1
|
Xing Y, Hu Y, Wang H, Diao Y, Yue H. An ionic liquid-based delivery system of small interfering RNA targeting Bcl-2 for melanoma therapy. Biomater Sci 2025; 13:466-476. [PMID: 39611237 DOI: 10.1039/d4bm01159g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Melanoma, characterized by rapid tumour progression and a strong tendency to metastasize, poses significant challenges in clinical treatment. Given the vital role of B-cell lymphoma 2 (Bcl-2) protein overexpression in inhibiting apoptosis in tumour cells, the suppression of Bcl-2 has emerged as a promising anticancer therapy. Here, we have developed a straightforward and effective delivery system that combines small interfering RNA (siRNA) targeting Bcl-2 (siBcl-2) with ionic liquids (ILs) for treating melanoma. The unique properties of ILs including structural tunability, inherent charge, and chemical stability have garnered significant attention in the biomedical fields; however, their application in siRNA delivery remains nascent. Rather than the weak function of free siBcl-2, our delivery system (1-hexyl-3-methylimidazolium-siBcl-2, designated as C6-siBcl-2) demonstrated an outstanding capacity to improve the cellular uptake and lysosomal escape, resulting in robust apoptosis and cytotoxicity in melanoma cells. In addition to exhibiting superior gene silencing activity in vitro, such events were also evident in mice bearing melanoma tumours. In particular, this IL-based delivery system showed advantages in suppressing tumour growth, preventing metastasis, and enhancing the survival time of mice with melanoma tumours. Therefore, our study offered a novel and powerful nanoplatform that integrated ILs and RNA interference therapy, presenting new strategies for cancer treatment.
Collapse
Affiliation(s)
- Yuyuan Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanhui Hu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongyan Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, P. R. China
| | - Hua Yue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
2
|
Chen C, Qi J, Zhang K, Meng J, Lu Y, Wang F, Zhu X. Metabolic dysfunction-associated steatotic liver disease increases the risk of primary open-angle glaucoma. Ophthalmol Glaucoma 2025:S2589-4196(24)00223-0. [PMID: 39755370 DOI: 10.1016/j.ogla.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
PURPOSE Liver disease is associated with a range of extrahepatic complications, which have recently been expanded to include ophthalmic conditions. However, evidence is lacking regarding its impact on primary open-angle glaucoma (POAG). This study aimed to investigate whether major liver diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD), alcoholic liver disease (ALD), viral hepatitis, and liver fibrosis and cirrhosis, were associated with POAG. DESIGN A prospective study based on the UK Biobank cohort with a two-sample Mendelian randomization (MR) analysis for inferring causality. PARTICIPANTS A total of 332,345 UK Biobank participants free of glaucoma recruited between 2006 and 2010. METHODS The exposure of interest was severe liver diseases defined as hospital admission, including MASLD, ALD, viral hepatitis, and liver fibrosis and cirrhosis. Cox proportional hazards models were used with each liver disease treated as a time-varying exposure. The MR analysis was further conducted based on the genome-wide association studies of a histologically characterized cohort for MASLD (n = 19,264) and Internation Glaucoma Genetics Consortium cohort for POAG (n = 216,257). MAIN OUTCOME MEASURES Risk of POAG estimated by hazard ratio (HR) and 95% confidence interval (CI) in observation analysis, and odds ratio (OR) and 95% CI in MR analysis. RESULTS Severe MASLD was associated with a 45% increased risk of POAG (HR 1.45; 95% CI 1.12-1.87; P = 0.005), whereas no association was identified between ALD (P = 0.953), viral hepatitis (P = 0.519), or liver fibrosis and cirrhosis (P = 0.794) and incident POAG. Subgroup analysis showed the risk of POAG in relation to MASLD was higher in individuals having more physical activity (HR 1.53; 95% CI 1.04-2.25 vs. HR 1.39; 95% CI 0.99-1.95, P for interaction = 0.033). MR analysis provided evidence that MASLD was causally associated with greater risk of POAG (inverse-variance weighted model: OR 1.035; 95% CI 1.010-1.061; P = 0.005). CONCLUSIONS Severe MASLD was longitudinally associated with an increased risk of incident POAG, with MR analyses suggesting a potential causal link. These findings suggest POAG examination should be considered in the holistic management of MASLD, and further underscore the impact of the liver on eye health.
Collapse
Affiliation(s)
- Chao Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Jiao Qi
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Keke Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Jiaqi Meng
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Yi Lu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Fei Wang
- Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Xiangjia Zhu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Chen J, Yu K, Yu X, Zhang R, Chen B. Transcriptomic and physiological analyses reveal the toxic effects of inorganic filters (nZnO and nTiO 2) on scleractinian coral Galaxea fascicularis. ENVIRONMENTAL RESEARCH 2024; 267:120663. [PMID: 39709120 DOI: 10.1016/j.envres.2024.120663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The effects of sunscreen on scleractinian corals have garnered widespread attention; however, the toxic effects and mechanisms remain unclear. This study investigated the toxicological effects of two common inorganic filters used in sunscreens, nano zinc oxide and titanium dioxide (nZnO and nTiO₂), on the reef-building coral Galaxea fascicularis, focusing on the phenotypic, physiological, and transcriptomic responses. The results showed that after exposure to 0.8 mg/L of nZnO and 30 mg/L of nTiO₂ for 48 h, all coral polyps exhibited retraction. Zn and Ti ions were detected in coral tissues at concentrations of 67.18 and 24.87 μg/g, respectively, indicating the accumulation of nZnO and nTiO2 in coral tissues. The zooxanthellae density, Fv/Fm, and chlorophyll-a content decreased significantly. The activity of antioxidant enzymes showed an increasing trend. Meanwhile, glutamine synthetase and glutamate dehydrogenase activities exhibited a decreasing trend. The health status of corals was impacted as a result of nZnO and nTiO2 stress. Transcriptomic analysis showed that the toxicity mechanisms of nZnO and nTiO2 differed in corals. Following exposure to nZnO, differentially expressed genes (DEGs) in corals were mainly enriched in signaling pathways related to immune response. The genes related to innate immunity, such as MASP1, MUC5AC, TLRs, and C2, were significantly upregulated, indicating that nZnO exposure induces an innate immune response in corals. Meanwhile, following nTiO2 exposure, the upregulated DEGs were mainly enriched in signaling pathways related to transporter activity. In contrast, the downregulated DEGs were mainly enriched in energy metabolism pathways, indicating that nTiO2 disrupted the energy supply of corals, thereby leading to an increased demand for nutrient transport. This study reveals the toxic effects of nZnO and nTiO2, and their mechanisms of action on scleractinian corals, providing a reference for further assessing the toxicity of sunscreen on corals.
Collapse
Affiliation(s)
- Jian Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
4
|
Nesci A, Ruggieri V, Manilla V, Spinelli I, Santoro L, Di Giorgio A, Santoliquido A, Ponziani FR. Endothelial Dysfunction and Liver Cirrhosis: Unraveling of a Complex Relationship. Int J Mol Sci 2024; 25:12859. [PMID: 39684569 DOI: 10.3390/ijms252312859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Endothelial dysfunction (ED) is the in the background of multiple metabolic diseases and a key process in liver disease progression and cirrhosis decompensation. ED affects liver sinusoidal endothelial cells (LSECs) in response to different damaging agents, causing their progressive dedifferentiation, unavoidably associated with an increase in intrahepatic resistance that leads to portal hypertension and hyperdynamic circulation with increased cardiac output and low peripheral artery resistance. These changes are driven by a continuous interplay between different hepatic cell types, invariably leading to increased reactive oxygen species (ROS) formation, increased release of pro-inflammatory cytokines and chemokines, and reduced nitric oxide (NO) bioavailability, with a subsequent loss of proper vascular tone regulation and fibrosis development. ED evaluation is often accomplished by serum markers and the flow-mediated dilation (FMD) measurement of the brachial artery to assess its NO-dependent response to shear stress, which usually decreases in ED. In the context of liver cirrhosis, the ED assessment could help understand the complex hemodynamic changes occurring in the early and late stages of the disease. However, the instauration of a hyperdynamic state and the different NO bioavailability in intrahepatic and systemic circulation-often defined as the NO paradox-must be considered confounding factors during FMD analysis. The primary purpose of this review is to describe the main features of ED and highlight the key findings of the dynamic and intriguing relationship between ED and liver disease. We will also focus on the significance of FMD evaluation in this setting, pointing out its key role as a therapeutic target in the never-ending battle against liver cirrhosis progression.
Collapse
Affiliation(s)
- Antonio Nesci
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Vittorio Ruggieri
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Vittoria Manilla
- Liver Unit, CEMAD-Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Irene Spinelli
- Liver Unit, CEMAD-Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Santoro
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Angela Di Giorgio
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Angelo Santoliquido
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, CEMAD-Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
5
|
Wang Y, Wang Z. Association between ideal cardiovascular health and bowel conditions among US adults. Front Nutr 2024; 11:1473531. [PMID: 39574525 PMCID: PMC11580258 DOI: 10.3389/fnut.2024.1473531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Objective The aim of this study is to explore the relationship between ideal cardiovascular health (CVH), as assessed using the Life's Essential 8 (LE8), and bowel conditions. Methods This cross-sectional study selected 11,108 participants aged ≥20 years from 2005 to 2010 National Health and Nutrition Examination Survey. LE8 scores (range 0-100) were measured according to American Heart Association definitions and were divided into health behavior and health factor scores. Bowel conditions including chronic diarrhea, constipation, and fecal incontinence were diagnosed by the Bowel Health Questionnaire. Weighted logistic regression and restricted cubic spline models were used for correlation analysis. Results Logistic regression results showed that LE8 scores were negatively associated with chronic diarrhea and fecal incontinence, but the difference with chronic constipation was not statistically significant. The health behaviors subscale was also negatively correlated with chronic diarrhea, chronic constipation, and fecal incontinence, but health factors were negatively related to chronic diarrhea and fecal incontinence and positively related to chronic constipation. The RCS was consistent with the trend of the logistic regression findings. Sensitivity analyses reconfirmed these outcomes. Conclusion LE8 is highly associated with chronic diarrhea and fecal incontinence, not with chronic constipation. Encouraging optimization of CVH levels may be beneficial for bowel disorders, and prevention of bowel disorders may enhance CVH.
Collapse
Affiliation(s)
| | - Zhigang Wang
- Xi’an International Medical Center Hospital Affiliated to Northwest University, Xi’an, China
| |
Collapse
|
6
|
Asdaq SMB, Almutiri AA, Alenzi A, Shaikh M, Shaik MA, Alshehri S, Rabbani SI. Unveiling the Neuroprotective Potential of Date Palm ( Phoenix dactylifera): A Systematic Review. Pharmaceuticals (Basel) 2024; 17:1221. [PMID: 39338383 PMCID: PMC11434792 DOI: 10.3390/ph17091221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Neurodegenerative diseases primarily afflict the elderly and are characterized by a progressive loss of neurons. Oxidative stress is intricately linked to the advancement of these conditions. This study focuses on Phoenix dactylifera (P. dactylifera; Family: Arecaceae), commonly known as "Ajwa," a globally cultivated herbal plant renowned for its potent antioxidant properties and reported neuroprotective effects in pharmacological studies. Method: This comprehensive systematic review delves into the antioxidant properties of plant extracts and their phytochemical components, with a particular emphasis on P. dactylifera and its potential neuroprotective benefits. Preferred reporting items for systemic reviews and meta-analysis (PRISMA) were employed to review the articles. Results: The study includes 269 articles published in the literature and 17 were selected after qualitative analysis. The growing body of research underscores the critical role of polyphenolic compounds found in P. dactylifera, which significantly contribute to its neuroprotective effects through antioxidant mechanisms. Despite emerging insights into the antioxidant actions of P. dactylifera, further investigation is essential to fully elucidate the specific pathways through which it confers neuroprotection. Conclusions: Like many other plant-based supplements, P. dactylifera's antioxidant effects are likely mediated by synergistic interactions among its diverse bioactive compounds, rather than by any single constituent alone. Therefore, additional preclinical and clinical studies are necessary to explore P. dactylifera's therapeutic potential comprehensively, especially in terms of its targeted antioxidant activities aimed at mitigating neurodegenerative processes. Such research holds promise for advancing our understanding and potentially harnessing the therapeutic benefits of P. dactylifera in neuroprotection.
