1
|
Xu Z, Geng Y, Guan L, Niu MM, Xu C, Yang L, Liang S. Discovery of a highly potent, selective, and stable d-amino acid-containing peptide inhibitor of CDK9/cyclin T1 interaction for the treatment of prostate cancer. Eur J Med Chem 2025; 285:117248. [PMID: 39808974 DOI: 10.1016/j.ejmech.2025.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/05/2025] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Cyclin-dependent kinase 9 (CDK9) plays a pivotal role in promoting oncogenic transcriptional pathways, significantly contributing to the development and progression of cancer. Given the unique biostability of d-amino acid, the development of d-amino acid-containing peptides (DAACPs) is a promising strategy for cancer treatment. Currently, no DAACPs inhibitor targeting CDK9-cyclin T1 have been reported. Here, we reported the identification of a novel, highly potent, selective and stable DAACPs inhibitor (peptide-5) targeting CDK9-cyclin T1 interaction. Peptide-5 showed nanomolar inhibitory effect against CDK9-cyclin T1 (IC50 = 4.16 ± 0.11 nM). Molecular dynamics (MD) simulation exhibited that peptide-5 stably bound to CDK9. Peptide-5 showed good inhibitory activity against multiple types of prostate cancer cells and demonstrated good biostability in mouse serum. Moreover, peptide-5 suppresses the tumor growth in DU145 cell-derived xenografts nude mice. These data suggest that peptide-5 is a potent antitumor candidate for further research.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Yifei Geng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Lixia Guan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Cen Xu
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Li Yang
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Sudong Liang
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
2
|
Geboers B, Scheltema MJ, Jung J, Bakker J, Timmer FE, Cerutti X, Katelaris A, Doan P, Gondoputro W, Blazevski A, Agrawal S, Matthews J, Haynes A, Robertson T, Thompson JE, Meijerink MR, Clark SJ, de Gruijl TD, Stricker PD. Irreversible electroporation of localised prostate cancer downregulates immune suppression and induces systemic anti-tumour T-cell activation - IRE-IMMUNO study. BJU Int 2025; 135:319-328. [PMID: 39101639 PMCID: PMC11745989 DOI: 10.1111/bju.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
OBJECTIVES To prospectively compare systemic anti-tumour immune responses induced by irreversible electroporation (IRE) and robot-assisted radical prostatectomy (RARP) in patients with localised intermediate-risk prostate cancer (PCa). PATIENTS AND METHODS Between February 2021 and June 2022, before and after treatment (at 5, 14 and 30 days) peripheral blood samples of 30 patients with localised PCa were prospectively collected. Patient inclusion criteria were: International Society of Urological Pathologists Grade 2-3, clinical cancer stage ≤T2c, prostate-specific antigen level <20 ng/mL). Patients were treated with IRE (n = 20) or RARP (n = 10). Frequency and activation status of lymphocytic and myeloid immune cell subsets were determined using flow cytometry. PCa-specific T-cell responses to prostatic acid phosphatase (PSAP) and cancer testis antigen (New York oesophageal squamous cell carcinoma 1 [NY-ESO-1]) were determined by interferon-γ enzyme-linked immunospot assay (ELISpot). Repeated-measures analysis of variance and two-sided Student's t-tests were used to compare immune responses over time and between treatment cohorts. RESULTS Patient and tumour characteristics were similar between the cohorts except for age (median 68 years [IRE] and 62 years [RARP], P = 0.01). IRE induced depletion of systemic regulatory T cells (P = 0.0001) and a simultaneous increase in activated cytotoxic T-lymphocyte antigen 4 (CTLA-4)+ cluster of differentiation (CD)4+ (P < 0.001) and CD8+ (P = 0.032) T cells, consistent with reduction of systemic immune suppression allowing for effector T-cell activation, peaking 14 days after IRE. Effects were positively correlated with tumour volume/ablation size. Accordingly, IRE induced expansion of PSAP and/or NY-ESO-1 specific T-cell responses in four of the eight immune competent patients. Temporarily increased activated myeloid derived suppressor cell frequencies (P = 0.047) were consistent with transient immunosuppression after RARP. CONCLUSIONS Irreversible electroporation induces a PCa-specific systemic immune response in patients with localised PCa, aiding conversion of the tumour microenvironment into a more immune permissive state. Therapeutic efficacy might be further enhanced by combination with CTLA-4 checkpoint inhibition, potentially opening up a new synergistic treatment paradigm for high-risk localised or (oligo)metastatic disease.
Collapse
|
3
|
Ma S, Yi S, Zou H, Fan S, Xiao Y. The role of PRMT1 in cellular regulation and disease: Insights into biochemical functions and emerging inhibitors for cancer therapy. Eur J Pharm Sci 2025; 204:106958. [PMID: 39521191 DOI: 10.1016/j.ejps.2024.106958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/12/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Protein Arginine Methyltransferase 1 (PRMT1), a primary protein arginine methyltransferase, plays a pivotal role in cellular regulation, influencing processes such as gene expression, signal transduction, and cell differentiation. Dysregulation of PRMT1 has been linked to the development of various cancers, establishing it as a key target for therapeutic intervention. This review synthesizes the biochemical characteristics, structural domains, and functional mechanisms of PRMT1, focusing on its involvement in tumorigenesis. Additionally, the development and efficacy of emerging PRMT1 inhibitors as potential cancer therapies are examined. By employing molecular modeling and insights from existing literature, this review posits that targeting PRMT1's methyltransferase activity could disrupt cancer progression, providing valuable insights for future drug development.
Collapse
Affiliation(s)
- Shiyao Ma
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, PR China
| | - Shanhui Yi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, PR China
| | - Hui Zou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, PR China; Oncology Department, The first-affiliated hospital of Hunan normal university, Hunan Provincial People's Hospital, Changsha 410002, PR China.
| | - Shasha Fan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, PR China; Oncology Department, The first-affiliated hospital of Hunan normal university, Hunan Provincial People's Hospital, Changsha 410002, PR China.
| | - Yin Xiao
- Department of Pharmacy, Haikou People's Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, PR China.
| |
Collapse
|
4
|
Guo W, Zhang X, Li L, Shao P, Liang C, Zhang H, Liu K, Wang S, Peng Y, Luo J, Ju Y, De Marzo AM, Yu C, Chen L, Zhou B, Gao D. JAK/STAT signaling maintains an intermediate cell population during prostate basal cell fate determination. Nat Genet 2024; 56:2776-2789. [PMID: 39537874 DOI: 10.1038/s41588-024-01979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Unipotent basal and luminal stem cells maintain prostate homeostasis, with an intermediate cell population emerging during prostate inflammation or cancer. However, the identities of basal stem cell and intermediate cell population remain unclear. Here we identified a rare intermediate cell population expressing luminal markers (termed Basal-B) with enhanced organoid formation capacity, and a larger basal population (termed Basal-A). Genetic lineage tracing revealed Basal-B cells represented a transient basal stem cell state during prostate homeostasis and androgen-mediated regeneration. Activated JAK/STAT signaling was identified in Basal-B cells, and its inhibition significantly reduced Basal-B markers expression. Inflammation increased Basal-B-to-luminal cell transdifferentiation, but JAK/STAT inhibition notably attenuated this effect. Pten gene deletion increased Nkx3.1-expressing Basal-B-like cell population and led to neoplasia. In humans, h-Basal-B cells were more prevalent in benign prostate hyperplasia. This study reveals the identities of intermediate Basal-B cells and underscores the role of JAK/STAT signaling in prostate cell fate determination.
Collapse
Affiliation(s)
- Wangxin Guo
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiaoyu Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Li
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Shao
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjiong Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kuo Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shuoming Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunyi Peng
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi Ju
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Angelo M De Marzo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chen Yu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Luonan Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences, Hangzhou, China.
| | - Bin Zhou
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences, Hangzhou, China.
| | - Dong Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
5
|
Monteiro AVO, Dos Santos NNDC, da Silva JPR, Brasileiro SA, Botelho JC, Sobreira LER, Leal ALAB, Pereira AL, de Oliveira ACA, Monteiro JRS, da Silva FRP. Genetic variations related to the prostate cancer risk: A field synopsis and revaluation by Bayesian approaches of genome-wide association studies. Urol Oncol 2024:S1078-1439(24)00703-8. [PMID: 39603876 DOI: 10.1016/j.urolonc.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024]
Abstract
Prostate cancer (PCa) is a complex disease influenced by many factors, with the genetic contribution for this neoplasia having a great role in its risk. The literature brings an increased number of Genome-Wide Association Studies (GWAS's) that attempt to elucidate the genetic associations with PCa. However, these genome studies have a considerable rate of false-positive data whose results may be biased. Therefore, we aimed to apply Bayesian approaches on significant associations among polymorphisms and PCa from GWAS's data. A literature search was performed for data published before April 20, 2024, whereby two investigators used a specific combination of keywords and Boolean operators in the search ("prostate carcinoma or prostate cancer or PCa" and "polymorphism or genetic variation" and "Genome-Wide Association Study or GWAS"). The records were retrieved, and the data were extracted with further application of two different Bayesian approaches: The False Positive Report Probability (FPRP) and the Bayesian False-Discovery Probability (BFDP), both at the prior probabilities of 10-3 and 10-6. The data were considered as noteworthy at the level of FPRP <0.2 and BFDP <0.8. Besides, in-silico analyses by gene-gene network and gene enrichment were performed to evaluate the role of the noteworthy genes in PCa. As results, 13 GWAS's were included, with 2,520 values for FPRP and 1,368 values for BFDP being obtained. Our study showed an extensive number of gene variations as noteworthy candidate biomarkers for PCa risk, with highlighting for those occurred in the 8q24 locus and in the MSMB, ITGA6, SUN2, FGF10, INCENP, MLPH, and KLK3 genes.
Collapse
Affiliation(s)
- André Victor Oliveira Monteiro
- Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil; Laboratory of Genetics and Medicine-Based Evidence, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil
| | - Naum Neves da Costa Dos Santos
- Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil; Laboratory of Genetics and Medicine-Based Evidence, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil
| | | | - Samuel Arcebispo Brasileiro
- Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil; Laboratory of Genetics and Medicine-Based Evidence, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil
| | - Juliana Campos Botelho
- Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil
| | | | - Alessandro Luiz Araújo Bentes Leal
- Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil; Laboratory of Genetics and Medicine-Based Evidence, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil
| | - Adenilson Leão Pereira
- Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil; Laboratory of Genetics and Medicine-Based Evidence, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil
| | - Ana Carolina Alves de Oliveira
- Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil; Laboratory of Genetics and Medicine-Based Evidence, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil
| | - José Rogério Souza Monteiro
- Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil; Laboratory of Genetics and Medicine-Based Evidence, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil
| | - Felipe Rodolfo Pereira da Silva
- Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil; Laboratory of Genetics and Medicine-Based Evidence, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil.
| |
Collapse
|
6
|
Morel KL, Germán B, Hamid AA, Nanda JS, Linder S, Bergman AM, van der Poel H, Hofland I, Bekers EM, Trostel SY, Burkhart DL, Wilkinson S, Ku AT, Kim M, Kim J, Ma D, Plummer JT, You S, Su XA, Zwart W, Sowalsky AG, Sweeney CJ, Ellis L. Low tristetraprolin expression activates phenotypic plasticity and primes transition to lethal prostate cancer in mice. J Clin Invest 2024; 135:e175680. [PMID: 39560993 PMCID: PMC11735106 DOI: 10.1172/jci175680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
Phenotypic plasticity is a hallmark of cancer and is increasingly realized as a mechanism of resistance to androgen receptor-targeted (AR-targeted) therapy. Now that many prostate cancer (PCa) patients are treated upfront with AR-targeted agents, it is critical to identify actionable mechanisms that drive phenotypic plasticity, to prevent the emergence of resistance. We showed that loss of tristetraprolin (TTP; gene ZFP36) increased NF-κB activation, and was associated with higher rates of aggressive disease and early recurrence in primary PCa. We also examined the clinical and biological impact of ZFP36 loss with co-loss of PTEN, a known driver of PCa. Analysis of multiple independent primary PCa cohorts demonstrated that PTEN and ZFP36 co-loss was associated with increased recurrence risk. Engineering prostate-specific Zfp36 deletion in vivo induced prostatic intraepithelial neoplasia, and, with Pten codeletion, resulted in rapid progression to castration-resistant adenocarcinoma. Zfp36 loss altered the cell state driven by Pten loss, as demonstrated by enrichment of epithelial-mesenchymal transition (EMT), inflammation, TNF-α/NF-κB, and IL-6-JAK/STAT3 gene sets. Additionally, our work revealed that ZFP36 loss also induced enrichment of multiple gene sets involved in mononuclear cell migration, chemotaxis, and proliferation. Use of the NF-κB inhibitor dimethylaminoparthenolide (DMAPT) induced marked therapeutic responses in tumors with PTEN and ZFP36 co-loss and reversed castration resistance.
Collapse
Affiliation(s)
- Katherine L. Morel
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Beatriz Germán
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Anis A. Hamid
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Jagpreet S. Nanda
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | | | | - Elise M. Bekers
- Division of Pathology; Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Shana Y. Trostel
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Deborah L. Burkhart
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Wilkinson
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Anson T. Ku
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Minhyung Kim
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jina Kim
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Duanduan Ma
- David H. Koch Institute for Integrative Cancer Research, Bioinformatics and Computing Facility of Swanson Biotechnology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jasmine T. Plummer
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Sungyong You
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Division of Urology, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California, USA
| | - Xiaofeng A. Su
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- David H. Koch Institute for Integrative Cancer Research, Bioinformatics and Computing Facility of Swanson Biotechnology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Adam G. Sowalsky
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Christopher J. Sweeney
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Leigh Ellis
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Cai Z, Zhai X, Xu J, Hong T, Yang K, Min S, Du J, Cai Z, Wang Z, Shen M, Wang D, Shen Y. ELAVL1 regulates PD-L1 mRNA stability to disrupt the infiltration of CD4-positive T cells in prostate cancer. Neoplasia 2024; 57:101049. [PMID: 39265220 PMCID: PMC11416606 DOI: 10.1016/j.neo.2024.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
Prostate cancer (PCa) currently ranks second in male tumor mortality. Targeting immune checkpoint in tumor as immunotherapy is a new direction for tumor treatment. However, targeting PD-1/PD-L1 and CTLA4 to treat PCa has poor immunotherapeutic efficacy because PCa is known as a cold tumor. Understanding the mechanism of immunosuppression in PCa can promote the use of immunotherapy to treat PCa. ELAVL1 is highly expressed in many tumors, participates in almost all tumor biological activities and is an oncogene. ELAVL1 is also involved in the development and differentiation of T and B lymphocytes. However, the relationship between ELAVL1 and tumor immunity has not yet been reported. In recent years, ELAVL1 has been shown to regulate downstream targets in an m6A -dependent manner. PD-L1 has been shown to have m6A sites in multiple tumors that are regulated by m6A. In this study, ELAVL1 was highly expressed in PCa, and PCa with high ELAVL1 expression is immunosuppressive. Knocking down ELAVL1 reduced PD-L1 expression in PCa. Moreover, PD-L1 was shown to have an m6A site, and its m6A level was upregulated in PCa. ELAVL1 interacts with PD-L1 mRNA and promotes PD-L1 RNA stability via m6A, ultimately inhibiting the infiltration of CD4-positive T cells. In addition, androgen receptor (AR) was shown to be regulated with ELAVL1, and knocking down AR could also affect the expression of PD-L1. Therefore, ELAVL1 can directly or indirectly regulate the expression of PD-L1, thereby affecting the infiltration of CD4-positive T cells in PCa and ultimately leading to immune suppression.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China; Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiuxia Zhai
- School of Nursing, Peking University, Beijing, China; Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, Beijing, China
| | - Jidong Xu
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Tianyu Hong
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Kuo Yang
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Shasha Min
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Jianuo Du
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Zhikang Cai
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China.
| | - Zhong Wang
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China.
| | - Ming Shen
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.
| | - Di Wang
- Center for bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yanting Shen
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China.
| |
Collapse
|
8
|
He R, Ye Y, Zhu Q, Xie C. Systemic immune-inflammation index is associated with high risk for prostate cancer among the U.S. elderly: Evidence from NHANES 2001-2010. Front Oncol 2024; 14:1441271. [PMID: 39376981 PMCID: PMC11456397 DOI: 10.3389/fonc.2024.1441271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Purpose The Systemic Immuno-Inflammation Index (SII) is a crucial clinical measure of inflammation, and there is currently no solid evidence linking SII to an increased risk of prostate cancer (PCa). Through the analysis of serum total prostate-specific antigen (tPSA), free prostate-specific antigen (fPSA), and the tPSA/fPSA (fPSA%) ratio, this study sought to investigate the relationship between SII and PCa risk among the U.S. elderly. Methods Elderly male participants were gathered from the NHANES database between 2001 and 2010.SII was calculated by platelet count * neutrophil count/lymphocyte count. High risk individuals for prostate cancer were defined as those with tPSA > 4 ng/ml and fPSA% < 16%. Multivariate logistic regression models, restricted cubic spline curves, and subgroup analyses were used to assess the relationship between SII and PCa risk. Results This research comprised 2664 people in total, 137 (5.14%) of whom were deemed to be at high risk of developing PCa. Multivariate logistic regression analysis, after controlling for variables, revealed a significant positive correlation between high PCa risk and an increase in SII (p = 0.009). The RCS suggested a turning point at 9.01. Restricted cubic spline curves revealed a non-linear U-shaped association between SII and high PCa risk (p for nonlinear = 0.028). Education level, marital status, PIR, alcohol status, smoking status, rheumatoid arthritis status, and heart problem were not significantly correlated with this positive connection, according to subgroup analyses and interaction tests. Conclusion The results of this study suggest that inflammation represented by SII is associated with high PCa risk.
Collapse
Affiliation(s)
- Ran He
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Youjun Ye
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qilei Zhu
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Changsheng Xie
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
9
|
Li W, Wang J. The current state of inflammation-related research in prostate cancer: a bibliometric analysis and systematic review. Front Oncol 2024; 14:1432857. [PMID: 39355131 PMCID: PMC11442693 DOI: 10.3389/fonc.2024.1432857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Background Prostate cancer (PCa) is the second most prevalent malignancy among men globally. The diagnosis, treatment, and prognosis of prostate cancer frequently fall short of expectations. In recent years, the connection between inflammation and prostate cancer has attracted considerable attention. However, there is a lack of bibliometric studies analyzing the research on inflammation within the domain of prostate cancer. Research methods We utilized the Web of Science Core Collection (WOSCC) as our data source to extract articles and reviews related to inflammation in prostate cancer, published up until April 12, 2024. The collected data underwent meticulous manual screening, followed by bibliometric analysis and visualization using the Biblioshiny package in R. Results This study encompasses an analysis of 2,786 papers focusing on inflammation-related research within the realm of prostate cancer. Recent years have seen a significant proliferation of publications in this area, with the United States and China being the foremost contributors. The most prolific author in this domain is Demarzoam, with Johns Hopkins University standing out as the most influential institution. The leading journal in disseminating these studies is PROSTATE. Keyword co-occurrence analysis reveals that 'inflammation-related biomarkers', 'inflammation index', and 'tumor immune microenvironment' represent the current research hotspots and frontiers. Conclusion The findings of this bibliometric study serve to illuminate the current landscape of inflammation-related research in the field of prostate cancer, while further augmenting the discourse on inflammation-mediated cancer therapeutics. Of particular note is the potential of these discoveries to facilitate a more nuanced understanding among researchers regarding the interplay between inflammation and prostate cancer.
Collapse
Affiliation(s)
- Weida Li
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jian Wang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
10
|
Libero ML, Montero-Hidalgo AJ, Recinella L, Luque RM, Generali D, Acquaviva A, Orlando G, Ferrante C, Menghini L, Di Simone SC, Nilofar N, Chiavaroli A, Brunetti L, Leone S. The Protective Effects of an Aged Black Garlic Water Extract on the Prostate. Nutrients 2024; 16:3025. [PMID: 39275340 PMCID: PMC11396974 DOI: 10.3390/nu16173025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Chronic inflammation is a recognized risk factor for various cancers, including prostate cancer (PCa). We aim to explore the potential protective effects of aged black garlic extract (ABGE) against inflammation-induced prostate damage and its impact on prostate cancer cell lines. We used an ex vivo model of inflammation induced by Escherichia coli lipopolysaccharide (LPS) on C57BL/6 male mouse prostate specimens to investigate the anti-inflammatory properties of ABGE. The gene expression levels of pro-inflammatory biomarkers (COX-2, NF-κB, and TNF-α, IL-6) were measured. Additionally, we evaluated ABGE's therapeutic effects on the prostate cancer cell lines through in vitro functional assays, including colony formation, tumorsphere formation, migration assays, and phosphorylation arrays to assess the signaling pathways (MAPK, AKT, JAK/STAT, and TGF-β). ABGE demonstrated significant anti-inflammatory and antioxidant effects in preclinical models, partly attributed to its polyphenolic content, notably catechin and gallic acid. In the ex vivo model, ABGE reduced the gene expression levels of COX-2, NF-κB, TNF-α, and IL-6. The in vitro studies showed that ABGE inhibited cell proliferation, colony and tumorsphere formation, and cell migration in the prostate cancer cells, suggesting its potential as a therapeutic agent. ABGE exhibits promising anti-inflammatory and anti-cancer properties, supporting further investigation into ABGE as a potential agent for managing inflammation and prostate cancer.
Collapse
Affiliation(s)
- Maria Loreta Libero
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Cordoba, Spain
| | - Lucia Recinella
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| | - Raúl M Luque
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Cordoba, Spain
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | | | - Giustino Orlando
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| | | | - Nilofar Nilofar
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| | | | - Luigi Brunetti
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| |
Collapse
|
11
|
Wang YR, Feng B, Qi WB, Gong YW, Kong XB, Cheng H, Dong ZL, Tian JQ, Wang ZP. Safety of low-intensity extracorporeal shock wave therapy in prostate disorders: in vitro and in vivo evidence. Asian J Androl 2024; 26:535-543. [PMID: 39107962 PMCID: PMC11449405 DOI: 10.4103/aja202448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/21/2024] [Indexed: 09/03/2024] Open
Abstract
ABSTRACT Recent evidence suggests that low-intensity extracorporeal shock wave therapy (Li-ESWT) is a promising treatment for chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS); however, its safety in pelvic organs, particularly prostate tissues and cells, remains unclear. The current study evaluates the risks of prostate cell damage or oncogenesis following the administration of Li-ESWT for prostatitis. To this end, a robust in vitro model (Cell Counting Kit-8 [CCK-8] assay, clone formation assay, cell scratch assay, lactate dehydrogenase [LDH] release assay, flow cytometry, and immunoblotting assay) was designed to examine the effects of Li-ESWT on cell proliferation, clonogenicity, migration, membrane integrity, and DNA damage. Exome sequencing of Li-ESWT-treated cells was performed to determine the risk of carcinogenesis. Furthermore, an in vivo rat model ( n = 20) was employed to assess the effects of Li-ESWT on cancer biomarkers (carcinoembryonic antigen [CEA], Ki67, proliferating cell nuclear antigen [PCNA], and gamma-H2A histone family member X, phosphorylation of the H2AX Ser-139 [ γ -H2AX]) in prostate tissue. Based on our findings, Li-ESWT promotes cellular growth and motility without inducing significant cell membrane or DNA damage or alterations. Genetic analyses did not demonstrate an increase in mutations, and no damage to prostate tissue or upregulation of cancer biomarkers was detected in vivo. This comprehensive in vitro and in vivo assessment confirms the safety of Li-ESWT in managing prostate disorders.
Collapse
Affiliation(s)
- Yi-Ran Wang
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Bin Feng
- Department of Urology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Wen-Bo Qi
- Department of Radiotherapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yu-Wen Gong
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Xiang-Bin Kong
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Hui Cheng
- Department of Urology, Gansu Provincial Second People’s Hospital, Lanzhou 730000, China
| | - Zhi-Long Dong
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Jun-Qiang Tian
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Ping Wang
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
12
|
McClelland S, Maxwell PJ, Branco C, Barry ST, Eberlein C, LaBonte MJ. Targeting IL-8 and Its Receptors in Prostate Cancer: Inflammation, Stress Response, and Treatment Resistance. Cancers (Basel) 2024; 16:2797. [PMID: 39199570 PMCID: PMC11352248 DOI: 10.3390/cancers16162797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
This review delves into the intricate roles of interleukin-8 (IL-8) and its receptors, CXCR1 and CXCR2, in prostate cancer (PCa), particularly in castration-resistant (CRPC) and metastatic CRPC (mCRPC). This review emphasizes the crucial role of the tumour microenvironment (TME) and inflammatory cytokines in promoting tumour progression and response to tumour cell targeting agents. IL-8, acting through C-X-C chemokine receptor type 1 (CXCR1) and type 2 (CXCR2), modulates multiple signalling pathways, enhancing the angiogenesis, proliferation, and migration of cancer cells. This review highlights the shift in PCa research focus from solely tumour cells to the non-cancer-cell components, including vascular endothelial cells, the extracellular matrix, immune cells, and the dynamic interactions within the TME. The immunosuppressive nature of the PCa TME significantly influences tumour progression and resistance to emerging therapies. Current treatment modalities, including androgen deprivation therapy and chemotherapeutics, encounter persistent resistance and are complicated by prostate cancer's notably "immune-cold" nature, which limits immune system response to the tumour. These challenges underscore the critical need for novel approaches that both overcome resistance and enhance immune engagement within the TME. The therapeutic potential of inhibiting IL-8 signalling is explored, with studies showing enhanced sensitivity of PCa cells to treatments, including radiation and androgen receptor inhibitors. Clinical trials, such as the ACE trial, demonstrate the efficacy of combining CXCR2 inhibitors with existing treatments, offering significant benefits, especially for patients with resistant PCa. This review also addresses the challenges in targeting cytokines and chemokines, noting the complexity of the TME and the need for precision in therapeutic targeting to avoid side effects and optimize outcomes.
Collapse
Affiliation(s)
- Shauna McClelland
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| | - Pamela J. Maxwell
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| | - Cristina Branco
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| | - Simon T. Barry
- Bioscience Early Oncology, AstraZeneca, Cambridge CB2 0AA, UK; (S.T.B.); (C.E.)
| | - Cath Eberlein
- Bioscience Early Oncology, AstraZeneca, Cambridge CB2 0AA, UK; (S.T.B.); (C.E.)
| | - Melissa J. LaBonte
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| |
Collapse
|
13
|
Kang Q, He L, Zhang Y, Zhong Z, Tan W. Immune-inflammatory modulation by natural products derived from edible and medicinal herbs used in Chinese classical prescriptions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155684. [PMID: 38788391 DOI: 10.1016/j.phymed.2024.155684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Edible and medicinal herbs1 (EMHs) refer to a class of substances with dual attribution of food and medicine. These substances are traditionally used as food and also listed in many international pharmacopoeias, including the European Pharmacopoeia, the United States Pharmacopoeia, and the Chinese Pharmacopoeia. Some classical formulas that are widely used in traditional Chinese medicine include a series of EMHs, which have been shown to be effective with obvious characteristics and advantages. Notably, these EMHs and Chinese classical prescriptions2 (CCPs) have also attracted attention in international herbal medicine research because of their low toxicity and high efficiency as well as the rich body of experience for their long-term clinical use. PURPOSE Our purpose is to explore the potential therapeutic effect of EMHs with immune-inflammatory modulation for the study of modern cancer drugs. STUDY DESIGN In the present study, we present a detailed account of some EMHs used in CCPs that have shown considerable research potential in studies exploring modern drugs with immune-inflammatory modulation. METHODS Approximately 500 publications in the past 30 years were collected from PubMed, Web of Science and ScienceDirect using the keywords, such as natural products, edible and medicinal herbs, Chinese medicine, classical prescription, immune-inflammatory, tumor microenvironment and some related synonyms. The active ingredients instead of herbal extracts or botanical mixtures were focused on and the research conducted over the past decade were discussed emphatically and analyzed comprehensively. RESULTS More than ten natural products derived from EMHs used in CCPs are discussed and their immune-inflammatory modulation activities, including enhancing antitumor immunity, regulating inflammatory signaling pathways, lowering the proportion of immunosuppressive cells, inhibiting the secretion of proinflammatory cytokines, immunosuppressive factors, and inflammatory mediators, are summarized. CONCLUSION Our findings demonstrate the immune-inflammatory modulating role of those EMHs used in CCPs and provide new ideas for cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
14
|
Kim M, Tamukong P, Galvan GC, Yang Q, De Hoedt A, Freeman MR, You S, Freedland S. Prostate cancers with distinct transcriptional programs in Black and White men. Genome Med 2024; 16:92. [PMID: 39044302 PMCID: PMC11267822 DOI: 10.1186/s13073-024-01361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Black men are at a higher risk of prostate cancer (PC) diagnosis and present with more high-grade PC than White men in an equal access setting. This study aimed to identify differential transcriptional regulation between Black and White men with PC. METHODS We performed microarray of radical prostatectomy tissue blocks from 305 Black and 238 White men treated at the Durham Veterans Affairs Medical Center. Differential expression, gene set enrichment analysis, master regulator analysis, and network modeling were conducted to compare gene expression by race. Findings were validated using external datasets that are available in the Gene Expression Omnibus (GEO) database. The first was a multi-institutional cohort of 1152 prostate cancer patients (596 Black, 556 White) with microarray data (GEO ID: GSE169038). The second was an Emory cohort of 106 patients (22 Black, 48 White, 36 men of unknown race) with RNA-seq data (GEO ID: GSE54460). Additionally, we analyzed androgen receptor (AR) chromatin binding profiles using paired AR ChIP-Seq datasets from Black and White men (GEO IDs: GSE18440 and GSE18441). RESULTS We identified 871 differentially expressed genes between Black and White men. White men had higher activity of MYC-related pathways, while Black men showed increased activity of inflammation, steroid hormone responses, and cancer progression-related pathways. We further identified the top 10 transcription factors (TFs) in Black patients, which formed a transcriptional regulatory network centered on the AR. The activities of this network and the pathways were significantly different in Black vs. White men across multiple cohorts and PC molecular subtypes. CONCLUSIONS These findings suggest PC in Black and White men have distinct tumor transcriptional profiles. Furthermore, a highly interactive TF network centered on AR drives differential gene expression in Black men. Additional study is needed to understand the degree to which these differences in transcriptional regulatory elements contribute to PC health disparities.
Collapse
Affiliation(s)
- Minhyung Kim
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Patrick Tamukong
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Qian Yang
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Michael R Freeman
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Stephen Freedland
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Veteran Affairs Health Care System, Durham, NC, USA.
| |
Collapse
|
15
|
Ma Q, Lu X, Tian W, Chen Y, He X. Astragaloside Ⅳ mediates the effect and mechanism of KPNB1 on biological behavior and tumor growth in prostate cancer. Heliyon 2024; 10:e33904. [PMID: 39027542 PMCID: PMC11255569 DOI: 10.1016/j.heliyon.2024.e33904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Background and purpose Prostate cancer is an comparatively prevalent clinical malignant tumor in men, impacting the lives of millions of men globally. This study measured the expression of Karyopherin Subunit Beta 1 (KPNB1) in prostate cancer cells, and made an effort to investigate how astragaloside IV affects the biological behavior, tumor growth, and mechanism of action of prostate cancer through KPNB1. Methods Human prostate cancer and normal cells were obtained and KPNB1 expression levels in the two cells were determined using qPCR and WB. Prostate cancer cells were grouped according to the addition of astragaloside IV, KPNB1 inhibitor (importazole) alone and in combination. KPNB1, NF-κB, and cycle-related proteins were detected to be expressed at different levels in each group's cells by WB. MTT to assess the viability of the cells. To identify the cell cycle, use flow cytometry, and sphere formation experiment to observe sphere formation ability. Nude mice were purchased and subcutaneously inoculated with prostate cancer cells to establish a prostate cancer model, and grouped by tail vein injection of astragaloside IV and importazole. Tumor size was measured. KPNB1 and NF-κB expression in tumor tissues were detected by WB. The expression of proteins relevant to the cycle is observed by immunohistochemical methods. TUNEL was used to detect apoptosis of tissue cells. Results KPNB1 expression was upregulated in prostate cancer cells (P < 0.05). KPNB1, NF-κB, and cycle-related protein levels were decreased by astragaloside IV and importazole both separately and together. Decreased viability of the cells and a higher percentage of cell cycle arrest in the G0 phase, apoptosis was increased, and sphere formation was decreased (P < 0.05). In vitro implantation experiments found that the application of astragaloside IV and importazole resulted in tumor growth inhibition, decreased KPNBI, NF-κB, and cyclin expression in tumor tissues, and promoted apoptosis in tumor tissues (P < 0.05). Conclusion Prostate cancer cells' expression of KPNB1 is downregulated by astragaloside IV, which also prevents the cells from proliferating. It offers a conceptual framework for the use of astragaloside IV in the management of prostate cancer.
Collapse
Affiliation(s)
- Quan Ma
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Xiaojun Lu
- Department of Urology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200000, China
| | - Wei Tian
- Department of Urology, Shaoxing Central Hospital, Shaoxing, 312000, Zhejiang, China
| | - Yongliang Chen
- Department of Urology, Shaoxing Central Hospital, Shaoxing, 312000, Zhejiang, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| |
Collapse
|
16
|
Wang Z, Liu H, Zhu Q, Chen J, Zhao J, Zeng H. Analysis of the immune-inflammatory indices for patients with metastatic hormone-sensitive and castration-resistant prostate cancer. BMC Cancer 2024; 24:817. [PMID: 38978000 PMCID: PMC11232225 DOI: 10.1186/s12885-024-12593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Inflammation plays a pivotal role in the progression of prostate cancer (PCa). Several immune-inflammatory indices, including neutrophil to lymphocyte ratio (NLR), derived neutrophil to lymphocyte ratio (dNLR), lymphocyte to monocyte ratio (LMR) and platelet to lymphocyte ratio (PLR), lung immune prognostic index (LIPI), systemic inflammation response index (SIRI) and systemic immune inflammation index (SII), have demonstrated their prognostic values in several solid malignancies. However, Comparisons of superiority with these seven indices' predictive efficacy within metastatic hormone-sensitive PCa (mHSPC) and metastatic castration-resistant PCa (mCRPC) remain uncertain. METHODS We retrospectively included 407 patients diagnosed with mHSPC and 158 patients with mCRPC at West China Hospital from 2005 to 2022. The seven immune-inflammatory indices were computed based on hematological data of mHSPC at initial diagnosis and mCRPC at progression to CRPC. Prognostic value for castration-resistant prostate cancer-free survival (CFS), overall survival (OS), prostate-specific antigen progression-free survival (PSA-PFS) and prostate-specific antigen (PSA) response was assessed using Kaplan-Meier curves, Cox regression models, and chi-square tests. The predictive performance of each immune-inflammatory index was assessed using the area under the curve (AUC) in time-dependent receiver operating characteristic curve (ROC) analysis and C-index calculation. RESULTS All seven immune-inflammatory indices were significantly associated with CFS and OS in the mHSPC cohort, as well as with PSA response, PSA-PFS, and OS in the mCRPC cohort. In the mHSPC cohort, LIPI consistently exhibited higher AUC values compared to NLR, dNLR, LMR, PLR, SII, and SIRI for predicting CFS and OS. This indicates that LIPI had a superior discriminative ability compared to the other indices (C-index of LIPI: 0.643 and 0.686 for CFS and OS, respectively). Notably, the predictive advantage of LIPI over other indices in the mHSPC stage diminished in the mCRPC stage. CONCLUSIONS This study firstly confirmed the prognostic value of SII, SIRI and LIPI in mHSPC and mCRPC, and revealed that LIPI had a higher predictive power than NLR, dNLR, LMR, PLR, SII and SIRI in mHSPC. These non-invasive indices can enable clinicians to quickly assess the prognosis of patients.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Alley, No. 37, Chengdu, Sichuan, 610041, People's Republic of China
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610031, People's Republic of China
| | - Haoyang Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Alley, No. 37, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qiyu Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Alley, No. 37, Chengdu, Sichuan, 610041, People's Republic of China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Alley, No. 37, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jinge Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Alley, No. 37, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Alley, No. 37, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
17
|
Shahi A, Kidane D. Starving cancer cells to enhances DNA damage and immunotherapy response. Oncotarget 2024; 15:392-399. [PMID: 38900609 PMCID: PMC11197973 DOI: 10.18632/oncotarget.28595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
Prostate cancer (PCa) poses significant challenges in treatment, particularly when it progresses to a metastatic, castrate-resistant state. Conventional therapies, including chemotherapy, radiotherapy, and hormonal treatments, often fail due to toxicities, off-target effects, and acquired resistance. This research perspective defines an alternative therapeutic strategy focusing on the metabolic vulnerabilities of PCa cells, specifically their reliance on non-essential amino acids such as cysteine. Using an engineered enzyme cyst(e)inase to deplete the cysteine/cystine can induce oxidative stress and DNA damage in cancer cells. This depletion elevates reactive oxygen species (ROS) levels, disrupts glutathione synthesis, and enhances DNA damage, leading to cancer cell death. The combinatorial use of cyst(e)inase with agents targeting antioxidant defenses, such as thioredoxins, further amplifies ROS accumulation and cytotoxicity in PCa cells. Overall, in this perspective provides a compressive overview of the previous work on manipulating amino acid metabolism and redox balance modulate the efficacy of DNA repair-targeted and immune checkpoint blockade therapies in prostate cancer.
Collapse
Affiliation(s)
- Aashirwad Shahi
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Dawit Kidane
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
18
|
Yu W, Srivastava R, Srivastava S, Ma Y, Shankar S, Srivastava RK. Oncogenic Role of SATB2 In Vitro: Regulator of Pluripotency, Self-Renewal, and Epithelial-Mesenchymal Transition in Prostate Cancer. Cells 2024; 13:962. [PMID: 38891096 PMCID: PMC11171950 DOI: 10.3390/cells13110962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Special AT-rich sequence binding protein-2 (SATB2) is a nuclear matrix protein that binds to nuclear attachment regions and is involved in chromatin remodeling and transcription regulation. In stem cells, it regulates the expression of genes required for maintaining pluripotency and self-renewal and epithelial-mesenchymal transition (EMT). In this study, we examined the oncogenic role of SATB2 in prostate cancer and assessed whether overexpression of SATB2 in human normal prostate epithelial cells (PrECs) induces properties of cancer stem cells (CSCs). The results demonstrate that SATB2 is highly expressed in prostate cancer cell lines and CSCs, but not in PrECs. Overexpression of SATB2 in PrECs induces cellular transformation which was evident by the formation of colonies in soft agar and spheroids in suspension. Overexpression of SATB2 in PrECs also resulted in induction of stem cell markers (CD44 and CD133), pluripotency-maintaining transcription factors (cMYC, OCT4, SOX2, KLF4, and NANOG), CADHERIN switch, and EMT-related transcription factors. Chromatin immunoprecipitation assay demonstrated that SATB2 can directly bind to promoters of BCL-2, BSP, NANOG, MYC, XIAP, KLF4, and HOXA2, suggesting SATB2 is capable of directly regulating pluripotency/self-renewal, cell survival, and proliferation. Since prostate CSCs play a crucial role in cancer initiation, progression, and metastasis, we also examined the effects of SATB2 knockdown on stemness. SATB2 knockdown in prostate CSCs inhibited spheroid formation, cell viability, colony formation, cell motility, migration, and invasion compared to their scrambled control groups. SATB2 knockdown in CSCs also upregulated the expression of E-CADHERIN and inhibited the expression of N-CADHERIN, SNAIL, SLUG, and ZEB1. The expression of SATB2 was significantly higher in prostate adenocarcinoma compared to normal tissues. Overall, our data suggest that SATB2 acts as an oncogenic factor where it is capable of inducing malignant changes in PrECs by inducing CSC characteristics.
Collapse
Affiliation(s)
- Wei Yu
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
| | - Rashmi Srivastava
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | | | - Yiming Ma
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
| | - Sharmila Shankar
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care System, 2400 Canal Street, New Orleans, LA 70119, USA
| | - Rakesh K. Srivastava
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
- GLAX LLC, 3500 S Dupont Highway, Dover, DE 19901, USA
| |
Collapse
|
19
|
Kulac I, Roudier MP, Haffner MC. Molecular Pathology of Prostate Cancer. Clin Lab Med 2024; 44:161-180. [PMID: 38821639 DOI: 10.1016/j.cll.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Molecular profiling studies have shed new light on the complex biology of prostate cancer. Genomic studies have highlighted that structural rearrangements are among the most common recurrent alterations. In addition, both germline and somatic mutations in DNA repair genes are enriched in patients with advanced disease. Primary prostate cancer has long been known to be multifocal, but recent studies demonstrate that a large fraction of prostate cancer shows evidence of multiclonality, suggesting that genetically distinct, independently arising tumor clones coexist. Metastatic prostate cancer shows a high level of morphologic and molecular diversity, which is associated with resistance to systemic therapies. The resulting high level of intratumoral heterogeneity has important implications for diagnosis and poses major challenges for the implementation of molecular studies. Here we provide a concise review of the molecular pathology of prostate cancer, highlight clinically relevant alterations, and discuss opportunities for molecular testing.
