1
|
Frank MG. Sleep Phylogeny: Have We Jumped the Shark? Sleep Med Clin 2025; 20:19-24. [PMID: 39894596 DOI: 10.1016/j.jsmc.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Sleep is considered to be ubiquitous in the animal kingdom. Scientists in part believe this because sleep is increasingly defined solely by behavioral measures. This has resulted in an astonishing expansion of species reported to sleep. But have we gone too far? Have scientists jumped the shark? This idiom refers to when an idea has exhausted its core intent and creates ideas that are discordant with its original purpose. In this commentary, I discuss what I see as an emerging problem in how we define sleep and the attendant implications.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, 412 East Spokane Falls Boulevard, Spokane, WA 99202, USA; Gleason Institute for Neuroscience, Washington State University, Spokane, WA, USA.
| |
Collapse
|
2
|
Mortlock E, English H, Börger L, Matas D, Koren L, Capellini I, Jennings D. Drivers of individual differences in the sleep behaviour of fallow deer neonates. J Anim Ecol 2025. [PMID: 39891496 DOI: 10.1111/1365-2656.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
Inter-individual differences are necessary for selection to act, while plasticity (intra-individual variation) may buffer against selection. Sleep is a critical self-maintenance behaviour but, unlike most behaviours, the causes and consequences of its inter- and intra-individual variation in wild animals is poorly understood, particularly in neonates where sleep plays a key role in development. We have shown previously that free-ranging neonate fallow deer (Dama dama) differ in sleep during the first few weeks of life. Here, we test whether individual variability in sleep is organised systematically across the population, and whether these individual differences are associated with chronic stress measured using hair cortisol, or the timing of birth. Four dimensions of sleep behaviour (total sleep time, sleep fragmentation, sleep quality, and sleep distribution over 24-h) were quantified using state-of-the-art triaxial accelerometers. We then used a multivariate mixed-effects model in a Bayesian framework to evaluate covariation between multiple dimensions of sleep behaviour, and quantify the relative importance of chronic stress and the timing of birth, while accounting for the confounding effects of environmental conditions and age. We found that the timing of birth and chronic stress were not associated with changes in sleep between individuals. While both total sleep time and the number of bouts per day declined with age, their rate of development covaried, but no other sleep dimensions covaried. Our results represent an in-depth analysis of natural variation in sleep, and show that individual differences in four aspects of sleep architecture in free-living fallow deer fawns are strong but independent of one another and unrelated to chronic stress or the timing of birth. We suggest that covariation between sleep dimensions might emerge later in life and effects of cortisol and birth timing might be very short and transient.
Collapse
Affiliation(s)
- Euan Mortlock
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Holly English
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Luca Börger
- Department of Biosciences, Swansea University, Swansea, UK
| | - Devorah Matas
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Lee Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Domhnall Jennings
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
3
|
Ren YL, Chu WW, Yang XW, Xin L, Gao JX, Yan GZ, Wang C, Chen YN, Xie JF, Spruyt K, Lin JS, Hou YP, Shao YF. Lavender improves sleep through olfactory perception and GABAergic neurons of the central amygdala. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118942. [PMID: 39426576 DOI: 10.1016/j.jep.2024.118942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use of lavender as sleep aid or hypnotic agent can be traced back as early as ancient Romans and Greeks. Yet, objective experimental data on whether and how lavender enhances sleep duration or/and sleep quality remain lacking. AIM OF THE STUDY We aimed to characterize the sleep-wake regulating effects of lavender in the mouse and to demonstrate the brain targets and neural circuits involved. MATERIALS AND METHODS A self-made precise odor delivery system combined with chronic polysomnographic recordings was employed to assess the sleep-wake effects of inhalation with lavender essential oil (LEO, extracted from lavender) and its different constituents during the light and dark phases in free-moving C57BL/6J mice. Neuroviral labeling, in situ hybridization and pharmacogenetics were combined to identify the neural circuits and targets involved. Finally, an insomniac model of DL-4-Chlorophenylalanine (PCPA)-treated mice was established to examine the sleep-inducing potential of LEO. RESULTS We found that inhalation of LEO with a concentration at 25.0% during the light (inactive) phase significantly shortened the latency to non-rapid eye movement (NREM) sleep, increased the total amount of NREM sleep at the expense of wakefulness (W), and enhanced cortical EEG slow wave activities, notably delta power spectra density. We further identified linalool, d-limonene, 1,8-cineole, linalyl acetate and terpinene-4-ol as the major effective sleep-promoting monomer components. Importantly, we found that LEO no longer produced any of the above sleep-promoting effect following either nasal injection of zinc sulfate which interrupts the olfactory pathway, or pharmacogenetics silencing of central amygdala GABAergic neurons. Finally, LEO reestablished NREM sleep with short latency in PCPA-treated insomniac mice, effects comparable with those induced by a potent sedative diazepam. CONCLUSIONS We have characterized the quantitative and qualitative sleep-promoting effects of LEO and its effective components via the olfactory pathway and central amygdala GABA neuronal targets. The hypnotic property of LEO is reinforced by its ability to restore sleep in insomnia. Our study thus establishes a neurobiological basis for aromatherapy of sleep disorders using lavender.
Collapse
Affiliation(s)
- Yan-Li Ren
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wei-Wei Chu
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xing-Wen Yang
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Le Xin
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Department of Anesthesiology, Anshan Central Hospital, Anshan, 114032, China
| | - Jin-Xian Gao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Department of Pharmacy, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Gui-Zhong Yan
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Can Wang
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; School of Medical Imaging, Shandong Second Medical University, Weifang, 261053, China
| | - Yu-Nong Chen
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Department of Pharmacology, Xi'an Medical University, Xi'an, 710021, China
| | - Jun-Fan Xie
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Karen Spruyt
- NeuroDiderot-INSERM, Université de Paris, Paris, 75019, France
| | - Jian-Sheng Lin
- Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM U1028-CNRS UMR 5292, University Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier-Neurocampus Michel Jouvet, CEDEX, Bron, 69675, France
| | - Yi-Ping Hou
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yu-Feng Shao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Pandi-Perumal SR, Saravanan KM, Paul S, Spence DW, Chidambaram SB. Unraveling the Mysteries of Sleep: Exploring Phylogenomic Sleep Signals in the Recently Characterized Archaeal Phylum Lokiarchaeota near Loki's Castle. Int J Mol Sci 2024; 26:60. [PMID: 39795919 PMCID: PMC11719702 DOI: 10.3390/ijms26010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Sleep is a universally conserved behavior whose origin and evolutionary purpose are uncertain. Using phylogenomics, this article investigates the evolutionary foundations of sleep from a never before used perspective. More specifically, it identifies orthologs of human sleep-related genes in the Lokiarchaeota of the Asgard superphylum and examines their functional role. Our findings indicate that a conserved suite of genes associated with energy metabolism and cellular repair is involved, thus suggesting that sleep plays a primordial role in cellular maintenance. The data cited lend credence to the idea that sleep improves organismal fitness across evolutionary time by acting as a restorative process. Notably, our approach demonstrates that phylogenomics is more useful than standard phylogenetics for clarifying common evolutionary traits. By offering insight into the evolutionary history of sleep and putting forth a novel model framework for sleep research across taxa, these findings contribute to our growing understanding of the molecular foundation of sleep. This study lays the groundwork for further investigations into the importance of sleep in various organisms. Such investigations could have consequences for improving human health and more generally could provide a deeper comprehension of the fundamental processes of life.
Collapse
Affiliation(s)
- Seithikurippu R. Pandi-Perumal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara 144411, Punjab, India
| | | | - Sayan Paul
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | | | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology & Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Special Interest Group—Brain, Behaviour and Cognitive Neurosciences, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
5
|
Martínez-Magaña CJ, Murbartián J. Estrogen receptor α regulates the IKKs/NF-kB activity involved in the development of mechanical allodynia induced by REM sleep deprivation in rats. Brain Res 2024; 1845:149269. [PMID: 39384127 DOI: 10.1016/j.brainres.2024.149269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Several signaling pathways that converge in NF-kB activation have been linked to developing and maintaining different types of pathological pain. In addition, some mechanisms implied in the establishment of chronic pain have been demonstrated to have a sex-dependent correlation. This study aimed to determine if the IKKs/NF-kB signaling pathway is involved in establishing REM sleep deprivation (REMSD) induced mechanical allodynia in rats and its possible regulation depending on estradiol and estrogen receptors. Intrathecal administration of BMS-345541 or minocycline, two drugs that reduce the IKKs/NF-kB activity, avoided the development of mechanical allodynia in female but not in male rats subjected to 48 h of REMSD. Ovariectomy in female rats abolished the effect of BMS-345541 and minocycline. Meanwhile, the 17-β-estradiol restitution restored it. Intrathecal administration of MPP, a selective ERα antagonist, but not PHTPP, a selective ERβ antagonist, avoided the effect of BMS-345541 in female rats without hormonal manipulation. In addition, the transient run-down of ERα in female rats abolished the effect of BMS-345541. All data suggest an important role of ERα as a regulator of the IKKs/NF-kB activity. REMSD increased the ERα protein expression in the dorsal root ganglia and the dorsal spinal cord in females but not in male rats. Interestingly, ERα activation or ERα overexpression allowed the effect of BMS-345541 in male rats. Data suggest an important regulatory role of ERα in the IKKs/NF-kB activity on establishing mechanical allodynia induced by REMSD in female rats.
Collapse
Affiliation(s)
| | - Janet Murbartián
- Pharmacobiology Department, Cinvestav, South Campus, Mexico City, Mexico.
| |
Collapse
|
6
|
Inami S, Koh K. Sleep induced by mechanosensory stimulation provides cognitive and health benefits in Drosophila. Sleep 2024; 47:zsae226. [PMID: 39331490 DOI: 10.1093/sleep/zsae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/08/2024] [Indexed: 09/29/2024] Open
Abstract
STUDY OBJECTIVES Sleep is a complex phenomenon regulated by various factors, including sensory input. Anecdotal observations have suggested that gentle rocking helps babies fall asleep, and experimental studies have verified that rocking promotes sleep in both humans and mice. Recent studies have expanded this understanding, demonstrating that gentle vibration also induces sleep in Drosophila. Natural sleep serves multiple functions, including learning and memory, synaptic downscaling, and reduction of harmful substances associated with neurodegenerative diseases. Here, we investigated whether vibration-induced sleep (VIS) provides similar cognitive and health benefits in Drosophila. METHODS We administered gentle vibration to flies that slept very little due to a forced activation of wake-promoting neurons and investigated how the vibration influenced learning and memory in the courtship conditioning paradigm. Additionally, we examined the effects of VIS on synaptic downscaling by counting synaptic varicosities of select neurons. Finally, we determined whether vibration could induce sleep in Drosophila models of Alzheimer's disease (AD) and suppress the accumulation of Amyloid β (Aβ) and Tubulin Associated Unit (TAU). RESULTS VIS enhanced performance in a courtship conditioning paradigm and reduced the number of synaptic varicosities in select neurons. Moreover, vibration improved sleep in Drosophila models of AD, reducing Aβ and TAU levels. CONCLUSIONS Mechanosensory stimulation offers a promising noninvasive avenue for enhancing sleep, potentially providing associated cognitive and health benefits.
Collapse
Affiliation(s)
- Sho Inami
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, USA
| | - Kyunghee Koh
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
7
|
Rößler DC, Klein BA. More sleep for behavioral ecologists. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:1147-1156. [PMID: 39034483 DOI: 10.1002/jez.2856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/23/2024]
Abstract
From jellyfish to parrot fish and roundworms to homeotherms, all animals are thought to sleep. Despite its presumed universality, sleep is a poorly understood behavior, varying significantly in its expression across, and even within, animal lineages. There is still no consensus about the origin, architecture, ecology of sleep, or even its defining characters. The field of behavioral ecology has the potential to extend our knowledge of sleep behavior to nontraditional models and in ecologically relevant settings. Here, we highlight current efforts in diversifying the field to generate stronger synergies between historically human-focused sleep research and behavioral ecology. Our primary aim is for behavioral ecology to enhance sleep research by contributing crucial observations as well as by creating novel comparative and evolutionary frameworks. At the same time, sleep research can enhance behavioral ecology by exposing the relevance of sleep to wakeful behaviors. Nikolaas Tinbergen's four levels of analysis have served as a foundation for comprehensively addressing questions in behavior, and we introduce some Tinbergian approaches to examine the interplay between sleep and wake under ecologically meaningful conditions.
Collapse
Affiliation(s)
- Daniela C Rößler
- Department of Biology, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
- Department of Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Barrett A Klein
- Biology Department, University of Wisconsin-La Crosse, La Crosse, USA
| |
Collapse
|
8
|
Gallman K, Rastogi A, North O, O'Gorman M, Hutton P, Lloyd E, Warren WC, Kowalko JE, Duboue ER, Rohner N, Keene AC. Postprandial Sleep in Short-Sleeping Mexican Cavefish. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:1084-1096. [PMID: 39539086 PMCID: PMC11579814 DOI: 10.1002/jez.2880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Interactions between sleep and feeding behaviors are critical for adaptive fitness. Diverse species suppress sleep when food is scarce to increase the time spent foraging. Postprandial sleep, an increase in sleep time following a feeding event, has been documented in vertebrate and invertebrate animals. While interactions between sleep and feeding appear to be highly conserved, the evolution of postprandial sleep in response to changes in food availability remains poorly understood. Multiple populations of the Mexican cavefish, Astyanax mexicanus, have independently evolved sleep loss and increased food consumption compared to surface-dwelling fish of the same species, providing the opportunity to investigate the evolution of interactions between sleep and feeding. Here, we investigate the effects of feeding on sleep in larval and adult surface fish, and in two parallelly evolved cave populations of A. mexicanus. Larval surface and cave populations of A. mexicanus increase sleep immediately following a meal, providing the first evidence of postprandial sleep in a fish model. The amount of sleep was not correlated to meal size and occurred independently of feeding time. In contrast to larvae, postprandial sleep was not detected in adult surface or cavefish, which can survive for months without food. Together, these findings reveal that postprandial sleep is present in multiple short-sleeping populations of cavefish, suggesting sleep-feeding interactions are retained despite the evolution of sleep loss. These findings raise the possibility that postprandial sleep is critical for energy conservation and survival in larvae that are highly sensitive to food deprivation.
Collapse
Affiliation(s)
- Kathryn Gallman
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Aakriti Rastogi
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Owen North
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Morgan O'Gorman
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Pierce Hutton
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Evan Lloyd
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | | | - Johanna E. Kowalko
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Erik R. Duboue
- Harriet Wilkes Honors CollegeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Nicolas Rohner
- Stowers Institute for Medical ResearchKansas CityMissouriUSA
| | - Alex C. Keene
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
9
|
de la Puente-Aldea J, Lopez-Llanos O, Horrillo D, Marcos-Sanchez H, Sanz-Ballesteros S, Franco R, Jaisser F, Senovilla L, Palacios-Ramirez R. Mineralocorticoid Receptor and Sleep Quality in Chronic Kidney Disease. Int J Mol Sci 2024; 25:12320. [PMID: 39596384 PMCID: PMC11594958 DOI: 10.3390/ijms252212320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The classical function of the mineralocorticoid receptor (MR) is to maintain electrolytic homeostasis and control extracellular volume and blood pressure. The MR is expressed in the central nervous system (CNS) and is involved in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis as well as sleep physiology, playing a role in the non-rapid eye movement (NREM) phase of sleep. Some patients with psychiatric disorders have very poor sleep quality, and a relationship between MR dysregulation and this disorder has been found in them. In addition, the MR is involved in the regulation of the renal peripheral clock. One of the most common comorbidities observed in patients with chronic kidney disease (CKD) is poor sleep quality. Patients with CKD experience sleep disturbances, including reduced sleep duration, sleep fragmentation, and insomnia. To date, no studies have specifically investigated the relationship between MR activation and CKD-associated sleep disturbances. However, in this review, we analyzed the environment that occurs in CKD and proposed two MR-related mechanisms that may be responsible for these sleep disturbances: the circadian clock disruption and the high levels of MR agonist observed in CKD.
Collapse
Affiliation(s)
- Juan de la Puente-Aldea
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid—CSIC, 47003 Valladolid, Spain; (J.d.l.P.-A.); (O.L.-L.); (L.S.)
| | - Oscar Lopez-Llanos
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid—CSIC, 47003 Valladolid, Spain; (J.d.l.P.-A.); (O.L.-L.); (L.S.)
| | - Daniel Horrillo
- Facultad de ciencias de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcon, Spain; (D.H.); (R.F.)
| | | | | | - Raquel Franco
- Facultad de ciencias de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcon, Spain; (D.H.); (R.F.)
| | - Frederic Jaisser
- INSERM U1166, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, 75013 Paris, France;
- INSERM UMR 1116, Centre d’Investigations Cliniques-Plurithématique 1433, Université de Lorraine, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, 54500 Nancy, France
| | - Laura Senovilla
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid—CSIC, 47003 Valladolid, Spain; (J.d.l.P.-A.); (O.L.-L.); (L.S.)
- INSERM U1138, Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Sorbonne Université, Institut Universitaire de France, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| | - Roberto Palacios-Ramirez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid—CSIC, 47003 Valladolid, Spain; (J.d.l.P.-A.); (O.L.-L.); (L.S.)
| |
Collapse
|
10
|
Loftus JC, Harel R, Ashbury AM, Núñez CL, Omondi GP, Muttinda M, Matsumoto-Oda A, Isbell LA, Crofoot MC. Sharing sleeping sites disrupts sleep but catalyses social tolerance and coordination between groups. Proc Biol Sci 2024; 291:20241330. [PMID: 39501885 PMCID: PMC11538986 DOI: 10.1098/rspb.2024.1330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024] Open
Abstract
Sleeping refuges-like other important, scarce and shareable resources-can serve as hotspots for animal interaction, shaping patterns of attraction and avoidance. Where sleeping sites are shared, individuals balance the opportunity for interaction with new social partners against their need for sleep. By expanding the network of connections within animal populations, such night-time social interactions may have important, yet largely unexplored, impacts on critical behavioural and ecological processes. Here, using GPS and tri-axial accelerometry to track the movements and sleeping patterns of wild olive baboon groups (Papio anubis), we show that sharing sleeping sites disrupts sleep but appears to catalyse social tolerance and coordinated movement between groups. Individual baboons experienced shorter and more fragmented sleep when groups shared a sleeping site. After sharing sleeping sites, however, otherwise independent groups showed a strong pattern of spatial attraction, moving cohesively for up to 3 days. Our findings highlight the influence of night-time social interactions on daytime social relationships and demonstrate how a population's reliance on, and need to share, limiting resources can drive the emergence of intergroup tolerance.
Collapse
Affiliation(s)
- J. Carter Loftus
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Radolfzell78467, Germany
- Department of Biology, University of Konstanz, Konstanz78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz78457, Germany
- Department of Anthropology, University of California, Davis, CA95616, USA
- Animal Behavior Graduate Group, University of California, Davis, CA95616, USA
- Mpala Research Centre, NanyukiP.O. Box 555 - 10400, Kenya
| | - Roi Harel
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Radolfzell78467, Germany
- Department of Biology, University of Konstanz, Konstanz78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz78457, Germany
- Department of Anthropology, University of California, Davis, CA95616, USA
- Mpala Research Centre, NanyukiP.O. Box 555 - 10400, Kenya
| | - Alison M. Ashbury
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Radolfzell78467, Germany
- Department of Biology, University of Konstanz, Konstanz78457, Germany
| | - Chase L. Núñez
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Radolfzell78467, Germany
- Department of Biology, University of Konstanz, Konstanz78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz78457, Germany
- Mpala Research Centre, NanyukiP.O. Box 555 - 10400, Kenya
| | - George P. Omondi
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN55108, USA
- Department of Clinical Studies, Animal Health Innovation Laboratory, University of Nairobi, NairobiP.O. Box 30197-00100, Kenya
| | - Mathew Muttinda
- Department of Veterinary and Capture Services, Kenya Wildlife Service, NairobiP.O. Box 40241 - 00100, Kenya
| | - Akiko Matsumoto-Oda
- Mpala Research Centre, NanyukiP.O. Box 555 - 10400, Kenya
- Graduate School of Tourism Sciences, University of the Ryukyus, Okinawa903-0213, Japan
| | - Lynne A. Isbell
- Department of Anthropology, University of California, Davis, CA95616, USA
- Animal Behavior Graduate Group, University of California, Davis, CA95616, USA
- Mpala Research Centre, NanyukiP.O. Box 555 - 10400, Kenya
| | - Margaret C. Crofoot
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Radolfzell78467, Germany
- Department of Biology, University of Konstanz, Konstanz78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz78457, Germany
- Department of Anthropology, University of California, Davis, CA95616, USA
- Animal Behavior Graduate Group, University of California, Davis, CA95616, USA
- Mpala Research Centre, NanyukiP.O. Box 555 - 10400, Kenya
| |
Collapse
|
11
|
Flores CC, Pasetto NA, Wang H, Dimitrov AG, Davis JF, Jiang Z, Davis CJ, Gerstner JR. Sleep and diurnal alternative polyadenylation sites associated with human APA-linked brain disorders. NPJ BIOLOGICAL TIMING AND SLEEP 2024; 1:11. [PMID: 39493890 PMCID: PMC11530375 DOI: 10.1038/s44323-024-00012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024]
Abstract
Disruption of sleep and circadian rhythms are a comorbid feature of many pathologies, and can negatively influence many health conditions, including neurodegenerative disease, metabolic illness, cancer, and various neurological disorders. Genetic association studies linking sleep and circadian disturbances with disease susceptibility have mainly focused on changes in gene expression due to mutations, such as single-nucleotide polymorphisms. The interaction between sleep and/or circadian rhythms with the use of Alternative Polyadenylation (APA) has been largely undescribed, particularly in the context of other disorders. APA generates transcript isoforms by utilizing various polyadenylation sites (PASs) from the same gene affecting its mRNA translation, stability, localization, and subsequent function. Here we identified unique APAs expressed in rat brain over time-of-day, immediately following sleep deprivation, and the subsequent recovery period. From these data, we performed a secondary analysis of these sleep- or time-of-day associated PASs with recently described APA-linked human brain disorder susceptibility genes.
Collapse
Affiliation(s)
- Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA USA
| | - Nickolas A. Pasetto
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA USA
| | - Hongyang Wang
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA USA
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Alexander G. Dimitrov
- Department of Mathematics and Statistics, College of Arts and Sciences, Washington State University, Vancouver, WA USA
| | - Jon F. Davis
- Department of Integrative Physiology and Neuroscience, Pullman, WA USA
- Integrated Physiology Research, Novo Nordisk, Lexington, MA USA
| | - Zhihua Jiang
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA USA
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA USA
- Department of Integrative Physiology and Neuroscience, Pullman, WA USA
- Sleep and Performance Research Center, Washington State University, Spokane, WA USA
- Steve Gleason Institute for Neuroscience, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA USA
| | - Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA USA
- Department of Integrative Physiology and Neuroscience, Pullman, WA USA
- Sleep and Performance Research Center, Washington State University, Spokane, WA USA
- Steve Gleason Institute for Neuroscience, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA USA
| |
Collapse
|
12
|
Wei J, Xiao C, Zhang GW, Shen L, Tao HW, Zhang LI. A distributed auditory network mediated by pontine central gray underlies ultra-fast awakening in response to alerting sounds. Curr Biol 2024; 34:4597-4611.e5. [PMID: 39265569 PMCID: PMC11521200 DOI: 10.1016/j.cub.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/12/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Sleeping animals can be woken up rapidly by external threat signals, which is an essential defense mechanism for survival. However, neuronal circuits underlying the fast transmission of sensory signals for this process remain unclear. Here, we report in mice that alerting sound can induce rapid awakening within hundreds of milliseconds and that glutamatergic neurons in the pontine central gray (PCG) play an important role in this process. These neurons exhibit higher sensitivity to auditory stimuli in sleep than wakefulness. Suppressing these neurons results in reduced sound-induced awakening and increased sleep in intrinsic sleep/wake cycles, whereas their activation induces ultra-fast awakening from sleep and accelerates awakening from anesthesia. Additionally, the sound-induced awakening can be attributed to the propagation of auditory signals from the PCG to multiple arousal-related regions, including the mediodorsal thalamus, lateral hypothalamus, and ventral tegmental area. Thus, the PCG serves as an essential distribution center to orchestrate a global auditory network to promote rapid awakening.
Collapse
Affiliation(s)
- Jinxing Wei
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cuiyu Xiao
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Guang-Wei Zhang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li Shen
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
13
|
Jung JH, Kim J, Akber U, Lee NY, Baek JW, