1
|
Chen H, Ha HTT, Elghobashi-Meinhardt N, Le NA, Schmiege P, Nguyen LN, Li X. Molecular basis of Spns1-mediated lysophospholipid transport from the lysosome. Proc Natl Acad Sci U S A 2025; 122:e2409596121. [PMID: 39739806 DOI: 10.1073/pnas.2409596121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025] Open
Abstract
Spns1 mediates the rate-limiting efflux of lysophospholipids from the lysosome to the cytosol. Deficiency of Spns1 is associated with embryonic senescence, as well as liver and skeletal muscle atrophy in animal models. However, the mechanisms by which Spns1 transports lysophospholipid and proton sensing remain unclear. Here, we present a cryogenic electron microscopy structure of human Spns1 in lysophosphatidylcholine (LPC)-bound lumen-facing conformation. Notably, LPC snugly binds within the luminal-open cavity, where the molecular dynamics simulations reveal that LPC presents a propensity to enter between transmembrane-helices (TM) 5 and 8. Structural comparisons and cell-based transport assays uncover several pivotal residues at TM 5/8 that orchestrate the transport cycle, which are unique to Spns1. Furthermore, we identify a five-residue network that is crucial for proton-sensing by Spns1. Transference of these network residues to Spns2, a sphingosine-1-phosphate uniporter, causes the chimeric Spns2 to be low pH dependent. Our results reveal molecular insights into lysosomal LPC transport and the proton-sensing mechanism by Spns1.
Collapse
Affiliation(s)
- Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hoa T T Ha
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | | | - Nhung A Le
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore 117456
- Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin, School of Medicine, National University of Singapore, Singapore 117545
- Immunology Translational Research Program, Yong Loo Lin, School of Medicine, National University of Singapore, Singapore 117456
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
2
|
Meng JL, Dong ZX, Chen YR, Lin MH, Liu YC, Roffler SR, Lin WW, Chang CY, Tzou SC, Cheng TL, Huang HC, Li ZQ, Lin YC, Su YC. pH-Responsive Polyethylene Glycol Engagers for Enhanced Brain Delivery of PEGylated Nanomedicine to Treat Glioblastoma. ACS NANO 2025. [PMID: 39749925 DOI: 10.1021/acsnano.4c05906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The blood-brain barrier (BBB) remains a major obstacle for effective delivery of therapeutics to treat central nervous system (CNS) disorders. Although transferrin receptor (TfR)-mediated transcytosis is widely employed for brain drug delivery, the inefficient release of therapeutic payload hinders their efficacy from crossing the BBB. Here, we developed a pH-responsive anti-polyethylene glycol (PEG) × anti-TfR bispecific antibody (pH-PEG engagerTfR) that can complex with PEGylated nanomedicine at physiological pH to trigger TfR-mediated transcytosis in the brain microvascular endothelial cells, while rapidly dissociating from PEGylated nanomedicine at acidic endosomes for efficient release of PEGylated nanomedicine to cross the BBB. The pH-PEG engagerTfR significantly increased the accumulation of PEGylated nanomedicine in the mouse brain compared to wild-type PEG engagerTfR (WT-PEG engagerTfR). pH-PEG engagerTfR-decorated PEGylated liposomal doxorubicin exhibited an enhanced antitumor effect and extended survival in a human glioblastoma (GBM) orthotopic xenograft mice model. Conditional release of PEGylated nanomedicine during BBB-related receptor-mediated transcytosis by pH-PEG engagerTfR is promising for enhanced brain drug delivery to treat CNS disorders.
Collapse
Affiliation(s)
- Jun-Lun Meng
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Zi-Xuan Dong
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yan-Ru Chen
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Meng-Hsuan Lin
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Ching Liu
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wen-Wei Lin
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chin-Yuan Chang
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Shey-Cherng Tzou
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biomedical Science and Environmental Biology, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsiao-Chen Huang
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Zhi-Qin Li
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yen-Cheng Lin
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Cheng Su
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biomedical Science and Environmental Biology, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Pastore R, Yao L, Hatcher N, Helley M, Brownlees J, Desai R. Deficiency in NPC2 results in disruption of mitochondria-late endosome/lysosomes contact sites and endo-lysosomal lipid dyshomeostasis. Sci Rep 2025; 15:325. [PMID: 39747180 PMCID: PMC11696400 DOI: 10.1038/s41598-024-83460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Dysfunction of the endo-lysosomal intracellular Cholesterol transporter 2 protein (NPC2) leads to the onset of Niemann-Pick Disease Type C (NPC), a lysosomal storage disorder. Metabolic and homeostatic mechanisms are disrupted in lysosomal storage disorders (LSDs) hence we characterized a cellular model of NPC2 knock out, to assess alterations in organellar function and inter-organellar crosstalk between mitochondria and lysosomes. We performed characterization of lipid alterations and confirmed altered lysosomal morphology, but no overt changes in oxidative stress markers. Using several techniques, we demonstrated that contacts between mitochondria and late endosomes/lysosomes are reduced in NPC2-/- HEK cells, we observed that the acidic compartments are swollen and lipid dense. Quantification of endogenous lipids in HEKNPC2-/- cells by mass spectrometry reveals accumulation of lipid species indicative of sphingolipid metabolic dysregulation within the lysosome. Specifically, HEK NPC2-/- cells exhibit marked elevation of glucosylsphingosine and glucosylceramides, substrates of beta glucocerebroside (GBA), as well as accumulation of sphingosine and sphingomyelins. Our studies suggest an involvement of NPC2 in the formation of contact sites between mitochondria and lysosomes and support the hypothesis of a role for NPC2 in the endo-lysosomal trafficking pathway and dynamic organellar crosstalk.
Collapse
Affiliation(s)
- Raffaele Pastore
- MSD R&D Innovation Centre, 120 Moorgate, London, EC2M 6UR, UK
- Department of Medicine and Health Sciences 'Vincenzo Tiberio', University of Molise, via F. De Santis, 86100, Campobasso, Italy
| | - Lihang Yao
- Merck Research Laboratories, Merck & Co., Rahway, NJ, USA
| | - Nathan Hatcher
- Merck Research Laboratories, Merck & Co., Rahway, NJ, USA
| | - Martin Helley
- MSD R&D Innovation Centre, 120 Moorgate, London, EC2M 6UR, UK
| | - Janet Brownlees
- MSD R&D Innovation Centre, 120 Moorgate, London, EC2M 6UR, UK
| | - Radha Desai
- MSD R&D Innovation Centre, 120 Moorgate, London, EC2M 6UR, UK.
| |
Collapse
|
4
|
Nandhini Devi G, Yadav N, Jayashankaran C, Margret JJ, Krishnamoorthy M, Lakshmi A S, Sundaram CM, Karthikeyan NP, Thelma BK, Srisailapathy CRS. Genetic analyses of a large consanguineous south Indian family reveal novel variants in NAGPA and four hitherto unreported genes in developmental stuttering. Ann Hum Genet 2025; 89:31-46. [PMID: 39382170 DOI: 10.1111/ahg.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Developmental stuttering, a multifactorial speech disorder with remarkable rate of spontaneous recovery pose challenges for gene discoveries. Exonic variants in GNPTAB, GNPTG, and NAGPA involved in lysosomal pathway and AP4E1, IFNAR1, and ARMC3-signaling genes reported till date explain only ∼2.1% - 3.7% of persistent stuttering cases. AIM We aimed to identify additional genetic determinants of stuttering in a multiplex family by exome sequencing (n = 27) and further validation on additional extended family members (n = 21). MATERIALS & METHODS We employed hypothesis-free and pathway-based analyses. RESULTS A novel heterozygous exonic variant NM_016256.4:c.322G > A in NAGPA with reduced penetrance and predicted pathogenicity segregated with the phenotype in a large subset of the family. Reanalysis to identify additional disease-causing variant(s) revealed exonic heterozygous variants each in RIMS2 and XYLT1 in severely affected members; and IGF2R variant in a small subset of the family. Furthermore, pathway-based analysis uncovered NM_022089.4:c.3529G > A in ATP13A2 (PARK9) in affected members; and variants in GNPTAB and GNPTG of minor significance in a few affected members. DISCUSSION Genotype-phenotype correlation efforts suggest that the combined effect of gene variants at multiple loci or variants in a single gene in different subsets of the pedigree (genetic heterogeneity) may be contributing to stuttering in this family. More importantly, variants identified in ATP13A2, a Parkinson's disease gene also implicated in lysosomal dysfunction, and RIMS2 suggests for the first time a likely role of dopamine signaling in stuttering. CONCLUSION Screening for these variants in independent stuttering cohorts would be astute.
Collapse
Affiliation(s)
- G Nandhini Devi
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Navneesh Yadav
- Department of Genetics, University of Delhi, South Campus, New Delhi, India
| | - Chandru Jayashankaran
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Jeffrey Justin Margret
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Mathuravalli Krishnamoorthy
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Sorna Lakshmi A
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | | | - N P Karthikeyan
- DOAST (Doctrine Oriented Art of Symbiotic Treatment) Speech & Hearing Care Center and Integrated Therapy Center for Autism, Chennai, Tamil Nadu, India
| | - B K Thelma
- Department of Genetics, University of Delhi, South Campus, New Delhi, India
| | - C R Srikumari Srisailapathy
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Simonaro CM, Yasuda M, Schuchman EH. Endocannabinoid receptor 2 is a potential biomarker and therapeutic target for the lysosomal storage disorders. J Inherit Metab Dis 2025; 48:e12813. [PMID: 39569490 DOI: 10.1002/jimd.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Herein, we studied the expression of endocannabinoid receptor 2 (CB2R), a known inflammation mediator, in several lysosomal storage disorder (LSD) animal models and evaluated it as a potential biomarker and therapeutic target for these diseases. CB2R was highly elevated in the plasma of Farber disease and mucopolysaccharidosis (MPS) type IIIA mice, followed by Fabry disease and MPS type I mice. Mice with acid sphingomyelinase-deficient Niemann-Pick disease (ASMD) and rats with MPS type VI exhibited little or no plasma CB2R elevation. High-level expression of CB2R was also observed in tissues of Farber and MPS IIIA mice. Treatment of MPS IIIIA patient cells with CB2R agonists led to a reduction of CB2R and monocyte chemoattractant protein-1 (MCP-1), a chemotactic factor that is elevated in this LSD. Treatment of MPS IIIA mice with one of these agonists (JWH133) led to a reduction of plasma and tissue CB2R and MCP-1, a reduction of glial fibrillary acidic protein (GFAP) in the brain, and an improvement in hanging test performance. JWH133 treatment of Farber disease mice also led to a reduction of MCP-1 in tissues and plasma, and treatment of these mice by enzyme replacement therapy (ERT) led to a reduction of plasma CB2R, indicating its potential to monitor treatment response. Overall, these findings suggest that CB2R should be further examined as a potential therapeutic target for the LSDs and may also be a useful biomarker to monitor the impact of therapies.