Collapse
Affiliation(s)
- Ibrahim Kulac
- Department of Pathology, Koç University School of Medicine, Davutpasa Caddesi No:4, Istanbul 34010, Turkey
| | - Martine P Roudier
- Department of Urology, University of Washington, Northeast Pacific Street, Seattle, WA 98195, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, WA 98109, USA; Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, WA 98109, USA; Department of Pathology, University of Washington, Seattle, WA, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Wang JM, Zhang FH, Liu ZX, Tang YJ, Li JF, Xie LP. Cancer on motors: How kinesins drive prostate cancer progression? Biochem Pharmacol 2024; 224:116229. [PMID: 38643904 DOI: 10.1016/j.bcp.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Prostate cancer causes numerous male deaths annually. Although great progress has been made in the diagnosis and treatment of prostate cancer during the past several decades, much about this disease remains unknown, especially its pathobiology. The kinesin superfamily is a pivotal group of motor proteins, that contains a microtubule-based motor domain and features an adenosine triphosphatase activity and motility characteristics. Large-scale sequencing analyses based on clinical samples and animal models have shown that several members of the kinesin family are dysregulated in prostate cancer. Abnormal expression of kinesins could be linked to uncontrolled cell growth, inhibited apoptosis and increased metastasis ability. Additionally, kinesins may be implicated in chemotherapy resistance and escape immunologic cytotoxicity, which creates a barrier to cancer treatment. Here we cover the recent advances in understanding how kinesins may drive prostate cancer progression and how targeting their function may be a therapeutic strategy. A better understanding of kinesins in prostate cancer tumorigenesis may be pivotal for improving disease outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Jia-Ming Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Feng-Hao Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zi-Xiang Liu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Yi-Jie Tang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jiang-Feng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Li-Ping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
21
|
Deng X, Sun S, Yao W, Yue P, Guo F, Wang Y, Zhang Y. The association between three prevalent autoimmune disorders and the likelihood of developing prostate cancer: a Mendelian randomization study. Sci Rep 2024; 14:11755. [PMID: 38783043 PMCID: PMC11116512 DOI: 10.1038/s41598-024-62716-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Numerous studies establish a significant correlation between autoimmune disorders (AIDs) and prostate cancer (PCa). Our Mendelian randomization (MR) analysis investigates the potential connection between rheumatoid arthritis (RA) and PCa, aiming to confirm causal links between systemic lupus erythematosus (SLE), hyperthyroidism, and PCa. Summary statistics from genome-wide association studies provided data on PCa and three AIDs. MR analysis, using IVW as the main approach, assessed causal relationships, validated by sensitivity analysis. IVW revealed a correlation between genetically anticipated RA and PCa, notably in Europeans (OR = 1.03; 95% CI 1.01-1.04, p = 2*10-5). Evidence supported a lower PCa risk in individuals with SLE (OR = 0.94; 95% CI 0.91-0.97, p = 2*10-4) and hyperthyroidism (OR = 0.02; 95% CI 0.001-0.2, p = 2*10-3). Weighted mode and median confirmed these findings. No pleiotropic effects were observed, and MR heterogeneity tests indicated dataset homogeneity. Our study establishes a causal link between RA, SLE, hyperthyroidism, and PCa.
Collapse
Affiliation(s)
- Xiaoqian Deng
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shiwei Sun
- Department of Urology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Wei Yao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Peng Yue
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Fuyu Guo
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yangang Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
22
|
Lopez-Bujanda ZA, Hadavi SH, Ruiz De Porras V, Martínez-Balibrea E, Dallos MC. Chemotactic signaling pathways in prostate cancer: Implications in the tumor microenvironment and as potential therapeutic targets. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:162-205. [PMID: 39260936 DOI: 10.1016/bs.ircmb.2024.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Prostate cancer (PCa) stands as a significant global health concern, ranking among the leading causes of cancer deaths in men. While there are several treatment modalities for localized PCa, metastatic castration-resistant PCa (mCRPC) remains incurable. Despite therapeutic advancements showing promise in mCRPC, their impact on overall survival has been limited. This chapter explores the process by which tumors form, reviews our current understanding of PCa progression to mCRPC, and addresses the challenges of boosting anti-tumor immune responses in these tumors. It specifically discusses how chemotactic signaling affects the tumor microenvironment and its role in immune evasion and cancer progression. The chapter further examines the rationale of directly or indirectly targeting these pathways as adjuvant therapies for mCRPC, highlighting recent pre-clinical and clinical studies currently underway. The discussion emphasizes the potential of targeting specific chemokines and chemokine receptors as combination therapies with mainstream treatments for PCa and mCRPC to maximize long-term survival for this deadly disease.
Collapse
Affiliation(s)
- Zoila A Lopez-Bujanda
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, United States.
| | - Shawn H Hadavi
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Vicenç Ruiz De Porras
- Badalona Applied Research Group of Oncology (B-ARGO), Catalan Institute of Oncology, Badalona, BCN, Spain; CARE program, Germans Trias i Pujol Research Institute (IGTP), Badalona, BCN, Spain
| | - Eva Martínez-Balibrea
- CARE program, Germans Trias i Pujol Research Institute (IGTP), Badalona, BCN, Spain; ProCURE Program, Catalan Institute of Oncology, Badalona, BCN, Spain
| | - Matthew C Dallos
- Memorial Solid Tumor Group, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
23
|
Wu CY, Yang YH, Lin YS, Shu LH, Liu HT, Lu CK, Wu YH, Wu YH. The effect and mechanism of astragalus polysaccharides on T cells and macrophages in inhibiting prostate cancer. Biomed J 2024; 48:100741. [PMID: 38677490 PMCID: PMC11773229 DOI: 10.1016/j.bj.2024.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND The impact and underlying mechanisms of astragalus polysaccharide (APS) on prostate cancer, particularly its role in immunomodulation, remain inadequately elucidated. METHODS This study employed the XTT assay for assessing proliferation in prostate cancer cells and macrophages. T cell proliferation was determined using the Carboxyfluorescein diacetate succinimidyl ester labeling assay. APS's effect on T cells and macrophages was scrutinized via flow cytometry, Western blot analysis, ELISA, quantitative PCR and cytokine membrane arrays. The effect of APS on interaction between PD-L1 and PD-1 was investigated by the PD-L1/PD-1 homogeneous assay. Additionally, the impact of conditioned medium from T cells and macrophages on PC-3 cell migration was explored through migration assays. RESULTS It was observed that APS at concentrations of 1 and 5 mg/mL enhanced the proliferation of CD8+ T cells. At a concentration of 5 mg/mL, APS activated both CD4+ and CD8+ T cells, attenuated PD-L1 expression in prostate cancer cells stimulated with interferon gamma (IFN-γ) or oxaliplatin, and moderately decreased the population of PD-1+ CD4+ and PD-1+ CD8+ T cells. Furthermore, APS at this concentration impeded the interaction between PD-L1 and PD-1, inhibited the promotion of prostate cancer migration mediated by RAW 264.7 cells, THP-1 cells, CD4+ T cells, and CD8+ T cells, and initiated apoptosis in prostate cancer cells treated with conditioned medium from APS (5 mg/mL)-treated CD8+ T cells, RAW 264.7 cells, or THP-1 cells. CONCLUSION The findings indicate a potential role of 5 mg/mL APS in modulating the PD-1/PD-L1 pathway and influencing the immune response, encompassing T cells and macrophages. Consequently, further in vivo research is recommended to assess the efficacy of APS.
Collapse
Affiliation(s)
- Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan; School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Yao-Hsu Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan; School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Li-Hsin Shu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hung-Te Liu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chung-Kuang Lu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Huei Wu
- Department of Biomedical Sciences, Chang Gung University, TaoYuan, Taiwan
| | - Yu-Heng Wu
- Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
24
|
You X, Qiu J, Li Q, Zhang Q, Sheng W, Cao Y, Fu W. Astragaloside IV-PESV inhibits prostate cancer tumor growth by restoring gut microbiota and microbial metabolic homeostasis via the AGE-RAGE pathway. BMC Cancer 2024; 24:472. [PMID: 38622523 PMCID: PMC11017490 DOI: 10.1186/s12885-024-12167-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is becoming the most common malignancy in men worldwide. We investigated the effect of astragaloside IV combined with PESV on the gut microbiota and metabolite of PCa mice and the process of treating PCa. METHODS Nude mice were genetically modified to develop tumors characteristic of PCa. The treatment of PCa mice involved the administration of a combination of astragaloside IV and peptides derived from scorpion venom (PESV). Feces were collected for both 16 S rDNA and metabolic analysis. Fecal supernatant was extracted and used for fecal transplantation in PCa mice. Tumor development was observed in both PCa mice and nude mice. Tumor histopathology was examined, and the expression of inflammatory factors and the AGE-RAGE axis in PCa tissues were analyzed. RESULTS PCa mice treated with Astragaloside IV in combination with PESV showed a significant reduction in tumor volume and weight, and stabilization of gut microbiota and metabolites. At the Genus level, significant differences were observed in Porphyromonas, Corynebacterium, Arthromitus and Blautia, and the differential metabolites were PA16_016_0, Astragaloside+, Vitamin A acid, Nardosinone, a-Nortestoster, D-Pantethine, Hypoxanthine, Pregnenolone, cinnamic acid, Pyridoxa, Cirtruline and Xanthurenate. There was a correlation between gut microbiota and metabolites. After the fecal transplantation, tumor growth was effectively suppressed in the PCa mice. Notably, both the mRNA and protein levels of the receptor for advanced glycation end products (RAGE) were significantly decreased. Furthermore, the expression of inflammatory factors, namely NF-κB, TNF-α, and IL-6, in the tumor tissues was significantly attenuated. Conversely, upregulation of RAGE led to increased inflammation and reversed tumor growth in the mice. CONCLUSION Astragaloside IV combined with PESV could treat PCa by intervening in gut microbiota composition and metabolite by targeting RAGE.
Collapse
Affiliation(s)
- Xujun You
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, 518101, Shenzhen, China
| | - Junfeng Qiu
- Department of Andrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, 518033, Shenzhen, China
| | - Qixin Li
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, 518101, Shenzhen, China
| | - Qing Zhang
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, 518101, Shenzhen, China
| | - Wen Sheng
- School of Rehabilitation Medicine and Health Care, Hunan University of Medicine, 418000, Huaihua, China
- School of Traditional Chinese Medicine, Hunan University of Medicine, 418000, Huaihua, China
| | - Yiguo Cao
- Department of Urology Surgery, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, 518101, Shenzhen, China.
| | - Wei Fu
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, 518101, Shenzhen, China.
| |
Collapse
|
25
|
Kang JW, He JP, Liu YN, Zhang Y, Song SS, Xu QX, Wei SW, Lu L, Meng XQ, Xu L, Guo B, Su RW. Aberrant activated Notch1 promotes prostate enlargement driven by androgen signaling via disrupting mitochondrial function in mouse. Cell Mol Life Sci 2024; 81:155. [PMID: 38538986 PMCID: PMC10973062 DOI: 10.1007/s00018-024-05143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 04/02/2024]
Abstract
The prostate is a vital accessory gonad in the mammalian male reproductive system. With the ever-increasing proportion of the population over 60 years of age worldwide, the incidence of prostate diseases, such as benign prostatic hyperplasia (BPH) and prostate cancer (PCa), is on the rise and is gradually becoming a significant medical problem globally. The notch signaling pathway is essential in regulating prostate early development. However, the potential regulatory mechanism of Notch signaling in prostatic enlargement and hyperplasia remains unclear. In this study, we proved that overactivation of Notch1 signaling in mouse prostatic epithelial cells (OEx) led to prostatic enlargement via enhancing proliferation and inhibiting apoptosis of prostatic epithelial cells. Further study showed that N1ICD/RBPJ directly up-regulated the androgen receptor (AR) and enhanced prostatic sensitivity to androgens. Hyper-proliferation was not found in orchidectomized OEx mice without androgen supply but was observed after Dihydrotestosterone (DHT) supplementation. Our data showed that the number of mitochondrion in prostatic epithelial cells of OEx mice was increased, but the mitochondrial function was impaired, and the essential activity of the mitochondrial respiratory electron transport chain was significantly weakened. Disordered mitochondrial number and metabolic function further resulted in excessive accumulation of reactive oxygen species (ROS). Importantly, anti-oxidant N-Acetyl-L-Cysteine (NAC) therapy could alleviate prostatic hyperplasia caused by the over-activation of Notch1 signaling. Furthermore, we observed the incremental Notch signaling activity in progenitor-like club cells in the scRNA-seq data set of human BPH patients. Moreover, the increased number of TROP2+ progenitors and Club cells was also confirmed in our OEx mice. In conclusion, our study revealed that over-activated Notch1 signaling induces prostatic enlargement by increasing androgen receptor sensitivity, disrupting cellular mitochondrial metabolism, increasing ROS, and a higher number of progenitor cells, all of which can be effectively rescued by NAC treatment.
Collapse
Affiliation(s)
- Jin-Wen Kang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Jia-Peng He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Ying-Nan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yu Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shan-Shan Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Qi-Xin Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shu-Wen Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Lei Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Xiang-Qi Meng
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Lin Xu
- College of Sports and Human Science, Harbin Sport University, Harbin, PR China.
| | - Bin Guo
- College of Veterinary Medicine, Jilin University, Changchun, PR China.
| | - Ren-Wei Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China.
