1
|
Yin L, Zhang X, Zhang H, Li R, Zeng J, Dong K, Wang Y, Li X. Analysis of the current status and associated risk factors of cognitive function in Tibetan hypertensive patients at various altitudes. Clin Exp Hypertens 2024; 46:2393331. [PMID: 39190746 DOI: 10.1080/10641963.2024.2393331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/15/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE This study aims to explore the current cognitive status and identify risk factors associated with cognitive function in Tibetan hypertensive patients living at various altitudes. METHODS The Simple Mental Status Scale (MMSE) was used to evaluate the cognitive function of 611 Tibetan hypertensive patients at various altitudes in Gannan Tibetan Autonomous Prefecture. Afterward, we conducted an analysis to identify the factors influencing their cognitive function. RESULTS The study found that the prevalence of cognitive dysfunction was 22.3%, with a higher incidence at high altitude (group D 29.0%) compared to low altitude (group A 16.0%). The study conducted a binary logistic regression analysis to identify the risk factors for cognitive dysfunction. The analysis revealed that altitude, age, body mass index, marital status, education, income level, and blood pressure control level were all significant risk factors. After controlling for age, body mass index, marital status, educational level, income level, and blood pressure control level, the risk of developing cognitive dysfunction was 2.773 times higher (p < .05) for individuals in group C at high altitude and 2.381 times higher (p < .05) for individuals in group D at high altitude compared to those in group A at low altitude. CONCLUSIONS Altitude plays a role in the development of cognitive dysfunction in hypertensive patients. Tibetan hypertensive patients living at high altitudes may be at a higher risk of cognitive dysfunction compared to those living at lower altitudes. Therefore, interventions should be targeted to prevent or mitigate potential cognitive impairment.
Collapse
Affiliation(s)
- Long Yin
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaoming Zhang
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Huijuan Zhang
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Ruizhen Li
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Zeng
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
- Ningxia Medical University, Yinchuan, China
| | - Kaixuan Dong
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yi Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
| | - Xinghui Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
2
|
Russell SJ, Parker K, Lehoczki A, Lieberman D, Partha IS, Scott SJ, Phillips LR, Fain MJ, Nikolich JŽ. Post-acute sequelae of SARS-CoV-2 infection (Long COVID) in older adults. GeroScience 2024; 46:6563-6581. [PMID: 38874693 PMCID: PMC11493926 DOI: 10.1007/s11357-024-01227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
Long COVID, also known as PASC (post-acute sequelae of SARS-CoV-2), is a complex infection-associated chronic condition affecting tens of millions of people worldwide. Many aspects of this condition are incompletely understood. Among them is how this condition may manifest itself in older adults and how it might impact the older population. Here, we briefly review the current understanding of PASC in the adult population and examine what is known on its features with aging. Finally, we outline the major gaps and areas for research most germane to older adults.
Collapse
Affiliation(s)
- Samantha J Russell
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Karen Parker
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Haematology and Stem Cell Transplantation, National Institute for Haematology and Infectious Diseases, South Pest Central Hospital, 1097, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - David Lieberman
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Indu S Partha
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Serena J Scott
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Linda R Phillips
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- College of Nursing, University of Arizona, Tucson, AZ, USA
| | - Mindy J Fain
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- Banner University Medicine-Tucson, Tucson, AZ, USA.
- College of Nursing, University of Arizona, Tucson, AZ, USA.
| | - Janko Ž Nikolich
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- The Aegis Consortium for Pandemic-Free Future, University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
3
|
Nyúl-Tóth Á, Patai R, Csiszar A, Ungvari A, Gulej R, Mukli P, Yabluchanskiy A, Benyo Z, Sotonyi P, Prodan CI, Liotta EM, Toth P, Elahi F, Barsi P, Maurovich-Horvat P, Sorond FA, Tarantini S, Ungvari Z. Linking peripheral atherosclerosis to blood-brain barrier disruption: elucidating its role as a manifestation of cerebral small vessel disease in vascular cognitive impairment. GeroScience 2024; 46:6511-6536. [PMID: 38831182 PMCID: PMC11494622 DOI: 10.1007/s11357-024-01194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Aging plays a pivotal role in the pathogenesis of cerebral small vessel disease (CSVD), contributing to the onset and progression of vascular cognitive impairment and dementia (VCID). In older adults, CSVD often leads to significant pathological outcomes, including blood-brain barrier (BBB) disruption, which in turn triggers neuroinflammation and white matter damage. This damage is frequently observed as white matter hyperintensities (WMHs) in neuroimaging studies. There is mounting evidence that older adults with atherosclerotic vascular diseases, such as peripheral artery disease, ischemic heart disease, and carotid artery stenosis, face a heightened risk of developing CSVD and VCID. This review explores the complex relationship between peripheral atherosclerosis, the pathogenesis of CSVD, and BBB disruption. It explores the continuum of vascular aging, emphasizing the shared pathomechanisms that underlie atherosclerosis in large arteries and BBB disruption in the cerebral microcirculation, exacerbating both CSVD and VCID. By reviewing current evidence, this paper discusses the impact of endothelial dysfunction, cellular senescence, inflammation, and oxidative stress on vascular and neurovascular health. This review aims to enhance understanding of these complex interactions and advocate for integrated approaches to manage vascular health, thereby mitigating the risk and progression of CSVD and VCID.
Collapse
Affiliation(s)
- Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Fanny Elahi
- Departments of Neurology and Neuroscience Ronald M. Loeb Center for Alzheimer's Disease Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Péter Barsi
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Pál Maurovich-Horvat
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Nyúl-Tóth Á, Negri S, Sanford M, Jiang R, Patai R, Budda M, Petersen B, Pinckard J, Chandragiri SS, Shi H, Reyff Z, Ballard C, Gulej R, Csik B, Ferrier J, Balasubramanian P, Yabluchanskiy A, Cleuren A, Conley S, Ungvari Z, Csiszar A, Tarantini S. Novel intravital approaches to quantify deep vascular structure and perfusion in the aging mouse brain using ultrasound localization microscopy (ULM). J Cereb Blood Flow Metab 2024; 44:1378-1396. [PMID: 38867576 PMCID: PMC11542130 DOI: 10.1177/0271678x241260526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/15/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Intra-vital visualization of deep cerebrovascular structures and blood flow in the aging brain has been a difficult challenge in the field of neurovascular research, especially when considering the key role played by the cerebrovasculature in the pathogenesis of both vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). Traditional imaging methods face difficulties with the thicker skull of older brains, making high-resolution imaging and cerebral blood flow (CBF) assessment challenging. However, functional ultrasound (fUS) imaging, an emerging non-invasive technique, provides real-time CBF insights with notable spatial-temporal resolution. This study introduces an enhanced longitudinal fUS method for aging brains. Using elderly (24-month C57BL/6) mice, we detail replacing the skull with a polymethylpentene window for consistent fUS imaging over extended periods. Ultrasound localization mapping (ULM), involving the injection of a microbubble (<<10 μm) suspension allows for recording of high-resolution microvascular vessels and flows. ULM relies on the localization and tracking of single circulating microbubbles in the blood flow. A FIJI-based analysis interprets these high-quality ULM visuals. Testing on older mouse brains, our method successfully unveils intricate vascular specifics even in-depth, showcasing its utility for longitudinal studies that require ongoing evaluations of CBF and vascular aspects in aging-focused research.
Collapse
Affiliation(s)
- Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Madison Sanford
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Raymond Jiang
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Madeline Budda
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cellular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Benjamin Petersen
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jessica Pinckard
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cellular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siva Sai Chandragiri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Helen Shi
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zeke Reyff
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Cade Ballard
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | | | - Priya Balasubramanian
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Audrey Cleuren
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cellular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
5
|
Kubota H, Kunisawa K, Hasegawa M, Kurahashi H, Kagotani K, Fujimoto Y, Hayashi A, Sono R, Tsuji T, Saito K, Nabeshima T, Mouri A. Soy lysolecithin prevents hypertension and cognitive impairment induced in mice by high salt intake by inhibiting intestinal inflammation. Neurochem Int 2024; 180:105858. [PMID: 39271020 DOI: 10.1016/j.neuint.2024.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
High salt (HS) intake induces hypertension and cognitive impairment. Preventive strategies include against dietary supplements. Soybean lecithin is a widely used phospholipid supplement. Lysolecithin is important in cell signaling, digestion, and absorption. This study aimed to investigate the effects of lysophosphatidylcholine containing >70% of the total phospholipids (LPC70), on hypertension and cognitive impairment induced in mice by HS intake. Mice were provided with HS solution (2% NaCl in drinking water) with or without LPC70 for 12 weeks. Blood pressure, cognitive function, and inflammatory response of intestine were determined. Hypertension and impaired object recognition memory induced by HS intake were implicated with increased inducible nitric oxide synthase in the small intestine and tau hyperphosphorylation in the prefrontal cortex. LPC70 treatment prevented cognitive impairment by suppressing inducible nitric oxide synthase and tau hyperphosphorylation. LPC70 may be valuable as a functional food component in preventing HS-induced cognitive impairment.
Collapse
Affiliation(s)
- Hisayoshi Kubota
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan; International Center for Brain Science (ICBS), Fujita Health University, Aichi, Japan
| | - Kazuo Kunisawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan; International Center for Brain Science (ICBS), Fujita Health University, Aichi, Japan
| | - Masaya Hasegawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Hitomi Kurahashi
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Kazuhiro Kagotani
- Tsuji Oil Mills Co., Ltd, Mie, Japan; Tsuji Health & Beauty Science Laboratory, Mie University, Mie, Japan
| | | | | | | | | | - Kuniaki Saito
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan; Laboratory of Health and Medical Science Innovation (HMSI), Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Toshitaka Nabeshima
- Laboratory of Health and Medical Science Innovation (HMSI), Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan; International Center for Brain Science (ICBS), Fujita Health University, Aichi, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan; International Center for Brain Science (ICBS), Fujita Health University, Aichi, Japan.
| |
Collapse
|
6
|
Konecny F, Kamar L, Zimmerman I, Whitehead SN, Goldman D, Frisbee JC. Early elevations in arterial pressure: a contributor to rapid depressive symptom emergence in female Zucker rats with metabolic disease? J Appl Physiol (1985) 2024; 137:1324-1340. [PMID: 39359187 DOI: 10.1152/japplphysiol.00586.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024] Open
Abstract
One of the growing challenges to public health and clinical outcomes is the emergence of cognitive impairments, particularly depressive symptom severity, because of chronic elevations in metabolic disease and cerebrovascular disease risk. To more clearly delineate these relationships and to assess the potential for sexual dimorphism, we used lean (LZR) and obese Zucker rats (OZR) of increasing age to determine relationships between internal carotid artery (ICA) hemodynamics, cerebral vasculopathies, and the emergence of depressive symptoms. Male OZR exhibited progressive elevations in perfusion pressure within the ICA, which were paralleled by endothelial dysfunction, increased cerebral arterial myogenic activation, and reduced cerebral cortex microvessel density. In contrast, female OZR exhibited a greater degree of ICA hypertension than male OZR but maintained normal endothelial function, myogenic activation, and microvessel density to an older age range than did males. Although both male and female OZR exhibited significant and progressive elevations in depressive symptom severity, these were significantly worse in females. Finally, plasma cortisol concentration was elevated higher and at a younger age in female OZR as compared with males, and this difference was maintained to final animal usage at ∼17 wk of age. These results suggest that an increased severity of blood pressure waves may penetrate the cerebral circulation more deeply in female OZR than in males, which may predispose the females to a more severe emergence of depressive symptoms with chronic metabolic disease, whereas males may be more predisposed to more direct cerebral vasculopathies (e.g., stroke, transient ischemic attack).NEW & NOTEWORTHY We provide novel insight that the superior maintenance of cerebrovascular endothelial function in female versus male rats with chronic metabolic disease buffers myogenic activation of cerebral resistance arteries/arterioles despite worsening hypertension. As hypertension development is earlier and more severe in females, potentially due to an elevated stress response, the blunted myogenic activation allows greater arterial pressure wave penetrance into the cerebral microcirculation and is associated with accelerated emergence/severity of depressive symptoms in obese female rats.
Collapse
Affiliation(s)
- Filip Konecny
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Lujaina Kamar
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Isabel Zimmerman
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
7
|
Aminyavari S, Afshari AR, Ahmadi SS, Kesharwani P, Sanati M, Sahebkar A. Unveiling the theranostic potential of SPIONs in Alzheimer's disease management. J Psychiatr Res 2024; 179:244-256. [PMID: 39321523 DOI: 10.1016/j.jpsychires.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Alzheimer's disease (AD) is a devastating kind of dementia that is becoming more common worldwide. Toxic amyloid-beta (Aβ) aggregates are the primary cause of AD onset and development. Superparamagnetic iron oxide nanoparticles (SPIONs) have received a lot of interest in AD therapy over the last decade because of their ability to redirect the Aβ fibrillation process and improve associated brain dysfunction. The potential diagnostic application of SPIONs in AD has dramatically increased this interest. Furthermore, surface-modified engineered SPIONs function as drug carriers to improve the efficacy of current therapies. Various preclinical and clinical studies on the role of SPIONs in AD pathology have produced encouraging results. However, due to their physicochemical properties (e.g., size, surface charge, and particle concentration) in the biological milieu, SPIONs may play the role of a preventive or accelerative agent in AD. Even though SPIONs are potential therapeutic and diagnostic options in AD, significant efforts are still needed to overcome the inconsistencies and safety concerns. This review evaluated the current understanding of how various SPIONs interact with AD models and explored the discrepancies in their efficacy and safety.
Collapse
Affiliation(s)
- Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Seyed Sajad Ahmadi
- Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Pushpam M, Talukdar A, Anilkumar S, Maurya SK, Issac TG, Diwakar L. Recurrent endothelin-1 mediated vascular insult leads to cognitive impairment protected by trophic factor pleiotrophin. Exp Neurol 2024; 381:114938. [PMID: 39197707 DOI: 10.1016/j.expneurol.2024.114938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Vascular dementia (VaD) is a complex neurodegenerative condition, with cerebral small vessel dysfunctions as the central role in its pathogenesis. Given the lack of suitable animal models to study the disease pathogenesis, we developed a mouse model to closely emulate the clinical scenarios of recurrent transient ischemic attacks (TIAs) leading to VaD using vasoconstricting peptide Endothelin-1(ET-1). We observed that administration of ET-1 led to blood-brain barrier (BBB) disruption and detrimental changes in its components, such as endothelial cells and pericytes, along with neuronal loss and synaptic dysfunction, resulting in irreversible memory loss. Further, in our pursuit of understanding potential interventions, we co-administered pleiotrophin (PTN) alongside ET-1 injections. PTN exhibited remarkable efficacy in preserving vital components of the BBB, including endothelial cells and pericytes, thereby restoring BBB integrity, preventing neuronal loss, and enhancing memory function. Our findings give a valuable framework for understanding the detrimental effects of multiple TIAs on brain health and provide a useful animal model to explore VaD's underlying mechanisms further and pave the way for promising therapies.