Collapse
Affiliation(s)
- Calogera M Simonaro
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Makiko Yasuda
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Edward H Schuchman
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Spataro F, Ria R, Chaoul N, Solimando AG, Desantis V, Vacca A, Di Bona D, Girolamo AD, Macchia L. Two-year follow-up after drug desensitization in mucopolysaccharidosis. Orphanet J Rare Dis 2024; 19:491. [PMID: 39731157 DOI: 10.1186/s13023-024-03516-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Mucopolysaccharidosis (MPS) type 1 S and type 2 are rare lysosomal storage disorders characterized by impaired enzyme production, resulting in glycosaminoglycans accumulation within lysosomes. Enzyme Replacement Therapy (ERT) with laronidase and idursulfase are first line treatments, respectively. However, infusion-related hypersensitivity reactions (HR) may lead to ERT discontinuation. Thus, desensitization can be performed to restore ERT. METHODS We report on a two-year follow-up after a combined desensitization approach in two MPS patients experiencing HR to ERT. This approach consists of intravenous rapid desensitization combined with the subcutaneous allergen immunotherapy-like desensitization with the culprit recombinant enzyme. RESULTS The first patient, suffering from MPS type I, underwent to the combined desensitization approach, and subsequently tolerated weekly standard laronidase infusions for 13 months when HR occurred again. Then, a monthly omalizumab (anti-IgE monoclonal antibody) administration was implemented allowing the patient to restore ERT. The second patient, diagnosed with MPS type 2, was subjected to a similar combined desensitization strategy with idursulfase, and achieved a total desensitization after one year, confirmed by negative skin tests. Thus, he continued standard ERT infusions without HR occurrence. CONCLUSION The combined desensitization approach proved effective in conferring immunotolerance for at least one year in both MPS patients, also demonstrated by the negative skin tests in one patient. However, when immunotolerance to ERT is lost, omalizumab administration can be a valid option in restoring ERT.
Collapse
Affiliation(s)
- Federico Spataro
- Post Graduate School in Allergology and Internal Medicine "Guido Baccelli", Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, 70124, Italy.
| | - Roberto Ria
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, 70124, Italy
| | - Nada Chaoul
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Antonio Giovanni Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, 70124, Italy
| | - Vanessa Desantis
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Section of Pharmacology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Angelo Vacca
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, 70124, Italy
| | - Danilo Di Bona
- Internal Medicine, Liver Unit, Department of Medical and Surgical Sciences, C.U.R.E. (University Centre for Liver Disease Research and Treatment), University of Foggia, 71122, Foggia, Italy
| | - Attilio Di Girolamo
- Post Graduate School in Allergology and Internal Medicine "Guido Baccelli", Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, 70124, Italy
| | - Luigi Macchia
- Post Graduate School in Allergology and Internal Medicine "Guido Baccelli", Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, 70124, Italy
| |
Collapse
|
7
|
Chávez MN, Arora P, Meer M, Marques IJ, Ernst A, Morales Castro RA, Mercader N. Spns1-dependent endocardial lysosomal function drives valve morphogenesis through Notch1-signaling. iScience 2024; 27:111406. [PMID: 39720516 PMCID: PMC11667069 DOI: 10.1016/j.isci.2024.111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/15/2024] [Accepted: 11/13/2024] [Indexed: 12/26/2024] Open
Abstract
Autophagy-lysosomal degradation is a conserved homeostatic process considered to be crucial for cardiac morphogenesis. However, both its cell specificity and functional role during heart development remain unclear. Here, we introduced zebrafish models to visualize autophagic vesicles in vivo and track their temporal and cellular localization in the larval heart. We observed a significant accumulation of autolysosomal and lysosomal vesicles in the atrioventricular and bulboventricular regions and their respective valves. We addressed the role of lysosomal degradation based on the Spinster homolog 1 (spns1) mutant (not really started, nrs). n rs larvae displayed morphological and functional cardiac defects, including abnormal endocardial organization, impaired valve formation and retrograde blood flow. Single-nuclear transcriptome analyses revealed endocardial-specific differences in lysosome-related genes and alterations of notch1-signalling. Endocardial-specific overexpression of spns1 and notch1 rescued features of valve formation and function. Altogether, our results reveal a cell-autonomous role of lysosomal processing during cardiac valve formation affecting notch1-signalling.
Collapse
Affiliation(s)
- Myra N. Chávez
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Prateek Arora
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Marco Meer
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Ines J. Marques
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Alexander Ernst
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Rodrigo A. Morales Castro
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Nadia Mercader
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Buco F, Clemente F, Morrone A, Vanni C, Moya SE, Cardona F, Goti A, Marradi M, Matassini C. Multivalent GCase Enhancers: Synthesis and Evaluation of Glyco-Gold Nanoparticles Decorated with Trihydroxypiperidine Iminosugars. Bioconjug Chem 2024. [PMID: 39700399 DOI: 10.1021/acs.bioconjchem.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The present study reports the preparation of the first multivalent iminosugars built onto a glyco-gold nanoparticle core (glyco-AuNPs) capable of stabilizing or enhancing the activity of the lysosomal enzyme GCase, which is defective in Gaucher disease. An N-nonyltrihydroxypiperidine was selected as the bioactive iminosugar unit and further functionalized, via copper-catalyzed alkyne-azide cycloaddition, with a thiol-ending linker that allowed the conjugation to the gold core. These bioactive ligands were obtained with either a linear monomeric or dendritic trimeric arrangement of the iminosugar. The concentration of the bioactive iminosugar on the gold surface was modulated with different amounts of a glucoside bearing a short thiol-ending spacer as the inner ligand. The new mixed-ligand coated glyco-AuNPs were fully characterized, and those with the highest colloidal stability in aqueous medium were subjected to biological evaluation. Glyco-AuNPs with trimeric iminosugar bioactive units showed the ability to stabilize recombinant GCase in a thermal denaturation assay, while Glyco-AuNPs with monomeric iminosugar bioactive units were able to enhance the activity of mutant GCase in Gaucher patient's fibroblasts by 1.9-fold at 2.2 μM.
Collapse
Affiliation(s)
- Francesca Buco
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| | - Francesca Clemente
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| | - Amelia Morrone
- Laboratory of Molecular Genetics of Neurometabolic Diseases, Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence 50139, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 24, Firenze 50139, Italy
| | - Costanza Vanni
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| | - Sergio E Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, Donostia-San Sebastián, Guipúzcoa 20014, Spain
| | - Francesca Cardona
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| | - Andrea Goti
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| | - Marco Marradi
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| | - Camilla Matassini
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
9
|
Monkhouse H, Deane JE. Linking glycosphingolipid metabolism to disease-related changes in the plasma membrane proteome. Biochem Soc Trans 2024; 52:2477-2486. [PMID: 39641585 DOI: 10.1042/bst20240315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Glycosphingolipids (GSLs) are vital components of the plasma membrane (PM), where they play crucial roles in cell function. GSLs form specialised membrane microdomains that organise lipids and proteins into functional platforms for cell adhesion and signalling. GSLs can also influence the function of membrane proteins and receptors, via direct protein-lipid interactions thereby affecting cell differentiation, proliferation, and apoptosis. Research into GSL-related diseases has primarily focussed on lysosomal storage disorders, where defective enzymes lead to the accumulation of GSLs within lysosomes, causing cellular dysfunction and disease. However, recent studies are uncovering the broader cellular impact of GSL imbalances including on a range of organelles and cellular compartments such as the mitochondria, endoplasmic reticulum and PM. In this review we describe the mechanisms by which GSL imbalances can influence the PM protein composition and explore examples of the changes that have been observed in the PM proteome upon GSL metabolic disruption. Identifying and understanding these changes to the PM protein composition will enable a more complete understanding of lysosomal storage diseases and provide new insights into the pathogenesis of other GSL-related diseases, including cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Holly Monkhouse
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, U.K
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, U.K
| |
Collapse
|
10
|
Barber HM, Pater AA, Gagnon KT, Damha MJ, O'Reilly D. Chemical engineering of CRISPR-Cas systems for therapeutic application. Nat Rev Drug Discov 2024:10.1038/s41573-024-01086-0. [PMID: 39690326 DOI: 10.1038/s41573-024-01086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/19/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) technology has transformed molecular biology and the future of gene-targeted therapeutics. CRISPR systems comprise a CRISPR-associated (Cas) endonuclease and a guide RNA (gRNA) that can be programmed to guide sequence-specific binding, cleavage, or modification of complementary DNA or RNA. However, the application of CRISPR-based therapeutics is challenged by factors such as molecular size, prokaryotic or phage origins, and an essential gRNA cofactor requirement, which impact efficacy, delivery and safety. This Review focuses on chemical modification and engineering approaches for gRNAs to enhance or enable CRISPR-based therapeutics, emphasizing Cas9 and Cas12a as therapeutic paradigms. Issues that chemically modified gRNAs seek to address, including drug delivery, physiological stability, editing efficiency and off-target effects, as well as challenges that remain, are discussed.
Collapse
Affiliation(s)
- Halle M Barber
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Adrian A Pater
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Keith T Gagnon
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec, Canada.
| | - Daniel O'Reilly
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
11
|
Zhou L, Wang Y, Xu Y, Zhang Y, Zhu C. Advances in AAV-mediated gene replacement therapy for pediatric monogenic neurological disorders. Mol Ther Methods Clin Dev 2024; 32:101357. [PMID: 39559557 PMCID: PMC11570947 DOI: 10.1016/j.omtm.2024.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Pediatric monogenetic diseases encompass a spectrum of debilitating neurological disorders that affect infants and children, often resulting in profound cognitive and motor impairments. Gene replacement therapy holds immense promise in addressing the underlying genetic defects responsible for these conditions. Adeno-associated virus (AAV) vectors have emerged as a leading platform for delivering therapeutic genes due to their safety profile and ability to transduce various cell types, including neurons. This review highlights recent advancements in AAV-mediated gene replacement therapy for pediatric monogenetic diseases, focusing on key preclinical and clinical studies. We discuss various strategies to enhance transduction efficiency, target specificity, and safety. Furthermore, we explore challenges such as immune responses, along with innovative approaches to overcome these obstacles. Moreover, we examine the clinical outcomes and safety profiles of AAV-based gene therapies in pediatric patients, providing insights into the feasibility and efficacy of these interventions. Finally, we discuss future directions and potential avenues for further research to optimize the therapeutic potential of AAV-delivered gene replacement therapy for pediatric encephalopathies, ultimately aiming to improve the quality of life for affected individuals and their families.
Collapse
Affiliation(s)
- Livia Zhou
- Henan Neurodevelopment Engineering Research Center for Children, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou 450018, China
| | - Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for Children, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou 450018, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for Children, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou 450018, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Sanner A, Hardt R, Matzner U, Winter D. Data-Independent Acquisition-Parallel Reaction Monitoring Acquisition Reveals Age-Dependent Alterations of the Lysosomal Proteome in a Mouse Model of Metachromatic Leukodystrophy. Anal Chem 2024; 96:19567-19575. [PMID: 39620638 DOI: 10.1021/acs.analchem.4c04378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
For the reproducible analysis of peptides by mass spectrometry-based proteomics, data-independent acquisition (DIA) and parallel/multiple reaction monitoring (PRM/MRM) deliver unrivalled performance with respect to sensitivity and reproducibility. Both approaches, however, come with distinct advantages and shortcomings. While DIA enables unbiased whole proteome analysis, it shows limitations with respect to dynamic range and the quantification of low-abundant proteins. PRM, on the other hand, is ideally suited to reproducibly quantify selected proteins even if they are low-abundant, but no knowledge of the remaining sample is obtained. Here, we combine both methods into a mixed DIA-PRM acquisition approach, merging their benefits while operating at reduced machine run times and needed sample amounts. We demonstrate the feasibility of DIA-PRM by merging a scheduled PRM assay for 103 peptides, representing 59 low-abundant lysosomal hydrolases, with a DIA data acquisition scheme. After benchmarking DIA-PRM with mouse embryonic fibroblast (MEF) whole cell lysates, we use the approach to investigate age-related proteomic changes in brain tissues of a mouse model of metachromatic leukodystrophy (MLD). This revealed an MLD-related progressive increase in distinct classes of lysosomal hydrolases as well as alterations of proteins related to myelin and cellular metabolism. All data are available via ProteomeXchange with PXD052313.