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, PR China.
| |
Collapse
|
26
|
Sadasivan SM, Loveless IM, Chen Y, Gupta NS, Sanii R, Bobbitt KR, Chitale DA, Williamson SR, Rundle AG, Rybicki BA. Patterns of B-cell lymphocyte expression changes in pre- and post-malignant prostate tissue are associated with prostate cancer progression. Cancer Med 2024; 13:e7118. [PMID: 38523528 PMCID: PMC10961600 DOI: 10.1002/cam4.7118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 03/26/2024] Open
Abstract
BACKROUND Inflammation characterized by the presence of T and B cells is often observed in prostate cancer, but it is unclear how T- and B-cell levels change during carcinogenesis and whether such changes influence disease progression. METHODS The study used a retrospective sample of 73 prostate cancer cases (45 whites and 28 African Americans) that underwent surgery as their primary treatment and had a benign prostate biopsy at least 1 year before diagnosis. CD3+, CD4+, and CD20+ lymphocytes were quantified by immunohistochemistry in paired pre- and post-diagnostic benign prostate biopsy and tumor surgical specimens, respectively. Clusters of similar trends of expression across two different timepoints and three distinct prostate regions-benign biopsy glands (BBG), tumor-adjacent benign glands (TAG), and malignant tumor glandular (MTG) regions-were identified using Time-series Anytime Density Peaks Clustering (TADPole). A Cox proportional hazards model was used to estimate the hazard ratio (HR) of time to biochemical recurrence associated with region-specific lymphocyte counts and regional trends. RESULTS The risk of biochemical recurrence was significantly reduced in men with an elevated CD20+ count in TAG (HR = 0.81, p = 0.01) after adjusting for covariates. Four distinct patterns of expression change across the BBG-TAG-MTG regions were identified for each marker. For CD20+, men with low expression in BBG and higher expression in TAG compared to MTG had an adjusted HR of 3.06 (p = 0.03) compared to the reference group that had nominal differences in CD20+ expression across all three regions. The two CD3+ expression patterns that featured lower CD3+ expression in the BBG compared to the TAG and MTG regions had elevated HRs ranging from 3.03 to 4.82 but did not reach statistical significance. CONCLUSIONS Longitudinal and spatial expression patterns of both CD3+ and CD20+ suggest that increased expression in benign glands during prostate carcinogenesis is associated with an aggressive disease course.
Collapse
Affiliation(s)
- Sudha M. Sadasivan
- Department of Public Health SciencesHenry Ford HospitalHenry Ford Health + Michigan State University Health SciencesDetroitMichiganUSA
| | - Ian M. Loveless
- Department of Public Health SciencesHenry Ford HospitalHenry Ford Health + Michigan State University Health SciencesDetroitMichiganUSA
| | - Yalei Chen
- Department of Public Health SciencesHenry Ford HospitalHenry Ford Health + Michigan State University Health SciencesDetroitMichiganUSA
| | - Nilesh S. Gupta
- Department of PathologyHenry Ford HospitalDetroitMichiganUSA
| | - Ryan Sanii
- Department of Public Health SciencesHenry Ford HospitalHenry Ford Health + Michigan State University Health SciencesDetroitMichiganUSA
| | - Kevin R. Bobbitt
- Department of Public Health SciencesHenry Ford HospitalHenry Ford Health + Michigan State University Health SciencesDetroitMichiganUSA
| | | | | | - Andrew G. Rundle
- Department of Epidemiology, Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| | - Benjamin A. Rybicki
- Department of Public Health SciencesHenry Ford HospitalHenry Ford Health + Michigan State University Health SciencesDetroitMichiganUSA
| |
Collapse
|
27
|
Alaimo A, Genovesi S, Annesi N, De Felice D, Subedi S, Macchia A, La Manna F, Ciani Y, Vannuccini F, Mugoni V, Notarangelo M, Libergoli M, Broso F, Taulli R, Ala U, Savino A, Cortese M, Mirzaaghaei S, Poli V, Bonapace IM, Papotti MG, Molinaro L, Doglioni C, Caffo O, Anesi A, Nagler M, Bertalot G, Carbone FG, Barbareschi M, Basso U, Dassi E, Pizzato M, Romanel A, Demichelis F, Kruithof-de Julio M, Lunardi A. Sterile inflammation via TRPM8 RNA-dependent TLR3-NF-kB/IRF3 activation promotes antitumor immunity in prostate cancer. EMBO J 2024; 43:780-805. [PMID: 38316991 PMCID: PMC10907604 DOI: 10.1038/s44318-024-00040-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Inflammation is a common condition of prostate tissue, whose impact on carcinogenesis is highly debated. Microbial colonization is a well-documented cause of a small percentage of prostatitis cases, but it remains unclear what underlies the majority of sterile inflammation reported. Here, androgen- independent fluctuations of PSA expression in prostate cells have lead us to identify a prominent function of the Transient Receptor Potential Cation Channel Subfamily M Member 8 (TRPM8) gene in sterile inflammation. Prostate cells secret TRPM8 RNA into extracellular vesicles (EVs), which primes TLR3/NF-kB-mediated inflammatory signaling after EV endocytosis by epithelial cancer cells. Furthermore, prostate cancer xenografts expressing a translation-defective form of TRPM8 RNA contain less collagen type I in the extracellular matrix, significantly more infiltrating NK cells, and larger necrotic areas as compared to control xenografts. These findings imply sustained, androgen-independent expression of TRPM8 constitutes as a promoter of anticancer innate immunity, which may constitute a clinically relevant condition affecting prostate cancer prognosis.
Collapse
Affiliation(s)
- Alessandro Alaimo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Sacha Genovesi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Nicole Annesi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Dario De Felice
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Saurav Subedi
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Alice Macchia
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Federico La Manna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Yari Ciani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Federico Vannuccini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Vera Mugoni
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michela Notarangelo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michela Libergoli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Francesca Broso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Torino, Torino, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - Aurora Savino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Martina Cortese
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Somayeh Mirzaaghaei
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center (MBC) "Guido Tarone", University of Torino, Torino, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center (MBC) "Guido Tarone", University of Torino, Torino, Italy
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA, Italy
| | - Mauro Giulio Papotti
- Department of Pathology, University of Torino and AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Luca Molinaro
- Department of Pathology, University of Torino and AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Claudio Doglioni
- Division of Pathology, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS Vita Salute, San Raffaele University, Milano, Italy
| | - Orazio Caffo
- Medical Oncology Department, Santa Chiara Hospital-APSS, Trento, Italy
| | - Adriano Anesi
- Operative Unit of Clinical Pathology, Santa Chiara Hospital-APSS, Trento, Italy
| | - Michael Nagler
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Giovanni Bertalot
- Operative Unit of Anatomy Pathology, Santa Chiara Hospital-APSS, Trento, Italy
- Centre for Medical Sciences-CISMed, University of Trento, Trento, Italy
| | | | - Mattia Barbareschi
- Operative Unit of Anatomy Pathology, Santa Chiara Hospital-APSS, Trento, Italy
- Centre for Medical Sciences-CISMed, University of Trento, Trento, Italy
| | - Umberto Basso
- Oncology 1 Unit, Department of Oncology, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy
| | - Erik Dassi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Massimo Pizzato
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrea Lunardi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| |
Collapse
|
28
|
Li D, Zhou X, Xu W, Cai Y, Mu C, Zhao X, Tang T, Liang C, Yang T, Zheng J, Wei L, Ma B. High-fat diet promotes prostate cancer metastasis via RPS27. Cancer Metab 2024; 12:6. [PMID: 38365771 PMCID: PMC10870677 DOI: 10.1186/s40170-024-00333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Metastasis is the leading cause of death among prostate cancer (PCa) patients. Obesity is associated with both PCa-specific and all-cause mortality. High-fat diet (HFD) is a risk factor contributing to obesity. However, the association of HFD with PCa metastasis and its underlying mechanisms are unclear. METHODS Tumor xenografts were conducted by intrasplenic injections. The ability of migration or invasion was detected by transwell assay. The expression levels of RPS27 were detected by QRT-PCR and western blot. RESULTS The present study verified the increase in PCa metastasis caused by HFD in mice. Bioinformatics analysis demonstrated increased RPS27 in the experimentally induced PCa in HFD mice, indicating that it is an unfavorable prognostic factor. Intrasplenic injections were used to demonstrate that RPS27 overexpression promotes, while RPS27 knockdown significantly reduces, PCa liver metastasis. Moreover, RPS27 inhibition suppresses the effects of HFD on PCa metastasis. Further mRNA sequencing analysis revealed that RPS27 promotes PCa metastasis by selectively enhancing the expression of various genes. CONCLUSION Our findings indicate that HFD increases the risk of PCa metastasis by elevating RPS27 expression and, subsequently, the expression of genes involved in PRAD progression. Therefore, RPS27 may serve as a novel target for the diagnosis and treatment of metastatic PCa.
Collapse
Affiliation(s)
- Dameng Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xueying Zhou
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Wenxian Xu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yongxin Cai
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Chenglong Mu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xinchun Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Tingting Tang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Chen Liang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Tao Yang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Liang Wei
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Bo Ma
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
29
|
Brassetti A, Tedesco F, Cacciatore L, Prata F, Ragusa A, Iannuzzi A, Lombardo R, Tema G, Cicione A, Tubaro A, Simone G, DE Nunzio C. Statins may increase the risk of being diagnosed with prostate cancer. Minerva Urol Nephrol 2024; 76:74-80. [PMID: 37795695 DOI: 10.23736/s2724-6051.23.05454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
BACKGROUND Although statins are known to protect against cardiovascular accidents, their anti-inflammatory features could play a role in preventing tumorigenesis. We investigated the association between statin intake and prostate cancer (PCa) diagnosis and aggressiveness. METHODS A retrospective analysis was performed. Our dataset on patients undergone systematic prostate biopsy from December 2008 to December 2022 was searched for histopathologic and clinical data. Prognostic Grade Group ≥3 tumors were defined as high-grade (HG). The association between Metabolic Syndrome (MetS), statin use and PCa diagnosis and HG disease was assessed using logistic regression analyses. RESULTS Data on 1685 patients were collected; MetS affected 344 (20.4%) men and 138 (36.5%) were taking statins at least for 6 months at the time of biopsy. Among the 671 (39.8%) men diagnosed with PCa, 327 (48.7%) presented with a HG disease. Tumor incidence was higher among men taking statins, compared to controls (46.8% vs. 37.8%; P=0.002); also, high grade diseases were more common in the former group, but the difference did not reach statistical significance (49.1% vs. 48.6%; P=0.89). Statin intake (OR 1.44; 95% CI [1.05-1.98]; P=0.02) independently predicted PCa diagnosis but not high-grade disease (P=0.8). CONCLUSIONS Statin use may be associated with an increased risk of PCa diagnosis.