Collapse
Affiliation(s)
- Mayank Pushpam
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India; Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Ankita Talukdar
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | - Shobha Anilkumar
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | | | - Thomas Gregor Issac
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | - Latha Diwakar
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
9
|
Menze I, Bernal J, Kaya P, Aki Ç, Pfister M, Geisendörfer J, Yakupov R, Coello RD, Valdés-Hernández MDC, Heneka MT, Brosseron F, Schmid MC, Glanz W, Incesoy EI, Butryn M, Rostamzadeh A, Meiberth D, Peters O, Preis L, Lammerding D, Gref D, Priller J, Spruth EJ, Altenstein S, Lohse A, Hetzer S, Schneider A, Fliessbach K, Kimmich O, Vogt IR, Wiltfang J, Bartels C, Schott BH, Hansen N, Dechent P, Buerger K, Janowitz D, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Goerss D, Laske C, Munk MH, Sanzenbacher C, Hinderer P, Scheffler K, Spottke A, Roy-Kluth N, Lüsebrink F, Neumann K, Wardlaw J, Jessen F, Schreiber S, Düzel E, Ziegler G. Perivascular space enlargement accelerates in ageing and Alzheimer's disease pathology: evidence from a three-year longitudinal multicentre study. Alzheimers Res Ther 2024; 16:242. [PMID: 39482759 PMCID: PMC11526621 DOI: 10.1186/s13195-024-01603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Perivascular space (PVS) enlargement in ageing and Alzheimer's disease (AD) and the drivers of such a structural change in humans require longitudinal investigation. Elucidating the effects of demographic factors, hypertension, cerebrovascular dysfunction, and AD pathology on PVS dynamics could inform the role of PVS in brain health function as well as the complex pathophysiology of AD. METHODS We studied PVS in centrum semiovale (CSO) and basal ganglia (BG) computationally over three to four annual visits in 503 participants (255 females; meanage = 70.78 ± 5.78) of the ongoing observational multicentre "DZNE Longitudinal Cognitive Impairment and Dementia Study" (DELCODE) cohort. We analysed data from subjects who were cognitively unimpaired (n = 401), had amnestic mild cognitive impairment (n = 71), or had AD (n = 31). We used linear mixed-effects modelling to test for changes of PVS volumes in relation to cross-sectional and longitudinal age, as well as sex, years of education, hypertension, white matter hyperintensities, AD diagnosis, and cerebrospinal-fluid-derived amyloid (A) and tau (T) status (available for 46.71%; A-T-/A + T-/A + T + n = 143/48/39). RESULTS PVS volumes increased significantly over follow-ups (CSO: B = 0.03 [0.02, 0.05], p < 0.001; BG: B = 0.05 [0.03, 0.07], p < 0.001). PVS enlargement rates varied substantially across subjects and depended on the participant's age, white matter hyperintensities volumes, and amyloid and tau status. PVS volumes were higher across elderly participants, regardless of region of interest (CSO: B = 0.12 [0.02, 0.21], p = 0.017; BG: B = 0.19 [0.09, 0.28], p < 0.001). Faster BG-PVS enlargement related to lower baseline white matter hyperintensities volumes (ρspearman = -0.17, pFDR = 0.001) and was more pronounced in individuals who presented with combined amyloid and tau positivity versus negativity (A + T + > A-T-, pFDR = 0.004) or who were amyloid positive but tau negative (A + T + > A + T-, pFDR = 0.07). CSO-PVS volumes increased at a faster rate with amyloid positivity as compared to amyloid negativity (A + T-/A + T + > A-T-, pFDR = 0.021). CONCLUSION Our longitudinal evidence supports the relevance of PVS enlargement in presumably healthy ageing as well as in AD pathology. We further discuss the region-specific involvement of white matter hyperintensities and neurotoxic waste accumulation in PVS enlargement and the possibility of additional factors contributing to PVS progression. A comprehensive understanding of PVS dynamics could facilitate the understanding of pathological cascades and might inform targeted treatment strategies. TRIAL REGISTRATION German Clinical Trials Register DRKS00007966. Registered 04.05.2015 - retrospectively registered, https://drks.de/search/en/trial/DRKS00007966 .
Collapse
Affiliation(s)
- Inga Menze
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany.
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany.
| | - Jose Bernal
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
- Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
| | - Pinar Kaya
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Çağla Aki
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Malte Pfister
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Jonas Geisendörfer
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Renat Yakupov
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Roberto Duarte Coello
- Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
| | - Maria D C Valdés-Hernández
- Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, 6 Avenue du Swing 4367 , Esch-Belval, Luxembourg
| | - Frederic Brosseron
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
| | - Matthias C Schmid
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Wenzel Glanz
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Enise I Incesoy
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Michaela Butryn
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Ayda Rostamzadeh
- Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, Cologne, 50924, Germany
| | - Dix Meiberth
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, Cologne, 50924, Germany
| | - Oliver Peters
- German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany
- Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Lukas Preis
- Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Dominik Lammerding
- Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Daria Gref
- Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Josef Priller
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
- German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany
- School of Medicine, Department of Psychiatry and Psychotherapy, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Eike J Spruth
- German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany
| | - Slawek Altenstein
- German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany
| | - Andrea Lohse
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité, Charitéplatz 1, Berlin, 10117, Germany
| | - Anja Schneider
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Klaus Fliessbach
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Okka Kimmich
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
| | - Ina R Vogt
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
| | - Jens Wiltfang
- German Centre for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany
| | - Björn H Schott
- German Centre for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany
- Leibniz Institute for Neurobiology, Brenneckestraße 6, Magdeburg, 39118, Germany
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany
| | - Peter Dechent
- Department of Cognitive Neurology, MR-Research in Neurosciences, Georg-August-University Goettingen, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Katharina Buerger
- German Centre for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, Munich, 81377, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, Munich, 81377, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, Munich, 81377, Germany
| | - Robert Perneczky
- German Centre for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, Munich, 81377, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, Munich, München, 80336 , Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, Munich, 81377, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, Charing Cross Hospital, St Dunstan's Road, London, W6 8RP, UK
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, Munich, München, 80336 , Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385a Glossop Rd, Sheffield, Broomhall, Sheffield, S10 2HQ, UK
- Department of Neuroradiology, University Hospital LMU, Marchioninistr. 15, Munich, 81377, Germany
| | - Stefan Teipel
- German Centre for Neurodegenerative Diseases (DZNE), Gehlsheimer Straße 20, Rostock, 18147, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Straße 20, Rostock, 18147, Germany
| | - Ingo Kilimann
- German Centre for Neurodegenerative Diseases (DZNE), Gehlsheimer Straße 20, Rostock, 18147, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Straße 20, Rostock, 18147, Germany
| | - Doreen Goerss
- German Centre for Neurodegenerative Diseases (DZNE), Gehlsheimer Straße 20, Rostock, 18147, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Straße 20, Rostock, 18147, Germany
| | - Christoph Laske
- German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Osianderstraße 24, Tübingen, 72076, Germany
| | - Matthias H Munk
- German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Osianderstraße 24, Tübingen, 72076 , Germany
| | - Carolin Sanzenbacher
- German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany
| | - Petra Hinderer
- German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Otfried-Müller-Straße 51, Tübingen, 72076, Germany
| | - Annika Spottke
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Neurology, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Nina Roy-Kluth
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
| | - Falk Lüsebrink
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Katja Neumann
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
| | - Frank Jessen
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, Cologne, 50924, Germany
- Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
| | - Stefanie Schreiber
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Emrah Düzel
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Gabriel Ziegler
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| |
Collapse
|
10
|
Bernal J, Menze I, Yakupov R, Peters O, Hellmann-Regen J, Freiesleben SD, Priller J, Spruth EJ, Altenstein S, Schneider A, Fliessbach K, Wiltfang J, Schott BH, Jessen F, Rostamzadeh A, Glanz W, Incesoy EI, Buerger K, Janowitz D, Ewers M, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Laske C, Sodenkamp S, Spottke A, Esser A, Lüsebrink F, Dechent P, Hetzer S, Scheffler K, Schreiber S, Düzel E, Ziegler G. Longitudinal evidence for a mutually reinforcing relationship between white matter hyperintensities and cortical thickness in cognitively unimpaired older adults. Alzheimers Res Ther 2024; 16:240. [PMID: 39465440 PMCID: PMC11520063 DOI: 10.1186/s13195-024-01606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND For over three decades, the concomitance of cortical neurodegeneration and white matter hyperintensities (WMH) has sparked discussions about their coupled temporal dynamics. Longitudinal studies supporting this hypothesis nonetheless remain scarce. METHODS We applied global and regional bivariate latent growth curve modelling to determine the extent to which WMH and cortical thickness were interrelated over a four-year period. For this purpose, we leveraged longitudinal MRI data from 451 cognitively unimpaired participants (DELCODE; median age 69.71 [IQR 65.51, 75.50] years; 52.32% female). Participants underwent MRI sessions annually over a four-year period (1815 sessions in total, with roughly four MRI sessions per participant). We adjusted all models for demographics and cardiovascular risk. RESULTS Our findings were three-fold. First, larger WMH volumes were linked to lower cortical thickness (σ = -0.165, SE = 0.047, Z = -3.515, P < 0.001). Second, individuals with higher WMH volumes experienced more rapid cortical thinning (σ = -0.226, SE = 0.093, Z = -2.443, P = 0.007), particularly in temporal, cingulate, and insular regions. Similarly, those with lower initial cortical thickness had faster WMH progression (σ = -0.141, SE = 0.060, Z = -2.336, P = 0.009), with this effect being most pronounced in temporal, cingulate, and insular cortices. Third, faster WMH progression was associated with accelerated cortical thinning (σ = -0.239, SE = 0.139, Z = -1.710, P = 0.044), particularly in frontal, occipital, and insular cortical regions. CONCLUSIONS Our study suggests that cortical thinning and WMH progression could be mutually reinforcing rather than parallel, unrelated processes, which become entangled before cognitive deficits are detectable. TRIAL REGISTRATION German Clinical Trials Register (DRKS00007966, 04/05/2015).
Collapse
Affiliation(s)
- Jose Bernal
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.
- German Centre for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
- Centre for Clinical Brain Sciences, the University of Edinburgh, Edinburgh, UK.
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh, UK.
| | - Inga Menze
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Renat Yakupov
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Oliver Peters
- German Centre for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Julian Hellmann-Regen
- German Centre for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Department of Psychiatry and Neurosciences, Campus Benjamin Franklin, Berlin, Germany
- German Centre for Mental Health (DZPG), Berlin, Germany
| | - Silka Dawn Freiesleben
- German Centre for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Josef Priller
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh, UK
- German Centre for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
- School of Medicine, Department of Psychiatry and Psychotherapy, Technical University of Munich, Munich, Germany
| | - Eike Jakob Spruth
- German Centre for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Slawek Altenstein
- German Centre for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Anja Schneider
- German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn and University of Bonn, Bonn, Germany
| | - Klaus Fliessbach
- German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn and University of Bonn, Bonn, Germany
| | - Jens Wiltfang
- German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Centre Göttingen, University of Göttingen, Göttingen, Germany
- Neurosciences and Signalling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Björn H Schott
- German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Centre Göttingen, University of Göttingen, Göttingen, Germany
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Frank Jessen
- German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
- Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ayda Rostamzadeh
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Wenzel Glanz
- German Centre for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Enise I Incesoy
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department for Psychiatry and Psychotherapy, University Clinic Magdeburg, Magdeburg, Germany
| | - Katharina Buerger
- German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Michael Ewers
- German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Robert Perneczky
- German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
- Department of Neuroradiology, University Hospital LMU, Munich, Germany
| | - Stefan Teipel
- German Centre for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Centre, Rostock, Germany
| | - Ingo Kilimann
- German Centre for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Centre, Rostock, Germany
| | - Christoph Laske
- German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Sebastian Sodenkamp
- German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Annika Spottke
- German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Anna Esser
- German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Falk Lüsebrink
- German Centre for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Peter Dechent
- Department of Cognitive Neurology, MR-Research in Neurosciences, Georg-August-University, Göttingen, Germany
| | - Stefan Hetzer
- Berlin Centre for Advanced Neuroimaging, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Stefanie Schreiber
- German Centre for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Neurology, University Hospital Magdeburg, Magdeburg, Germany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Gabriel Ziegler
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| |
Collapse
|
11
|
Sánchez R, Coca A, de Salazar DIM, Alcocer L, Aristizabal D, Barbosa E, Brandao AA, Diaz-Velazco ME, Hernández-Hernández R, López-Jaramillo P, López-Rivera J, Ortellado J, Parra-Carrillo J, Parati G, Peñaherrera E, Ramirez AJ, Sebba-Barroso WK, Valdez O, Wyss F, Heagerty A, Mancia G. 2024 Latin American Society of Hypertension guidelines on the management of arterial hypertension and related comorbidities in Latin America. J Hypertens 2024:00004872-990000000-00574. [PMID: 39466069 DOI: 10.1097/hjh.0000000000003899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024]
Abstract
ABSTRACT Hypertension is responsible for more than two million deaths due to cardiovascular disease annually in Latin America (LATAM), of which one million occurs before 70 years of age. Hypertension is the main risk factor for cardiovascular morbidity and mortality, affecting between 20 and 40% of LATAM adults. Since the publication of the 2017 LASH hypertension guidelines, reports from different LATAM countries have confirmed the burden of hypertension on cardiovascular disease events and mortality in the region. Many studies in the region have reported and emphasized the dramatically insufficient blood pressure control. The extremely low rates of awareness, treatment, and control of hypertension, particularly in patients with metabolic disorders, is a recognized severe problem in LATAM. Earlier implementation of antihypertensive interventions and management of all cardiovascular risk factors is the recognized best strategy to improve the natural history of cardiovascular disease in LATAM. The 2024 LASH guidelines have been developed by a large group of experts from internal medicine, cardiology, nephrology, endocrinology, general medicine, geriatrics, pharmacology, and epidemiology of different countries of LATAM and Europe. A careful search for novel studies on hypertension and related diseases in LATAM, together with the new evidence that emerged since the 2017 LASH guidelines, support all statements and recommendations. This update aims to provide clear, concise, accessible, and useful recommendations for health professionals to improve awareness, treatment, and control of hypertension and associated cardiovascular risk factors in the region.