Collapse
Affiliation(s)
- Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia; (A.A.A.); (A.A.)
| | - Abdulaziz Ali Almutiri
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia; (A.A.A.); (A.A.)
| | - Abdullah Alenzi
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia; (A.A.A.); (A.A.)
| | - Maheen Shaikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Mujeeb Ahmed Shaik
- Department of Basic Medical Science, College of Medicine, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia;
| | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| |
Collapse
|
7
|
Jiang Y, Wang S, Shuai J, Zhang X, Zhang S, Huang H, Zhang Q, Fu L. Dietary dicarbonyl compounds exacerbated immune dysfunction and hepatic oxidative stress under high-fat diets in vivo. Food Funct 2024; 15:8286-8299. [PMID: 38898781 DOI: 10.1039/d3fo05708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
High-fat diets (HFDs) predispose to obesity and liver dysfunctions, and α-dicarbonyl compounds (α-DCs) present in highly processed foods are also implicated in relevant pathological processes. However, the synergistic harmful effects of α-DCs co-administered with HFDs remain to be elucidated. In this study, 6-week-old C57BL/6 mice were fed with a HFD co-administered with 0.5% methylglyoxal (MGO)/glyoxal (GO) in water for 8 weeks, and multi-omics approaches were employed to investigate the underlying toxicity mechanisms. The results demonstrated that the MGO intervention with a HFD led to an increased body weight and blood glucose level, accompanied by the biological accumulation of α-DCs and carboxymethyl-lysine, as well as elevated serum levels of inflammatory markers including IL-1β, IL-6, and MIP-1α. Notably, hepatic lesions were observed in the MGO group under HFD conditions, concomitant with elevated levels of malondialdehyde. Transcriptomic analysis revealed enrichment of pathways and differentially expressed genes (DEGs) associated with inflammation and oxidative stress in the liver. Furthermore, α-DC intervention exacerbated gut microbial dysbiosis in the context of a HFD, and through Spearman correlation analysis, the dominant genera such as Fusobacterium and Bacteroides in the MGO group and Colidextribacter and Parabacteroides in the GO group were significantly correlated with a set of DEGs involved in inflammatory and oxidative stress pathways in the liver. This study provides novel insights into the healthy implications of dietary ultra-processed food products in the context of obesity-associated disorders.
Collapse
Affiliation(s)
- Yuhao Jiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou, 310018, Zhejiang Province, China.
| | - Shunyu Wang
- hejiang Li Zi Yuan Food Co., Ltd, Z, Jinhua, 321031, China
| | - Jiangbing Shuai
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou, 310016, China
| | - Xiaofeng Zhang
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou, 310016, China
| | - Shuifeng Zhang
- National Pre-packaged Food Quality Supervision and Inspection Center, Zhejiang Fangyuan Test Group Co., Ltd., Hangzhou, 310018, China
| | - Hua Huang
- Quzhou Institute for Food and Drug Control, Quzhou, 324000, China
| | - Qiaozhi Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou, 310018, Zhejiang Province, China.
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou, 310018, Zhejiang Province, China.
| |
Collapse
|
8
|
Barbarroja N, López-Medina C, Escudero-Contreras A, Arias-de la Rosa I. Clinical and molecular insights into cardiovascular disease in psoriatic patients and the potential protective role of apremilast. Front Immunol 2024; 15:1459185. [PMID: 39170613 PMCID: PMC11335487 DOI: 10.3389/fimmu.2024.1459185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Psoriatic disease, encompassing both psoriasis (Pso) and psoriatic arthritis (PsA), is closely intertwined with a significantly elevated risk of developing cardiovascular diseases. This connection is further compounded by a higher prevalence of cardiometabolic comorbidities, including type 2 diabetes, obesity, insulin resistance, arterial hypertension, and dysregulated lipid profiles. These comorbidities exceed the rates seen in the general population and compound the potential for increased mortality among those living with this condition. Recognizing the heightened cardiometabolic risk inherent in psoriatic disease necessitates a fundamental shift in the treatment paradigm. It is no longer sufficient to focus solely on mitigating inflammation. Instead, there is an urgent need to address and effectively manage the metabolic parameters that have a substantial impact on cardiovascular health. Within this context, apremilast emerges as a pivotal treatment option for psoriatic disease. What sets apremilast apart is its dual-action potential, addressing not only inflammation but also the critical metabolic parameters. This comprehensive treatment approach opens up new opportunities to improve the well-being of people living with psoriatic disease. This review delves into the multifaceted aspects involved in the development of cardiovascular disease and its intricate association with psoriatic disease. We then provide an in-depth exploration of the pleiotropic effects of apremilast, highlighting its potential to simultaneously mitigate metabolic complications and inflammation in individuals affected by these conditions.
Collapse
Affiliation(s)
- Nuria Barbarroja
- Rheumatology Service, Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Reina Sofia University Hospital, Córdoba, Spain
| | | | | | - Iván Arias-de la Rosa
- Rheumatology Service, Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Reina Sofia University Hospital, Córdoba, Spain
| |
Collapse
|
9
|
Zhang J, Huang S, Zhu Z, Gatt A, Liu J. E-selectin in vascular pathophysiology. Front Immunol 2024; 15:1401399. [PMID: 39100681 PMCID: PMC11294169 DOI: 10.3389/fimmu.2024.1401399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Selectins are a group of Ca2+-dependent, transmembrane type I glycoproteins which attract cell adhesion and migration. E-selectin is exclusively expressed in endothelial cells, and its expression is strongly enhanced upon activation by pro-inflammatory cytokines. The interaction of E-selectin with its ligands on circulating leukocytes captures and slows them down, further facilitating integrin activation, firm adhesion to endothelial cells and transmigration to tissues. Oxidative stress induces endothelial cell injury, leading to aberrant expression of E-selectin. In addition, the elevated level of E-selectin is positively related to high risk of inflammation. Dysregulation of E-selectin has been found in several pathological conditions including acute kidney injury (AKI), pulmonary diseases, hepatic pathology, Venous thromboembolism (VTE). Deletion of the E-selectin gene in mice somewhat ameliorates these complications. In this review, we describe the mechanisms regulating E-selectin expression, the interaction of E-selectin with its ligands, the E-selectin physiological and pathophysiological roles, and the therapeutical potential of targeting E-selectin.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Shengshi Huang
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, China
| | - Zhiying Zhu
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Alex Gatt
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Haematology Laboratory, Department of Pathology, Mater Dei Hospital, Msida, Malta
| | - Ju Liu
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, China
| |
Collapse
|
10
|
Zhao Y, Han C, Wu Y, Sun Q, Ma M, Xie Z, Sun R, Pei H. Extraction, structural characterization, and antioxidant activity of polysaccharides from three microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172567. [PMID: 38643871 DOI: 10.1016/j.scitotenv.2024.172567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Microalgal polysaccharides have received much attention due to their potential value in preventing and regulating oxidative damage. This study aims to reveal the mechanisms of regulating oxidative stress and the differences in the yield, structure, and effect of polysaccharides extracted from three microalgae: Golenkinia sp. polysaccharides (GPS), Chlorella sorokiniana polysaccharides (CPS), and Spirulina subsalsa polysaccharides (SPS). Using the same extraction method, GPS, CPS, and SPS were all heteropoly- saccharides composed of small molecular fraction: the monosaccharides mainly comprised galactose (Gal). Among the three, SPS had a higher proportion of small molecular fraction, and a higher proportion of Gal; thus it had the highest yield and antioxidant activity. GPS, CPS, and SPS all showed strong antioxidant activity in vitro, and showed strong ability to regulate oxidative stress, among which SPS was slightly higher. From the analysis of gene expression, the Nrf2-ARE signalling pathway was an important pathway for GPS, CPS, and SPS to regulate cellular oxidative stress. This study provides a theoretical foundation for further research on the utilization of microalgae polysaccharides and product development.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chun Han
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yangyingdong Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qianchen Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Meng Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Xie
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Rong Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Haiyan Pei
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China.
| |
Collapse
|
11
|
Chen J, Sun Y, Fu T, Lu S, Shi W, Zhao J, Li S, Li X, Yuan S, Larsson SC. Risk of incident cardiovascular disease among patients with gastrointestinal disorder: a prospective cohort study of 330 751 individuals. EUROPEAN HEART JOURNAL. QUALITY OF CARE & CLINICAL OUTCOMES 2024; 10:357-365. [PMID: 37777843 DOI: 10.1093/ehjqcco/qcad059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND AND AIMS The associations between gastrointestinal diseases (GIs) and cardiovascular disease (CVD) were unclear. We conducted a prospective cohort study to explore their associations. METHODS This study included 330 751 individuals without baseline CVD from the UK Biobank cohort. Individuals with and without GIs were followed up until the ascertainment of incident CVDs, including coronary heart disease (CHD), cerebrovascular disease (CeVD), heart failure (HF), and peripheral artery disease (PAD). The diagnosis of diseases was confirmed with combination of the nationwide inpatient data, primary care data, and cancer registries. A multivariable Cox proportional hazard regression model was used to estimate the associations between GIs and the risk of incident CVD. RESULTS During a median follow-up of 11.8 years, 31 605 incident CVD cases were diagnosed. Individuals with GIs had an elevated risk of CVD (hazard ratio 1.37; 95% confidence interval 1.34-1.41, P < 0.001). Eleven out of 15 GIs were associated with an increased risk of CVD after Bonferroni-correction, including cirrhosis, non-alcoholic fatty liver disease, gastritis and duodenitis, irritable bowel syndrome, Barrett's esophagus, gastroesophageal reflux disease, peptic ulcer, celiac disease, diverticulum, appendicitis, and biliary disease. The associations were stronger among women, individuals aged ≤60 years, and those with body mass index ≥25 kg/m2. CONCLUSIONS This large-scale prospective cohort study revealed the associations of GIs with an increased risk of incident CVD, in particular CHD and PAD. These findings support the reinforced secondary CVD prevention among patients with gastrointestinal disorders.
Collapse
Affiliation(s)
- Jie Chen
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yuhao Sun
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tian Fu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shiyuan Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wenming Shi
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jianhui Zhao
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sen Li
- Department of vascular surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xue Li
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 17177, Sweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala 75105, Sweden
| |
Collapse
|
12
|
Cui B, Zhang N, Zhang W, Ning Q, Wang X, Feng H, Liu R, Li Z, Li J. ROS-responsive celastrol-nanomedicine alleviates inflammation for dry eye disease. NANOTECHNOLOGY 2024; 35:335102. [PMID: 38829163 DOI: 10.1088/1361-6528/ad4ee5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
Dry eye disease (DED) is a major global eye disease leading to severe eye discomfort and even vision impairment. The incidence of DED has been gradually increasing with the high frequency of use of electronic devices. It has been demonstrated that celastrol (Cel) has excellent therapeutic efficacy in ocular disorders. However, the poor water solubility and short half-life of Cel limit its further therapeutic applications. In this work, a reactive oxygen species (ROS) sensitive polymeric micelle was fabricated for Cel delivery. The micelles improve the solubility of Cel, and the resulting Cel loaded micelles exhibit an enhanced intervention effect for DED. Thein vitroresults demonstrated that Cel-nanomedicine had a marked ROS responsive release behavior. The results ofin vitroandin vivoexperiments demonstrated that Cel has excellent biological activities to alleviate inflammation in DED by inhibiting TLR4 signaling activation and reducing pro-inflammatory cytokine expression. Therefore, the Cel nanomedicine can effectively eliminate ocular inflammation, promote corneal epithelial repair, and restore the number of goblet cells and tear secretion, providing a new option for the treatment of DED.
Collapse
Affiliation(s)
- Bingbing Cui
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Nan Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Wei Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Qingyun Ning
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Xing Wang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Huayang Feng
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Ruixing Liu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
13
|
Zhang Z, Li Z, Wei K, Cao Z, Zhu Z, Chen R. Sweat as a source of non-invasive biomarkers for clinical diagnosis: An overview. Talanta 2024; 273:125865. [PMID: 38452593 DOI: 10.1016/j.talanta.2024.125865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Sweat has excellent potential as one of the sources of non-invasive biomarkers for clinical diagnosis. It is relatively easy to collect and process and may contain different disease-specific markers and drug metabolites, making it ideal for various clinical applications. This article discusses the anatomy of sweat glands and their role in sweat production, as well as the history and development of multiple sweat sample collection and analysis techniques. Another primary focus of this article is the application of sweat detection in clinical disease diagnosis and other life scenarios. Finally, the limitations and prospects of sweat analysis are discussed.