Collapse
Affiliation(s)
- Anne Sanner
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| | - Robert Hardt
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| | - Ulrich Matzner
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| |
Collapse
|
13
|
Shiomi K, Hayashi K, Ishii H, Kamei T, Shimanouchi T, Nakamura H, Ichikawa S. Phase-separated cationic giant unilamellar vesicles as templates for the polymerization of tetraethyl orthosilicate (TEOS). BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1867:184403. [PMID: 39626823 DOI: 10.1016/j.bbamem.2024.184403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
Unlike homogeneous liposomes, phase-separated liposomes have the potential to be attractive soft materials because they exhibit different properties for each phase. In this study, phase separation was observed when liposomes were prepared using 1,2-dioleoyloxy-3-trimethylammonium propane chloride (DOTAP), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and cholesterol. The pH of the DOTAP-rich phase was evaluated using a coumarin derivative, and measurements showed that DOTAP molecules accumulated hydroxyl ions (OH-) in the DOTAP-rich phase. Such accumulation of OH- was not observed when homogeneous DSPC liposomes were used. The difference in local concentration of OH- in each phase was applied to prepare hollow silica particles with large pores. The OH- promotes the polymerization of tetraethyl orthosilicate (TEOS). Therefore, TEOS polymerized preferentially in the DOTAP-rich phase, whereas a silica membrane barely formed in the DSPC-rich phase.
Collapse
Affiliation(s)
- Kohei Shiomi
- Master's Program in Agro-Bioresources Science and Technology, Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Department of Materials Science and Chemical Engineering, Faculty of Advanced Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan
| | - Keita Hayashi
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan.
| | - Haruyuki Ishii
- Department of Sustainable Environmental Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1, Tokiwadai, Ube 755-8611, Japan
| | - Toshiyuki Kamei
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan
| | - Toshinori Shimanouchi
- Division of Environmental Science, Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama 700-8530, Japan
| | - Hidemi Nakamura
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan
| | - Sosaku Ichikawa
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
14
|
Schwalm S, Manaila R, Oftring A, Schaefer L, von Gunten S, Pfeilschifter J. The contribution of the sphingosine 1-phosphate signaling pathway to chronic kidney diseases: recent findings and new perspectives. Pflugers Arch 2024; 476:1845-1861. [PMID: 39384640 PMCID: PMC11582123 DOI: 10.1007/s00424-024-03029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Chronic kidney disease (CKD) is a multifactorial condition with diverse etiologies, such as diabetes mellitus, hypertension, and genetic disorders, often culminating in end-stage renal disease (ESRD). A hallmark of CKD progression is kidney fibrosis, characterized by the excessive accumulation of extracellular matrix components, for which there is currently no effective anti-fibrotic therapy. Recent literature highlights the critical role of sphingosine 1-phosphate (S1P) signaling in CKD pathogenesis and renal fibrosis. This review provides an in-depth analysis of the latest findings on S1P metabolism and signaling in renal fibrosis and in specific CKDs, including diabetic nephropathy (DN), lupus nephritis (LN), focal segmental glomerulosclerosis (FSGS), Fabry disease (FD), and IgA nephropathy (IgAN). Emerging studies underscore the therapeutic potential of modulating S1P signaling with receptor modulators and inhibitors, such as fingolimod (FTY720) and more selective agents like ozanimod and cenerimod. Additionally, the current knowledge about the effects of established kidney protective therapies such as glucocorticoids and SGLT2 and ACE inhibitors on S1P signaling will be summarized. Furthermore, the review highlights the potential role of S1P as a biomarker for disease progression in CKD models, particularly in Fabry disease and diabetic nephropathy. Advanced technologies, including spatial transcriptomics, are further refining our understanding of S1P's role within specific kidney compartments. Collectively, these insights emphasize the need for continued research into S1P signaling pathways as promising targets for CKD treatment strategies.
Collapse
Affiliation(s)
- Stephanie Schwalm
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - Roxana Manaila
- Institut für Pharmakologie, Universität Bern, Inselspital, INO-F, CH-3011, Bern, Switzerland
| | - Anke Oftring
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Liliana Schaefer
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Stephan von Gunten
- Institut für Pharmakologie, Universität Bern, Inselspital, INO-F, CH-3011, Bern, Switzerland
| | - Josef Pfeilschifter
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| |
Collapse
|
15
|
Castaman G, Linari S, Barbato A, Costantino N, Dionisi-Vici C, Menni F, Procopio E, Ramat S, Torquati F, Verrecchia E, Scarpa M. The Unmet Needs of Lysosomal Storage Disorders from Early Diagnosis to Caregiving Pathways: An Italian Perspective. J Clin Med 2024; 13:6981. [PMID: 39598125 PMCID: PMC11595360 DOI: 10.3390/jcm13226981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objective: Lysosomal storage diseases (LSDs) are a group of rare, inborn, metabolic errors characterized by deficiencies in normal lysosomal function and by the intralysosomal accumulation of undegraded substrates, resulting in the damage of multiple organ systems. The spectrum of clinical manifestations is extremely heterogeneous. LSD diagnosis and management still present many issues. Methods: A group of Italian experts and patients' representatives met to discuss some critical aspects, and among the most impactful are early diagnosis, the transition of the patient from pediatric to adult age, territorial management, and the multidisciplinary approach. Results: Possible solutions to diagnostic delays may be a widespread newborn screening and screening programs on selected populations. The lack of a structured transition process could be helped by the drafting of shared diagnostic and therapeutic care pathways beyond the availability of databases accessible to the different levels that manage a patient. Territorial management could benefit from telemedicine, but a homogeneous diffusion of home therapy, not yet everywhere possible, is essential. A fundamental role is played by the patient associations, which should be increasingly involved in the political choices. It is also crucial to create structured multidisciplinary teams of experts for disease management and comorbidities. A transversal need appears to be greater training on LSDs. In Italy, the "Statement of Udine" was developed to guide further steps towards improvements in inherited metabolic medicine in adults, referencing the experience from the United Kingdom. Conclusions: Much can be done for the early diagnosis and management of LSDs with an effective treatment, but many aspects need improvement for the overall management of the patient. An investment in dedicated resources, formal recognition, and training is needed to address these unmet needs.
Collapse
Affiliation(s)
- Giancarlo Castaman
- Center for Bleeding Disorders and Coagulation, Department of Oncology, Careggi University Hospital, 50134 Florence, Italy;
| | - Silvia Linari
- Center for Bleeding Disorders and Coagulation, Department of Oncology, Careggi University Hospital, 50134 Florence, Italy;
| | - Antonio Barbato
- Department of Clinical Medicine and Surgery, “Federico II” University Hospital, 80131 Naples, Italy;
| | - Niko Costantino
- Head of Public Affairs, Cometa ASMME (Association for the Study of Inherited Metabolic Disorders), 35020 Padua, Italy;
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases and Hepatology, Ospedale Pediatrico Bambino Gesù IRCCS, 00165 Rome, Italy;
| | - Francesca Menni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Regional Clinical Center for Expanded Newborn Screening, 20122 Milan, Italy;
| | | | - Silvia Ramat
- Parkinson Unit, Neuromuscular-Skeletal and Sensory Organs Department, AOU Careggi, 50134 Firenze, Italy;
| | - Fernanda Torquati
- President of the Italian Gaucher Association and Member of the European Gaucher Alliance, 50066 Reggello, Italy;
| | - Elena Verrecchia
- Periodic Fever and Rare Diseases Research Centre, Catholic University of Sacred Heart, 00168 Rome, Italy;
| | - Maurizio Scarpa
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy;
| |
Collapse
|
16
|
Xie X, Liu Z, Xiang X, Wang S, Gao Z, Xu L, Ding F, Li Q. Mapping Endocytic Vesicular Acidification with a pH-Responsive DNA Nanomachine. Chembiochem 2024; 25:e202400363. [PMID: 39166897 DOI: 10.1002/cbic.202400363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Mapping the endocytic vesicular acidification process is of prior importance to better understand the health and pathological processes of cells. Herein, by integrating a pH-sensitive i-motif and a pair of fluorescence resonance energy transfer (FRET) into a tetrahedral DNA framework (TDF), we develop a pH-responsive DNA nanomachine, allowing for efficient sensing of pH from 7.0 to 5.5 via the pH-triggered spatial proximity modulation of FRET. The inheriting endo-lysosome-targeting ability of TDF enables spatiotemporal tracking of endocytic vesicle acidification during the endosomal maturation process. Analysis of pH-dependent FRET response at single fluorescent spot level reveals the significant difference of endocytic vesicular acidification between normal and cancer cells. The performance of pH-responsive DNA nanomachine underlines its potential for studies on vesicle acidification-related pathologies as a universal platform.
Collapse
Affiliation(s)
- Xiaodong Xie
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 20024, China
| | - Zhiyuan Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 20024, China
| | - Xuelin Xiang
- Department of Liver Surgery, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Institute of Transplantation, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shaopeng Wang
- Department of Liver Surgery, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Institute of Transplantation, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhaoshuai Gao
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 20024, China
| | - Lifeng Xu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 20024, China
| | - Fei Ding
- Department of Liver Surgery, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Institute of Transplantation, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 20024, China
- WLA Laboratories, World Laureates Association, Shanghai, 201203, China
| |
Collapse
|
17
|
Baumer Y, Irei J, Boisvert WA. Cholesterol crystals in the pathogenesis of atherosclerosis. Nat Rev Cardiol 2024:10.1038/s41569-024-01100-3. [PMID: 39558130 DOI: 10.1038/s41569-024-01100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/20/2024]
Abstract
The presence of cholesterol crystals (CCs) in tissues was first described more than 100 years ago. CCs have a pathogenic role in various cardiovascular diseases, including myocardial infarction, aortic aneurysm and, most prominently, atherosclerosis. Although the underlying mechanisms and signalling pathways involved in CC formation are incompletely understood, numerous studies have highlighted the existence of CCs at various stages of atheroma progression. In this Review, we summarize the mechanisms underlying CC formation and the role of CCs in cardiovascular disease. In particular, we explore the established links between lipid metabolism across various cell types and the formation of CCs, with a focus on CC occurrence in the vasculature. We also discuss CC-induced inflammation as one of the pathogenic features of CCs in the atheroma. Finally, we summarize the therapeutic strategies aimed at reducing CC-mediated atherosclerotic burden, including approaches to inhibit CC formation in the vasculature or to mitigate the inflammatory response triggered by CCs. Addressing CC formation might emerge as a crucial component in our broader efforts to combat cardiovascular disease.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, NIH, NHLBI, Bethesda, MD, USA
| | - Jason Irei
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
18
|
Balak CD, Schlachetzki JCM, Lana AJ, West E, Hong C, DuGal J, Zhou Y, Li B, Saisan P, Spann NJ, Sarsani V, Pasillas MP, O'Brien S, Gordts P, Stevens B, Kamme F, Glass CK. Mechanisms driving epigenetic and transcriptional responses of microglia in a neurodegenerative lysosomal storage disorder model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623296. [PMID: 39605454 PMCID: PMC11601307 DOI: 10.1101/2024.11.12.623296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Lysosomal dysfunction is causally linked to neurodegeneration in many lysosomal storage disorders (LSDs) and is associated with various age-related neurodegenerative diseases 1,2 , but there is limited understanding of the mechanisms by which altered lysosomal function leads to changes in gene expression that drive pathogenic cellular phenotypes. To investigate this question, we performed systematic imaging, transcriptomic, and epigenetic studies of major brain cell types in Sgsh null (KO) mice, a preclinical mouse model for Sanfilippo syndrome (Mucopolysaccharidosis Type IIIA, MPS-IIIA) 3,4 . MPS-IIIA is a neurodegenerative LSD caused by homozygous loss-of-function (LoF) mutations in SGSH which results in severe early-onset developmental, behavioral, and neurocognitive impairment 5-15 . Electron microscopy, immunohistochemistry, and single-nucleus RNA-sequencing analysis revealed microglia as the cell type exhibiting the most dramatic phenotypic alterations in Sgsh KO mice. Further temporal analysis of microglia gene expression showed dysregulation of genes associated with lysosomal function and immune signaling pathways beginning early in the course of the disease. Sgsh deficiency similarly resulted in increases in open chromatin and histone acetylation at thousands of putative microglia-specific enhancers associated with upregulated genes but had much less impact on the epigenetic landscapes of neurons or oligodendrocytes. We provide evidence for dominant and context-dependent roles of members of the MITF/TFE family as major drivers of microglia-specific epigenetic and transcriptional changes resulting from lysosomal stress that are dependent on collaborative interactions with PU.1/ETS and C/EBP transcription factors. Lastly, we show that features of the transcriptomic and epigenetic alterations observed in murine Sgsh deficiency are also observed in microglia derived from mouse models of age-related neurodegeneration and in human Alzheimer's disease patients, revealing common and disease-specific transcriptional mechanisms associated with disease-associated microglia phenotypes.
