serve as a useful tool to sensor the state of the art of NHPs which is particularly useful for regulators to support strategy development of regulatory guidelines. Additionally, this tool would also allow manufacturers of NHPs to align their development plans with their applicable guidelines and standards and thus fulfill regulators expectations.
Collapse
Affiliation(s)
- Francisco D. Rodríguez-Gómez
- Asphalion SL, Barcelona, Spain
- Integrative Biomedical Materials and Nanomedicine Lab, Department of Medicine and Life Sciences, Universitat Pompeu Fabra Barcelona Biomedicine Research Park (PRBB) Doctor Aiguader, Barcelona, Spain
| | | | | | - Pilar Rivera-Gil
- Integrative Biomedical Materials and Nanomedicine Lab, Department of Medicine and Life Sciences, Universitat Pompeu Fabra Barcelona Biomedicine Research Park (PRBB) Doctor Aiguader, Barcelona, Spain
| |
Collapse
|
15
|
Gumbiowski N, Loza K, Heggen M, Epple M. Automated analysis of transmission electron micrographs of metallic nanoparticles by machine learning. NANOSCALE ADVANCES 2023; 5:2318-2326. [PMID: 37056630 PMCID: PMC10089082 DOI: 10.1039/d2na00781a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Metallic nanoparticles were analysed with respect to size and shape by a machine learning approach. This involved a separation of particles from the background (segmentation), a separation of overlapping particles, and the identification of individual particles. An algorithm to separate overlapping particles, based on ultimate erosion of convex shapes (UECS), was implemented. Finally, particle properties like size, circularity, equivalent diameter, and Feret diameter were computed for each particle of the whole particle population. Thus, particle size distributions can be easily created based on the various parameters. However, strongly overlapping particles are difficult and sometimes impossible to separate because of an a priori unknown shape of a particle that is partially lying in the shadow of another particle. The program is able to extract information from a sequence of images of the same sample, thereby increasing the number of analysed nanoparticles to several thousands. The machine learning approach is well-suited to identify particles at only limited particle-to-background contrast as is demonstrated for ultrasmall gold nanoparticles (2 nm).
Collapse
Affiliation(s)
- Nina Gumbiowski
- Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Kateryna Loza
- Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Marc Heggen
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH 52428 Jülich Germany
| | - Matthias Epple
- Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| |
Collapse
|
16
|
Schwab F, Rothen-Rutishauser B, Scherz A, Meyer T, Karakoçak BB, Petri-Fink A. The need for awareness and action in managing nanowaste. NATURE NANOTECHNOLOGY 2023; 18:317-321. [PMID: 36869164 PMCID: PMC7615198 DOI: 10.1038/s41565-023-01331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Fabienne Schwab
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
| | | | - Aline Scherz
- Administrative Direction, University of Fribourg, Fribourg, Switzerland
| | - Thierry Meyer
- Group of Chemical and Physical Safety, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
- Chemistry Department, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
17
|
Angolkar M, Paramshetti S, Halagali P, Jain V, Patil AB, Somanna P. Nanotechnological advancements in the brain tumor therapy: a novel approach. Ther Deliv 2023; 13:531-557. [PMID: 36802944 DOI: 10.4155/tde-2022-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Nanotechnological advancements over the past few years have led to the development of newer treatment strategies in brain cancer therapy which leads to the establishment of nano oncology. Nanostructures with high specificity, are best suitable to penetrate the blood-brain barrier (BBB). Their desired physicochemical properties, such as small sizes, shape, higher surface area to volume ratio, distinctive structural features, and the possibility to attach various substances on their surface transform them into potential transport carriers able to cross various cellular and tissue barriers, including the BBB. The review emphasizes nanotechnology-based treatment strategies for the exploration of brain tumors and highlights the current progress of different nanomaterials for the effective delivery of drugs for brain tumor therapy.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Praveen Halagali
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Amit B Patil
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Preethi Somanna
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| |
Collapse
|
18
|
Tortella G, Rubilar O, Pieretti JC, Fincheira P, de Melo Santana B, Fernández-Baldo MA, Benavides-Mendoza A, Seabra AB. Nanoparticles as a Promising Strategy to Mitigate Biotic Stress in Agriculture. Antibiotics (Basel) 2023; 12:338. [PMID: 36830248 PMCID: PMC9951924 DOI: 10.3390/antibiotics12020338] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Nanoparticles are recognized due to their particular physical and chemical properties, which are conferred due to their size, in the range of nanometers. Nanoparticles are recognized for their application in medicine, electronics, and the textile industry, among others, but also in agriculture. The application of nanoparticles as nanofertilizers and biostimulants can help improve growth and crop productivity, and it has therefore been mentioned as an essential tool to control the adverse effects of abiotic stress. However, nanoparticles have also been noted for their exceptional antimicrobial properties. Therefore, this work reviews the state of the art of different nanoparticles that have shown the capacity to control biotic stress in plants. In this regard, metal and metal oxide nanoparticles, polymeric nanoparticles, and others, such as silica nanoparticles, have been described. Moreover, uptake and translocation are covered. Finally, future remarks about the studies on nanoparticles and their beneficial role in biotic stress management are made.
Collapse
Affiliation(s)
- Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Joana C. Pieretti
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| | - Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Bianca de Melo Santana
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| | - Martín A. Fernández-Baldo
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis, CONICET, Chacabuco 917, San Luis D5700BWS, Argentina
| | | | - Amedea B. Seabra
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| |
Collapse
|
19
|
Labuda J, Barek J, Gajdosechova Z, Goenaga-Infante H, Johnston LJ, Mester Z, Shtykov S. Analytical chemistry of engineered nanomaterials: Part 1. Scope, regulation, legislation, and metrology (IUPAC Technical Report). PURE APPL CHEM 2023. [DOI: 10.1515/pac-2021-1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
Analytical chemistry is crucial for understanding the complex behavior observed for engineered nanomaterials (ENMs). A variety of analytical chemistry techniques and methodological approaches are used for isolation/purification and determination of the composition of pristine nanomaterials and for the detection, identification, and quantification of nanomaterials in nano-enabled consumer products and the complex matrices found in cosmetics, food, and environmental and biological samples. Adequate characterization of ENMs also requires physicochemical characterization of number of other properties, including size, shape, and structure. The requirement for assessment of a number of ENM properties frequently requires interdisciplinary approaches and multi-modal analysis methods. This technical report starts with an overview of ENMs definitions and classification, their properties, and analytical scenarios encountered with the analysis of both pristine nanomaterials and complex matrices containing different nanomaterials. An evaluation of the current status regarding nanomaterial identification and characterization for regulatory purposes and legislation, including emerging regulations and related scientific opinions, is provided. The technical report also presents a large and critical overview of the metrology of nanomaterials, including available reference materials and the development and validation of standardized methods that are currently available to address characterization and analysis challenges. The report focuses mainly on chemical analysis techniques and thus it is complementary to previous IUPAC technical reports focused on characterizing the physical parameters of ENMs and on nanotoxicology.