Collapse
Affiliation(s)
- Ramiro Sánchez
- University Hospital Fundación Favaloro, Buenos Aires, Argentina
| | | | - Dora I Molina de Salazar
- Universidad de Caldas, Centro de Investigación IPS Medicos Internistas de Caldas, Manizales, Colombia
| | - Luis Alcocer
- Mexican Institute of Cardiovascular Health, Mexico City, Mexico
| | | | | | - Andrea A Brandao
- Department of Cardiology, School of Medical Sciences. State University of Rio de Janeiro, Brazil
| | | | - Rafael Hernández-Hernández
- Hypertension and Cardiovascular Risk Factors Clinic, Health Sciences University, Centro Occidental Lisandro Alvarado, Barquisimeto, Venezuela
| | - Patricio López-Jaramillo
- Universidad de Santander (UDES), Bucaramanga, Colombia Colombia
- Facultad de Ciencias Médicas Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Jesús López-Rivera
- Unidad de Hipertensión Arterial, Universidad de los Andes, San Cristóbal, Venezuela
| | - José Ortellado
- Universidad Católica de Asunción, Universidad Uninorte, Asunción, Paraguay
| | | | - Gianfranco Parati
- Istituto Auxológico Italiano, IRCCS, San Luca Hospital
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | | | | | | | - Osiris Valdez
- Hospital Central Romana, La Romana, República Dominicana
| | - Fernando Wyss
- Cardiovascular Services and Technology of Guatemala, Guatemala City, Guatemala
| | | | | |
Collapse
|
12
|
Cai X, Huang Y, Wang T, Wang Z, Jiao L, Liao J, Zhou L, Zhu C, Rong S. A biocompatible polydopamine platform for targeted delivery of nicotinamide mononucleotide and boosting NAD+ levels in the brain. NANOSCALE 2024; 16:19335-19343. [PMID: 39324237 DOI: 10.1039/d4nr02934h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Nicotinamide mononucleotide (NMN), a precursor of the coenzyme nicotinamide adenine dinucleotide (NAD+), has gained wide attention as an anti-aging agent, which plays a significant role in intracellular redox reactions. However, its effectiveness is limited by easy metabolism in the liver and subsequent excretion as nicotinamide, resulting in low bioavailability, particularly in the brain. Additionally, the blood-brain barrier (BBB) further hinders NMN supply to the brain, compromising its potential anti-aging effects. Herein, we developed a biocompatible polydopamine (PDA) platform to deliver NMN for boosting NAD+ levels in the brain for the first time. The lactoferrin (Lf) ligand was covalently attached to the PDA spheres to improve BBB transport efficiency. The resultant PDA-based system, referred to as PDA-Lf-NMN, not only exhibited superior BBB penetration ability but also improved the utilization rate of brain NMN in elevating NAD+ levels compared to NMN alone for both young (3 months) and old (21 months) mice. Moreover, after the old mice were treated with low-dose PDA-Lf-NMN (8 mg kg-1 day-1), they exhibited improved spatial cognition. Importantly, these nanomedicines did not induce any cellular necrosis or apoptosis. It provides a promising avenue for delivering NMN specifically to the brain, boosting NAD+ levels for promoting longevity and treating brain aging-related diseases.
Collapse
Affiliation(s)
- Xiaoli Cai
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yuteng Huang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Ting Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Ziping Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Lei Jiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jingling Liao
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Li Zhou
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Shuang Rong
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
13
|
Soda T, Pasqua T, De Sarro G, Moccia F. Cognitive Impairment and Synaptic Dysfunction in Cardiovascular Disorders: The New Frontiers of the Heart-Brain Axis. Biomedicines 2024; 12:2387. [PMID: 39457698 PMCID: PMC11504205 DOI: 10.3390/biomedicines12102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Within the central nervous system, synaptic plasticity, fundamental to processes like learning and memory, is largely driven by activity-dependent changes in synaptic strength. This plasticity often manifests as long-term potentiation (LTP) and long-term depression (LTD), which are bidirectional modulations of synaptic efficacy. Strong epidemiological and experimental evidence show that the heart-brain axis could be severely compromised by both neurological and cardiovascular disorders. Particularly, cardiovascular disorders, such as heart failure, hypertension, obesity, diabetes and insulin resistance, and arrhythmias, may lead to cognitive impairment, a condition known as cardiogenic dementia. Herein, we review the available knowledge on the synaptic and molecular mechanisms by which cardiogenic dementia may arise and describe how LTP and/or LTD induction and maintenance may be compromised in the CA1 region of the hippocampus by heart failure, metabolic syndrome, and arrhythmias. We also discuss the emerging evidence that endothelial dysfunction may contribute to directly altering hippocampal LTP by impairing the synaptically induced activation of the endothelial nitric oxide synthase. A better understanding of how CV disorders impact on the proper function of central synapses will shed novel light on the molecular underpinnings of cardiogenic dementia, thereby providing a new perspective for more specific pharmacological treatments.
Collapse
Affiliation(s)
- Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Teresa Pasqua
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio“, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
14
|
Cheng Y, Lin G, Xie Y, Xuan B, He S, Shang Z, Yan M, Lin J, Wei L, Peng J, Shen A. Baicalin ameliorates angiotensin II-induced cardiac hypertrophy and mitogen-activated protein kinase signaling pathway activation: A target-based network pharmacology approach. Eur J Pharmacol 2024; 981:176876. [PMID: 39127302 DOI: 10.1016/j.ejphar.2024.176876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Baicalin, a flavonoid glycoside from Scutellaria baicalensis Georgi., exerts anti-hypertensive effects. The present study aimed to assess the cardioprotective role of baicalin and explore its potential mechanisms. Network pharmacology analysis pointed out a total of 477 potential targets of baicalin were obtained from the PharmMapper and SwissTargetPrediction databases, while 11,280 targets were identified associating with hypertensive heart disease from GeneCards database. Based on the above 382 common targets, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed enrichment in the regulation of cardiac hypertrophy, cardiac contraction, cardiac relaxation, as well as the mitogen-activated protein kinase (MAPK) and other signaling pathways. Moreover, baicalin treatment exhibited the amelioration of increased cardiac index and pathological alterations in angiotensin II (Ang II)-infused C57BL/6 mice. Furthermore, baicalin treatment demonstrated a reduction in cell surface area and a down-regulation of hypertrophy markers (including atrial natriuretic peptide and brain natriuretic peptide) in vivo and in vitro. In addition, baicalin treatment led to a decrease in the expression of phosphorylated c-Jun N-terminal kinase (p-JNK)/JNK, phosphorylated p38 (p-p38)/p38, and phosphorylated extracellular signal-regulated kinase (p-ERK)/ERK in the cardiac tissues of Ang II-infused mice and Ang II-stimulated H9c2 cells. These findings highlight the cardioprotective effects of baicalin, as it alleviates hypertensive cardiac injury, cardiac hypertrophy, and the activation of the MAPK pathway.
Collapse
Affiliation(s)
- Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Guosheng Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Yi Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Bihan Xuan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Shuyu He
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Zucheng Shang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Mengchao Yan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Jing Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
15
|
Wang L, Cheng L, Lv C, Kou J, Feng W, Xie H, Yan R, Wang X, Chen S, Song X, Xue L, Zhang C, Li X, Zhao H. The Association Between Inflammatory Dietary Pattern and Risk of Cognitive Impairment Among Older Adults with Chronic Diseases and Its Multimorbidity: A Cross-Sectional Study. Clin Interv Aging 2024; 19:1685-1701. [PMID: 39421014 PMCID: PMC11484775 DOI: 10.2147/cia.s474907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Background The present study aimed to explore the association between the inflammatory potential of diet, assessed by energy-adjusted dietary inflammatory index (E-DII) and reduced rank regression (RRR)-derived inflammatory dietary pattern, and the risk for cognitive impairment (CI) in community-dwelling older adults, especially in older adults with chronic diseases and multimorbidity. Methods A total of 549 older adults from Taiyuan city were included in the present cross-sectional study. The Chinese Version of the Mini-Mental State Examination (CMMSE) was used for the evaluation of cognitive function. E-DII score was calculated based on semi-quantitative food frequency questionnaire (FFQ). Blood samples, including interleukin (IL)-1β, interleukin (IL)-18, tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP), were tested for calculating RRR-derived inflammatory dietary pattern. Logistic regression was used to assess the association between inflammatory dietary pattern and risk of CI. In addition, patients with diabetes, hypertension, hyperlipidemia and multimorbidity were screened for further analysis among 549 older adults. Results In those 549 older adults, adjusting for demographic characteristics and chronic disease status, there was no association between E-DII score tertile (OR T3VST1 : 1.357, 95%CI:0.813~2.265, P trend = 0.267), RRR-derived inflammatory dietary pattern score tertile (OR T3VST1 : 1.092, 95%CI:0.679~ 1.758, P trend = 0.737) and risk of CI. However, in older adults with diabetes and multimorbidity, the score tertile of E-DII and RRR-derived inflammatory dietary pattern were positively correlated with risk of CI in a dose-responsive manner (All P trend < 0.05). There is insufficient evidence to reach similar conclusion in patients with hypertension and hyperlipidemia (All P trend > 0.05). Conclusion In the present study, pro-inflammatory diet contributed to the increased risk of CI in older adults with diabetes and multimorbidity. These results supplemented vital evidence for the prevention and treatment of CI in older adults with chronic diseases.
Collapse
Affiliation(s)
- Lili Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Le Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Chenhui Lv
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jie Kou
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Wenjuan Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Haoran Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ruolin Yan
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xi Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Shuangzhi Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xin Song
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Lushan Xue
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Cheng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xuemin Li
- Center for Disease Control and Prevention in Shanxi Province, Taiyuan, People’s Republic of China
| | - Haifeng Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, People’s Republic of China
| |
Collapse
|
16
|
O'Connor EE, Salerno-Goncalves R, Rednam N, O'Brien R, Rock P, Levine AR, Zeffiro TA. Macro- and Microstructural White Matter Differences in Neurologic Postacute Sequelae of SARS-CoV-2 Infection. AJNR Am J Neuroradiol 2024:ajnr.A8481. [PMID: 39389778 DOI: 10.3174/ajnr.a8481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/11/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND AND PURPOSE Neuropsychiatric complications of SARS-CoV-2 infection, also known as neurologic postacute sequelae of SARS-CoV-2 infection (NeuroPASC), affect 10%-60% of infected individuals. There is growing evidence that NeuroPASC is a multi system immune dysregulation disease affecting the brain. The behavioral manifestations of NeuroPASC, such as impaired processing speed, executive function, memory retrieval, and sustained attention, suggest widespread WM involvement. Although previous work has documented WM damage following acute SARS-CoV-2 infection, its involvement in NeuroPASC is less clear. We hypothesized that macrostructural and microstructural WM differences in NeuroPASC participants would accompany cognitive and immune system differences. MATERIALS AND METHODS In a cross-sectional study, we screened a total of 159 potential participants and enrolled 72 participants, with 41 asymptomatic controls (NoCOVID) and 31 NeuroPASC participants matched for age, sex, and education. Exclusion criteria included neurologic disorders unrelated to SARS-CoV-2 infection. Assessments included clinical symptom questionnaires, psychometric tests, brain MRI measures, and peripheral cytokine levels. Statistical modeling included separate multivariable regression analyses of GM/WM/CSF volume, WM microstructure, cognitive, and cytokine concentration between-group differences. RESULTS NeuroPASC participants had larger cerebral WM volume than NoCOVID controls (β = 0.229; 95% CI: 0.017-0.441; t = 2.16; P = .035). The most pronounced effects were in the prefrontal and anterior temporal WM. NeuroPASC participants also exhibited higher WM mean kurtosis, consistent with ongoing neuroinflammation. NeuroPASC participants had more self-reported symptoms, including headache, and lower performance on measures of attention, concentration, verbal learning, and processing speed. A multivariate profile analysis of the cytokine panel showed different group cytokine profiles (Wald-type-statistic = 44.6, P = .046), with interferon (IFN)-λ1 and IFN-λ2/3 levels higher in the NeuroPASC group. CONCLUSIONS NeuroPASC participants reported symptoms of lower concentration, higher fatigue, and impaired cognition compatible with WM syndrome. Psychometric testing confirmed these findings. NeuroPASC participants exhibited larger cerebral WM volume and higher WM mean kurtosis than NoCOVID controls. These findings suggest that immune dysregulation could influence WM properties to produce WM volume increases and consequent cognitive effects and headaches. Further work will be needed to establish mechanistic links among these variables.
Collapse
Affiliation(s)
- Erin E O'Connor
- From the Department of Diagnostic Radiology & Nuclear Medicine (E.E.O., N.R., T.A.Z.), University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Nikita Rednam
- From the Department of Diagnostic Radiology & Nuclear Medicine (E.E.O., N.R., T.A.Z.), University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Peter Rock
- Department of Anesthesiology (P.R.), University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea R Levine
- Department of Medicine (A.R.L.), Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Thomas A Zeffiro
- From the Department of Diagnostic Radiology & Nuclear Medicine (E.E.O., N.R., T.A.Z.), University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
17
|
Huang L, Aronow WS. Association of Hypertension with Different Cognitive Disorders. J Clin Med 2024; 13:6029. [PMID: 39457979 PMCID: PMC11514732 DOI: 10.3390/jcm13206029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
This literature review explores the association between hypertension and major neurocognitive disorders, including delirium, Alzheimer's disease, vascular dementia, Lewy body dementia, and frontotemporal dementia, which contribute significantly to global mortality and morbidity. Hypertension is a potentially modifiable risk factor for cognitive decline, as it contributes to the progression of neurodegenerative pathologies via vascular damage, inflammation, and the disruption of the blood-brain barrier. Despite this, the effectiveness of antihypertensive treatments in preventing or alleviating cognitive decline remains contentious. While some research highlights the potential benefits of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, other studies show inconsistent results, complicated by variations in hypertension definitions, diagnostic criteria for cognitive disorders, and confounding factors like medication adherence. Furthermore, the complex bidirectional relationship between hypertension and major neurocognitive disorders warrants more investigation, as cognitive decline can exacerbate cardiovascular risks through heightened inflammatory responses and compromised autonomic regulation. This review underscores the need for prospective, long-term studies to elucidate the relationships between hypertension and cognitive disorders and to evaluate the potential therapeutic benefits of antihypertensive treatments.
Collapse
Affiliation(s)
- Lillian Huang
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Wilbert S. Aronow
- Department of Cardiology, Westchester Medical Center, Valhalla, NY 10595, USA
| |
Collapse
|
18
|
Guo K, Ni W, Du L, Zhou Y, Cheng L, Zhou H. Environmental chemical exposures and a machine learning-based model for predicting hypertension in NHANES 2003-2016. BMC Cardiovasc Disord 2024; 24:544. [PMID: 39385080 PMCID: PMC11462799 DOI: 10.1186/s12872-024-04216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/20/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Hypertension is a common disease, often overlooked in its early stages due to mild symptoms. And persistent elevated blood pressure can lead to adverse outcomes such as coronary heart disease, stroke, and kidney disease. There are many risk factors that lead to hypertension, including various environmental chemicals that humans are exposed to, which are believed to be modifiable risk factors for hypertension. OBJECTIVE To investigate the role of environmental chemical exposures in predicting hypertension. METHODS A total of 11,039 eligible participants were obtained from NHANES 2003-2016, and multiple imputation was used to process the missing data, resulting in 5 imputed datasets. 8 Machine learning algorithms were applied to the 5 imputed datasets to establish hypertension prediction models, and the average accuracy score, precision score, recall score, and F1 score were calculated. A generalized linear model was also built to predict the systolic and diastolic blood pressure levels. RESULTS All 8 algorithms had good predictions for hypertension, with Support Vector Machine (SVM) being the best, with accuracy, precision, recall, F1 scores and area under the curve (AUC) of 0.751, 0.699, 0.717, 0.708 and 0.822, respectively. The R2 of the linear model on the training and test sets was 0.28, 0.25 for systolic and 0.06, 0.05 for diastolic blood pressure. CONCLUSIONS In this study, relatively accurate prediction of hypertension was achieved using environmental chemicals with machine learning algorithms, demonstrating the predictive value of environmental chemicals for hypertension.