Collapse
|
19
|
Bohnsack RN, Misra SK, Liu J, Ishihara-Aoki M, Pereckas M, Aoki K, Ren G, Sharp JS, Dahms NM. Lysosomal enzyme binding to the cation-independent mannose 6-phosphate receptor is regulated allosterically by insulin-like growth factor 2. Sci Rep 2024; 14:26875. [PMID: 39505925 PMCID: PMC11541866 DOI: 10.1038/s41598-024-75300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
The cation-independent mannose 6-phosphate receptor (CI-MPR) is clinically significant in the treatment of patients with lysosomal storage diseases because it functions in the biogenesis of lysosomes by transporting mannose 6-phosphate (M6P)-containing lysosomal enzymes to endosomal compartments. CI-MPR is multifunctional and modulates embryonic growth and fetal size by downregulating circulating levels of the peptide hormone insulin-like growth factor 2 (IGF2). The extracellular region of CI-MPR comprises 15 homologous domains with binding sites for M6P-containing ligands located in domains 3, 5, 9, and 15, whereas IGF2 interacts with residues in domain 11. How a particular ligand affects the receptor's conformation or its ability to bind other ligands remains poorly understood. To address these questions, we purified a soluble form of the receptor from newborn calf serum, carried out glycoproteomics to define the N-glycans at its 19 potential glycosylation sites, probed its ability to bind lysosomal enzymes in the presence and absence of IGF2 using surface plasmon resonance, and assessed its conformation in the presence and absence of IGF2 by negative-staining electron microscopy and hydroxyl radical protein footprinting studies. Together, our findings support the hypothesis that IGF2 acts as an allosteric inhibitor of lysosomal enzyme binding by inducing global conformational changes of CI-MPR.
Collapse
Affiliation(s)
- Richard N Bohnsack
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Sandeep K Misra
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS, 38677, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mayumi Ishihara-Aoki
- Translational Metabolomics Shared Resource, Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Michaela Pereckas
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Kazuhiro Aoki
- Translational Metabolomics Shared Resource, Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joshua S Sharp
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS, 38677, USA
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, 38677, USA
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd., Milwaukee, WI, 53226, USA.
| |
Collapse
|
20
|
Byeon SK, Kim J, Wegwerth PJ, Zenka R, George JP, Pinto E Vairo F, Oglesbee D, Schultz MJ, Matern D, Pandey A. Development of a Multiplexed Sphingolipids Method for Diagnosis of Inborn Errors of Ceramide Metabolism. Clin Chem 2024; 70:1366-1374. [PMID: 39206579 DOI: 10.1093/clinchem/hvae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Sphingolipids play a crucial role in cellular functions and are essential components of cell membranes, signaling molecules, and lipid metabolism. In particular, ceramide is a key intermediate in sphingolipid metabolism and defects in ceramide metabolism can lead to various inborn errors of metabolism, making ceramides important targets for clinical screening and diagnosis. Detecting altered concentration patterns of sphingolipids is desirable for distinguishing related inborn errors of metabolism for diagnosis and treatment monitoring. METHODS We developed a liquid chromatography-tandem mass spectrometry method with a pathway-oriented approach to focus on sphingolipids involved in ceramide metabolism. A total of 47 sphingolipids bearing different head groups and side chains were targeted. Precision/reproducibility, linearity, and spike recovery extraction efficiency tests were performed on plasma and serum samples from confirmed cases of sphingolipidosis. RESULTS Linearity of the method showed the coefficient of determination (r2) for all standards to be >0.99 with a slope of 1.00 ± 0.01. Intra- and interday reproducibility of standards spiked into plasma and serum revealed a coefficient of variation <20%. Spike and recovery assessment showed recovery values of 80%-120% for all standards. Altered levels of sphingolipids from patients with hereditary sensory and autonomic neuropathy caused by pathogenic variants in SPTLC2 and hypomyelinating leukodystrophy related to variants in DEGS1 were detected, in agreement with trends reported in earlier studies confirming the utility of this pathway-centric method. CONCLUSIONS This method can serve as a useful tool to simultaneously monitor sphingolipids, enabling screening and diagnosis of inborn errors of ceramide metabolism.
Collapse
Affiliation(s)
- Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Jinyong Kim
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Peter Jared Wegwerth
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Roman Zenka
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - John P George
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Filippo Pinto E Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MNUnited States
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Matthew J Schultz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Dietrich Matern
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Center for Individualized Medicine, Mayo Clinic, Rochester, MNUnited States
| |
Collapse
|
21
|
Stiles AR, Donti TR, Hall PL, Wilcox WR. Biomarker testing for lysosomal diseases: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2024:101242. [PMID: 39499245 DOI: 10.1016/j.gim.2024.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 11/07/2024] Open
Abstract
Measurement of lysosomal disease (LD) biomarkers can reveal valuable information about disease status. Lyso-globotriaosylceramide (lyso-Gb3), glucosylsphingosine (lyso-Gb1), galactosylsphingosine (psychosine), and glucose tetrasaccharide (Glca1-6Glca1-4Glca1-4Glc, Glc4) are biomarkers associated with Fabry, Gaucher, Krabbe, and Pompe disease, respectively. Clinical biomarker testing is performed to guide patient management, including monitoring disease progression and initiating treatment, and in diagnostic evaluations of either symptomatic patients or asymptomatic individuals with a positive family history or abnormal newborn screen. Biomarker analysis can be performed through independent analysis of a single analyte or as a multiplex assay measuring analytes for more than one disorder utilizing liquid chromatographic separation and tandem mass spectrometric detection. These guidelines were developed to provide technical standards for biomarker analysis, results interpretation, and results reporting, highlighting Fabry, Gaucher, Krabbe, and Pompe diseases as examples.
Collapse
Affiliation(s)
- Ashlee R Stiles
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | | | - Patricia L Hall
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - William R Wilcox
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
22
|
Mo J, Kong P, Ding L, Fan J, Ren J, Lu C, Guo F, Chen L, Mo R, Zhong Q, Wen Y, Gu T, Wang Q, Li S, Guo T, Gao T, Cao X. Lysosomal TFEB-TRPML1 Axis in Astrocytes Modulates Depressive-like Behaviors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403389. [PMID: 39264289 PMCID: PMC11538709 DOI: 10.1002/advs.202403389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Lysosomes are important cellular structures for human health as centers for recycling, signaling, metabolism and stress adaptation. However, the potential role of lysosomes in stress-related emotions has long been overlooked. Here, it is found that lysosomal morphology in astrocytes is altered in the medial prefrontal cortex (mPFC) of susceptible mice after chronic social defeat stress. A screen of lysosome-related genes revealed that the expression of the mucolipin 1 gene (Mcoln1; protein: mucolipin TRP channel 1) is decreased in susceptible mice and depressed patients. Astrocyte-specific knockout of mucolipin TRP channel 1 (TRPML1) induced depressive-like behaviors by inhibiting lysosomal exocytosis-mediated adenosine 5'-triphosphate (ATP) release. Furthermore, this stress response of astrocytic lysosomes is mediated by the transcription factor EB (TFEB), and overexpression of TRPML1 rescued depressive-like behaviors induced by astrocyte-specific knockout of TFEB. Collectively, these findings reveal a lysosomal stress-sensing signaling pathway contributing to the development of depression and identify the lysosome as a potential target organelle for antidepressants.
Collapse
Affiliation(s)
- Jia‐Wen Mo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Peng‐Li Kong
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Li Ding
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jun Fan
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jing Ren
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Cheng‐Lin Lu
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Microbiome Medicine CenterDepartment of Laboratory MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
| | - Fang Guo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Liang‐Yu Chen
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Ran Mo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Qiu‐Ling Zhong
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - You‐Lu Wen
- Department of Psychology and BehaviorGuangdong 999 Brain HospitalInstitute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510515China
| | - Ting‐Ting Gu
- Department of Psychology and BehaviorGuangdong 999 Brain HospitalInstitute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510515China
| | - Qian‐Wen Wang
- Department of BioinformaticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Shu‐Ji Li
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Ting Guo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Tian‐Ming Gao
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Microbiome Medicine CenterDepartment of Laboratory MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
23
|
Elendu C, Babawale EA, Babarinde FO, Babatunde OD, Chukwu C, Chiegboka SF, Shode OP, Ngozi-ibeh JK, Njoku A, Ikokwu MN, Kaka GU, Hassan JI, Fatungase OO, Osifodunrin T, Udoeze CA, Ikeji VI. Neurological manifestations of lysosomal storage diseases. Ann Med Surg (Lond) 2024; 86:6619-6635. [PMID: 39525762 PMCID: PMC11543150 DOI: 10.1097/ms9.0000000000002611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024] Open
Abstract
Lysosomal storage diseases (LSDs) encompass a group of rare inherited metabolic disorders characterized by the accumulation of undegraded substrates within lysosomes, leading to multisystemic manifestations, including profound neurological involvement. This article provides a concise overview of the neurological manifestations of LSDs, with a focus on central nervous system (CNS) involvement and treatment strategies. While the paper intricacies of each LSD subtype and its associated CNS manifestations, it aims to provide a summary of the essential findings and implications. The neurological manifestations of LSDs encompass a spectrum of symptoms, including cognitive impairment, motor dysfunction, seizures, and sensory deficits, which significantly impact patients' quality of life and pose therapeutic challenges. Current treatment strategies primarily aim to alleviate symptoms and slow disease progression, with limited success in reversing established neurological damage. Enzyme replacement therapy, substrate reduction therapy, and emerging gene therapies hold promise for addressing CNS involvement in LSDs. However, challenges such as blood-brain barrier penetration and long-term efficacy remain. In addition to discussing treatment modalities, this article highlights the importance of early diagnosis, multidisciplinary care, and patient advocacy in optimizing outcomes for individuals affected by LSDs. Ethical considerations are also addressed, including equitable access to emerging treatments and integrating personalized medicine approaches. Overall, this article underscores the complex interplay between genetics, neuroscience, and clinical care in understanding and managing the neurological manifestations of LSDs while emphasizing the need for continued research and collaboration to advance therapeutic interventions and improve patient outcomes.
Collapse
|
24
|
Collardeau-Frachon S. [Adult and pediatric thesaurismosis: Lysosomal, lipid and glycogen storage diseases]. Ann Pathol 2024; 44:432-452. [PMID: 39358197 DOI: 10.1016/j.annpat.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Thesaurismosis or storage diseases are rare genetic disorders due to an abnormal accumulation of an organic compound or its metabolite within cells. These conditions are either secondary to a defect in catabolism caused by enzymatic dysfunction or to a deficiency in transport proteins. They encompass lysosomal storage diseases, lipid storage diseases or dyslipidemias, and glycogen storage disorders or glycogenoses. Diagnosis is typically based on clinical and biological anomalies but may be made or suggested by the pathologist when symptoms are atypical or when biochemical or genetic tests are challenging to interpret. For accurate diagnosis, it is crucial to freeze a portion of the samples. Special staining and electronic microscopy can also aid in the diagnostic process. As the diagnosis is multidisciplinary, collaboration with clinicians, biochemists and geneticists is essential.