Collapse
Affiliation(s)
- Jan Labuda
- Institute of Analytical Chemistry , Slovak University of Technology in Bratislava , Bratislava , Slovakia
| | - Jiří Barek
- Department of Analytical Chemistry , Charles University in Prague , Prague , Czech Republic
| | | | | | | | - Zoltan Mester
- National Research Council Canada , Ottawa , ON K1A 0R6 , Canada
| | - Sergei Shtykov
- Institute of Chemistry , Saratov State University , Saratov , Russia
| |
Collapse
|
20
|
Botha TL, Bamuza-Pemu E, Roopnarain A, Ncube Z, De Nysschen G, Ndaba B, Mokgalaka N, Bello-Akinosho M, Adeleke R, Mushwana A, van der Laan M, Mphahlele P, Vilakazi F, Jaca P, Ubomba-Jaswa E. Development of a GIS-based knowledge hub for contaminants of emerging concern in South African water resources using open-source software: Lessons learnt. Heliyon 2023; 9:e13007. [PMID: 36747952 PMCID: PMC9898659 DOI: 10.1016/j.heliyon.2023.e13007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
With population growth and dwindling freshwater sources, protecting such sources has come to the forefront of water resource management. Historically, society's response to a problem is based on funding availability, current threat, and public outcry. Achieving this is largely dependent on the knowledge of the factors that are resulting in compromised water sources. These factors are constantly changing as novel contaminants are introduced into surface water sources. As we are in the information age, the interest in contaminants of emerging concern (CEC) is gaining ground. Whilst research is being conducted to identify contaminants in South African water sources, the research outputs and available information is not collated and presented to the science community and stakeholders in readily available formats and platforms. Current research outcomes need to be made known to regulators in order to develop environmental laws. By using fourth industrial revolution technology, we were able to collate available data in literature and display these in a user-friendly online format to regulatory bodies as well as researchers. A standardized excel spreadsheet was developed and uploaded to a PostgreSQL, running a PostGIS extension and was then processed in the GeoServer to allow for visualization on an interactive map which can be continuously updated. The near real-time access to information will reduce the possibility of duplication of research efforts, enhance collaboration in the discipline, and act as a CEC early warning system.
Collapse
Affiliation(s)
- Tarryn Lee Botha
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Corresponding author. Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa.
| | - Emomotimi Bamuza-Pemu
- OptimalEnviro; Postnet Suite 073, Private Bag X21, Queenswood, Pretoria, 0121, South Africa
| | - Ashira Roopnarain
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council – Natural Resources and Engineering, Pretoria, South Africa
| | - Zibusiso Ncube
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council – Natural Resources and Engineering, Pretoria, South Africa
| | - Gert De Nysschen
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council – Natural Resources and Engineering, Pretoria, South Africa
| | - Busiswa Ndaba
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council – Natural Resources and Engineering, Pretoria, South Africa
| | - Ntebogeng Mokgalaka
- University of Pretoria, Mamelodi Campus, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
- Tshwane University of Technology, Faculty of Science, Department of Chemistry, Private Bag X680, Pretoria, 0001, South Africa
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Maryam Bello-Akinosho
- Pathogenic Yeast Research Group, Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, South Africa
| | - Akani Mushwana
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council – Natural Resources and Engineering, Pretoria, South Africa
| | - Michael van der Laan
- Agricultural Research Council (ARC) – Natural Resources and Engineering, Private Bag X79, Pretoria, 0001, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20 Hatfield, Pretoria, 0028, South Africa
| | - Phedisho Mphahlele
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council – Natural Resources and Engineering, Pretoria, South Africa
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Fanelesibonge Vilakazi
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council – Natural Resources and Engineering, Pretoria, South Africa
- Unit for Environmental Sciences and Management, North-West University, South Africa
| | - Penny Jaca
- Water Research Commission, Lynnwood Bridge Office Park, Bloukrans Building, 4 Daventry Street, Lynnwood Manor, Pretoria, 0081, South Africa
| | - Eunice Ubomba-Jaswa
- Water Research Commission, Lynnwood Bridge Office Park, Bloukrans Building, 4 Daventry Street, Lynnwood Manor, Pretoria, 0081, South Africa
| |
Collapse
|
21
|
Tang R, Zhu D, Luo Y, He D, Zhang H, El-Naggar A, Palansooriya KN, Chen K, Yan Y, Lu X, Ying M, Sun T, Cao Y, Diao Z, Zhang Y, Lian Y, Chang SX, Cai Y. Nanoplastics induce molecular toxicity in earthworm: Integrated multi-omics, morphological, and intestinal microorganism analyses. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130034. [PMID: 36206716 DOI: 10.1016/j.jhazmat.2022.130034] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/02/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
The toxicity of nanoplastics (NPs) at relatively low concentrations to soil fauna at different organismal levels is poorly understood. We investigated the responses of earthworm (Eisenia fetida) to polystyrene NPs (90-110 nm) contaminated soil at a relatively low concentration (0.02 % w:w) based on multi-omics, morphological, and intestinal microorganism analyses. Results showed that NPs accumulated in earthworms' intestinal tissues. The NPs damaged earthworms' digestive and immune systems based on injuries of the intestinal epithelium and chloragogenous tissues (tissue level) and increased the number of changed genes in the digestive and immune systems (transcriptome level). The NPs reduced gut microorganisms' diversity (Shannon index) and species richness (Chao 1 index). Proteomic, transcriptome, and histopathological analyses showed that earthworms suffered from oxidative and inflammatory stresses. Moreover, NPs influenced the osmoregulatory metabolism of earthworms as NPs damaged intestinal epithelium (tissue level), increased aldosterone-regulated sodium reabsorption (transcriptome level), inositol phosphate metabolism (proteomic level) and 2-hexyl-5-ethyl-furan-3-sulfonic acid, and decreased betaine and myo-inositol concentrations (metabolic level). Transcriptional-metabolic and transcriptional-proteomic analyses revealed that NPs disrupted earthworm carbohydrate and arachidonic acid metabolisms. Our multi-level investigation indicates that NPs at a relatively low concentration induced toxicity to earthworms and suggests that NPs pollution has significant environmental toxicity risks for soil fauna.
Collapse
Affiliation(s)
- Ronggui Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Defu He
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Haibo Zhang
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Ali El-Naggar
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Kumuduni Niroshika Palansooriya
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Keyi Chen
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yan Yan
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinghang Lu
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Minshen Ying
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Tao Sun
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuntao Cao
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhihan Diao
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuxin Zhang
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yichen Lian
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Renewable Resources, University of Alberta, Edmonton T6G2E3, Canada.
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
22
|
Marengo E, Roveri N, Marengo D. Particelle nanostrutturate di idrossiapatite biomimetica come sistema di delivery di micro e macro elementi nelle colture biologiche. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235601003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Nanoparticelle biomimetiche di idrossiapatite drogate con ioni metallici (Cu, Fe, Mg, Zn, K) sono state utilizzate in formulazioni contenenti basse concentrazioni di rame (Cu) e zolfo (S) per controllare la peronospora (plasmopara viticola) e l'oidio (erysiphe necator) della vite. I formulati sono stati testati in campo sulla varietà di vino "Dolcetto" coltivata secondo tecniche di agricoltura biologica, e la loro efficacia è stata confrontata con prodotti commerciali contenenti miscela bordolese e zolfo.
I dati indicano che le formulazioni contenenti bassi dosaggi di rame e zolfo possono essere trasportati in modo efficiente dalle nanoparticelle di idrossiapatite biomimetica e possono ridurre la presenza di micota sulle foglie della vite. Nessun residuo di rame e zolfo è stato rilevato in campioni di vino ottenuti da viti in cui è stata utilizzata l'idrossiapatite biomimetica. Il drogaggio di nanoparticelle di idrossiapatite biomimetica con metalli di transizione è un modo efficiente per fornire micro e macro-elementi alle piante a basso livello di dosaggio. Le formulazioni contenenti idrossiapatite funzionano anche come supporti a lento rilascio di macronutrienti come elementi di calcio e fosforo.
Collapse
|
23
|
Nanotechnology for Manipulating Cell Plasticity. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
24
|
Zahmatkesh S, Hajiaghaei-Keshteli M, Bokhari A, Sundaramurthy S, Panneerselvam B, Rezakhani Y. Wastewater treatment with nanomaterials for the future: A state-of-the-art review. ENVIRONMENTAL RESEARCH 2023; 216:114652. [PMID: 36309214 DOI: 10.1016/j.envres.2022.114652] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Aquatic and terrestrial ecosystems are both threatened by toxic wastewater. The unique properties of nanomaterials are currently being studied thoroughly for treating sewage. Nanomaterials also have the advantage of being capable of removing organic matter, fungi, and viruses from wastewater. Advanced oxidation processes are used in nanomaterials to treat wastewater. Additionally, nanomaterials have a large effective area of contact due to their tiny dimensions. The adsorption and reactivity of nanomaterials are strong. Wastewater treatment would benefit from the development of nanomaterial technology. Second, the paper provides a comprehensive analysis of the unique characteristics of nanomaterials in wastewater treatment, their proper use, and their prospects. In addition to focusing on their economic feasibility, since limited forms of nanomaterials have been manufactured, it is also necessary to consider their feasibility in terms of their technical results. According to this study, the significant adsorption area, excellent chemical reaction, and electrical conductivity of nanoparticles (NPs) contribute to the successful treatment of wastewater.
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico.
| | | | - Awais Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno Technická 2896/2, 616 00, Brno, Czech Republic
| | - Suresh Sundaramurthy
- Department of Chemical Engineering, Maulana Azad National Institute of Technology Bhopal, 462 003, Madhya Pradesh, India
| | | | - Yousof Rezakhani
- Department of Civil Engineering, Pardis Branch, Islamic Azad University, Pardis, Iran
| |
Collapse
|
25
|
Ghosh D, Kokane S, Savita BK, Kumar P, Sharma AK, Ozcan A, Kokane A, Santra S. Huanglongbing Pandemic: Current Challenges and Emerging Management Strategies. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010160. [PMID: 36616289 PMCID: PMC9824665 DOI: 10.3390/plants12010160] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 05/09/2023]
Abstract
Huanglongbing (HLB, aka citrus greening), one of the most devastating diseases of citrus, has wreaked havoc on the global citrus industry in recent decades. The culprit behind such a gloomy scenario is the phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas), which are transmitted via psyllid. To date, there are no effective long-termcommercialized control measures for HLB, making it increasingly difficult to prevent the disease spread. To combat HLB effectively, introduction of multipronged management strategies towards controlling CLas population within the phloem system is deemed necessary. This article presents a comprehensive review of up-to-date scientific information about HLB, including currently available management practices and unprecedented challenges associated with the disease control. Additionally, a triangular disease management approach has been introduced targeting pathogen, host, and vector. Pathogen-targeting approaches include (i) inhibition of important proteins of CLas, (ii) use of the most efficient antimicrobial or immunity-inducing compounds to suppress the growth of CLas, and (iii) use of tools to suppress or kill the CLas. Approaches for targeting the host include (i) improvement of the host immune system, (ii) effective use of transgenic variety to build the host's resistance against CLas, and (iii) induction of systemic acquired resistance. Strategies for targeting the vector include (i) chemical and biological control and (ii) eradication of HLB-affected trees. Finally, a hypothetical model for integrated disease management has been discussed to mitigate the HLB pandemic.
Collapse
Affiliation(s)
- Dilip Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| | - Sunil Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
| | - Brajesh Kumar Savita
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pranav Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| | - Ali Ozcan
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70200 Karaman, Turkey
- Scientific and Technological Studies Application and Research Center, Karamanoglu Mehmetbey University, 70200 Karaman, Turkey
| | - Amol Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
| | - Swadeshmukul Santra
- Departments of Chemistry, Nano Science Technology Center, and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| |
Collapse
|
26
|
Mbarek WB, Escoda L, Saurina J, Pineda E, Alminderej FM, Khitouni M, Suñol JJ. Nanomaterials as a Sustainable Choice for Treating Wastewater: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8576. [PMID: 36500069 PMCID: PMC9737022 DOI: 10.3390/ma15238576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/15/2023]
Abstract
The removal of dyes from textile effluents utilizing advanced wastewater treatment methods with high efficiency and low cost has received substantial attention due to the rise in pollutants in water. The purpose of this work is to give a comprehensive analysis of the different treatments for removing chemical dyes from textile effluents. The capability and potential of conventional treatments for the degradation of dyeing compounds in aqueous media, as well as the influence of multiple parameters, such as the pH solution, initial dye concentration, and adsorbent dose, are presented in this study. This study is an overview of the scientific research literature on this topic, including nanoreductive and nanophotocatalyst processes, as well as nanoadsorbents and nanomembranes. For the purpose of treating sewage, the special properties of nanoparticles are currently being carefully researched. The ability of nanomaterials to remove organic matter, fungus, and viruses from wastewater is another benefit. Nanomaterials are employed in advanced oxidation techniques to clean wastewater. Additionally, because of their small dimensions, nanoparticles have a wide effective area of contact. Due to this, nanoparticles' adsorption and reactivity are powerful. The improvement of nanomaterial technology will be beneficial for the treatment of wastewater. This report also offers a thorough review of the distinctive properties of nanomaterials used in wastewater treatment, as well as their appropriate application and future possibilities. Since only a few types of nanomaterials have been produced, it is also important to focus on their technological feasibility in addition to their economic feasibility. According to this study, nanoparticles (NPs) have a significant adsorption area, efficient chemical reactions, and electrical conductivity that help treat wastewater effectively.