Collapse
Affiliation(s)
- Kun Guo
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Weicheng Ni
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Leilei Du
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Yimin Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Ling Cheng
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Hao Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China.
| |
Collapse
|
19
|
McEvoy JW, McCarthy CP, Bruno RM, Brouwers S, Canavan MD, Ceconi C, Christodorescu RM, Daskalopoulou SS, Ferro CJ, Gerdts E, Hanssen H, Harris J, Lauder L, McManus RJ, Molloy GJ, Rahimi K, Regitz-Zagrosek V, Rossi GP, Sandset EC, Scheenaerts B, Staessen JA, Uchmanowicz I, Volterrani M, Touyz RM. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension. Eur Heart J 2024; 45:3912-4018. [PMID: 39210715 DOI: 10.1093/eurheartj/ehae178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
|
20
|
Ferreira Machado M, Muela HCS, Costa-Hong VA, Cristina Moraes N, Maia Memória C, Sanches Yassuda M, Bor-Seng-Shu E, Nitrini R, Aparecido Bortolotto L, de Carvalho Nogueira R. Angiotensin-converting enzyme inhibitors: a therapeutic option for controlling blood pressure associated with delayed cognitive processing speed. J Hum Hypertens 2024:10.1038/s41371-024-00965-8. [PMID: 39367178 DOI: 10.1038/s41371-024-00965-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Antihypertensive treatment (AT) is essential for preventing hypertension-related cognitive decline. The goals of this observational study were to compare cognitive performance (CP) between non-hypertensive (NH) volunteers and hypertensive patients and to evaluate the correlation between CP and antihypertensive drugs (AHD). Three groups were constituted: NH (n = 30) [group 1], hypertensive with systolic blood pressure (SBP) < 140 mmHg and diastolic blood pressure (DBP) < 90 mmHg (n = 54) [group 2] and hypertensive with SBP ≥ 140 or DBP ≥ 90 (n = 31) [group 3]. To analyze the cognitive domains, a neuropsychological battery was applied and the raw performance values in these tests were transformed into z-scores. The domain was considered impaired if it presented a z-score below -1.5 SD. Compared to group 1, both groups of hypertensive were older (51 [ ± 12] years) and showed a worse CP in episodic memory (p = 0.014), language (p = 0.003) and processing speed (PS) [p = 0.05]. Angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARB) were the most used AHD (46.3%, p = 0.01 [group 2] and 64.5%, p = 0.005 [group 3]) and showed correlations with PS. Linear regression models revealed a negative association of PS with the use of ACEi (β = -0.230, p = 0.004), but not with the use of ARB (β = 0.208, p = 0.008). The effect of AT on cognition appears to go beyond the search for lower blood pressure targets and also includes the mechanism of action of AHD on the brain, so that additional benefits may possibly be achieved with simple adaptations in the treatment regimen, particularly in patients without clinically manifest cognitive impairment.
Collapse
Affiliation(s)
- Michel Ferreira Machado
- Department of Neurology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil.
| | | | | | - Natalia Cristina Moraes
- Department of Neurology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Claudia Maia Memória
- Department of Neurology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Monica Sanches Yassuda
- Gerontology, School of Arts, Sciences and Humanities, University of São Paulo Medical School, São Paulo, Brazil
| | - Edson Bor-Seng-Shu
- Department of Neurology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Ricardo Nitrini
- Department of Neurology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Luiz Aparecido Bortolotto
- Hypertension Unit, Instituto do Coração (INCOR), University of São Paulo Medical School, São Paulo, Brazil
| | | |
Collapse
|
21
|
Cao X, Wang M, Zhou M, Mi Y, Fazekas-Pongor V, Major D, Lehoczki A, Guo Y. Trends in prevalence, mortality, and risk factors of dementia among the oldest-old adults in the United States: the role of the obesity epidemic. GeroScience 2024; 46:4761-4778. [PMID: 38696055 PMCID: PMC11336039 DOI: 10.1007/s11357-024-01180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 08/22/2024] Open
Abstract
The oldest-old population, those aged ≥ 80 years, is the fastest-growing group in the United States (US), grappling with an increasingly heavy burden of dementia. We aimed to dissect the trends in dementia prevalence, mortality, and risk factors, and predict future levels among this demographic. Leveraging data from the Global Burden of Disease Study 2019, we examined the trends in dementia prevalence, mortality, and risk factors (with a particular focus on body mass index, BMI) for US oldest-old adults. Through decomposition analysis, we identified key population-level contributors to these trends. Predictive modeling was employed to estimate future prevalence and mortality levels over the next decade. Between 1990 and 2019, the number of dementia cases and deaths among the oldest-old in the US increased by approximately 1.37 million and 60,000 respectively. The population growth and aging were highlighted as the primary drivers of this increase. High BMI emerged as a growing risk factor. Females showed a disproportionately higher dementia burden, characterized by a unique risk factor profile, including BMI. Predictions for 2030 anticipate nearly 4 million dementia cases and 160,000 related deaths, with a marked increase in prevalence and mortality anticipated among those aged 80-89. The past 30 years have witnessed a notable rise in both the prevalence and mortality of dementia among the oldest-old in the US, accompanied by a significant shift in risk factors, with obesity taking a forefront position. Targeted age and sex-specific public health strategies that address obesity control are needed to mitigate the dementia burden effectively.
Collapse
Affiliation(s)
- Xueshan Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Key Laboratory of Environment and Human Health , Hebei Medical University, Shijiazhuang, Hebei, China
| | - Minmin Wang
- Department of Global Health, School of Public Health, Peking University, Beijing, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Mengge Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yuanqi Mi
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - David Major
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andrea Lehoczki
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Haematology and Stem Cell Transplantation, National Institute for Haematology and Infectious Diseases, South Pest Central Hospital, Budapest, Hungary
| | - Yang Guo
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
22
|
Liao GZ, He CH, Li XQ, Xiong Y, Huang LY, Xin AR, Ai G, Luo MQ, Zhang YH, Zhang J. Exploring the heart-brain and brain-heart axes: Insights from a bidirectional Mendelian randomization study on brain cortical structure and cardiovascular disease. Neurobiol Dis 2024; 200:106636. [PMID: 39142612 DOI: 10.1016/j.nbd.2024.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024] Open
Abstract
INTRODUCTION The bidirectional relationship between the brain cortex and cardiovascular diseases (CVDs) remains inadequately explored. METHODS This study used bidirectional Mendelian randomization (MR) analysis to explore the interactions between nine phenotypes associated with hypertension, heart failure, atrial fibrillation (AF), and coronary heart disease (CHD), and brain cortex measurements. These measurements included total surface area (SA), average thickness (TH), and the SA and TH of 34 regions defined by the Desikan-Killiany atlas. The nine traits were obtained from sources such as the UK Biobank and FinnGen, etc., while MRI-derived traits of cortical structure were sourced from the ENIGMA Consortium. The primary estimate was obtained using the inverse-variance weighted approach. A false discovery rate adjustment was applied to the p-values (resulting in q-values) in the analyses of regional cortical structures. RESULTS A total of 1,260 two-sample MR analyses were conducted. Existing CHD demonstrated an influence on the SA of the banks of the superior temporal sulcus (bankssts) (q=0.018) and the superior frontal lobe (q=0.018), while hypertension was associated with changes in the TH of the lateral occipital region (q=0.02). Regarding the effects of the brain cortex on CVD incidence, total SA was significantly associated with the risk of CHD. Additionally, 16 and 3 regions exhibited significant effects on blood pressure and AF risk, respectively (q<0.05). These regions were primarily located in the frontal, temporal, and cingulate areas, which are associated with cognitive function and mood regulation. CONCLUSION The detection of cortical changes through MRI could aid in screening for potential neuropsychiatric disorders in individuals with established CVD. Moreover, abnormalities in cortical structure may predict future CVD risk, offering new insights for prevention and treatment strategies.
Collapse
Affiliation(s)
- Guang-Zhi Liao
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chun-Hui He
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Qing Li
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Xiong
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li-Yan Huang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - An-Ran Xin
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo Ai
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Man-Qing Luo
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Hui Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jian Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Clinical Research for Cardiovascular Medications, National Health Committee, 10037 Beijing, China.
| |
Collapse
|
23
|
Yi F, Gao Y, Liu X, Ying Y, Xie Q, You Y, Zha Q, Luo C, Ni M, Wang Q, Zhu Y. A non-linear relationship between blood pressure and mild cognitive impairment in elderly individuals: A cohort study based on the Chinese longitudinal healthy longevity survey (CLHLS). Neurol Sci 2024; 45:4817-4828. [PMID: 38676817 DOI: 10.1007/s10072-024-07539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Hypertension is an established risk factor for mild cognitive impairment (MCI) in elderly individuals. Nevertheless, the impact of different levels of blood pressure on the progression of MCI remains uncertain. This study aims to investigate the non-linear relationship between blood pressure and MCI in the elderly and detect the critical blood pressure threshold, thus, improving blood pressure management for individuals at high risk of MCI. METHODS Data was obtained from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) cohort. We chose normal cognitive elderly individuals who entered the cohort in 2014 for a 5-year follow-up to observe the progression of MCI. Subsequently, we utilized the Cox regression model to identify risk factors for MCI and conducted a Cox-based restricted cubic spline regression (RCS) model to examine the non-linear relationship between systolic blood pressure (SBP) and diastolic blood pressure (DBP) with MCI, determining the critical blood pressure threshold for MCI progression. RESULTS In the elderly population, female (HR = 1.489, 95% CI: 1.017-2.180), lacking of exercise in the past (HR = 1.714, 95% CI: 1.108-2.653), preferring animal fats (HR = 2.340, 95% CI: 1.348-4.061), increased age (HR = 1.061, 95% CI: 1.038-1.084), increased SBP (HR = 1.036, 95% CI: 1.024-1.048), and increased DBP (HR = 1.056, 95% CI: 1.031-1.081) were associated with MCI progression. After adjusting factors such as gender, exercise, preferred types of fats, and age, both SBP (P non-linear < 0.001) and DBP (P non-linear < 0.001) in elderly individuals exhibited a non-linear association with MCI. The risk of MCI rose when SBP exceeded 135 mmHg and DBP was in the range of 80-88 mmHg. However, when DBP exceeded 88 mmHg, there was a declining trend in MCI progression, although the HR remained above 1. The identified critical blood pressure management threshold for MCI was 135/80 mmHg. CONCLUSION In this study, we discovered that risk factors affecting the progression of MCI in elderly individuals comprise gender (female), preferring to use animal fat, lack of exercise in the past, increased age, increased SBP, and increased DBP. Additionally, a non-linear relationship between blood pressure levels and MCI progression was confirmed, with the critical blood pressure management threshold for MCI onset falling within the prehypertensive range.
Collapse
Affiliation(s)
- Fuliang Yi
- Health Management Center, Zigong Fourth People's Hospital, 19 Tanmulin Street, Zigong, 643000, People's Republic of China
- Department of Public Health, Zigong Fourth People's Hospital, 19 Tanmulin Street, Zigong, 643000, People's Republic of China
| | - Yang Gao
- Health Management Center, Zigong Fourth People's Hospital, 19 Tanmulin Street, Zigong, 643000, People's Republic of China
| | - Xin Liu
- Health Management Center, Zigong Fourth People's Hospital, 19 Tanmulin Street, Zigong, 643000, People's Republic of China
| | - Yujuan Ying
- Health Management Center, Zigong Fourth People's Hospital, 19 Tanmulin Street, Zigong, 643000, People's Republic of China
| | - Qiaojin Xie
- Health Management Center, Zigong Fourth People's Hospital, 19 Tanmulin Street, Zigong, 643000, People's Republic of China
| | - You You
- Health Management Center, Zigong Fourth People's Hospital, 19 Tanmulin Street, Zigong, 643000, People's Republic of China
| | - Qian Zha
- Health Management Center, Zigong Fourth People's Hospital, 19 Tanmulin Street, Zigong, 643000, People's Republic of China
| | - Canjing Luo
- Health Management Center, Zigong Fourth People's Hospital, 19 Tanmulin Street, Zigong, 643000, People's Republic of China
| | - Min Ni
- Health Management Center, Zigong Fourth People's Hospital, 19 Tanmulin Street, Zigong, 643000, People's Republic of China
| | - Qiuping Wang
- Health Management Center, Zigong Fourth People's Hospital, 19 Tanmulin Street, Zigong, 643000, People's Republic of China
| | - Yuanfang Zhu
- Health Management Center, Zigong Fourth People's Hospital, 19 Tanmulin Street, Zigong, 643000, People's Republic of China.
| |
Collapse
|
24
|
Csiszar A, Ungvari A, Patai R, Gulej R, Yabluchanskiy A, Benyo Z, Kovacs I, Sotonyi P, Kirkpartrick AC, Prodan CI, Liotta EM, Zhang XA, Toth P, Tarantini S, Sorond FA, Ungvari Z. Atherosclerotic burden and cerebral small vessel disease: exploring the link through microvascular aging and cerebral microhemorrhages. GeroScience 2024; 46:5103-5132. [PMID: 38639833 PMCID: PMC11336042 DOI: 10.1007/s11357-024-01139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Cerebral microhemorrhages (CMHs, also known as cerebral microbleeds) are a critical but frequently underestimated aspect of cerebral small vessel disease (CSVD), bearing substantial clinical consequences. Detectable through sensitive neuroimaging techniques, CMHs reveal an extensive pathological landscape. They are prevalent in the aging population, with multiple CMHs often being observed in a given individual. CMHs are closely associated with accelerated cognitive decline and are increasingly recognized as key contributors to the pathogenesis of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). This review paper delves into the hypothesis that atherosclerosis, a prevalent age-related large vessel disease, extends its pathological influence into the cerebral microcirculation, thereby contributing to the development and progression of CSVD, with a specific focus on CMHs. We explore the concept of vascular aging as a continuum, bridging macrovascular pathologies like atherosclerosis with microvascular abnormalities characteristic of CSVD. We posit that the same risk factors precipitating accelerated aging in large vessels (i.e., atherogenesis), primarily through oxidative stress and inflammatory pathways, similarly instigate accelerated microvascular aging. Accelerated microvascular aging leads to increased microvascular fragility, which in turn predisposes to the formation of CMHs. The presence of hypertension and amyloid pathology further intensifies this process. We comprehensively overview the current body of evidence supporting this interconnected vascular hypothesis. Our review includes an examination of epidemiological data, which provides insights into the prevalence and impact of CMHs in the context of atherosclerosis and CSVD. Furthermore, we explore the shared mechanisms between large vessel aging, atherogenesis, microvascular aging, and CSVD, particularly focusing on how these intertwined processes contribute to the genesis of CMHs. By highlighting the role of vascular aging in the pathophysiology of CMHs, this review seeks to enhance the understanding of CSVD and its links to systemic vascular disorders. Our aim is to provide insights that could inform future therapeutic approaches and research directions in the realm of neurovascular health.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Illes Kovacs
- Department of Ophthalmology, Semmelweis University, 1085, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Angelia C Kirkpartrick
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xin A Zhang
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
25
|
Gulej R, Nyúl-Tóth Á, Csik B, Patai R, Petersen B, Negri S, Chandragiri SS, Shanmugarama S, Mukli P, Yabluchanskiy A, Conley S, Huffman D, Tarantini S, Csiszar A, Ungvari Z. Young blood-mediated cerebromicrovascular rejuvenation through heterochronic parabiosis: enhancing blood-brain barrier integrity and capillarization in the aged mouse brain. GeroScience 2024; 46:4415-4442. [PMID: 38727872 PMCID: PMC11336025 DOI: 10.1007/s11357-024-01154-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/05/2024] [Indexed: 06/15/2024] Open
Abstract
Age-related cerebromicrovascular changes, including blood-brain barrier (BBB) disruption and microvascular rarefaction, play a significant role in the development of vascular cognitive impairment (VCI) and neurodegenerative diseases. Utilizing the unique model of heterochronic parabiosis, which involves surgically joining young and old animals, we investigated the influence of systemic factors on these vascular changes. Our study employed heterochronic parabiosis to explore the effects of young and aged systemic environments on cerebromicrovascular aging in mice. We evaluated microvascular density and BBB integrity in parabiotic pairs equipped with chronic cranial windows, using intravital two-photon imaging techniques. Our results indicate that short-term exposure to young systemic factors leads to both functional and structural rejuvenation of cerebral microcirculation. Notably, we observed a marked decrease in capillary density and an increase in BBB permeability to fluorescent tracers in the cortices of aged mice undergoing isochronic parabiosis (20-month-old C57BL/6 mice [A-(A)]; 6 weeks of parabiosis), compared to young isochronic parabionts (6-month-old, [Y-(Y)]). However, aged heterochronic parabionts (A-(Y)) exposed to young blood exhibited a significant increase in cortical capillary density and restoration of BBB integrity. In contrast, young mice exposed to old blood from aged parabionts (Y-(A)) rapidly developed cerebromicrovascular aging traits, evidenced by reduced capillary density and increased BBB permeability. These findings underscore the profound impact of systemic factors in regulating cerebromicrovascular aging. The rejuvenation observed in the endothelium, following exposure to young blood, suggests the existence of anti-geronic elements that counteract microvascular aging. Conversely, pro-geronic factors in aged blood appear to accelerate cerebromicrovascular aging. Further research is needed to assess whether the rejuvenating effects of young blood factors could extend to other age-related cerebromicrovascular pathologies, such as microvascular amyloid deposition and increased microvascular fragility.
Collapse
Affiliation(s)
- Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Benjamin Petersen
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siva Sai Chandragiri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Derek Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
| |
Collapse
|
26
|
Rosenzweig N, Kleemann KL, Rust T, Carpenter M, Grucci M, Aronchik M, Brouwer N, Valenbreder I, Cooper-Hohn J, Iyer M, Krishnan RK, Sivanathan KN, Brandão W, Yahya T, Durao A, Yin Z, Chadarevian JP, Properzi MJ, Nowarski R, Davtyan H, Weiner HL, Blurton-Jones M, Yang HS, Eggen BJL, Sperling RA, Butovsky O. Sex-dependent APOE4 neutrophil-microglia interactions drive cognitive impairment in Alzheimer's disease. Nat Med 2024; 30:2990-3003. [PMID: 38961225 DOI: 10.1038/s41591-024-03122-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
APOE4 is the strongest genetic risk factor for Alzheimer's disease (AD), with increased odds ratios in female carriers. Targeting amyloid plaques shows modest improvement in male non-APOE4 carriers. Leveraging single-cell transcriptomics across APOE variants in both sexes, multiplex flow cytometry and validation in two independent cohorts of APOE4 female carriers with AD, we identify a new subset of neutrophils interacting with microglia associated with cognitive impairment. This phenotype is defined by increased interleukin (IL)-17 and IL-1 coexpressed gene modules in blood neutrophils and in microglia of cognitively impaired female APOE ε4 carriers, showing increased infiltration to the AD brain. APOE4 female IL-17+ neutrophils upregulated the immunosuppressive cytokines IL-10 and TGFβ and immune checkpoints, including LAG3 and PD-1, associated with accelerated immune aging. Deletion of APOE4 in neutrophils reduced this immunosuppressive phenotype and restored the microglial response to neurodegeneration, limiting plaque pathology in AD mice. Mechanistically, IL-17F upregulated in APOE4 neutrophils interacts with microglial IL-17RA to suppress the induction of the neurodegenerative phenotype, and blocking this axis supported cognitive improvement in AD mice. These findings provide a translational basis to target IL-17F in APOE ε4 female carriers with cognitive impairment.
Collapse
Affiliation(s)
- Neta Rosenzweig
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian L Kleemann
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Thomas Rust
- Department of Biomedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Madison Carpenter
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Madeline Grucci
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Aronchik
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nieske Brouwer
- Department of Biomedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Isabel Valenbreder
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joya Cooper-Hohn
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Malvika Iyer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajesh K Krishnan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kisha N Sivanathan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Wesley Brandão
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Taha Yahya
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana Durao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhuoran Yin
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jean Paul Chadarevian
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Michael J Properzi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roni Nowarski
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Hayk Davtyan
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Hyun-Sik Yang
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Knoll C, Doehler J, Northall A, Schreiber S, Rotta J, Mattern H, Kuehn E. Age-related differences in human cortical microstructure depend on the distance to the nearest vein. Brain Commun 2024; 6:fcae321. [PMID: 39355004 PMCID: PMC11443451 DOI: 10.1093/braincomms/fcae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/13/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
Age-related differences in cortical microstructure are used to understand the neuronal mechanisms that underlie human brain ageing. The cerebral vasculature contributes to cortical ageing, but its precise interaction with cortical microstructure is poorly understood. In a cross-sectional study, we combine venous imaging with vessel distance mapping to investigate the interaction between venous distances and age-related differences in the microstructural architecture of the primary somatosensory cortex, the primary motor cortex and additional areas in the frontal cortex as non-sensorimotor control regions. We scanned 18 younger adults and 17 older adults using 7 Tesla MRI to measure age-related changes in longitudinal relaxation time (T1) and quantitative susceptibility mapping (QSM) values at 0.5 mm isotropic resolution. We modelled different cortical depths using an equi-volume approach and assessed the distance of each voxel to its nearest vein using vessel distance mapping. Our data reveal a dependence of cortical quantitative T1 values and positive QSM values on venous distance. In addition, there is an interaction between venous distance and age on quantitative T1 values, driven by lower quantitative T1 values in older compared to younger adults in voxels that are closer to a vein. Together, our data show that the local venous architecture explains a significant amount of variance in standard measures of cortical microstructure and should be considered in neurobiological models of human brain organisation and cortical ageing.
Collapse
Affiliation(s)
- Christoph Knoll
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
| | - Juliane Doehler
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
| | - Alicia Northall
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg 39106, Germany
- Department of Neurology, Otto von Guericke University of Magdeburg, Magdeburg 39120, Germany
| | - Johanna Rotta
- Department of Neurology, Otto von Guericke University of Magdeburg, Magdeburg 39120, Germany
- Department of Neurology, Katharinenhospital, Klinikum Stuttgart, Stuttgart 70174, Germany
| | - Hendrik Mattern
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg 39106, Germany
- Department Biomedical Magnetic Resonance (BMMR), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Esther Kuehn
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
- Hertie Institute for Clinical Brain Research (HIH), Tübingen 72076, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Tübingen 72076, Germany
| |
Collapse
|
28
|
Ding H, Wang J, Liu S, Xie Y, Zhang X, Yu J. Association between fibrosis-4 index and cognitive impairment in elderly patients with hypertension: A cross-sectional study. J Clin Hypertens (Greenwich) 2024. [PMID: 39276132 DOI: 10.1111/jch.14890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/16/2024]
Abstract
The fibrosis-4 index (FIB-4) is a noninvasive fibrosis test that is recommended for patients who are at risk of developing hepatic fibrosis. The aim of the study was to explore the correlation between FIB-4 index and the decline of cognitive function among older patients with hypertension. The study used a cross-sectional design to analyze data obtained from the NHANES 2011-2014. The significance of the FIB-4 index correlation with cognitive function in individuals over the age of 60 was evaluated via multivariate regression models. The nonlinear link was described and fitted smoothed curves. There were a total of 2039 participants in the study, and those with a higher FIB-4 index were more susceptible to developing cognitive decline. In the completely adjusted model, the association remained statistically significant between the FIB-4 index and poor cognitive function as measured by CERAD: Total Score (OR = 0.72, 0.57-0.91), Animal Fluency Score (OR = 0.66, 0.48-0.91), and Digit Symbol Score (OR = 0.36, 0.17-0.77). A nonlinear association was found between the FIB-4 and poor cognitive ability: Total Score, CERAD: Score Delayed Recall, Digit Symbol Score, and Animal Fluency Score. In elderly patients with hypertension, a high FIB-4 index is correlated with an increased prevalence of cognitive decline. Hence, the FIB-4 index could potentially serve as a valuable tool for determining individuals with hypertension who are susceptible to both liver-related complications and cognitive impairment.
Collapse
Affiliation(s)
- Hong Ding
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Jingtao Wang
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Shu Liu
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Yafei Xie
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaowei Zhang
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Yu
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
29
|
Stankovics L, Ungvari A, Fekete M, Nyul-Toth A, Mukli P, Patai R, Csik B, Gulej R, Conley S, Csiszar A, Toth P. The vasoprotective role of IGF-1 signaling in the cerebral microcirculation: prevention of cerebral microhemorrhages in aging. GeroScience 2024:10.1007/s11357-024-01343-5. [PMID: 39271571 DOI: 10.1007/s11357-024-01343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Aging is closely associated with various cerebrovascular pathologies that significantly impact brain function, with cerebral small vessel disease (CSVD) being a major contributor to cognitive decline in the elderly. Consequences of CSVD include cerebral microhemorrhages (CMH), which are small intracerebral bleeds resulting from the rupture of microvessels. CMHs are prevalent in aging populations, affecting approximately 50% of individuals over 80, and are linked to increased risks of vascular cognitive impairment and dementia (VCID). Hypertension is a primary risk factor for CMHs. Vascular smooth muscle cells (VSMCs) adapt to hypertension by undergoing hypertrophy and producing extracellular matrix (ECM) components, which reinforce vessel walls. Myogenic autoregulation, which involves pressure-induced constriction, helps prevent excessive pressure from damaging the vulnerable microvasculature. However, aging impairs these adaptive mechanisms, weakening vessel walls and increasing susceptibility to damage. Insulin-like Growth Factor 1 (IGF-1) is crucial for vascular health, promoting VSMC hypertrophy, ECM production, and maintaining normal myogenic protection. IGF-1 also prevents microvascular senescence, reduces reactive oxygen species (ROS) production, and regulates matrix metalloproteinase (MMP) activity, which is vital for ECM remodeling and stabilization. IGF-1 deficiency, common in aging, compromises these protective mechanisms, increasing the risk of CMHs. This review explores the vasoprotective role of IGF-1 signaling in the cerebral microcirculation and its implications for preventing hypertension-induced CMHs in aging. Understanding and addressing the decline in IGF-1 signaling with age are crucial for maintaining cerebrovascular health and preventing hypertension-related vascular injuries in the aging population.
Collapse
Affiliation(s)
- Levente Stankovics
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | - Anna Ungvari
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
| | - Mónika Fekete
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Boglarka Csik
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Toth
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
30
|
de Lima EP, Tanaka M, Lamas CB, Quesada K, Detregiachi CRP, Araújo AC, Guiguer EL, Catharin VMCS, de Castro MVM, Junior EB, Bechara MD, Ferraz BFR, Catharin VCS, Laurindo LF, Barbalho SM. Vascular Impairment, Muscle Atrophy, and Cognitive Decline: Critical Age-Related Conditions. Biomedicines 2024; 12:2096. [PMID: 39335609 PMCID: PMC11428869 DOI: 10.3390/biomedicines12092096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The triad of vascular impairment, muscle atrophy, and cognitive decline represents critical age-related conditions that significantly impact health. Vascular impairment disrupts blood flow, precipitating the muscle mass reduction seen in sarcopenia and the decline in neuronal function characteristic of neurodegeneration. Our limited understanding of the intricate relationships within this triad hinders accurate diagnosis and effective treatment strategies. This review analyzes the interrelated mechanisms that contribute to these conditions, with a specific focus on oxidative stress, chronic inflammation, and impaired nutrient delivery. The aim is to understand the common pathways involved and to suggest comprehensive therapeutic approaches. Vascular dysfunctions hinder the circulation of blood and the transportation of nutrients, resulting in sarcopenia characterized by muscle atrophy and weakness. Vascular dysfunction and sarcopenia have a negative impact on physical function and quality of life. Neurodegenerative diseases exhibit comparable pathophysiological mechanisms that affect cognitive and motor functions. Preventive and therapeutic approaches encompass lifestyle adjustments, addressing oxidative stress, inflammation, and integrated therapies that focus on improving vascular and muscular well-being. Better understanding of these links can refine therapeutic strategies and yield better patient outcomes. This study emphasizes the complex interplay between vascular dysfunction, muscle degeneration, and cognitive decline, highlighting the necessity for multidisciplinary treatment approaches. Advances in this domain promise improved diagnostic accuracy, more effective therapeutic options, and enhanced preventive measures, all contributing to a higher quality of life for the elderly population.
