1
|
Merz LM, Winter K, Richter S, Kallendrusch S, Horn A, Grunewald S, Klöting N, Krause K, Kiess W, Le Duc D, Garten A. Effects of alpelisib treatment on murine Pten-deficient lipomas. Adipocyte 2025; 14:2468275. [PMID: 39962643 PMCID: PMC11844927 DOI: 10.1080/21623945.2025.2468275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/23/2025] Open
Abstract
Phosphatase and tensin homolog (PTEN) hamartoma tumour syndrome (PHTS) is a rare disorder caused by germline mutations in the tumour suppressor gene PTEN, a key negative regulator of phosphatidylinositol 3-kinase (PI3K)/AKT signalling. Children with PHTS often develop lipomas, for which only surgical resection is available as treatment. We investigated the effects of the selective PI3K-inhibitor alpelisib on Pten-deficient lipomas. After incubation with alpelisib or the non-selective PI3K inhibitor wortmannin, we analysed histology, gene expression, and Pi3k pathway in lipoma and control epididymal adipose tissue (epiWAT). Alpelisib increased adipocyte area in lipomas compared to epiWAT. Baseline gene expression showed higher levels of markers for proliferation (Pcna), fibrosis (Tgfb1), and adipogenesis (Pparg) in lipomas, while hormone-sensitive lipase expression was lower than in epiWAT. Following alpelisib incubation, target genes of Pi3k signalling and extracellular matrix factors were reduced. We confirmed Pi3k inhibition through detecting decreased Akt levels compared to control treatment. Human lipoma samples treated with alpelisib showed variable lipolysis responses, suggesting variability in therapeutic outcomes. We established an ex vivo model to study alpelisib effects on Pten-deficient lipomas. These results underscore the therapeutic potential of targeted PI3K inhibition in the treatment of PHTS-associated lipomas, particularly in cases that are inoperable.
Collapse
Affiliation(s)
- Lea M. Merz
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Sandy Richter
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Sonja Kallendrusch
- Institute of Anatomy, Leipzig University, Leipzig, Germany
- Institute of Clinical Research and Systems Medicine, Health and Medical University Potsdam, Potsdam, Germany
| | - Andreas Horn
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Sonja Grunewald
- Department for Dermatology, Venereology and Allergology, University Hospital Leipzig, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University and University Hospital Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Department of Endocrinology, Nephrology and Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University Hospital Leipzig, Leipzig, Germany
| | - Antje Garten
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| |
Collapse
|
2
|
Yu B, Cao Y, Lin P, Zhang L, Chen M. Enhancement of Ndrg2 promotes hypertrophic scar fibrosis by regulating PI3K/AKT signaling pathway. Cell Signal 2025; 129:111659. [PMID: 39956247 DOI: 10.1016/j.cellsig.2025.111659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/17/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Hypertrophic scar (HTS) is a prevalent chronic inflammatory skin disorder characterized by abnormal proliferation and extracellular matrix deposition. N-Myc downstream regulated gene 2 (Ndrg2) is a cell stress response gene related to cell proliferation, differentiation and various fibrotic diseases. However, the role of Ndrg2 in HTS is unknown and warrants further investigation. In this study, we confirmed that the expression of Ndrg2 was increased in HTS of human and a bleomycin-induced fibrosis mouse model. We then used Ndrg2 knockout mice and found Ndrg2 deletion could significantly reduce the synthesis of collagen and alleviate skin fibrosis. In addition, the proliferation and migration of Ndrg2-interfered HTS-derived fibroblasts decreased and those of Ndrg2-overexpressed normal skin-derived fibroblasts increased. Further, by western blot analysis, we verified that the expression of phosphorylated-PI3K, PI3K, phosphorylated-AKT and AKT were all increased after Ndrg2 overexpressed in normal skin-derived fibroblasts. Moreover, PI3K inhibitor (LY294002) administration significantly rescued the effect of Ndrg2 overexpression on skin fibrosis. In summary, our results demonstrated that Ndrg2 could promote HTS fibrosis by mediating PI3K/AKT signaling pathway. Our data suggest that Ndrg2 may be a promising therapeutic target for HTS.
Collapse
Affiliation(s)
- Boya Yu
- Department of Plastic and Reconstructive Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Chinese PLA Medical School, Beijing 100853, China.
| | - Yalei Cao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Pianpian Lin
- Department of Plastic and Reconstructive Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Chinese PLA Medical School, Beijing 100853, China
| | - Lixia Zhang
- Department of Plastic and Reconstructive Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Chinese PLA Medical School, Beijing 100853, China.
| | - Minliang Chen
- Department of Plastic and Reconstructive Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Chinese PLA Medical School, Beijing 100853, China.
| |
Collapse
|
3
|
Hashemi M, Fard AA, Pakshad B, Asheghabadi PS, Hosseinkhani A, Hosseini AS, Moradi P, Mohammadbeygi Niye M, Najafi G, Farahzadi M, Khoushab S, Taheriazam A, Farahani N, Mohammadi M, Daneshi S, Nabavi N, Entezari M. Non-coding RNAs and regulation of the PI3K signaling pathway in lung cancer: Recent insights and potential clinical applications. Noncoding RNA Res 2025; 11:1-21. [PMID: 39720352 PMCID: PMC11665378 DOI: 10.1016/j.ncrna.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Lung cancer (LC) is one of the most common causes of cancer-related death worldwide. It has been demonstrated that the prognosis of current drug treatments is affected by a variety of factors, including late stage, tumor recurrence, inaccessibility to appropriate treatments, and, most importantly, chemotherapy resistance. Non-coding RNAs (ncRNAs) contribute to tumor development, with some acting as tumor suppressors and others as oncogenes. The phosphoinositide 3-kinase (PI3Ks)/AKT serine/threonine kinase pathway is one of the most important common targets of ncRNAs in cancer, which is widely applied to modulate the cell cycle and a variety of biological processes, including cell growth, mobility survival, metabolic activity, and protein production. Discovering the biology of ncRNA-PI3K/AKT signaling may lead to advances in cancer diagnosis and treatment. As a result, we investigated the expression and role of PI3K/AKT-related ncRNAs in clinical characteristics of lung cancer, as well as their functions as potential biomarkers in lung cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Asal Abolghasemi Fard
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bita Pakshad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pezhman Shafiei Asheghabadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amineh Hosseinkhani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atena Sadat Hosseini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parham Moradi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Mohammadbeygi Niye
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazal Najafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohadeseh Farahzadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Liu X, Huang L, Zhang X, Xu X. Polysaccharides with antioxidant activity: Extraction, beneficial roles, biological mechanisms, structure-function relationships, and future perspectives: A review. Int J Biol Macromol 2025; 300:140221. [PMID: 39855511 DOI: 10.1016/j.ijbiomac.2025.140221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Polysaccharides are valuable macromolecules due to their multiple bioactivities, safety, and a wide range of sources. Recently, a series of polysaccharides with antioxidant activity have been intensively reported. In this review, the latest advances in polysaccharides with antioxidant activity have been reviewed, primarily based on the investigations of polysaccharides regarding advanced extraction methods, roles in oxidative stress-related diseases, intracellular signaling pathways associated with antioxidant responses, activating pathways in the gut, structure-function relationships, and methods to improve antioxidant activity. The summarized information highlighted that much work needs to be conducted, from laboratory to industry, to understand and fully utilize the antioxidant potential of polysaccharides. Finally, future perspectives, including scaling-up of advanced extraction methods, standardizing the protocols for assessing and screening polysaccharides, bridging gaps on the biological mechanisms underlying antioxidant activity, performing clinical trials, and elucidating structure-antioxidant relationships, have been addressed. The information present in this review will be helpful to the scientific community when studying on polysaccharides with antioxidant potential and provides research directions for a better understanding of the polysaccharides and promotes their successful applications in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Xiaofei Liu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Liufang Huang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Xuewu Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Yangjiang Institute of Guangdong Ocean University, Yangjiang 529500, China.
| |
Collapse
|
5
|
Wang Y, Rozen V, Zhao Y, Wang Z. Oncogenic activation of PI K3 CA in cancers: Emerging targeted therapies in precision oncology. Genes Dis 2025; 12:101430. [PMID: 39717717 PMCID: PMC11665392 DOI: 10.1016/j.gendis.2024.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/04/2024] [Accepted: 08/25/2024] [Indexed: 12/25/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are heterodimers consisting of a p110 catalytic subunit and a p85 regulatory subunit. The PIK3CA gene, which encodes the p110α, is the most frequently mutated oncogene in cancer. Oncogenic PIK3CA mutations activate the PI3K pathway, promote tumor initiation and development, and mediate resistance to anti-tumor treatments, making the mutant p110α an excellent target for cancer therapy. PIK3CA mutations occur in two hotspot regions: one in the helical domain and the other in the kinase domain. The PIK3CA helical and kinase domain mutations exert their oncogenic function through distinct mechanisms. For example, helical domain mutations of p110α gained direct interaction with insulin receptor substrate 1 (IRS-1) to activate the downstream signaling pathways. Moreover, p85β proteins disassociate from helical domain mutant p110α, translocate into the nucleus, and stabilize enhancer of zeste homolog 1/2 (EZH1/2). Due to the fundamental role of PI3Kα in tumor initiation and development, PI3Kα-specific inhibitors, represented by FDA-approved alpelisib, have developed rapidly in recent decades. However, side effects, including on-target side effects such as hyperglycemia, restrict the maximum dose and thus clinical efficacy of alpelisib. Therefore, developing p110α mutant-specific inhibitors to circumvent on-target side effects becomes a new direction for targeting PIK3CA mutant cancers. In this review, we briefly introduce the function of the PI3K pathway and discuss how PIK3CA mutations rewire cell signaling, metabolism, and tumor microenvironment, as well as therapeutic strategies under development to treat patients with tumors harboring a PIK3CA mutation.
Collapse
Affiliation(s)
- Yuxiang Wang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Valery Rozen
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Yiqing Zhao
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zhenghe Wang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Huang JJ, Xu W, Lin S, Cheung PCK. The bioactivities and biotechnological production approaches of carotenoids derived from microalgae and cyanobacteria. Crit Rev Biotechnol 2025; 45:276-304. [PMID: 39038957 DOI: 10.1080/07388551.2024.2359966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 07/24/2024]
Abstract
Microalgae and cyanobacteria are a rich source of carotenoids that are well known for their potent bioactivities, including antioxidant, anti-cancer, anti-proliferative, anti-inflammatory, and anti-obesity properties. Recently, many interests have also been focused on the biological activities of these microalgae/cyanobacteria-derived carotenoids, such as fucoxanthin and β-carotene potential to be the salutary nutraceuticals, on treating or preventing human common diseases (e.g., cancers). This is due to their special chemical structures that demonstrate unique bioactive functions, in which the biologically active discrepancies might attribute to the different spatial configurations of their molecules. In addition, their abundance and bioaccessibilities make them more popularly applied in food and pharmaceutical industries, as compared to the macroalgal/fungal-derived ones. This review is focused on the recent studies on the bioactivities of fucoxanthin and some carotenoids derived from microalgae and cyanobacteria in relationship with human health and diseases, with emphasis on their potential applications as natural antioxidants. Various biotechnological approaches employed to induce the production of these specific carotenoids from the culture of microalgae/cyanobacteria are also critically reviewed. These well-developed and emerging biotechnologies present promise to be applied in food and pharmaceutical industries to facilitate the efficient manufacture of the bioactive carotenoid products derived from microalgae and cyanobacteria.
Collapse
Affiliation(s)
- Jim Junhui Huang
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Wenwen Xu
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shaoling Lin
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
| |
Collapse
|
7
|
Tomos I, Kanellopoulou P, Nastos D, Aidinis V. Pharmacological targeting of ECM homeostasis, fibroblast activation, and invasion for the treatment of pulmonary fibrosis. Expert Opin Ther Targets 2025. [PMID: 39985559 DOI: 10.1080/14728222.2025.2471579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 01/24/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with a dismal prognosis. While the standard-of-care (SOC) drugs approved for IPF represent a significant advancement in antifibrotic therapies, they primarily slow disease progression and have limited overall efficacy and many side effects. Consequently, IPF remains a condition with high unmet medical and pharmacological needs. AREAS COVERED A wide variety of molecules and mechanisms have been implicated in the pathogenesis of IPF, many of which have been targeted in clinical trials. In this review, we discuss the latest therapeutic targets that affect extracellular matrix (ECM) homeostasis and the activation of lung fibroblasts, with a specific focus on ECM invasion. EXPERT OPINION A promising new approach involves targeting ECM invasion by fibroblasts, a process that parallels cancer cell behavior. Several cancer drugs are now being tested in IPF for their ability to inhibit ECM invasion, offering significant potential for future treatments. The delivery of these therapies by inhalation is a promising development, as it may enhance local effectiveness and minimize systemic side effects, thereby improving patient safety and treatment efficacy.
Collapse
Affiliation(s)
- Ioannis Tomos
- 5th Department of Respiratory Medicine, 'SOTIRIA' Chest Diseases Hospital of Athens, Athens, Greece
| | - Paraskevi Kanellopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Dimitris Nastos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| |
Collapse
|
8
|
Huang H, Ren L, Zhou Y, Chen P, Zhao H, Li S, Wang H, Li X. KAT7-acetylated YBX1 promotes hepatocellular carcinoma proliferation by reprogramming nucleotide metabolism. BMC Cancer 2025; 25:311. [PMID: 39984921 PMCID: PMC11844059 DOI: 10.1186/s12885-025-13708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Lysine acetylation is a critical post-translational modification regulating tumor initiation and progression. Lysine acetyltransferase 7 (KAT7)-mediated lysine acetylation is frequently dysregulated in cancer. However, the role of KAT7-mediated lysine acetylation in hepatocellular carcinoma (HCC) progression remains unclear. METHODS Bioinformatic analysis was used to investigate the expression, clinicopathological characteristics and diagnostic prognostic value of KAT7 in HCC. CCK-8 assays, colony-forming assays, apoptosis assays and nude mouse xenograft models were utilized to detect the oncogenic functions of KAT7 in HCC. Immunoprecipitation (IP) assay and mass spectrometry (MS) analysis were performed to identify the KAT7-binding protein Y-box binding protein 1 (YBX1). Transcriptome sequencing and functional enrichment analysis were employed to elucidate the downstream pathway regulated by KAT7 and YBX1. Chromatin immunoprecipitation (ChIP) assay was used to evaluate YBX1 binding to the promoter regions of ribonucleotide reductase regulatory subunit M2 (RRM2) and thymidine kinase 1 (TK1). Weighted gene co-expression network analysis and selection operator regression analysis were used to build risk prediction models. RESULTS This study demonstrated that elevated KAT7 expression is associated with poor prognosis in HCC patients. Knockdown of endogenous KAT7 in HCC cells attenuated tumorigenic phenotypes associated with cell proliferation, colony formation and orthotopic xenograft tumor growth, indicating a pro-tumorigenic role of KAT7 in HCC. YBX1 was identified as a novel non-histone substrate for KAT7, and the E508 residue of KAT7 is essential for binding. Following the functional enrichment analysis, KAT7 and YBX1 were correlated with nucleotide metabolism. Furthermore, KAT7 binds to YBX1 and modulates its post-translational expression, which enhances the transcriptional activity of the central nucleotide metabolism enzymes RRM2 and TK1. Additionally, we constructed a novel prognostic prediction model based on KAT7, YBX1, RRM2 and TK1, which validated the predictive accuracy and prognostic value of KAT7-mediated acetylation is consistent with clinical outcomes in HCC. CONCLUSIONS Our findings highlight that KAT7 acetylates YBX1 and promotes HCC progression by reprogramming nucleotide metabolism, offering therapeutic implications.
Collapse
Affiliation(s)
- He Huang
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Longfei Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Yongqiang Zhou
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Pengyu Chen
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Haixia Zhao
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Shang Li
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Haiping Wang
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, PR China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, PR China.
- National Clinical Key Specialty of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
- Cancer Prevention and Treatment Center of Lanzhou University School of Medicine, Lanzhou, 730000, PR China.
- Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou, 730000, PR China.
- Clinical Research Center for General Surgery of Gansu Province, Lanzhou, 730000, PR China.
| |
Collapse
|
9
|
Zou L, Chen G, Rong Y, Tang C, Lv X, Fan Y. Three signalling pathways for iron overload in osteoporosis: a narrative review. J Orthop Surg Res 2025; 20:186. [PMID: 39979989 PMCID: PMC11844007 DOI: 10.1186/s13018-025-05588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Osteoporosis is a metabolic bone disease characterized by a decrease in the amount of bone tissue per unit volume and changes in bone microstructure, often resulting in bone fragility and increased susceptibility to fracture. Iron plays an important role in the normal physiological activities of human body, and its abnormal metabolism is one of the risk factors of osteoporosis. Iron overload, as an abnormality of iron metabolism, has been reported to be associated with osteoporosis in recent years. However, the mechanism of iron overload involved in the process of osteoporosis is not fully understood. In this review, we summarize what we have learned about iron overload-associated bone loss from clinical studies and animal models. Starting from the three signaling pathways of Wnt/β-catenin, BMP/SMADs, PI3K/AKT/mTOR, the mechanism of iron overload affecting the process of osteoporosis was explored, we got the conclusion that iron overload accelerates the process of osteoporosis by inhibiting normal wnt signaling, suppressing the BMP-2/SMADs pathway, down-regulating the PI3K/AKT/mTOR pathway to inhibit bone formation, and destroying the bone strength and load-bearing capacity, which providing a new direction for clinical treatment.
Collapse
Affiliation(s)
- Lingling Zou
- School of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, Sichuan, China
| | - Guiquan Chen
- School of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, Sichuan, China.
| | - Yi Rong
- School of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, Sichuan, China
| | - Cai Tang
- School of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, Sichuan, China
| | - Xingmin Lv
- School of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, Sichuan, China
| | - Yundong Fan
- School of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, Sichuan, China
| |
Collapse
|
10
|
Jiang Y, Han C, Xu W, Li Y, Liu Y. Compatibility of Calycosin-Tanshinone IIA improves Ang II-induced renal artery endothelial cell dysfunction through lncRNA-mRNA co-expression network. In Vitro Cell Dev Biol Anim 2025:10.1007/s11626-024-00990-4. [PMID: 39939539 DOI: 10.1007/s11626-024-00990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/18/2024] [Indexed: 02/14/2025]
Abstract
This study aimed to investigate the effect of the compatibility of Calycosin and Tanshinone IIA on dysfunction of rat renal artery endothelial cells (RRAECs) induced by angiotensin II (Ang II) and to elucidate the underlying molecular mechanisms. We utilized cell culture to optimize Calycosin and Tanshinone IIA concentrations and assessed autophagy, apoptosis, ATP levels, and cell migration using MDC staining, Annexin V-FITC/PI staining, ATP assay, and Transwell assays, respectively. RNA-seq identified differentially expressed lncRNAs and mRNAs, which were validated by qRT-PCR. The compatibility of Calycosin and Tanshinone IIA significantly enhanced the proliferative capacity of Ang II-induced RRAECs, increased autophagosome formation, reduced cell apoptosis, elevated ATP production, and enhanced cell migration ability. RNA sequencing analysis revealed 146 differentially expressed lncRNAs and 43 differentially expressed mRNAs, and co-expression network analysis identified interactions between 28 lncRNAs and 7 mRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these differentially expressed mRNAs were primarily involved in the regulation of ATPase activity and metabolic processes related to serine family amino acids, triglycerides, arachidonic acid, etc., as well as the MAPK signaling pathway. The compatibility of Calycosin and Tanshinone IIA improved Ang II-induced dysfunction in RRAECs by modulating the lncRNA-mRNA co-expression network, providing new molecular targets and therapeutic strategies for the prevention and treatment of hypertensive renal damage.
Collapse
Affiliation(s)
- YanYun Jiang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Cong Han
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - WanLi Xu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - YuQiu Li
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yao Liu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
11
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
12
|
He J, Wang L, Lv M, Yuan Y. GGCT participates in the malignant process of hepatocellular cancer cells by regulating the PTEN/PI3K/AKT pathway through binding to EZH2. Discov Oncol 2025; 16:129. [PMID: 39918720 PMCID: PMC11806167 DOI: 10.1007/s12672-025-01882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND γ-Glutamylcyclotransferase (GGCT) is implicated in multiple types of cancer diseases. Nevertheless, the roles and relevant mechanisms of GGCT in hepatocellular carcinoma (HCC) remain vague. METHODS GGCT expression in HCC and its effect on patient survival curve in HCC were evaluated utilizing the UALCAN database, along with western blot. CCK-8, EdU, and wound healing, together with transwell and western blot assays were adopted to assess the capabilities of cells to proliferate, migrate, invade, and epithelial-mesenchymal transition (EMT). Cell apoptosis was appraised utilizing TUNEL as well as western blot. Glycolysis was measured by western blot and kits. Enhancer of zeste homolog 2 (EZH2) expression in HCC cells was detected by western blot. Co-IP verified the combination of GGCT and EZH2. Moreover, PI3K/AKT pathway-related proteins were assessed employing western blot. RESULTS GGCT expression was conspicuously upregulated in HCC samples and HCC cells. GGCT silencing repressed HuH-7 cell proliferative, invasive, and migratory capabilities as well as EMT, whereas facilitated cell apoptosis. In addition, GGCT silencing inhibited PTEN/PI3K/AKT pathway-mediated glycolysis. EZH2 was highly expressed in HCC cells and the interaction of GGCT and EZH2 was verified. Overexpression of EZH2 reversed the effects of GGCT silencing on HuH-7 cell proliferation, migration, invasion, cell apoptosis, and glycolysis. Moreover, the PTEN inhibitor SF1670 reversed the effects of GGCT silencing and EZH2 overexpression on the glycolysis and malignant process in HuH-7 cells. CONCLUSION In conclusion, GGCT silencing restrained the proliferation and metastasis, and promoted apoptotic levels of HCC cells via regulating PTEN/PI3K/AKT pathway-mediated glycolysis, which might offer a prospective candidate in treating HCC.
Collapse
Affiliation(s)
- Junbo He
- Department of General Practice, The Third Affiliated Hospital of Soochow University, No. 185, Jiuqian Street, Changzhou, 213003, Jiangsu, China
| | - Liangzhi Wang
- Department of General Practice, The Third Affiliated Hospital of Soochow University, No. 185, Jiuqian Street, Changzhou, 213003, Jiangsu, China
| | - Mengjia Lv
- Department of General Practice, The Third Affiliated Hospital of Soochow University, No. 185, Jiuqian Street, Changzhou, 213003, Jiangsu, China
| | - Yiming Yuan
- Department of General Practice, The Third Affiliated Hospital of Soochow University, No. 185, Jiuqian Street, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
13
|
Lv S, Zhu Z, Xiao H. Flavonoids and their metal complexes as potential agents for diabetes mellitus with future perspectives. Crit Rev Food Sci Nutr 2025:1-31. [PMID: 39902771 DOI: 10.1080/10408398.2025.2461238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a global health burden, with hyperglycemia as the main hallmark. This review commences with a concise overview of the intricate mechanisms underlying glucose uptake and utilization in organisms. Notably, we emphasize that T2DM management strategies pivot on delaying carbohydrate digestion, augmenting insulin secretion, and enhancing insulin sensitivity in target tissues. Unfortunately, the drugs currently available in the market for the treatment of T2DM have unpleasant side effects, spurring an urgent quest for safer and more efficacious alternatives. Flavonoids, emerging as a promising class of bioactive compounds derived from plants, offer a multi-faceted approach to diabetes treatment. Specifically, they potently inhibit enzymes such as α-amylase, α-glucosidase, dipeptidyl peptidase-4 (DPP-4), glycogen phosphorylase (GP) and protein-tyrosine phosphatase-1B (PTP1B). Through an in-depth analysis, this review not only summarizes these inhibitory actions but also establishes the structure-activity relationship (SAR), providing a blueprint for rational drug design. However, the clinical translation of flavonoids has been hampered by their suboptimal water solubility and bioavailability, attributable to the characteristic carbonyl and hydroxyl groups. Ingeniously, this chemical quirk has been harnessed to engineer metal chelates, which exhibit enhanced pharmacokinetic profiles. Herein, we offer an exhaustive overview of the latest advancements in flavonoid metal complexes research, spotlighting their potential as next-generation diabetes therapeutics. Available data are poised to galvanize the development of novel flavonoid derivatives, be it as potent drugs or functional foods, for combating T2DM.
Collapse
Affiliation(s)
- Shuang Lv
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Zhenbao Zhu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, USA
| |
Collapse
|
14
|
Dash UC, Nayak V, Navani HS, Samal RR, Agrawal P, Singh AK, Majhi S, Mogare DG, Duttaroy AK, Jena AB. Understanding the molecular bridges between the drugs and immune cell. Pharmacol Ther 2025; 267:108805. [PMID: 39908660 DOI: 10.1016/j.pharmthera.2025.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 02/07/2025]
Abstract
The interactions of drugs with the host's immune cells determine the drug's efficacy and adverse effects in patients. Nonsteroidal Anti-Inflammatory Drugs (NSAID), such as corticosteroids, NSAIDs, and immunosuppressants, affect the immune cells and alter the immune response. Molecularly, drugs can interact with immune cells via cell surface receptors, changing the antigen presentation by modifying the co-stimulatory molecules and interacting with the signaling pathways of T cells, B cells, Natural killer (NK) cells, mast cells, basophils, and macrophages. Immunotoxicity, resulting from drug-induced changes in redox status, generation of Reactive Oxygen Species (ROS)/Reactive Nitrogen Species (RNS), and alterations in antioxidant enzymes within immune cells, leads to immunodeficiency. This, in turn, causes allergic reactions, autoimmune diseases, and cytokine release syndrome (CRS). The treatment options should include the evaluation of immune status and utilization of the concept of pharmacogenomics to minimize the chances of immunotoxicity. Many strategies in redox, like targeting the redox pathway or using redox-active agents, are available for the modulation of the immune system and developing drugs. Case studies highlight significant drug-immune cell interactions and patient outcomes, underscoring the importance of understanding these complexities. The future direction focuses on the drugs to deliver antiviral therapy, new approaches to immunomodulation, and modern technologies for increasing antidote effects with reduced toxicity. In conclusion, in-depth knowledge of the interaction between drugs and immune cells is critical to protect the patient from the adverse effects of the drug and improve therapeutic outcomes of the treatment process. This review focuses on the multifaceted interactions of drugs and their consequences at the cellular levels of immune cells.
Collapse
Affiliation(s)
- Umesh Chandra Dash
- School of Biotechnology, Campus 11, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Vinayak Nayak
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India
| | - Hiten Shanker Navani
- Biological Materials Laboratory, CSIR- Central Leather Research Institute, Adyar, Chennai 600020, India
| | - Rashmi Rekha Samal
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751 013, India
| | - Palak Agrawal
- Unit de Microbiologie Structurale, Institut Pasteur, Paris, France
| | - Anup Kumar Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Sanatan Majhi
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Devraj Ganpat Mogare
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.
| | - Atala Bihari Jena
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| |
Collapse
|
15
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Marcos M, Salete-Granado D, Chacón-Arnaude M, Pérez-Nieto MÁ, Kemmerling U, Concepción JL, Michels PAM, Quiñones W. Exploring glycolytic enzymes in disease: potential biomarkers and therapeutic targets in neurodegeneration, cancer and parasitic infections. Open Biol 2025; 15:240239. [PMID: 39904372 PMCID: PMC11793985 DOI: 10.1098/rsob.240239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
Glycolysis, present in most organisms, is evolutionarily one of the oldest metabolic pathways. It has great relevance at a physiological level because it is responsible for generating ATP in the cell through the conversion of glucose into pyruvate and reducing nicotinamide adenine dinucleotide (NADH) (that may be fed into the electron chain in the mitochondria to produce additional ATP by oxidative phosphorylation), as well as for producing intermediates that can serve as substrates for other metabolic processes. Glycolysis takes place through 10 consecutive chemical reactions, each of which is catalysed by a specific enzyme. Although energy transduction by glucose metabolism is the main function of this pathway, involvement in virulence, growth, pathogen-host interactions, immunomodulation and adaptation to environmental conditions are other functions attributed to this metabolic pathway. In humans, where glycolysis occurs mainly in the cytosol, the mislocalization of some glycolytic enzymes in various other subcellular locations, as well as alterations in their expression and regulation, has been associated with the development and progression of various diseases. In this review, we describe the role of glycolytic enzymes in the pathogenesis of diseases of clinical interest. In addition, the potential role of these enzymes as targets for drug development and their potential for use as diagnostic and prognostic markers of some pathologies are also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso2373223, Chile
| | - Miguel Marcos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
| | - Marirene Chacón-Arnaude
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - María Á. Pérez-Nieto
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León, Soria42002, Spain
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile8380453, Chile
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Paul A. M. Michels
- School of Biological Sciences, University of Edinburgh, The King’s Buildings, EdinburghEH9 3FL, UK
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| |
Collapse
|
16
|
Li R, Ji Q, Fu S, Gu J, Liu D, Wang L, Yuan X, Wen Y, Dai C, Li H. ITGA3 promotes pancreatic cancer progression through HIF1α- and c-Myc-driven glycolysis in a collagen I-dependent autocrine manner. Cancer Gene Ther 2025; 32:240-253. [PMID: 39690180 DOI: 10.1038/s41417-024-00864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Pancreatic cancer is characterized by severe metabolic stress due to its prominent desmoplasia and poor vascularization. Integrin subunit alpha 3 (ITGA3) is a cell surface adhesion protein involved in tumor progression. However, the role of ITGA3 in pancreatic cancer progression, especially in metabolic reprogramming, remains largely unknown. In this study, we found that ITGA3 expression is elevated in pancreatic cancer tissues and predicts poor prognosis for patients with pancreatic cancer. Functional assays revealed that ITGA3 promotes the growth and liver metastasis of pancreatic cancer via boosting glycolysis. Mechanistically, Collagen I (Col1) derived from cancer cells acts as a ligand for ITGA3 to activate the FAK/PI3K/AKT/mTOR signaling pathway in an autocrine manner, thereby increasing the expression of HIF1α and c-Myc, two critical regulators of glycolysis. Blockade of Col1 by siRNA or of ITGA3 by a blocking antibody leads to specific inactivation of the FAK/PI3K/AKT/mTOR pathway and impairs malignant tumor behaviors induced by ITGA3. Thus, our data indicate that ITGA3 enhances glycolysis to promote pancreatic cancer growth and metastasis via increasing HIF1α and c-Myc expression in a Col1-dependent autocrine manner, making ITGA3 as a candidate diagnostic biomarker and a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Rongkun Li
- Chest Oncology Department, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Qian Ji
- Department of Pulmonary Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Shengqiao Fu
- Chest Oncology Department, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jichun Gu
- Department of Pancreatic surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Dejun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lu Wang
- Abdominal Oncology Department, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xiao Yuan
- Chest Oncology Department, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yi Wen
- Chest Oncology Department, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Chunhua Dai
- Chest Oncology Department, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Hengchao Li
- Department of Pancreatic surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
17
|
Li SR, Tao SY, Li Q, Hu CY, Sun ZJ. Harnessing nanomaterials for copper-induced cell death. Biomaterials 2025; 313:122805. [PMID: 39250865 DOI: 10.1016/j.biomaterials.2024.122805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Copper (Cu), an essential micronutrient with redox properties, plays a pivotal role in a wide array of pathological and physiological processes across virtually all cell types. Maintaining an optimal copper concentration is critical for cellular survival: insufficient copper levels disrupt respiration and metabolism, while excess copper compromises cell viability, potentially leading to cell death. Similarly, in the context of cancer, copper exhibits a dual role: appropriate amount of copper can promote tumor progression and be an accomplice, yet beyond befitting level, copper can bring about multiple types of cell death, including autophagy, apoptosis, ferroptosis, immunogenic cell death, pyroptosis, and cuproptosis. These forms of cell death are beneficial against cancer progression; however, achieving precise copper regulation within tumors remains a significant challenge in the pursuit of effective cancer therapies. The emergence of nanodrug delivery systems, distinguished by their precise targeting, controlled release, high payload capacity, and the ability to co-deliver multiple agents, has revitalized interest in exploiting copper's precise regulatory capabilities. Nevertheless, there remains a dearth of comprehensive review of copper's bidirectional effects on tumorigenesis and the role of copper-based nanomaterials in modulating tumor progression. This paper aims to address this gap by elucidating the complex role in cancer biology and highlighting its potential as a therapeutic target. Through an exploration of copper's dualistic nature and the application of nanotechnology, this review seeks to offer novel insights and guide future research in advancing cancer treatment.
Collapse
Affiliation(s)
- Su-Ran Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Shi-Yue Tao
- Bathune School of Stomatology, Jilin University, Changchun, 130021, Jilin, PR China
| | - Qian Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Chuan-Yu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China.
| |
Collapse
|
18
|
Verhees F, Demers I, Legemaate D, Jacobs R, Hoeben A, Kremer B, Speel EJ. Exploring the antiproliferative effect of PI3K/Akt/mTOR pathway and CDK4/6 inhibitors in human papillomavirus‑positive and ‑negative head and neck squamous cell carcinoma cell lines. Int J Oncol 2025; 66:13. [PMID: 39791215 PMCID: PMC11753768 DOI: 10.3892/ijo.2025.5719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/30/2024] [Indexed: 01/12/2025] Open
Abstract
Human papillomavirus (HPV)‑positive and -negative head and neck squamous cell carcinoma (HNSCC) are often associated with activation of the phosphatidylinositol 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway due to mutations or amplifications in PI3KCA, loss of PTEN or activation of receptor tyrosine kinases. In HPV‑negative tumors, CDKN2A (encoding p16 protein) inactivation or CCND1 (encoding Cyclin D1 protein) amplification frequently results in sustained cyclin‑dependent kinase (CDK) 4/6 activation. The present study aimed to investigate the efficacy of the CDK4/6 inhibitors (CDKi) palbociclib and ribociclib, and the PI3K/Akt/mTOR pathway inhibitors (PI3Ki) gedatolisib, buparlisib and alpelisib, in suppressing cell viability of HPV‑positive and ‑negative HNSCC cell lines. Inhibitor efficacy was assessed in vitro using MTT assay and western blotting analysis. Cell cycle analysis was performed using flow cytometry and apoptosis was assessed using annexin V staining. Metabolic changes in terms of glycolysis and oxidative metabolism were measured by Seahorse XF96 extracellular Flux analysis. The results of the present study showed that both HPV‑positive and ‑negative HNSCC cell lines were sensitive to PI3Ki. In general, PI3Ki decreased PI3K/Akt/mTOR pathway activity, resulting in apoptosis, and decreased oxidative and glycolytic metabolism. The CDKi were particularly effective in blocking HPV‑negative cell line viability, showing decreased retinoblastoma expression and G1‑phase cell cycle arrest, whereas apoptosis was not induced. Thus, PI3Ki and CDKi efficiently inhibited their respective pathways and HNSCC cell viability in vitro, with the latter occurring only in HPV‑negative cell lines. Whereas PI3Ki induced apoptosis and attenuated cellular metabolism, CDKi led to cell cycle arrest. Further research should be performed to elucidate whether (a combination of) these inhibitors may be effective therapeutic agents for patients with HNSCC.
Collapse
Affiliation(s)
- Femke Verhees
- Department of Otorhinolaryngology, Head and Neck Surgery, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Imke Demers
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Dion Legemaate
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Robin Jacobs
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Bernd Kremer
- Department of Otorhinolaryngology, Head and Neck Surgery, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Ernst-Jan Speel
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| |
Collapse
|
19
|
Codenotti S, Asperti M, Poli M, Lorenzi L, Pietrantoni A, Cassandri M, Marampon F, Fanzani A. Synthetic inhibition of SREBP2 and the mevalonate pathway blocks rhabdomyosarcoma tumor growth in vitro and in vivo and promotes chemosensitization. Mol Metab 2025; 92:102085. [PMID: 39706565 PMCID: PMC11750561 DOI: 10.1016/j.molmet.2024.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
OBJECTIVE The aim of the present study was to investigate the effects of targeting the mevalonate pathway (MVP) in rhabdomyosarcoma (RMS), a soft tissue tumor with a prevalence in young people. METHODS In silico analyses of RNA datasets were performed to correlate MVP with RMS patient survival. The sensitivity of RMS cell lines to MVP inhibitors was assessed in vitro by analysis of cell growth (crystal violet and clonogenic assays), cell migration (wound healing assay), cell survival (neutral red assay), and oxidative stress (ROS assay). The effects of MVP inhibitors were tested in vivo by analyzing RMS xenografts grown in NOD/SCID mice. Quantification of protein targets was performed using immunoblotting or immunohistochemistry analyses. RESULTS In silico analysis showed upregulation of sterol regulatory element-binding protein 2 (SREBP2) and MVP genes, including 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR), farnesyl-diphosphate synthase (FDPS), squalene epoxidase (SQLE), which correlated with worse overall patient survival. Targeting of MVP in human RD and RH30 lines by inhibitors of SREBP2 (fatostatin), HMGCR (lovastatin and simvastatin), and FDPS (zoledronic acid) resulted in impaired cell growth, migration, and viability, and increased oxidative cell death in combination with actinomycin D. Conversely, cholesterol (CHO) supplementation enhanced cell growth and migration. Fatostatin and lovastatin produced rapid attenuation of Erk1/2 and Akt1 signaling in RMS lines, and oral administration of lovastatin reduced tumor mass growth of xenografted RD cells in NOD/SCID mice. Finally, we found that forced Akt1 activation in RD cells was sufficient to drive SREBP2, HMGCR and SQLE protein expression, promoting increased susceptibility to MVP inhibitors. CONCLUSIONS These data suggest that the Akt1, SREBP2 and MVP axis is critical for RMS tumor growth, migration, and oxidative stress protection primarily through maintaining adequate CHO levels that enable proper intracellular signaling. Therefore, stimulating CHO depletion via SREBP2 and MVP inhibition may represent a viable option to improve the combination therapy protocol, especially in pAkt1-positive RMS.