Collapse
Affiliation(s)
- Wael Ben Mbarek
- Department of Physics, Campus Montilivi s/n, University of Girona, 17003 Girona, Spain
| | - Lluisa Escoda
- Department of Physics, Campus Montilivi s/n, University of Girona, 17003 Girona, Spain
| | - Joan Saurina
- Department of Physics, Campus Montilivi s/n, University of Girona, 17003 Girona, Spain
| | - Eloi Pineda
- Department of Physics, Institute of Energy Technologies, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Mohamed Khitouni
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Joan-Josep Suñol
- Department of Physics, Campus Montilivi s/n, University of Girona, 17003 Girona, Spain
| |
Collapse
|
27
|
Byakodi M, Shrikrishna NS, Sharma R, Bhansali S, Mishra Y, Kaushik A, Gandhi S. Emerging 0D, 1D, 2D, and 3D nanostructures for efficient point-of-care biosensing. BIOSENSORS & BIOELECTRONICS: X 2022; 12:100284. [PMID: 36448023 PMCID: PMC9691282 DOI: 10.1016/j.biosx.2022.100284] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 04/12/2023]
Abstract
The recent COVID-19 infection outbreak has raised the demand for rapid, highly sensitive POC biosensing technology for intelligent health and wellness. In this direction, efforts are being made to explore high-performance nano-systems for developing novel sensing technologies capable of functioning at point-of-care (POC) applications for quick diagnosis, data acquisition, and disease management. A combination of nanostructures [i.e., 0D (nanoparticles & quantum dots), 1D (nanorods, nanofibers, nanopillars, & nanowires), 2D (nanosheets, nanoplates, nanopores) & 3D nanomaterials (nanocomposites and complex hierarchical structures)], biosensing prototype, and micro-electronics makes biosensing suitable for early diagnosis, detection & prevention of life-threatening diseases. However, a knowledge gap associated with the potential of 0D, 1D, 2D, and 3D nanostructures for the design and development of efficient POC sensing is yet to be explored carefully and critically. With this focus, this review highlights the latest engineered 0D, 1D, 2D, and 3D nanomaterials for developing next-generation miniaturized, portable POC biosensors development to achieve high sensitivity with potential integration with the internet of medical things (IoMT, for miniaturization and data collection, security, and sharing), artificial intelligence (AI, for desired analytics), etc. for better diagnosis and disease management at the personalized level.
Collapse
Affiliation(s)
- Manisha Byakodi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
| | - Narlawar Sagar Shrikrishna
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, 121001, Haryana (NCR Delhi), India
| | - Riya Sharma
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA
| | - Yogendra Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, 121001, Haryana (NCR Delhi), India
| |
Collapse
|
28
|
Insights into PLGA-Encapsulated Epigallocatechin 3-Gallate nanoparticles as a new potential biomedical system: a computational and experimental approach. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Cho HJ, Lee WS, Jeong J, Lee JS. A review on the impacts of nanomaterials on neuromodulation and neurological dysfunction using a zebrafish animal model. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109428. [PMID: 35940544 DOI: 10.1016/j.cbpc.2022.109428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
Nanomaterials have been widely employed from industrial to medical fields due to their small sizes and versatile characteristics. However, nanomaterials can also induce unexpected adverse effects on health. In particular, exposure of the nervous system to nanomaterials can cause serious neurological dysfunctions and neurodegenerative diseases. A number of studies have adopted various animal models to evaluate the neurotoxic effects of nanomaterials. Among them, zebrafish has become an attractive animal model for neurotoxicological studies due to several advantages, including the well-characterized nervous system, efficient genome editing, convenient generation of transgenic lines, high-resolution in vivo imaging, and an array of behavioral assays. In this review, we summarize recent studies on the neurotoxicological effects of nanomaterials, particularly engineered nanomaterials and nanoplastics, using zebrafish and discuss key findings with advantages and limitations of the zebrafish model in neurotoxicological studies.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Wang Sik Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; KRIBB School, University of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; KRIBB School, University of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
30
|
Plekhanova YV, Reshetilov AN. Nanomaterials for Controlled Adjustment of the Parameters of Electrochemical Biosensors and Biofuel Cells. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022040124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Plekhanova YV, Rai M, Reshetilov AN. Nanomaterials in bioelectrochemical devices: on applications enhancing their positive effect. 3 Biotech 2022; 12:231. [PMID: 35996672 PMCID: PMC9391563 DOI: 10.1007/s13205-022-03260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/17/2022] [Indexed: 11/01/2022] Open
Abstract
Electrochemical biosensors and biofuel cells are finding an ever-increasing practical application due to several advantages. Biosensors are miniature measuring devices, which can be used for on-the-spot analyses, with small assay times and sample volumes. Biofuel cells have dual benefits of environmental cleanup and electric energy generation. Application of nanomaterials in biosensor and biofuel-cell devices increases their functioning efficiency and expands spheres of use. This review discusses the potential of nanomaterials in improving the basic parameters of bioelectrochemical systems, including the sensitivity increase, detection lower-limit decrease, detection-range change, lifetime increase, substrate-specificity control. In most cases, the consideration of the role of nanomaterials links a certain type of nanomaterial with its effect on the bioelectrochemical device upon the whole. The review aims at assessing the effects of nanomaterials on particular analytical parameters of a biosensor/biofuel-cell bioelectrochemical device.
Collapse
Affiliation(s)
- Yulia V. Plekhanova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MH 444602 India
| | - Anatoly N. Reshetilov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
- Tula State University, 300012 Tula, Russian Federation
| |
Collapse
|
32
|
Wyrzykowska E, Mikolajczyk A, Lynch I, Jeliazkova N, Kochev N, Sarimveis H, Doganis P, Karatzas P, Afantitis A, Melagraki G, Serra A, Greco D, Subbotina J, Lobaskin V, Bañares MA, Valsami-Jones E, Jagiello K, Puzyn T. Representing and describing nanomaterials in predictive nanoinformatics. NATURE NANOTECHNOLOGY 2022; 17:924-932. [PMID: 35982314 DOI: 10.1038/s41565-022-01173-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Engineered nanomaterials (ENMs) enable new and enhanced products and devices in which matter can be controlled at a near-atomic scale (in the range of 1 to 100 nm). However, the unique nanoscale properties that make ENMs attractive may result in as yet poorly known risks to human health and the environment. Thus, new ENMs should be designed in line with the idea of safe-and-sustainable-by-design (SSbD). The biological activity of ENMs is closely related to their physicochemical characteristics, changes in these characteristics may therefore cause changes in the ENMs activity. In this sense, a set of physicochemical characteristics (for example, chemical composition, crystal structure, size, shape, surface structure) creates a unique 'representation' of a given ENM. The usability of these characteristics or nanomaterial descriptors (nanodescriptors) in nanoinformatics methods such as quantitative structure-activity/property relationship (QSAR/QSPR) models, provides exciting opportunities to optimize ENMs at the design stage by improving their functionality and minimizing unforeseen health/environmental hazards. A computational screening of possible versions of novel ENMs would return optimal nanostructures and manage ('design out') hazardous features at the earliest possible manufacturing step. Safe adoption of ENMs on a vast scale will depend on the successful integration of the entire bulk of nanodescriptors extracted experimentally with data from theoretical and computational models. This Review discusses directions for developing appropriate nanomaterial representations and related nanodescriptors to enhance the reliability of computational modelling utilized in designing safer and more sustainable ENMs.
Collapse
Affiliation(s)
| | - Alicja Mikolajczyk
- QSAR Lab Ltd, Gdańsk, Poland
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | - Nikolay Kochev
- Ideaconsult Ltd, Sofia, Bulgaria
- Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, Plovdiv, Bulgaria
| | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| | - Philip Doganis
- School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| | - Pantelis Karatzas
- School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| | | | - Georgia Melagraki
- Division of Physical Sciences and Applications, Hellenic Military Academy, Vari, Greece
| | - Angela Serra
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Dario Greco
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Julia Subbotina
- School of Physics, University College Dublin, Belfield, Dublin, Ireland
| | - Vladimir Lobaskin
- School of Physics, University College Dublin, Belfield, Dublin, Ireland
| | - Miguel A Bañares
- Instituto de Catálisis y Petroleoquimica, ICP CSIC, Madrid, Spain
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Karolina Jagiello
- QSAR Lab Ltd, Gdańsk, Poland
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Tomasz Puzyn
- QSAR Lab Ltd, Gdańsk, Poland.