Collapse
Affiliation(s)
- Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos Krt. 113, H-6725 Szeged, Hungary
| | - Caroline Barbalho Lamas
- Department of Gerontology, Universidade Federal de São Carlos, UFSCar, São Carlos 13565-905, SP, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Claudia Rucco P. Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Virgínia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Odontology, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Edgar Baldi Junior
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | | | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17525-902, SP, Brazil
- Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Research Coordination, UNIMAR Charity Hospital (HBU), University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| |
Collapse
|
31
|
Zhang Y, Yuan X, Jiang Z, Hu R, Liang H, Mao Q, Xiong Y, Zhang J, Liu M. The relationship between multimorbidity and cognitive function in older Chinese adults: based on propensity score matching. Front Public Health 2024; 12:1422000. [PMID: 39328989 PMCID: PMC11425792 DOI: 10.3389/fpubh.2024.1422000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Objective The goal of this study was to further validate the effect of multimorbidity on cognitive performance in older adults after controlling for confounders using propensity score matching (PSM). Methods A cross-sectional survey of older adult people aged 60 years or older selected by convenience sampling was conducted in seven medical institutions, three communities, and five nursing homes in Zunyi City, Guizhou Province. The data collected included general information, health-related information, and Mini-Mental State Examination (MMSE) scores. Variables were controlled for confounders by PSM to analyze differences in cognitive ability between multimorbidity and nonmultimorbidity older adults. Logistic regression and multivariate-adjusted restricted cubic spline (RCS) curves for matched samples were used to assess the relationship between multimorbidity and cognitive decline. Results A total of 14,175 respondents were enrolled, and the mean age of the participants included in this study was 71.26 ± 7.1 years, including 7,170 (50. 58%) of the participants were males, 7,005 (49.42%) were females, and 5,482 participants (38.67%) were screened for cognitive decline. After PSM, logistic regression analysis revealed that multimorbidity was a risk factor for cognitive decline (OR = 1.392, 95% CI = 1.271-1.525, p < 0.001). The RCS show that the risk of cognitive decline is always greater in older adults with multimorbidity than in older adults without multimorbidity at the same age. Age, sex, marital status, educational level, monthly income, drinking status, participation in social activities, and exercise were influential factors for cognitive decline in older adults (p < 0.05). The incidence of cognitive decline in older adults with multimorbidity was also greater than that in older adults with one chronic disease (p < 0.001). Conclusion The risk of cognitive decline in older adults with multimorbidity is greater than that in older adults without multimorbidity; therefore, the government should strengthen the prevention and treatment of multimorbidity in older adults to further protect their cognitive abilities.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Faculty of Nursing, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaoli Yuan
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhixia Jiang
- College Office, Guizhou Nursing Vocational College, Guiyang, Guizhou, China
| | - Rujun Hu
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Heting Liang
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qingyun Mao
- Faculty of Nursing, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yan Xiong
- Faculty of Nursing, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiabi Zhang
- Kweichow Moutai Hospital, Renhuai, Guizhou, China
| | - Mi Liu
- Kweichow Moutai Hospital, Renhuai, Guizhou, China
| |
Collapse
|
32
|
Lennon MJ, Rigney G, Creese B, Aarsland D, Hampshire A, Ballard C, Corbett A, Raymont V. Sports-related concussion not associated with long-term cognitive or behavioural deficits: the PROTECT-TBI study. J Neurol Neurosurg Psychiatry 2024:jnnp-2024-334039. [PMID: 39231581 DOI: 10.1136/jnnp-2024-334039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND The cognitive effects of sports-related concussion (SRC) have been the subject of vigorous debate but there has been little research into long-term outcomes in non-athlete populations. METHODS This cohort study of UK community-dwelling adults (aged 50-90 years) was conducted between November 2015 and November 2020, with up to 4 years annual follow-up (n=15 214). Lifetime history of concussions was collected at baseline using the Brain Injury Screening Questionnaire. The first analysis grouped participants by type of concussion (no concussion, only SRC, only non-SRC (nSRC), mixed concussions (both SRC and nSRC)) and the second grouped the participants by number (0, 1, 2 or 3+ SRC or nSRC). Mixed models were used to assess the effect of concussion on outcomes including four cognitive domains and one behavioural measure (Mild Behavioural Impairment-C). RESULTS Analysis of the included participants (24% male, mean age=64) at baseline found that the SRC group had significantly better working memory (B=0.113, 95% CI 0.038, 0.188) and verbal reasoning (B=0.199, 95% CI 0.092, 0.306) compared with those without concussion. Those who had suffered one SRC had significantly better verbal reasoning (B=0.111, 95% CI 0.031, 0.19) and attention (B=0.115, 95% CI 0.028, 0.203) compared with those with no SRC at baseline. Those with 3+ nSRCs had significantly worse processing speed (B=-0.082, 95% CI -0.144 to -0.019) and attention (B=-0.156, 95% CI -0.248 to -0.063). Those with 3+ nSRCs had a significantly worse trajectory of verbal reasoning with increasing age (B=-0.088, 95% CI -0.149 to -0.026). CONCLUSIONS Compared with those reporting no previous concussions, those with SRC had no cognitive or behavioural deficits and seemed to perform better in some tasks. As indicated by previous studies, sports participation may confer long-term cognitive benefits.
Collapse
Affiliation(s)
- Matthew Joseph Lennon
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Grant Rigney
- Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
| | - Byron Creese
- Division of Psychology, Department of Life Sciences, Brunel University London, Uxbridge, Greater London, UK
- Department of Health and Community Sciences, College of Medicine and Health, University of Exeter, Exeter, Devon, UK
| | - Dag Aarsland
- Department of Old age Psychiatry, IoPPN, King's College London, London, UK
- Centre for Age-related research, Stavanger University Hospital, Stavanger, Norway
| | - Adam Hampshire
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Clive Ballard
- Department of Health and Community Sciences, College of Medicine and Health, University of Exeter, Exeter, Devon, UK
| | - Anne Corbett
- Department of Health and Community Sciences, College of Medicine and Health, University of Exeter, Exeter, Devon, UK
| | | |
Collapse
|
33
|
Dinh PC, Monahan PO, Fung C, Sesso HD, Feldman DR, Vaughn DJ, Hamilton RJ, Huddart R, Martin NE, Kollmannsberger C, Althouse S, Einhorn LH, Frisina R, Root JC, Ahles TA, Travis LB. Cognitive function in long-term testicular cancer survivors: impact of modifiable factors. JNCI Cancer Spectr 2024; 8:pkae068. [PMID: 39141447 PMCID: PMC11424079 DOI: 10.1093/jncics/pkae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
No study has comprehensively examined associated factors (adverse health outcomes, health behaviors, and demographics) affecting cognitive function in long-term testicular cancer survivors (TC survivors). TC survivors given cisplatin-based chemotherapy completed comprehensive, validated surveys, including those that assessed cognition. Medical record abstraction provided cancer and treatment history. Multivariable logistic regression examined relationships between potential associated factors and cognitive impairment. Among 678 TC survivors (median age = 46; interquartile range [IQR] = 38-54); median time since chemotherapy = 10.9 years, IQR = 7.9-15.9), 13.7% reported cognitive dysfunction. Hearing loss (odds ratio [OR] = 2.02; P = .040), neuropathic pain (OR = 2.06; P = .028), fatigue (OR = 6.11; P < .001), and anxiety/depression (OR = 1.96; P = .029) were associated with cognitive impairment in multivariable analyses. Being on disability (OR = 9.57; P = .002) or retired (OR = 3.64; P = .029) were also associated with cognitive decline. Factors associated with impaired cognition identify TC survivors requiring closer monitoring, counseling, and focused interventions. Hearing loss, neuropathic pain, fatigue, and anxiety/depression constitute potential targets for prevention or reduction of cognitive impairment in long-term TC survivors.
Collapse
Affiliation(s)
- Paul C Dinh
- Division of Medical Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Patrick O Monahan
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN, USA
| | - Chunkit Fung
- J.P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Howard D Sesso
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Darren R Feldman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David J Vaughn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Hamilton
- Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Robert Huddart
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London & Sutton, UK
- Urology Unit, Royal Marsden NHS Foundation Trust, London & Sutton, UK
| | - Neil E Martin
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Sandra Althouse
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN, USA
| | - Lawrence H Einhorn
- Division of Medical Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert Frisina
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA
| | - James C Root
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tim A Ahles
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lois B Travis
- Division of Medical Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
34
|
Tiwari P, Mueed S, Abdulkareem AO, Hanif K. Activation of angiotensin converting enzyme 2 promotes hippocampal neurogenesis via activation of Wnt/β-catenin signaling in hypertension. Mol Cell Neurosci 2024; 130:103953. [PMID: 39013481 DOI: 10.1016/j.mcn.2024.103953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Hypertension-induced brain renin-angiotensin system (RAS) activation and neuroinflammation are hallmark neuropathological features of neurodegenerative diseases. Previous studies from our lab have shown that inhibition of ACE/Ang II/AT1R axis (by AT1R blockers or ACE inhibitors) reduced neuroinflammation and accompanied neurodegeneration via up-regulating adult hippocampal neurogenesis. Apart from this conventional axis, another axis of RAS also exists i.e., ACE2/Ang (1-7)/MasR axis, reported as an anti-hypertensive and anti-inflammatory. However, the role of this axis has not been explored in hypertension-induced glial activation and hippocampal neurogenesis in rat models of hypertension. Hence, in the present study, we examined the effect of ACE2 activator, Diminazene aceturate (DIZE) at 2 different doses of 10 mg/kg (non-antihypertensive) and 15 mg/kg (antihypertensive dose) in renovascular hypertensive rats to explore whether their effect on glial activation, neuroinflammation, and neurogenesis is either influenced by blood-pressure. The results of our study revealed that hypertension induced significant glial activation (astrocyte and microglial), neuroinflammation, and impaired hippocampal neurogenesis. However, ACE2 activation by DIZE, even at the low dose prevented these hypertension-induced changes in the brain. Mechanistically, ACE2 activation inhibited Ang II levels, TRAF6-NFκB mediated inflammatory signaling, NOX4-mediated ROS generation, and mitochondrial dysfunction by upregulating ACE2/Ang (1-7)/MasR signaling. Moreover, DIZE-induced activation of the ACE2/Ang (1-7)/MasR axis upregulated Wnt/β-catenin signaling, promoting hippocampal neurogenesis during the hypertensive state. Therefore, our study demonstrates that ACE2 activation can effectively prevent glial activation and enhance hippocampal neurogenesis in hypertensive conditions, regardless of its blood pressure-lowering effects.
Collapse
Affiliation(s)
- Priya Tiwari
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumbul Mueed
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Adam Olaitan Abdulkareem
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Animal Physiology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria
| | - Kashif Hanif
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
35
|
Tian JS, Wei YC, Wang P, Ling QS, Wang DX, Wang Z, Miao ZW, Miao CY. Pharmacological effects of MT-1207 in bilateral renal artery stenosis hypertension and its hypotensive targets validation. Biomed Pharmacother 2024; 178:117234. [PMID: 39106710 DOI: 10.1016/j.biopha.2024.117234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024] Open
Abstract
MT-1207 (MT) as a new antihypertensive drug is under clinical trial. However, its hypotensive mechanism has not been experimentally explored, and it is unknown whether MT can be used for bilateral renal artery stenosis hypertension. Using two-kidney two-clip (2K2C) to mimic bilateral renal artery stenosis in rats, a stroke-prone renovascular hypertension model, the present study further verified its antihypertensive effect, cardiovascular and renal protection, mortality reduction and lifespan prolongation, as well as demonstrated its two novel pharmacological effects for uric acid-lowering and cognition-improving. Notably, MT did not aggravate renal dysfunction; instead, it had beneficial effects on reducing serum uric acid level and maintaining serum K+ at a relatively stable level in 2K2C rats. In contrast, angiotensin receptor blocker losartan aggravated renal dysfunction in 2K2C rats. Mechanistically, MT hypotensive effect was dependent on its blockade of α1 and 5-HT2 receptors, since MT pretreatment abolished these receptor agonists-induced blood pressure elevations in vivo. Further evidence showed MT bound to and interacted with these receptor subtypes including α1A, α1B, α1D, 5-HT2A, 5-HT2B, and 5-HT2C receptors known for control of blood pressure. In conclusion, MT may be used for treatment of bilateral renal artery stenosis hypertension, different from losartan that is prohibited for treatment of bilateral renal artery stenosis hypertension. Targets validation of MT hypotensive mechanism and beneficial effects of MT on uric acid and cognitive function provide new insights for this novel multitarget drug, deserving clinical trial attention.
Collapse
Affiliation(s)
- Jia-Sheng Tian
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, China
| | - Yu-Chen Wei
- School of Medicine, Shanghai University, Shanghai, China
| | - Peng Wang
- ORxes Therapeutics Co., Ltd, Shenyang, China
| | - Qi-Sheng Ling
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, China
| | - Dao-Xin Wang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, China
| | - Zhu-Wei Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, China; School of Medicine, Shanghai University, Shanghai, China.
| |
Collapse
|
36
|
Chen L, Liu J, Li X, Hou Z, Wei Y, Chen M, Wang B, Cao H, Qiu R, Zhang Y, Ji X, Zhang P, Xue M, Qiu L, Wang L, Li H. Energy-adjusted dietary inflammatory index and cognitive function in Chinese older adults: a population-based cross-sectional study. Nutr Neurosci 2024; 27:978-988. [PMID: 37992128 DOI: 10.1080/1028415x.2023.2285537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Diet can regulate systemic inflammation, which may play an important role in the development and progression of cognitive impairment and dementia. To explore the relationship between the dietary inflammatory potential and cognitive ability. A total of 2307 adults aged 60 years or older were recruited from the Fujian Provincial Hospital (Fujian, China). Dietary inflammatory properties were analyzed using the energy-adjusted dietary inflammatory index (E-DII). The Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) were used to assess cognitive function. Logistic regression and restricted cubic spline (RCS) were fit to assess the associations between variables. The MCI subjects with the highest E-DII scores had a higher risk of AD compared to subjects with the lowest E-DII scores (OR = 1.98, 95%CI = 1.49-2.64, P for trend < 0.001). Subjects with the highest E-DII levels were at increased risk of cognitive impairment compared to those with the lowest E-DII levels (OR = 1.56, 95%CI = 1.25-1.93, P for trend < 0.001). The link between E-DII and cognitive impairment was significant in a nonlinear dose response analysis (P for nonlinear = 0.001). Higher E-DII scores were associated with an increased risk of developing AD or cognitive impairment. These findings may contribute to the effective prevention of cognitive impairment by constructing a multidisciplinary synergistic prevention strategy and controlling dietary inflammation levels.
Collapse
Affiliation(s)
- Lili Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
- Department of Nursing, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Jinxiu Liu
- The School of Nursing, Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiuli Li
- The School of Nursing, Fujian Medical University, Fuzhou, People's Republic of China
| | - Zhaoyi Hou
- The School of Nursing, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yongbao Wei
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Mingfeng Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Bixia Wang
- The School of Nursing, Fujian Medical University, Fuzhou, People's Republic of China
| | - Huizhen Cao
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Rongyan Qiu
- Fujian Provincial Governmental Hospital, Fuzhou, People's Republic of China
| | - Yuping Zhang
- The School of Nursing, Fujian Medical University, Fuzhou, People's Republic of China
| | - Xinli Ji
- The School of Nursing, Fujian Medical University, Fuzhou, People's Republic of China
| | - Ping Zhang
- The School of Nursing, Fujian Medical University, Fuzhou, People's Republic of China
| | - Mianxiang Xue
- The School of Nursing, Fujian Medical University, Fuzhou, People's Republic of China
| | - Linlin Qiu
- The School of Nursing, Fujian Medical University, Fuzhou, People's Republic of China
| | - Linlin Wang
- The School of Nursing, Fujian Medical University, Fuzhou, People's Republic of China
| | - Hong Li
- The School of Nursing, Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
37
|
Zhu H, Hei B, Zhou W, Tan J, Zeng Y, Li M, Liu Z. Association between Life's Essential 8 and cognitive function among older adults in the United States. Sci Rep 2024; 14:19773. [PMID: 39187530 PMCID: PMC11347626 DOI: 10.1038/s41598-024-70112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
The American Heart Association (AHA) recently redefined cardiovascular health (CVH) with the introduction of Life's Essential 8 (LE8), which encompasses eight areas (diet, physical activity, nicotine exposure, sleep duration body mass index, non-HDL cholesterol, blood glucose, and blood pressure). This study aimed to explore the relationships between both the aggregate and individual CVH metrics, as defined by Life's Essential 8, and cognitive function in older adults in the United States. This cross-sectional, population-based study analyzed data from the National Health and Nutrition Examination Survey conducted between 2011 and 2014, focusing on individuals aged 60 years and older. CVH was categorized as low (0-49), moderate (50-79), or high (80-100). Cognitive function was assessed through the CERAD tests, Animal Fluency test, and Digit Symbol Substitution test. Multivariable logistic models and restricted cubic spline models were employed to investigate these associations. This study included a total of 2279 older adults in the United States. Only 11% of adults achieved a high total CVH score, while 12% had a low score. After further adjustment for potential confounding factors, higher LE8 scores were significantly associated with higher scores on CERAD: delayed recall score (0.02[0.01, 0.03]; P < 0.001), CERAD: total score (3 recall trials) (0.04[0.02, 0.06]; P < 0.001), animal fluency: total score (0.09[0.05, 0.12]; P < 0.001), and digit symbol: score (0.29[0.18, 0.41]; P < 0.001), demonstrating a linear dose-response relationship. Similar patterns were also observed in the associations between health behavior and health factor scores with cognitive function tests. LE8 scores exhibited positive linear associations with cognitive function. Maintaining better levels of CVH may be associated with higher levels of cognitive function in older Americans, but further research is needed to confirm the causal and temporal relationships between LE8 and cognitive function.
Collapse
Affiliation(s)
- Huaxin Zhu
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Bo Hei
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Department of Neurosurgery, Peking University People's Hospital, Peking University, No.11 Xizhimen South Street, Beijing, 100044, China
| | - Wu Zhou
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Jiacong Tan
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Yanyang Zeng
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Meihua Li
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Zheng Liu
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
38
|
Khan H, Farhana F, Mostafa F, Rafiq A, Nizia EW, Razzaq R, Atique R, Dauenhauer M, Zabin Z, Palle K, Reddy PH. Comparative Study of Risk Factors Associated with Normal Cognition and Cognitive Impairment in Rural West Elderly Texans. J Alzheimers Dis Rep 2024; 8:1133-1151. [PMID: 39247876 PMCID: PMC11380276 DOI: 10.3233/adr-240092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 09/10/2024] Open
Abstract
Background Alzheimer's disease (AD) is related to one or more chronic illnesses, which may develop cognitive decline and dementia. Cognitive impairment is increasing, and public health officials must address risk factors for AD to improve the health of rural West Texas communities. Objective The purpose of this study was to explore the sociodemographic and chronic disease risk factors related to cognitive impairment among elderly adults living in Cochran, Parmer, and Bailey counties in rural West Texas. Methods Statistical methods such as Pearson's chi-squared, proportion tests, univariate binary logistic regression, and a multivariable logistic regression were utilized to analyze data. SPSS software was used to detect the significant relationship between cognitive impairment and risk factors. Results Summary statistics were obtained for sociodemographic and chronic diseases by using cross-tabulation analysis and comparing the county respondents with proportion tests. A univariate binary logistic regression method was utilized and found that age group 60-69, anxiety, depression, diabetes, hypertension, and cardiovascular disease were significantly associated with cognitive impairment. Using a multivariable logistic regression approach, it was found that Bailey County (age group 60-69) had a higher likelihood (p = 0.002) of cognitive impairment than Parmer (p = 0.067) and Cochran counties (p = 0.064). The risk of females (p = 0.033) in Parmer County was 78.3% lower compared to males in developing AD. Conclusions Identifying significant risk factors for cognitive impairment are important in addressing issues of geographic variations and integrating such factors may guide relevant policy interventions to reduce cognitive impairment incidence in rural communities within West Texas.
Collapse
Affiliation(s)
- Hafiz Khan
- Department of Public Health, Julia Jones Matthews School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Fardous Farhana
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX, USA
| | - Fahad Mostafa
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, USA
| | - Aamrin Rafiq
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Refaya Razzaq
- Department of Public Health, Julia Jones Matthews School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Rumana Atique
- Department of Public Health, Julia Jones Matthews School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Megan Dauenhauer
- Department of Public Health, Julia Jones Matthews School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Zawah Zabin
- Department of Public Health, Julia Jones Matthews School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Komaraiah Palle
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
39
|
Lu J, Pan H, Xing J, Wang B, Xu L, Ye S. Development and Validation of a Nomogram for Predicting Lacunar Infarction in Patients with Hypertension. Int J Gen Med 2024; 17:3411-3422. [PMID: 39130489 PMCID: PMC11316493 DOI: 10.2147/ijgm.s467762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Background A considerable proportion of hypertensive patients may experience lacunar infarction. Therefore, early identification of the risk for lacunar infarction in hypertensive patients is particularly important. This study aimed to develop and validate a concise nomogram for predicting lacunar infarction in hypertensive patients. Methods Retrospectively analyzed the clinical data of 314 patients with accurate history of hypertension in the Second Affiliated Hospital of Wannan Medical College from January 2021 to December 2022. All the patients were randomly assigned to the training set (n=220) and the validation set (n=94) with 7:3. The diagnosis of lacunar infarction in patients was confirmed using cranial CT or MRI. The independent risk factors of lacunar infarction were determined by Least absolute shrinkage and selection operator (LASSO) regression and multivariable logistic regression analysis. The nomogram was built based on the independent risk factors. The nomogram's discrimination, calibration, and clinical usefulness were evaluated by receiver operating characteristics (ROC) curve, calibration curve, and decision curve analysis (DCA) analysis, respectively. Results The incidence of lacunar infarction was 34.50% and 33.00% in the training and validation sets, respectively. Five independent predictors were made up of the nomogram, including age (OR=1.142, 95% CI: 1.089-1.198, P<0.001), diabetes mellitus (OR=3.058, 95% CI: 1.396-6.697, P=0.005), atrial fibrillation (OR=3.103, 95% CI: 1.328-7.250, P=0.009), duration of hypertension (OR=1.130, 95% CI: 1.045-1.222, P=0.002), and low-density lipoprotein (OR=2.147, 95% CI: 1.250-3.688, P=0.006). The discrimination with area under the curve (AUC) was 0.847 (95% CI: 0.789-0.905) in the training set and was a slight increase to 0.907 (95% CI: 0.838-0.976) in the validation set. The calibration curve showed high coherence between the predicted and actual probability of lacunar infarction. Moreover, the DCA analysis indicated that the nomogram had a higher overall net benefit of the threshold probability range in both two sets. Conclusion Age, diabetes mellitus, atrial fibrillation, duration of hypertension, and low-density lipoprotein were significant predictors of lacunar infarction in hypertensive patients. The nomogram based on the clinical data was constructed, which was a useful visualized tool for clinicians to assess the risk of the lacunar infarction in hypertensive patients.
Collapse
Affiliation(s)
- Jun Lu
- Emergency Department, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, People’s Republic of China
| | - Huiqing Pan
- Emergency Department, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, People’s Republic of China
| | - Jingjing Xing
- Emergency Department, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, People’s Republic of China
| | - Bing Wang
- Emergency Department, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, People’s Republic of China
| | - Li Xu
- Neurology Department, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, People’s Republic of China
| | - Sheng Ye
- Emergency Department, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, People’s Republic of China
- School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui, People’s Republic of China
| |
Collapse
|
40
|
Phanrang PT, Upadhyaya J, Chandra AK, Sarmah A, Hobza P, Aguan K, Mitra S. Bio-Nano Synergy in Therapeutic Applications: Drug-Graphene Oxide Nanocomposites for Modulated Acetylcholinesterase Inhibition and Radical Scavenging. J Phys Chem B 2024; 128:7427-7437. [PMID: 39021051 DOI: 10.1021/acs.jpcb.4c03351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The current study explores the synergistic application of biophysical chemistry and nanotechnology in therapeutic treatments, focusing specifically on the development of advanced biomaterials to repurpose FDA-approved Alzheimer's disease (AD) drugs as potent antioxidants. By integration of AD drugs into graphene oxide (GO) nanocomposites, an attempt to enhance the acetylcholinesterase (AChE) inhibition and increase radical scavenging activity is proposed. This bionano synergy is designed to leverage the unique properties of both the nanomaterial surface and the bioactive compounds, improving treatment effectiveness. The nanocomposites also promise targeted drug delivery, as GO can traverse the blood-brain barrier to inhibit AChE more effectively in AD patients. Furthermore, the drug-GO nanocomposite exhibits enhanced radical scavenging capabilities, offering additional therapeutic benefits. This study also elucidates a molecular level understanding on how the properties of the drugs are modified when integrated into nanocomposites with GO, enabling the development of more effective materials. The interdisciplinary approach presented in this study exploits the potential of nanotechnology to enhance drug delivery systems and achieve superior therapeutic outcomes through bionano synergy.
Collapse
Affiliation(s)
| | - Jahnabi Upadhyaya
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Asit K Chandra
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Amrit Sarmah
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Sivaprasad Mitra
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
41
|
Xiao S, Bi Y, Chen W. What factors preventing the older adults in China from living longer: a machine learning study. BMC Geriatr 2024; 24:625. [PMID: 39039463 PMCID: PMC11265125 DOI: 10.1186/s12877-024-05214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND The fact that most older people do not live long means that they do not have more time to pursue self-actualization and contribute value to society. Although there are many studies on the longevity of the elderly, the limitations of traditional statistics lack the good ability to study together the important influencing factors and build a simple and effective prediction model. METHODS Based on the the data of Chinese Longitudinal Healthy Longevity Survey (CLHLS), 2008-2018 cohort and 2014-2018 cohort were selected and 16 features were filtered and integrated. Five machine learning algorithms, Elastic-Net Regression (ENR), Decision Tree (DT), Random Forest (RF), K-Nearest Neighbor (KNN), and eXtreme Gradient Boosting (XGBoost), were used to develop models and assessed by internal validation with CLHLS 2008-2018 cohort and temporal validation with CLHLS 2014-2018 cohort. Besides, the best performing model was explained and according to the variable importance results, simpler models would be developed. RESULTS The results showed that the model developed by XGBoost algorithm had the best performance with AUC of 0.788 in internal validation and 0.806 in temporal validation. Instrumental activity of daily living (IADL), leisure activity, marital status, sex, activity of daily living (ADL), cognitive function, overall plant-based diet index (PDI) and psychological resilience, 8 features were more important in the model. Finally, with these 8 features simpler models were developed, it was found that the model performance did not decrease in both internal and temporal validation. CONCLUSIONS The study indicated that the importance of these 8 factors for predicting the death of elderly people in China and built a simple machine learning model with good predictive performance. It can inspire future key research directions to promote longevity of the elderly, as well as in practical life to make the elderly healthy longevity, or timely end-of-life care for the elderly, and can use predictive model to aid decision-making.
Collapse
Affiliation(s)
- Shiyin Xiao
- School of Psychology, Guizhou Normal University, Guiyang, China
- Center for Big Data Research in Psychology, Guizhou Normal University, Guiyang, China
| | - Yajie Bi
- School of Psychology, Guizhou Normal University, Guiyang, China
- Center for Big Data Research in Psychology, Guizhou Normal University, Guiyang, China
| | - Wei Chen
- School of Psychology, Guizhou Normal University, Guiyang, China.
- Center for Big Data Research in Psychology, Guizhou Normal University, Guiyang, China.
| |
Collapse
|
42
|
Wei W, Ma D, Gu L, Li Y, Zhang L, Li L, Zhang L. Epimedium flavonoids improve cerebral white matter lesions by inhibiting neuroinflammation and activating neurotrophic factor signal pathways in spontaneously hypertensive rats. Int Immunopharmacol 2024; 139:112683. [PMID: 39018691 DOI: 10.1016/j.intimp.2024.112683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Cerebral small vessel disease (CSVD) is one of the most common nervous system diseases. Hypertension and neuroinflammation are considered important risk factors for the development of CSVD and white matter (WM) lesions. We used the spontaneously hypertensive rat (SHR) as a model of early-onset CSVD and administered epimedium flavonoids (EF) for three months. The learning and memorization abilities were tested by new object recognition test. The pathological changes of WM were assessed using magnetic resonance imaging, transmission electron microscopy (TEM), Luxol fast blue and Black Gold staining. Oligodendrocytes (OLs) and myelin basic protein were detected by immunohistochemistry. The ultrastructure of the tight junctions was examined using TEM. Microglia and astrocytes were detected by immunofluorescence. RNA-seq was performed on the corpus callosum of rats. The results revealed that EF could significantly improve the learning and memory impairments in SHR, alleviate the injury and demyelination of WM nerve fibers, promote the differentiation of oligodendrocyte precursor cells (OPCs) into mature OLs, inhibit the activation of microglia and astrocytes, inhibit the expression of p38 MAPK/NF-κB p65/NLRP3 and inflammatory cytokines, and increase the expression of tight-junction related proteins ZO-1, occludin, and claudin-5. RNA-seq analysis showed that the neurotrophin signaling pathway played an important role in the disease. RT-qPCR and WB results showed that EF could regulate the expression of nerve growth factor and brain-derived neurotrophic factor and their downstream related proteins in the neurotrophin signaling pathway, which might explain the potential mechanism of EF's effects on the cognitive impairment and WM damage caused by hypertension.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Lihong Gu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Pharmacy, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Yali Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
43
|
Pradeep A, Raghavan S, Przybelski SA, Preboske GM, Schwarz CG, Lowe VJ, Knopman DS, Petersen RC, Jack CR, Graff-Radford J, Cogswell PM, Vemuri P. Can white matter hyperintensities based Fazekas visual assessment scales inform about Alzheimer's disease pathology in the population? Alzheimers Res Ther 2024; 16:157. [PMID: 38987827 PMCID: PMC11234605 DOI: 10.1186/s13195-024-01525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND White matter hyperintensities (WMH) are considered hallmark features of cerebral small vessel disease and have recently been linked to Alzheimer's disease (AD) pathology. Their distinct spatial distributions, namely periventricular versus deep WMH, may differ by underlying age-related and pathobiological processes contributing to cognitive decline. We aimed to identify the spatial patterns of WMH using the 4-scale Fazekas visual assessment and explore their differential association with age, vascular health, AD imaging markers, namely amyloid and tau burden, and cognition. Because our study consisted of scans from GE and Siemens scanners with different resolutions, we also investigated inter-scanner reproducibility and combinability of WMH measurements on imaging. METHODS We identified 1144 participants from the Mayo Clinic Study of Aging consisting of a population-based sample from Olmsted County, Minnesota with available structural magnetic resonance imaging (MRI), amyloid, and tau positron emission tomography (PET). WMH distribution patterns were assessed on FLAIR-MRI, both 2D axial and 3D, using Fazekas ratings of periventricular and deep WMH severity. We compared the association of periventricular and deep WMH scales with vascular risk factors, amyloid-PET, and tau-PET standardized uptake value ratio, automated WMH volume, and cognition using Pearson partial correlation after adjusting for age. We also evaluated vendor compatibility and reproducibility of the Fazekas scales using intraclass correlations (ICC). RESULTS Periventricular and deep WMH measurements showed similar correlations with age, cardiometabolic conditions score (vascular risk), and cognition, (p < 0.001). Both periventricular WMH and deep WMH showed weak associations with amyloidosis (R = 0.07, p = < 0.001), and none with tau burden. We found substantial agreement between data from the two scanners for Fazekas measurements (ICC = 0.82 and 0.74). The automated WMH volume had high discriminating power for identifying participants with Fazekas ≥ 2 (area under curve = 0.97) and showed poor correlation with amyloid and tau PET markers similar to the visual grading. CONCLUSION Our study investigated risk factors underlying WMH spatial patterns and their impact on global cognition, with no discernible differences between periventricular and deep WMH. We observed minimal impact of amyloidosis on WMH severity. These findings, coupled with enhanced inter-scanner reproducibility of WMH data, suggest the combinability of inter-scanner data assessed by harmonized protocols in the context of vascular contributions to cognitive impairment and dementia biomarker research.