Collapse
Affiliation(s)
- Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Lorenzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Alberto Pietrantoni
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Matteo Cassandri
- Department of Radiological Sciences, Oncology and Anatomic Pathology, "Sapienza" University of Rome, 00161, Rome, Italy
| | | | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
20
|
Hashemi M, Mohandesi Khosroshahi E, Asadi S, Tanha M, Ghatei Mohseni F, Abdolmohammad Sagha R, Taheri E, Vazayefi P, Shekarriz H, Habibi F, Mortazi S, Khorrami R, Nabavi N, Rashidi M, Taheriazam A, Rahimzadeh P, Entezari M. Emerging roles of non-coding RNAs in modulating the PI3K/Akt pathway in cancer. Noncoding RNA Res 2025; 10:1-15. [PMID: 39296640 PMCID: PMC11406677 DOI: 10.1016/j.ncrna.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer progression results from the dysregulation of molecular pathways, each with unique features that can either promote or inhibit tumor growth. The complexity of carcinogenesis makes it challenging for researchers to target all pathways in cancer therapy, emphasizing the importance of focusing on specific pathways for targeted treatment. One such pathway is the PI3K/Akt pathway, which is often overexpressed in cancer. As tumor cells progress, the expression of PI3K/Akt increases, further driving cancer advancement. This study aims to explore how ncRNAs regulate the expression of PI3K/Akt. NcRNAs are found in both the cytoplasm and nucleus, and their functions vary depending on their location. They can bind to the promoters of PI3K or Akt, either reducing or increasing their expression, thus influencing tumorigenesis. The ncRNA/PI3K/Akt axis plays a crucial role in determining cell proliferation, metastasis, epithelial-mesenchymal transition (EMT), and even chemoresistance and radioresistance in human cancers. Anti-tumor compounds can target ncRNAs to modulate the PI3K/Akt axis. Moreover, ncRNAs can regulate the PI3K/Akt pathway both directly and indirectly.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Forough Ghatei Mohseni
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramina Abdolmohammad Sagha
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Paria Vazayefi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Helya Shekarriz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Habibi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Mortazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Independent Researchers, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
21
|
Asaad L, Pepperrell B, McErlean E, Furlong F. Regulation of HDAC6 Catalytic Activity in Cancer: The Role of Post-Translational Modifications and Protein-Protein Interactions. Int J Mol Sci 2025; 26:1274. [PMID: 39941046 PMCID: PMC11818932 DOI: 10.3390/ijms26031274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Histone deacetylase 6 (HDAC6) is a large multidomain protein that deacetylates lysine residues on cytoplasmic proteins, influencing numerous cellular processes. Both the catalytic and noncatalytic functions of HDAC6 have been implicated in cancer development and progression. Over a decade of research on catalytic domain inhibitors has shown that these drugs are well tolerated, exhibit anticancer activity, and can alleviate chemotherapy-induced peripheral neuropathies. However, their effectiveness in treating solid tumours remains uncertain. HDAC6 activity is regulated by protein-protein interactions and post-translational modifications, which may allosterically influence its catalytic domains. As a result, effective inhibition of HDAC6 in cancer using small molecule inhibitors requires a more sophisticated understanding of its role within tumour cells, including whether its expression correlates with deacetylase activity. A comprehensive understanding of cancer-specific HDAC6 expression, functional activity, and activation states will be critical for refining the use of HDAC6 inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Leen Asaad
- School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | | | - Emma McErlean
- School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK
| | - Fiona Furlong
- School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK
| |
Collapse
|
22
|
Wang Y, Qi L, Guo S, Jia Y, Wang R, Lv C, Zeng Q, Gao Y, Wang T, Li Q. Sodium selenite inhibits the growth of cervical cancer cells through the PI3K/AKT pathway. J Trace Elem Med Biol 2025; 87:127582. [PMID: 39708662 DOI: 10.1016/j.jtemb.2024.127582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Selenium can inhibit cervical cancers, but the specific mechanism of anti-cervical cancer is not fully understood. METHODS In this study, we investigated the anti-cervical cancer effect of sodium selenite (SS) in vivo and in vitro to reveal the role of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway in terms of the mechanism. In vivo experiments, HeLa cell xenografts were constructed in BALB/c female nude mice, and then intraperitoneally injected with 3 mg/kg sodium selenite (SS) for 14 days. In vitro experiments, we detected cell viability by MTT assay and apoptosis by Annexin V-FITC/PI staining. The levels of PI3K, AKT, phosphorylated PI3K (p-PI3K), and phosphorylated Akt (p-AKT) were measured by Western Blot. RESULTS HeLa cell xenografts in female nude mice showed delayed tumor growth and no apparent toxicity in the liver or kidney. SS reduced the viability and increased apoptosis of HeLa and SiHa cells. SS did not affect PI3K and AKT levels and decreased p-PI3K and p-AKT levels. In addition, the results also revealed that the SS combined with LY294002, a specific PI3K inhibitor, enhanced the inhibitory effect of SS on the PI3K/AKT signaling pathway, further inhibiting cervical cancer cell viability and increased apoptosis. CONCLUSIONS SS exerted its anti-cervical cancer effects by inhibiting cell proliferation, promoting apoptosis, and inhibiting the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China
| | - Lei Qi
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China; School of Public Health, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Sihong Guo
- Department of Gynecological Oncology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Yuehui Jia
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China
| | - Ruixiang Wang
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China
| | - Cunqi Lv
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China
| | - Qingyu Zeng
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China
| | - Ying Gao
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China.
| | - Tong Wang
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China.
| | - Qi Li
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, China.
| |
Collapse
|
23
|
Bie L, Chen G, Lei X, Xiao F, Xu Z, Xiang Z, Lu Z, Jiang X. B4GALNT1 Regulates Hepatocellular Carcinoma Cell Proliferation and Apoptosis via the PI3K-AKT-mTOR Pathway. J Clin Lab Anal 2025; 39:e25155. [PMID: 39829207 DOI: 10.1002/jcla.25155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a ubiquitous malignancy linked to significant mortality. The abnormal expression of β-1,4-N-acetyl-galactosaminyltransferase 1 (B4GALNT1) seemed to be implicated in tumorigenesis. Nonetheless, this enzyme's roles in HCC are unclear. METHODS By analyzing the TCGA_LIHC, GSE77509, and GSE135631 datasets, the levels of B4GALNT1 expression in HCC and surrounding non-cancerous tissues were compared. The prognostic implications of B4GALNT1 were assessed using the Cox regression analysis (CRA). The relationship of B4GALNT1 mutations with CpG island methylation levels and prognosis was examined by analyzing the cBioPortal and MethSurv databases. We sifted the evidence of B4GALNT1 expression correlating with 28 immune cell types' infiltration by harnessing the "GSVA" R package. To delve into the influences of genes associated with B4GALNT1 on HCC, we implemented gene set enrichment analysis (GSEA). We constructed a lentiviral vector expressing B4GALNT1 and knocked down B4GALNT1 in HepG2 cells. The resulting effects on HCC cell proliferation and apoptosis were analyzed via cell proliferation assays and flow cytometry. RESULTS HCC tissues presented significant B4GALNT1 overexpression relative to surrounding non-cancerous tissues, marking it as a standalone risk factor for HCC progression. Methylation levels of two CpG islands were high, suggesting poor prognosis. It was detectable that B4GALNT1 expression interrelated with the infiltration extent of natural killer T cells in HCC tissues. B4GALNT1-fueled cell proliferation and enhanced resistance to apoptosis in HCC cells. CONCLUSION B4GALNT1 is a strong regulator of HCC progression and holds promise as a marker for prognosis and a hallmark for therapy in HCC.
Collapse
Affiliation(s)
- Lihan Bie
- Department of Laboratory Medicine, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangquan Chen
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lei
- Department of Laboratory Medicine, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Xiao
- Department of Pathology, The Seventh People's Hospital Affiliated to the Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xu
- Department of Laboratory Medicine, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhouhong Xiang
- Department of Laboratory Medicine, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhicheng Lu
- Department of Laboratory Medicine, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiudi Jiang
- Department of Laboratory Medicine, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Cui M, Yao G, Zhang Y, Wen M, Zhang S, Jin J, Lin Z, Ren X, An R, Piao Y. The molecular mechanisms of Caulophyllum robustum Maxim extract inhibition by regulating FAK/PI3K signaling pathway in gastric cancer HGC-27 cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118867. [PMID: 39369918 DOI: 10.1016/j.jep.2024.118867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/12/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caulophyllumrobustum Maxim extract (CRME), as recorded in traditional Chinese medicine, has the function of dispelling Feng, regulating Qi and dredging collaterals, promoting blood circulation and regulating menstruation, gingering up and relieving pain, clearing heat simultaneously detoxifying, lowering blood pressure and hemostasis. CRME is often used as Chinese materia medica preparation for rheumatoid arthritis, traumatic injury, irregular menstruation, abdominal pain, and hypertension treatment. Since gastric cancer (GC) existed as a health problem of human over the years, we are committed to the development of potential components of Chinese herbal medicine curing cancer, and we found CRME is expected to be one of the effective anti-tumor traditional Chinese medicine preparations. AIMS OF THE STUDY To investigate the molecular mechanisms of CRME anticancer effects and the potential links between CRME and FAK. MATERIALS AND METHODS Caulophyllumrobustum Maxim was extracted to obtain CRME, high-performance liquid chromatography (HPLC) was used for qualitative analysis. Information about CRME was collected from traditional Chinese medicine records and local surveys unpublished internationally. Series of cellular function experiments were applied to detect cell proliferation, migration, apoptosis, autophagy, cell cycle, angiogenesis. The xenograft model is employed in vivo. RESULTS CRME can significantly inhibit HGC-27 cells on proliferation, migration and angiogenic capacity. Xenograft model indicated CRME inhibited cell proliferation in vivo. Annexin V-FITC/PI double staining assay and PI single staining assay depicted that CRME induces cell apoptosis, and arrests cell cycle at G0/G1 phase. AO (acridine orange) staining assay showed that CRME promoted autophagosome formation and inhibited autophagic flow. HPLC indicated Cauloside A and Cauloside C are components of CRME. Western blot indicated that FAK/PI3K signaling pathway is critical in the inhibition of CRME on HGC-27 cells. CONCLUSIONS The anti-tumor components of CRME, Cauloside A and Cauloside C, inhibited tumor progression in HGC-27 cells. This inhibition is achieved by decreasing the phosphorylation levels of FAK, thereby modulating PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Minghua Cui
- The key laboratory of pathobiology on the tumors with high incidence in Ethics area, State Ethnic Affairs Commission; Cancer Research Center of Yanbian University, Yanji, China
| | - Guangyuan Yao
- The key laboratory of pathobiology on the tumors with high incidence in Ethics area, State Ethnic Affairs Commission; Cancer Research Center of Yanbian University, Yanji, China
| | - Yingying Zhang
- The key laboratory of pathobiology on the tumors with high incidence in Ethics area, State Ethnic Affairs Commission; Cancer Research Center of Yanbian University, Yanji, China; Chifeng Municipal Hospital, Chifeng, China
| | - Meixin Wen
- The key laboratory of pathobiology on the tumors with high incidence in Ethics area, State Ethnic Affairs Commission; Cancer Research Center of Yanbian University, Yanji, China
| | - Shengjun Zhang
- The key laboratory of pathobiology on the tumors with high incidence in Ethics area, State Ethnic Affairs Commission; Cancer Research Center of Yanbian University, Yanji, China
| | - Jingchun Jin
- The key laboratory of pathobiology on the tumors with high incidence in Ethics area, State Ethnic Affairs Commission; Cancer Research Center of Yanbian University, Yanji, China; Yanbian University Hospital, Yanji, China
| | - Zhenhua Lin
- The key laboratory of pathobiology on the tumors with high incidence in Ethics area, State Ethnic Affairs Commission; Cancer Research Center of Yanbian University, Yanji, China
| | - Xiangshan Ren
- The key laboratory of pathobiology on the tumors with high incidence in Ethics area, State Ethnic Affairs Commission; Cancer Research Center of Yanbian University, Yanji, China
| | - Renbo An
- Key Laboratory of Changbai Mountain Natural Medicine Research, Yanji, China
| | - Yingshi Piao
- The key laboratory of pathobiology on the tumors with high incidence in Ethics area, State Ethnic Affairs Commission; Cancer Research Center of Yanbian University, Yanji, China.
| |
Collapse
|
25
|
Ali RH, Orellana EA, Lee SH, Chae YC, Chen Y, Clauwaert J, Kennedy AL, Gutierrez AE, Papke DJ, Valenzuela M, Silverman B, Falzetta A, Ficarro SB, Marto JA, Fletcher CDM, Perez-Atayde A, Alcindor T, Shimamura A, Prensner JR, Gregory RI, Gutierrez A. A methyltransferase-independent role for METTL1 in tRNA aminoacylation and oncogenic transformation. Mol Cell 2025:S1097-2765(25)00003-6. [PMID: 39892392 DOI: 10.1016/j.molcel.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/04/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Amplification of chromosomal material derived from 12q13-15 is common in human cancer and believed to result in overexpression of multiple collaborating oncogenes. To define the oncogenes involved, we overexpressed genes recurrently amplified in human liposarcoma using a zebrafish model of the disease. We found several genes whose overexpression collaborated with AKT in sarcomagenesis, including the tRNA methyltransferase METTL1. This was surprising, because AKT phosphorylates METTL1 to inactivate its enzymatic activity. Indeed, phosphomimetic S27D or catalytically dead alleles phenocopied the oncogenic activity of wild-type METTL1. We found that METTL1 binds the multi-tRNA synthetase complex, which contains many of the cellular aminoacyl-tRNA synthetases and promotes tRNA aminoacylation, polysome formation, and protein synthesis independent of its methyltransferase activity. METTL1-amplified liposarcomas were hypersensitive to actinomycin D, a clinical inhibitor of ribosome biogenesis. We propose that METTL1 overexpression promotes sarcomagenesis by stimulating tRNA aminoacylation, protein synthesis, and tumor cell growth independent of its methyltransferase activity.
Collapse
Affiliation(s)
- Raja H Ali
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Esteban A Orellana
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Molecular and Systems Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Su Hyun Lee
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yun-Cheol Chae
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yantao Chen
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jim Clauwaert
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alyssa L Kennedy
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ashley E Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - David J Papke
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mateo Valenzuela
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Brianna Silverman
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Amanda Falzetta
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Scott B Ficarro
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Linde Program in Cancer Chemical Biology, Center for Emerging Drug Targets and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jarrod A Marto
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Linde Program in Cancer Chemical Biology, Center for Emerging Drug Targets and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christopher D M Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Thierry Alcindor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Akiko Shimamura
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John R Prensner
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Richard I Gregory
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Harvard Initiative for RNA Medicine, Boston, MA, USA; Department of Molecular, Cell & Cancer Biology, UMass Chan Medical School, Worcester, MA, USA
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
26
|
Liu Y, Zhu Y, Gu L, Li K, Ma A, Liu L, Meng Y, Zhang J, Shen S, Shi Q, Liu D, Zhang X, Zhang S, Chai X, Gao P, Xing J, Wang Y, Chen H, Liu R, Du Q, Liu H, Dai L, Wang J. Chloroquine Suppresses Colorectal Cancer Progression via Targeting CHKA and PFKM to inhibit the PI3K/AKT Pathway and the Warburg Effect. Int J Biol Sci 2025; 21:1619-1631. [PMID: 39990656 PMCID: PMC11844273 DOI: 10.7150/ijbs.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/24/2024] [Indexed: 02/25/2025] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide and has become a recognized global health problem. Therefore, the search for new anti-CRC agents or the exploration of new effective drug targets for CRC therapy is urgent. Chloroquine (CQ) is a widely-used antimalarial drug and has shown anti-proliferative effects in CRC. However, the underlying mechanisms are not well understood, particularly as the direct targets of CQ have not been identified. In this study, choline kinase alpha (CHKA) and ATP-dependent 6-phosphofructokinase, muscle type (PFKM) were identified and verified as the binding targets of CQ. CQ specifically binds to CHKA, inhibits its expression and enzymatic activity, and downregulates the downstream phosphorylation of PI3K and AKT, thereby suppressing tumor cell proliferation and inducing apoptosis. CQ also binds to PFKM and inhibits its expression and activity, thereby blocking the Warburg effect. In addition, the downregulation of CHKA can decrease the expression of PFKM and inhibit its activity, thereby blocking the Warburg effect. These observations shed new light on the antitumor mechanisms of CQ and provide new evidence for the close relationship between the PI3K/AKT signaling pathway and the Warburg effect, providing new therapeutic targets for treating CRC.
Collapse
Affiliation(s)
- Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Kexin Li
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ang Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiaoli Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dandan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinwei Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shujie Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xin Chai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiale Xing
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yaxu Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Honglin Chen
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475000, China
| | - Rui Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Qingfeng Du
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Haitao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Lingyun Dai
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Department of Nuclear Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong 518020, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, Shenyang Pharmaceutical University, Shenyang 110016, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475000, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Department of Nuclear Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong 518020, China
| |
Collapse
|
27
|
Tkaczenko H, Kurhaluk N. Antioxidant-Rich Functional Foods and Exercise: Unlocking Metabolic Health Through Nrf2 and Related Pathways. Int J Mol Sci 2025; 26:1098. [PMID: 39940866 PMCID: PMC11817741 DOI: 10.3390/ijms26031098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
This article reviews the synergistic effects of antioxidant-enriched functional foods and exercise in improving metabolic health, focusing on the underlying molecular mechanisms. The review incorporates evidence from PubMed, SCOPUS, Web of Science, PsycINFO, and reference lists of relevant reviews up to 20 December 2024, highlighting the central role of the Nrf2 pathway. As a critical regulator of oxidative stress and metabolic adaptation, Nrf2 mediates the benefits of these interventions. This article presents an innovative approach to understanding the role of Nrf2 in the regulation of oxidative stress and inflammation, highlighting its potential in the prevention and treatment of various diseases, including cancer, neurodegenerative disorders, cardiovascular and pulmonary diseases, diabetes, inflammatory conditions, ageing, and infections such as COVID-19. The novelty of this study is to investigate the synergistic effects of bioactive compounds found in functional foods (such as polyphenols, flavonoids, and vitamins) and exercise-induced oxidative stress on the activation of the Nrf2 pathway. This combined approach reveals their potential to improve insulin sensitivity and lipid metabolism and reduce inflammation, offering a promising strategy for the management of chronic diseases. However, there are significant gaps in current research, particularly regarding the molecular mechanisms underlying the interaction between diet, physical activity, and Nrf2 activation, as well as their long-term effects in different populations, including those with chronic diseases. In addition, the interactions between Nrf2 and other critical signalling pathways, including AMPK, NF-κB, and PI3K/Akt, and their collective contributions to metabolic health are explored. Furthermore, novel biomarkers are presented to assess the impact of these synergistic strategies, such as the NAD+/NADH ratio, the GSH ratio, and markers of mitochondrial health. The findings provide valuable insights into how the integration of an antioxidant-rich diet and regular exercise can improve metabolic health by activating Nrf2 and related molecular pathways and represent promising strategies for the prevention and treatment of metabolic disorders. Further studies are needed to fully understand the therapeutic potential of these interventions in diseases related to oxidative stress, such as cardiovascular disease, neurodegenerative disease, diabetes, and cancer.
Collapse
Affiliation(s)
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, 76-200 Słupsk, Poland;
| |
Collapse
|
28
|
Praharaj PP, Li Y, Mary C, Soflaee MH, Ryu K, Kim D, Tran DH, Dey T, Tom HJ, Rion H, Gelin M, Lemoff A, Zacharias LG, Patricio JS, Mathews TP, Chen Z, Lionne C, Hoxhaj G, Labesse G. Cryo-EM structure and regulation of human NAD kinase. SCIENCE ADVANCES 2025; 11:eads2664. [PMID: 39854463 PMCID: PMC11759006 DOI: 10.1126/sciadv.ads2664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is a crucial reducing cofactor for reductive biosynthesis and protection from oxidative stress. To fulfill their heightened anabolic and reductive power demands, cancer cells must boost their NADPH production. Progrowth and mitogenic protein kinases promote the activity of cytosolic NAD kinase (NADK), which produces NADP+, a limiting NADPH precursor. However, the molecular architecture and mechanistic regulation of human NADK remain undescribed. Here, we report the cryo-electron microscopy structure of human NADK, both in its apo-form and in complex with its substrate NAD+ (nicotinamide adenine dinucleotide), revealing a tetrameric organization with distinct structural features. We discover that the amino (N)- and carboxyl (C)-terminal tails of NADK have opposing effects on its enzymatic activity and cellular NADP(H) levels. Specifically, the C-terminal region is critical for NADK activity, whereas the N-terminal region exhibits an inhibitory role. This study highlights molecular insights into the regulation of a vital enzyme governing NADP(H) production.
Collapse
Affiliation(s)
- Prakash P. Praharaj
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yang Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Charline Mary
- Atelier de Biologie Chimie Informatique Structurale, Centre de Biologie Structurale, Univ Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France
| | - Mona H. Soflaee
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Kevin Ryu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Dohun Kim
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Diem H. Tran
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Trishna Dey
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Harrison J. Tom
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Halie Rion
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Muriel Gelin
- Atelier de Biologie Chimie Informatique Structurale, Centre de Biologie Structurale, Univ Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren G. Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - João S. Patricio
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Thomas P. Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Corinne Lionne
- Atelier de Biologie Chimie Informatique Structurale, Centre de Biologie Structurale, Univ Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France
| | - Gerta Hoxhaj
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Gilles Labesse
- Atelier de Biologie Chimie Informatique Structurale, Centre de Biologie Structurale, Univ Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France
| |
Collapse
|
29
|
Garcia KC, Khan AA, Ghosh K, Sinha S, Scalora N, DeWane G, Fullenkamp C, Merritt N, Drebot Y, Yu S, Leidinger M, Henry MD, Breheny P, Chimenti MS, Tanas MR. PI3K regulates TAZ/YAP and mTORC1 axes that can be synergistically targeted. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634138. [PMID: 39896636 PMCID: PMC11785051 DOI: 10.1101/2025.01.21.634138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Purpose Sarcomas are a heterogeneous group of cancers with few shared therapeutic targets. PI3K signaling is activated in various subsets of sarcomas, representing a shared oncogenic signaling pathway. Oncogenic PI3K signaling has been challenging to target therapeutically. An integrated view of PI3K and Hippo pathway signaling is examined to determine if this could be leveraged therapeutically. Experimental design A tissue microarray containing sarcomas of various histological types was evaluated for PTEN loss and correlated with levels of activated TAZ and YAP. PI3K and Hippo pathways were dissected in sarcoma cell lines. The role of TAZ and YAP were evaluated in a PI3K-driven mouse model. The efficacy of mTORC1 inhibition and TEAD inhibition were evaluated in sarcoma cell lines and in vivo . Results PI3K signaling is frequently activated in sarcomas due to PTEN loss (in 30-60%), representing a common therapeutic target. TAZ and YAP are transcriptional co-activators regulated by PI3K and drive a transcriptome necessary for tumor growth in a PI3K-driven sarcoma mouse model. Combination therapy using IK-930 (TEAD inhibitor) and everolimus (mTORC1 inhibitor) synergistically diminished proliferation and anchorage independent growth of PI3K-activated sarcoma cell lines at low, physiologically achievable doses. Furthermore, this combination therapy showed a synergistic effect in vivo , reducing tumor proliferation and size. Conclusions TAZ and YAP are transcriptional co-activators downstream of PI3K signaling, a pathway that has lacked a well-defined oncogenic transcription factor. This PI3K-TAZ/YAP axis exists in parallel to the known PI3K-Akt-mTORC1 axis allowing for synergistic combination therapy targeting the TAZ/YAP-TEAD interaction and mTORC1 in sarcomas.
Collapse
|
30
|
Li S, Chen X, Shi H, Yi M, Xiong B, Li T. Tailoring traditional Chinese medicine in cancer therapy. Mol Cancer 2025; 24:27. [PMID: 39838407 PMCID: PMC11749133 DOI: 10.1186/s12943-024-02213-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/25/2024] [Indexed: 01/23/2025] Open
Abstract
Cancer remains a formidable global health challenge, necessitating innovative therapeutic approaches to enhance treatment efficacy and reduce adverse effects. The traditional Chinese medicine (TCM), as an embodiment of ancient wisdom, has been validated to regulate the holistic human capacity against both internal and external "evils" in accordance with TCM principles. Therefore, it stands to reason to integrate TCM into current cancer therapy paradigms, such as chemotherapy, immunotherapy, and targeted therapy. This strategy conceptually intends to circumvent the inevitable side effects derived from present treatment, alleviate the discomfort, mollify the detrimental mood and synergize tumoricidal effects of distinct approaches. However, it is still vague whether TCM exert favorable function in cancer treatment. Therefore, it is imperative to retrieve and compile the existing literature on TCM in the realm of cancer, followed by a comprehensive recapitulation and synthesis of its core findings. Recently, with the advancement of contemporary biologic and medical theory and technology, it has become both feasible and imperative to elucidate the molecular signaling mechanisms and cellular biology underlying TCM. Specifically, leveraging TCM pharmaceutic components can not only directly impact tumor biology at the molecular level, but regulate the tumor immune environment through distinct pathways. Additionally, the administration of external TCM treatments such as acupuncture and moxibustion also demonstrates beneficial effects in cancer patients. Through comprehensive analysis, we demonstrated that TCM not only potentially increases the efficacy of conventional cancer treatments, but also significantly mitigates their toxic side effects, thereby prolonging patients' prognosis and improving their living quality. Furthermore, we have underscored the challenges and prospects associated with the integration of TCM into contemporary oncological practices, placing particular emphasis on the imperative for rigorous clinical trials and molecular investigations to substantiate the efficacy and safety of these combined therapeutic approaches. This synthesis aims to pave the way for a more integrated approach to cancer treatment rooted in both traditional wisdom and cutting-edge science.
Collapse
Affiliation(s)
- Shuiquan Li
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Xi Chen
- Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, People's Republic of China
| | - Hui Shi
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Bing Xiong
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
31
|
Altea-Manzano P, Decker-Farrell A, Janowitz T, Erez A. Metabolic interplays between the tumour and the host shape the tumour macroenvironment. Nat Rev Cancer 2025:10.1038/s41568-024-00786-4. [PMID: 39833533 DOI: 10.1038/s41568-024-00786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Metabolic reprogramming of cancer cells and the tumour microenvironment are pivotal characteristics of cancers, and studying these processes offer insights and avenues for cancer diagnostics and therapeutics. Recent advancements have underscored the impact of host systemic features, termed macroenvironment, on facilitating cancer progression. During tumorigenesis, these inherent features of the host, such as germline genetics, immune profile and the metabolic status, influence how the body responds to cancer. In parallel, as cancer grows, it induces systemic effects beyond the primary tumour site and affects the macroenvironment, for example, through inflammation, the metabolic end-stage syndrome of cachexia, and metabolic dysregulation. Therefore, understanding the intricate metabolic interplay between the tumour and the host is a growing frontier in advancing cancer diagnosis and therapy. In this Review, we explore the specific contribution of the metabolic fitness of the host to cancer initiation, progression and response to therapy. We then delineate the complex metabolic crosstalk between the tumour, the microenvironment and the host, which promotes disease progression to metastasis and cachexia. The metabolic relationships among the host, cancer pathogenesis and the consequent responsive systemic manifestations during cancer progression provide new perspectives for mechanistic cancer therapy and improved management of patients with cancer.
Collapse
Affiliation(s)
| | | | | | - Ayelet Erez
- Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
32
|
Msane S, Khathi A, Sosibo AM. The Effect of the 14:10-Hour Time-Restricted Feeding (TRF) Regimen on Selected Markers of Glucose Homeostasis in Diet-Induced Prediabetic Male Sprague Dawley Rats. Nutrients 2025; 17:292. [PMID: 39861423 PMCID: PMC11768421 DOI: 10.3390/nu17020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Prediabetes is a condition that often precedes the onset of type 2 diabetes mellitus (T2DM). Literature evidence indicates that prediabetes is reversible, making it an important therapeutic target for preventing the progression to T2DM. Several studies have investigated intermittent fasting as a possible method to manage or treat prediabetes. OBJECTIVES This study evaluated the impact of a 14:10-hour time-restricted feeding (TRF) regimen on leptin concentration, insulin sensitivity and selected markers associated with the insulin signalling pathway and glucose homeostasis in diet-induced prediabetic rats. METHODS Twenty-four male Sprague Dawley rats were obtained and randomly divided into two dietary groups: group 1 (n = 6) received a standard diet and water, while group 2 (n = 18) was provided a high-fat, high-carbohydrate (HFHC) diet supplemented with 15% fructose for a period of 20 weeks to induce prediabetes. After confirming prediabetes, an intermittent fasting (IF) regimen was assigned to the rats while also having untreated and metformin-treated prediabetic rats serving as controls. RESULTS Both IF and HFHC-Met groups yield significantly lower blood glucose, leptin and BMI results compared to the prediabetic group. The IF group yielded significantly lower insulin, HOMA-IR and HbA1C than both controls. CONCLUSIONS The study showed the potential of IF in alleviating prediabetes-induced dysregulation of glucose homeostasis and therefore warrants further investigations into its use in the management of prediabetes.