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
33
|
Chen Z, Han S, Zheng P, Zhang J, Zhou S, Jia G. Landscape of lipidomic metabolites in gut-liver axis of Sprague-Dawley rats after oral exposure to titanium dioxide nanoparticles. Part Fibre Toxicol 2022; 19:53. [PMID: 35922847 PMCID: PMC9351087 DOI: 10.1186/s12989-022-00484-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background The application of titanium dioxide nanoparticles (TiO2 NPs) as food additives poses a risk of oral exposure that may lead to adverse health effects. Even though the substantial evidence supported liver as the target organ of TiO2 NPs via oral exposure, the mechanism of liver toxicity remains largely unknown. Since the liver is a key organ for lipid metabolism, this study focused on the landscape of lipidomic metabolites in gut-liver axis of Sprague Dawley (SD) rats exposed to TiO2 NPs at 0, 2, 10, 50 mg/kg body weight per day for 90 days. Results TiO2 NPs (50 mg/kg) caused slight hepatotoxicity and changed lipidomic signatures of main organs or systems in the gut-liver axis including liver, serum and gut. The cluster profile from the above biological samples all pointed to the same key metabolic pathway and metabolites, which was glycerophospholipid metabolism and Phosphatidylcholines (PCs), respectively. In addition, absolute quantitative lipidomics verified the changes of three PCs concentrations, including PC (16:0/20:1), PC (18:0/18:0) and PC (18:2/20:2) in the serum samples after treatment of TiO2 NPs (50 mg/kg). The contents of malondialdehyde (MDA) in serum and liver increased significantly, which were positively correlated with most differential lipophilic metabolites. Conclusions The gut was presumed to be the original site of oxidative stress and disorder of lipid metabolism, which resulted in hepatotoxicity through the gut-liver axis. Lipid peroxidation may be the initial step of lipid metabolism disorder induced by TiO2 NPs. Most nanomaterials (NMs) have oxidation induction and antibacterial properties, so the toxic pathway revealed in the present study may be primary and universal. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00484-9.
Collapse
Affiliation(s)
- Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, China
| | - Shuo Han
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, China
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, China
| | - Jiahe Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, China
| | - Shupei Zhou
- Department of Laboratory Animal Science, Health Science Center, Peking University, Beijing, 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
34
|
Nanofortification of vitamin B-complex in food matrix: Need, regulations, and prospects. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 4:100100. [PMID: 35769403 PMCID: PMC9235048 DOI: 10.1016/j.fochms.2022.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 11/17/2022]
Abstract
Overview of nanomaterials to fortify food with vitamin B-complex. Nanofortification of food with vitamin B-complex to overcome conventional fortification challenges. Regulatory aspects, prospects, and upcoming trends of this indispensable technology are also discussed.
Micronutrient malnutrition (or hidden hunger) caused by vitamin B-complex deficiency is a significant concern in the growing population. Vitamin B-complex plays an essential role in many body functions. With the introduction of nanotechnology in the food industry, new and innovative techniques have started to develop, which holds a promising future to end malnutrition and help achieve United Nations Sustainable Developmental Goal-2 (UN SDG-2), named as zero hunger. This review highlights the need for nanofortification of vitamin B-complex in food matrix to address challenges faced by conventional fortification methods (bioavailability, controlled release, physicochemical stability, and shelf life). Further, different nanomaterials like organic, inorganic, carbon, and composites along with their applications, are discussed in detail. Among various nanomaterials, organic nanomaterials (lipid, polysaccharides, proteins, and biopolymers) were found best for fortifying vitamin B-complex in foods. Additionally, different regulatory aspects across the globe and prospects of this upcoming field are also highlighted in this review.
Collapse
|
35
|
Bender A, Schneider N, Segler M, Patrick Walters W, Engkvist O, Rodrigues T. Evaluation guidelines for machine learning tools in the chemical sciences. Nat Rev Chem 2022; 6:428-442. [PMID: 37117429 DOI: 10.1038/s41570-022-00391-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Machine learning (ML) promises to tackle the grand challenges in chemistry and speed up the generation, improvement and/or ordering of research hypotheses. Despite the overarching applicability of ML workflows, one usually finds diverse evaluation study designs. The current heterogeneity in evaluation techniques and metrics leads to difficulty in (or the impossibility of) comparing and assessing the relevance of new algorithms. Ultimately, this may delay the digitalization of chemistry at scale and confuse method developers, experimentalists, reviewers and journal editors. In this Perspective, we critically discuss a set of method development and evaluation guidelines for different types of ML-based publications, emphasizing supervised learning. We provide a diverse collection of examples from various authors and disciplines in chemistry. While taking into account varying accessibility across research groups, our recommendations focus on reporting completeness and standardizing comparisons between tools. We aim to further contribute to improved ML transparency and credibility by suggesting a checklist of retro-/prospective tests and dissecting their importance. We envisage that the wide adoption and continuous update of best practices will encourage an informed use of ML on real-world problems related to the chemical sciences.
Collapse
|
36
|
Liang W, Cheng J, Zhang J, Xiong Q, Jin M, Zhao J. pH-Responsive On-Demand Alkaloids Release from Core-Shell ZnO@ZIF-8 Nanosphere for Synergistic Control of Bacterial Wilt Disease. ACS NANO 2022; 16:2762-2773. [PMID: 35135193 DOI: 10.1021/acsnano.1c09724] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing an effective and safe technology to control severe bacterial diseases in agriculture has attracted significant attention. Here, ZnO nanosphere and ZIF-8 are employed as core and shell, respectively, and then a pH-responsive core-shell nanocarrier (ZnO-Z) was prepared by in situ crystal growth strategy. The bactericide berberine (Ber) was further loaded to form Ber-loaded ZnO-Z (Ber@ZnO-Z) for control of tomato bacterial wilt disease. Results demonstrated that Ber@ZnO-Z could release Ber rapidly in an acidic environment, which corresponded to the pH of the soil where the tomato bacterial wilt disease often outbreak. In vitro experiments showed that the antibacterial activity of Ber@ZnO-Z was about 4.5 times and 1.8 times higher than that of Ber and ZnO-Z, respectively. It was because Ber@ZnO-Z could induce ROS generation, resulting in DNA damage, cytoplasm leakage, and membrane permeability changes so the released Ber without penetrability more easily penetrated the bacteria to achieve an efficient synergistic bactericidal effect with ZnO-Z carriers after combining with DNA. Pot experiments also showed that Ber@ZnO-Z significantly reduced disease severity with a wilt index of 45.8% on day 14 after inoculation, compared to 94.4% for the commercial berberine aqueous solution. More importantly, ZnO-Z carriers did not accumulate in aboveground parts of plants and did not affect plant growth in a short period. This work provides guidance for the effective control of soil-borne bacterial diseases and the development of sustainable agriculture.
Collapse
Affiliation(s)
- Wenlong Liang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jingli Cheng
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jiadong Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qiuyu Xiong
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Jinhao Zhao
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
37
|
Challenges in Nanomaterial Characterization – From Definition to Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:3-17. [DOI: 10.1007/978-3-030-88071-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Nanotechnology for Manipulating Cell Plasticity. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_21-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
39
|
Recent Advancements in the Nanomaterial Application in Concrete and Its Ecological Impact. MATERIALS 2021; 14:ma14216387. [PMID: 34771911 PMCID: PMC8585191 DOI: 10.3390/ma14216387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
At present, nanotechnology is a significant research area in different countries, owing to its immense ability along with its economic impact. Nanotechnology is the scientific study, development, manufacturing, and processing of structures and materials on a nanoscale level. It has tremendous application in different industries such as construction. This study discusses the various progressive uses of nanomaterials in concrete, as well as their related health risks and environmental impacts. Nanomaterials such as nanosilica, nano-TiO2, carbon nanotubes (CNTs), ferric oxides, polycarboxylates, and nanocellulose have the capability to increase the durability of buildings by improving their mechanical and thermal properties. This could cause an indirect reduction in energy usage and total expenses in the concrete industry. However, due to the uncertainties and irregularities in size, shape, and chemical compositions, some nanosized materials might have harmful effects on the environment and human health. Acknowledgement of the possible beneficial impacts and inadvertent dangers of these nanosized materials to the environment will be extremely important when pursuing progress in the upcoming years. This research paper is expected to bring proper attention to the probable effects of construction waste, together with the importance of proper regulations, on the final disposal of the construction waste.
Collapse
|
40
|
Ahmed T, Noman M, Rizwan M, Ali S, Shahid MS, Li B. Recent progress on the heavy metals ameliorating potential of engineered nanomaterials in rice paddy: a comprehensive outlook on global food safety with nanotoxicitiy issues. Crit Rev Food Sci Nutr 2021; 63:2672-2686. [PMID: 34554039 DOI: 10.1080/10408398.2021.1979931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Soil contamination with toxic heavy metals (HMs) poses a serious threat to global food safety, soil ecosystem and human health. The rapid industrialization, urbanization and extensive application of agrochemicals on arable land have led to paddy soil pollution worldwide. Rice plants easily accumulate toxic HMs from contaminated agricultural soils, which ultimately accumulated in grains and enters the food chain. Although, physical and chemical remediation techniques have been used for the treatment of HMs-contaminated soils, however, they also have many drawbacks, such as toxicity, capital investment and environmental-associated hazards. Recently, engineered nanomaterials (ENMs) have gained substantial attention owing to their promising environmental remediation applications. Numerous studies have revealed the use of ENMs for reclamation of toxic HMs from contaminated environment. This review mainly focuses on HMs toxicity in paddy soils along with potential health risks to humans. It also provides a critical outlook on the recent advances and future perspectives of nanoremediation strategies. Additionally, we will also propose the interacting mechanism of HMs-ENMs to counteract metal-associated phytotoxicities in rice plants to achieve global food security and environmental safety.
Collapse
Affiliation(s)
- Temoor Ahmed
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Bin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Khramtsov P, Burdina O, Lazarev S, Novokshonova A, Bochkova M, Timganova V, Kiselkov D, Minin A, Zamorina S, Rayev M. Modified Desolvation Method Enables Simple One-Step Synthesis of Gelatin Nanoparticles from Different Gelatin Types with Any Bloom Values. Pharmaceutics 2021; 13:1537. [PMID: 34683829 PMCID: PMC8541285 DOI: 10.3390/pharmaceutics13101537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022] Open
Abstract
Gelatin nanoparticles found numerous applications in drug delivery, bioimaging, immunotherapy, and vaccine development as well as in biotechnology and food science. Synthesis of gelatin nanoparticles is usually made by a two-step desolvation method, which, despite providing stable and homogeneous nanoparticles, has many limitations, namely complex procedure, low yields, and poor reproducibility of the first desolvation step. Herein, we present a modified one-step desolvation method, which enables the quick, simple, and reproducible synthesis of gelatin nanoparticles. Using the proposed method one can prepare gelatin nanoparticles from any type of gelatin with any bloom number, even with the lowest ones, which remains unattainable for the traditional two-step technique. The method relies on quick one-time addition of poor solvent (preferably isopropyl alcohol) to gelatin solution in the absence of stirring. We applied the modified desolvation method to synthesize nanoparticles from porcine, bovine, and fish gelatin with bloom values from 62 to 225 on the hundreds-of-milligram scale. Synthesized nanoparticles had average diameters between 130 and 190 nm and narrow size distribution. Yields of synthesis were 62-82% and can be further increased. Gelatin nanoparticles have good colloidal stability and withstand autoclaving. Moreover, they were non-toxic to human immune cells.
Collapse
Affiliation(s)
- Pavel Khramtsov
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Oksana Burdina
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Sergey Lazarev
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Anastasia Novokshonova
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Maria Bochkova
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Valeria Timganova
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
| | - Dmitriy Kiselkov
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Institute of Technical Chemistry, 614013 Perm, Russia;
| | - Artem Minin
- Lab of Applied Magnetism, M.N. Mikheev Institute of Metal Physics of the UB RAS, 620108 Yekaterinburg, Russia;
- Faculty of Biology and Fundamental Medicine, Ural Federal University Named after The First President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia
| | - Svetlana Zamorina
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Mikhail Rayev
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| |
Collapse
|
42
|
Li M, Liu D, Chen X, Yin Z, Shen H, Aiello A, McKenzie KR, Jiang N, Li X, Wagner MJ, Durkin DP, Chen H, Shuai D. Radical-Driven Decomposition of Graphitic Carbon Nitride Nanosheets: Light Exposure Matters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12414-12423. [PMID: 34468124 DOI: 10.1021/acs.est.1c03804] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the transformation of graphitic carbon nitride (g-C3N4) is essential to assess nanomaterial robustness and environmental risks. Using an integrated experimental and simulation approach, our work has demonstrated that the photoinduced hole (h+) on g-C3N4 nanosheets significantly enhances nanomaterial decomposition under •OH attack. Two g-C3N4 nanosheet samples D and M2 were synthesized, among which M2 had more pores, defects, and edges, and they were subjected to treatments with •OH alone and both •OH and h+. Both D and M2 were oxidized and released nitrate and soluble organic fragments, and M2 was more susceptible to oxidation. Particularly, h+ increased the nitrate release rate by 3.37-6.33 times even though the steady-state concentration of •OH was similar. Molecular simulations highlighted that •OH only attacked a limited number of edge-site heptazines on g-C3N4 nanosheets and resulted in peripheral etching and slow degradation, whereas h+ decreased the activation energy barrier of C-N bond breaking between heptazines, shifted the degradation pathway to bulk fragmentation, and thus led to much faster degradation. This discovery not only sheds light on the unique environmental transformation of emerging photoreactive nanomaterials but also provides guidelines for designing robust nanomaterials for engineering applications.