Collapse
Affiliation(s)
- Zhiliang Zhang
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; Department of Plastic and Aesthetic Surgery, Ningbo Hangzhou Bay Hospital, Zhejiang, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Kunchen Wei
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zehui Cao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Rui Chen
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
14
|
Gong W, Lin H, Ma X, Ma H, Lan Y, Sun P, Yang J. The regional disparities in liver disease comorbidity among elderly Chinese based on a health ecological model: the China Health and Retirement Longitudinal Study. BMC Public Health 2024; 24:1123. [PMID: 38654168 PMCID: PMC11040959 DOI: 10.1186/s12889-024-18494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/31/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE This study aimed to investigate the risk factors for liver disease comorbidity among older adults in eastern, central, and western China, and explored binary, ternary and quaternary co-morbid co-causal patterns of liver disease within a health ecological model. METHOD Basic information from 9,763 older adults was analyzed using data from the China Health and Retirement Longitudinal Study (CHARLS). LASSO regression was employed to identify significant predictors in eastern, central, and western China. Patterns of liver disease comorbidity were studied using association rules, and spatial distribution was analyzed using a geographic information system. Furthermore, binary, ternary, and quaternary network diagrams were constructed to illustrate the relationships between liver disease comorbidity and co-causes. RESULTS Among the 9,763 elderly adults studied, 536 were found to have liver disease comorbidity, with binary or ternary comorbidity being the most prevalent. Provinces with a high prevalence of liver disease comorbidity were primarily concentrated in Inner Mongolia, Sichuan, and Henan. The most common comorbidity patterns identified were "liver-heart-metabolic", "liver-kidney", "liver-lung", and "liver-stomach-arthritic". In the eastern region, important combination patterns included "liver disease-metabolic disease", "liver disease-stomach disease", and "liver disease-arthritis", with the main influencing factors being sleep duration of less than 6 h, frequent drinking, female, and daily activity capability. In the central region, common combination patterns included "liver disease-heart disease", "liver disease-metabolic disease", and "liver disease-kidney disease", with the main influencing factors being an education level of primary school or below, marriage, having medical insurance, exercise, and no disabilities. In the western region, the main comorbidity patterns were "liver disease-chronic lung disease", "liver disease-stomach disease", "liver disease-heart disease", and "liver disease-arthritis", with the main influencing factors being general or poor health satisfaction, general or poor health condition, severe pain, and no disabilities. CONCLUSION The comorbidities associated with liver disease exhibit specific clustering patterns at both the overall and local levels. By analyzing the comorbidity patterns of liver diseases in different regions and establishing co-morbid co-causal patterns, this study offers a new perspective and scientific basis for the prevention and treatment of liver diseases.
Collapse
Affiliation(s)
- Wei Gong
- Public Health School, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, China
- School of Medical Information and Engineering, Ningxia Medical University, Yinchuan, 750004, China
| | - Hong Lin
- Public Health School, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, China
| | - Xiuting Ma
- Public Health School, Ningxia Medical University, Yinchuan, 750004, China
| | - Hongliang Ma
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Yali Lan
- Public Health School, Ningxia Medical University, Yinchuan, 750004, China
| | - Peng Sun
- Public Health School, Ningxia Medical University, Yinchuan, 750004, China.
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, China.
- Research Center for Medical Science and Technology, Ningxia Medical University, Yinchuan, 750004, China.
- Ningxia Institute of Medical Science, Yinchuan, 750004, China.
| | - Jianjun Yang
- Public Health School, Ningxia Medical University, Yinchuan, 750004, China.
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, China.
| |
Collapse
|
15
|
Luo Y, Li C, Ye F, Tian J, Tan X, Hu S, Zhao S. A Macrophage Membrane-Coated Cu-WO 3-x-Hydro820 Nanoreactor for Treatment and Photoacoustic/Fluorescence Dual-Mode Imaging of Inflamed Liver Tissue. Anal Chem 2024; 96:6483-6492. [PMID: 38613481 DOI: 10.1021/acs.analchem.4c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
A disease-targeting nanoplatform that integrates imaging with therapeutic activity would facilitate early diagnosis, treatment, and therapeutic monitoring. To this end, a macrophage membrane-coated Cu-WO3-x-Hydro820 (CWHM) nanoreactor was prepared. This reactor was shown to target inflammatory tissues. The reactive oxygen species (ROS) such as H2O2 and ·OH in inflammatory tissues can react with Hydro820 in the reactor to form the NIR fluorophore IR820. This process allowed photoacoustic/fluorescence dual-mode imaging of H2O2 and ·OH, and it is expected to permit visual diagnosis of inflammatory diseases. The Cu-WO3-x nanoparticles within the nanoreactor shown catalase and superoxide enzyme mimetic activity, allowing the nanoreactor to catalyze the decomposition of H2O2 and ·O2- in inflammatory cells of hepatic tissues in a mouse model of liver injury, thus alleviating the oxidative stress of damaged liver tissue. This nanoreactor illustrates a new strategy for the diagnosis and treatment of hepatitis and inflammatory liver injury.
Collapse
Affiliation(s)
- Yanni Luo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Caiying Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jianniao Tian
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xuecai Tan
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical and Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
16
|
Lu G, Li J, Gao T, Liu Q, Chen O, Zhang X, Xiao M, Guo Y, Wang J, Tang Y, Gu J. Integration of dietary nutrition and TRIB3 action into diabetes mellitus. Nutr Rev 2024; 82:361-373. [PMID: 37226405 PMCID: PMC10859691 DOI: 10.1093/nutrit/nuad056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Despite intensive studies for decades, the common mechanistic correlations among the underlying pathology of diabetes mellitus (DM), its complications, and effective clinical treatments remain poorly characterized. High-quality diets and nutrition therapy have played an indispensable role in the management of DM. More importantly, tribbles homolog 3 (TRIB3), a nutrient-sensing and glucose-responsive regulator, might be an important stress-regulatory switch, linking glucose homeostasis and insulin resistance. Therefore, this review aimed to introduce the latest research progress on the crosstalk between dietary nutrition intervention and TRIB3 in the development and treatment of DM. This study also summarized the possible mechanisms involved in the signaling pathways of TRIB3 action in DM, in order to gain an in-depth understanding of dietary nutrition intervention and TRIB3 in the pathogenesis of DM at the organism level.
Collapse
Affiliation(s)
- Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ou Chen
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
17
|
Csiszar A, Tarantini S, Yabluchanskiy A, Ungvari Z. PCSK9: an emerging player in cardiometabolic aging and its potential as a therapeutic target and biomarker. GeroScience 2024; 46:257-263. [PMID: 38105401 PMCID: PMC10828320 DOI: 10.1007/s11357-023-01003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), renowned for its pivotal role in low-density lipoprotein (LDL) regulation, has emerged as a compelling regulator of cardiometabolic aging. Beyond its well-established involvement in cholesterol metabolism, PCSK9's multifaceted influence on the aging processes of the cardiovascular and metabolic systems is garnering increasing attention. This review delves into the evolving landscape of PCSK9 in the context of cardiometabolic aging, offering fresh insights into its potential implications. Drawing inspiration from pioneering research conducted by the Pacher laboratory (Arif et al., Geroscience, 2023, PMID: 37726433), we delve into the intricate interplay of PCSK9 within the aging heart and liver, shedding light on its newfound significance. Recent studies underscore PCSK9's pivotal role in liver aging, suggesting intriguing connections between hepatic aging, lipid metabolism, and cardiovascular health. Additionally, we explore the therapeutic potential of PCSK9 as both a target and a biomarker, within the context of age-related cardiovascular disease.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- OUHSC-SE International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- OUHSC-SE International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- OUHSC-SE International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
18
|
Chen C, Wei L, He W, Zhang Y, Xiao J, Lu Y, Wang F, Zhu X. Associations of severe liver diseases with cataract using data from UK Biobank: a prospective cohort study. EClinicalMedicine 2024; 68:102424. [PMID: 38304745 PMCID: PMC10831806 DOI: 10.1016/j.eclinm.2024.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Background Liver disease is linked to series of extrahepatic multisystem manifestations. However, little is known about the associations between liver and eye diseases, especially cataract, the global leading cause of blindness. We aimed to investigate whether severe liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), viral hepatitis, and liver fibrosis and cirrhosis, were associated with an increased risk of the cataract. Methods A total of 326,558 participants without cataract at baseline enrolled in the UK Biobank between 2006 and 2010 were included in this prospective study. The exposures of interest were severe liver diseases (defined as hospital admission), including NAFLD, ALD, viral hepatitis and liver fibrosis and cirrhosis. The outcome was incident cataract. Cox proportional hazards models were used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs). Each liver disease was first treated as a binary time-varying variable to investigate its association with cataract, and then was treated as a ternary time-varying variable to examine the recent (liver disease within 0-5 years) vs. long-term (liver disease > 5 years) state associations with the risk of cataract. Findings After a median follow-up of 13.3 years (interquartile range, 12.5-14.0 years), 37,064 individuals were documented as developing cataract. Higher risk of cataract was found in those with severe NAFLD (HR, 1.47; 95% CI, 1.33-1.61), ALD (HR, 1.57; 95% CI, 1.28-1.94) and liver fibrosis and cirrhosis (HR, 1.58; 95% CI, 1.35-1.85), but not in individuals with viral hepatitis when exposure was treated as a binary time-varying variable (P = 0.13). When treating exposure as a ternary time-varying variable, an association between recently diagnosed viral hepatitis and cataract was also observed (HR, 1.55; 95% CI, 1.07-2.23). Results from the combined model suggested they were independent risk factors for incident cataract. No substantial changes were found in further sensitivity analyses. Interpretation Severe liver diseases, including NAFLD, ALD, liver fibrosis and cirrhosis and recently diagnosed viral hepatitis, were associated with cataract. The revelation of liver-eye connection suggests the importance of ophthalmic care in the management of liver disease, and the intervention precedence of patients with liver disease in the early screening and diagnosis of cataract. Funding National Natural Science Foundation of China, Science and Technology Innovation Action Plan of Shanghai Science and Technology Commission, Clinical Research Plan of Shanghai Shenkang Hospital Development Center, Shanghai Municipal Key Clinical Specialty Program, the Guangdong Basic and Applied Basic Research Foundation and Shenzhen Science and Technology Program.
Collapse
Affiliation(s)
- Chao Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Chinese Academy of Medical Science, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Ling Wei
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Chinese Academy of Medical Science, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Wenwen He
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Chinese Academy of Medical Science, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Ye Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Chinese Academy of Medical Science, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Jia Xiao
- Changsha Aier Eye Hospital, Changsha, Hunan Province 410015, China
- Aier Eye Institute, Changsha, Hunan Province 410015, China
- Shandong Provincial Key Laboratory for Clinical Research of Liver Diseases, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao 266001, China
| | - Yi Lu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Chinese Academy of Medical Science, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Fei Wang
- Division of Gastroenterology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiangjia Zhu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Chinese Academy of Medical Science, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| |
Collapse
|
19
|
Wu HHL, Rakisheva A, Ponnusamy A, Chinnadurai R. Hepatocardiorenal syndrome in liver cirrhosis: Recognition of a new entity? World J Gastroenterol 2024; 30:128-136. [PMID: 38312119 PMCID: PMC10835518 DOI: 10.3748/wjg.v30.i2.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Emerging evidence and perspectives have pointed towards the heart playing an important role in hepatorenal syndrome (HRS), outside of conventional understanding that liver cirrhosis is traditionally considered the sole origin of a cascade of pathophysiological mechanisms directly affecting the kidneys in this context. In the absence of established heart disease, cirrhotic cardiomyopathy may occur more frequently in those with liver cirrhosis and kidney disease. It is a specific form of cardiac dysfunction characterized by blunted contractile responsiveness to stress stimuli and altered diastolic relaxation with electrophysiological abnormalities. Despite the clinical description of these potential cardiac-related complications of the liver, the role of the heart has traditionally been an overlooked aspect of circulatory dysfunction in HRS. Yet from a physiological sense, temporality (prior onset) of cardiorenal interactions in HRS and positive effects stemming from portosystemic shunting demonstrated an important role of the heart in the development and progression of kidney dysfunction in cirrhotic patients. In this review, we discuss current concepts surrounding how the heart may influence the development and progression of HRS, and the role of systemic inflammation and endothelial dysfunction causing circulatory dysfunction within this setting. The temporality of heart and kidney dysfunction in HRS will be discussed. For a subgroup of patients who receive portosystemic shunting, the dynamics of cardiorenal interactions following treatment is reviewed. Continued research to determine the unknowns in this topic is anticipated, hopefully to further clarify the intricacies surrounding the liver-heart-kidney connection and improve strategies for management.
Collapse
Affiliation(s)
- Henry H L Wu
- Renal Research, Kolling Institute of Medical Research, Royal North Shore Hospital & The University of Sydney, St. Leonards (Sydney) 2065, New South Wales, Australia
| | - Amina Rakisheva
- Department of Cardiology, City Cardiological Center, Almaty 050000, Kazakhstan
| | - Arvind Ponnusamy
- Department of Renal Medicine, Royal Preston Hospital, Preston PR2 9HT, United Kingdom
| | - Rajkumar Chinnadurai
- Donal O’Donoghue Renal Research Centre & Department of Renal Medicine, Northern Care Alliance National Health Service Foundation Trust, Salford M6 8HD, United Kingdom
| |
Collapse
|
20
|
Guo W, Huang D, Li S. Lycopene alleviates oxidative stress-induced cell injury in human vascular endothelial cells by encouraging the SIRT1/Nrf2/HO-1 pathway. Clin Exp Hypertens 2023; 45:2205051. [PMID: 37120838 DOI: 10.1080/10641963.2023.2205051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Epidemiological research have displayed that dietary intake rich in lycopene, an antioxidant, is negatively correlated with the risk of cardiovascular disease (CVD). This study aimed to investigate whether the intervention with different concentrations of lycopene could attenuate H2O2-induced oxidative stress injury in human vascular endothelial cells (VECs). METHODS The human VECs HMEC-1 and ECV-304 were incubated with a final concentration of 300 µmol/L H2O2, followed by they were incubated with lycopene at doses of 0.5, 1, or 2 µm. Subsequently, cell proliferation, cytotoxicity, cell adhesion, reactive oxygen species (ROS) contents, adhesion molecule expression, oxidative stress levels, pro-inflammatory factor production, the apoptosis protein levels, and the silent information regulator-1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway protein levels were tested by CCK-8 kit, lactate dehydrogenase (LDH) kit, immunofluorescence labeling, cell surface enzyme immunoassays (EIA), enzyme-linked immunosorbent assay (ELISA), as well as Western blot assays, respectively. RESULTS Under H2O2 stimulation, HMEC-1 and ECV-304 cell proliferation and the SIRT1/Nrf2/HO-1 pathway protein expression were significantly reduced, whereas cytotoxicity, apoptosis, cell adhesion molecule expression, pro-inflammatory and oxidative stress factors production were apparently encouraged, which were partially countered by lycopene intervention in a dose-dependent manner. CONCLUSION Lycopene alleviates H2O2-induced oxidative damage in human VECs by reducing intracellular ROS levels, inflammatory factor production, cell adhesiveness, and apoptosis rate under oxidative stress conditions through activation of the SIRT1/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Wenhai Guo
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Danping Huang
- The First Clinical Medicine School, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shaodong Li
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| |
Collapse
|
21
|
Mitchell J, Alnemer A, Deiparine S, Stein E, Gorelik L. Anesthetic Considerations for Patients With Mitral Stenosis Undergoing Orthotopic Liver Transplant. Cureus 2023; 15:e47751. [PMID: 38021530 PMCID: PMC10676281 DOI: 10.7759/cureus.47751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
A 70-year-old male presented for an orthotopic liver transplant (OLT) with co-existing moderate-severe mitral valve stenosis. The hemodynamic goals of managing mitral stenosis posed a significant additional challenge to this patient's care. Intraoperative transesophageal echocardiography (TEE) was critical in guiding volume status and resuscitation. In addition, the patient's valvulopathy guided our vasoactive medication selection and arrhythmia prevention. In this article, we describe the multidisciplinary discussions regarding preoperative valvular intervention as well as the intraoperative techniques used to preserve cardiac output while avoiding coagulopathy and arrhythmias. We discuss the pathophysiology of valvular disease in the context of liver failure and the guidelines by which this disease process is classified. In addition, we discuss the benefits and limitations of intraoperative TEE in evaluating this unique physiology.
Collapse
Affiliation(s)
- Justin Mitchell
- Anesthesiology, University of California, Los Angeles (UCLA) Medical Center, Los Angeles, USA
| | - Amar Alnemer
- Anesthesiology, The Ohio State University College of Medicine, Columbus, USA
| | | | - Erica Stein
- Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Leonid Gorelik
- Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, USA
| |
Collapse
|
22
|
Ungvari Z. PCSK9 Inhibition: A Novel Approach to Attenuate Cardiovascular and Liver Aging. JACC Basic Transl Sci 2023; 8:1354-1356. [PMID: 38094681 PMCID: PMC10714159 DOI: 10.1016/j.jacbts.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Affiliation(s)
- Zoltan Ungvari
- Address for correspondence: Dr Zoltan Ungvari, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, 975 Northeast 10th Street, Oklahoma City, Oklahoma 73104, USA.
| |
Collapse
|
23
|
Mohammadkhani MA, Shahrzad S, Haghighi M, Ghanbari R, Mohamadkhani A. Insights into Organochlorine Pesticides Exposure in the Development of Cardiovascular Diseases: A Systematic Review. ARCHIVES OF IRANIAN MEDICINE 2023; 26:592-599. [PMID: 38310416 PMCID: PMC10862093 DOI: 10.34172/aim.2023.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/22/2023] [Indexed: 02/05/2024]
Abstract
Many human diseases such as cancer, neurological diseases, autism and diabetes are associated with exposure to pesticides, especially organochlorine pesticides. However, pesticide exposure is also associated with cardiovascular disease (CVD) as the leading cause of death worldwide. In this systematic review, results on the link between organochlorine pesticide pollution and CVD were collected from databases (Medline (PubMed), Scopus and Science Direct) in May 2022 from studies published between 2010 and 2022. A total of 24 articles were selected for this systematic review. Sixteen articles were extracted by reviewers using a standardized form that included cross-sectional, cohort, and ecological studies that reported exposure to organochlorine pesticides in association with increased CVD risk. In addition, eight articles covering molecular mechanisms organochlorine pesticides and polychlorinated biphenyls (PCBs) on cardiovascular effects were retrieved for detailed evaluation. Based on the findings of the study, it seems elevated circulating levels of organochlorine pesticides and PCBs increase the risk of coronary heart disease, especially in early life exposure to these pesticides and especially in men. Changes in the regulatory function of peroxisome proliferator-activated γ receptor (PPARγ), reduction of paroxonase activity (PON1), epigenetic changes of histone through induction of reactive oxygen species, vascular endothelial inflammation with miR-expression 126 and miR-31, increased collagen synthesis enzymes in the extracellular matrix and left ventricular hypertrophy (LVH) and fibrosis are mechanisms by which PCBs increase the risk of CVD. According to this systematic review, organochlorine pesticide exposure is associated with increased risk of CVD and CVD mortality through the atherogenic and inflammatory molecular mechanism involving fatty acid and glucose metabolism.
Collapse
Affiliation(s)
| | - Soraya Shahrzad
- Department of Cardiology, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Haghighi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Ghanbari
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Matyas C, Trojnar E, Zhao S, Arif M, Mukhopadhyay P, Kovacs A, Fabian A, Tokodi M, Bagyura Z, Merkely B, Kohidai L, Lajko E, Takacs A, He Y, Gao B, Paloczi J, Lohoff FW, Haskó G, Ding WX, Pacher P. PCSK9, A Promising Novel Target for Age-Related Cardiovascular Dysfunction. JACC Basic Transl Sci 2023; 8:1334-1353. [PMID: 38094682 PMCID: PMC10715889 DOI: 10.1016/j.jacbts.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 12/29/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death among elderly people. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important regulator of cholesterol metabolism. Herein, we investigated the role of PCSK9 in age-related CVD. Both in humans and rats, blood PCSK9 level correlated positively with increasing age and the development of cardiovascular dysfunction. Age-related fatty degeneration of liver tissue positively correlated with serum PCSK9 levels in the rat model, while development of age-related nonalcoholic fatty liver disease correlated with cardiovascular functional impairment. Network analysis identified PCSK9 as an important factor in age-associated lipid alterations and it correlated positively with intima-media thickness, a clinical parameter of CVD risk. PCSK9 inhibition with alirocumab effectively reduced the CVD progression in aging rats, suggesting that PCSK9 plays an important role in cardiovascular aging.
Collapse
Affiliation(s)
- Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
- Department of Medical Imaging, Medical School, University of Pécs, Pécs, Hungary
| | - Eszter Trojnar
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Suxian Zhao
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Muhammad Arif
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Attila Kovacs
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Alexandra Fabian
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Marton Tokodi
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Zsolt Bagyura
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Laszlo Kohidai
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Eszter Lajko
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Angela Takacs
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, New York, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Arif M, Matyas C, Mukhopadhyay P, Yokus B, Trojnar E, Paloczi J, Paes-Leme B, Zhao S, Lohoff FW, Haskó G, Pacher P. Data-driven transcriptomics analysis identifies PCSK9 as a novel key regulator in liver aging. GeroScience 2023; 45:3059-3077. [PMID: 37726433 PMCID: PMC10643490 DOI: 10.1007/s11357-023-00928-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
The liver, as a crucial metabolic organ, undergoes significant pathological changes during the aging process, which can have a profound impact on overall health. To gain a comprehensive understanding of these alterations, we employed data-driven approaches, along with biochemical methods, histology, and immunohistochemistry techniques, to systematically investigate the effects of aging on the liver. Our study utilized a well-established rat aging model provided by the National Institute of Aging. Systems biology approaches were used to analyze genome-wide transcriptomics data from liver samples obtained from young (4-5 months old) and aging (20-21 months old) Fischer 344 rats. Our findings revealed pathological changes occurring in various essential biological processes in aging livers. These included mitochondrial dysfunction, increased oxidative/nitrative stress, decreased NAD + content, impaired amino acid and protein synthesis, heightened inflammation, disrupted lipid metabolism, enhanced apoptosis, senescence, and fibrosis. These results were validated using independent datasets from both human and rat aging studies. Furthermore, by employing co-expression network analysis, we identified novel driver genes responsible for liver aging, confirmed our findings in human aging subjects, and pointed out the cellular localization of the driver genes using single-cell RNA-sequencing human data. Our study led to the discovery and validation of a liver-specific gene, proprotein convertase subtilisin/kexin type 9 (PCSK9), as a potential therapeutic target for mitigating the pathological processes associated with aging in the liver. This finding envisions new possibilities for developing interventions aimed to improve liver health during the aging process.
Collapse
Affiliation(s)
- Muhammad Arif
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Section On Fibrotic Disorders, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Burhan Yokus
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Eszter Trojnar
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Bruno Paes-Leme
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Suxian Zhao
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Falk W Lohoff
- Section On Clinical Genomics and Experimental Therapeutics, National Institute On Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Wang F, Li Y, Tang D, Yang B, Tian T, Tian M, Meng N, Xie W, Zhang C, He Z, Zhu X, Ming D, Liu Y. Exploration of the SIRT1-mediated BDNF-TrkB signaling pathway in the mechanism of brain damage and learning and memory effects of fluorosis. Front Public Health 2023; 11:1247294. [PMID: 37711250 PMCID: PMC10499441 DOI: 10.3389/fpubh.2023.1247294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Fluoride is considered an environmental pollutant that seriously affects organisms and ecosystems, and its harmfulness is a perpetual public health concern. The toxic effects of fluoride include organelle damage, oxidative stress, cell cycle destruction, inflammatory factor secretion, apoptosis induction, and synaptic nerve transmission destruction. To reveal the mechanism of fluorosis-induced brain damage, we analyzed the molecular mechanism and learning and memory function of the SIRT1-mediated BDNF-TrkB signaling pathway cascade reaction in fluorosis-induced brain damage through in vivo experiments. Methods This study constructed rat models of drinking water fluorosis using 50 mg/L, 100 mg/L, and 150 mg/L fluoride, and observed the occurrence of dental fluorosis in the rats. Subsequently, we measured the fluoride content in rat blood, urine, and bones, and measured the rat learning and memory abilities. Furthermore, oxidative stress products, inflammatory factor levels, and acetylcholinesterase (AchE) and choline acetyltransferase (ChAT) activity were detected. The pathological structural changes to the rat bones and brain tissue were observed. The SIRT1, BDNF, TrkB, and apoptotic protein levels were determined using western blotting. Results All rats in the fluoride exposure groups exhibited dental fluorosis; decreased learning and memory abilities; and higher urinary fluoride, bone fluoride, blood fluoride, oxidative stress product, and inflammatory factor levels compared to the control group. The fluoride-exposed rat brain tissue had abnormal AchE and ChAT activity, sparsely arranged hippocampal neurons, blurred cell boundaries, significantly fewer astrocytes, and swollen cells. Furthermore, the nucleoli were absent from the fluoride-exposed rat brain tissue, which also contained folded neuron membranes, deformed mitochondria, absent cristae, vacuole formation, and pyknotic and hyperchromatic chromatin. The fluoride exposure groups had lower SIRT1, BDNF, and TrkB protein levels and higher apoptotic protein levels than the control group, which were closely related to the fluoride dose. The findings demonstrated that excessive fluoride caused brain damage and affected learning and memory abilities. Discussion Currently, there is no effective treatment method for the tissue damage caused by fluorosis. Therefore, the effective method for preventing and treating fluorosis damage is to control fluoride intake.