Collapse
Affiliation(s)
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (S.M.); (A.M.S.)
| | | |
Collapse
|
33
|
Jiang ML, Liu L, Wang Z, Yang X, Lin Z, Jiang R, Zhang CJ, Wang W. Kanglaite alleviates lung squamous cell carcinoma through ferroptosis. Int Immunopharmacol 2025; 144:113616. [PMID: 39579539 DOI: 10.1016/j.intimp.2024.113616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/27/2024] [Accepted: 11/08/2024] [Indexed: 11/25/2024]
Abstract
Kanglaite, a compound predominantly composed of polyunsaturated fatty acids (PUFAs), has been employed in the clinical treatment of adenocarcinoma non-small cell lung cancer (NSCLC) in China for decades. However, its therapeutic efficacy and specific mechanism in the treatment of squamous NSCLC remains unexplored. In this study, we demonstrate that the co-treatment with ferric ion significantly enhances the cytotoxic effects of kanglaite by inducing ferroptosis in NCL-H1703, a cell line of human lung squamous cell carcinoma. Mechanistic investigations reveal that kanglaite induces mitochondrial dysfunction resulting in reactive oxygen species (ROS) excessive production, which is critical for the induction of ferroptosis. Further analysis shows that kanglaite suppresses the PI3K/AKT signaling pathway, leading to increased IP3 generation. IP3 subsequently binds to and activates IP3R, an endoplasmic reticulum (ER) calcium channel, exacerbating the excessive calcium transfer from the ER to mitochondria. The overloaded mitochondrial calcium contributes to its dysfunction and elevates ROS production. To optimize the synergistic effects of ferric ion and kanglaite, we develop a mesoporous silica-based nanodrug delivery system co-loaded with Kanglaite and Fe3O4, which offers several notable advantages, including reduced drug dosage and a faster therapeutic onset. Finally, in an NCL-H1703 xenograft model, the DMSN/Fe3O4-Kanglaite nanodrug significantly inhibited tumor growth. In conclusion, we identified the function and mechanism of kanglaite in treatment of squamous NSCLC and have developed a DMSN/Fe3O4-Kanglaite nanodrug, providing a superior therapeutic approach for the treatment of squamous NSCLC.
Collapse
Affiliation(s)
- Mei-Ling Jiang
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Li Liu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zilin Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 611731, China
| | - Xue Yang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhiyong Lin
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Runqiu Jiang
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210000, China.
| | - Cun-Jin Zhang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Weiyan Wang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
34
|
He L, Cho S, Blenis J. mTORC1, the maestro of cell metabolism and growth. Genes Dev 2025; 39:109-131. [PMID: 39572234 PMCID: PMC11789495 DOI: 10.1101/gad.352084.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The mechanistic target of rapamycin (mTOR) pathway senses and integrates various environmental and intracellular cues to regulate cell growth and proliferation. As a key conductor of the balance between anabolic and catabolic processes, mTOR complex 1 (mTORC1) orchestrates the symphonic regulation of glycolysis, nucleic acid and lipid metabolism, protein translation and degradation, and gene expression. Dysregulation of the mTOR pathway is linked to numerous human diseases, including cancer, neurodegenerative disorders, obesity, diabetes, and aging. This review provides an in-depth understanding of how nutrients and growth signals are coordinated to influence mTOR signaling and the extensive metabolic rewiring under its command. Additionally, we discuss the use of mTORC1 inhibitors in various aging-associated metabolic diseases and the current and future potential for targeting mTOR in clinical settings. By deciphering the complex landscape of mTORC1 signaling, this review aims to inform novel therapeutic strategies and provide a road map for future research endeavors in this dynamic and rapidly evolving field.
Collapse
Affiliation(s)
- Long He
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Sungyun Cho
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
35
|
Carrillo ND, Chen M, Wen T, Awasthi P, Wolfe TJ, Sterling C, Cryns VL, Anderson RA. Lipid transfer proteins and a PI 4-kinase initiate nuclear phosphoinositide signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.05.08.539894. [PMID: 37214930 PMCID: PMC10197520 DOI: 10.1101/2023.05.08.539894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phosphoinositide (PIP n ) messengers are present in non-membranous regions of nuclei, where they are assembled into a phosphatidylinositol (PI) 3-kinase (PI3K)/Akt pathway that is distinct from the cytosolic membrane-localized pathway. In the nuclear pathway, PI kinases/phosphatases bind the p53 tumor suppressor protein (wild-type and mutant) to generate p53-PIP n complexes that regulate Akt activation. However, this pathway is dependent on poorly characterized nuclear PIP n pools. Here we report that PI transfer proteins (PITPs), which transport PI between membranes to enable membrane-localized PIP n synthesis, accumulate in the nucleoplasm in response to stress and supply nuclear PIP n pools. PITPα/β and the PI 4-kinase PI4KIIα bind p53 and are required to generate p53-PI4P, which is further phosphorylated to synthesize p53-PIP n complexes that regulate nuclear Akt activation and stress-resistance. Remarkably, PITPα/β and PI4KIIα initiate PIP n -linkage to multiple proteins that are detectable by immunoblotting and [ 3 H] myo -inositol metabolic labeling and are resistant to denaturation, suggesting a posttranslational modification. In brief Phosphatidylinositol transfer proteins initiate the nuclear PIP n -linked protein network in membrane-free regions.
Collapse
|
36
|
Clay R, Li K, Jin L. Metabolic Signaling in the Tumor Microenvironment. Cancers (Basel) 2025; 17:155. [PMID: 39796781 PMCID: PMC11719658 DOI: 10.3390/cancers17010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Cancer cells must reprogram their metabolism to sustain rapid growth. This is accomplished in part by switching to aerobic glycolysis, uncoupling glucose from mitochondrial metabolism, and performing anaplerosis via alternative carbon sources to replenish intermediates of the tricarboxylic acid (TCA) cycle and sustain oxidative phosphorylation (OXPHOS). While this metabolic program produces adequate biosynthetic intermediates, reducing agents, ATP, and epigenetic remodeling cofactors necessary to sustain growth, it also produces large amounts of byproducts that can generate a hostile tumor microenvironment (TME) characterized by low pH, redox stress, and poor oxygenation. In recent years, the focus of cancer metabolic research has shifted from the regulation and utilization of cancer cell-intrinsic pathways to studying how the metabolic landscape of the tumor affects the anti-tumor immune response. Recent discoveries point to the role that secreted metabolites within the TME play in crosstalk between tumor cell types to promote tumorigenesis and hinder the anti-tumor immune response. In this review, we will explore how crosstalk between metabolites of cancer cells, immune cells, and stromal cells drives tumorigenesis and what effects the competition for resources and metabolic crosstalk has on immune cell function.
Collapse
Affiliation(s)
| | | | - Lingtao Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (R.C.); (K.L.)
| |
Collapse
|
37
|
Mai RY, Ye JZ, Gao X, Wen T, Li SZ, Zeng C, Cen WJ, Wu GB, Lin Y, Liang R, Luo XL. Up-regulated ITGB4 promotes hepatocellular carcinoma metastasis by activating hypoxia-mediated glycolysis and cancer-associated fibroblasts. Eur J Pharmacol 2025; 986:177102. [PMID: 39603378 DOI: 10.1016/j.ejphar.2024.177102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/10/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
The pre-metastatic niche constructed by cancer-associated fibroblasts (CAFs) plays a key role in the hypoxic tumor microenvironment (TME), promoting hepatocellular carcinoma (HCC) metastasis. Integrin, which is involved in cell-to-cell or cell-to-matrix interactions and TME regulation, affects tumor metastasis. However, the complex interactions between integrin-mediated HCC cells and CAFs remain unclear. Co-culture experiments were used to assess the behaviors of HCC cells and CAFs, demonstrating HCC metastatic traits and CAFs activation in vitro. Transcriptome sequencing analysis and molecular detection identified key genes, with overexpression and knockdown experiments further confirming their roles in HCC progression. Xenograft models validated these findings in vivo. We showed that HCC cells induced the conversion of normal hepatic stellate cells (HSCs) into CAFs and recruit additional CAFs, driven by lactate produced by HCC. Integrin beta 4 (ITGB4) was identified as a key gene in the process. Inhibiting ITGB4 reduced lactate secretion, reversed CAFs activation and recruitment, and decreased HCC metastasis, while overexpressing ITGB4 significantly enhanced these malignant phenotypes. ITGB4 influences glycolysis and HCC metastasis through the AKT/HK2 signaling pathway, and CAFs activation and recruitment through the TGF-β/Smads signaling pathway. Compared to tumors derived from control cells, ITGB4-knockdown tumors showed fewer and smaller intrahepatic metastatic nodules, reduced lactate production and CAFs formation, along with inhibition of AKT/HK2 and TGF-β/Smads signaling pathways. Our findings highlighted the impact of hypoxia on HCC progression, revealing the roles of ITGB4-mediated glycolysis and lactate-induced CAFs in the pre-metastatic niche on HCC metastasis.
Collapse
Affiliation(s)
- Rong-Yun Mai
- Department of Hepatobilliary & Pancreatic Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China; Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Jia-Zhou Ye
- Department of Hepatobilliary & Pancreatic Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Xing Gao
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China; Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Tong Wen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Shi-Zhou Li
- Department of Hepatobilliary & Pancreatic Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China; Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Can Zeng
- Department of Hepatobilliary & Pancreatic Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China; Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Wei-Jie Cen
- Department of Hepatobilliary & Pancreatic Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Guo-Bin Wu
- Department of Hepatobilliary & Pancreatic Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Yan Lin
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China.
| | - Rong Liang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China.
| | - Xiao-Ling Luo
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China.
| |
Collapse
|
38
|
Li-Harms X, Lu J, Fukuda Y, Lynch J, Sheth A, Pareek G, Kaminski MM, Ross HS, Wright CW, Smith AL, Wu H, Wang YD, Valentine M, Neale G, Vogel P, Pounds S, Schuetz JD, Ni M, Kundu M. Somatic mtDNA mutation burden shapes metabolic plasticity in leukemogenesis. SCIENCE ADVANCES 2025; 11:eads8489. [PMID: 39742470 PMCID: PMC11691655 DOI: 10.1126/sciadv.ads8489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025]
Abstract
The role of somatic mitochondrial DNA (mtDNA) mutations in leukemogenesis remains poorly characterized. To determine the impact of somatic mtDNA mutations on this process, we assessed the leukemogenic potential of hematopoietic progenitor cells (HPCs) from mtDNA mutator mice (Polg D257A) with or without NMyc overexpression. We observed a higher incidence of spontaneous leukemogenesis in recipients transplanted with heterozygous Polg HPCs and a lower incidence of NMyc-driven leukemia in those with homozygous Polg HPCs compared to controls. Although mtDNA mutations in heterozygous and homozygous HPCs caused similar baseline impairments in mitochondrial function, only heterozygous HPCs responded to and supported altered metabolic demands associated with NMyc overexpression. Homozygous HPCs showed altered glucose utilization with pyruvate dehydrogenase inhibition due to increased phosphorylation, exacerbated by NMyc overexpression. The impaired growth of NMyc-expressing homozygous HPCs was partially rescued by inhibiting pyruvate dehydrogenase kinase, highlighting a relationship between mtDNA mutation burden and metabolic plasticity in leukemogenesis.
