1
|
Yang C, Camargo Tavares L, Lee HC, Steele JR, Ribeiro RV, Beale AL, Yiallourou S, Carrington MJ, Kaye DM, Head GA, Schittenhelm RB, Marques FZ. Faecal metaproteomics analysis reveals a high cardiovascular risk profile across healthy individuals and heart failure patients. Gut Microbes 2025; 17:2441356. [PMID: 39709554 DOI: 10.1080/19490976.2024.2441356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
The gut microbiota is a crucial link between diet and cardiovascular disease (CVD). Using fecal metaproteomics, a method that concurrently captures human gut and microbiome proteins, we determined the crosstalk between gut microbiome, diet, gut health, and CVD. Traditional CVD risk factors (age, BMI, sex, blood pressure) explained < 10% of the proteome variance. However, unsupervised human protein-based clustering analysis revealed two distinct CVD risk clusters (low-risk and high-risk) with different blood pressure (by 9 mmHg) and sex-dependent dietary potassium and fiber intake. In the human proteome, the low-risk group had lower angiotensin-converting enzymes, inflammatory proteins associated with neutrophil extracellular trap formation and auto-immune diseases. In the microbial proteome, the low-risk group had higher expression of phosphate acetyltransferase that produces SCFAs, particularly in fiber-fermenting bacteria. This model identified severity across phenotypes in heart failure patients and long-term risk of cardiovascular events in a large population-based cohort. These findings underscore multifactorial gut-to-host mechanisms that may underlie risk factors for CVD.
Collapse
Affiliation(s)
- Chaoran Yang
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia
| | - Leticia Camargo Tavares
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia
| | - Han-Chung Lee
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Joel R Steele
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | | | - Anna L Beale
- Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Australia
| | - Stephanie Yiallourou
- Preclinical Disease and Prevention Unit, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Melinda J Carrington
- Preclinical Disease and Prevention Unit, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - David M Kaye
- Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Australia
- School of Translational Medicine, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Pharmacology, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia
- Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Victorian Heart Institute, Monash University, Clayton, Australia
| |
Collapse
|
2
|
Liu T, Stokholm J, Zhang M, Vinding R, Sørensen SJ, Zhao N, Mueller NT. Infant Gut Microbiota and Childhood Blood Pressure: Prospective Associations and the Modifying Role of Breastfeeding. J Am Heart Assoc 2025; 14:e037447. [PMID: 40013588 DOI: 10.1161/jaha.124.037447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/09/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Germ-free mice experiments indicate that human gut microbiota influence blood pressure (BP), but no studies have prospectively examined if infant gut microbiota affects their future childhood BP. We aim to investigate prospective associations of infant gut microbiota diversity and composition with childhood BP, examining effect measure modification by breastfeeding and mediation by a child's body mass index. METHODS AND RESULTS In the Copenhagen Prospective Studies on Asthma in Childhood 2010 cohort, we measured infant gut microbiota (16S rRNA V4) at 1 week, 1 month, and 1 year and child BP at 3 and 6 years. We assessed α diversity-BP, β diversity-BP, and microbe abundances-BP associations using linear regression, permutational multivariate analysis of variance, and beta-binomial count regression, respectively. Data from 526 children showed that α diversity and several Bifidobacterium spp. had protective associations with BP but only in children breastfed for ≥6 months. For instance, a 1-unit increment in 1 month Shannon index was associated with 1.86 mm Hg (95% CI, 0.66-3.05) lower 6-year systolic BP in children breastfed ≥6 months but a 0.73 (95% CI, -1.00 to 2.45) higher 6-year systolic BP in those breastfed <6 months (P-interaction=0.02). Greater abundance of 2 Bifidobacterium microbes at 1 week was negatively associated with 6-year systolic BP when breastfeeding ≥6 months (P-interaction<0.1). Further, abundance of 8 microbes at 1week or 1 month was linked to 3-year or 6-year BP (false discovery rate P<0.05), with 5 of them independent of a child's body mass index. Lastly, 1-week unweighted UniFrac distance and 1-year weighted UniFrac distance were associated with BP after adjustment (P<0.05). CONCLUSIONS Gut microbiota features at 1 week and 1 month of life were associated with BP at 6 years. Breastfeeding duration modified key associations including those for α diversity and Bifidobacteria.
Collapse
Affiliation(s)
- Tiange Liu
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore MD USA
- Division of Women's Health, Department of Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA USA
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital University of Copenhagen Denmark
- Department of Food Science University of Copenhagen Denmark
| | - Mingyu Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center Harvard Medical School Boston MA USA
| | - Rebecca Vinding
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital University of Copenhagen Denmark
| | - Søren J Sørensen
- Section of Microbiology University of Copenhagen Copenhagen Denmark
| | - Ni Zhao
- Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Baltimore MD USA
| | - Noel T Mueller
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore MD USA
- Department of Pediatrics University of Colorado Anschutz Medical Campus Aurora CO USA
- Lifecourse Epidemiology of Adiposity and Diabetes Center University of Colorado Anschutz Medical Campus Aurora CO USA
| |
Collapse
|
3
|
Li J, Wei W, Ma X, Ji J, Ling X, Xu Z, Guan Y, Zhou L, Wu Q, Huang W, Liu F, Zhao M. Antihypertensive effects of rice peptides involve intestinal microbiome alterations and intestinal inflammation alleviation in spontaneously hypertensive rats. Food Funct 2025; 16:1731-1759. [PMID: 39752320 DOI: 10.1039/d4fo04251d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Gut dysbiosis serves as an underlying risk factor for the development of hypertension. The resolution of this dysbiosis has emerged as a promising strategy in improving hypertension. Food-derived bioactive protein peptides have become increasingly more attractive in ameliorating hypertension, primarily due to their anti-inflammatory and anti-oxidant activities. However, the regulatory mechanisms linking rice peptides (RP), gut dysbiosis, and hypertension remain to be fully elucidated. In our study, male spontaneously hypertensive rats (SHR) were fed with chow diet and concomitantly treated with ddH2O (Ctrl) or varying doses of rice peptides (20, 100, or 500 mg (kg bw day)-1 designated as low-dose RP, LRP; medium-dose RP, MRP; high-dose RP, HAP) or captopril (Cap) by intragastric administration. Wistar-Kyoto (WKY) rats served as the normotensive control group and were orally administered with ddH2O. We observed beneficial effects of RP in lowering blood pressure and ameliorating cardiovascular risk profiles, as evidenced by improvements in glucolipid metabolic disorders, hepatic and renal damage, left ventricular hypertrophy and endothelial dysfunction in hypertensive rats. More importantly, we found that RP attenuated intestinal pathological damage, improved impaired intestinal barrier, and reduced intestinal inflammation by inhibiting the HMGB1-TLR4-NF-κB pathway. Notably, multi-omics integrative analyses have revealed that RP altered the composition and function of the gut microbiota. This is exemplified by the observed enrichment of beneficial bacterial constituents, such as g_Lactobacillus, g_Lactococcus, s_Lactobacillus_intestinalis, and Lactococcus lactis, and elevated production of microbiota-derived short-chain fatty acid metabolites. Collectively, these studies suggest that the hypotensive effects of RP may be associated with modulation of the gut microbiota and its short-chain fatty acids metabolites. This implicates the microbiota-gut-HMGB1-TLR4-NF-κB axis as a novel venue for the amelioration of hypertension and its complications.
Collapse
Affiliation(s)
- Juan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Wei Wei
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, 274108, China.
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaomin Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Center for Experimental Public Health and Preventive Medicine Education, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Jing Ji
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Xiaomeng Ling
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Zhuyan Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Yutong Guan
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Leyan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, 201203, China.
| | - Wenhua Huang
- AMWAY (China) R&D Center, Guangzhou, 510730, China.
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Min Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
4
|
Wang W, Wu D, Liu J, Yang DA. Potential protective role of Lycium ruthenicum Murray polysaccharides against lipopolysaccharide-induced liver injury via mitochondrial biogenesis. Int J Biol Macromol 2025:141365. [PMID: 39993693 DOI: 10.1016/j.ijbiomac.2025.141365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Acute liver injury (ALI), which manifests as abnormal liver function and hepatocyte damage, lacks effective treatment modalities and is associated with a high mortality rate. Recent studies have revealed that hepatoprotection is related to polysaccharide components. In this study, we examined the effect and mechanism of Lycium ruthenicum Murray polysaccharides (LRMP) on liver injury induced by lipopolysaccharide (LPS). Male ICR mice were pre-administered LRMP (100 and 400 mg/kg BW) once daily for 21 days. A single injection of LPS (10 mg/kg BW) was administered on day 21 to induce ALI. The difference between the groups indicated that LRMP supplementation had no adverse effect on body weight. LRMP administration considerably alleviated liver injury, as evidenced by the decreased levels of aspartate transaminase and alanine transaminase, increased levels of albumin, and preservation of liver structural integrity. Moreover, LRMP reduced oxidative stress and inflammatory responses in the liver, maintained mitochondrial structure, regulated mitochondrial apoptotic pathway, and upregulated Sirtuin 1/peroxisome proliferator-activated receptor γ coactivator-1α signalling pathway involved in mitochondrial biogenesis. This study suggests the potential therapeutic application of LRMP in liver-related diseases, which will provide a basis for innovative strategies.
Collapse
Affiliation(s)
- Wenjia Wang
- College of Animal Science, Ningxia University, Yinchuan 750021, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Desheng Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaguo Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Danchen Aaron Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Dai J, Wang W, He F, Wang Y, Zou D. Alleviation of DSS-induced colitis by Meconopsis polysaccharides correlated with reduced PI3K/AKT signaling and gut microbiome diversity. Front Pharmacol 2025; 16:1459668. [PMID: 40012624 PMCID: PMC11861192 DOI: 10.3389/fphar.2025.1459668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/15/2025] [Indexed: 02/28/2025] Open
Abstract
Introduction Inflammatory bowel disease (IBD) is a recurrent gastrointestinal disorder that significantly impacts patients' quality of life globally. This study focuses on the polysaccharides (MP) extracted from Meconopsis integrifolia, to investigate its role in alleviating DSS (dextran sulfate sodium)-induced colitis in mice. Methods The study commenced with a comprehensive chemical characterization of Meconopsis polysaccharides. Subsequently, the colitis-alleviating activity of MP was validated through in vivo experiments. Results The results revealed that MP is primarily composed of ten monosaccharides, exhibits good thermal stability, and has a relatively uniform molecular weight distribution. In vivo experiments demonstrated that MP significantly mitigated DSS-induced weight loss, increased DAI, colon shortening, and tissue damage in mice. Furthermore, MP reduced the levels of inflammatory cytokines such as IL-1β, TNF-α, and IL-6 in serum. Mechanistically, MP exerted its anti-inflammatory effects by inhibiting the activation of the PI3K/AKT signaling pathway. Additionally, MP promoted gut microbiota diversity and regulated SCFA concentrations, contributing to an improved intestinal microenvironment and alleviation of colitis symptoms. Discussion Our findings highlight the superior effectiveness of Meconopsis polysaccharides in alleviating DSS-induced colitis and open new avenues for targeted therapeutic strategies in the treatment of IBD.
Collapse
Affiliation(s)
- Jun Dai
- Engineering technology research center of Plant Cell Engineering, West AnHui University, Lu’an, China
| | - Weidong Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Fangfang He
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yujuan Wang
- Engineering technology research center of Plant Cell Engineering, West AnHui University, Lu’an, China
| | - Denglang Zou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
6
|
Zhao BR, Hu XR, Wang WD, Zhou Y. Cardiorenal syndrome: clinical diagnosis, molecular mechanisms and therapeutic strategies. Acta Pharmacol Sin 2025:10.1038/s41401-025-01476-z. [PMID: 39910210 DOI: 10.1038/s41401-025-01476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
As the heart and kidneys are closely connected by the circulatory system, primary dysfunction of either organ usually leads to secondary dysfunction or damage to the other organ. These interactions play a major role in the pathogenesis of a clinical entity named cardiorenal syndrome (CRS). The pathophysiology of CRS is complicated and involves multiple body systems. In early studies, CRS was classified into five subtypes according to the organs associated with the vicious cycle and the acuteness and chronicity of CRS. Increasing evidence shows that CRS is associated with a variety of pathological mechanisms, such as haemodynamics, neurohormonal changes, hypervolemia, hypertension, hyperuraemia and hyperuricaemia. In this review, we summarize the classification and currently available diagnostic biomarkers of CRS. We highlight the recently revealed molecular pathogenesis of CRS, such as oxidative stress and inflammation, hyperactive renin‒angiotensin‒aldosterone system, maladaptive Wnt/β-catenin signalling pathway and profibrotic TGF‒β1/Smad signalling pathway, as well as other pathogeneses, such as dysbiosis of the gut microbiota and dysregulation of noncoding RNAs. Targeting these CRS-associated signalling pathways has new therapeutic potential for treating CRS. In addition, various chemical drugs, natural products, complementary therapies, blockers, and agonists that protect against CRS are summarized. Since the molecular mechanisms of CRS remain to be elucidated, no single intervention has been shown to be effective in treating CRS. Pharmacologic therapies designed to block CRS are urgently needed. This review presents a critical therapeutic avenue for targeting CRS and concurrently illuminates challenges and opportunities for discovering novel treatment strategies for CRS.