Collapse
Affiliation(s)
- Feiqing Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Yanju Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Dongxin Tang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Bo Yang
- Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Tingting Tian
- Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Mengxian Tian
- Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Na Meng
- Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Wei Xie
- Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Chike Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Zhixu He
- National & Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guiyang, Guizhou Province, China
| | - Xiaodong Zhu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- National & Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guiyang, Guizhou Province, China
| |
Collapse
|
27
|
Shao D, Shen W, Miao Y, Gao Z, Pan M, Wei Q, Yan Z, Zhao X, Ma B. Sulforaphane prevents LPS-induced inflammation by regulating the Nrf2-mediated autophagy pathway in goat mammary epithelial cells and a mouse model of mastitis. J Anim Sci Biotechnol 2023; 14:61. [PMID: 37131202 PMCID: PMC10155371 DOI: 10.1186/s40104-023-00858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/01/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Mastitis not only deteriorates the composition or quality of milk, but also damages the health and productivity of dairy goats. Sulforaphane (SFN) is a phytochemical isothiocyanate compound with various pharmacological effects such as anti-oxidant and anti-inflammatory. However, the effect of SFN on mastitis has yet to be elucidated. This study aimed to explore the anti-oxidant and anti-inflammatory effects and potential molecular mechanisms of SFN in lipopolysaccharide (LPS)-induced primary goat mammary epithelial cells (GMECs) and a mouse model of mastitis. RESULTS In vitro, SFN downregulated the mRNA expression of inflammatory factors (tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6), inhibited the protein expression of inflammatory mediators (cyclooxygenase-2 (COX2), and inducible nitric oxide synthase (iNOS)) while suppressing nuclear factor kappa-B (NF-κB) activation in LPS-induced GMECs. Additionally, SFN exhibited an antioxidant effect by increasing Nrf2 expression and nuclear translocation, up-regulating antioxidant enzymes expression, and decreasing LPS-induced reactive oxygen species (ROS) production in GMECs. Furthermore, SFN pretreatment promoted the autophagy pathway, which was dependent on the increased Nrf2 level, and contributed significantly to the improved LPS-induced oxidative stress and inflammatory response. In vivo, SFN effectively alleviated histopathological lesions, suppressed the expression of inflammatory factors, enhanced immunohistochemistry staining of Nrf2, and amplified of LC3 puncta LPS-induced mastitis in mice. Mechanically, the in vitro and in vivo study showed that the anti-inflammatory and anti-oxidative stress effects of SFN were mediated by the Nrf2-mediated autophagy pathway in GMECs and a mouse model of mastitis. CONCLUSIONS These results indicate that the natural compound SFN has a preventive effect on LPS-induced inflammation through by regulating the Nrf2-mediated autophagy pathway in primary goat mammary epithelial cells and a mouse model of mastitis, which may improve prevention strategies for mastitis in dairy goats.
Collapse
Affiliation(s)
- Dan Shao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenxiang Shen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Yuyang Miao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhen Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Menghao Pan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zuoting Yan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Xiaoe Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
28
|
Tu Y, Liu J, Kong D, Guo X, Li J, Long Z, Peng J, Wang Z, Wu H, Liu P, Liu R, Yu W, Li W. Irisin drives macrophage anti-inflammatory differentiation via JAK2-STAT6-dependent activation of PPARγ and Nrf2 signaling. Free Radic Biol Med 2023; 201:98-110. [PMID: 36940733 DOI: 10.1016/j.freeradbiomed.2023.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Irisin is an exercise-induced myokine that alleviates inflammation and obesity. The induction of anti-inflammatory (M2) macrophage is facilitated for treatment of sepsis and associated lung damage. However, whether irisin drives macrophage M2 polarization remains unclear. Here, we found that irisin induced-macrophage anti-inflammatory differentiation in vivo using an LPS-induced septic mice model and in vitro using RAW64.7 cells and bone marrow-derived macrophages (BMDMs). Irisin also promoted the expression, phosphorylation, and nuclear translocation of peroxisome proliferator-activated receptor gamma (PPAR-γ) and nuclear factor-erythroid 2-related factor 2 (Nrf2). Inhibition or knockdown of PPAR-γ and Nrf2 abolished irisin-induced accumulation of M2 macrophage markers, such as interleukin (IL)-10 and Arginase 1. Furthermore, dual-luciferase reporter and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assays confirmed that STAT6 boosts PPAR-γ and Nrf2 transcription by binding to their DNA promoters in irisin-stimulated macrophages. In contrast, STAT6 shRNA blocked the irisin-induced activation of Pparγ, Nrf2, and related downstream genes. Moreover, the interaction of irisin with its ligand integrin αVβ5 remarkably promoted Janus kinase 2 (JAK2) phosphorylation, while inhibition or knockdown of integrin αVβ5 and JAK2 attenuated the activation of STAT6, PPAR-γ, and Nrf2 signaling. Interestingly, co-immunoprecipitation (Co-IP) assay also revealed that the binding between JAK2 and integrin αVβ5 is critical for irisin-induced macrophage anti-inflammatory differentiation by enhancing the activation of the JAK2-STAT6 pathway. In conclusion, irisin boosted M2 macrophage differentiation by inducing JAK2-STAT6-dependent transcriptional activation of the PPAR-γ-related anti-inflammatory system and Nrf2-related antioxidant genes. The findings of this study suggest that the administration of irisin is a novel and promising therapeutic strategy for infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yongmei Tu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China; School of Public Health, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, China
| | - Jiangzheng Liu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Deqin Kong
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaojie Guo
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiawei Li
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Zi Long
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Jie Peng
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhao Wang
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Wu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Penghui Liu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Liu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Weihua Yu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Wenli Li
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
29
|
Cai M, Xu YC, Deng B, Chen JB, Chen TF, Zeng KF, Chen S, Deng SH, Tan ZB, Ding WJ, Zhang SW, Liu B, Zhang JZ. Radix Glycyrrhizae extract and licochalcone a exert an anti-inflammatory action by direct suppression of toll like receptor 4. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115869. [PMID: 36309116 DOI: 10.1016/j.jep.2022.115869] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Glycyrrhizae (GL), a herbal medicine that is widely available, has shown advantages for a variety of inflammatory diseases. Toll like receptor 4 (TLR4) pathway has been shown to play a key role in the progression of inflammation. AIM OF THE STUDY The purpose of this study was to investigate the involvement of TLR4 in the anti-inflammatory mechanism of GL extract and its active constituent on acute lung injury (ALI). MATERIALS AND METHODS A model of inflammation produced by lipopolysaccharide (LPS) was established in C57BL/6 mice and macrophages derived from THP-1. To screen the active components of GL, molecular docking was used. Molecular dynamics and surface plasmon resonance imaging (SPRi) were used to study the interaction of a specific drug with the TLR4-MD2 complex. TLR4 was overexpressed by adenovirus to confirm TLR4 involvement in the anti-inflammatory activities of GL and the chosen chemical. RESULTS We observed that GL extract significantly reduced both LPS-induced ALI and the production of pro-inflammatory factors including TNF-α, IL-6 and IL-1β. Additionally, GL inhibited the binding of Alexa 488-labeled LPS (LPS-488) to the membrane of THP-1 derived macrophages. GL drastically reduce on the expression of TLR4 and the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-B (NF-κB). Furthermore, molecular docking revealed that Licochalcone A (LicoA) docked into the LPS binding site of TLR4-MD2 complex. MD2-LicoA binding conformation was found to be stable using molecular dynamic simulations. SPRi indicated that LicoA bound to TLR4-MD2 recombinant protein with a KD of 3.87 × 10-7 M. LicoA dose-dependently reduced LPS-488 binding to the cell membrane. LicoA was found to significantly inhibit LPS-induced lung damage and inflammation. Furthermore, LicoA inhibited TLR4 expression, MAPK and NF-κB activation in a dose-dependent manner. The inhibitory effects of GL and LicoA on LPS-induced inflammation and TLR4 signaling activation were partly eliminated by TLR4 overexpression. CONCLUSION Our findings imply that GL and LicoA exert inhibitory effects on inflammation by targeting the TLR4 directly.
Collapse
Affiliation(s)
- Min Cai
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China; Guangzhou Emergency Medical Command Center, Guangzhou, 510030, China.
| | - You-Cai Xu
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Bo Deng
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Jun-Bang Chen
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Ting-Fang Chen
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Ke-Feng Zeng
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Si Chen
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Sui-Hui Deng
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Zhang-Bin Tan
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Wen-Jun Ding
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Shuang-Wei Zhang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Bin Liu
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Jing-Zhi Zhang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
30
|
Kaur S, Rubal, Kaur S, Kaur A, Kaur S, Gupta S, Mittal S, Dhiman M. A cross-sectional study to correlate antioxidant enzymes, oxidative stress and inflammation with prevalence of hypertension. Life Sci 2023; 313:121134. [PMID: 36544300 DOI: 10.1016/j.lfs.2022.121134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 09/19/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
AIMS Hypertension a multifactorial consequence of environmental factors, life style and genetics is the well-recognized risk factor contributing to coronary heart diseases. The antioxidant imbalance, excessive reactive oxygen species (ROS) leads to oxidative stress which is pivotal in progression of hypertension. The present study aims to understand the complex interaction between oxidative stress, inflammation and antioxidant system which is crucial to maintain cellular homeostasis which further can exaggerate hypertension pathophysiology. MATERIALS AND METHODS The metabolic profile of hypertensive and normotensive subjects from Malwa region, Punjab was compared by estimating lipid profile, cardiac, hepatic and renal markers. The oxidative stress markers (protein carbonyls and lipid peroxidation), inflammatory markers (Nitric oxide, Myeloperoxidase and advanced oxygen protein products), and antioxidant enzymes (Superoxide Dismutase, Catalase, and Total Antioxidant Capacity) were analyzed. KEY FINDINGS It is observed that the metabolic markers are altered in hypertensive subjects which further these subjects showed increased oxidative, inflammatory profile and compromised antioxidant status when compared with normotensive subjects. Co-relation analysis validated the involvement of inflammation and oxidative stress in impaired endothelial function and vital organ damage. SIGNIFICANCE OF STUDY These markers may act as early indicators of hypertension which usually do not show any physical symptoms, thus can be diagnosed and treated at the earliest. The current study suggests that disturbed homeostasis, a consequence of altered interaction between antioxidant system and inflammatory events raises the oxidative stress levels which eventually leads to hypertension and associated complications. These indicators can serve as early indicators of future chronic complications of hypertension.
Collapse
Affiliation(s)
- Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India
| | - Rubal
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India
| | - Satveer Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India
| | - Amandeep Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India
| | - Sandeep Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India
| | - Sushil Gupta
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India
| | - Sunil Mittal
- Department of Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab Bathinda, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India.
| |
Collapse
|
31
|
Li S, Yin S, Ding H, Shao Y, Zhou S, Pu W, Han L, Wang T, Yu H. Polyphenols as potential metabolism mechanisms regulators in liver protection and liver cancer prevention. Cell Prolif 2023; 56:e13346. [PMID: 36229407 DOI: 10.1111/cpr.13346] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Liver cancer is one of the common malignancies. The dysregulation of metabolism is a driver of accelerated tumourigenesis. Metabolic changes are well documented to maintain tumour growth, proliferation and survival. Recently, a variety of polyphenols have been shown to have a crucial role both in liver disease prevention and metabolism regulation. METHODS We conducted a literature search and combined recent data with systematic analysis to comprehensively describe the molecular mechanisms that link polyphenols to metabolic regulation and their contribution in liver protection and liver cancer prevention. RESULTS Targeting metabolic dysregulation in organisms prevents and resists the development of liver cancer, which has important implications for identifying new therapeutic strategies for the management and treatment of cancer. Polyphenols are a class of complex compounds composed of multiple phenolic hydroxyl groups and are the main active ingredients of many natural plants. They mediate a broad spectrum of biological and pharmacological functions containing complex lipid metabolism, glucose metabolism, iron metabolism, intestinal flora imbalance, as well as the direct interaction of their metabolites with key cell-signalling proteins. A large number of studies have found that polyphenols affect the metabolism of organisms by interfering with a variety of intracellular signals, thereby protecting the liver and reducing the risk of liver cancer. CONCLUSION This review systematically illustrates that various polyphenols, including resveratrol, chlorogenic acid, caffeic acid, dihydromyricetin, quercetin, catechins, curcumin, etc., improve metabolic disorders through direct or indirect pathways to protect the liver and fight liver cancer.