Collapse
Affiliation(s)
- Xiujie Li-Harms
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jingjun Lu
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yu Fukuda
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - John Lynch
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Aditya Sheth
- Department of Pathology, Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Gautam Pareek
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Marcin M. Kaminski
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hailey S. Ross
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Christopher W. Wright
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Amber L. Smith
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Huiyun Wu
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Marc Valentine
- Cytogenetics Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - John D. Schuetz
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Min Ni
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
39
|
Rao J, Wang X, Wan X, Chen C, Xiong X, Xiong A, Yang Z, Chen L, Wang T, Mao L, Jiang C, Zeng J, Zheng Z. Multiomics Approach Identifies Key Proteins and Regulatory Pathways in Colorectal Cancer. J Proteome Res 2025; 24:356-367. [PMID: 39699012 DOI: 10.1021/acs.jproteome.4c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The prevalence rate of colorectal cancer (CRC) has dramatically increased in recent decades. However, robust CRC biomarkers with therapeutic value for early diagnosis are still lacking. To comprehensively reveal the molecular characteristics of CRC development, we employed a multiomics strategy to investigate eight different types of CRC samples. Proteomic analysis revealed 2022 and 599 differentially expressed tissue proteins between CRC and control groups in CRC patients and CRC mice, respectively. In patients with colorectal precancerous lesions, 25 and 34 significantly changed proteins were found between patients and healthy controls in plasma and white blood cells, respectively. Notably, vesicle-associated membrane protein-associated protein A (VAPA) was found to be consistently and significantly decreased in most types of CRC samples, and its level was also significantly correlated with increased overall survival of CRC patients. Furthermore, 37 significantly enriched pathways in CRC were further validated via metabolomics analysis. Ten VAPA-related pathways were found to be significantly enriched in CRC samples, among which PI3K-Akt signaling, central carbon metabolism in cancer, cholesterol metabolism, and ABC transporter pathways were also enriched in the premalignant stage. Our study identified VAPA and its associated pathways as key regulators, suggesting their potential applications in the early diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Jun Rao
- The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Xing Wang
- The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang 330006, Jiangxi Province, China
| | - Xianghui Wan
- The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Chao Chen
- The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Xiaopeng Xiong
- The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Aihua Xiong
- The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Zhiqing Yang
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xian 710000, Shaanxi Province, China
| | - Lanyu Chen
- The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang 330006, Jiangxi Province, China
| | - Ting Wang
- The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang 330006, Jiangxi Province, China
| | - Lihua Mao
- The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang 330006, Jiangxi Province, China
| | - Chunling Jiang
- Department of Radiation Oncology, Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, Nanchang 330029, China
| | - Jiquan Zeng
- The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Zhi Zheng
- The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
40
|
Akaoka M, Yanagaki M, Kubota H, Haruki K, Furukawa K, Taniai T, Onda S, Hamura R, Tsunematsu M, Shirai Y, Matsumoto M, Shimoda M, Ikegami T. ARID4B Promotes the Progression of Hepatocellular Carcinoma Through the PI3K/AKT Pathway. Ann Surg Oncol 2025:10.1245/s10434-024-16790-9. [PMID: 39751985 DOI: 10.1245/s10434-024-16790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND AT-rich interaction domain 4B (ARID4B) is a transcriptional activator that regulates the phosphatidylinositol 3-kinase (PI3K)/AKT pathway in prostate cancer. However, the role of ARID4B in hepatocellular carcinoma (HCC) has remained unclear. METHODS This study included 162 patients who had undergone primary hepatic resection for HCC between 2008 and 2019. Their HCC samples were immunohistochemically stained for ARID4B, and ARID4B score was calculated from the intensity and percentage of staining. We retrospectively investigated the association of ARID4B score with disease-free and overall survival, and primary recurrence patterns of HCC. Furthermore, human HCC cell lines (HuH-1 and HuH-7) were knocked down for ARID4B using small-interfering RNA (siRNA), and the expression of PI3K/AKT proteins, cell proliferation, migration, and invasion ability were assessed. RESULTS In multivariate analyses, negative HBs-antigen (p = 0.02), multiple tumors (p < 0.01), microvascular invasion (p = 0.03), and high ARID4B score (p = 0.01) were independent predictors of disease-free survival, while tumor size >5 cm (p = 0.03), microvascular invasion (p < 0.01), and high ARID4B score (p = 0.04) were independent predictors of overall survival. A high ARID4B score was associated with high serum α-fetoprotein (AFP) level (p = 0.04), poor tumor differentiation (p < 0.01), and microvascular invasion (p < 0.01). ARID4B scores were significantly lower in the no recurrence, intrahepatic recurrence, and extrahepatic recurrence groups, in that order. Knockdown of ARID4B using siRNA in human HCC cell lines significantly suppressed the PI3K/AKT pathway, cell proliferation, migration, and invasion. CONCLUSIONS ARID4B may activate the PI3K/AKT signaling pathway in HCC and may be a prognostic factor after hepatic resection for HCC.
Collapse
Affiliation(s)
- Munetoshi Akaoka
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsuru Yanagaki
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.
| | - Hoshiho Kubota
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Koichiro Haruki
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenei Furukawa
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomohiko Taniai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinji Onda
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryoga Hamura
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Masashi Tsunematsu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshihiro Shirai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Michinori Matsumoto
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Shimoda
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Toru Ikegami
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Díaz-Rullo J, González-Moreno L, Del Arco A, González-Pastor JE. Decoding the general role of tRNA queuosine modification in eukaryotes. Sci Rep 2025; 15:345. [PMID: 39747999 PMCID: PMC11695743 DOI: 10.1038/s41598-024-83451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Transfer RNA (tRNA) contains modified nucleosides essential for modulating protein translation. One of these modifications is queuosine (Q), which affects NAU codons translation rate. For decades, multiple studies have reported a wide variety of species-specific Q-related phenotypes in different eukaryotes, hindering the identification of a general underlying mechanism behind that phenotypic diversity. Here, through bioinformatics analysis of representative eukaryotic genomes we have predicted: i) the genes enriched in NAU codons, whose translation would be affected by tRNA Q-modification (Q-genes); and ii) the specific biological processes of each organism enriched in Q-genes, which generally in eukaryotes would be related to ubiquitination, phosphatidylinositol metabolism, splicing, DNA repair or cell cycle. These bioinformatics results provide evidence to support for the first time in eukaryotes that the wide diversity of phenotypes associated with tRNA Q-modification previously described in various species would directly depend on the control of Q-genes translation, and would allow prediction of unknown Q-dependent processes, such as Akt activation and p53 expression, which we have tested in human cancer cells. Considering the relevance of the Q-related processes, our findings may support further exploration of the role of Q in cancer and other pathologies. Moreover, since eukaryotes must salvage Q from bacteria, we suggest that changes in Q supply by the microbiome would affect the expression of host Q-genes, altering its physiology.
Collapse
Affiliation(s)
- Jorge Díaz-Rullo
- Department of Molecular Evolution, Centro de Astrobiología (CAB), CSIC-INTA, Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain.
- University of Alcalá, Polytechnic School, Ctra. Madrid-Barcelona, Km.33.600, Alcalá de Henares, 28871, Madrid, Spain.
| | - Luis González-Moreno
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa UAM/CSIC, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, 28049, Madrid, Spain
- Área de Bioquímica, Facultad de Ciencias Ambientales y Bioquímica, UCLM, Toledo, Spain
| | - Araceli Del Arco
- Instituto Universitario de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, 28049, Madrid, Spain
- Área de Bioquímica, Facultad de Ciencias Ambientales y Bioquímica, UCLM, Toledo, Spain
| | - José Eduardo González-Pastor
- Department of Molecular Evolution, Centro de Astrobiología (CAB), CSIC-INTA, Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain.
| |
Collapse
|
42
|
Shao X, Zhao X, Wang B, Fan J, Wang J, An H. Tumor microenvironment targeted nano-drug delivery systems for multidrug resistant tumor therapy. Theranostics 2025; 15:1689-1714. [PMID: 39897552 PMCID: PMC11780529 DOI: 10.7150/thno.103636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025] Open
Abstract
In recent years, nano-drug delivery systems (Nano-DDS) that target the tumor microenvironment (TME) to overcome multidrug resistance (MDR) have become a research hotspot in the field of cancer therapy. By precisely targeting the TME and regulating its unique pathological features, such as hypoxia, weakly acidic pH, and abnormally expressed proteins, etc., these Nano-DDS enable effective delivery of therapeutic agents and reversal of MDR. This scientific research community is increasing its investment in the development of diversified systems and exploring their anti-drug resistance potential. Therefore, it is particularly important to conduct a comprehensive review of the research progress of TME-targeted Nano-DDS in recent years. After a brief introduction of TME and tumor MDR, the design principle and structure of liposomes, polymer micelles and inorganic nanocarriers are focused on, and their characteristics as TME-targeted nanocarriers are described. It also demonstrates how these systems break through the cancer MDR treatment through various targeting mechanisms, discusses their synthetic innovation, research results and resistance overcoming mechanisms. The review was concluded with deliberations on the key challenges and future outlooks of targeting TME Nano-DDS in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, PR China
| | - Hailong An
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, PR China
| |
Collapse
|
43
|
Liu J, Li X, Li Y, Gong Q, Luo K. Metformin-based nanomedicines for reprogramming tumor immune microenvironment. Theranostics 2025; 15:993-1016. [PMID: 39776799 PMCID: PMC11700864 DOI: 10.7150/thno.104872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
Immunotherapy has transformed current cancer management, and it has achieved significant progress over last decades. However, an immunosuppressive tumor microenvironment (TME) diminishes the effectiveness of immunotherapy by suppressing the activity of immune cells and facilitating tumor immune-evasion. Adenosine monophosphate-activated protein kinase (AMPK), a key modulator of cellular energy metabolism and homeostasis, has gained growing attention in anti-tumor immunity. Metformin is usually considered as a cornerstone in diabetes management, and its role in activating the AMPK pathway has also been extensively explored in cancer therapy although the findings on its role remain inconsistent. Metformin in a nanomedicine formulation has been found to hold potential in reprogramming the immunosuppressive TME through immunometabolic modulation of both tumor and immune cells. This review elaborates the foundation and progress of immunometabolic reprogramming of the TME via metformin-based nanomedicines, offering valuable insights for the next generation of cancer therapy.
Collapse
Affiliation(s)
- Jieyu Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoling Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinggang Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, NHC Key Laboratory of Transplant Engineering and Immunology, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Xiamen Key Lab of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, NHC Key Laboratory of Transplant Engineering and Immunology, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
44
|
Chen Q, Hao Q, Yang Y, Li L, Li D, Zhao R, Wei W, Deng L, Su J, Liang Z, Tang S, Lu Y, Liang Y, Zhang Z, Zhou X, Xiao X, Li P, Huang Y, Zhao W. Carboxylesterase 4A Inhibits the Malignant Biological Behavior of Nasopharyngeal Carcinoma via the PI3K/AKT Pathway. Technol Cancer Res Treat 2025; 24:15330338251319144. [PMID: 39912257 PMCID: PMC11800256 DOI: 10.1177/15330338251319144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/10/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Carboxylesterase 4A (CES4A) belongs to the member of the carboxylesterase family, yet there has been limited research into its malignant biological behavior in malignant tumors. Here, we aim to investigate the expression, cellular biological functions, and the potential underlying mechanism of CES4A in nasopharyngeal carcinoma (NPC). METHOD A standardized mean difference (SMD) analysis was used to analyze the dysregulation of CES4A based on the gene expression omnibus (GEO) database. qRT-PCR and immunohistochemical staining (IHC) were used to identify the mRNA and protein levels of CES4A in NPC cell lines and tissues, respectively. CCK-8, colony formation, wound healing and transwell assays were utilized to estimate cellular growth and metastasis, respectively. Western blot was conducted to evaluate the activity of PI3K/AKT signaling pathway. RESULT Both mRNA and protein expression of CES4A was significantly diminished both in NPC cell lines and primary tumor tissues. Ectopic expression of CES4A restrains the proliferation, colony formation, migration and invasion of NPC. Additionally, KEGG analysis based on GEO data and high-throughput transcriptome sequencing of cell lines all strongly suggested that CES4A was involved in regulating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. It was observed that AKT and phosphorylated AKT were remarkably reduced in CES4A overexpressing NPC cells, indicating that PI3K/AKT signaling pathway is hindered by CES4A. CONCLUSION CES4A expression is silenced in NPC, functioning as a tumor suppressor by negatively modulating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Qiaoli Chen
- Department of Pathology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China
- Key Laboratory of Oral Infectious Disease Prevention and Control, Health Commission of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Regional Key Laboratory of Early Prevention and Treatment of High Incidence Tumors, Nanning, China
| | - Quanxiang Hao
- Department of Pathology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China
- Key Laboratory of Oral Infectious Disease Prevention and Control, Health Commission of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Regional Key Laboratory of Early Prevention and Treatment of High Incidence Tumors, Nanning, China
| | - Yanping Yang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Limei Li
- Department of Pathology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China
- Key Laboratory of Oral Infectious Disease Prevention and Control, Health Commission of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Danping Li
- Department of Pathology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China
- Key Laboratory of Oral Infectious Disease Prevention and Control, Health Commission of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ran Zhao
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Wanqi Wei
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lixian Deng
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Jiaming Su
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ziyuan Liang
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Shiyue Tang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yaomin Lu
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Yushan Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ping Li
- Department of Pathology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China
- Key Laboratory of Oral Infectious Disease Prevention and Control, Health Commission of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yi Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weilin Zhao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
45
|
Pham TTM, Kim M, Nguyen TQN, Park JH, Kim JI, Seo JH, Kim JY, Ha E. Glycine Decarboxylase Regulates Renal Carcinoma Progression via Interferon Stimulated Gene Factor 3-Mediated Pathway. Int J Biol Sci 2025; 21:772-788. [PMID: 39781465 PMCID: PMC11705630 DOI: 10.7150/ijbs.104458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
Renal cell carcinoma (RCC) is considered as a "metabolic disease" due to various perturbations in metabolic pathways that could drive cancer development. Glycine decarboxylase (GLDC) is a mitochondrial enzyme that takes part in the oxidation of glycine to support nucleotide biosynthesis via transfer of one-carbon units. Herein, we aimed to investigate the potential role of GLDC in RCC development. We found that GLDC depletion diminished nucleotide synthesis and promoted reactive oxygen species (ROS) generation to repress RCC progression, which was reversed by repletion of deoxynucleosides. Additionally, in vitro and in vivo studies revealed that GLDC plays an important role in regulation of proliferation and tumor growth via interferon stimulated gene factor 3 (ISGF3)-mediated pathway. Expressions of interferon regulatory factor 9 (IRF9) and signal transducer and activator of transcription 2 (STAT2) were elevated in GLDC knock-downed cells and decreased in GLDC over-expressed cells. Double knock-down of STAT2 and IRF9 in GLDC-deficient cells rescued GLDC depletion-induced decrease in cell proliferation. Furthermore, GLDC depletion increased cisplatin-and doxorubicin-induced DNA damage through ISGF3 pathway, leading to cell cycle dysregulation and increased mitotic catastrophe. These findings reveal that GLDC regulates RCC progression via ISFG3-mediated pathway and offers a promising strategy for RCC treatment.