Collapse
Affiliation(s)
- Sophie Collardeau-Frachon
- Institut de pathologie des hospices civils de Lyon, groupement hospitalier Est, 59, boulevard Pinel, 69677 Bron cedex, France.
| |
Collapse
|
25
|
Lobzaev E, Stracquadanio G. Dirichlet latent modelling enables effective learning and sampling of the functional protein design space. Nat Commun 2024; 15:9309. [PMID: 39468034 PMCID: PMC11519351 DOI: 10.1038/s41467-024-53622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Engineering proteins with desired functions and biochemical properties is pivotal for biotechnology and drug discovery. While computational methods based on evolutionary information are reducing the experimental burden by designing targeted libraries of functional variants, they still have a low success rate when the desired protein has few or very remote homologous sequences. Here we propose an autoregressive model, called Temporal Dirichlet Variational Autoencoder (TDVAE), which exploits the mathematical properties of the Dirichlet distribution and temporal convolution to efficiently learn high-order information from a functionally related, possibly remotely similar, set of sequences. TDVAE is highly accurate in predicting the effects of amino acid mutations, while being significantly 90% smaller than the other state-of-the-art models. We then use TDVAE to design variants of the human alpha galactosidase enzymes as potential treatment for Fabry disease. Our model builds a library of diverse variants which retain sequence, biochemical and structural properties of the wildtype protein, suggesting they could be suitable for enzyme replacement therapy. Taken together, our results show the importance of accurate sequence modelling and the potential of autoregressive models as protein engineering and analysis tools.
Collapse
Affiliation(s)
- Evgenii Lobzaev
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
26
|
Arik E, Keskin Ö, Albayrak S, Keskin M, Cesur M, Karaoglan M, Inal G, Yildirim A, Kucukosmanoglu E. Allergic reactions to enzyme replacement therapy in children with lysosomal storage diseases and their management. J Pediatr Endocrinol Metab 2024; 37:866-874. [PMID: 39243118 DOI: 10.1515/jpem-2024-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVES Human recombinant enzyme replacement therapy, given to compensate for genetic enzyme deficiency in lysosomal storage diseases, delays the progression of the disease and improves the quality of life. However, enzyme replacement therapy may cause hypersensitivity reactions. Within the scope of this research, we aimed to elucidate the frequency and clinical features of hypersensitivity reactions against enzyme replacement therapy in children with lysosomal storage diseases and clarify the management of these reactions. METHODS Medical records of pediatric patients with lysosomal storage disease and receiving enzyme replacement therapy were retrospectively reviewed, and patients who experienced allergic reactions were included in the study. The demographic characteristics of the patients, their diagnosis, the responsible enzyme, the time at which the reaction started and at what dose, the signs and symptoms associated with the reaction, diagnostic tests, the management of the reaction, and the protocol applied for the maintenance of enzyme replacement therapy after the reaction were recorded. RESULTS Hypersensitivity reactions developed in 18 of 71 patients (25.3 %) who received enzyme replacement therapy. The most common cutaneous findings were observed. Anaphylaxis developed in 6 of 18 patients. Patients who experienced recurrent hypersensitivity reactions with premedication or a slower infusion rate, those with positive skin test results, and patients who developed anaphylaxis were given enzyme replacement therapy with desensitization. CONCLUSIONS HSR may develop during enzyme replacement therapy, which are vital in lysosomal storage diseases, and discontinuation of enzyme replacement therapy is a significant loss for patients with metabolic disorders. These reactions can be treated with premedication and long-term infusions, but some patients may require desensitization protocols for continued treatment.
Collapse
Affiliation(s)
- Elif Arik
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Gaziantep University, Gaziantep, Türkiye
| | - Özlem Keskin
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Gaziantep University, Gaziantep, Türkiye
| | - Serpil Albayrak
- Faculty of Medicine, Department of Pediatric Endocrinology, Gaziantep University, Gaziantep, Türkiye
| | - Mehmet Keskin
- Faculty of Medicine Department of Pediatric Endocrinology and Metabolism, Gaziantep University, Gaziantep, Türkiye
| | - Mahmut Cesur
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Gaziantep University, Gaziantep, Türkiye
| | - Murat Karaoglan
- Faculty of Medicine, Department of Pediatric Endocrinology, Gaziantep University, Gaziantep, Türkiye
| | - Gaye Inal
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Gaziantep University, Gaziantep, Türkiye
| | - Ahmet Yildirim
- Faculty of Medicine, Department of Pediatric Endocrinology, Gaziantep University, Gaziantep, Türkiye
| | - Ercan Kucukosmanoglu
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Gaziantep University, Gaziantep, Türkiye
| |
Collapse
|
27
|
Zou GY, Bi F, Yu YL, Liu MX, Chen S. Tetrahedral DNA-Based Ternary Recognition Ratiometric Fluorescent Probes for Real-Time In Situ Resolving Lysosome Subpopulations in Living Cells via Cl -, Ca 2+, and pH. Anal Chem 2024; 96:16639-16648. [PMID: 39382097 DOI: 10.1021/acs.analchem.4c02723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Lysosomes are multifunctional organelles vital for cellular homeostasis with distinct subpopulations characterized by varying levels of Cl-, Ca2+, and H+. In situ visualization of these parameters is crucial for lysosomal research, yet developing probes that can simultaneously detect multiple ions remains challenging. Herein, we developed a lysosome-targeting ternary recognition ratiometric fluorescent probe based on tetrahedral DNA nanostructures (TDNs) to analyze lysosome subpopulations by Cl-, Ca2+, and pH. The TDN probe is assembled from four single-stranded DNAs, each end-modified with responsive fluorophores (Pr-Cl for Cl-, Pr-Ca for Ca2+, and Pr-pH for pH) or a reference fluorophore (Cy5). The fluorophores are integrated at the vertices of the rigid TDN to minimize mutual interference, and their fixed stoichiometry establishes a robust ternary recognition ratiometric fluorescence sensor for in situ resolution of lysosome subpopulations in living cells. Accordingly, a rise in lysosome subpopulations 2/6 characterized by low [Cl-], medium/high [Ca2+], and high pH was observed in the Niemann-Pick disease model cells but seldom observed in the control group. Conversely, there was a marked decline in the fraction of subpopulations 1/4/5 characterized by high [Cl-], medium to low [Ca2+], and pH. These changes were substantially reversed upon treatment. The probe holds great promise for studying lysosome subpopulations and the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Guang-Yue Zou
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Fan Bi
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Meng-Xian Liu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi, Japan
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan City, Guangdong 528311, China
| |
Collapse
|
28
|
Kraus F, He Y, Swarup S, Overmyer KA, Jiang Y, Brenner J, Capitanio C, Bieber A, Jen A, Nightingale NM, Anderson BJ, Lee C, Paulo JA, Smith IR, Plitzko JM, Gygi SP, Schulman BA, Wilfling F, Coon JJ, Harper JW. Global cellular proteo-lipidomic profiling of diverse lysosomal storage disease mutants using nMOST. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586828. [PMID: 38585873 PMCID: PMC10996675 DOI: 10.1101/2024.03.26.586828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Lysosomal storage diseases (LSDs) comprise ~50 monogenic disorders marked by the buildup of cellular material in lysosomes, yet systematic global molecular phenotyping of proteins and lipids is lacking. We present a nanoflow-based multi-omic single-shot technology (nMOST) workflow that quantifies HeLa cell proteomes and lipidomes from over two dozen LSD mutants. Global cross-correlation analysis between lipids and proteins identified autophagy defects, notably the accumulation of ferritinophagy substrates and receptors, especially in NPC1 -/- and NPC2 -/- mutants, where lysosomes accumulate cholesterol. Autophagic and endocytic cargo delivery failures correlated with elevated lyso-phosphatidylcholine species and multi-lamellar structures visualized by cryo-electron tomography. Loss of mitochondrial cristae, MICOS-complex components, and OXPHOS components rich in iron-sulfur cluster proteins in NPC2 -/- cells was largely alleviated when iron was provided through the transferrin system. This study reveals how lysosomal dysfunction affects mitochondrial homeostasis and underscores nMOST as a valuable discovery tool for identifying molecular phenotypes across LSDs.
Collapse
Affiliation(s)
- Felix Kraus
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- equal contribution
| | - Yuchen He
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- equal contribution
| | - Sharan Swarup
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine A Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yizhi Jiang
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Johann Brenner
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
- CryoEM Technology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Cristina Capitanio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Anna Bieber
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nicole M Nightingale
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Benton J Anderson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chan Lee
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ian R Smith
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jürgen M Plitzko
- CryoEM Technology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Brenda A Schulman
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Wilfling
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - J Wade Harper
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
29
|
Kukreja S, Soomro AI, Lohana S, Kalwar A, Ochani S, Rachna, Hasibuzzaman MA. Intracranial tumor in a patient with mucopolysaccharidosis type 1 (Scheie syndrome): An extremely rare combination. Heliyon 2024; 10:e38652. [PMID: 39397911 PMCID: PMC11471181 DOI: 10.1016/j.heliyon.2024.e38652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Scheie syndrome is a mild variant of mucopolysaccharidosis type I (MPS I), a rare group of lysosomal storage diseases that affect multiple organ systems. It is rarely associated with neoplasia. To the best of our knowledge, only a single case of mucopolysaccharidosis associated with a brain tumor has been reported, and it was nearly three decades ago. We present the case of a 10-year-old female with Scheie syndrome associated with a brain tumor. Physical and laboratory findings were suggestive of Scheie syndrome. A skeletal survey also revealed a spectrum of dysostosis multiplex supporting MPS. Children with MPS can have rapidly enlarging head sizes due to hydrocephalus, but our patient had several red flags that demanded further evaluation. A brain MRI revealed a mass in the fourth ventricle and a biopsy of the mass revealed pilocytic astrocytoma grade 1. Intraventricular pilocytic astrocytoma itself is a rare occurrence, accounting for only 4%-15.6 % of all pilocytic astrocytomas. Altered mucopolysaccharide metabolism can be involved in tumor pathogenesis, but the exact mechanism is unknown. Mucopolysaccharidoses, being a group of complicated disorders, are difficult to manage, and many symptoms can be missed in children due to intellectual disability. This case highlights the importance of suspecting brain tumors in children with mucopolysaccharidoses who present with signs and symptoms of increased intracranial pressure. Prompt diagnosis and management can save the child from dire neurological consequences.
Collapse
Affiliation(s)
- Sandhaya Kukreja
- Department of Medicine, Dow University of Health and Sciences, Karachi, Pakistan
| | - Atiqa Imtiaz Soomro
- Department of Paediatrics, Dr. Ruth K. M. Pfau Civil Hospital Karachi, Pakistan
| | - Sapna Lohana
- Department of Medicine, Dow University of Health and Sciences, Karachi, Pakistan
| | - Asifa Kalwar
- Department of Medicine, Dow University of Health and Sciences, Karachi, Pakistan
| | - Sidhant Ochani
- Department of Medicine, Khairpur Medical College, Khairpur Mir's, Pakistan
| | - Rachna
- Department of Medicine, Ghulam Muhammad Mahar Medical College, Sukkur, Pakistan
| | | |
Collapse
|
30
|
Ghoochani A, Heiby JC, Rawat ES, Medoh UN, Di Fraia D, Dong W, Gastou M, Nyame K, Laqtom NN, Gomez-Ospina N, Ori A, Abu-Remaileh M. Cell-Type Resolved Protein Atlas of Brain Lysosomes Identifies SLC45A1-Associated Disease as a Lysosomal Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618295. [PMID: 39464040 PMCID: PMC11507716 DOI: 10.1101/2024.10.14.618295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Mutations in lysosomal genes cause neurodegeneration and neurological lysosomal storage disorders (LSDs). Despite their essential role in brain homeostasis, the cell-type-specific composition and function of lysosomes remain poorly understood. Here, we report a quantitative protein atlas of the lysosome from mouse neurons, astrocytes, oligodendrocytes, and microglia. We identify dozens of novel lysosomal proteins and reveal the diversity of the lysosomal composition across brain cell types. Notably, we discovered SLC45A1, mutations in which cause a monogenic neurological disease, as a neuron-specific lysosomal protein. Loss of SLC45A1 causes lysosomal dysfunction in vitro and in vivo. Mechanistically, SLC45A1 plays a dual role in lysosomal sugar transport and stabilization of V1 subunits of the V-ATPase. SLC45A1 deficiency depletes the V1 subunits, elevates lysosomal pH, and disrupts iron homeostasis causing mitochondrial dysfunction. Altogether, our work redefines SLC45A1-associated disease as a LSD and establishes a comprehensive map to study lysosome biology at cell-type resolution in the brain and its implications for neurodegeneration.
Collapse
Affiliation(s)
- Ali Ghoochani
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
- These authors contributed equally
| | - Julia C. Heiby
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) e.V., Jena, Germany
- These authors contributed equally
| | - Eshaan S. Rawat
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
| | - Uche N. Medoh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
- Current affiliation: Arc Institute, Palo Alto, CA 94304, USA
| | - Domenico Di Fraia
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) e.V., Jena, Germany
- Current affiliation: Department of Biology, University of Rochester, Rochester, NY, USA
| | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
| | - Marc Gastou
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kwamina Nyame
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
| | - Nouf N. Laqtom
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) e.V., Jena, Germany
- Co-senior authors
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
- Co-senior authors
- Lead author
| |
Collapse
|
31
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
32
|
Ługowska A. Oncological Aspects of Lysosomal Storage Diseases. Cells 2024; 13:1664. [PMID: 39404425 PMCID: PMC11475748 DOI: 10.3390/cells13191664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Lysosomal storage diseases (LSDs) are caused by the deficient activity of a lysosomal hydrolase or the lack of a functional membrane protein, transporter, activator, or other protein. Lysosomal enzymes break down macromolecular compounds, which contribute to metabolic homeostasis. Stored, undegraded materials have multiple effects on cells that lead to the activation of autophagy and apoptosis, including the toxic effects of lyso-lipids, the disruption of intracellular Ca2+ ion homeostasis, the secondary storage of macromolecular compounds, the activation of signal transduction, apoptosis, inflammatory processes, deficiencies of intermediate compounds, and many other pathways. Clinical observations have shown that carriers of potentially pathogenic variants in LSD-associated genes and patients affected with some LSDs are at a higher risk of cancer, although the results of studies on the frequency of oncological diseases in LSD patients are controversial. Cancer is found in individuals affected with Gaucher disease, Fabry disease, Niemann-Pick type A and B diseases, alfa-mannosidosis, and sialidosis. Increased cancer prevalence has also been reported in carriers of a potentially pathogenic variant of an LSD gene, namely CLN3, SGSH, GUSB, NEU1, and, to a lesser extent, in other genes. In this review, LSDs in which oncological events can be observed are described.
Collapse
Affiliation(s)
- Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957 Warsaw, Poland
| |
Collapse
|
33
|
Bhosale S, Kandalkar S, Gilormini PA, Akintola O, Rowland R, Adabala PJP, King D, Deen MC, Chen X, Davies GJ, Vocadlo DJ, Bennet AJ. Development of Tunable Mechanism-Based Carbasugar Ligands that Stabilize Glycoside Hydrolases through the Formation of Transient Covalent Intermediates. ACS Catal 2024; 14:14769-14779. [PMID: 39386917 PMCID: PMC11459473 DOI: 10.1021/acscatal.4c04549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024]
Abstract
Mutations in many members of the set of human lysosomal glycoside hydrolases cause a wide range of lysosomal storage diseases. As a result, much effort has been directed toward identifying pharmacological chaperones of these lysosomal enzymes. The majority of the candidate chaperones are active site-directed competitive iminosugar inhibitors but these have met with limited success. As a first step toward an alternative class of pharmacological chaperones we explored the potential of small molecule mechanism-based reversible covalent inhibitors to form transient enzyme-inhibitor adducts. By serial synthesis and kinetic analysis of candidate molecules, we show that rational tuning of the chemical reactivity of glucose-configured carbasugars delivers cyclohexenyl-based allylic carbasugar that react with the lysosomal enzyme β-glucocerebrosidase (GCase) to form covalent enzyme-adducts with different half-lives. X-ray structural analysis of these compounds bound noncovalently to GCase, along with the structures of the covalent adducts of compounds that reacted with the catalytic nucleophile of GCase, reveal unexpected reactivities of these compounds. Using differential scanning fluorimetry, we show that formation of a transient covalent intermediate stabilizes the folded enzyme against thermal denaturation. In addition, these covalent adducts break down to liberate the active enzyme and a product that is no longer inhibitory. We further show that the one compound, which reacts through an unprecedented SN1'-like mechanism, exhibits exceptional reactivity-illustrated by this compound also covalently labeling an α-glucosidase. We anticipate that such carbasugar-based single turnover covalent ligands may serve as pharmacological chaperones for lysosomal glycoside hydrolases and other disease-associated retaining glycosidases. The unusual reactivity of these molecules should also open the door to creation of new chemical biology probes to explore the biology of this important superfamily of glycoside hydrolases.
Collapse
Affiliation(s)
- Sandeep Bhosale
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Sachin Kandalkar
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Pierre-André Gilormini
- Department
of Molecular Biology and Biochemistry, Simon
Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Oluwafemi Akintola
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Rhianna Rowland
- Department
of Chemistry, University of York, York YO10 5DD, U.K.
| | - Pal John Pal Adabala
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Dustin King
- Department
of Molecular Biology and Biochemistry, Simon
Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Matthew C. Deen
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Xi Chen
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Gideon J. Davies
- Department
of Chemistry, University of York, York YO10 5DD, U.K.
| | - David J. Vocadlo
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department
of Molecular Biology and Biochemistry, Simon
Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Andrew J. Bennet
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
34
|
Lee RG, Rudler DL, Rackham O, Filipovska A. Interorganelle phospholipid communication, a house not so divided. Trends Endocrinol Metab 2024; 35:872-883. [PMID: 38972781 DOI: 10.1016/j.tem.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024]
Abstract
The presence of membrane-bound organelles with specific functions is one of the main hallmarks of eukaryotic cells. Organelle membranes are composed of specific lipids that govern their function and interorganelle communication. Discoveries in cell biology using imaging and omic technologies have revealed the mechanisms that drive membrane remodeling, organelle contact sites, and metabolite exchange. The interplay between multiple organelles and their interdependence is emerging as the next frontier for discovery using 3D reconstruction of volume electron microscopy (vEM) datasets. We discuss recent findings on the links between organelles that underlie common functions and cellular pathways. Specifically, we focus on the metabolism of ether glycerophospholipids that mediate organelle dynamics and their communication with each other, and the new imaging techniques that are powering these discoveries.
Collapse
Affiliation(s)
- Richard G Lee
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre (QEIIMC), Nedlands, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Danielle L Rudler
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre (QEIIMC), Nedlands, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Oliver Rackham
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre (QEIIMC), Nedlands, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia; Curtin Medical School, Curtin University, Bentley, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Aleksandra Filipovska
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre (QEIIMC), Nedlands, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia; The University of Western Australia Centre for Child Health Research, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia.
| |
Collapse
|
35
|
Segura Schmitz L, Hennermann JB, Lollert A. [Lysosomal storage disorders - Fabry disease and Gaucher disease]. Dtsch Med Wochenschr 2024; 149:1263-1269. [PMID: 39384207 DOI: 10.1055/a-2295-1592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Lysosomal storage disorders (LSD) are a heterogenous group of inborn errors of metabolism due to lysosomal malfunction. LSDs affect 1 in 5000 live births, albeit every LSD itself has a low incidence. The most common LSDs are Fabry disease and Gaucher disease. The underlying cause mainly is an enzyme deficiency but may also be due to defects in transport or activation proteins, which result in progressive intra- and extra-lysosomal accumulation of undegraded storage material. The lysosomes play a key role in degradation and cellular recycling of macromolecules. Besides disturbance of cellular function, substrate accumulation may result in secondary toxic and/or inflammatory processes. For treatment of Fabry and Gaucher disease, several therapeutic approaches are approved including enzyme replacement therapy, chaperon therapy for Fabry disease and substrate reduction therapy for Gaucher disease.
Collapse
|
36
|
Kuo A, Hla T. Regulation of cellular and systemic sphingolipid homeostasis. Nat Rev Mol Cell Biol 2024; 25:802-821. [PMID: 38890457 DOI: 10.1038/s41580-024-00742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
One hundred and fifty years ago, Johann Thudichum described sphingolipids as unusual "Sphinx-like" lipids from the brain. Today, we know that thousands of sphingolipid molecules mediate many essential functions in embryonic development and normal physiology. In addition, sphingolipid metabolism and signalling pathways are dysregulated in a wide range of pathologies, and therapeutic agents that target sphingolipids are now used to treat several human diseases. However, our understanding of sphingolipid regulation at cellular and organismal levels and their functions in developmental, physiological and pathological settings is rudimentary. In this Review, we discuss recent advances in sphingolipid pathways in different organelles, how secreted sphingolipid mediators modulate physiology and disease, progress in sphingolipid-targeted therapeutic and diagnostic research, and the trans-cellular sphingolipid metabolic networks between microbiota and mammals. Advances in sphingolipid biology have led to a deeper understanding of mammalian physiology and may lead to progress in the management of many diseases.
Collapse
Affiliation(s)
- Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Kim J, Yu YS, Choi Y, Lee DH, Han S, Kwon J, Noda T, Ikawa M, Kim D, Kim H, Ballabio A, Kim KI, Baek SH. USF2 and TFEB compete in regulating lysosomal and autophagy genes. Nat Commun 2024; 15:8334. [PMID: 39333072 PMCID: PMC11436898 DOI: 10.1038/s41467-024-52600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/15/2024] [Indexed: 09/29/2024] Open
Abstract
Autophagy, a highly conserved self-digestion process crucial for cellular homeostasis, is triggered by various environmental signals, including nutrient scarcity. The regulation of lysosomal and autophagy-related processes is pivotal to maintaining cellular homeostasis and basal metabolism. The consequences of disrupting or diminishing lysosomal and autophagy systems have been investigated; however, information on the implications of hyperactivating lysosomal and autophagy genes on homeostasis is limited. Here, we present a mechanism of transcriptional repression involving upstream stimulatory factor 2 (USF2), which inhibits lysosomal and autophagy genes under nutrient-rich conditions. We find that USF2, together with HDAC1, binds to the CLEAR motif within lysosomal genes, thereby diminishing histone H3K27 acetylation, restricting chromatin accessibility, and downregulating lysosomal gene expression. Under starvation, USF2 competes with transcription factor EB (TFEB), a master transcriptional activator of lysosomal and autophagy genes, to bind to target gene promoters in a phosphorylation-dependent manner. The GSK3β-mediated phosphorylation of the USF2 S155 site governs USF2 DNA-binding activity, which is involved in lysosomal gene repression. These findings have potential applications in the treatment of protein aggregation-associated diseases, including α1-antitrypsin deficiency. Notably, USF2 repression is a promising therapeutic strategy for lysosomal and autophagy-related diseases.
Collapse
Affiliation(s)
- Jaebeom Kim
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Young Suk Yu
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Yehwa Choi
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Do Hui Lee
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Soobin Han
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Junhee Kwon
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Taichi Noda
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Dongha Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunkyung Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
38
|
Bonacina F, Zhang X, Manel N, Yvan-Charvet L, Razani B, Norata GD. Lysosomes in the immunometabolic reprogramming of immune cells in atherosclerosis. Nat Rev Cardiol 2024:10.1038/s41569-024-01072-4. [PMID: 39304748 DOI: 10.1038/s41569-024-01072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Lysosomes have a central role in the disposal of extracellular and intracellular cargo and also function as metabolic sensors and signalling platforms in the immunometabolic reprogramming of macrophages and other immune cells in atherosclerosis. Lysosomes can rapidly sense the presence of nutrients within immune cells, thereby switching from catabolism of extracellular material to the recycling of intracellular cargo. Such a fine-tuned degradative response supports the generation of metabolic building blocks through effectors such as mTORC1 or TFEB. By coupling nutrients to downstream signalling and metabolism, lysosomes serve as a crucial hub for cellular function in innate and adaptive immune cells. Lysosomal dysfunction is now recognized to be a hallmark of atherogenesis. Perturbations in nutrient-sensing and signalling have profound effects on the capacity of immune cells to handle cholesterol, perform phagocytosis and efferocytosis, and limit the activation of the inflammasome and other inflammatory pathways. Strategies to improve lysosomal function hold promise as novel modulators of the immunoinflammatory response associated with atherosclerosis. In this Review, we describe the crosstalk between lysosomal biology and immune cell function and polarization, with a particular focus on cellular immunometabolic reprogramming in the context of atherosclerosis.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Xiangyu Zhang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU), Oncoage, Nice, France
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Giuseppe D Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
39
|
Zhang X, Wu H, Tang B, Guo J. Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson's disease. Transl Neurodegener 2024; 13:48. [PMID: 39267121 PMCID: PMC11391654 DOI: 10.1186/s40035-024-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The development of PD is closely linked to genetic and environmental factors, with GBA1 variants being the most common genetic risk. Mutations in the GBA1 gene lead to reduced activity of the coded enzyme, glucocerebrosidase, which mediates the development of PD by affecting lipid metabolism (especially sphingolipids), lysosomal autophagy, endoplasmic reticulum, as well as mitochondrial and other cellular functions. Clinically, PD with GBA1 mutations (GBA1-PD) is characterized by particular features regarding the progression of symptom severity. On the therapeutic side, the discovery of the relationship between GBA1 variants and PD offers an opportunity for targeted therapeutic interventions. In this review, we explore the genotypic and phenotypic correlations, etiologic mechanisms, biomarkers, and therapeutic approaches of GBA1-PD and summarize the current state of research and its challenges.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Heng Wu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, 421001, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
40
|
Atee M, Whiteman I, Lloyd R, Morris T. Behaviours and psychological symptoms of childhood dementia: two cases of psychosocial interventions. Palliat Care Soc Pract 2024; 18:26323524241273492. [PMID: 39247715 PMCID: PMC11378187 DOI: 10.1177/26323524241273492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
Childhood dementias are a group of rare, fatal neurodegenerative disorders, characterised by global cognitive decline, loss of previously acquired developmental skills and behaviours and psychological symptoms of dementia (BPSD). Batten disease, or neuronal ceroid lipofuscinosis, and Sanfilippo syndrome, or mucopolysaccharidosis type III, are two of the more common forms of childhood dementia disorders worldwide. While psychosocial interventions are the best available therapeutic approach for BPSD management in adult-onset dementia, there is very limited literature or clinical experience in the context of childhood dementia. To address this gap, we conducted a descriptive case analysis of BPSD profiles, associated contributing factors and targeted psychosocial interventions in two cases with childhood dementia disorders (Sanfilippo syndrome and CLN3 (juvenile onset) Batten disease) who were referred to Dementia Support Australia, a national dementia behaviour support service in Australia. Primary BPSD identified in these disorders included physical and verbal aggression and irritability/lability. In these cases, contributing factors to the development of BPSD were not monolithic, encompassing pain, caregiver's approach and over or under-stimulation. Improvement in BPSD were observed using the Neuropsychiatric Inventory-Quesionnaire and globally noted as per the qualitative feedback reported by family and caregivers. Person-centred, multimodal psychosocial interventions were recognised as effective therapies in resolving BPSD in these cases. In conclusion, the case studies described the nature and presentation of BPSD in two common forms of childhood dementia and demonstrated the potential benefits of person-centred psychosocial interventions (delivered through national dementia-specific support programs) in alleviating BPSD such as irritability and aggression in these disorders.
Collapse
Affiliation(s)
- Mustafa Atee
- The Dementia Centre, HammondCare, Level 2, 302 Selby Street Nth, Osborne Park, WA 6017, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
- Centre for Research in Aged Care, School of Nursing and Midwifery, Edith Cowan University, Joondalup, WA, Australia
| | - Ineka Whiteman
- Batten Disease Support & Research Association (BDSRA) Australia, Brisbane, QLD, Australia
- BDSRA Foundation, Columbus, OH, USA
- Beyond Batten Disease Foundation, Austin, TX, USA
| | - Rebecca Lloyd
- The Dementia Centre, HammondCare, Osborne Park, WA, Australia
| | - Thomas Morris
- The Dementia Centre, HammondCare, St Leonards, NSW, Australia
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Thomas Morris is also affiliated with Faculty of Health, University of Canberra, Bruce, ACT, Australia
| |
Collapse
|
41
|
Néel E, Chiritoiu-Butnaru M, Fargues W, Denus M, Colladant M, Filaquier A, Stewart SE, Lehmann S, Zurzolo C, Rubinsztein DC, Marin P, Parmentier ML, Villeneuve J. The endolysosomal system in conventional and unconventional protein secretion. J Cell Biol 2024; 223:e202404152. [PMID: 39133205 PMCID: PMC11318669 DOI: 10.1083/jcb.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Most secreted proteins are transported through the "conventional" endoplasmic reticulum-Golgi apparatus exocytic route for their delivery to the cell surface and release into the extracellular space. Nonetheless, formative discoveries have underscored the existence of alternative or "unconventional" secretory routes, which play a crucial role in exporting a diverse array of cytosolic proteins outside the cell in response to intrinsic demands, external cues, and environmental changes. In this context, lysosomes emerge as dynamic organelles positioned at the crossroads of multiple intracellular trafficking pathways, endowed with the capacity to fuse with the plasma membrane and recognized for their key role in both conventional and unconventional protein secretion. The recent recognition of lysosomal transport and exocytosis in the unconventional secretion of cargo proteins provides new and promising insights into our understanding of numerous physiological processes.
Collapse
Affiliation(s)
- Eloïse Néel
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | | | - William Fargues
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Morgane Denus
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Maëlle Colladant
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Aurore Filaquier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Sarah E Stewart
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Sylvain Lehmann
- Laboratoire de Biochimie-Protéomique Clinique-Plateforme de Protéomique Clinique, Université de Montpellier, Institute for Regenerative Medicine and Biotherapy Centre Hospitalier Universitaire de Montpellier, Institute for Neurosciences of Montpellier INSERM , Montpellier, France
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogenèse, Institut Pasteur, UMR3691 CNRS , Paris, France
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute , Cambridge, UK
| | - Philippe Marin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Marie-Laure Parmentier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Julien Villeneuve
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| |
Collapse
|
42
|
Moulton MJ, Atala K, Zheng Y, Dutta D, Grange DK, Lin WW, Wegner DJ, Wambach JA, Duker AL, Bober MB, Kratz L, Wise CA, Oxendine I, Khanshour A, Wangler MF, Yamamoto S, Cole FS, Rios J, Bellen HJ. Dominant missense variants in SREBF2 are associated with complex dermatological, neurological, and skeletal abnormalities. Genet Med 2024; 26:101174. [PMID: 38847193 DOI: 10.1016/j.gim.2024.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/21/2024] Open
Abstract
PURPOSE We identified 2 individuals with de novo variants in SREBF2 that disrupt a conserved site 1 protease (S1P) cleavage motif required for processing SREBP2 into its mature transcription factor. These individuals exhibit complex phenotypic manifestations that partially overlap with sterol regulatory element binding proteins (SREBP) pathway-related disease phenotypes, but SREBF2-related disease has not been previously reported. Thus, we set out to assess the effects of SREBF2 variants on SREBP pathway activation. METHODS We undertook ultrastructure and gene expression analyses using fibroblasts from an affected individual and utilized a fly model of lipid droplet (LD) formation to investigate the consequences of SREBF2 variants on SREBP pathway function. RESULTS We observed reduced LD formation, endoplasmic reticulum expansion, accumulation of aberrant lysosomes, and deficits in SREBP2 target gene expression in fibroblasts from an affected individual, indicating that the SREBF2 variant inhibits SREBP pathway activation. Using our fly model, we discovered that SREBF2 variants fail to induce LD production and act in a dominant-negative manner, which can be rescued by overexpression of S1P. CONCLUSION Taken together, these data reveal a mechanism by which SREBF2 pathogenic variants that disrupt the S1P cleavage motif cause disease via dominant-negative antagonism of S1P, limiting the cleavage of S1P targets, including SREBP1 and SREBP2.
Collapse
Affiliation(s)
- Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Kristhen Atala
- Center for Translational Research, Scottish Rite for Children, Dallas, TX
| | - Yiming Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX; Current address: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Dorothy K Grange
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, MO
| | - Wen-Wen Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Daniel J Wegner
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, MO
| | - Jennifer A Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, MO
| | - Angela L Duker
- Skeletal Dysplasia Program, Orthogenetics, Nemours Children's Hospital, Wilmington, DE
| | - Michael B Bober
- Skeletal Dysplasia Program, Orthogenetics, Nemours Children's Hospital, Wilmington, DE
| | - Lisa Kratz
- Kennedy Krieger Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Carol A Wise
- Center for Translational Research, Scottish Rite for Children, Dallas, TX; Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX; Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ila Oxendine
- Center for Translational Research, Scottish Rite for Children, Dallas, TX
| | - Anas Khanshour
- Center for Translational Research, Scottish Rite for Children, Dallas, TX
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - F Sessions Cole
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, MO
| | - Jonathan Rios
- Center for Translational Research, Scottish Rite for Children, Dallas, TX; Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX; Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX.
| |
Collapse
|
43
|
Li H, Doray B, Jennings BC, Lee WS, Liu L, Kornfeld S, Li H. Structure of a truncated human GlcNAc-1-phosphotransferase variant reveals the basis for its hyperactivity. J Biol Chem 2024; 300:107706. [PMID: 39178950 PMCID: PMC11418123 DOI: 10.1016/j.jbc.2024.107706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
Mutations that cause loss of function of GlcNAc-1-phosphotransferase (PTase) lead to the lysosomal storage disorder mucolipidosis II. PTase is the key enzyme of the mannose 6-phosphate (M6P) targeting system that is responsible for tagging lysosomal hydrolases with the M6P moiety for their delivery to the lysosome. We had previously generated a truncated hyperactive form of PTase termed S1S3 which was shown to notably increase the phosphorylation level of secreted lysosomal enzymes and enhance their uptake by cells. Here, we report the 3.4 Å cryo-EM structure of soluble S1S3 lacking both transmembrane domains and cytosolic tails. The structure reveals a high degree of conservation of the catalytic core to full-length PTase. In this dimeric structure, the EF-hand of one protomer is observed interacting with the conserved region four of the other. In addition, we present a high-quality EM 3D map of the UDP-GlcNAc bound form of the full-length soluble protein showing the key molecular interactions between the nucleotide sugar donor and side chain amino acids of the protein. Finally, although the domain organization of S1S3 is very similar to that of the Drosophila melanogaster (fruit fly) PTase homolog, we establish that the latter does not act on lysosomal hydrolases.