Collapse
Affiliation(s)
- Bo-Rui Zhao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin-Rong Hu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Wei-Dong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Liu L, Zhou Q, Xu T, Deng Q, Sun Y, Fu J, Chen M, Chen X, Ma Z, Dong Q, Ma B, Jiao Y, Zhou Y, Wu T, Zou H, Shi J, Wang Y, Sheng Y, Tang L, Zheng C, Wu W, Ma W, Sun W, Hu S, Zhou H, He Y, Kong X, Chen L. Non-differential gut microbes contribute to hypertension and its severity through co-abundances: A multi-regional prospective cohort study. IMETA 2025; 4:e268. [PMID: 40027484 PMCID: PMC11865328 DOI: 10.1002/imt2.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 03/05/2025]
Abstract
Microbial dysbiosis, characterized by an imbalanced microbial community structure and function, has been linked to hypertension. While prior research has primarily focused on differential abundances, our study highlights the role of non-differential microbes in hypertension. We propose that non-differential microbes contribute to hypertension through their ecological interactions, as defined by co-abundances (pairs of microbes exhibiting correlated abundance patterns). Using gut microbiome data from the Guangdong Gut Microbiome Project, which includes 2355 hypertensive and 4644 non-hypertensive participants across 14 regions, we identified replicable hypertension-related microbial interactions. Notably, most co-abundances involved non-differential microbes, which were found to correlate with both hypertension severity and hypertension-related microbial metabolic pathways. These findings emphasize the importance of microbial interactions in hypertension pathogenesis and propose a novel perspective for microbiome-based therapeutic strategies.
Collapse
Affiliation(s)
- Lu Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingChina
- Changzhou Medical Center, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical UniversityNanjing Medical UniversityChangzhouChina
| | - Qianyi Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Tianbao Xu
- Department of Cardiology, The Affiliated Kezhou People's Hospital of Nanjing Medical UniversityNanjing Medical UniversityXinjiangChina
| | - Qiufeng Deng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingChina
- Changzhou Medical Center, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical UniversityNanjing Medical UniversityChangzhouChina
| | - Yuhao Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingChina
| | - Jingxiang Fu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Muxuan Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaojiao Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhenchao Ma
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Quanbin Dong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingChina
| | - Beining Ma
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingChina
| | - Yuwen Jiao
- Changzhou Medical Center, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical UniversityNanjing Medical UniversityChangzhouChina
| | - Yan Zhou
- Changzhou Medical Center, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical UniversityNanjing Medical UniversityChangzhouChina
| | - Tingting Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingChina
| | - Huayiyang Zou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingChina
| | - Jing Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingChina
| | - Yifeng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingChina
| | - Yanhui Sheng
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Liming Tang
- Changzhou Medical Center, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical UniversityNanjing Medical UniversityChangzhouChina
| | - Chao Zheng
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
- Department of Endocrinology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Wei Wu
- Guangdong Provincial Institute of Public HealthGuangdong Provincial Center for Disease Control and PreventionGuangzhouChina
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of MedicineJinan UniversityGuangzhouChina
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingChina
| | - Shixian Hu
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Laboratory MedicineGuangzhouChina
- State Key Laboratory of Organ Failure ResearchSouthern Medical UniversityGuangzhouChina
| | - Yan He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Laboratory MedicineGuangzhouChina
- State Key Laboratory of Organ Failure ResearchSouthern Medical UniversityGuangzhouChina
- Key Laboratory of Mental Health of the Ministry of EducationGuangzhouChina
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingChina
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Lianmin Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingChina
- Changzhou Medical Center, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical UniversityNanjing Medical UniversityChangzhouChina
| |
Collapse
|
8
|
Dardi P, Coutinho CP, de Oliveira S, Teixeira SA, Gacek RRF, Purgatto E, Vinolo MAR, Muscará MN, Rossoni LV. Changes in the intestinal microbiota induced by the postnatal environment and their association with hypertension. Pharmacol Res 2025; 212:107621. [PMID: 39848350 DOI: 10.1016/j.phrs.2025.107621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
It has been established that cross-fostering impacts the development of hypertension in spontaneously hypertensive rats (SHR). However, the ability of the cross-fostering protocol to shape gut microbiota profile in SHR and impact hypertension is not known. In this sense, the current study explored the influence of normotensive and hypertensive postnatal environments on the intestinal microbiota structure, composition, and functional capacity of SHR and Wistar rats. Our findings revealed significant differences in the microbiota's composition and its metabolic activity in young non-fostered SHR (SS) vs. Wistar (WW) rats, even before hypertension onset, characterized by a reduction of the "low-abundance" bacterial genera, a diminished availability of fecal butyrate and elevated hydrogen sulfide (H2S) production by the SS gut microbiota. Despite influencing the microbiota of both strains, cross-fostering did not fully replicate the microbiota composition of the naturally reared groups in the SHR nursed by Wistar mothers (SW), or in the Wistar rats breastfed by SHR mothers (WS). The SW group had fewer significant genera identified at the Partial Least Squares Discriminant Analysis (PLS-DA), despite resembling the genera profile identified in the normotensive group. While sharing bacterial genera with both SS and WW groups, the WS group is distinguished by its unique microbial composition, particularly by a greater diversity of the 'low-abundance' bacterial genera. Moreover, decreased systolic blood pressure was observed in the SW group compared to the SS group in adulthood. Thus, we could establish a link between microbiota composition and hypertension development, associating it with the loss of the "low-abundance" bacterial taxa. Our data suggest that the postnatal environment is pivotal to promoting gut microbiota compositional changes and contributes to hypertension development.
Collapse
Affiliation(s)
- Patrizia Dardi
- Laboratory of Vascular Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Camille Perella Coutinho
- Department of Food and Experimental Nutrition /FoRC - Food Research Center, University of Sao Paulo, Sao Paulo, Brazil
| | - Sarah de Oliveira
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Simone Aparecida Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Eduardo Purgatto
- Department of Food and Experimental Nutrition /FoRC - Food Research Center, University of Sao Paulo, Sao Paulo, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcelo Nicolás Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Luciana Venturini Rossoni
- Laboratory of Vascular Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
9
|
Giakomidi D, Ishola A, Nus M. Targeting gut microbiota to regulate the adaptive immune response in atherosclerosis. Front Cardiovasc Med 2025; 12:1502124. [PMID: 39957996 PMCID: PMC11825770 DOI: 10.3389/fcvm.2025.1502124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Atherosclerosis, the leading cause of death worldwide, is a chronic inflammatory disease leading to the accumulation of lipid-rich plaques in the intima of large and medium-sized arteries. Accumulating evidence indicates the important regulatory role of the adaptive immune system in atherosclerosis during all stages of the disease. The gut microbiome has also become a key regulator of atherosclerosis and immunomodulation. Whilst existing research extensively explores the impact of the microbiome on the innate immune system, only a handful of studies have explored the regulatory capacity of the microbiome on the adaptive immune system to modulate atherogenesis. Building on these concepts and the pitfalls on the gut microbiota and adaptive immune response interaction, this review explores potential strategies to therapeutically target the microbiome, including the use of prebiotics and vaccinations, which could influence the adaptive immune response and consequently plaque composition and development.
Collapse
Affiliation(s)
- Despina Giakomidi
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Ayoola Ishola
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
| | - Meritxell Nus
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Thakkar B, Dadhaniya H, Dudhat K. Exploring hypertension-linked diseases: a comprehensive review of innovative drug combinations with enhanced therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03819-3. [PMID: 39888363 DOI: 10.1007/s00210-025-03819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Hypertension, a prevalent cardiovascular condition affecting a substantial portion of the global population, remains a formidable health challenge associated with a multitude of complications. This review article provides a comprehensive examination of hypertension, its various complications, and the emergence of a novel management technique that shows promising potential in transforming the therapeutic landscape. Over the years, conventional treatment approaches, encompassing lifestyle modifications, dietary interventions, and pharmacotherapy, have been the mainstay in managing hypertension. However, these strategies fall short in achieving optimal blood pressure control and preventing complications in a significant number of patients. Consequently, the medical community has ventured into exploring innovative management techniques to tackle this unmet medical need. The focal point of this review centers on the emergence of a new management technique for hypertension that exhibits promise in preclinical and clinical studies. The latest research findings shed light on the efficacy and safety of this innovative approach, which encompasses pharmaceutical agents, medical devices, and non-invasive interventions. Through critical analysis and discussion, we explore the potential impact of these novel strategies on hypertension management and patient outcomes. In conclusion, this review article provides a comprehensive overview of hypertension, its complications, and the promising emergence of innovative management techniques. By acknowledging the complexity of hypertension and the potential of new therapeutic avenues, we aspire to pave the way for improved patient care, enhanced quality of life, and ultimately, the mitigation of hypertension-related morbidity and mortality.
Collapse
Affiliation(s)
- Bhavesh Thakkar
- School of Pharmacy, RK University, Kasturbadham, Rajkot, Gujarat, 360020, India
| | - Hetvi Dadhaniya
- School of Pharmacy, RK University, Kasturbadham, Rajkot, Gujarat, 360020, India
| | - Kiran Dudhat
- School of Pharmacy, RK University, Kasturbadham, Rajkot, Gujarat, 360020, India.
| |
Collapse
|
11
|
Tain YL, Hsu CN. Does maternal consumption of nutritive and non-nutritive sweeteners result in offspring hypertension? Front Nutr 2025; 12:1464269. [PMID: 39911806 PMCID: PMC11794092 DOI: 10.3389/fnut.2025.1464269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025] Open
Abstract
The consumption of nutritive and non-nutritive sweeteners (NNS) has increased significantly in recent decades. The nutritional status of pregnant women plays a crucial role in determining the likelihood of their offspring developing hypertension in adulthood. While NNSs provide a sweet taste without adding to sugar intake, emerging evidence suggests that maternal consumption of not only nutritive sweeteners (such as fructose) but also NNS may lead to adverse outcomes in offspring, including hypertension. This review provides an overview of the latest research connecting maternal intake of sweeteners to the long-term risk of hypertension in offspring. We examine proposed mechanisms underlying the programming of offspring hypertension by sweeteners, encompassing oxidative stress, dysregulated nutrient sensing signals, abnormal renin-angiotensin system, transcriptome changes, and dysbiotic gut microbiota. Additionally, we outline preventive strategies that can help alleviate offspring hypertension programmed by maternal diets high in sweeteners. Recent advancements in understanding the mechanisms through which maternal consumption of nutritive and non-nutritive sweeteners contributes to offspring hypertension offer promise for addressing this widespread health concern at its developmental roots. Nonetheless, further research is needed to educate the public about the safety of sweetener consumption during pregnancy and lactation.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Mahmod AI, Govindaraju K, Lokanathan Y, Said NABM, Ibrahim B. Exploring the Potential of Stem Cells in Modulating Gut Microbiota and Managing Hypertension. Stem Cells Dev 2025. [PMID: 39836384 DOI: 10.1089/scd.2024.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Hypertension, commonly known as high blood pressure, is a significant health issue that increases the risk of cardiovascular diseases, stroke, and renal failure. This condition broadly encompasses both primary and secondary forms. Despite extensive research, the underlying mechanisms of systemic arterial hypertension-particularly primary hypertension, which has no identifiable cause and is affected by genetic and lifestyle agents-remain complex and not fully understood. Recent studies indicate that an imbalance in gut microbiota, referred to as dysbiosis, may promote hypertension, affecting blood pressure regulation through metabolites such as short-chain fatty acids and trimethylamine N-oxide. Current antihypertensive medications face limitations, including resistance and adherence issues, highlighting the need for novel therapeutic approaches. Stem cell therapy, an emerging field in regenerative medicine, shows promise in addressing these challenges. Stem cells, with mesenchymal stem cells being a prime example, have regenerative, anti-inflammatory, and immunomodulatory properties. Emerging research indicates that stem cells can modulate gut microbiota, reduce inflammation, and improve vascular health, potentially aiding in blood pressure management. Research has shown the positive impact of stem cells on gut microbiota in various disorders, suggesting their potential therapeutic role in treating hypertension. This review synthesizes the recent studies on the complex interactions between gut microbiota, stem cells, and systemic arterial hypertension. By offering a thorough analysis of the current literature, it highlights key insights, uncovers critical gaps, and identifies emerging trends that will inform and guide future investigations in this rapidly advancing field.