Collapse
Affiliation(s)
- Thi Tuyet Mai Pham
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Mikyung Kim
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Thuy Quynh Nhu Nguyen
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Jae-Hyung Park
- Department of Physiology, School of Medicine, Keimyung University, Republic of Korea
| | - Jee In Kim
- Department of Molecular Medicine, School of Medicine, Keimyung University, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Jin Young Kim
- Division of Haematology and Oncology, Department of Internal Medicine, School of Medicine, Keimyung University, Republic of Korea
| | - Eunyoung Ha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
46
|
Hou J, Xing Z, Li A, Wu H, Jin Y, Song Q, Ji S, Zhang Z, Zhang X. Synergistic antitumor effects of Phlorizin and Temozolomide in glioblastoma: Mechanistic insights and molecular targeting. Fitoterapia 2025; 180:106313. [PMID: 39617291 DOI: 10.1016/j.fitote.2024.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 01/01/2025]
Abstract
Glioblastoma (GBM), one of the most aggressive brain cancers, presents significant treatment challenges due to its complex biology and resistance to conventional therapies, necessitating the development of new, low-toxicity, and effective treatments. This study explores the antitumor potential of phlorizin, a naturally occurring dihydrochalcone, as a standalone agent and in combination with temozolomide (TMZ), the standard chemotherapeutic for GBM. Phlorizin was found to significantly inhibit cell viability and migration in vitro, with synergistic effects observed when combined with TMZ. Comprehensive analyses, including protein-protein interaction network construction, enrichment analysis, and molecular docking with AKT1, identified the PI3K/AKT/mTOR signaling pathway as a critical mediator of glioblastoma cell survival and proliferation targeted by phlorizin. Pathway enrichment analysis of 88 intersection targets further highlighted this pathway's role in phlorizin's activity. Western blot validation confirmed that phlorizin inhibits the expression of key proteins within the PI3K/AKT/mTOR pathway, providing a mechanistic basis for its antitumor effects. These findings suggest that phlorizin, particularly in combination with TMZ, holds significant potential as a therapeutic strategy for glioblastoma by targeting molecular pathways critical for cancer cell survival and proliferation.
Collapse
Affiliation(s)
- Junzhi Hou
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, Hebei 063000, PR China; College of Life Science, North China University of Science and Technology, Tangshan, Hebei 063202, PR China
| | - Zhaobin Xing
- College of Life Science, North China University of Science and Technology, Tangshan, Hebei 063202, PR China
| | - Ang Li
- College of Life Science, North China University of Science and Technology, Tangshan, Hebei 063202, PR China
| | - Hongjiao Wu
- College of Life Science, North China University of Science and Technology, Tangshan, Hebei 063202, PR China
| | - Ye Jin
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei 063202, PR China
| | - Qinqin Song
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, Hebei 063000, PR China
| | - Shanshan Ji
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, Hebei 063000, PR China
| | - Zhi Zhang
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, Hebei 063000, PR China.
| | - Xuemei Zhang
- College of Life Science, North China University of Science and Technology, Tangshan, Hebei 063202, PR China; School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063202, PR China.
| |
Collapse
|
47
|
Gu J, Sun H, Shao J, Zhang H, Zhu Z, Ma D, Duan Y. Lysyl oxidase-like 2 promotes the survival, migration, and ferroptosis of endometrial cancer cells by activating the phosphoinositide 3-kinase/protein kinase B pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:72-79. [PMID: 39877633 PMCID: PMC11771328 DOI: 10.22038/ijbms.2024.79933.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/06/2024] [Indexed: 01/31/2025]
Abstract
Objectives LOXL2, known as Lysyl oxidase-like 2, is classified as a lysyl oxidase (LOX) family member. However, its role and mechanism in endometrial cancer (EC) are unknown. Therefore, we aimed to investigate the potential role and mechanism of LOXL2 in EC. Materials and Methods The levels of LOXL2 expression in EC tissues and normal adjacent tissues were evaluated by immunohistochemically (IHC) labeling. Following the dye application, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Transwell methodologies were executed to evaluate the effects of LOXL2 inhibition and up-regulation on the growth, programmed cell death, migration, and susceptibility to iron-dependent cell death of EC. Moreover, protein analysis through Western blotting and gene expression analysis using Real-time quantitative PCR (RT-qPCR) was employed to measure the levels of pertinent biomarkers. Results LOXL2 is highly expressed in both EC tissues and serum in vivo. Silencing LOXL2 reduced EC cell proliferation and migration while increasing apoptosis in vitro. LOXL2 silencing increased the ferroptosis-related proteins Solute Carrier Family 7 Member 11 (SLC7A11) and Ferritin Heavy Chain 1 (FTH1) while decreasing Glutathione Peroxidase 4 (GPX4) (both, P<0.001). Additionally, LOXL2 silencing reduced the p-PI3K and p-Akt protein expression, while LOXL2 overexpression (OE-LOXL2) elevated the p-PI3K and p-Akt protein expression (both, P<0.001). Additionally, LOXL2 silencing increases SLC7A11 and FTH1 while decreasing GPX4 (both P<0.001). LOXL2 overexpression has the opposite effect. However, the LY294002 inhibitor restores SLC7A11 and FTH1 expression while decreasing GPX4 (P<0.001). Conclusion Our research demonstrated that LOXL2 might protect EC via phosphorylation by activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jiashi Gu
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital of Fudan University, Pudong, Shanghai-201399, China
| | - Huanmei Sun
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital of Fudan University, Pudong, Shanghai-201399, China
| | - Juan Shao
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital of Fudan University, Pudong, Shanghai-201399, China
| | - Hu Zhang
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital of Fudan University, Pudong, Shanghai-201399, China
| | - Zhanpeng Zhu
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital of Fudan University, Pudong, Shanghai-201399, China
| | - Dongqin Ma
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital of Fudan University, Pudong, Shanghai-201399, China
| | - Yingchun Duan
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital of Fudan University, Pudong, Shanghai-201399, China
| |
Collapse
|
48
|
Craven GB, Chu H, Sun JD, Carelli JD, Coyne B, Chen H, Chen Y, Ma X, Das S, Kong W, Zajdlik AD, Yang KS, Reisberg SH, Thompson PA, Lipford JR, Taunton J. Mutant-selective AKT inhibition through lysine targeting and neo-zinc chelation. Nature 2025; 637:205-214. [PMID: 39506119 DOI: 10.1038/s41586-024-08176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Somatic alterations in the oncogenic kinase AKT1 have been identified in a broad spectrum of solid tumours. The most common AKT1 alteration replaces Glu17 with Lys (E17K) in the regulatory pleckstrin homology domain1, resulting in constitutive membrane localization and activation of oncogenic signalling. In clinical studies, pan-AKT inhibitors have been found to cause dose-limiting hyperglycaemia2-6, which has motivated the search for mutant-selective inhibitors. We exploited the E17K mutation to design allosteric, lysine-targeted salicylaldehyde inhibitors with selectivity for AKT1 (E17K) over wild-type AKT paralogues, a major challenge given the presence of three conserved lysines near the allosteric site. Crystallographic analysis of the covalent inhibitor complex unexpectedly revealed an adventitious tetrahedral zinc ion that coordinates two proximal cysteines in the kinase activation loop while simultaneously engaging the E17K-imine conjugate. The salicylaldimine complex with AKT1 (E17K), but not that with wild-type AKT1, recruits endogenous Zn2+ in cells, resulting in sustained inhibition. A salicylaldehyde-based inhibitor was efficacious in AKT1 (E17K) tumour xenograft models at doses that did not induce hyperglycaemia. Our study demonstrates the potential to achieve exquisite residence-time-based selectivity for AKT1 (E17K) by targeting the mutant lysine together with Zn2+ chelation by the resulting salicylaldimine adduct.
Collapse
Affiliation(s)
- Gregory B Craven
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Hang Chu
- Terremoto Biosciences, San Francisco, CA, USA
| | | | | | | | - Hao Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Ying Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaolei Ma
- Terremoto Biosciences, San Francisco, CA, USA
| | | | - Wayne Kong
- Terremoto Biosciences, San Francisco, CA, USA
| | | | - Kin S Yang
- Terremoto Biosciences, San Francisco, CA, USA
| | | | | | | | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
49
|
Icard P, Prieto M, Coquerel A, Fournel L, Gligorov J, Noel J, Mouren A, Dohan A, Alifano M, Simula L. Why and how citrate may sensitize malignant tumors to immunotherapy. Drug Resist Updat 2025; 78:101177. [PMID: 39612545 DOI: 10.1016/j.drup.2024.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 11/12/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
Immunotherapy, either alone or in combination with chemotherapy, has demonstrated limited efficacy in a variety of solid cancers. Several factors contribute to explaining primary or secondary resistance. Among them, cancer cells, whose metabolism frequently relies on aerobic glycolysis, promote exhaustion of cytotoxic immune cells by diverting the glucose in the tumor microenvironment (TME) to their own profit, while secreting lactic acid that sustains the oxidative metabolism of immunosuppressive cells. Here, we propose to combine current treatment based on the use of immune checkpoint inhibitors (ICIs) with high doses of sodium citrate (SCT) because citrate inhibits cancer cell metabolism (by targeting both glycolysis and oxidative metabolism) and may active anti-tumor immune response. Indeed, as showed in preclinical studies, SCT reduces cancer cell growth, promoting cell death and chemotherapy effectiveness. Furthermore, since the plasma membrane citrate carrier pmCIC is mainly expressed in cancer cells and low or not expressed in immune and non-transformed cells, we argue that the inhibition of cancer cell metabolism by SCT may increase glucose availability in the TME, thus promoting functionality of anti-tumor immune cells. Concomitantly, the decrease in the amount of lactic acid in the TME may reduce the functionality of immunosuppressive cells. Preclinical studies have shown that SCT can enhance the anti-tumor immune response through an enhancement of T cell infiltration and activation, and a repolarization of macrophages towards a TAM1-like phenotype. Therefore, this simple and cheap strategy may have a major impact to increase the efficacy of current immunotherapies in human solid tumors and we encourage testing it in clinical trials.
Collapse
Affiliation(s)
- Philippe Icard
- INSERM U1086 ANTICIPE, Interdisciplinary Research Unit for Cancers Prevention and Treatment, BioTICLA Laboratory, Université de Caen Normandie, Caen, France; Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France.
| | - Mathilde Prieto
- Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France
| | - Antoine Coquerel
- INSERM U1075, COMETE « Mobilités: Attention, Orientation, Chronobiologie », Université Caen, France
| | - Ludovic Fournel
- Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France; INSERM UMR-S 1007, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris
| | - Joseph Gligorov
- Oncology Department, Tenon Hospital, Pierre et Marie Curie University, Paris
| | - Johanna Noel
- Oncology Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France
| | - Adrien Mouren
- Département d'Innovation Thérapeutique et d´Essais Précoces (DITEP), Institut Gustave Roussy, Villejuif 94805, France
| | - Anthony Dohan
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris 75014, France; Radiology Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, Paris-Descartes University, Paris, France
| | - Luca Simula
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris 75014, France.
| |
Collapse
|
50
|
Sen A, Khan S, Rossetti S, Broege A, MacNeil I, DeLaForest A, Molden J, Davis L, Iversrud C, Seibel M, Kopher R, Schulz S, Laing L. Assessments of prostate cancer cell functions highlight differences between a pan-PI3K/mTOR inhibitor, gedatolisib, and single-node inhibitors of the PI3K/AKT/mTOR pathway. Mol Oncol 2025; 19:225-247. [PMID: 39092562 PMCID: PMC11705819 DOI: 10.1002/1878-0261.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is characterized by loss of androgen receptor (AR) sensitivity and oncogenic activation of the PI3K/AKT/mTOR (PAM) pathway. Loss of the PI3K regulator PTEN is frequent during prostate cancer (PC) initiation, progression, and therapeutic resistance. Co-targeting the PAM/AR pathways is a promising mCRPC treatment strategy but is hampered by reciprocal negative feedback inhibition or feedback relief. Most PAM inhibitors selectively spare (or weakly inhibit) one or more key nodes of the PAM pathway, potentiating drug resistance depending on the PAM pathway mutation status of patients. We posited that gedatolisib, a uniformly potent inhibitor of all class I PI3K isoforms, as well as mTORC1 and mTORC2, would be more effective than inhibitors targeting single PAM pathway nodes in PC cells. Using a combination of functional and metabolic assays, we evaluated a panel of PC cell lines with different PTEN/PIK3CA status for their sensitivity to multi-node PAM inhibitors (PI3K/mTOR: gedatolisib, samotolisib) and single-node PAM inhibitors (PI3Kα: alpelisib; AKT: capivasertib; mTOR: everolimus). Gedatolisib induced anti-proliferative and cytotoxic effects with greater potency and efficacy relative to the other PAM inhibitors, independent of PTEN/PIK3CA status. The superior effects of gedatolisib were likely associated with more effective inhibition of critical PAM-controlled cell functions, including cell cycle, survival, protein synthesis, oxygen consumption rate, and glycolysis. Our results indicate that potent and simultaneous blockade of all class I PI3K isoforms, mTORC1, and mTORC2 could circumvent PTEN-dependent resistance. Gedatolisib, as a single agent and in combination with other therapies, reported promising preliminary efficacy and safety in various solid tumor types. Gedatolisib is currently being evaluated in a Phase 1/2 clinical trial in combination with darolutamide in patients with mCRPC previously treated with an AR inhibitor, and in a Phase 3 clinical trial in combination with palbociclib and fulvestrant in patients with HR+/HER2- advanced breast cancer.
Collapse
|