Collapse
Affiliation(s)
| | - Sheelakumari Raghavan
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Gregory M Preboske
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Christopher G Schwarz
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Petrice M Cogswell
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
44
|
Laudani C, Capodanno D, Angiolillo DJ. The pharmacology of antiplatelet agents for primary, secondary, and tertiary prevention of ischemic stroke. Expert Opin Pharmacother 2024; 25:1373-1390. [PMID: 39046451 DOI: 10.1080/14656566.2024.2385135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Ischemic etiology accounts for two thirds of all strokes in which platelet activation and aggregation play a major role. A variety of antiplatelet therapies have been tested for primary, secondary, and tertiary prevention, with certain patient subtypes benefiting more than others from a specific regimen. AREAS COVERED This review aims at synthetizing current evidence on pharmacology of antiplatelet agents approved for primary, secondary, and tertiary stroke prevention and their application among possible patient subtypes that may benefit more from their administration. EXPERT OPINION Management of ischemic stroke has largely evolved over the past decades. A better understanding of stroke pathophysiology has allowed to identify patients who can benefit most from antiplatelet therapies, with varying degrees of benefit depending on whether these agents are being used for primary, secondary, or tertiary prevention. Importantly, the antiplatelet treatment regimens currently available have expanded and no longer limited to aspirin but include other drugs such as P2Y12 and phosphodiesterase inhibitors, also used in combination, as well as precision medicine approaches using genetic testing aiming at optimizing the safety and efficacy in this population.
Collapse
Affiliation(s)
- Claudio Laudani
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "Rodolico - San Marco", University of Catania, Catania, Italy
| | - Davide Capodanno
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "Rodolico - San Marco", University of Catania, Catania, Italy
| | - Dominick J Angiolillo
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, FL, USA
| |
Collapse
|
45
|
Wei W, Ma D, Li L, Zhang L. Cognitive impairment in cerebral small vessel disease induced by hypertension. Neural Regen Res 2024; 19:1454-1462. [PMID: 38051887 PMCID: PMC10883517 DOI: 10.4103/1673-5374.385841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/22/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Hypertension is a primary risk factor for the progression of cognitive impairment caused by cerebral small vessel disease, the most common cerebrovascular disease. However, the causal relationship between hypertension and cerebral small vessel disease remains unclear. Hypertension has substantial negative impacts on brain health and is recognized as a risk factor for cerebrovascular disease. Chronic hypertension and lifestyle factors are associated with risks for stroke and dementia, and cerebral small vessel disease can cause dementia and stroke. Hypertension is the main driver of cerebral small vessel disease, which changes the structure and function of cerebral vessels via various mechanisms and leads to lacunar infarction, leukoaraiosis, white matter lesions, and intracerebral hemorrhage, ultimately resulting in cognitive decline and demonstrating that the brain is the target organ of hypertension. This review updates our understanding of the pathogenesis of hypertension-induced cerebral small vessel disease and the resulting changes in brain structure and function and declines in cognitive ability. We also discuss drugs to treat cerebral small vessel disease and cognitive impairment.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
46
|
Arif Y, Killanin AD, Zhu J, Willett MP, Okelberry HJ, Johnson HJ, Wilson TW. Hypertension Impacts the Oscillatory Dynamics Serving the Encoding Phase of Verbal Working Memory. Hypertension 2024; 81:1609-1618. [PMID: 38690668 PMCID: PMC11168866 DOI: 10.1161/hypertensionaha.124.22698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Chronic hypertension is known to be a major contributor to cognitive decline, with executive function and working memory being among the domains most commonly affected. Despite the growing literature on such dysfunction in patients with hypertension, the underlying neural processes are poorly understood. METHODS In this cross-sectional study, we examine these neural processes by having participants with controlled hypertension, uncontrolled hypertension, and healthy controls perform a verbal working memory task during magnetoencephalography. Neural oscillations associated with the encoding and maintenance components of the working memory task were imaged and statistically evaluated among the 3 groups. RESULTS Differences related to hypertension emerged during the encoding phase, where the hypertension groups exhibited weaker α-β oscillatory responses compared with controls in the left parietal cortices, whereas such oscillatory activity differed between the 2 hypertension groups in the right prefrontal regions. Importantly, these neural responses in the prefrontal and parietal cortices during encoding were also significantly associated with behavioral performance across all participants. CONCLUSIONS Overall, our data suggest that hypertension is associated with neurophysiological abnormalities during working memory encoding, whereas the neural processes serving maintenance seem to be preserved. The right hemispheric neural responses likely reflected compensatory processing, which patients with controlled hypertension may use to achieve verbal working memory function at the level of controls, as opposed to the uncontrolled hypertension group where diminished resources may have limited such additional recruitment.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Abraham D. Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Jingqi Zhu
- University of Michigan, Ann Arbor, MI, USA
| | - Madelyn P. Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J. Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hallie J. Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
47
|
Khan AD, Elnagar S, Eltayeb M, Baluch SK, Kumar A, Kumari M, Kumari M, Fareed MU, Rehman A, Shehryar A. The Impact of Hypertension on Cognitive Decline and Alzheimer's Disease and Its Management: A Systematic Review. Cureus 2024; 16:e65194. [PMID: 39176335 PMCID: PMC11340657 DOI: 10.7759/cureus.65194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Hypertension, a major risk factor for cardiovascular diseases, has also been linked to cognitive decline and Alzheimer's disease (AD). This systematic review synthesizes the current evidence on how managing hypertension may influence cognitive health, particularly among elderly populations and those with cognitive impairments. By analyzing data from randomized controlled trials (RCTs), clinical trials, and cross-sectional studies, we evaluated the efficacy of various interventions, including pharmacological treatments, lifestyle modifications, and multidomain approaches that address blood pressure (BP) variability and intensive versus standard blood pressure control. Our findings reveal that effective blood pressure management can mitigate cognitive decline and potentially alter the course of Alzheimer's disease. However, the results also highlight complexities, such as the risk of adverse effects from intensive blood pressure control on cognitive processing and hippocampal volume. This review underscores the need for tailored hypertension management strategies that balance cardiovascular health with cognitive outcomes, suggesting that stabilizing blood pressure variability could play a crucial role. Future research should focus on longitudinal studies to refine these management strategies and enhance treatment guidelines, improving overall outcomes for patients at risk of cognitive decline.
Collapse
Affiliation(s)
- Adam D Khan
- Internal Medicine, Frontier Medical & Dental College, Abbottabad, PAK
| | - Sara Elnagar
- Internal Medicine, NewYork-Presbyterian Queens Hospital, New York City, USA
| | | | - Shariq K Baluch
- Internal Medicine, Universidad Autónoma de Guadalajara, Guadalajara, MEX
| | - Ajay Kumar
- Internal Medicine, Chandka Medical College, Larkana, PAK
| | | | - Muskan Kumari
- Internal Medicine, Chandka Medical College, Larkana, PAK
| | | | | | | |
Collapse
|
48
|
Subramanian V, Juhr D, Johnson LS, Yem JB, Giansanti P, Grumbach IM. Changes in the Proteome of the Circle of Willis during Aging Reveal Signatures of Vascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:4887877. [PMID: 38962180 PMCID: PMC11221951 DOI: 10.1155/2024/4887877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/22/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Approximately 70% of all strokes occur in patients over 65 years old, and stroke increases the risk of developing dementia. The circle of Willis (CoW), the ring of arteries at the base of the brain, links the intracerebral arteries to one another to maintain adequate cerebral perfusion. The CoW proteome is affected in cerebrovascular and neurodegenerative diseases, but changes related to aging have not been described. Here, we report on a quantitative proteomics analysis comparing the CoW from five young (2-3-month-old) and five aged male (18-20-month-old) mice using gene ontology (GO) enrichment, ingenuity pathway analysis (IPA), and iPathwayGuide tools. This revealed 242 proteins that were significantly dysregulated with aging, among which 189 were upregulated and 53 downregulated. GO enrichment-based analysis identified blood coagulation as the top biological function that changed with age and integrin binding and extracellular matrix constituents as the top molecular functions. Consistent with these findings, iPathwayGuide-based impact analysis revealed associations between aging and the complement and coagulation, platelet activation, ECM-receptor interaction, and metabolic process pathways. Furthermore, IPA analysis revealed the enrichment of 97 canonical pathways that contribute to inflammatory responses, as well as 59 inflammation-associated upstream regulators including 39 transcription factors and 20 cytokines. Thus, aging-associated changes in the CoW proteome in male mice demonstrate increases in metabolic, thrombotic, and inflammatory processes.
Collapse
Affiliation(s)
- Vikram Subramanian
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Denise Juhr
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Lydia S. Johnson
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Justin B. Yem
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Piero Giansanti
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS@MRI)Technical University of Munich, Munich, Germany
| | - Isabella M. Grumbach
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
- Free Radical and Radiation Biology ProgramDepartment of Radiation OncologyCarver College of MedicineUniversity of Iowa, Iowa City, USA
- Iowa City VA Healthcare System, Iowa City, IA, USA
| |
Collapse
|
49
|
Mendyk-Bordet AM, Ouk T, Muhr-Tailleux A, Pétrault M, Vallez E, Gelé P, Dondaine T, Labreuche J, Deplanque D, Bordet R. Endothelial Dysfunction and Pre-Existing Cognitive Disorders in Stroke Patients. Biomolecules 2024; 14:721. [PMID: 38927124 PMCID: PMC11202150 DOI: 10.3390/biom14060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The origin of pre-existing cognitive impairment in stroke patients remains controversial, with a vascular or a degenerative hypothesis. OBJECTIVE To determine whether endothelial dysfunction is associated with pre-existing cognitive problems, lesion load and biological anomalies in stroke patients. METHODS Patients originated from the prospective STROKDEM study. The baseline cognitive state, assessed using the IQ-CODE, and risk factors for stroke were recorded at inclusion. Patients with an IQ-CODE score >64 were excluded. Endothelial function was determined 72 h after stroke symptom onset by non-invasive digital measurement of endothelium-dependent flow-mediated dilation and calculation of the reactive hyperemia index (RHI). RHI ≤ 1.67 indicated endothelial dysfunction. Different biomarkers of endothelial dysfunction were analysed in blood or plasma. All patients underwent MRI 72 h after stroke symptom onset. RESULTS A total of 86 patients were included (52 males; mean age 63.5 ± 11.5 years). Patients with abnormal RHI have hypertension or antihypertensive treatment more often. The baseline IQ-CODE was abnormal in 33 (38.4%) patients, indicating a pre-existing cognitive problem. Baseline IQ-CODE > 48 was observed in 15 patients (28.3%) with normal RHI and in 18 patients (54.6%) with abnormal RHI (p = 0.016). The RHI median was significantly lower in patients with abnormal IQ-CODE. Abnormal RHI was associated with a significantly higher median FAZEKAS score (2.5 vs. 2; p = 0.008), a significantly higher frequency of periventricular lesions (p = 0.015), more white matter lesions (p = 0.007) and a significantly higher cerebral atrophy score (p < 0.001) on MRI. Vascular biomarkers significantly associated with abnormal RHI were MCP-1 (p = 0.009), MIP_1a (p = 0.042), and homocysteinemia (p < 0.05). CONCLUSIONS A vascular mechanism may be responsible for cognitive problems pre-existing stroke. The measurement of endothelial dysfunction after stroke could become an important element of follow-up, providing an indication of the functional and cognitive prognosis of stroke patients.
Collapse
Affiliation(s)
| | - Thavarak Ouk
- Univ. Lille, CHU Lille, Inserm, Lille Neuroscience and Cognition, F-59000 Lille, France
| | - Anne Muhr-Tailleux
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, Nuclear Receptor, Metabolic and Cardiovascular Diseases, F-59000 Lille, France; (A.M.-T.); (E.V.)
| | - Maud Pétrault
- Univ. Lille, CHU Lille, Inserm, Lille Neuroscience and Cognition, F-59000 Lille, France
| | - Emmanuelle Vallez
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, Nuclear Receptor, Metabolic and Cardiovascular Diseases, F-59000 Lille, France; (A.M.-T.); (E.V.)
| | - Patrick Gelé
- Univ. Lille, CHU Lille, Inserm, Lille Neuroscience and Cognition, F-59000 Lille, France
| | - Thibaut Dondaine
- Univ. Lille, CHU Lille, Inserm, Lille Neuroscience and Cognition, F-59000 Lille, France
| | - Julien Labreuche
- Univ. Lille, CHU Lille, Inserm, Biostatistic Platform, F-59000 Lille, France
| | - Dominique Deplanque
- Univ. Lille, CHU Lille, Inserm, Lille Neuroscience and Cognition, F-59000 Lille, France
| | - Régis Bordet
- Univ. Lille, CHU Lille, Inserm, Lille Neuroscience and Cognition, F-59000 Lille, France
- Univ. Lille, CHU Lille, Inserm, Department of Medical Pharmacology, F-59000 Lille, France
| |
Collapse
|
50
|
Hannan J, Busby N, Roth R, Wilmskoetter J, Newman-Norlund R, Rorden C, Bonilha L, Fridriksson J. Under pressure: the interplay of hypertension and white matter hyperintensities with cognition in chronic stroke aphasia. Brain Commun 2024; 6:fcae200. [PMID: 38894950 PMCID: PMC11184349 DOI: 10.1093/braincomms/fcae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/08/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
While converging research suggests that increased white matter hyperintensity load is associated with poorer cognition, and the presence of hypertension is associated with increased white matter hyperintensity load, the relationship among hypertension, cognition and white matter hyperintensities is not well understood. We sought to determine the effect of white matter hyperintensity burden on the relationship between hypertension and cognition in individuals with post-stroke aphasia, with the hypothesis that white matter hyperintensity load moderates the relationship between history of hypertension and cognitive function. Health history, Fazekas scores for white matter hyperintensities and Wechsler Adult Intelligence Scale Matrix Reasoning subtest scores for 79 people with aphasia collected as part of the Predicting Outcomes of Language Rehabilitation study at the Center for the Study of Aphasia Recovery at the University of South Carolina and the Medical University of South Carolina were analysed retrospectively. We found that participants with a history of hypertension had increased deep white matter hyperintensity severity (P < 0.001), but not periventricular white matter hyperintensity severity (P = 0.116). Moderation analysis revealed that deep white matter hyperintensity load moderates the relationship between high blood pressure and Wechsler Adult Intelligence Scale scores when controlling for age, education, aphasia severity and lesion volume. The interaction is significant, showing that a history of high blood pressure and severe deep white matter hyperintensities together are associated with poorer Matrix Reasoning scores. The overall model explains 41.85% of the overall variation in Matrix Reasoning score in this group of participants. These findings underscore the importance of considering cardiovascular risk factors in aphasia treatment, specifically hypertension and its relationship to brain health in post-stroke cognitive function.
Collapse
Affiliation(s)
- Jade Hannan
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Rebecca Roth
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Janina Wilmskoetter
- Department of Health and Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Leonardo Bonilha
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|