Collapse
Affiliation(s)
- Mengqiao Li
- Department of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Dairong Liu
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Xing Chen
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Zhihong Yin
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Hongchen Shen
- Department of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Ashlee Aiello
- Department of Chemistry, United States Naval Academy, Annapolis, Maryland 21402, United States
| | - Kevin R McKenzie
- Department of Chemistry, The George Washington University, Washington, District of Columbia 20052, United States
| | - Nan Jiang
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Michael J Wagner
- Department of Chemistry, The George Washington University, Washington, District of Columbia 20052, United States
| | - David P Durkin
- Department of Chemistry, United States Naval Academy, Annapolis, Maryland 21402, United States
| | - Hanning Chen
- Department of Chemistry, American University, Washington, District of Columbia 20016, United States
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
43
|
Geißler D, Nirmalananthan-Budau N, Scholtz L, Tavernaro I, Resch-Genger U. Analyzing the surface of functional nanomaterials-how to quantify the total and derivatizable number of functional groups and ligands. Mikrochim Acta 2021; 188:321. [PMID: 34482449 PMCID: PMC8418596 DOI: 10.1007/s00604-021-04960-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/08/2021] [Indexed: 12/04/2022]
Abstract
Functional nanomaterials (NM) of different size, shape, chemical composition, and surface chemistry are of increasing relevance for many key technologies of the twenty-first century. This includes polymer and silica or silica-coated nanoparticles (NP) with covalently bound surface groups, semiconductor quantum dots (QD), metal and metal oxide NP, and lanthanide-based NP with coordinatively or electrostatically bound ligands, as well as surface-coated nanostructures like micellar encapsulated NP. The surface chemistry can significantly affect the physicochemical properties of NM, their charge, their processability and performance, as well as their impact on human health and the environment. Thus, analytical methods for the characterization of NM surface chemistry regarding chemical identification, quantification, and accessibility of functional groups (FG) and surface ligands bearing such FG are of increasing importance for quality control of NM synthesis up to nanosafety. Here, we provide an overview of analytical methods for FG analysis and quantification with special emphasis on bioanalytically relevant FG broadly utilized for the covalent attachment of biomolecules like proteins, peptides, and oligonucleotides and address method- and material-related challenges and limitations. Analytical techniques reviewed include electrochemical titration methods, optical assays, nuclear magnetic resonance and vibrational spectroscopy, as well as X-ray based and thermal analysis methods, covering the last 5-10 years. Criteria for method classification and evaluation include the need for a signal-generating label, provision of either the total or derivatizable number of FG, need for expensive instrumentation, and suitability for process and production control during NM synthesis and functionalization.
Collapse
Affiliation(s)
- Daniel Geißler
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Nithiya Nirmalananthan-Budau
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Lena Scholtz
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Isabella Tavernaro
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
44
|
Kah M, Johnston LJ, Kookana RS, Bruce W, Haase A, Ritz V, Dinglasan J, Doak S, Garelick H, Gubala V. Comprehensive framework for human health risk assessment of nanopesticides. NATURE NANOTECHNOLOGY 2021; 16:955-964. [PMID: 34518657 DOI: 10.1038/s41565-021-00964-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Nanopesticides are not only in an advanced state of research and development but have started to appear on the market. Industry and regulatory agencies need a consolidated and comprehensive framework and guidance for human health risk assessments. In this perspective we develop such a comprehensive framework by exploring two case studies from relevant product types: an active ingredient delivered with a nanocarrier system, and a nanoparticle as an active ingredient. For a nanocarrier system, three entities are tracked during the assessment: the nanocarrier-active ingredient complex, the empty nanocarrier remaining after the complete release of the active ingredient, and the released active ingredient. For the nanoparticle of pure active ingredient, only two entities are relevant: the nanoparticle and the released ions. We suggest important adaptations of the existing pesticide framework to determine the relevant nanopesticide entities and their concentrations for toxicity testing. Depending on the nature of the nanopesticides, additional data requirements, such as those pertaining to durability in biological media and potential for crossing biological barriers, have also been identified. Overall, our framework suggests a tiered approach for human health risk assessment, which is applicable for a range of nanopesticide products to support regulators and industry in making informed decisions on nanopesticide submissions. Brief summaries of suitable methods including references to existing standards (if available) have been included together with an analysis of current knowledge gaps. Our study is an important step towards a harmonized approach accepted by regulatory agencies for assessing nanopesticides.
Collapse
Affiliation(s)
- Melanie Kah
- School of Environment, The University of Auckland, Auckland, New Zealand.
| | - Linda J Johnston
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Rai S Kookana
- CSIRO, Glen Osmond, South Australia, Australia
- University of Adelaide, Glen Osmond, South Australia, Australia
| | - Wendy Bruce
- Health Evaluation Directorate, Health Canada's Pest Management Regulatory Agency, Ottawa, Ontario, Canada
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Vera Ritz
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Shareen Doak
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Hemda Garelick
- Department of Natural Science, Faculty of Technology, Middlesex University, London, UK
| | - Vladimir Gubala
- Medway School of Pharmacy, University of Kent, Chatham Maritime, UK
| |
Collapse
|
45
|
Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 2021; 230:122026. [PMID: 33934756 PMCID: PMC7854185 DOI: 10.1016/j.talanta.2020.122026] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a potential risk for public health and the global economy. Fast and accurate detection of the pathogens that cause these infections is important to avoid the transmission of the diseases. Conventional methods for the detection of these microorganisms are time-consuming, costly, and not applicable for on-site monitoring. Biosensors can provide a fast, reliable, and point of care diagnostic. Nanomaterials, due to their outstanding electrical, chemical, and optical features, have become key players in the area of biosensors. This review will cover different nanomaterials that employed in electrochemical, optical, and instrumental biosensors for infectious disease diagnosis and how these contributed to enhancing the sensitivity and rapidity of the various sensing platforms. Examples of nanomaterial synthesis methods as well as a comprehensive description of their properties are explained. Moreover, when available, comparative data, in the presence and absence of the nanomaterials, have been reported to further highlight how the usage of nanomaterials enhances the performances of the sensor.
Collapse
Affiliation(s)
- Elham Sheikhzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding author
| | - Valerio Beni
- Digital Systems, Department Smart Hardware, Unit Bio–& Organic Electronics, RISE Acreo, Research Institutes of Sweden, Norrkoping, 60221, Sweden
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia,King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia,Corresponding author. Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
46
|
Addressing the Theoretical and Experimental Aspects of Low-Dimensional-Materials-Based FET Immunosensors: A Review. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electrochemical immunosensors (EI) have been widely investigated in the last several years. Among them, immunosensors based on low-dimensional materials (LDM) stand out, as they could provide a substantial gain in fabricating point-of-care devices, paving the way for fast, precise, and sensitive diagnosis of numerous severe illnesses. The high surface area available in LDMs makes it possible to immobilize a high density of bioreceptors, improving the sensitivity in biorecognition events between antibodies and antigens. If on the one hand, many works present promising results in using LDMs as a sensing material in EIs, on the other hand, very few of them discuss the fundamental interactions involved at the interfaces. Understanding the fundamental Chemistry and Physics of the interactions between the surface of LDMs and the bioreceptors, and how the operating conditions and biorecognition events affect those interactions, is vital when proposing new devices. Here, we present a review of recent works on EIs, focusing on devices that use LDMs (1D and 2D) as the sensing substrate. To do so, we highlight both experimental and theoretical aspects, bringing to light the fundamental aspects of the main interactions occurring at the interfaces and the operating mechanisms in which the detections are based.