Collapse
Affiliation(s)
- Shuangfeng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shuangshuang Yin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Hui Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingying Shao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shiyue Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
32
|
Zhou Z, Li K, Guo J, Wang Y, Wei Y, Duan J, Chen M, Shi L, Hu W. Green Tea Catechin EGCG Ameliorates Thioacetamide-Induced Hepatic Encephalopathy in Rats via Modulation of the Microbiota-Gut-Liver Axis. Mol Nutr Food Res 2022; 67:e2200821. [PMID: 36573265 DOI: 10.1002/mnfr.202200821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/23/2022] [Indexed: 12/28/2022]
Abstract
SCOPE Existing research suggests that (-)-epigallocatechin-3-gallate (EGCG), which is a natural tea catechin active substance, can protect against liver injury. However, its mechanism for hepatic encephalopathy (HE) treatment is still unclear. In this study, the role of EGCG in the amelioration of HE rats and the effect on the microbiota-gut-liver axis are mainly analyzed. METHODS AND RESULTS Thioacetamide (TAA) is employed to induce the HE model in rats. The results of open field test show that EGCG restores locomotor activity and exploratory behavior. Histological and biochemical results demonstrate that EGCG ameliorates brain and liver damage, decreases the expression of pro-inflammatory cytokines, and increases the activity of antioxidant enzymes. Meanwhile, EGCG modulates the Nrf2 pathway and TLR4/NF-κB pathway to mitigate TAA-induced oxidative stress and inflammatory responses. Immunohistochemistry reveals protection of the intestinal barrier by EGCG upregulating the expression of occludin and zonula occludens-1. Furthermore, serum levels of ammonia and LPS are reduced. 16S rRNA analysis shows that EGCG treatment increases the abundance of beneficial bacteria (e.g., Bifidobacterium, Lactobacillus, and Limosilactobacillus). CONCLUSION The above results reveal that EGCG has anti-oxidative stress and anti-inflammatory effects, and ameliorates the condition through the microbiota-gut-liver axis, with potential for the treatment of HE.
Collapse
Affiliation(s)
- Zhengming Zhou
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ke Li
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiankui Guo
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunfeng Wang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaoyao Wei
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Juan Duan
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Muxi Chen
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Shi
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wen Hu
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
33
|
Comorbid Chronic Diseases and Survival in Compensated and Decompensated Cirrhosis: A Population-Based Study. Am J Gastroenterol 2022; 117:2009-2016. [PMID: 35849622 DOI: 10.14309/ajg.0000000000001909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/11/2022] [Indexed: 01/30/2023]
Abstract
INTRODUCTION The burden of liver disease is substantial and increasing; the impact of comorbid chronic diseases on the clinical course of patients with compensated and decompensated cirrhosis is not well-defined. The aim of this study was to examine the individual and additive impact of comorbid chronic diseases on mortality in patients with cirrhosis. METHODS In this population-based study, we used Cox proportional hazards modeling with time-dependent covariates to assess the impact of comorbid chronic diseases (diabetes mellitus, chronic kidney disease, and cardiovascular disease [CVD]) on mortality in patients with cirrhosis in a large, diverse Metroplex. RESULTS There were 35,361 patients with cirrhosis (mean age 59.5 years, 41.8% females, 29.7% non-White, and 17.5% Hispanic ethnicity). Overall, the presence of chronic comorbidities was 1 disease (28.9%), 2 diseases (17.5%), and 3 diseases (12.6%) with a majority having CVD (45%). Adjusted risk of mortality progressively increased with an increase in chronic diseases from 1 (hazard ratio [HR] 2.5, 95% confidence interval [CI] 2.23-2.8) to 2 (HR 3.27.95% CI 2.9-3.69) to 3 (HR 4.52, 95% CI 3.99-5.12) diseases. Survival of patients with compensated cirrhosis and 3 chronic diseases was similar to subsets of decompensated cirrhosis (67.7% as compared with decompensated cirrhosis with 1-3 conditions, 61.9%-63.9%). DISCUSSION In patients with cirrhosis, a focus on comorbid chronic disease(s) as potential management targets may help avoid premature mortality, regardless of etiology. Multidisciplinary care early in the clinical course of cirrhosis is needed in addition to the current focus on management of complications of portal hypertension.
Collapse
|
34
|
Xiao J, Zhao T, Fang W, Chen Y, Wu H, Li P, Chen X, Yan R, Jiang Y, Li S, Yang H, Wu C, Qin X, Liao X, Cai L, Li T, Liu Y. Caveolin-1 signaling-driven mitochondrial fission and cytoskeleton remodeling promotes breast cancer migration. Int J Biochem Cell Biol 2022; 152:106307. [PMID: 36162640 DOI: 10.1016/j.biocel.2022.106307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022]
Abstract
Mitochondria are highly dynamic organelles that constantly divide and fuse to maintain their proper structure and function. Cancer cells are often accompanied by an imbalance of mitochondrial fusion and fission, cancer progression is greatly affected by this imbalance. Here, we found that high-metastatic breast cancer MDA-MB-231 cells possess higher caveolin-1 (Cav-1) expression compared with low-metastatic breast cancer MCF-7 cells or normal breast epithelial MCF-10A cells. Downregulation of Cav-1 decreases the migratory and invasive abilities of MDA-MB-231 cells. Our results further demonstrated that downregulation of Cav-1 facilitated DRP1 and MFN2 to translocate to mitochondria, increasing the inhibitory phosphorylation level of DRP1 at Ser637 by protein kinase A (PKA), resulting in mitochondria elongation. We also showed that downregulation of Cav-1 significantly reduced the Rac1 activity by affecting intracellular reactive oxygen species (ROS) generation, which then inhibited F-actin formation. Based on these findings, we proposed that Cav-1 mediated mitochondrial fission-affected intracellular ROS generation and activated Rho GTPases, leading to F-actin-dependent formation of lamellipodia and promotion of breast cancer motility.
Collapse
Affiliation(s)
- Jinman Xiao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Tian Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Wanli Fang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Yu Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Hao Wu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China
| | - Ping Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xiangyan Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Ran Yan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China
| | - Ying Jiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Shun Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Hong Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Chunhui Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xiang Qin
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Lulu Cai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Tingting Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, PR China.
| |
Collapse
|
35
|
Barbarroja N, Ruiz-Ponce M, Cuesta-López L, Pérez-Sánchez C, López-Pedrera C, Arias-de la Rosa I, Collantes-Estévez E. Nonalcoholic fatty liver disease in inflammatory arthritis: Relationship with cardiovascular risk. Front Immunol 2022; 13:997270. [PMID: 36211332 PMCID: PMC9539434 DOI: 10.3389/fimmu.2022.997270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Liver disease is one of the most important causes of morbidity and mortality worldwide whose prevalence is dramatically increasing. The first sign of hepatic damage is inflammation which could be accompanied by the accumulation of fat called non-alcoholic fatty liver disease (NAFLD), causing damage in the hepatocytes. This stage can progress to fibrosis where the accumulation of fibrotic tissue replaces healthy tissue reducing liver function. The next stage is cirrhosis, a late phase of fibrosis where a high percentage of liver tissue has been replaced by fibrotic tissue and liver functionality is substantially impaired. There is a close interplay of cardiovascular disease (CVD) and hepatic alterations, where different mechanisms mediating this relation between the liver and systemic vasculature have been described. In chronic inflammatory diseases such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA), in which the CVD risk is high, hepatic alterations seem to be more prevalent compared to the general population and other rheumatic disorders. The pathogenic mechanisms involved in the development of this comorbidity are still unraveled, although chronic inflammation, autoimmunity, treatments, and metabolic deregulation seem to have an important role. In this review, we will discuss the involvement of liver disease in the cardiovascular risk associated with inflammatory arthritis, the pathogenic mechanisms, and the recognized factors involved. Likewise, monitoring of the liver disease risk in routine clinical practice through both, classical and novel techniques and indexes will be exposed. Finally, we will examine the latest controversies that have been raised about the effects of the current therapies used to control the inflammation in RA and PsA, in the liver damage of those patients, such as methotrexate, leflunomide or biologics.
Collapse
|
36
|
Biochemical and tissue physiopathological evaluation of the preclinical efficacy of Solanum torvum Swartz leaves for treating oxidative impairment in rats administered a β-cell-toxicant (STZ). Biomed Pharmacother 2022; 154:113605. [PMID: 36030588 DOI: 10.1016/j.biopha.2022.113605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/06/2022] Open
Abstract
The current study evaluated the protective role of Solanum torvum Swartz against diabetes-induced oxidative stress and tissue impairment in streptozotocin (STZ)-intoxicated rats. Rats with STZ (40 mg/kg intraperitoneally (i.p.))-induced diabetes were divided into five groups (n = 5) and treated with (i) normal saline, (ii) 150 mg/kg body weight (BW) of the ethanol extract of S. torvum leaf (EESTL), (ii) 300 mg/kg BW EESTL, (iv) 100 mg/kg BW metformin, and (v) 50 m/kg BW metformin + 100 mg/kg BW EESTL orally for 21 days. Our results revealed that the EESTL displayed dose-dependent ferric-reducing antioxidant power (FRAP) activity, scavenged DPPH radicals (IC50) = 13.52 ± 0.45 µg/mL), and inhibited lipid peroxidation in an in vitro models. In addition, the EESTL demonstrated dose-dependent inhibitory activity against α-amylase (IC50 =138.46 ± 3.97 µg/mL) and promoted glucose uptake across plasma membranes of yeast cells in a manner comparable to that of metformin. Interestingly, the extract demonstrated in vivo blood glucose normalization effects with concomitant increased activities of antioxidant parameters (superoxide dismutase (SOD), catalase, and reduced glutathione (GSH)) while decreasing malondialdehyde (MDA) levels when compared to untreated rats. Similarly, serum biochemical alterations, and tissues (liver, kidney, and pancreases) histopathological aberrations in untreated rats with STZ-induced diabetes were attenuated by treatment with the EESTL. Biometabolite characterization of the extract identified gallic acid (45.81 ppm), catechin (1.18 ppm), p-coumaric acid (1.43e-1 ppm), DL-proline 5-oxo-methyl ester (9.16 %, retention time (RT): 8.57 min), salicylic acid (3.26% and 7.61 min), and butylated hydroxytoluene (4.75%, RT: 10.18 min) as the major polyphenolic compounds in the plant extract. In conclusion, our study provides preclinical evidence of the antioxidant properties and oxidative stress-preventing role of S. torvum in STZ-dosed diabetic rats. Taken together, the EESTL represents a reserve of bioactive metabolites for managing diabetes and associated complications.
Collapse
|
37
|
Luteolin-Rich Extract of Thespesia garckeana F. Hoffm. (Snot Apple) Contains Potential Drug-Like Candidates and Modulates Glycemic and Oxidoinflammatory Aberrations in Experimental Animals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1215097. [PMID: 35941904 PMCID: PMC9356851 DOI: 10.1155/2022/1215097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/16/2022] [Accepted: 07/13/2022] [Indexed: 12/16/2022]
Abstract
The present study evaluated the polyphenolic contents and hypoglycemic, antioxidant, and anti-inflammatory effects of the diethyl ether fraction of Thespesia garckeana using various in vitro and in vivo models. Total phenol and flavonoid contents of the extract were
and
mg/100 g dry weight, respectively. The extract exhibited in vitro antioxidant activities against DPPH, FRAP, LPO, and ABTS with respective half-maximal inhibitory concentration (IC50) values of
,
,
, and
μg/mL. In vitro anti-inflammatory studies using membrane stabilization, protein denaturation, and proteinase activities revealed the effectiveness of the extract with respective IC50 values of
,
, and
μg/mL, while in vitro hypoglycemic analysis of the extract revealed inhibition of α-amylase (IC50
μg/mL) and enhancement of glucose uptake by yeast cells. Interestingly, the extract demonstrated in vivo hypoglycemic and anti-inflammatory effects in streptozotocin- (STZ-) induced diabetic and xylene-induced ear swelling models, respectively. In addition, the extract improved insulin secretion, attenuated pancreatic tissue distortion and oxidative stress, and increased the activities of superoxide dismutase (SOD), catalase, and reduced glutathione (GSH), while reducing the concentration of LPO in the diabetic rats. A high-performance liquid chromatography (HPLC) analysis identified the presence of catechin (
ppm), rutin (
ppm), myricetin, apigenin (
ppm), and luteolin (15.09 ppm) with respective retention times (RTs) of 13.64, 24.269, 27.781, 29.58, and 32.23 min, and these were subjected to a pharmacoinformatics analysis, which revealed their drug-likeness and good pharmacokinetic properties. A docking analysis hinted at the potential of luteolin, the most abundant compound in the extract, for targeting glucose-metabolizing enzymes. Thus, the present study provides preclinical insights into the bioactive constituents of T. garckeana, its antioxidant and anti-inflammatory effects, and its potential for the treatment of diabetes.