Collapse
Affiliation(s)
- Aldo Brassetti
- Department of Urology, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Francesco Tedesco
- Department of Urology, Fondazione Policlinico Universitario Campus Bio-Medico of Rome, Rome, Italy -
| | - Loris Cacciatore
- Department of Urology, Fondazione Policlinico Universitario Campus Bio-Medico of Rome, Rome, Italy
| | - Francesco Prata
- Department of Urology, Fondazione Policlinico Universitario Campus Bio-Medico of Rome, Rome, Italy
| | - Alberto Ragusa
- Department of Urology, Fondazione Policlinico Universitario Campus Bio-Medico of Rome, Rome, Italy
| | - Andrea Iannuzzi
- Department of Urology, Fondazione Policlinico Universitario Campus Bio-Medico of Rome, Rome, Italy
| | - Riccardo Lombardo
- Department of Urology, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Giorgia Tema
- Department of Urology, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Antonio Cicione
- Department of Urology, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Andrea Tubaro
- Department of Urology, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Giuseppe Simone
- Department of Urology, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Cosimo DE Nunzio
- Department of Urology, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| |
Collapse
|
30
|
Li W, Lv R, Wang W. Rheumatoid arthritis was causally related to an increased risk of prostate cancer. Int J Rheum Dis 2024; 27:e15054. [PMID: 38389394 DOI: 10.1111/1756-185x.15054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Affiliation(s)
- Wenjie Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruxue Lv
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Chen X, Li Y, Li G, Zhang X, Xie G, Huang Y, Yin H. Clinical significance of serum high sensitive C-reactive protein/albumin ratio in primary prostate biopsy. Front Oncol 2024; 14:1325524. [PMID: 38384810 PMCID: PMC10880019 DOI: 10.3389/fonc.2024.1325524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024] Open
Abstract
Objective The purpose of this study was to investigate the clinical significance of serum high sensitive C-reactive protein/albumin ratio in primary prostate biopsy. Methods Retrospective analysis was done on the clinical data of 1679 patients who had their first transrectal or perineal prostate biopsy at our situation from 2010 to 2018. Prostate cancer (PCa) and benign prostatic hyperplasia (BPH) were the pathologic diagnoses in 819 and 860 cases, respectively. A comparison was made between the HAR differences between PCa and BPH patients as well as the positive prostate biopsy rate differences between groups with increased and normal HAR. The results of the prostate biopsy were examined using logistic regression, and a model for predicting prostate cancer was created. The receiver characteristic curve (ROC) was used to determine the model's prediction effectiveness. The clinical models integrated into HAR were evaluated for their potential to increase classification efficacy using net reclassification improvement (NRI) and integrated discrimination improvement (IDI). According to the Gleason score (GS) categorization system, prostate cancer patients were separated into low, middle, and high GS groups. The differences in HAR between the various groups were then compared. The prevalence of high GSPCa and metastatic PCa in normal populations and the prevalence of higher HAR in prostate cancer patients were compared using the chi-square test. Result Patients with PCa had a median HAR (upper quartile to lower quartile) of 0.0379 (10-3), patients with BPH had a median HAR (0.0137 (10-3)), and the difference was statistically significant (p<0.05). Patients with increased HAR and the normal group, respectively, had positive prostate biopsy rates of 52% (435/839)and 46% (384/840), and the difference was statistically significant (p<0.05). Logistic regression analysis showed that HAR (OR=3.391, 95%CI 2.082 ~ 4.977, P < 0.05), PSA density (PSAD) (OR=7.248, 95%CI 5.005 ~ 10.495, P < 0.05) and age (OR=1.076, 95%CI 1.056 ~ 1.096, P < 0.05) was an independent predictor of prostate biopsy results. Two prediction models are built: a clinical model based on age and PSAD, and a prediction model that adds HAR to the clinical model. The two models' ROC had area under the curves (AUC) of 0.814 (95%CI 0.78-0.83) and 0.815 (95%CI 0.79-0.84), respectively. When compared to a single blood total PSA (tPSA) with an AUC of 0.746 (95%CI 0.718-0.774), they were all superior. Nevertheless, there was no statistically significant difference (p<0.05) between the two models. We assessed the prediction model integrated into HAR's capacity to increase classification efficiency using NRI and IDI, and we discovered that NRI>0, IDI>0, and the difference was statistically significant (P>0.05).There was a statistically significant difference in HAR between various GS groups for individuals who had prostate cancer as a consequence of biopsy (p<0.05). The incidence of high GS and metastatic patients was statistically significantly greater (p<0.05) in the HAR elevated group (90.1%and 39.3%, respectively) than in the HAR normal group (84.4% and 12.0%). Conclusion Prostate biopsy results that were positive were impacted by HAR, an independent factor that increased with the rate of PCa discovery. Patients with elevated HAR had a greater risk of high GS as well as metastatic PCa among those with recently diagnosed prostate cancer through prostate biopsy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huming Yin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
32
|
Ye Y, Zhong W, Luo R, Wen H, Ma Z, Qi S, Han X, Nie W, Chang D, Xu R, Ye N, Gao F, Zhang P. Thermosensitive hydrogel with emodin-loaded triple-targeted nanoparticles for a rectal drug delivery system in the treatment of chronic non-bacterial prostatitis. J Nanobiotechnology 2024; 22:33. [PMID: 38238760 PMCID: PMC10795337 DOI: 10.1186/s12951-023-02282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND The complex etiology and pathogenesis underlying Chronic Non-Bacterial Prostatitis (CNP), coupled with the existence of a Blood Prostate Barrier (BPB), contribute to a lack of specificity and poor penetration of most drugs. Emodin (EMO), a potential natural compound for CNP treatment, exhibits commendable anti-inflammatory, anti-oxidant, and anti-fibrosis properties but suffers from the same problems as other drugs. METHODS By exploiting the recognition properties of lactoferrin (LF) receptors that target intestinal epithelial cells (NCM-460) and prostate epithelial cells (RWPE-1), a pathway is established for the transrectal absorption of EMO to effectively reach the prostate. Additionally, hyaluronic acid (HA) is employed, recognizing CD44 receptors which target macrophages within the inflamed prostate. This interaction facilitates the intraprostatic delivery of EMO, leading to its pronounced anti-inflammatory effects. A thermosensitive hydrogel (CS-Gel) prepared from chitosan (CS) and β-glycerophosphate disodium salt (β-GP) was used for rectal drug delivery with strong adhesion to achieve effective drug retention and sustained slow release. Thus, we developed a triple-targeted nanoparticle (NPs)/thermosensitive hydrogel (Gel) rectal drug delivery system. In this process, LF, with its positive charge, was utilized to load EMO through dialysis, producing LF@EMO-NPs. Subsequently, HA was employed to encapsulate EMO-loaded LF nanoparticles via electrostatic adsorption, yielding HA/LF@EMO-NPs. Finally, HA/LF@EMO-NPs lyophilized powder was added to CS-Gel (HA/LF@EMO-NPs Gel). RESULTS Cellular assays indicated that NCM-460 and RWPE-1 cells showed high uptake of both LF@EMO-NPs and HA/LF@EMO-NPs, while Raw 264.7 cells exhibited substantial uptake of HA/LF@EMO-NPs. For LPS-induced Raw 264.7 cells, HA/LF@EMO-NPs can reduce the inflammatory responses by modulating TLR4/NF-κB signaling pathways. Tissue imaging corroborated the capacity of HA/LF-modified formulations to breach the BPB, accumulating within the gland's lumen. Animal experiments showed that rectal administration of HA/LF@EMO-NPs Gel significantly reduced inflammatory cytokine expression, oxidative stress levels and fibrosis in the CNP rats, in addition to exerting anti-inflammatory effects by inhibiting the NF-κB signaling pathway without obvious toxicity. CONCLUSION This triple-targeted NPs/Gel rectal delivery system with slow-release anti-inflammatory, anti-oxidant, and anti-fibrosis properties shows great potential for the effective treatment of CNP.
Collapse
Affiliation(s)
- Yan Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wenzhen Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Hongzhi Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Ziyang Ma
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Shanshan Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xiaoqin Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Wenbiao Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Degui Chang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Peihai Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
33
|
Ambrosini G, Cordani M, Zarrabi A, Alcon-Rodriguez S, Sainz RM, Velasco G, Gonzalez-Menendez P, Dando I. Transcending frontiers in prostate cancer: the role of oncometabolites on epigenetic regulation, CSCs, and tumor microenvironment to identify new therapeutic strategies. Cell Commun Signal 2024; 22:36. [PMID: 38216942 PMCID: PMC10790277 DOI: 10.1186/s12964-023-01462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024] Open
Abstract
Prostate cancer, as one of the most prevalent malignancies in males, exhibits an approximate 5-year survival rate of 95% in advanced stages. A myriad of molecular events and mutations, including the accumulation of oncometabolites, underpin the genesis and progression of this cancer type. Despite growing research demonstrating the pivotal role of oncometabolites in supporting various cancers, including prostate cancer, the root causes of their accumulation, especially in the absence of enzymatic mutations, remain elusive. Consequently, identifying a tangible therapeutic target poses a formidable challenge. In this review, we aim to delve deeper into the implications of oncometabolite accumulation in prostate cancer. We center our focus on the consequential epigenetic alterations and impacts on cancer stem cells, with the ultimate goal of outlining novel therapeutic strategies.
Collapse
Affiliation(s)
- Giulia Ambrosini
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul, 34396, Turkey
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Sergio Alcon-Rodriguez
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Rosa M Sainz
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain
| | - Pedro Gonzalez-Menendez
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, 33006, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain.
| | - Ilaria Dando
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy.
| |
Collapse
|
34
|
Kiś J, Góralczyk M, Sikora D, Stępień E, Drop B, Polz-Dacewicz M. Can the Epstein-Barr Virus Play a Role in the Development of Prostate Cancer? Cancers (Basel) 2024; 16:328. [PMID: 38254816 PMCID: PMC10814141 DOI: 10.3390/cancers16020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer (PCa) is the fourth most frequently diagnosed cancer worldwide, accounting for 7.3% of all cancers. PCa mortality is the fifth most common cause of cancer death. Despite well-known factors influencing the development of PCa, such as age, race/ethnicity and family history, many researchers have raised the possibility of persistent infections with oncogenic viruses. Therefore, we aimed to assess the frequency of Epstein-Barr virus (EBV) DNA in tissue collected from PCa patients. Next, the frequency and the level of Epstein-Barr virus capsid antigen (EBVCA) and Epstein-Barr nuclear antigen 1 (EBNA1) antibodies in both IgA and IgG classes were measured. The antibody titer was also analyzed depending on the risk group, Gleason score (GS) and tumor, node, metastasis (TNM) classification. Serum samples were analyzed using the Microblot-Array EBV IgM, IgA and IgG test kits. The study group consisted of 115 patients diagnosed and histopathologically confirmed with PCa. In 49% of patients included in the study, EBV DNA was detected in the tumor tissue. The studies showed both higher seroprevalence and higher antibody titers in patients with EBV-positive PCa compared to patients with EBV-negative PCa. We also observed a dependence of antibody titer on pathological features, such as GS, risk group and T stage.
Collapse
Affiliation(s)
- Jacek Kiś
- 1st Clinical Military Hospital with Outpatient Clinic in Lublin, 20-049 Lublin, Poland;
| | - Magdalena Góralczyk
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (D.S.); (E.S.); (M.P.-D.)
| | - Dominika Sikora
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (D.S.); (E.S.); (M.P.-D.)
| | - Ewa Stępień
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (D.S.); (E.S.); (M.P.-D.)
| | - Bartłomiej Drop
- Department of Medical Informatics and Statistics with e-Health Lab, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Małgorzata Polz-Dacewicz
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (D.S.); (E.S.); (M.P.-D.)
| |
Collapse
|
35
|
Pakula H, Omar M, Carelli R, Pederzoli F, Fanelli GN, Pannellini T, Socciarelli F, Van Emmenis L, Rodrigues S, Fidalgo-Ribeiro C, Nuzzo PV, Brady NJ, Dinalankara W, Jere M, Valencia I, Saladino C, Stone J, Unkenholz C, Garner R, Alexanderani MK, Khani F, de Almeida FN, Abate-Shen C, Greenblatt MB, Rickman DS, Barbieri CE, Robinson BD, Marchionni L, Loda M. Distinct mesenchymal cell states mediate prostate cancer progression. Nat Commun 2024; 15:363. [PMID: 38191471 PMCID: PMC10774315 DOI: 10.1038/s41467-023-44210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
In the complex tumor microenvironment (TME), mesenchymal cells are key players, yet their specific roles in prostate cancer (PCa) progression remain to be fully deciphered. This study employs single-cell RNA sequencing to delineate molecular changes in tumor stroma that influence PCa progression and metastasis. Analyzing mesenchymal cells from four genetically engineered mouse models (GEMMs) and correlating these findings with human tumors, we identify eight stromal cell populations with distinct transcriptional identities consistent across both species. Notably, stromal signatures in advanced mouse disease reflect those in human bone metastases, highlighting periostin's role in invasion and differentiation. From these insights, we derive a gene signature that predicts metastatic progression in localized disease beyond traditional Gleason scores. Our results illuminate the critical influence of stromal dynamics on PCa progression, suggesting new prognostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Hubert Pakula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
| | - Ryan Carelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Filippo Pederzoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Laboratory Medicine, Pisa University Hospital, Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, 56126, Italy
| | - Tania Pannellini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Fabio Socciarelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Lucie Van Emmenis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Silvia Rodrigues
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Caroline Fidalgo-Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Pier Vitale Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nicholas J Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Wikum Dinalankara
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Madhavi Jere
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Itzel Valencia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Christopher Saladino
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jason Stone
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Caitlin Unkenholz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Richard Garner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mohammad K Alexanderani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francisca Nunes de Almeida
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Cory Abate-Shen
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Christopher E Barbieri
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA.
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA.
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, UK.
| |
Collapse
|
36
|
Li S, Kang Y, Zeng Y. Targeting tumor and bone microenvironment: Novel therapeutic opportunities for castration-resistant prostate cancer patients with bone metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189033. [PMID: 38040267 DOI: 10.1016/j.bbcan.2023.189033] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/22/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Despite standard hormonal therapy that targets the androgen receptor (AR) attenuates prostate cancer (PCa) effectively in the initial stage, the tumor ultimately converts to castration-resistant prostate cancer (CRPC), and the acquired resistance is still a great challenge for the management of advanced prostate cancer patients. The tumor microenvironment (TME) consists of multiple cellular and noncellular agents is well known as a vital role during the development and progression of CRPC by establishing communication between TME and tumor cells. Additionally, as primary prostate cancer progresses towards metastasis, and CRPC always experiences bone metastasis, the TME is conducive to the spread of tumors to the distant sits, particularly in bone. In addition, the bone microenvironment (BME) is also closely related to the survival, growth and colonization of metastatic tumor cells. The present review summarized the recent studies which mainly focused on the role of TME or BME in the CRPC patients with bone metastasis, and discussed the underlying mechanisms, as well as the potential therapeutic values of targeting TME and BME in the management of metastatic CRPC patients.
Collapse
Affiliation(s)
- Shenglong Li
- Second ward of Bone and Soft Tissue Tumor Surgery,Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China; The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, China
| | - Yue Kang
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yu Zeng
- Department of Urology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.
| |
Collapse
|
37
|
Rajgopal S, Nakano K, Cook LM. Beyond the horizon: Neutrophils leading the way in the evolution of immunotherapy. Cancer Med 2023; 12:21885-21904. [PMID: 38062888 PMCID: PMC10757139 DOI: 10.1002/cam4.6761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/31/2023] Open
Abstract
Cancer is a complex and dynamic disease, initiated by a multitude of intrinsic mutations and progressed with the assistance of the tissue microenvironment, encompassed by stromal cells including immune cell infiltration. The novel finding that tumors can evade anti-cancer immune functions shaped the field of immunotherapy, which has been a revolutionary approach for the treatment of cancers. However, the development of predominantly T cell-targeted immunotherapy approaches, such as immune checkpoint inhibition, also brought about an accumulation of evidence demonstrating other immune cell drivers of tumor progression, such as innate immune cells and notably, neutrophils. In the past decade, neutrophils have emerged to be primary mediators of multiple cancer types and even in recent years, are gaining attention for their potential use in the next generation of immunotherapies. Here, we review current immunotherapy strategies and thoroughly discuss the roles of neutrophils in cancer and novel neutrophil-targeted methods for treating cancer.
Collapse
Affiliation(s)
- Sanjana Rajgopal
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Genetics, Cell Biology, and AnatomyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Kosuke Nakano
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Leah M. Cook
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterOmahaNebraskaUSA
| |
Collapse
|
38
|
Pernigoni N, Guo C, Gallagher L, Yuan W, Colucci M, Troiani M, Liu L, Maraccani L, Guccini I, Migliorini D, de Bono J, Alimonti A. The potential role of the microbiota in prostate cancer pathogenesis and treatment. Nat Rev Urol 2023; 20:706-718. [PMID: 37491512 DOI: 10.1038/s41585-023-00795-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/27/2023]
Abstract
The human body hosts a complex and dynamic population of trillions of microorganisms - the microbiota - which influences the body in homeostasis and disease, including cancer. Several epidemiological studies have associated specific urinary and gut microbial species with increased risk of prostate cancer; however, causal mechanistic data remain elusive. Studies have associated bacterial generation of genotoxins with the occurrence of TMPRSS2-ERG gene fusions, a common, early oncogenic event during prostate carcinogenesis. A subsequent study demonstrated the role of the gut microbiota in prostate cancer endocrine resistance, which occurs, at least partially, through the generation of androgenic steroids fuelling oncogenic signalling via the androgen receptor. These studies present mechanistic evidence of how the host microbiota might be implicated in prostate carcinogenesis and tumour progression. Importantly, these findings also reveal potential avenues for the detection and treatment of prostate cancer through the profiling and modulation of the host microbiota. The latter could involve approaches such as the use of faecal microbiota transplantation, prebiotics, probiotics, postbiotics or antibiotics, which can be used independently or combined with existing treatments to reverse therapeutic resistance and improve clinical outcomes in patients with prostate cancer.
Collapse
Affiliation(s)
- Nicolò Pernigoni
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Christina Guo
- Institute of Cancer Research, London, UK
- Royal Marsden Hospital, London, UK
| | | | - Wei Yuan
- Institute of Cancer Research, London, UK
| | - Manuel Colucci
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Martina Troiani
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Lei Liu
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Luisa Maraccani
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Ilaria Guccini
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Denis Migliorini
- Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Lausanne and Geneva, Geneva, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Johann de Bono
- Institute of Cancer Research, London, UK
- Royal Marsden Hospital, London, UK
| | - Andrea Alimonti
- Institute of Oncology Research, Bellinzona, Switzerland.
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.
- Veneto Institute of Molecular Medicine, Padova, Italy.
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland.
- Department of Medicine, University of Padova, Padova, Italy.
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
39
|
Xie Q, Hu B. Effects of gut microbiota on prostatic cancer: a two-sample Mendelian randomization study. Front Microbiol 2023; 14:1250369. [PMID: 38029073 PMCID: PMC10659115 DOI: 10.3389/fmicb.2023.1250369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
Aim Recent observational and small-sample case-control studies have shown a relationship between gut microbiota composition and prostatic cancer (PCa). Nevertheless, the causal association between gut microbiota and PCa is still unclear. Herein, we used the Mendelian randomization (MR) method to explore the potential causal relationship between gut microbiota and PCa. Methods In this two-sample MR study, data were extracted from the summary statistics of gut microbiota from the largest available genome-wide association study meta-analysis conducted by the MiBioGen consortium (n = 14,306) and the Dutch Microbiome Project (n = 8,208). Summary statistics for PCa were obtained from the FinnGen consortium release data (n = 95,213). Inverse variance weighted (IVW), MR-Egger, strength test (F), and MR-PRESSO were used to examine the potential causal association between gut microbiota and PCa. Cochran's Q statistics were used to quantify the heterogeneity of instrumental variables. Results IVW estimates suggested that the relative abundance of Akkermansia muciniphila (odds ratio [OR] = 0.7926, 95% confidence interval [CI]: 0.6655-0.9440) and Bacteroides salyersiae (OR = 0.9023, 95% CI: 0.8262-0.9853) were negatively associated with the odds of PCa, while that of Eubacterium biforme (OR = 1.1629, 95% CI: 1.0110-1.3376) was positively associated with the odds of PCa. In addition, we explored these relationships among patients without other cancers and similarly found that the relative abundance of Akkermansia muciniphila, Bacteroides salyersiae, and Eubacterium biforme were linked to PCa (all P < 0.05). Conclusion Gut microbiota potentially influenced the occurrence of PCa. Our findings may provide some new ideas for researching the methods of PCa prevention. In addition, further studies are needed to explore the causal association and specific underlying mechanisms between gut microbiota and PCa.
Collapse
Affiliation(s)
| | - Bin Hu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
40
|
Ma S, Xia W, Wu B, Sun C, Jiang Y, Liu H, Lowe S, Zhou Z, Xie P, Gao J, Feng L, Guo X, Qu G, Sun Y. Effect of aspirin on incidence, recurrence, and mortality in prostate cancer patients: integrating evidence from randomized controlled trials and real-world studies. Eur J Clin Pharmacol 2023; 79:1475-1503. [PMID: 37648741 DOI: 10.1007/s00228-023-03556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE Aspirin has been suggested to reduce the risk of cancer. However, previous studies have been inconsistent regarding the relationship between aspirin use and the risk of occurrence of prostate cancer (PCa). The purpose of this study was to assess the effect of aspirin on clinical outcomes in patients with PCa in a meta-analysis and to explore the possible dose-response relationship. METHODS A systematic literature search was conducted in 10 electronic databases and 4 registries. The combined relative risks (RRs) were calculated using a random-effects model with 95% confidence interval (CIs) to assess the effect of aspirin on the risk of PCa. Relevant subgroup analyses and sensitivity analyses were performed. RESULTS The across studies results show that aspirin use associated with lower incidence of PCa (RR: 0.96, 95% CI: 0.95-0.98), and reduced mortality (RR: 0.88, 95% CI: 0.82-0.95). The results of the subgroup analysis indicated that both cohort and population studies in the Americas showed a reduction in PCa incidence and mortality with aspirin use. A linear correlation was observed between dosage/duration of aspirin use and its protective effect. Additionally, post-diagnosis aspirin use was associated with decreased risk of PCa mortality. CONCLUSIONS This meta-analysis revealed an independent correlation between the use of aspirin and reductions in both the incidence and mortality rates of PCa. However, randomized controlled trials did not find any association between aspirin use and PCa. Furthermore, the impact of aspirin on PCa occurrence was found to be dependent on both dosage and duration.
Collapse
Affiliation(s)
- Shaodi Ma
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Weihang Xia
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Birong Wu
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chenyu Sun
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230032, Anhui, China
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Yuemeng Jiang
- Department of Infectious Diseases, the First Affiliated Hospital of Anhui Medical University North District, No. 100 Huaihai Avenue, Hefei, 230032, Anhui, China
| | - Haixia Liu
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Peng Xie
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Gao
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Linya Feng
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guangbo Qu
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Chaohu Hospital, Anhui Medical University, No. 64 Chaohubei Road, Hefei, 238000, Anhui, China.
- Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
41
|
Zhu W, Huang J, Wu J, Wu C, Ye F, Li X, Lai W. Inflammation-related signature for prognostic prediction, tumor immune, genomic heterogeneity, and drug choices in prostate cancer: Integrated analysis of bulk and single-cell RNA-sequencing. Heliyon 2023; 9:e21174. [PMID: 37920511 PMCID: PMC10618505 DOI: 10.1016/j.heliyon.2023.e21174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/10/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Background Prostate cancer (PCa) ranks as the second most prevalent malignancy among males on a global scale. Accumulating evidence suggests that inflammation has an intricate relationship with tumorigenesis, tumor progression and tumor immune microenvironment. However, the overall impact of inflammation-related genes on the clinical prognosis and tumor immunity in PCa remains unclear. Methods Machine learning methods were utilized to construct and validate a signature using The Cancer Genome Atlas (TCGA) for training, while the Memorial Sloan Kettering Cancer Center (MSKCC) and GSE70769 cohorts for independent validation. The efficacy of the signature in predicting outcomes and its clinical utility were assessed through a series of investigations encompassing in vitro experiments, survival analysis, and nomogram development. The association between the signature and precision medicine was explored via tumor immunity, genomic heterogeneity, therapeutic response, and molecular docking analyses, using bulk and single-cell RNA-sequencing data. Results We identified 7 inflammation-related genes with prognostic significance and developed an inflammation-related prognostic signature (IRPS) with 6 genes. Furthermore, we demonstrated that both the IRPS and a nomogram integrating risk score and pathologic T stage exhibited excellent predictive ability for the survival outcomes in PCa patients. Moreover, the IRPS was found to be significantly associated with the tumor immune, genomic heterogeneity, therapeutic response, and drug selection. Conclusion IRPS can serve as a reliable predictor for PCa patients. The signature may provide clinicians with valuable information on the efficacy of therapy and help personalize treatment for PCa patients.
Collapse
Affiliation(s)
- Weian Zhu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiongduan Huang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jianjie Wu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chenglun Wu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Fengxi Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiang Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenjie Lai
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
42
|
Geng C, Zhang MC, Manyam GC, Vykoukal JV, Fahrmann JF, Peng S, Wu C, Park S, Kondraganti S, Wang D, Robinson BD, Loda M, Barbieri CE, Yap TA, Corn PG, Hanash S, Broom BM, Pilié PG, Thompson TC. SPOP Mutations Target STING1 Signaling in Prostate Cancer and Create Therapeutic Vulnerabilities to PARP Inhibitor-Induced Growth Suppression. Clin Cancer Res 2023; 29:4464-4478. [PMID: 37581614 PMCID: PMC11017857 DOI: 10.1158/1078-0432.ccr-23-1439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/12/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE Speckle-type POZ protein (SPOP) is important in DNA damage response (DDR) and maintenance of genomic stability. Somatic heterozygous missense mutations in the SPOP substrate-binding cleft are found in up to 15% of prostate cancers. While mutations in SPOP predict for benefit from androgen receptor signaling inhibition (ARSi) therapy, outcomes for patients with SPOP-mutant (SPOPmut) prostate cancer are heterogeneous and targeted treatments for SPOPmut castrate-resistant prostate cancer (CRPC) are lacking. EXPERIMENTAL DESIGN Using in silico genomic and transcriptomic tumor data, proteomics analysis, and genetically modified cell line models, we demonstrate mechanistic links between SPOP mutations, STING signaling alterations, and PARP inhibitor vulnerabilities. RESULTS We demonstrate that SPOP mutations are associated with upregulation of a 29-gene noncanonical (NC) STING (NC-STING) signature in a subset of SPOPmut, treatment-refractory CRPC patients. We show in preclinical CRPC models that SPOP targets and destabilizes STING1 protein, and prostate cancer-associated SPOP mutations result in upregulated NC-STING-NF-κB signaling and macrophage- and tumor microenvironment (TME)-facilitated reprogramming, leading to tumor cell growth. Importantly, we provide in vitro and in vivo mechanism-based evidence that PARP inhibitor (PARPi) treatment results in a shift from immunosuppressive NC-STING-NF-κB signaling to antitumor, canonical cGAS-STING-IFNβ signaling in SPOPmut CRPC and results in enhanced tumor growth inhibition. CONCLUSIONS We provide evidence that SPOP is critical in regulating immunosuppressive versus antitumor activity downstream of DNA damage-induced STING1 activation in prostate cancer. PARPi treatment of SPOPmut CRPC alters this NC-STING signaling toward canonical, antitumor cGAS-STING-IFNβ signaling, highlighting a novel biomarker-informed treatment strategy for prostate cancer.
Collapse
Affiliation(s)
- Chuandong Geng
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Man-Chao Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ganiraju C. Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jody V. Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shan Peng
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cheng Wu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sanghee Park
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shakuntala Kondraganti
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daoqi Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian D. Robinson
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Christopher E. Barbieri
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Department of Urology, Weill Cornell Medicine, New York, New York
| | - Timothy A. Yap
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
- The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bradley M. Broom
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick G. Pilié
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy C. Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
43
|
Song K, Sun H, Tu B, Zhou Y, Lin LC, Liu ZY, Li R, Yang JJ, Zhang Y, Zhao JY, Tao H. WTAP boosts lipid oxidation and induces diabetic cardiac fibrosis by enhancing AR methylation. iScience 2023; 26:107931. [PMID: 37810250 PMCID: PMC10558737 DOI: 10.1016/j.isci.2023.107931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Dysregulated lipid metabolism occurs in pathological processes characterized by cell proliferation and migration. Nonetheless, the mechanism of increased mitochondrial lipid oxidation is poorly appreciated in diabetic cardiac fibrosis, which is accompanied by enhanced fibroblast proliferation and migration. Herein, increased WTAP expression promotes cardiac fibroblast proliferation and migration, contributing to diabetic cardiac fibrosis. Knockdown of WTAP suppresses mitochondrial lipid oxidation, fibroblast proliferation and migration to ameliorate diabetic cardiac fibrosis. Mechanistically, WTAP-mediated m6A methylation of AR induced its degradation, dependent on YTHDF2. Additionally, AR directly interacts with mitochondrial lipid oxidation enzyme Decr1; overexpression of AR-suppressed Decr1-mediates mitochondrial lipid oxidation, inhibiting cardiac fibroblast proliferation and migration. Knockdown of AR produced the opposite effect. Clinically, increased WTAP and YTHDF2 levels correlate with decreased AR expression in human DCM heart tissue. We describe a mechanism wherein WTAP boosts higher mitochondrial lipid oxidation, cardiac fibroblast proliferation, and migration by enhancing AR methylation in a YTHDF2-dependent manner.
Collapse
Affiliation(s)
- Kai Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - He Sun
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Rui Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Hui Tao
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| |
Collapse
|
44
|
Conteduca V, Brighi N, Schepisi G, De Giorgi U. Immunogenomic profiles associated with response to life-prolonging agents in prostate cancer. Br J Cancer 2023; 129:1050-1060. [PMID: 37443349 PMCID: PMC10539309 DOI: 10.1038/s41416-023-02354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed cancer but the management of advanced prostate cancer remains a therapeutic challenge, despite the survival benefits imparted by several therapeutic discoveries targeting different molecular pathways. The mechanisms of resistance to androgen deprivation and tumour progression to lethal metastatic variants are often regulated by androgen receptor (AR) bypass mechanisms and/or neuroendocrine differentiation. Moreover, recent data also suggested the involvement of adaptive and innate infiltrated immune cells in prostate tumour progression. Improvements in cancer genome analyses contributed to a better understanding of antitumour immunity and provided solutions for targeting highly cancer-specific neoantigens generated from somatic mutations in individual patients. In this review, we investigated the current knowledge on the interplay between cancer development and the complex mechanisms of immune regulation. Particularly, we focused on the role of tumour immune microenvironment, generally characterised by strong barriers for immunotherapy, and we discuss the rationale for the potential application of single agent and combination immune-targeting strategies that could lead to improved outcomes. Careful selection based on clinical and genomic factors may allow identification of patients who could benefit from this treatment approach in multiple settings (from localised to advanced prostate tumour) and in different histological subtypes (from adenocarcinoma to neuroendocrine prostate cancer).
Collapse
Affiliation(s)
- Vincenza Conteduca
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122, Foggia, Italy.
| | - Nicole Brighi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Giuseppe Schepisi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Ugo De Giorgi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| |
Collapse
|
45
|
Sooi K, Walsh R, Kumarakulasinghe N, Wong A, Ngoi N. A review of strategies to overcome immune resistance in the treatment of advanced prostate cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:656-673. [PMID: 37842236 PMCID: PMC10571060 DOI: 10.20517/cdr.2023.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
Immunotherapy has become integral in cancer therapeutics over the past two decades and is now part of standard-of-care treatment in multiple cancer types. While various biomarkers and pathway alterations such as dMMR, CDK12, and AR-V7 have been identified in advanced prostate cancer to predict immunotherapy responsiveness, the vast majority of prostate cancer remain intrinsically immune-resistant, as evidenced by low response rates to anti-PD(L)1 monotherapy. Since regulatory approval of the vaccine therapy sipuleucel-T in the biomarker-unselected population, there has not been much success with immunotherapy treatment in advanced prostate cancer. Researchers have looked at various strategies to overcome immune resistance, including the identification of more biomarkers and the combination of immunotherapy with existing effective prostate cancer treatments. On the horizon, novel drugs using bispecific T-cell engager (BiTE) and chimeric antigen receptors (CAR) technology are being explored and have shown promising early efficacy in this disease. Here we discuss the features of the tumour microenvironment that predispose to immune resistance and rational strategies to enhance antitumour responsiveness in advanced prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | - Natalie Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| |
Collapse
|
46
|
Choi HY, Chang JE. Targeted Therapy for Cancers: From Ongoing Clinical Trials to FDA-Approved Drugs. Int J Mol Sci 2023; 24:13618. [PMID: 37686423 PMCID: PMC10487969 DOI: 10.3390/ijms241713618] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
The development of targeted therapies has revolutionized cancer treatment, offering improved efficacy with reduced side effects compared with traditional chemotherapy. This review highlights the current landscape of targeted therapy in lung cancer, colorectal cancer, and prostate cancer, focusing on key molecular targets. Moreover, it aligns with US Food and Drug Administration (FDA)-approved drugs and drug candidates. In lung cancer, mutations in the epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) gene rearrangements have emerged as significant targets. FDA-approved drugs like osimertinib and crizotinib specifically inhibit these aberrant pathways, providing remarkable benefits in patients with EGFR-mutated or ALK-positive lung cancer. Colorectal cancer treatment has been shaped by targeting the vascular endothelial growth factor (VEGF) and EGFR. Bevacizumab and cetuximab are prominent FDA-approved agents that hinder VEGF and EGFR signaling, significantly enhancing outcomes in metastatic colorectal cancer patients. In prostate cancer, androgen receptor (AR) targeting is pivotal. Drugs like enzalutamide, apalutamide, and darolutamide effectively inhibit AR signaling, demonstrating efficacy in castration-resistant prostate cancer. This review further highlights promising targets like mesenchymal-epithelial transition (MET), ROS1, BRAF, and poly(ADP-ribose) polymeras (PARP) in specific cancer subsets, along with ongoing clinical trials that continue to shape the future of targeted therapy.
Collapse
Affiliation(s)
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
47
|
Silvestri R, Nicolì V, Gangadharannambiar P, Crea F, Bootman MD. Calcium signalling pathways in prostate cancer initiation and progression. Nat Rev Urol 2023; 20:524-543. [PMID: 36964408 DOI: 10.1038/s41585-023-00738-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/26/2023]
Abstract
Cancer cells proliferate, differentiate and migrate by repurposing physiological signalling mechanisms. In particular, altered calcium signalling is emerging as one of the most widespread adaptations in cancer cells. Remodelling of calcium signalling promotes the development of several malignancies, including prostate cancer. Gene expression data from in vitro, in vivo and bioinformatics studies using patient samples and xenografts have shown considerable changes in the expression of various components of the calcium signalling toolkit during the development of prostate cancer. Moreover, preclinical and clinical evidence suggests that altered calcium signalling is a crucial component of the molecular re-programming that drives prostate cancer progression. Evidence points to calcium signalling re-modelling, commonly involving crosstalk between calcium and other cellular signalling pathways, underpinning the onset and temporal progression of this disease. Discrete alterations in calcium signalling have been implicated in hormone-sensitive, castration-resistant and aggressive variant forms of prostate cancer. Hence, modulation of calcium signals and downstream effector molecules is a plausible therapeutic strategy for both early and late stages of prostate cancer. Based on this premise, clinical trials have been undertaken to establish the feasibility of targeting calcium signalling specifically for prostate cancer.
Collapse
Affiliation(s)
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | - Francesco Crea
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Martin D Bootman
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| |
Collapse
|
48
|
Iyer HS, Vaselkiv JB, Stopsack KH, Roscoe C, DeVille NV, Zhang Y, Penney KL, Balk SP, Fiorentino M, Hart JE, James P, De Vivo I, Mucci LA, Laden F, Rebbeck TR. Influence of Neighborhood Social and Natural Environment on Prostate Tumor Histology in a Cohort of Male Health Professionals. Am J Epidemiol 2023; 192:1485-1498. [PMID: 37139568 PMCID: PMC10948945 DOI: 10.1093/aje/kwad112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/19/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023] Open
Abstract
Adverse neighborhood social and natural (green space) environments may contribute to the etiology of prostate cancer (CaP), but mechanisms are unclear. We examined associations between neighborhood environment and prostate intratumoral inflammation in 967 men diagnosed with CaP with available tissue samples from 1986-2009 in the Health Professionals Follow-up Study. Exposures were linked to work or residential addresses in 1988. We estimated indices of neighborhood socioeconomic status (nSES) and segregation (Index of Concentration at the Extremes (ICE)) using US Census tract-level data. Surrounding greenness was estimated using seasonal averaged Normalized Difference Vegetation Index (NDVI) data. Surgical tissue underwent pathological review for acute and chronic inflammation, corpora amylacea, and focal atrophic lesions. Adjusted odds ratios (aORs) for inflammation (ordinal) and focal atrophy (binary) were estimated using logistic regression. No associations were observed for acute or chronic inflammation. Each interquartile-range increase in NDVI within 1,230 m of the participant's work or home address (aOR = 0.74, 95% confidence interval (CI): 0.59, 0.93), in ICE-income (aOR = 0.79, 95% CI: 0.61, 1.04), and in ICE-race/income (aOR = 0.79, 95% CI: 0.63, 0.99) was associated with lower odds of postatrophic hyperplasia. Interquartile-range increases in nSES (aOR = 0.76, 95% CI: 0.57, 1.02) and ICE-race/income (aOR = 0.73, 95% CI: 0.54, 0.99) were associated with lower odds of tumor corpora amylacea. Histopathological inflammatory features of prostate tumors may be influenced by neighborhood.
Collapse
Affiliation(s)
- Hari S Iyer
- Correspondence to Dr. Hari Iyer, Section of Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, 120 Albany Street, New Brunswick, NJ 08901 (e-mail: )
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Attiq A, Afzal S. Trinity of inflammation, innate immune cells and cross-talk of signalling pathways in tumour microenvironment. Front Pharmacol 2023; 14:1255727. [PMID: 37680708 PMCID: PMC10482416 DOI: 10.3389/fphar.2023.1255727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Unresolved inflammation is a pathological consequence of persistent inflammatory stimulus and perturbation in regulatory mechanisms. It increases the risk of tumour development and orchestrates all stages of tumorigenesis in selected organs. In certain cancers, inflammatory processes create the appropriate conditions for neoplastic transformation. While in other types, oncogenic changes pave the way for an inflammatory microenvironment that leads to tumour development. Of interest, hallmarks of tumour-promoting and cancer-associated inflammation are striking similar, sharing a complex network of stromal (fibroblasts and vascular cells) and inflammatory immune cells that collectively form the tumour microenvironment (TME). The cross-talks of signalling pathways initially developed to support homeostasis, change their role, and promote atypical proliferation, survival, angiogenesis, and subversion of adaptive immunity in TME. These transcriptional and regulatory pathways invariably contribute to cancer-promoting inflammation in chronic inflammatory disorders and foster "smouldering" inflammation in the microenvironment of various tumour types. Besides identifying common target sites of numerous cancer types, signalling programs and their cross-talks governing immune cells' plasticity and functional diversity can be used to develop new fate-mapping and lineage-tracing mechanisms. Here, we review the vital molecular mechanisms and pathways that establish the connection between inflammation and tumour development, progression, and metastasis. We also discussed the cross-talks between signalling pathways and devised strategies focusing on these interaction mechanisms to harness synthetic lethal drug combinations for targeted cancer therapy.
Collapse
Affiliation(s)
- Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Sheryar Afzal
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
50
|
Brina D, Ponzoni A, Troiani M, Calì B, Pasquini E, Attanasio G, Mosole S, Mirenda M, D'Ambrosio M, Colucci M, Guccini I, Revandkar A, Alajati A, Tebaldi T, Donzel D, Lauria F, Parhizgari N, Valdata A, Maddalena M, Calcinotto A, Bolis M, Rinaldi A, Barry S, Rüschoff JH, Sabbadin M, Sumanasuriya S, Crespo M, Sharp A, Yuan W, Grinu M, Boyle A, Miller C, Trotman L, Delaleu N, Fassan M, Moch H, Viero G, de Bono J, Alimonti A. The Akt/mTOR and MNK/eIF4E pathways rewire the prostate cancer translatome to secrete HGF, SPP1 and BGN and recruit suppressive myeloid cells. NATURE CANCER 2023; 4:1102-1121. [PMID: 37460872 PMCID: PMC11331482 DOI: 10.1038/s43018-023-00594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2023] [Indexed: 08/25/2023]
Abstract
Cancer is highly infiltrated by myeloid-derived suppressor cells (MDSCs). Currently available immunotherapies do not completely eradicate MDSCs. Through a genome-wide analysis of the translatome of prostate cancers driven by different genetic alterations, we demonstrate that prostate cancer rewires its secretome at the translational level to recruit MDSCs. Among different secreted proteins released by prostate tumor cells, we identified Hgf, Spp1 and Bgn as the key factors that regulate MDSC migration. Mechanistically, we found that the coordinated loss of Pdcd4 and activation of the MNK/eIF4E pathways regulate the mRNAs translation of Hgf, Spp1 and Bgn. MDSC infiltration and tumor growth were dampened in prostate cancer treated with the MNK1/2 inhibitor eFT508 and/or the AKT inhibitor ipatasertib, either alone or in combination with a clinically available MDSC-targeting immunotherapy. This work provides a therapeutic strategy that combines translation inhibition with available immunotherapies to restore immune surveillance in prostate cancer.
Collapse
Affiliation(s)
- Daniela Brina
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Adele Ponzoni
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Ima Biotech, Lille, France
| | - Martina Troiani
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Bianca Calì
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Emiliano Pasquini
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Giuseppe Attanasio
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Simone Mosole
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Michela Mirenda
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Evotec, Toulouse, France
| | - Mariantonietta D'Ambrosio
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Imperial College London, London, UK
| | - Manuel Colucci
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Ilaria Guccini
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Ajinkya Revandkar
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Abdullah Alajati
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Department of Urology, Universitätklinikum Bonn, Bonn, Germany
| | - Toma Tebaldi
- Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Deborah Donzel
- Institute of Biophysics, CNR Unit at Trento, Povo, Italy
| | - Fabio Lauria
- Institute of Biophysics, CNR Unit at Trento, Povo, Italy
| | - Nahjme Parhizgari
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Biosun Pharmed, Kordan, Iran
| | - Aurora Valdata
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Martino Maddalena
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Arianna Calcinotto
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Marco Bolis
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Bioinformatics Core Unit, Swiss Institute of Bioinformatics, Bellinzona, Switzerland
- Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche 'Mario Negri' IRCCS, Milano, Italy
| | - Andrea Rinaldi
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Simon Barry
- IMED Oncology AstraZeneca, Li Ka Shing Centre, Cambridge, UK
| | - Jan Hendrik Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich (USZ), Zurich, Switzerland
| | | | - Semini Sumanasuriya
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Mateus Crespo
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Adam Sharp
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Wei Yuan
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Mathew Grinu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Alexandra Boyle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Cynthia Miller
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Lloyd Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | | | - Matteo Fassan
- Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich (USZ), Zurich, Switzerland
| | | | - Johann de Bono
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
- The Royal Marsden Hospital, London, UK
| | - Andrea Alimonti
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.
- Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy.
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland.
| |
Collapse
|