Collapse
|
47
|
Da Silva GH, Franqui LS, Petry R, Maia MT, Fonseca LC, Fazzio A, Alves OL, Martinez DST. Recent Advances in Immunosafety and Nanoinformatics of Two-Dimensional Materials Applied to Nano-imaging. Front Immunol 2021; 12:689519. [PMID: 34149731 PMCID: PMC8210669 DOI: 10.3389/fimmu.2021.689519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 01/10/2023] Open
Abstract
Two-dimensional (2D) materials have emerged as an important class of nanomaterials for technological innovation due to their remarkable physicochemical properties, including sheet-like morphology and minimal thickness, high surface area, tuneable chemical composition, and surface functionalization. These materials are being proposed for new applications in energy, health, and the environment; these are all strategic society sectors toward sustainable development. Specifically, 2D materials for nano-imaging have shown exciting opportunities in in vitro and in vivo models, providing novel molecular imaging techniques such as computed tomography, magnetic resonance imaging, fluorescence and luminescence optical imaging and others. Therefore, given the growing interest in 2D materials, it is mandatory to evaluate their impact on the immune system in a broader sense, because it is responsible for detecting and eliminating foreign agents in living organisms. This mini-review presents an overview on the frontier of research involving 2D materials applications, nano-imaging and their immunosafety aspects. Finally, we highlight the importance of nanoinformatics approaches and computational modeling for a deeper understanding of the links between nanomaterial physicochemical properties and biological responses (immunotoxicity/biocompatibility) towards enabling immunosafety-by-design 2D materials.
Collapse
Affiliation(s)
- Gabriela H. Da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Lidiane S. Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- School of Technology, University of Campinas (Unicamp), Limeira, Brazil
| | - Romana Petry
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo Andre, Brazil
| | - Marcella T. Maia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Leandro C. Fonseca
- NanoBioss Laboratory and Solid State Chemistry Laboratory (LQES), Institute of Chemistry, University of Campinas (Unicamp), Campinas, Brazil
| | - Adalberto Fazzio
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo Andre, Brazil
| | - Oswaldo L. Alves
- NanoBioss Laboratory and Solid State Chemistry Laboratory (LQES), Institute of Chemistry, University of Campinas (Unicamp), Campinas, Brazil
| | - Diego Stéfani T. Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- School of Technology, University of Campinas (Unicamp), Limeira, Brazil
| |
Collapse
|
48
|
Pinto L, Bonifacio MA, De Giglio E, Santovito E, Cometa S, Bevilacqua A, Baruzzi F. Biopolymer hybrid materials: Development, characterization, and food packaging applications. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100676] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Allan J, Belz S, Hoeveler A, Hugas M, Okuda H, Patri A, Rauscher H, Silva P, Slikker W, Sokull-Kluettgen B, Tong W, Anklam E. Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regul Toxicol Pharmacol 2021; 122:104885. [PMID: 33617940 PMCID: PMC8121750 DOI: 10.1016/j.yrtph.2021.104885] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022]
Abstract
Nanotechnology and more particularly nanotechnology-based products and materials have provided a huge potential for novel solutions to many of the current challenges society is facing. However, nanotechnology is also an area of product innovation that is sometimes developing faster than regulatory frameworks. This is due to the high complexity of some nanomaterials, the lack of a globally harmonised regulatory definition and the different scopes of regulation at a global level. Research organisations and regulatory bodies have spent many efforts in the last two decades to cope with these challenges. Although there has been a significant advancement related to analytical approaches for labelling purposes as well as to the development of suitable test guidelines for nanomaterials and their safety assessment, there is a still a need for greater global collaboration and consensus in the regulatory field. Furthermore, with growing societal concerns on plastic litter and tiny debris produced by degradation of littered plastic objects, the impact of micro- and nanoplastics on humans and the environment is an emerging issue. Despite increasing research and initial regulatory discussions on micro- and nanoplastics, there are still knowledge gaps and thus an urgent need for action. As nanoplastics can be classified as a specific type of incidental nanomaterials, current and future scientific investigations should take into account the existing profound knowledge on nanotechnology/nanomaterials when discussing issues around nanoplastics. This review was conceived at the 2019 Global Summit on Regulatory Sciences that took place in Stresa, Italy, on 24-26 September 2019 (GSRS 2019) and which was co-organised by the Global Coalition for Regulatory Science Research (GCRSR) and the European Commission's (EC) Joint Research Centre (JRC). The GCRSR consists of regulatory bodies from various countries around the globe including EU bodies. The 2019 Global Summit provided an excellent platform to exchange the latest information on activities carried out by regulatory bodies with a focus on the application of nanotechnology in the agriculture/food sector, on nanoplastics and on nanomedicines, including taking stock and promoting further collaboration. Recently, the topic of micro- and nanoplastics has become a new focus of the GCRSR. Besides discussing the challenges and needs, some future directions on how new tools and methodologies can improve the regulatory science were elaborated by summarising a significant portion of discussions during the summit. It has been revealed that there are still some uncertainties and knowledge gaps with regard to physicochemical properties, environmental behaviour and toxicological effects, especially as testing described in the dossiers is often done early in the product development process, and the material in the final product may behave differently. The harmonisation of methodologies for quantification and risk assessment of nanomaterials and micro/nanoplastics, the documentation of regulatory science studies and the need for sharing databases were highlighted as important aspects to look at.
Collapse
Affiliation(s)
| | - Susanne Belz
- European Commission, Joint Research Centre (JRC), Italy
| | - Arnd Hoeveler
- European Commission, Joint Research Centre (JRC), Italy
| | - Marta Hugas
- European Food Safety Authority (EFSA), Italy
| | | | - Anil Patri
- National Center for Toxicological Research (NCTR), Food and Drug Administration (FDA), USA
| | | | | | - William Slikker
- National Center for Toxicological Research (NCTR), Food and Drug Administration (FDA), USA
| | | | - Weida Tong
- National Center for Toxicological Research (NCTR), Food and Drug Administration (FDA), USA
| | - Elke Anklam
- European Commission, Joint Research Centre (JRC), Belgium.
| |
Collapse
|
50
|
Abstract
Calcium phosphate nanoparticles have a high biocompatibility and biodegradability due to their chemical similarity to human hard tissue, for example, bone and teeth. They can be used as efficient carriers for different kinds of biomolecules such as nucleic acids, proteins, peptides, antibodies, or drugs, which alone are not able to enter cells where their biological effect is required. They can be loaded with cargo molecules by incorporating them, unlike solid nanoparticles, and also by surface functionalization. This offers protection, for example, against nucleases, and the possibility for cell targeting. If such nanoparticles are functionalized with fluorescing dyes, they can be applied for imaging in vitro and in vivo. Synthesis, functionalization and cell uptake mechanisms of calcium phosphate nanoparticles are discussed together with applications in transfection, gene silencing, imaging, immunization, and bone substitution. Biodistribution data of calcium phosphate nanoparticles in vivo are reviewed.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| | - Matthias Epple
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| |
Collapse
|