Collapse
|
38
|
Ni X, Zhang M, Zhang J, Zhang Z, Dong S, Zhao L. Molecular mechanism of two functional protein structure changes under 2,3-butanedione-induced oxidative stress and apoptosis effects in the hepatocytes. Int J Biol Macromol 2022; 218:969-980. [PMID: 35907461 DOI: 10.1016/j.ijbiomac.2022.07.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022]
Abstract
Food security has become closely watched with the occurrence of a series of food safety incidents in recent years. The widespread adoption of 2,3-butanedione (BUT), as a food additive, is an unpreventable significant risk factor to food security. Based on this, mouse hepatocyte AML-12 cells and two functional proteins (bovine serum albumin and lysozyme) were utilized as targeted receptors to study the adverse effects of BUT at the cellular and molecular levels. Results suggested that BUT could disrupt the redox balance of AML-12 cells, reducing glutathione (GSH) activity fell to 87.18 %, which cannot offset the production of reactive oxygen species (ROS). Meanwhile, the increasement of lipid peroxidation and malondialdehyde (MDA) levels were observed. The mitochondrial membrane function was also abnormal due to the excessive accumulation of ROS and eventually leads to cell apoptosis and death. At the molecular level, the exposure of BUT could alter the skeleton and secondary structure of bovine serum albumin (BSA) and lysozyme (LYZ), and it could statically quench the intrinsic fluorescence of proteins. The combined experiments confirmed proved the potentially toxic effects of BUT accumulation on the detoxification organ, providing theoretical support for the liver diseases caused by BUT exposure, and a reference for the risk assessment of occupational exposure of BUT.
Collapse
Affiliation(s)
- Xinyu Ni
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China
| | - Miao Zhang
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei 071002, PR China
| | - Jing Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China
| | - Zhen Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China
| | - Sijun Dong
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China.
| | - Lining Zhao
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China.
| |
Collapse
|
39
|
Rodríguez-Vargas GS, Santos-Moreno P, Rubio-Rubio JA, Bautista-Niño PK, Echeverri D, Gutiérrez-Castañeda LD, Sierra-Matamoros F, Navarrete S, Aparicio A, Saenz L, Rojas-Villarraga A. Vascular Age, Metabolic Panel, Cardiovascular Risk and Inflammaging in Patients With Rheumatoid Arthritis Compared With Patients With Osteoarthritis. Front Cardiovasc Med 2022; 9:894577. [PMID: 35865390 PMCID: PMC9295407 DOI: 10.3389/fcvm.2022.894577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022] Open
Abstract
IntroductionThe risk of cardiovascular disease (CVD) in patients with rheumatoid arthritis (RA) is 1.5–2 times higher than the general population. The fundamental risk factor for CVD is age, related to alterations at the arterial level. The aim of the study was to compare vascular age (VA) in RA patients under a strict treat-to-target (T2T) strategy with Osteoarthritis (OA) patients without strict follow up and to assess the influence of inflammaging (chronic, sterile, low-grade inflammation related to aging) and metabolic markers on VA.Materials and MethodsThis was an analytical cross-sectional study. Patients with RA (under a strict a T2T strategy) and OA patients without strict clinical follow-up were included. Patients with a history of uncontrolled hypertension, CVD, and/or current smoking were excluded. Sociodemographic, physical activity, and toxic exposure data were obtained. Waist-hip ratio and body mass index (BMI) were measured. DAS-28 (RA) and inflammatory markers, lipid profile, and glycaemia were analyzed. Pulse wave velocity (PWV) was measured (oscillometric method, Arteriograph-TensioMed®). VA was calculated based on PWV. Eleven components of inflammaging [six interleukins, three metalloproteinases (MMP), and two tissue inhibitors of metalloproteinases (TIMP)] were evaluated (Luminex® system). Univariate and bivariate analyzes (Mann Whitney U and chi-square) and correlations (Spearmans Rho) were done to compare the two groups.ResultsA total of 106 patients (74% women) were included, 52/RA and 54/OA. The mean age was 57 (Interquartile range - IQR 9 years). The BMI, waist circumference, and weight were higher in patients with OA (p < 0.001). RA patients had low disease activity (DAS-28-CRP). There were no differences in VA, inflammaging nor in PWV between the two groups. VA had a positive, but weak correlation, with age and LDL. In group of RA, VA was higher in those who did not receive methotrexate (p = 0.013). LDL levels correlated with MMP1, TIMP1, and TIMP2.ConclusionsWhen comparing RA patients with low levels of disease activity with OA patients with poor metabolic control, there are no differences in VA. Furthermore, methotrexate also influences VA in RA patients. This shows that implemented therapies may have an impact on not only the inflammatory state of the joint but also CVD risk.
Collapse
Affiliation(s)
- Gabriel-Santiago Rodríguez-Vargas
- Research Institute, Fundación Universitaria de Ciencias de la Salud-FUCS, Bogotá, Colombia
- Rheumatology, Biomab - Center for Rheumatoid Arthritis, Bogotá, Colombia
- *Correspondence: Gabriel-Santiago Rodríguez-Vargas
| | | | | | | | - Darío Echeverri
- Cardiovascular Prevention Program, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | - Luz-Dary Gutiérrez-Castañeda
- Research Institute, Fundación Universitaria de Ciencias de la Salud-FUCS, Bogotá, Colombia
- Basic Sciences Laboratory, Fundación Universitaria de Ciencias de la Salud-FUCS, Bogotá, Colombia
| | | | - Stephania Navarrete
- Basic Sciences Laboratory, Fundación Universitaria de Ciencias de la Salud-FUCS, Bogotá, Colombia
| | - Anggie Aparicio
- Basic Sciences Laboratory, Fundación Universitaria de Ciencias de la Salud-FUCS, Bogotá, Colombia
| | - Luis Saenz
- Cardiovascular Prevention Program, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | | |
Collapse
|
40
|
Hussain Y, Khan H, Alsharif KF, Hayat Khan A, Aschner M, Saso L. The Therapeutic Potential of Kaemferol and Other Naturally Occurring Polyphenols Might Be Modulated by Nrf2-ARE Signaling Pathway: Current Status and Future Direction. Molecules 2022; 27:4145. [PMID: 35807387 PMCID: PMC9268049 DOI: 10.3390/molecules27134145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Kaempferol is a natural flavonoid, which has been widely investigated in the treatment of cancer, cardiovascular diseases, metabolic complications, and neurological disorders. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor involved in mediating carcinogenesis and other ailments, playing an important role in regulating oxidative stress. The activation of Nrf2 results in the expression of proteins and cytoprotective enzymes, which provide cellular protection against reactive oxygen species. Phytochemicals, either alone or in combination, have been used to modulate Nrf2 in cancer and other ailments. Among them, kaempferol has been recently explored for its anti-cancer and other anti-disease therapeutic efficacy, targeting Nrf2 modulation. In combating cancer, diabetic complications, metabolic disorders, and neurological disorders, kaempferol has been shown to regulate Nrf2 and reduce redox homeostasis. In this context, this review article highlights the current status of the therapeutic potential of kaempferol by targeting Nrf2 modulation in cancer, diabetic complications, neurological disorders, and cardiovascular disorders. In addition, we provide future perspectives on kaempferol targeting Nrf2 modulation as a potential therapeutic approach.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China;
- Department of Pharmacy, Bashir Institute of Health Sciences, Islamabad 45400, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amjad Hayat Khan
- Department of Allied Health Sciences, Bashir Institute of Health Sciences, Islamabad 45400, Pakistan;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10463, USA;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
41
|
Li X, Liu Y, Qi X, Xiao S, Xu Z, Yuan Z, Liu Q, Li H, Ma S, Liu T, Huang Y, Zhang X, Zhang X, Mao Z, Luo G, Deng J. Sensitive Activatable Nanoprobes for Real-Time Ratiometric Magnetic Resonance Imaging of Reactive Oxygen Species and Ameliorating Inflammation In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109004. [PMID: 35276751 DOI: 10.1002/adma.202109004] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Imaging-guided real-time monitoring of the treatment process of inflammatory diseases is important for the timely adjustment of treatment planning to lower unnecessary side effects and improve treatment outcomes. However, it is difficult to reflect the dynamic changes of inflammation in vivo with enough tissue penetration depth. Here a novel nanotheranostic agent (denominated TMSN@PM) with platelet membrane (PM)-coated, tempol-grafted, manganese-doped, mesoporous silica nanoparticles is developed. The PM endows the TMSN@PM with the ability to target inflammation sites, which are verified by fluorescence imaging with Cyanine5 carboxylic acid (Cy5)-labeled TMSN@PM. Under the inflammatory environment (mild acidity and excess reactive oxygen species (ROS)), TMSN@PM can scavenge the excess ROS, thereby alleviating inflammation, degrade, and release manganese ions for enhanced magnetic resonance imaging (MRI). The relaxation changes (ΔR1 ) are almost linearly correlated with the concentration of H2 O2 , which can reflect the degree of inflammation. This method offers a non-invasive imaging-based strategy for early prediction of the therapeutic outcomes in inflammatory therapy, which may contribute to precision medicine in terms of prognostic stratification and therapeutic planning in future.
Collapse
Affiliation(s)
- Xilan Li
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China
| | - Yun Liu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiaowei Qi
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Shilin Xiao
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Zhongsheng Xu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Zhixian Yuan
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China
| | - Qi Liu
- Department of Blood Transfusion, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Haisheng Li
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China
| | - Siyuan Ma
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China
| | - Tengfei Liu
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China
| | - Yong Huang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China
| | - Xiaorong Zhang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China
| | - Xiao Zhang
- International Joint Research Center for Precision Biotherapy, Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Zhengwei Mao
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
42
|
Jing J, Yin S, Liu Y, Liu Y, Wang L, Tang J, Jia G, Liu G, Tian G, Chen X, Cai J, Kang B, Zhao H. Hydroxy Selenomethionine Alleviates Hepatic Lipid Metabolism Disorder of Pigs Induced by Dietary Oxidative Stress via Relieving the Endoplasmic Reticulum Stress. Antioxidants (Basel) 2022; 11:552. [PMID: 35326202 PMCID: PMC8945048 DOI: 10.3390/antiox11030552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
This study used 40 castrated male pigs to determine the protective effects of a new selenium molecule (hydroxy selenomethionine, OH-SeMet) on dietary oxidative stress (DOS) induced hepatic lipid metabolism disorder, and corresponding response of selenotranscriptome. The pigs were randomly grouped into 5 dietary treatments and fed a basal diet formulated with either normal corn and oils or oxidized diet in which the normal corn and oils were replaced by aged corn and oxidized oils, and supplemented with OH-SeMet at 0.0, 0.3, 0.6 and 0.9 mg Se/kg for a period of 16 weeks (n = 8). The results showed that DOS induced liver damage, increased serum alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels, decreased serum triacylglycerol (TG) level, suppressed antioxidant capacity in the liver, and changed lipid metabolism enzyme activity, thus causing lipid metabolism disorder in the liver. The DOS-induced lipid metabolism disorder was accompanied with endoplasmic reticulum (ER) stress, changes in lipid metabolism-related genes and selenotranscriptome in the liver. Dietary Se supplementation partially alleviated the negative impact of DOS on the lipid metabolism. These improvements were accompanied by increases in Se concentration, liver index, anti-oxidative capacity, selenotranscriptome especially 11 selenoprotein-encoding genes, and protein abundance of GPX1, GPX4 and SelS in the liver, as well as the decrease in SelF abundance. The Se supplementation also alleviated ER stress, restored liver lipid metabolism enzyme activity, increased the mRNA expression of lipid synthesis-related genes, and decreased the mRNA levels of lipidolysis-related genes. In conclusion, the dietary Se supplementation restored antioxidant capacity and mitigated ER stress induced by DOS, thus resisting hepatic lipid metabolism disorders that are associated with regulation of selenotranscriptome.