Collapse
Affiliation(s)
- Asma Ismail Mahmod
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Kayatri Govindaraju
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nur Akmarina B M Said
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Baharudin Ibrahim
- Department of Clinical Pharmacy and Pharmacy Practices, Faculty of Pharmacy, University Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Kundo NK, Kitada K. Is fruits granola beneficial for blood pressure management? Hypertens Res 2025; 48:439-441. [PMID: 39516369 DOI: 10.1038/s41440-024-01985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Netish Kumar Kundo
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
- Department of Pharmacy, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan.
| |
Collapse
|
14
|
Meng S, Ni T, Du Q, Liu M, Ge P, Geng J, Wang B. Pre-procedural TMAO as a predictor for recurrence of atrial fibrillation after catheter ablation. BMC Cardiovasc Disord 2024; 24:750. [PMID: 39732662 DOI: 10.1186/s12872-024-04170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/05/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Numerous studies have demonstrated the significance of trimethylamine-N-oxide (TMAO) in the progression of atrial fibrillation (AF). However, the association between TMAO and AF recurrence (RAF) post-catheter ablation is not yet fully understood. This study aims to elucidate the predictive capability of pre-procedural TMAO levels in determining RAF following catheter ablation (CA). METHODS This study was conducted as a prospective, single-center observational study. Between June 2021 and June 2022, 152 patients from the Department of Cardiology at The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University were enrolled. Baseline characteristics and serum TMAO levels were assessed for all participants. Patients with AF who underwent CA were monitored for recurrences of AF using electrocardiography (ECG) or 24-hour Holter monitoring during the follow-up period. RESULTS The study found that serum TMAO levels were significantly higher in persistent AF (PeAF) patients compared to those in sinus rhythm (SR) and paroxysmal AF (PaAF) patients (3.96 ± 1.69 vs. 1.81 ± 0.59, 3.02 ± 1.50 µM, P < 0.001 and P < 0.01, respectively). After a one-year follow-up, 29 (21.2%) AF patients experienced recurrence after CA. Multivariate Cox proportional hazards regression analysis revealed that pre-procedural serum TMAO was an independent predictor of recurrent AF (HR = 1.78, 95% CI = 1.43-2.21, P < 0.001). The receiver operating characteristic (ROC) curve analysis identified a cut-off value of 4.3µM for serum TMAO levels in predicting recurrent AF (area under the curve: 0.835, P < 0.001). The Kaplan-Meier plot demonstrated that patients with TMAO levels greater than 4.3µM had a significantly higher rate of recurrent AF (HR = 13.53, 95% CI = 6.19-29.56, P < 0.001). CONCLUSION Patients with AF exhibited elevated levels of circulating TMAO compared to patients with SR. The findings suggest a potential role of TMAO in the development of AF, with pre-procedural serum TMAO levels serving as a reliable predictor of recurrence of AF CA.
Collapse
Affiliation(s)
- Siyu Meng
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Tianyi Ni
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Qiuyao Du
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Mengjie Liu
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Peibing Ge
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Jin Geng
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China.
| | - Bingjian Wang
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China.
| |
Collapse
|
15
|
Nowotny HF, Zheng T, Seiter TM, Ju J, Schneider H, Kroiss M, Sarkis AL, Sturm L, Britz V, Lechner A, Potzel AL, Kunz S, Bidlingmaier M, Neuhaus K, Gottschlich A, Kobold S, Reisch N, Schirmer M, Reincke M, Adolf C. Sex-dependent modulation of T and NK cells and gut microbiome by low sodium diet in patients with primary aldosteronism. Front Immunol 2024; 15:1428054. [PMID: 39749333 PMCID: PMC11693743 DOI: 10.3389/fimmu.2024.1428054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Background High dietary sodium intake is a major cardiovascular risk factor and adversely affects blood pressure control. Patients with primary aldosteronism (PA) are at increased cardiovascular risk, even after medical treatment, and high dietary sodium intake is common in these patients. Here, we analyze the impact of a moderate dietary sodium restriction on microbiome composition and immunophenotype in patients with PA. Methods Prospective two-stage clinical trial including two subgroups: 15 treatment-naive PA patients compared to matched normotensive controls; and 31 PA patients on mineralocorticoid receptor antagonist treatment before and three months after sodium restriction. Patients underwent blood pressure measurements, laboratory tests, analysis of peripheral blood mononuclear cells via flow cytometry and microbiome analysis. Results We observed a higher percentage of Tregs in treatment-naive PA patients (p = 0.0303), while the abundance of Bacteroides uniformis was higher in PA patients compared to normotensive controls (p = 0.00027) and the abundance of Lactobacillus species however was higher in the subgroup of normotensive controls (p = 0.0290). Sodium restriction was accompanied by a decrease in pro-inflammatory Tc17 cells in male patients (p = 0.0081, females p = 0.3274). Bacteroides uniformis abundance was higher in female patients (0.01230, p = 0.0016) and decreased upon sodium restriction (0.002309, p = 0.0068). Conclusion Dietary sodium restriction in patients with PA modulates the peripheral immune cell composition toward a less inflammatory phenotype. This suggests a potential mechanism by which sodium reduction modulates immune cell composition, leading to blood pressure reduction and positively impacting cardiovascular risk.
Collapse
Affiliation(s)
- Hanna F. Nowotny
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Tingting Zheng
- Chair of Translational Microbiome Data Integration, Technical University of Munich, Freising, Germany
| | | | - Jing Ju
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Holger Schneider
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Matthias Kroiss
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Anna-Lina Sarkis
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lisa Sturm
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Vera Britz
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Andreas Lechner
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anne L. Potzel
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Physicians Association for Nutrition e.V, Munich, Germany
- CCG Type 2 Diabetes, Helmholtz Zentrum München, Munich, Germany
| | - Sonja Kunz
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Martin Bidlingmaier
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Adrian Gottschlich
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and University Hospital LMU, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and University Hospital LMU, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Nicole Reisch
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Melanie Schirmer
- Chair of Translational Microbiome Data Integration, Technical University of Munich, Freising, Germany
| | - Martin Reincke
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christian Adolf
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
16
|
Brosolo G, Da Porto A, Marcante S, Capilupi F, Bertin N, Vivarelli C, Bulfone L, Vacca A, Catena C, Sechi LA. The role for ω-3 polyunsaturated and short chain fatty acids in hypertension: An updated view on the interaction with gut microbiota. Eur J Pharmacol 2024; 985:177107. [PMID: 39515560 DOI: 10.1016/j.ejphar.2024.177107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
As of 2024, arterial hypertension is still considered the leading modifiable cardiovascular risk factor and, due to high rates of undertreatment and poor blood pressure control, the major contributor to human morbidity and mortality. Development of new treatment options and better interventions in lifestyle correction have become a priority of experimental and clinical research. In the last decades, dietary supplementation of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and generation of gut microbiota-derived short chain fatty acids (SCFAs) have surged as potential and promising interventions for hypertension and cardiovascular prevention. ω-3 PUFAs are considered "essential" fatty acids that can be obtained only from dietary sources. Although previous intervention trials were not consistent in reporting a significant benefit of ω-3 PUFAs, the recent REDUCE-IT trial has provided robust evidence in support of their role in cardiovascular prevention. Recent studies have also identified the intestinal microbiota as a potential player in the pathophysiology and progression of hypertension. Although this might occur through many pathways, generation of SCFAs that is highly dependent on dietary fiber intake is primarily involved, providing an additional target for the development of novel therapeutic strategies. For these reasons, some scientific societies currently recommend dietary supplementation of ω-3 PUFAs and fiber-containing foods in patients with hypertension. In this narrative review, we summarize the results of studies that examined the effects of ω-3 PUFAs and SCFAs on blood pressure, highlighting the mechanisms of action on the vascular system and their possible impact on hypertension, hypertension-related organ damage and, ultimately, cardiovascular outcomes.
Collapse
Affiliation(s)
- Gabriele Brosolo
- Department of Medicine, University of Udine, 33100, Udine, Italy; European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100, Udine, Italy.
| | - Andrea Da Porto
- Department of Medicine, University of Udine, 33100, Udine, Italy; Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100, Udine, Italy.
| | - Stefano Marcante
- Department of Medicine, University of Udine, 33100, Udine, Italy.
| | - Filippo Capilupi
- Department of Medicine, University of Udine, 33100, Udine, Italy.
| | - Nicole Bertin
- Department of Medicine, University of Udine, 33100, Udine, Italy; Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100, Udine, Italy.
| | - Cinzia Vivarelli
- Department of Medicine, University of Udine, 33100, Udine, Italy.
| | - Luca Bulfone
- Department of Medicine, University of Udine, 33100, Udine, Italy; European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100, Udine, Italy.
| | - Antonio Vacca
- Department of Medicine, University of Udine, 33100, Udine, Italy; European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100, Udine, Italy.
| | - Cristiana Catena
- Department of Medicine, University of Udine, 33100, Udine, Italy; European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100, Udine, Italy.
| | - Leonardo A Sechi
- Department of Medicine, University of Udine, 33100, Udine, Italy; European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100, Udine, Italy; Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100, Udine, Italy; Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100, Udine, Italy.
| |
Collapse
|
17
|
Bardhan P, Mei X, Lai NK, Mell B, Tummala R, Aryal S, Manandhar I, Hwang H, Jhuma TA, Atluri RR, Kyoung J, Li Y, Joe B, Li HB, Yang T. Salt-Responsive Gut Microbiota Induces Sex-Specific Blood Pressure Changes. Circ Res 2024; 135:1122-1137. [PMID: 39440438 DOI: 10.1161/circresaha.124.325056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Tryptophan metabolism is important in blood pressure regulation. The tryptophan-indole pathway is exclusively mediated by the gut microbiota. ACE2 (angiotensin-converting enzyme 2) participates in tryptophan absorption, and a lack of ACE2 leads to changes in the gut microbiota. The gut microbiota has been recognized as a regulator of blood pressure. Furthermore, there is ample evidence for sex differences in the gut microbiota. However, it is unclear whether such sex differences impact blood pressure differentially through the tryptophan-indole pathway. METHODS To study the sex-specific mechanisms of gut microbiota-mediated tryptophan-indole pathway in hypertension, we generated a novel rat model with Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-associated protein 9)-targeted deletion of Ace2 in the Dahl salt-sensitive rat. Cecal microbiota transfers from donors of both sexes to female S recipients were performed. Also, Dahl salt-sensitive rats of both sexes were orally gavaged with indole to investigate blood pressure response. RESULTS The female gut microbiota and its tryptophan-indole pathway exhibited greater buffering capacity when exposed to tryptophan, due to Ace2 deficiency, and salt. In contrast, the male gut microbiota and its tryptophan-indole pathway were more vulnerable. Female rats with male cecal microbiota responded to salt with a higher blood pressure increase compared with those with female cecal microbiota. Indole, a tryptophan-derived metabolite produced by gut bacteria, increased blood pressure in male but not in female rats. Moreover, salt altered host-mediated tryptophan metabolism, characterized by reduced serum serotonin of both sexes and higher levels of kynurenine derivatives in the females. CONCLUSIONS We uncovered a novel sex-specific mechanism in the gut microbiota-mediated tryptophan-indole pathway in blood pressure regulation. Salt tipped the tryptophan metabolism between the host and gut microbiota in a sex-dependent manner. Our study provides evidence for a novel concept that gut microbiota and its metabolism play sex-specific roles in the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Pritam Bardhan
- Department of Physiology and Pharmacology, Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, OH (P.B., X.M., N.K.L., B.M., R.T., S.A., I.M., H.H., T.A.J., R.R.A., J.K., B.J., T.Y.)
| | - Xue Mei
- Department of Physiology and Pharmacology, Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, OH (P.B., X.M., N.K.L., B.M., R.T., S.A., I.M., H.H., T.A.J., R.R.A., J.K., B.J., T.Y.)
- Now with Department of Pharmacy, North Sichuan Medical College, Nanchong, China (X.M.)
| | - Ngoc Khanh Lai
- Department of Physiology and Pharmacology, Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, OH (P.B., X.M., N.K.L., B.M., R.T., S.A., I.M., H.H., T.A.J., R.R.A., J.K., B.J., T.Y.)
| | - Blair Mell
- Department of Physiology and Pharmacology, Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, OH (P.B., X.M., N.K.L., B.M., R.T., S.A., I.M., H.H., T.A.J., R.R.A., J.K., B.J., T.Y.)
| | - Ramakumar Tummala
- Department of Physiology and Pharmacology, Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, OH (P.B., X.M., N.K.L., B.M., R.T., S.A., I.M., H.H., T.A.J., R.R.A., J.K., B.J., T.Y.)
| | - Sachin Aryal
- Department of Physiology and Pharmacology, Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, OH (P.B., X.M., N.K.L., B.M., R.T., S.A., I.M., H.H., T.A.J., R.R.A., J.K., B.J., T.Y.)
| | - Ishan Manandhar
- Department of Physiology and Pharmacology, Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, OH (P.B., X.M., N.K.L., B.M., R.T., S.A., I.M., H.H., T.A.J., R.R.A., J.K., B.J., T.Y.)
| | - Hyeongu Hwang
- Department of Physiology and Pharmacology, Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, OH (P.B., X.M., N.K.L., B.M., R.T., S.A., I.M., H.H., T.A.J., R.R.A., J.K., B.J., T.Y.)
| | - Tania Akter Jhuma
- Department of Physiology and Pharmacology, Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, OH (P.B., X.M., N.K.L., B.M., R.T., S.A., I.M., H.H., T.A.J., R.R.A., J.K., B.J., T.Y.)
| | - Rohit Reddy Atluri
- Department of Physiology and Pharmacology, Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, OH (P.B., X.M., N.K.L., B.M., R.T., S.A., I.M., H.H., T.A.J., R.R.A., J.K., B.J., T.Y.)
| | - Jun Kyoung
- Department of Physiology and Pharmacology, Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, OH (P.B., X.M., N.K.L., B.M., R.T., S.A., I.M., H.H., T.A.J., R.R.A., J.K., B.J., T.Y.)