Collapse
Affiliation(s)
- Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Balraj Doray
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Benjamin C Jennings
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wang-Sik Lee
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lin Liu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
44
|
Rivero-Barbarroja G, Carmen Padilla-Pérez M, Maisonneuve S, Isabel García-Moreno M, Tiet B, Vocadlo DJ, Xie J, García Fernández JM, Ortiz Mellet C. sp 2-Iminosugar azobenzene O-glycosides: Light-sensitive glycosidase inhibitors with unprecedented tunability and switching factors. Bioorg Chem 2024; 150:107555. [PMID: 38885548 DOI: 10.1016/j.bioorg.2024.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
The conventional approach to developing light-sensitive glycosidase activity regulators, involving the combination of a glycomimetic moiety and a photoactive azobenzene module, results in conjugates with differences in glycosidase inhibitory activity between the interchangeable E and Z-isomers at the azo group that are generally below one-order of magnitude. In this study, we have exploited the chemical mimic character of sp2-iminosugars to access photoswitchable p- and o-azobenzene α-O-glycosides based on the gluco-configured representative ONJ. Notably, we achieved remarkably high switching factors for glycosidase inhibition, favoring either the E- or Z-isomer depending on the aglycone structure. Our data also indicate a correlation between the isomeric state of the azobenzene module and the selectivity towards α- and β-glucosidase isoenzymes. The most effective derivative reached over a 103-fold higher inhibitory potency towards human β-glucocerebrosidase in the Z as compared with the E isomeric form. This sharp contrast is compatible with ex-vivo activation and programmed self-deactivation at physiological temperatures, positioning it as a prime candidate for pharmacological chaperone therapy in Gaucher disease. Additionally, our results illustrate that chemical tailoring enables the engineering of photocommutators with the ability to toggle inhibition between α- and β-glucosidase enzymes in a reversible manner, thus expanding the versatility and potential therapeutic applications of this approach.
Collapse
Affiliation(s)
- Gonzalo Rivero-Barbarroja
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/ Profesor García González 1, 41012 Sevilla, Spain
| | - M Carmen Padilla-Pérez
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/ Profesor García González 1, 41012 Sevilla, Spain
| | - Stéphane Maisonneuve
- ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - M Isabel García-Moreno
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/ Profesor García González 1, 41012 Sevilla, Spain
| | - Ben Tiet
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Juan Xie
- ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, Université Paris-Saclay, Gif-sur-Yvette 91190, France.
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/ Profesor García González 1, 41012 Sevilla, Spain.
| |
Collapse
|
45
|
Su H, Rong G, Li L, Cheng Y. Subcellular targeting strategies for protein and peptide delivery. Adv Drug Deliv Rev 2024; 212:115387. [PMID: 38964543 DOI: 10.1016/j.addr.2024.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cytosolic delivery of proteins and peptides provides opportunities for effective disease treatment, as they can specifically modulate intracellular processes. However, most of protein-based therapeutics only have extracellular targets and are cell-membrane impermeable due to relatively large size and hydrophilicity. The use of organelle-targeting strategy offers great potential to overcome extracellular and cell membrane barriers, and enables localization of protein and peptide therapeutics in the organelles. Although progresses have been made in the recent years, organelle-targeted protein and peptide delivery is still challenging and under exploration. We reviewed recent advances in subcellular targeted delivery of proteins/peptides with a focus on targeting mechanisms and strategies, and highlight recent examples of active and passive organelle-specific protein and peptide delivery systems. This emerging platform could open a new avenue to develop more effective protein and peptide therapeutics.
Collapse
Affiliation(s)
- Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Guangyu Rong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
46
|
Saneifard H, Shakiba M, Alaei M, Mosallanejad A, Ghanefard S, Yasaei M, Toudeshki KK. Clinical presentation and molecular genetics of Iranian patients with Niemann-pick type C disease and report of 6 NPC1 gene novel variants: A case series. Mol Genet Metab Rep 2024; 40:101124. [PMID: 39185019 PMCID: PMC11342110 DOI: 10.1016/j.ymgmr.2024.101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 08/27/2024] Open
Abstract
Niemann Pick Type C disease is a rare and progressive neurodegenerative lysosomal storage disorder caused by autosomal recessive mutations in the NPC1 and NPC2 genes. It is characterized by the accumulation of multiple lipid species in the endolysosomal compartment, leading to neurodegeneration and involvement of the liver, spleen, and lungs. Niemann Pick Type C has a wide range of presentations and severities at different ages with different progression rates. According to the Human Gene Mutation Database, to date, 486 disease-causing mutations in the highly polymorphic NPC1 gene and >20 mutations in the NPC2 have been reported. In the present study, we described the clinical, biochemical, and molecular profiles of 18 Iranian patients with Niemann-Pick Type C disease. Also, we describe six novel variants of the NPC1 gene, to our knowledge, not reported to date.
Collapse
Affiliation(s)
- Hedyeh Saneifard
- Department of Pediatric Endocrinology and Metabolic Diseases, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Shakiba
- Department of Pediatric Endocrinology and Metabolic Diseases, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Alaei
- Department of Pediatric Endocrinology and Metabolic Diseases, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asieh Mosallanejad
- Department of Pediatric Endocrinology and Metabolic Diseases, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Ghanefard
- Department of Pediatric Endocrinology and Metabolic Diseases, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Yasaei
- Department of Pediatric Endocrinology and Metabolic Diseases, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
47
|
Beraza-Millor M, Rodríguez-Castejón J, Del Pozo-Rodríguez A, Rodríguez-Gascón A, Solinís MÁ. Systematic Review of Genetic Substrate Reduction Therapy in Lysosomal Storage Diseases: Opportunities, Challenges and Delivery Systems. BioDrugs 2024; 38:657-680. [PMID: 39177875 PMCID: PMC11358353 DOI: 10.1007/s40259-024-00674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Genetic substrate reduction therapy (gSRT), which involves the use of nucleic acids to downregulate the genes involved in the biosynthesis of storage substances, has been investigated in the treatment of lysosomal storage diseases (LSDs). OBJECTIVE To analyze the application of gSRT to the treatment of LSDs, identifying the silencing tools and delivery systems used, and the main challenges for its development and clinical translation, highlighting the contribution of nanotechnology to overcome them. METHODS A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines was performed. PubMed, Scopus, and Web of Science databases were used for searching terms related to LSDs and gene-silencing strategies and tools. RESULTS Fabry, Gaucher, and Pompe diseases and mucopolysaccharidoses I and III are the only LSDs for which gSRT has been studied, siRNA and lipid nanoparticles being the silencing strategy and the delivery system most frequently employed, respectively. Only in one recently published study was CRISPR/Cas9 applied to treat Fabry disease. Specific tissue targeting, availability of relevant cell and animal LSD models, and the rare disease condition are the main challenges with gSRT for the treatment of these diseases. Out of the 11 studies identified, only two gSRT studies were evaluated in animal models. CONCLUSIONS Nucleic acid therapies are expanding the clinical tools and therapies currently available for LSDs. Recent advances in CRISPR/Cas9 technology and the growing impact of nanotechnology are expected to boost the clinical translation of gSRT in the near future, and not only for LSDs.
Collapse
Affiliation(s)
- Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain.
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
48
|
Navratna V, Kumar A, Rana JK, Mosalaganti S. Structure of the human heparan-α-glucosaminide N-acetyltransferase (HGSNAT). eLife 2024; 13:RP93510. [PMID: 39196614 DOI: 10.7554/elife.93510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Degradation of heparan sulfate (HS), a glycosaminoglycan (GAG) comprised of repeating units of N-acetylglucosamine and glucuronic acid, begins in the cytosol and is completed in the lysosomes. Acetylation of the terminal non-reducing amino group of α-D-glucosamine of HS is essential for its complete breakdown into monosaccharides and free sulfate. Heparan-α-glucosaminide N-acetyltransferase (HGSNAT), a resident of the lysosomal membrane, catalyzes this essential acetylation reaction by accepting and transferring the acetyl group from cytosolic acetyl-CoA to terminal α-D-glucosamine of HS in the lysosomal lumen. Mutation-induced dysfunction in HGSNAT causes abnormal accumulation of HS within the lysosomes and leads to an autosomal recessive neurodegenerative lysosomal storage disorder called mucopolysaccharidosis IIIC (MPS IIIC). There are no approved drugs or treatment strategies to cure or manage the symptoms of, MPS IIIC. Here, we use cryo-electron microscopy (cryo-EM) to determine a high-resolution structure of the HGSNAT-acetyl-CoA complex, the first step in the HGSNAT-catalyzed acetyltransferase reaction. In addition, we map the known MPS IIIC mutations onto the structure and elucidate the molecular basis for mutation-induced HGSNAT dysfunction.
Collapse
Affiliation(s)
- Vikas Navratna
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Arvind Kumar
- Thermo Fisher Scientific, Waltham, United States
| | - Jaimin K Rana
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
- Department of Biophysics, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, United States
| |
Collapse
|
49
|
Lin J, Yu Z, Gao X. Advanced Noninvasive Strategies for the Brain Delivery of Therapeutic Proteins and Peptides. ACS NANO 2024; 18:22752-22779. [PMID: 39133564 DOI: 10.1021/acsnano.4c06851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Recent years have witnessed rapid progress in the discovery of therapeutic proteins and peptides for the treatment of central nervous system (CNS) diseases. However, their clinical applications have been considerably hindered by challenges such as low biomembrane permeability, poor stability, short circulation time, and the formidable blood-brain barrier (BBB). Recently, substantial improvements have been made in understanding the dynamics of the BBB and developing efficient approaches for delivering proteins and peptides to the CNS, especially by using various nanoparticles. Herein, we present an overview of the up-to-date understanding of the BBB under physiological and pathological conditions, emphasizing their effects on brain drug delivery. We summarize advanced strategies and elucidate the underlying mechanisms for delivering proteins and peptides to the brain. We highlight the developments and applications of nanocarriers in treating CNS diseases via BBB crossing. We also provide critical opinions on the limitations and obstacles of the current strategies and put forward prospects for future research.
Collapse
Affiliation(s)
- Jiayuan Lin
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
50
|
Azadeh M, Good J, Gunsior M, Kulagina N, Lu Y, McNally J, Myler H, Ni YG, Pelto R, Quadrini KJ, Vrentas C, Yang L. Best Practices for Development and Validation of Enzymatic Activity Assays to Support Drug Development for Inborn Errors of Metabolism and Biomarker Assessment. AAPS J 2024; 26:97. [PMID: 39179710 DOI: 10.1208/s12248-024-00966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/03/2024] [Indexed: 08/26/2024] Open
Abstract
Aberrant or dysfunctional cellular enzymes are responsible for a wide range of diseases including cancer, neurodegenerative conditions, and metabolic disorders. Deficiencies in enzyme level or biofunction may lead to intracellular accumulation of substrate to toxic levels and interfere with overall cellular function, ultimately leading to cell damage, disease, and death. Marketed therapeutic interventions for inherited monogenic enzyme deficiency disorders include enzyme replacement therapy and small molecule chaperones. Novel approaches of in vivo gene therapy and ex vivo cell therapy are under clinical evaluation and provide promising opportunities to expand the number of available disease-modifying treatments. To support the development of these different therapeutics, assays to quantify the functional activity of protein enzymes have gained importance in the diagnosis of disease, assessment of pharmacokinetics and pharmacodynamic response, and evaluation of drug efficacy. In this review, we discuss the technical aspects of enzyme activity assays in the bioanalytical context, including assay design and format as well as the unique challenges and considerations associated with assay development, validation, and life cycle management.
Collapse
Affiliation(s)
- Mitra Azadeh
- Ultragenyx Pharmaceutical, Inc., Novato, California, USA
| | | | | | - Nadia Kulagina
- Smithers Pharmaceutical Development Services, Gaithersburg, Maryland, USA
| | - Yanmei Lu
- Sangamo Therapeutics, Richmond, California, USA
| | | | | | - Yan G Ni
- Passage Bio, Inc., Philadelphia, Pennsylvania, USA
| | - Ryan Pelto
- Alexion, AstraZeneca Rare Disease, New Haven, Connecticut, USA
| | | | - Catherine Vrentas
- Pharmaceutical Product Development, a ThermoFisher Company, Richmond, Virginia, USA.
- , Richmond, Virginia, USA.
| | - Lin Yang
- Regenxbio, Rockville, Maryland, USA
| |
Collapse
|