Collapse
Affiliation(s)
- Jinzhong Jing
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Shenggang Yin
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Yan Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Yonggang Liu
- Adisseo Asia Pacific Pte. Ltd., Singapore 188778, Singapore;
| | - Longqiong Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Jiayong Tang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| |
Collapse
|
43
|
Xu H, Cheng B, Wang R, Ding M, Gao Y. Portopulmonary hypertension: Current developments and future perspectives. LIVER RESEARCH 2022. [DOI: 10.1016/j.livres.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Liu Z, Xiang H, Xiang D, Xiao S, Xiang H, Xiao J, Ren H, Hu P, Liu H, Peng M. Revealing potential anti-fibrotic mechanism of Ganxianfang formula based on RNA sequence. Chin Med 2022; 17:23. [PMID: 35180857 PMCID: PMC8855591 DOI: 10.1186/s13020-022-00579-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background Ganxianfang (GXF) formula as a traditional Chinese medicine (TCM) is used for liver fibrosis in clinical practice while its mechanism is unclear. The aim of this study is to explore the molecular mechanism of GXF against CCl4-induced liver fibrosis rats. Methods Detected the main compounds of GXF by UPLC-MS/MS. Evaluated the efficacy of GXF (1.58, 3.15, 4.73 g/kg/day) and Fuzheng Huayu (FZHY, positive control, 0.47 g/kg/day) through serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) levels and histopathological changes. Explored the underlying mechanisms by integrating our total liver RNA sequencing (RNA-seq) data with recent liver single-cell sequencing (scRNA-seq) studies. Verified potential pharmacodynamic substances of GXF by hepatic stellate cell (HSC)-T6 line. Results Main compounds were identified in GXF by UPLC-MS/MS, including baicalin, wogonoside and matrine etc. With GXF-high dose treatment, the elevation of ALT and AST induced by CCl4 were significantly reduced, and the protective effect of GXF-high dose treatment was better than FZHY. Liver histopathological changes were alleviated by GXF-high dose treatment, the ISHAK scoring showed the incidence of liver cirrhosis (F5/F6) decreased from 76.5 to 55.6%. The results of liver hydroxyproline content were consistent with the histopathological changes. RNA-seq analysis revealed the differential genes (DEGs) were mainly enriched in ECM-receptor interaction and chemokine signaling pathway. GXF effectively inhibited collagen deposition and significantly downregulated CCL2 to inhibit the recruitment of macrophages in liver tissue. Integrating scRNA-seq data revealed that GXF effectively inhibited the expansion of scar-associated Trem2+CD9+ macrophages subpopulation and PDGFRα+PDGFRβ+ scar-producing myofibroblasts in the damaged liver, and remodeled the fibrotic niche via regulation of ligand-receptor interactions including TGFβ/EGFR, PDGFB/PDGFRα, and TNFSF12/TNFRSF12a signaling. In vitro experiments demonstrated that baicalin, matrine and hesperidin in GXF inhibited the activation of hepatic stellate cells. Conclusions This study clarified the potential anti-fibrotic effects and molecular mechanism of GXF in CCl4-induced liver fibrosis rats, which deserves further promotion and application. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00579-7.
Collapse
Affiliation(s)
- Zongyi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Huanyu Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Dejuan Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Shuang Xiao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Hongyan Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Jing Xiao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Peng Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Huabao Liu
- Department of Liver Diseases, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Mingli Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
45
|
Effect of Massive Transfusion Protocol on Coagulation Function in Elderly Patients with Multiple Injuries. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2021:2204542. [PMID: 35003318 PMCID: PMC8739893 DOI: 10.1155/2021/2204542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/26/2021] [Indexed: 01/05/2023]
Abstract
Objective To evaluate the effect of massive transfusion protocol on coagulation function in elderly patients with multiple injuries. Methods In this retrospective cohort study, clinical data were collected from a total of 94 elderly patients with multiple injuries, including 44 cases who received routine transfusion protocol (control group) and 50 cases who concurrently received massive transfusion protocol in our hospital (research group). The changes in platelet parameters, coagulation function, and organ dysfunction scores at admission and 24 h after transfusion were compared between the two groups. The 24-hour plasma and red blood cell transfusion volume, length of stay, complications, and mortality of the two groups were analyzed statistically. Results Twenty-four hours after blood transfusion, the hematocrit, platelets, and hemoglobin in the research group were higher than those in the control group, while the activated partial thromboplastin time, prothrombin time, thrombin time, fibrinogen, and scores of Marshall scoring system and Sequential Organ Failure Assessment were lower than those in the control group (P < 0.01). The 24-hour plasma transfusion volume was higher, and the length of intensive care unit (ICU) stay and total length of stay were lower in the research group compared with the control group (P < 0.01). No significant difference was found in the mortality rate between the research group and the control group (10.00% vs. 13.64%, P > 0.05). The incidence of complications in the research group was lower than that in the control group (12.00% vs. 31.82%, P < 0.05). Conclusion Massive transfusion protocol for elderly patients with multiple injuries can improve their coagulation function and platelet parameters, alleviate organ dysfunction, shorten length of ICU stay, and decrease the incidence of complications, which is conducive to improving the prognosis of patients.
Collapse
|
46
|
Alexopoulos SP, Wu WK, Ziogas IA, Matsuoka LK, Rauf MA, Izzy M, Perri R, Schlendorf KH, Menachem JN, Shah AS. Adult Combined Heart-Liver Transplantation: The United States Experience. Transpl Int 2022; 35:10036. [PMID: 35185360 PMCID: PMC8842230 DOI: 10.3389/ti.2021.10036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022]
Abstract
Background: We aimed to review the indications and outcomes of adults undergoing combined heart-liver transplantation (CHLT) in the US using national registry data. Methods: Adult (≥18 years) CHLT recipients in the United Network for Organ Sharing database were included (09/1987–09/2020; era 1 = 1989–2000, era 2 = 2001–2010, era 3 = 2011–2020). Survival analysis was conducted by means of Kaplan-Meier method, log-rank test, and Cox regression. Results: We identified 369 adults receiving CHLT between 12/1989–08/2020. The number of adult CHLT recipients (R2 = 0.75, p < 0.001) and centers performing CHLT (R2 = 0.80, p < 0.001) have increased over the study period. The most common cardiac diagnosis in the first two eras was restrictive/infiltrative cardiomyopathy, while the most common in era 3 was congenital heart disease (p = 0.03). The 1-, 3-, and 5-years patient survival was 86.8, 80.1, and 77.9%, respectively. In multivariable analysis, recipient diabetes [adjusted hazard ratio (aHR) = 2.35, 95% CI: 1.23–4.48], CHLT between 1989-2000 compared with 2011–2020 (aHR = 5.00, 95% CI: 1.13–22.26), and sequential-liver first CHLT compared with sequential-heart first CHLT (aHR = 2.44, 95% CI: 1.15–5.18) were associated with increased risk of mortality. Higher left ventricular ejection fraction was associated with decreased risk of mortality (aHR = 0.96, 95% CI: 0.92–0.99). Conclusion: CHLT is being increasingly performed with evolving indications. Excellent outcomes can be achieved with multidisciplinary patient and donor selection and surgical planning.
Collapse
Affiliation(s)
- Sophoclis P. Alexopoulos
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Sophoclis P. Alexopoulos,
| | - W. Kelly Wu
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ioannis A. Ziogas
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lea K. Matsuoka
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Muhammad A. Rauf
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Manhal Izzy
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Roman Perri
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kelly H. Schlendorf
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jonathan N. Menachem
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ashish S. Shah
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
47
|
Ouyang J, Sun L, Zeng F, Wu S. Rational design of stable heptamethine cyanines and development of a biomarker-activatable probe for detecting acute lung/kidney injuries via NIR-II fluorescence imaging. Analyst 2022; 147:410-416. [DOI: 10.1039/d1an02183d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heptamethine cyanines exhibiting high photo- and chemostability have been developed. And an activatable probe was developed for H2O2 to visualize acute lung and kidney injuries via NIR-II fluorescence imaging.
Collapse
Affiliation(s)
- Juan Ouyang
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lihe Sun
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
48
|
Maharjan S, Bonilla D, Zhang YS. 3D Bioprinting for Liver Regeneration. 3D BIOPRINTING AND NANOTECHNOLOGY IN TISSUE ENGINEERING AND REGENERATIVE MEDICINE 2022:459-488. [DOI: 10.1016/b978-0-12-824552-1.00010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
49
|
Targeted and activatable nanosystem for fluorescent and optoacoustic imaging of immune-mediated inflammatory diseases and therapy via inhibiting NF-κB/NLRP3 pathways. Bioact Mater 2021; 10:79-92. [PMID: 34901531 PMCID: PMC8637343 DOI: 10.1016/j.bioactmat.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) represent a diverse group of diseases and challenges remain for the current medications. Herein, we present an activatable and targeted nanosystem for detecting and imaging IMIDs foci and treating them through blocking NF-κB/NLRP3 pathways. A ROS-activatable prodrug BH-EGCG is synthesized by coupling a near-infrared chromophore with the NF-κB/NLRP3 inhibitor epigallocatechin-3-gallate (EGCG) through boronate bond which serves as both the fluorescence quencher and ROS-responsive moiety. BH-EGCG molecules readily form stable nanoparticles in aqueous medium, which are then coated with macrophage membrane to ensure the actively-targeting capability toward inflammation sites. Additionally, an antioxidant precursor N-acetylcysteine is co-encapsulated into the coated nanoparticles to afford the nanosystem BH-EGCG&NAC@MM to further improve the anti-inflammatory efficacy. Benefiting from the inflammation-homing effect of the macrophage membrane, the nanosystem delivers payloads (diagnostic probe and therapeutic drugs) to inflammatory lesions more efficiently and releases a chromophore and two drugs upon being triggered by the overexpressed in-situ ROS, thus exhibiting better theranostic performance in the autoimmune hepatitis and hind paw edema mouse models, including more salient imaging signals and better therapeutic efficacy via inhibiting NF-κB pathway and suppressing NLRP3 inflammasome activation. This work may provide perceptions for designing other actively-targeting theranostic nanosystems for various inflammatory diseases.
Collapse
|
50
|
Grüngreiff K, Gottstein T, Reinhold D, Blindauer CA. Albumin Substitution in Decompensated Liver Cirrhosis: Don't Forget Zinc. Nutrients 2021; 13:4011. [PMID: 34836265 PMCID: PMC8618355 DOI: 10.3390/nu13114011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Decompensated liver cirrhosis has a dismal prognosis, with patients surviving on average for 2-4 years after the first diagnosis of ascites. Albumin is an important tool in the therapy of cirrhotic ascites. By virtue of its oncotic properties, it reduces the risk of cardiovascular dysfunction after paracentesis. Treatment with albumin also counteracts the development of hepatorenal syndrome and spontaneous bacterial peritonitis. More recently, the positive impact of long-term albumin supplementation in liver disease, based on its pleiotropic non-oncotic activities, has been recognized. These include transport of endo- and exogenous substances, anti-inflammatory, antioxidant and immunomodulatory activities, and stabilizing effects on the endothelium. Besides the growing recognition that effective albumin therapy requires adjustment of the plasma level to normal physiological values, the search for substances with adjuvant activities is becoming increasingly important. More than 75% of patients with decompensated liver cirrhosis do not only present with hypoalbuminemia but also with zinc deficiency. There is a close relationship between albumin and the essential trace element zinc. First and foremost, albumin is the main carrier of zinc in plasma, and is hence critical for systemic distribution of zinc. In this review, we discuss important functions of albumin in the context of metabolic, immunological, oxidative, transport, and distribution processes, alongside crucial functions and effects of zinc and their mutual dependencies. In particular, we focus on the major role of chronic inflammatory processes in pathogenesis and progression of liver cirrhosis and how albumin therapy and zinc supplementation may affect these processes.
Collapse
Affiliation(s)
- Kurt Grüngreiff
- Clinic of Gastroenterology, City Hospital Magdeburg GmbH, 39130 Magdeburg, Germany;
| | - Thomas Gottstein
- Clinic of Gastroenterology, City Hospital Magdeburg GmbH, 39130 Magdeburg, Germany;
| | - Dirk Reinhold
- Medical Faculty, Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University, 39120 Magdeburg, Germany;
| | | |
Collapse
|