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, China (Y.L., H.-B.L.)
| | - Bina Joe
- Department of Physiology and Pharmacology, Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, OH (P.B., X.M., N.K.L., B.M., R.T., S.A., I.M., H.H., T.A.J., R.R.A., J.K., B.J., T.Y.)
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, China (Y.L., H.-B.L.)
| | - Tao Yang
- Department of Physiology and Pharmacology, Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, OH (P.B., X.M., N.K.L., B.M., R.T., S.A., I.M., H.H., T.A.J., R.R.A., J.K., B.J., T.Y.)
| |
Collapse
|
18
|
Muralitharan RR, Buikema JW, Marques FZ. Minimizing gut microbiome confounding factors in cardiovascular research. Cardiovasc Res 2024; 120:e60-e62. [PMID: 39495203 DOI: 10.1093/cvr/cvae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/23/2024] [Indexed: 11/05/2024] Open
Affiliation(s)
- Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, 25 Rainforest Walk, Melbourne, Clayton, 3800 VIC, Australia
- Victorian Heart Institute, Monash University, 631 Blackburn Rd, Clayton, 3168 VIC, Australia
| | - Jan W Buikema
- Amsterdam Heart Center, Department of Cardiology, Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, The Netherlands
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, 25 Rainforest Walk, Melbourne, Clayton, 3800 VIC, Australia
- Victorian Heart Institute, Monash University, 631 Blackburn Rd, Clayton, 3168 VIC, Australia
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 VIC, Australia
| |
Collapse
|
19
|
Ng YH, Koay YC, Marques FZ, Kaye DM, O’Sullivan JF. Leveraging metabolism for better outcomes in heart failure. Cardiovasc Res 2024; 120:1835-1850. [PMID: 39351766 PMCID: PMC11630082 DOI: 10.1093/cvr/cvae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 12/11/2024] Open
Abstract
Whilst metabolic inflexibility and substrate constraint have been observed in heart failure for many years, their exact causal role remains controversial. In parallel, many of our fundamental assumptions about cardiac fuel use are now being challenged like never before. For example, the emergence of sodium-glucose cotransporter 2 inhibitor therapy as one of the four 'pillars' of heart failure therapy is causing a revisit of metabolism as a key mechanism and therapeutic target in heart failure. Improvements in the field of cardiac metabolomics will lead to a far more granular understanding of the mechanisms underpinning normal and abnormal human cardiac fuel use, an appreciation of drug action, and novel therapeutic strategies. Technological advances and expanding biorepositories offer exciting opportunities to elucidate the novel aspects of these metabolic mechanisms. Methodologic advances include comprehensive and accurate substrate quantitation such as metabolomics and stable-isotope fluxomics, improved access to arterio-venous blood samples across the heart to determine fuel consumption and energy conversion, high quality cardiac tissue biopsies, biochemical analytics, and informatics. Pairing these technologies with recent discoveries in epigenetic regulation, mitochondrial dynamics, and organ-microbiome metabolic crosstalk will garner critical mechanistic insights in heart failure. In this state-of-the-art review, we focus on new metabolic insights, with an eye on emerging metabolic strategies for heart failure. Our synthesis of the field will be valuable for a diverse audience with an interest in cardiac metabolism.
Collapse
Affiliation(s)
- Yann Huey Ng
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
| | - Yen Chin Koay
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC 3800, Australia
- Victorian Heart Institute, Monash University, Melbourne, VIC 3800, Australia
| | - David M Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC 3800, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC 3004, Australia
- Monash-Alfred-Baker Centre for Cardiovascular Research, Monash University, Melbourne, VIC 3800, Australia
| | - John F O’Sullivan
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Department of Medicine, Technische Univeristat Dresden, 01062 Dresden, Germany
| |
Collapse
|
20
|
Nanamatsu A, de Araújo L, LaFavers KA, El-Achkar TM. Advances in uromodulin biology and potential clinical applications. Nat Rev Nephrol 2024; 20:806-821. [PMID: 39160319 PMCID: PMC11568936 DOI: 10.1038/s41581-024-00881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Uromodulin (also known as Tamm-Horsfall protein) is a kidney-specific glycoprotein secreted bidirectionally into urine and into the circulation, and it is the most abundant protein in normal urine. Although the discovery of uromodulin predates modern medicine, its significance in health and disease has been rather enigmatic. Research studies have gradually revealed that uromodulin exists in multiple forms and has important roles in urinary and systemic homeostasis. Most uromodulin in urine is polymerized into highly organized filaments, whereas non-polymeric uromodulin is detected both in urine and in the circulation, and can have distinct roles. The interactions of uromodulin with the immune system, which were initially reported to be a key role of this protein, are now better understood. Moreover, the discovery that uromodulin is associated with a spectrum of kidney diseases, including acute kidney injury, chronic kidney disease and autosomal-dominant tubulointerstitial kidney disease, has further accelerated investigations into the role of this protein. These discoveries have prompted new questions and ushered in a new era in uromodulin research. Here, we delineate the latest discoveries in uromodulin biology and its emerging roles in modulating kidney and systemic diseases, and consider future directions, including its potential clinical applications.
Collapse
Affiliation(s)
- Azuma Nanamatsu
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Larissa de Araújo
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kaice A LaFavers
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tarek M El-Achkar
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
21
|
Olejnik P, Golenia A. Vascular Cognitive Impairment-The Molecular Basis and Potential Influence of the Gut Microbiota on the Pathological Process. Cells 2024; 13:1962. [PMID: 39682711 DOI: 10.3390/cells13231962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Cognitive impairment is a major healthcare challenge worldwide, with vascular cognitive impairment (VCI) being its second leading cause after Alzheimer's disease. VCI is a heterogeneous group of cognitive disorders resulting from various vascular pathologies. Therefore, it is particularly difficult to determine its underlying cause and exact molecular basis. Nevertheless, the current understanding of the pathophysiological processes underlying VCI has changed and evolved in the last decades. The aim of this narrative review is to summarize the current state of knowledge on VCI pathogenesis and to analyze the potential role of the gut microbiota in this process, considering the most recent scientific reports and in accordance with the current understanding of these processes. Chronic cerebral hypoperfusion, which results in impaired blood supply, i.e., oxygen and nutrient deficiency, is the main underlying mechanism of VCI. Furthermore, chronic cerebral hypoperfusion triggers a cascade of molecular changes, starting with an energy imbalance, leading to glutamate excitotoxicity, acidotoxicity, and oxidative stress. Also, all of the above provoke the activation of microglia and the release of pro-inflammatory cytokines that recruit systemic immune cells and lead to their infiltration into the central nervous system, resulting in neuroinflammation. Blood-brain barrier dysfunction may occur at various stages of chronic cerebral hypoperfusion, ultimately increasing its permeability and allowing potentially toxic substances to enter the brain parenchyma. Gut microbiota and their metabolites, which have been identified in numerous inflammatory conditions, may also influence the pathophysiological processes of VCI.
Collapse
Affiliation(s)
- Piotr Olejnik
- Department of Neurology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Aleksandra Golenia
- Department of Neurology, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
22
|
Sidik S. Your friends shape your microbiome - and so do their friends. Nature 2024:10.1038/d41586-024-03804-5. [PMID: 39567823 DOI: 10.1038/d41586-024-03804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
|
23
|
Wang S, Liu C, Ding R, Wang S, Ye Y, He M. Alterations in Gut Microbiota and Serum Metabolites in Children with Mycoplasma pneumoniae Pneumonia. Infect Drug Resist 2024; 17:5097-5110. [PMID: 39584178 PMCID: PMC11585984 DOI: 10.2147/idr.s490547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Background Over the past years, there has been a significant increase in the incidence of Mycoplasma pneumoniae (MP) infections, particularly among pediatric patients, nationwide. An emerging body of research has established a link between dysbiosis of the host microbiome and the metabolic functioning of the host, which contributes to the development of respiratory diseases. Methods A total of 25 children were included in the study, comprising 15 pneumonia patients and 10 healthy children. Stool samples were collected from all participants to analyze the 16S ribosomal RNA (16S rRNA) gene, while serum samples were prepared for untargeted metabolomics to qualitatively and quantitatively assess short-chain fatty acids. Results The gut microbial composition of individuals with Mycoplasma pneumoniae pneumonia (MPP) exhibited significant differences compared to healthy children. Notably, diseased children demonstrated higher microbial diversity and an enrichment of opportunistic pathogens, such as Erysipelatoclostridium and Eggerthella. Analysis revealed elevated levels of two specific short-chain fatty acids, namely acetic acid and isobutyric acid, in the MPP group, suggesting their potential as biomarkers for predicting MP infection. Metabolomic signature analysis identified a significant increase in major classes of glycerophospholipids in the MPP group. Moreover, we identified a total of 750 significant correlations between gut microbiota and circulating serum metabolites. MPP enriched genera Erysipelatoclostridium and Eggerthella, exhibited negative associations with indole-3-butyric acid. Additionally, Eggerthella showed a positive correlation with inflammatory metabolites LPC (18:0). Discussion Collectively, these findings provide novel insights into the selection of potential biomarkers and the pathogenesis of MPP in children based on the gut microbiota and systemic circulating metabolites.
Collapse
Affiliation(s)
- Shu Wang
- Department of Geriatrics, The First People’s Hospital of Hefei, Hefei, 230061, People’s Republic of China
| | - Chengzhong Liu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Ruipei Ding
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Shumei Wang
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Yousheng Ye
- Department of Geriatrics, The First People’s Hospital of Hefei, Hefei, 230061, People’s Republic of China
| | - Maozhang He
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People’s Republic of China
| |
Collapse
|
24
|
Li Z, He X, Fang Q, Yin X. Gut Microbe-Generated Metabolite Trimethylamine-N-Oxide and Ischemic Stroke. Biomolecules 2024; 14:1463. [PMID: 39595639 PMCID: PMC11591650 DOI: 10.3390/biom14111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite, the production of which in vivo is mainly regulated by dietary choices, gut microbiota, and the hepatic enzyme flavin monooxygenase (FMO), while its elimination occurs via the kidneys. The TMAO level is positively correlated with the risk of developing cardiovascular diseases. Recent studies have found that TMAO plays an important role in the development of ischemic stroke. In this review, we describe the relationship between TMAO and ischemic stroke risk factors (hypertension, diabetes, atrial fibrillation, atherosclerosis, thrombosis, etc.), disease risk, severity, prognostic outcomes, and recurrence and discuss the possible mechanisms by which they interact. Importantly, TMAO induces atherosclerosis and thrombosis through lipid metabolism, foam cell formation, endothelial dysfunction (via inflammation, oxidative stress, and pyroptosis), enhanced platelet hyper-reactivity, and the upregulation and activation of vascular endothelial tissue factors. Although the pathogenic mechanisms underlying TMAO's aggravation of disease severity and its effects on post-stroke neurological recovery and recurrence risk remain unclear, they may involve inflammation, astrocyte function, and pro-inflammatory monocytes. In addition, this paper provides a summary and evaluation of relevant preclinical and clinical studies on interventions regarding the gut-microbiota-dependent TMAO level to provide evidence for the prevention and treatment of ischemic stroke through the gut microbe-TMAO pathway.
Collapse
Affiliation(s)
| | | | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China; (Z.L.); (X.H.)
| | - Xulong Yin
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China; (Z.L.); (X.H.)
| |
Collapse
|
25
|
R Muralitharan R, Marques FZ, O'Donnell JA. Recent advancements in targeting the immune system to treat hypertension. Eur J Pharmacol 2024; 983:177008. [PMID: 39304109 DOI: 10.1016/j.ejphar.2024.177008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Hypertension is the key leading risk factor for death globally, affecting ∼1.3 billion adults, particularly in low- and middle-income countries. Most people living with hypertension have uncontrolled high blood pressure, increasing their likelihood of cardiovascular events. Significant issues preventing blood pressure control include lack of diagnosis, treatment, and response to existing therapy. For example, monotherapy and combination therapy are often unable to lower blood pressure to target levels. New therapies are urgently required to tackle this issue, particularly those that target the mechanisms behind hypertension instead of treating its symptoms. Acting via an increase in systemic and tissue-specific inflammation, the immune system is a critical contributor to blood pressure regulation and is considered an early mechanism leading to hypertension development. Here, we review the immune system's role in hypertension, evaluate clinical trials that target inflammation, and discuss knowledge gaps in pre-clinical and clinical data. We examine the effects of anti-inflammatory drugs colchicine and methotrexate on hypertension and evaluate the blockade of pro-inflammatory cytokines IL-1β and TNF-α on blood pressure in clinical trials. Lastly, we highlight how we can move forward to target specific components of the immune system to lower blood pressure. This includes targeting isolevuglandins, which accumulate in dendritic cells to promote T cell activation and cytokine production in salt-induced hypertension. We discuss the potential of the dietary fibre-derived metabolites short-chain fatty acids, which have anti-inflammatory and blood pressure-lowering effects via the gut microbiome. This would limit adverse events, leading to improved medication adherence and better blood pressure control.
Collapse
Affiliation(s)
- Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
26
|
López-Tenorio II, Aguilar-Villegas ÓR, Espinoza-Palacios Y, Segura-Real L, Peña-Aparicio B, Amedei A, Aguirre-García MM. Primary Prevention Strategy for Non-Communicable Diseases (NCDs) and Their Risk Factors: The Role of Intestinal Microbiota. Biomedicines 2024; 12:2529. [PMID: 39595097 PMCID: PMC11591598 DOI: 10.3390/biomedicines12112529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Non-communicable diseases (NCDs) are the leading cause of morbidity and mortality worldwide. These conditions have numerous health consequences and significantly impact patients' lifestyles. Effective long-term treatment is essential since NCDs are irreversible. Therefore, primary healthcare must be both exclusive and of the highest quality, ensuring comprehensive care. The primary goal should be to improve quality of life with a focus on patients, families, and communities, as most of these diseases can be prevented and controlled, although not cured. Several factors have been linked to individual health, including social, cultural, and economic aspects, lifestyle, and certain environmental factors, including work, that can have positive or negative effects. More of these variables may contribute to the onset of NCDs, which are defined by their chronic nature, propensity for prolongation, and generally slow rate of progression. Examples of NCDs include hypertension, type 2 diabetes (T2D), dyslipidemia, and fatty liver disease linked to metabolic dysfunction. The onset of these diseases has been associated with an imbalance in certain microbial niches, such as the gut, which hosts billions of microorganisms performing multiple metabolic functions, such as the production of metabolites like bile acids (BAs), short-chain fatty acids (SCFAs), and trimethylamine N-oxide (TMAO). Therefore, lifestyle changes and personal habits can significantly impact the gut microbiota (GM), potentially preventing chronic diseases associated with metabolism. NCDs are highly prevalent worldwide, prompting increased attention to strategies for modifying the intestinal microbiota (IM). Approaches such as probiotics, prebiotics, synbiotics, and fecal transplantation (FMT) have demonstrated improvements in the quality of life for individuals with these conditions. Additionally, lifestyle changes and the adoption of healthy habits can significantly impact IM and may help prevent chronic diseases related to metabolism. Therefore, the main aim of this review is to analyze and understand the importance of microbiota intervention in the prevention of non-communicable diseases. R3:A1.
Collapse
Affiliation(s)
- Itzel Ivonn López-Tenorio
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina UNAM, Instituto Nacional de Cardiología Ignacio Cháve, Mexico City 14080, Mexico; (I.I.L.-T.); (Ó.R.A.-V.); (Y.E.-P.); (L.S.-R.)
| | - Óscar Rodrigo Aguilar-Villegas
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina UNAM, Instituto Nacional de Cardiología Ignacio Cháve, Mexico City 14080, Mexico; (I.I.L.-T.); (Ó.R.A.-V.); (Y.E.-P.); (L.S.-R.)
| | - Yoshua Espinoza-Palacios
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina UNAM, Instituto Nacional de Cardiología Ignacio Cháve, Mexico City 14080, Mexico; (I.I.L.-T.); (Ó.R.A.-V.); (Y.E.-P.); (L.S.-R.)
| | - Lorena Segura-Real
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina UNAM, Instituto Nacional de Cardiología Ignacio Cháve, Mexico City 14080, Mexico; (I.I.L.-T.); (Ó.R.A.-V.); (Y.E.-P.); (L.S.-R.)
| | - Berenice Peña-Aparicio
- Consulta Externa Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50134 Florence, Italy
| | - María Magdalena Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina UNAM, Instituto Nacional de Cardiología Ignacio Cháve, Mexico City 14080, Mexico; (I.I.L.-T.); (Ó.R.A.-V.); (Y.E.-P.); (L.S.-R.)
| |
Collapse
|
27
|
Ghajavand B, Avesani C, Stenvinkel P, Bruchfeld A. Unlocking the Potential of Brewers' Spent Grain: A Sustainable Model to Use Beer for Better Outcome in Chronic Kidney Disease. J Ren Nutr 2024; 34:482-492. [PMID: 38621435 DOI: 10.1053/j.jrn.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
The rising global incidence of chronic inflammatory diseases calls for innovative and sustainable medical solutions. Brewers' spent grain (BSG), a byproduct of beer production, presents a unique opportunity in this regard. This review explores the multifaceted health benefits of BSG, with a focus on managing chronic kidney disease (CKD). BSG is identified as a potent prebiotic with potential as a therapeutic agent in CKD. We emphasize the role of gut dysbiosis in CKD and discuss how BSG could help mitigate metabolic derangements resulting from dysbiosis and CKD. Fermentation of BSG further enhances its positive impact on gut health. Incorporating fermented BSG as a key component in preventive health care could promote a more sustainable and healthier future. By optimizing the use of this typically discarded byproduct, we can align proactive health-care strategies with responsible resource management, benefiting both people and the environment.
Collapse
Affiliation(s)
- Babak Ghajavand
- Department of Renal Medicine, Linköping University Hospital, Linköping, Sweden.
| | - Carla Avesani
- Department of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Department of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Annette Bruchfeld
- Department of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden; Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
28
|
Chen Y, Huang J, Wang H, Cui H, Liang Z, Huang D, Deng X, Du B, Li P. Polysaccharides from Sacha Inchi shell reduces renal fibrosis in mice by modulating the TGF-β1/Smad pathway and intestinal microbiota. Int J Biol Macromol 2024; 280:136039. [PMID: 39332559 DOI: 10.1016/j.ijbiomac.2024.136039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/24/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Renal fibrosis is a common pathway involved in the progression of various chronic kidney to end-stage diseases, posing a substantial global public health challenge in the search for effective and safe treatments. This study investigated the effects and mechanisms of sacha inchi shell polysaccharide (SISP) on renal fibrosis induced by a high-salt diet (HSD) in mice. By analysing kidney-related protein pathways and the structure of gut microbiota, we found that SISP significantly reduced urinary protein levels induced by a HSD from 41.08 to 22.95 μg/mL and increased urinary creatinine from 787.43 to 1294.50 μmol/L. It reduced renal interstitial collagen fibres by 11.30 %, thereby improving the kidney function. SISP lowered the mRNA expression of TGF-B1, fibronectin, α-SMA, Smad2/3, and TGFBRII, leading to decreased protein levels of TGF-β1, p-Smad2/3, p-TGFβRII, fibronectin, α-SMA, p-Smad2/3/Smad2/3, and p-TGFβRII/TGFβRII. These changes blocked downstream transcription in the TGF-β1/Smad signalling pathway, thereby attenuating renal fibrosis in HSD mice. In addition, SISP altered the intestinal flora imbalance in HSD mice by reducing the relative abundance of the genera, Akkermansia, Faecalibaculum, and unidentified_Ruminococcaceae, and reversing the decline in the levels of the genera, Lactobacillus and Bacteroides. In conclusion, SISP is a promising nutraceutical for renal fibrosis management.
Collapse
Affiliation(s)
- Yanlan Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Junyuan Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Huaixu Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Haohui Cui
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zizhao Liang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Darong Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xinyu Deng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
29
|
Peng YL, Wang SH, Zhang YL, Chen MY, He K, Li Q, Huang WH, Zhang W. Effects of bile acids on the growth, composition and metabolism of gut bacteria. NPJ Biofilms Microbiomes 2024; 10:112. [PMID: 39438471 PMCID: PMC11496524 DOI: 10.1038/s41522-024-00566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024] Open
Abstract
Bile acids (BAs) exert a profound influence on the body's pathophysiology by intricately shaping the composition of gut bacteria. However, the complex interplay between BAs and gut microbiota has impeded a systematic exploration of their impact on intestinal bacteria. Initially, we investigated the effects of 21 BAs on the growth of 65 gut bacterial strains in vitro. Subsequently, we examined the impact of BAs on the overall composition of intestinal bacteria, both in vivo and in vitro. The results unveiled distinct effects of various BAs on different intestinal strains and their diverse impacts on the composition of gut bacteria. Mechanistically, the inhibition of intestinal strains by BAs occurs through the accumulation of these acids within the strains. The intracellular accumulation of deoxycholic acid (DCA) significantly influenced the growth of intestinal bacteria by impacting ribosome transcription and amino-acid metabolism. The metabolomic analysis underscores the pronounced impact of DCA on amino-acid profiles in both in vivo and in vitro settings. This study not only elucidates the effects of BAs on a diverse range of bacterial strains and their role in shaping the gut microbiota but also reveals underlying mechanisms essential for understanding and maintaining a healthy gut microbiota.
Collapse
Affiliation(s)
- Yi-Lei Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Si-Han Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Yu-Long Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Man-Yun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Kang He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| |
Collapse
|
30
|
Zhang W, Zhang Y, Li J, Tang J, Wu J, Xie Z, Huang X, Tao S, Xue T. Identification of metabolites from the gut microbiota in hypertension via network pharmacology and molecular docking. BIORESOUR BIOPROCESS 2024; 11:102. [PMID: 39433698 PMCID: PMC11493893 DOI: 10.1186/s40643-024-00815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Hypertension is the most prevalent cardiovascular disease, affecting one-third of adults. All antihypertensive drugs have potential side effects. Gut metabolites influence hypertension. The objective of this study was to identify antihypertensive gut metabolites through network pharmacology and molecular docking techniques and to validate their antihypertensive mechanisms via in vitro experiments. A total of 10 core antihypertensive targets and 18 gut metabolites that act on hypertension were identified. Four groups of protein metabolites, namely, CXCL8-baicalein, CXCL8-baicalin, CYP1A1-urolithin A, and PTGS2-equol, which have binding energies of - 7.7, - 8.5, - 7.2, and - 8.8 kcal-mol-1, respectively, were found to have relatively high affinities. Based on its drug-likeness properties in silico and toxicological properties, equol was identified as a potential antihypertensive metabolite. On the basis of the results of network pharmacology and molecular docking, equol may exert antihypertensive effects by regulating the IL-17 signaling pathway and PTGS2. A phenylephrine-induced H9c2 cell model was subsequently utilized to verify that equol inhibits cell hypertrophy (P < 0.05) by inhibiting the IL-17 signaling pathway and PTGS2 (P < 0.05). This study demonstrated that equol has the potential to be developed as a novel therapeutic agent for the treatment of hypertension.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixiange, Xicheng District, Beijing, 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yinming Zhang
- Department of Emergency, Yankuang New Journey General Hospital, Zoucheng, Shandong Province, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixiange, Xicheng District, Beijing, 100053, China.
| | - Jiawei Tang
- School of Computer Science, Beijing University of Posts and Telecommunications, Beijing, China
| | - Ji Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Zicong Xie
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Xuanchun Huang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Shiyi Tao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixiange, Xicheng District, Beijing, 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Xue
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixiange, Xicheng District, Beijing, 100053, China
| |
Collapse
|
31
|
Zhang J, He J, Liao Y, Xia X, Yang F. Genetic association between gut microbiome and blood pressure and blood cell count as mediator: A two-step Mendelian randomization analysis. Gene 2024; 925:148573. [PMID: 38762013 DOI: 10.1016/j.gene.2024.148573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Previous studies have established a genetic link between gut microbiota and hypertension, but whether blood cell count plays a mediating role in this remains unknown. This study aims to explore genetic associations and causal factors involving the gut microbiome, peripheral blood cell count, and blood pressure. METHODS We utilized summary statistics derived from genome-wide association studies to conduct a two-sample mediation Mendelian randomization analysis (https://gwas.mrcieu.ac.uk/). We applied inverse variance weighted (IVW) estimation method as the primary method, along with MR Egger, Weighted median, Simple mode and Weighted mode as complementary methods. To ensure the robustness of the results, several sensitivity analyses were conducted. RESULTS Genetic variants significantly associated with the microbiome, blood pressure, or peripheral blood cell counts were selected as instrumental variables. Fourteen microbial taxa were found to have suggestive associations with diastolic blood pressure (DBP), while fifteen microbial taxa showed suggestive associations with systolic blood pressure (SBP). Meanwhile, red blood cell count, lymphocyte count, and platelet count were identified to mediate the influence of the gut microbiome on blood pressure. Specifically, red cell count was identified to mediate the effects of the phylum Cyanobacteria on DBP (mediated proportion: 8.262 %). Lymphocyte count was found mediate the effects of the genus Subdoligranulum (mediated proportion: 2.642 %) and genus Collinsella (mediated proportion: 2.749 %) on SBP. Additionally, platelet count was found to mediate the relationship between the genus Eubacterium ventriosum group and SBP, explaining 3.421 % of the mediated proportion. CONCLUSIONS Our findings highlighted that gut microbiota may have causal influence on the blood pressure by modulating blood cell counts, which sheds new light on the pathogenesis and potential clinical interventions through the intricate axis of gut microbiome, blood cell counts, and blood pressure.
Collapse
Affiliation(s)
- Jiyu Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Junyi He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xinyi Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Fen Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
32
|
Bao W, Zhang Y, Huang XJ, Gu N. The role of gut microbiome in mediating the effect of inflammatory bowel disease on hypertension: a two-step, two-sample Mendelian randomization study. Front Cardiovasc Med 2024; 11:1396973. [PMID: 39479396 PMCID: PMC11521848 DOI: 10.3389/fcvm.2024.1396973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Objective Investigating the causal connection that exists between inflammatory bowel disease (IBD) and hypertension (HT). To gain a deeper insight into the correlation among IBD, gut microbiota, and HT, we conducted a two-step, two-sample Mendelian randomization study. Methods An investigation of genome-wide association study (GWAS) summary-level data was utilized to conduct a two-sample Mendelian randomization (MR) analysis of genetically predicted inflammatory bowel disease: (12,882cases, 21,770controls) on Systolic/Diastolic blood pressure (N = 2,564). Subsequently, two-step MR analyses revealed that the relationship between IBD and SBP was partly mediated by Faecalicatena glycyrrhizinilyticum. The robustness of the findings was confirmed through several sensitivity assessments. Results This MR study showed that increase in genetically predicted IBD was associated with higher risk of genetically predicted SBP (OR: 1.08, 95% CI: 1.01-1.16, P < 0.05) and DBP (OR: 1.09, 95% CI: 1.02-1.17, P < 0.05), respectively. Inverse variance weighted (IVW) MR analysis also showed that increase in genetically predicted IBD was associated with higher abundance Faecalicatena glycyrrhizinilyticum (OR: 1.03, 95% CI: 1.01-1.04, P < 0.05), which subsequently associated with increased SBP risk (OR: 1.42, 95% CI: 1.06-1.9, P < 0.05). Faecalicatena glycyrrhizinilyticum abundance in stool was responsible for mediating 11% of the genetically predicted IBD on SBP. Conclusion The research proposed a causal link between Inflammatory Bowel Disease (IBD) and Hypertension (HT), with a little percentage of the impact being influenced by Faecalicatena glycyrrhizinilyticum in stool. Mitigating gut microbiome may decrease the heightened risk of hypertension in people with inflammatory bowel disease.
Collapse
Affiliation(s)
| | | | | | - Ning Gu
- Department of Cardiovascular Disease, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
33
|
Wang Z, Shao Y, Wu F, Luo D, He G, Liang J, Quan X, Chen X, Xia W, Chen Y, Liu Y, Chen L. Berberine ameliorates vascular dysfunction by downregulating TMAO-endoplasmic reticulum stress pathway via gut microbiota in hypertension. Microbiol Res 2024; 287:127824. [PMID: 39053076 DOI: 10.1016/j.micres.2024.127824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
The gut microbial metabolite trimethylamine N-oxide (TMAO) is regarded as a novel risk factor for hypertension. Berberine (BBR) exerts cardiovascular protective effects by regulating the gut microbiota-metabolite production pathway. However, whether and how BBR alleviates TMAO-induced vascular dysfunction in hypertension remains unclear. In the present study, we observed that plasma TMAO and related bacterial abundance were significantly elevated and negatively correlated with vascular function in 86 hypertensive patients compared with 46 normotensive controls. TMAO activated endoplasmic reticulum stress (ERS) signaling pathway to promote endothelial cell dysfunction and apoptosis in vitro. BBR (100, 200 mg · kg-1 ·d-1) for 4 weeks ameliorates TMAO-induced vascular dysfunction and ERS activation in a choline-angiotensin II hypertensive mouse model. We found that plasma TMAO levels in 15 hypertensive patients treated with BBR (0.4 g, tid) were reduced by 8.8 % and 16.7 % at months 1 and 3, respectively, compared with pretreatment baseline. The oral BBR treatment also improved vascular function and lowered blood pressure. Faecal 16 S rDNA showed that BBR altered the gut bacterial composition and reduced the abundance of CutC/D bacteria in hypertensive mice and patients. In vitro bacterial cultures and enzyme reaction systems indicated that BBR inhibited the biosynthesis of TMAO precursor in the gut microbiota by binding to and inhibiting the activity of CutC/D enzyme. Our results indicate that BBR improve vascular dysfunction at least partially by decreasing TMAO via regulation of the gut microbiota in hypertension.
Collapse
Affiliation(s)
- Zhichao Wang
- The International Medical Department, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yijia Shao
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fang Wu
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dangu Luo
- The International Medical Department, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Guoyifan He
- The International Medical Department, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jianwen Liang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoqing Quan
- Department of Geriatrics, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Xiehui Chen
- Department of Geriatrics, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Wenhao Xia
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ye Chen
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Long Chen
- The International Medical Department, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
34
|
Zheng T, Camargo Tavares L, D'Amato M, Marques FZ. Constipation is associated with an increased risk of major adverse cardiac events in a UK population. Am J Physiol Heart Circ Physiol 2024; 327:H956-H964. [PMID: 39150392 DOI: 10.1152/ajpheart.00519.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024]
Abstract
Traditional cardiovascular risk factors, including hypertension, only explain part of major adverse cardiac events (MACEs). Understanding what other risk factors contribute to MACE is essential for prevention. Constipation shares common risk factors with hypertension and is associated with an increased risk of several cardiovascular diseases. We hypothesized that constipation is an underappreciated risk factor for MACE. We used the population healthcare and genomic data in the UK Biobank (n = 408,354) to study the contribution of constipation (ICD10 K59.0) to the risk of MACE, defined by any episode of acute coronary syndrome (ACS), ischemic stroke, and heart failure (HF). Analyses were controlled for traditional cardiovascular risk factors. We also assessed genetic correlations (rg) between constipation and MACE. Constipation cases (n = 23,814) exhibited a significantly higher risk of MACE compared with those with normal bowel habits [odds ratio (OR) = 2.15, P < 1.00 × 10-300]. Constipation was also significantly associated with individual MACE subgroups, in order: HF (OR = 2.72, P < 1.00 × 10-300), ischemic stroke (OR = 2.36, P = 2.02 × 10-230), and ACS (OR = 1.62, P = 5.82 × 10-113). In comparison with patients with constipation-free hypertension, patients with hypertension with constipation showed significantly higher odds of MACE (OR = 1.68, P = 1.05 × 10-136) and a 34% increased risk of MACE occurrence (P = 2.3 × 10-50) after adjustment for medications that affect gut motility and other traditional cardiovascular risk factors. Finally, we detected positive genetic correlations between constipation and MACE subgroups ACS (rg = 0.27, P = 2.12 × 10-6), ischemic stroke (rg = 0.23, P = 0.011), and HF (rg = 0.21, P = 0.0062). We identified constipation as a potential risk factor independently associated with higher MACE prevalence. These findings warrant further studies on their causal relationship and identification of pathophysiological mechanisms.NEW & NOTEWORTHY Analyzing 408,354 participants of the UK Biobank, we show that constipation cases exhibited a significantly higher risk of major adverse cardiac events (MACEs) than those with regular bowel habits. In comparison with patients with constipation-free hypertension, patients with hypertension with constipation showed significantly higher odds of MACE and a 34% increased risk of subsequent MACE occurrence. Finally, we detected positive genetic correlations between constipation and MACE. This association holds potential for therapeutic exploitation and prevention based on individuals' risk assessment.
Collapse
Affiliation(s)
- Tenghao Zheng
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Victoria, Australia
| | - Leticia Camargo Tavares
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Victoria, Australia
| | - Mauro D'Amato
- Gastrointestinal Genetics Laboratory, CIC bioGUNE-BRTA, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Medicine and Surgery, LUM University, Bari, Italy
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
36
|
Shi K, Liu Q, Ji Q, He Q, Zhao XM. MicroHDF: predicting host phenotypes with metagenomic data using a deep forest-based framework. Brief Bioinform 2024; 25:bbae530. [PMID: 39446191 PMCID: PMC11500453 DOI: 10.1093/bib/bbae530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The gut microbiota plays a vital role in human health, and significant effort has been made to predict human phenotypes, especially diseases, with the microbiota as a promising indicator or predictor with machine learning (ML) methods. However, the accuracy is impacted by a lot of factors when predicting host phenotypes with the metagenomic data, e.g. small sample size, class imbalance, high-dimensional features, etc. To address these challenges, we propose MicroHDF, an interpretable deep learning framework to predict host phenotypes, where a cascade layers of deep forest units is designed for handling sample class imbalance and high dimensional features. The experimental results show that the performance of MicroHDF is competitive with that of existing state-of-the-art methods on 13 publicly available datasets of six different diseases. In particular, it performs best with the area under the receiver operating characteristic curve of 0.9182 ± 0.0098 and 0.9469 ± 0.0076 for inflammatory bowel disease (IBD) and liver cirrhosis, respectively. Our MicroHDF also shows better performance and robustness in cross-study validation. Furthermore, MicroHDF is applied to two high-risk diseases, IBD and autism spectrum disorder, as case studies to identify potential biomarkers. In conclusion, our method provides an effective and reliable prediction of the host phenotype and discovers informative features with biological insights.
Collapse
Affiliation(s)
- Kai Shi
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, Gaungxi 541004, China
- Guangxi Key Laboratory of Embedded Technology and Intelligent Systems, Guilin University of Technology, Guilin, Gaungxi 541004, China
| | - Qiaohui Liu
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, Gaungxi 541004, China
| | - Qingrong Ji
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, Gaungxi 541004, China
| | - Qisheng He
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, Gaungxi 541004, China
| | - Xing-Ming Zhao
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| |
Collapse
|
37
|
R Muralitharan R, Nakai ME, Snelson M, Zheng T, Dinakis E, Xie L, Jama H, Paterson M, Shihata W, Wassef F, Vinh A, Drummond GR, Kaye DM, Mackay CR, Marques FZ. Influence of angiotensin II on the gut microbiome: modest effects in comparison to experimental factors. Cardiovasc Res 2024; 120:1155-1163. [PMID: 38518247 PMCID: PMC11368123 DOI: 10.1093/cvr/cvae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 03/24/2024] Open
Abstract
AIMS Animal models are regularly used to test the role of the gut microbiome in hypertension. Small-scale pre-clinical studies have investigated changes to the gut microbiome in the angiotensin II hypertensive model. However, the gut microbiome is influenced by internal and external experimental factors, which are not regularly considered in the study design. Once these factors are accounted for, it is unclear if microbiome signatures are reproduceable. We aimed to determine the influence of angiotensin II treatment on the gut microbiome using a large and diverse cohort of mice and to quantify the magnitude by which other factors contribute to microbiome variations. METHODS AND RESULTS We conducted a retrospective study to establish a diverse mouse cohort resembling large human studies. We sequenced the V4 region of the 16S rRNA gene from 538 samples across the gastrointestinal tract of 303 male and female C57BL/6J mice randomized into sham or angiotensin II treatment from different genotypes, diets, animal facilities, and age groups. Analysing over 17 million sequencing reads, we observed that angiotensin II treatment influenced α-diversity (P = 0.0137) and β-diversity (i.e. composition of the microbiome, P < 0.001). Bacterial abundance analysis revealed patterns consistent with a reduction in short-chain fatty acid producers, microbial metabolites that lower blood pressure. Furthermore, animal facility, genotype, diet, age, sex, intestinal sampling site, and sequencing batch had significant effects on both α- and β-diversity (all P < 0.001). Sampling site (6.8%) and diet (6%) had the largest impact on the microbiome, while angiotensin II and sex had the smallest effect (each 0.4%). CONCLUSION Our large-scale data confirmed findings from small-scale studies that angiotensin II impacted the gut microbiome. However, this effect was modest relative to most of the other factors studied. Accounting for these factors in future pre-clinical hypertensive studies will increase the likelihood that microbiome findings are replicable and translatable.
Collapse
Affiliation(s)
- Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
- Institute for Medical Research, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
- Victorian Heart Institute, Monash University, 631 Blackburn Road, Clayton, 3800 Melbourne, Australia
| | - Michael E Nakai
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
| | - Matthew Snelson
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
- Victorian Heart Institute, Monash University, 631 Blackburn Road, Clayton, 3800 Melbourne, Australia
| | - Tenghao Zheng
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
| | - Evany Dinakis
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
| | - Liang Xie
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
| | - Hamdi Jama
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
| | - Madeleine Paterson
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
| | - Waled Shihata
- Heart Failure Research Group, Baker Heart and Diabetes Institute, 75 Commercial Road, 3004 Melbourne, Australia
| | - Flavia Wassef
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), Bundoora, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), Bundoora, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), Bundoora, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - David M Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, 75 Commercial Road, 3004 Melbourne, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Australia
- Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Charles R Mackay
- Infection and Immunity Program, Monash Biodiscovery Institute, Monash University, Melbourne, Australia
- Department of Biochemistry, Monash University, Melbourne, Australia
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
- Victorian Heart Institute, Monash University, 631 Blackburn Road, Clayton, 3800 Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, 75 Commercial Road, 3004 Melbourne, Australia
| |
Collapse
|
38
|
Yang G, Khan A, Liang W, Xiong Z, Stegbauer J. Aortic aneurysm: pathophysiology and therapeutic options. MedComm (Beijing) 2024; 5:e703. [PMID: 39247619 PMCID: PMC11380051 DOI: 10.1002/mco2.703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Aortic aneurysm (AA) is an aortic disease with a high mortality rate, and other than surgery no effective preventive or therapeutic treatment have been developed. The renin-angiotensin system (RAS) is an important endocrine system that regulates vascular health. The ACE2/Ang-(1-7)/MasR axis can antagonize the adverse effects of the activation of the ACE/Ang II/AT1R axis on vascular dysfunction, atherosclerosis, and the development of aneurysms, thus providing an important therapeutic target for the prevention and treatment of AA. However, products targeting the Ang-(1-7)/MasR pathway still lack clinical validation. This review will outline the epidemiology of AA, including thoracic, abdominal, and thoracoabdominal AA, as well as current diagnostic and treatment strategies. Due to the highest incidence and most extensive research on abdominal AA (AAA), we will focus on AAA to explain the role of the RAS in its development, the protective function of Ang-(1-7)/MasR, and the mechanisms involved. We will also describe the roles of agonists and antagonists, suggest improvements in engineering and drug delivery, and provide evidence for Ang-(1-7)/MasR's clinical potential, discussing risks and solutions for clinical use. This study will enhance our understanding of AA and offer new possibilities and promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Guang Yang
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Institute of Translational Medicine Shenzhen Second People's Hospital The First Affiliated Hospital of Shenzhen University Shenzhen China
- Department of Life Sciences Yuncheng University Yuncheng China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Abbas Khan
- Department of Nutrition and Health Promotion University of Home Economics Lahore Pakistan Lahore Pakistan
| | - Wei Liang
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Zibo Xiong
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Johannes Stegbauer
- Department of Nephrology Medical Faculty University Hospital Düsseldorf Heinrich Heine University Düsseldorf Düsseldorf Germany
| |
Collapse
|
39
|
Olarinoye ZY, Kim CW, Kim JY, Jang S, Kim I. Differential gene expression in the kidneys of SHR and WKY rats after intravenous administration of Akkermansia muciniphila-derived extracellular vesicles. Sci Rep 2024; 14:20056. [PMID: 39209875 PMCID: PMC11362604 DOI: 10.1038/s41598-024-69757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Although Akkermansia muciniphila (Am) plays a beneficial role as a probiotic in the treatment of metabolic syndrome, the mechanisms remain elusive. We tested the hypothesis that Am extracellular vesicles (AmEVs) protect against hypertension through modulation of gene expression in the kidneys of spontaneously hypertensive rats (SHRs). Extracellular vesicles purified from anaerobically cultured Am (1.0 × 108 or 1.0 × 109 particles/kg) or vehicles were injected into the tail veins of Wistar-Kyoto rats (WKYs) and SHRs weekly for 4 weeks. Renal cortical tissues isolated from both rat strains were analyzed by trichrome stain and RT-qPCR. AmEVs protect against the development of hypertension in SHRs without a serious adverse reaction. AmEVs increased the expression of vasocontracting Agt and At1ar as well as vasodilating At2r, Mas1 and Nos2 in the kidneys of both strains. These results indicate that AmEVs have a protective effect against hypertension without a serious adverse reaction. Therefore, it is foreseen that AmEVs may be utilized as a novel therapeutic for the treatment of hypertension.
Collapse
Affiliation(s)
- Zainab Yetunde Olarinoye
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Cheong-Wun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jee Young Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sungmin Jang
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Inkyeom Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea.
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
40
|
Erb C, Erb C, Kazakov A, Kapanova G, Weisser B. Lifestyle Changes in Aging and their Potential Impact on POAG. Klin Monbl Augenheilkd 2024. [PMID: 39191386 DOI: 10.1055/a-2372-3505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Primary open angle glaucoma is a primary mitochondrial disease with oxidative stress triggering neuroinflammation, eventually resulting in neurodegeneration. This affects many other areas of the brain in addition to the visual system. Aging also leads to inflammaging - a low-grade chronic inflammatory reaction in mitochondrial dysfunction, so these inflammatory processes overlap in the aging process and intensify pathophysiological processes associated with glaucoma. Actively counteracting these inflammatory events involves optimising treatment for any manifest systemic diseases while maintaining chronobiology and improving the microbiome. Physical and mental activity also provides support. This requires a holistic approach towards optimising neurodegeneration treatment in primary open angle glaucoma in addition to reducing intraocular pressure according personalised patient targets.
Collapse
Affiliation(s)
- Carl Erb
- Augenklinik am Wittenbergplatz, Berlin, Deutschland
| | | | - Avaz Kazakov
- External Relations and Development, Salymbekov University, Bishkek, Kyrgyzstan
| | - Gulnara Kapanova
- Medical Faculty of Medicine, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | |
Collapse
|
41
|
Wang M, Zheng L, Meng Y, Ma S, Zhao D, Xu Y. Broadening horizons: intestinal microbiota as a novel biomarker and potential treatment for hypertensive disorders of pregnancy. Front Cell Infect Microbiol 2024; 14:1446580. [PMID: 39239636 PMCID: PMC11374776 DOI: 10.3389/fcimb.2024.1446580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/24/2024] [Indexed: 09/07/2024] Open
Abstract
Hypertensive disorders of pregnancy (HDP) are severe complications of pregnancy with high morbidity and are a major cause of increased maternal and infant morbidity and mortality. Currently, there is a lack of effective early diagnostic indicators and safe and effective preventive strategies for HDP in clinical practice, except for monitoring maternal blood pressure levels, the degree of proteinuria, organ involvement and fetal conditions. The intestinal microbiota consists of the gut flora and intestinal environment, which is the largest microecosystem of the human body and participates in material and energy metabolism, gene expression regulation, immunity regulation, and other functions. During pregnancy, due to changes in hormone levels and altered immune function, the intestinal microecological balance is affected, triggering HDP. A dysregulated intestinal microenvironment influences the composition and distribution of the gut flora and changes the intestinal barrier, driving beneficial or harmful bacterial metabolites and inflammatory responses to participate in the development of HDP and promote its malignant development. When the gut flora is dysbiotic and affects blood pressure, supplementation with probiotics and dietary fiber can be used to intervene. In this review, the interaction between the intestinal microbiota and HDP was investigated to explore the feasibility of the gut flora as a novel biomarker of HDP and to provide a new strategy and basis for the prevention and treatment of clinical HDP.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Yang Meng
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Donghai Zhao
- Department of Pathology, Jilin Medical College, Jilin, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
42
|
Li YY, Guan RQ, Hong ZB, Wang YL, Pan LM. Advances in the treatment of diabetic peripheral neuropathy by modulating gut microbiota with traditional Chinese medicine. World J Diabetes 2024; 15:1712-1716. [PMID: 39192853 PMCID: PMC11346088 DOI: 10.4239/wjd.v15.i8.1712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the strongest risk factors for diabetic foot ulcers (neuropathic ulcerations) and the existing ulcers may further deteriorate due to the damage to sensory neurons. Moreover, the resulting numbness in the limbs causes difficulty in discovering these ulcerations in a short time. DPN is associated with gut microbiota dysbiosis. Traditional Chinese medicine (TCM) compounds such as Shenqi Dihuang Decoction, Huangkui Capsules and Qidi Tangshen Granules can reduce the clinical symptoms of diabetic nephropathy by modulating gut microbiota. The current review discusses whether TCM compounds can reduce the risk of DPN by improving gut mic-robiota.
Collapse
Affiliation(s)
- Ye-Yao Li
- Department of Endocrinology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| | - Rui-Qian Guan
- Department of Tuina, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| | - Zhi-Bo Hong
- Department of Endocrinology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| | - Yao-Lei Wang
- Department of Endocrinology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| | - Li-Min Pan
- Department of Endocrinology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
43
|
Zheng B, Li M, Zhang T, Li B, Li Q, Saiding Q, Chen W, Guo M, Koo S, Ji X, Tao W. Functional modification of gut bacteria for disease diagnosis and treatment. MED 2024; 5:863-885. [PMID: 38964334 DOI: 10.1016/j.medj.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/15/2023] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
Intestinal bacteria help keep humans healthy by regulating lipid and glucose metabolism as well as the immunological and neurological systems. Oral treatment using intestinal bacteria is limited by the high acidity of stomach fluids and the immune system's attack on foreign bacteria. Scientists have created coatings and workarounds to overcome these limitations and improve bacterial therapy. These preparations have demonstrated promising outcomes, with advances in synthetic biology and optogenetics improving their focused colonization and controlled release. Engineering bacteria preparations have become a revolutionary therapeutic approach that converts intestinal bacteria into cellular factories for medicinal chemical synthesis. The present paper discusses various aspects of engineering bacteria preparations, including wrapping materials, biomedical uses, and future developments.
Collapse
Affiliation(s)
- Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Mengyi Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Tiange Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Bowen Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Qiuya Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mingming Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea.
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Tain YL, Hou CY, Chen WL, Liao WT, Hsu CN. Lactoferrin Supplementation during Pregnancy and Lactation Protects Adult Male Rat Offspring from Hypertension Induced by Maternal Adenine Diet. Nutrients 2024; 16:2607. [PMID: 39203744 PMCID: PMC11357372 DOI: 10.3390/nu16162607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Lactoferrin, a glycoprotein derived from breastmilk, is recognized for its health benefits in infants and children; however, its protective effects when administered during gestation and lactation against offspring hypertension remain unclear. This study aimed to investigate whether maternal lactoferrin supplementation could prevent hypertension in offspring born to mothers with chronic kidney disease (CKD), with a focus on nitric oxide (NO), renin-angiotensin system (RAS) regulation, and alterations in gut microbiota and short-chain fatty acids (SCFAs). Prior to pregnancy, female rats were subjected to a 0.5% adenine diet for 3 weeks to induce CKD. During pregnancy and lactation, pregnant rats received one of four diets: normal chow, 0.5% adenine diet, 10% lactoferrin diet, or adenine diet supplemented with lactoferrin. Male offspring were euthanized at 12 weeks of age (n = 8 per group). Supplementation with lactoferrin during gestation and lactation prevented hypertension in adult offspring induced by a maternal adenine diet. The maternal adenine diet caused a decrease in the index of NO availability, which was restored by 67% with maternal LF supplementation. Additionally, LF was related to the regulation of the RAS, as evidenced by a reduced renal expression of renin and the angiotensin II type 1 receptor. Combined maternal adenine and LF diets altered beta diversity, shifted the offspring's gut microbiota, decreased propionate levels, and reduced the renal expression of SCFA receptors. The beneficial effects of lactoferrin are likely mediated through enhanced NO availability, rebalancing the RAS, and alterations in gut microbiota composition and SCFAs. Our findings suggest that maternal lactoferrin supplementation improves hypertension in offspring in a model of adenine-induced CKD, bringing us closer to potentially translating lactoferrin supplementation clinically for children born to mothers with CKD.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Wei-Ling Chen
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Wei-Ting Liao
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
45
|
Jama HA, Dona MSI, Dinakis E, Nakai M, Paterson MR, Shihata WA, Krstevski C, Cohen CD, Weeks KL, Farrugia GE, Johnson C, Salimova E, Donner DG, Kiriazis H, Kaipananickal H, Okabe J, Anderson D, Creek DJ, Mackay CR, El-Osta A, Pinto AR, Kaye DM, Marques FZ. Maternal Diet and Gut Microbiota Influence Predisposition to Cardiovascular Disease in Offspring. Circ Res 2024; 135:537-539. [PMID: 39016011 DOI: 10.1161/circresaha.124.324614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Affiliation(s)
- Hamdi A Jama
- Hypertension Research Laboratory, School of Biological Sciences (H.A.J., E.D., M.N., M.R.P., F.Z.M.), Monash University, Melbourne, Victoria, Australia
- Heart Failure Research Group (H.A.J., W.A.S., D.M.K., F.Z.M.), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Malathi S I Dona
- Cardiac Cellular Systems (M.S.I.D., C.K., C.D.C., G.E.F., A.R.P.), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Evany Dinakis
- Hypertension Research Laboratory, School of Biological Sciences (H.A.J., E.D., M.N., M.R.P., F.Z.M.), Monash University, Melbourne, Victoria, Australia
| | - Michael Nakai
- Hypertension Research Laboratory, School of Biological Sciences (H.A.J., E.D., M.N., M.R.P., F.Z.M.), Monash University, Melbourne, Victoria, Australia
| | - Madeleine R Paterson
- Hypertension Research Laboratory, School of Biological Sciences (H.A.J., E.D., M.N., M.R.P., F.Z.M.), Monash University, Melbourne, Victoria, Australia
| | - Waled A Shihata
- Heart Failure Research Group (H.A.J., W.A.S., D.M.K., F.Z.M.), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Crisdion Krstevski
- Cardiac Cellular Systems (M.S.I.D., C.K., C.D.C., G.E.F., A.R.P.), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research (C.K., C.D.C., A.R.P.), La Trobe University, Melbourne, Victoria, Australia
| | - Charles D Cohen
- Cardiac Cellular Systems (M.S.I.D., C.K., C.D.C., G.E.F., A.R.P.), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research (C.K., C.D.C., A.R.P.), La Trobe University, Melbourne, Victoria, Australia
| | - Kate L Weeks
- Department of Anatomy and Physiology (K.L.W.), The University of Melbourne, Parkville, Victoria, Australia
- Baker Department of Cardiometabolic Health (K.L.W., D.G.D., H. Kiriazis, H. Kaipananickal, J.O., A.E.-O.), The University of Melbourne, Parkville, Victoria, Australia
| | - Gabriella E Farrugia
- Cardiac Cellular Systems (M.S.I.D., C.K., C.D.C., G.E.F., A.R.P.), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Chad Johnson
- Monash Micro Imaging (C.J.), Monash University, Melbourne, Victoria, Australia
- La Trobe Institute of Molecular Science (C.J.), La Trobe University, Melbourne, Victoria, Australia
- Burnet Institute, Melbourne, Victoria, Australia (C.J.)
| | - Ekaterina Salimova
- Monash Biomedical Imaging (E.S.), Monash University, Melbourne, Victoria, Australia
| | - Daniel G Donner
- School of Translational Medicine, Faculty of Medicine Nursing and Health Sciences (D.G.D., D.M.K.), Monash University, Melbourne, Victoria, Australia
- Preclinical Cardiology, Microsurgery and Imaging Platform (D.D., H. Kiriazis), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health (K.L.W., D.G.D., H. Kiriazis, H. Kaipananickal, J.O., A.E.-O.), The University of Melbourne, Parkville, Victoria, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (D.G.D., D.M.K.)
| | - Helen Kiriazis
- Preclinical Cardiology, Microsurgery and Imaging Platform (D.D., H. Kiriazis), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health (K.L.W., D.G.D., H. Kiriazis, H. Kaipananickal, J.O., A.E.-O.), The University of Melbourne, Parkville, Victoria, Australia
| | - Harikrishnan Kaipananickal
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Alfred Centre (H. Kaipananickal, J.O., A.E.-O.), Monash University, Melbourne, Victoria, Australia
- Epigenetics in Human Health and Disease (H. Kaipananickal, J.O., A.E.-O.), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health (K.L.W., D.G.D., H. Kiriazis, H. Kaipananickal, J.O., A.E.-O.), The University of Melbourne, Parkville, Victoria, Australia
| | - Jun Okabe
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Alfred Centre (H. Kaipananickal, J.O., A.E.-O.), Monash University, Melbourne, Victoria, Australia
- Epigenetics in Human Health and Disease (H. Kaipananickal, J.O., A.E.-O.), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health (K.L.W., D.G.D., H. Kiriazis, H. Kaipananickal, J.O., A.E.-O.), The University of Melbourne, Parkville, Victoria, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences (D.A., D.J.C.), Monash University, Melbourne, Victoria, Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical Sciences (D.A., D.J.C.), Monash University, Melbourne, Victoria, Australia
| | - Charles R Mackay
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China (C.R.M.)
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Alfred Centre (H. Kaipananickal, J.O., A.E.-O.), Monash University, Melbourne, Victoria, Australia
- Epigenetics in Human Health and Disease (H. Kaipananickal, J.O., A.E.-O.), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health (K.L.W., D.G.D., H. Kiriazis, H. Kaipananickal, J.O., A.E.-O.), The University of Melbourne, Parkville, Victoria, Australia
| | - Alexander R Pinto
- Cardiac Cellular Systems (M.S.I.D., C.K., C.D.C., G.E.F., A.R.P.), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research (C.K., C.D.C., A.R.P.), La Trobe University, Melbourne, Victoria, Australia
| | - David M Kaye
- School of Translational Medicine, Faculty of Medicine Nursing and Health Sciences (D.G.D., D.M.K.), Monash University, Melbourne, Victoria, Australia
- Heart Failure Research Group (H.A.J., W.A.S., D.M.K., F.Z.M.), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (D.G.D., D.M.K.)
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences (H.A.J., E.D., M.N., M.R.P., F.Z.M.), Monash University, Melbourne, Victoria, Australia
- Victorian Heart Hospital (F.Z.M.), Monash University, Melbourne, Victoria, Australia
- Heart Failure Research Group (H.A.J., W.A.S., D.M.K., F.Z.M.), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
46
|
Zhang J, Liu S, Ding W, Wan J, Qin JJ, Wang M. Resolution of inflammation, an active process to restore the immune microenvironment balance: A novel drug target for treating arterial hypertension. Ageing Res Rev 2024; 99:102352. [PMID: 38857706 DOI: 10.1016/j.arr.2024.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
The resolution of inflammation, the other side of the inflammatory response, is defined as an active and highly coordinated process that promotes the restoration of immune microenvironment balance and tissue repair. Inflammation resolution involves several key processes, including dampening proinflammatory signaling, specialized proresolving lipid mediator (SPM) production, nonlipid proresolving mediator production, efferocytosis and regulatory T-cell (Treg) induction. In recent years, increasing attention has been given to the effects of inflammation resolution on hypertension. Furthermore, our previous studies reported the antihypertensive effects of SPMs. Therefore, in this review, we aim to summarize and discuss the detailed association between arterial hypertension and inflammation resolution. Additional, the association between gut microbe-mediated immune and hypertension is discussed. This findings suggested that accelerating the resolution of inflammation can have beneficial effects on hypertension and its related organ damage. Exploring novel drug targets by focusing on various pathways involved in accelerating inflammation resolution will contribute to the treatment and control of hypertensive diseases in the future.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China; Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
47
|
Dinakis E, O'Donnell JA, Marques FZ. The gut-immune axis during hypertension and cardiovascular diseases. Acta Physiol (Oxf) 2024; 240:e14193. [PMID: 38899764 DOI: 10.1111/apha.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/04/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
The gut-immune axis is a relatively novel phenomenon that provides mechanistic links between the gut microbiome and the immune system. A growing body of evidence supports it is key in how the gut microbiome contributes to several diseases, including hypertension and cardiovascular diseases (CVDs). Evidence over the past decade supports a causal link of the gut microbiome in hypertension and its complications, including myocardial infarction, atherosclerosis, heart failure, and stroke. Perturbations in gut homeostasis such as dysbiosis (i.e., alterations in gut microbial composition) may trigger immune responses that lead to chronic low-grade inflammation and, ultimately, the development and progression of these conditions. This is unsurprising, as the gut harbors one of the largest numbers of immune cells in the body, yet is a phenomenon not entirely understood in the context of cardiometabolic disorders. In this review, we discuss the role of the gut microbiome, the immune system, and inflammation in the context of hypertension and CVD, and consolidate current evidence of this complex interplay, whilst highlighting gaps in the literature. We focus on diet as one of the major modulators of the gut microbiota, and explain key microbial-derived metabolites (e.g., short-chain fatty acids, trimethylamine N-oxide) as potential mediators of the communication between the gut and peripheral organs such as the heart, arteries, kidneys, and the brain via the immune system. Finally, we explore the dual role of both the gut microbiome and the immune system, and how they work together to not only contribute, but also mitigate hypertension and CVD.
Collapse
Affiliation(s)
- Evany Dinakis
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Liu Y, Fachrul M, Inouye M, Méric G. Harnessing human microbiomes for disease prediction. Trends Microbiol 2024; 32:707-719. [PMID: 38246848 DOI: 10.1016/j.tim.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
The human microbiome has been increasingly recognized as having potential use for disease prediction. Predicting the risk, progression, and severity of diseases holds promise to transform clinical practice, empower patient decisions, and reduce the burden of various common diseases, as has been demonstrated for cardiovascular disease or breast cancer. Combining multiple modifiable and non-modifiable risk factors, including high-dimensional genomic data, has been traditionally favored, but few studies have incorporated the human microbiome into models for predicting the prospective risk of disease. Here, we review research into the use of the human microbiome for disease prediction with a particular focus on prospective studies as well as the modulation and engineering of the microbiome as a therapeutic strategy.
Collapse
Affiliation(s)
- Yang Liu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Muhamad Fachrul
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Human Genomics and Evolution Unit, St Vincent's Institute of Medical Research, Victoria, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK; British Heart Foundation Cambridge Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Guillaume Méric
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Medical Science, Molecular Epidemiology, Uppsala University, Uppsala, Sweden; Department of Cardiovascular Research, Translation, and Implementation, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
49
|
Jama HA, Snelson M, Schutte AE, Muir J, Marques FZ. Recommendations for the Use of Dietary Fiber to Improve Blood Pressure Control. Hypertension 2024; 81:1450-1459. [PMID: 38586958 DOI: 10.1161/hypertensionaha.123.22575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
According to several international, regional, and national guidelines on hypertension, lifestyle interventions are the first-line treatment to lower blood pressure (BP). Although diet is one of the major lifestyle modifications described in hypertension guidelines, dietary fiber is not specified. Suboptimal intake of foods high in fiber, such as in Westernized diets, is a major contributing factor to mortality and morbidity of noncommunicable diseases due to higher BP and cardiovascular disease. In this review, we address this deficiency by examining and advocating for the incorporation of dietary fiber as a key lifestyle modification to manage elevated BP. We explain what dietary fiber is, review the existing literature that supports its use to lower BP and prevent cardiovascular disease, describe the mechanisms involved, propose evidence-based target levels of fiber intake, provide examples of how patients can achieve the recommended targets, and discuss outstanding questions in the field. According to the evidence reviewed here, the minimum daily dietary fiber for adults with hypertension should be >28 g/day for women and >38 g/day for men, with each extra 5 g/day estimated to reduce systolic BP by 2.8 mm Hg and diastolic BP by 2.1 mm Hg. This would support a healthy gut microbiota and the production of gut microbiota-derived metabolites called short-chain fatty acids that lower BP. Awareness about dietary fiber targets and how to achieve them will guide medical teams on better educating patients and empowering them to increase their fiber intake and, as a result, lower their BP and cardiovascular disease risk.
Collapse
Affiliation(s)
- Hamdi A Jama
- Hypertension Research Laboratory, School of Biological Sciences (H.A.J., M.S., F.Z.M.), Monash University, Melbourne, VIC, Australia
| | - Matthew Snelson
- Hypertension Research Laboratory, School of Biological Sciences (H.A.J., M.S., F.Z.M.), Monash University, Melbourne, VIC, Australia
- Victorian Heart Institute (M.S., F.Z.M.), Monash University, Melbourne, VIC, Australia
| | - Aletta E Schutte
- School of Population Health, University of New South Wales, Sydney, Australia (A.E.S.)
- George Institute for Global Health, Sydney, NSW, Australia (A.E.S.)
- Hypertension in Africa Research Team, MRC Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa (A.E.S.)
| | - Jane Muir
- Department of Gastroenterology, School of Translational Medicine (J.M.), Monash University, Melbourne, VIC, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences (H.A.J., M.S., F.Z.M.), Monash University, Melbourne, VIC, Australia
- Victorian Heart Institute (M.S., F.Z.M.), Monash University, Melbourne, VIC, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (F.Z.M.)
| |
Collapse
|
50
|
Pitt B, Diez J. Possible Role of Gut Microbiota Alterations in Myocardial Fibrosis and Burden of Heart Failure in Hypertensive Heart Disease. Hypertension 2024; 81:1467-1476. [PMID: 38716665 DOI: 10.1161/hypertensionaha.124.23089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Epidemiological studies have revealed that hypertensive heart disease is a major risk factor for heart failure, and its heart failure burden is growing rapidly. The need to act in the face of this threat requires first an understanding of the multifactorial origin of hypertensive heart disease and second an exploration of new mechanistic pathways involved in myocardial alterations critically involved in cardiac dysfunction and failure (eg, myocardial interstitial fibrosis). Increasing evidence shows that alterations of gut microbiota composition and function (ie, dysbiosis) leading to changes in microbiota-derived metabolites and impairment of the gut barrier and immune functions may be involved in blood pressure elevation and hypertensive organ damage. In this review, we highlight recent advances in the potential contribution of gut microbiota alterations to myocardial interstitial fibrosis in hypertensive heart disease through blood pressure-dependent and blood pressure-independent mechanisms. Achievements in this field should open a new path for more comprehensive treatment of myocardial interstitial fibrosis in hypertensive heart disease and, thus, for the prevention of heart failure.
Collapse
Affiliation(s)
- Bertram Pitt
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor (B.P.)
| | - Javier Diez
- Department of Cardiovascular Diseases, Center for Applied Medical Research and School of Medicine, University of Navarra, Pamplona, Spain (J.D.)
| |
Collapse
|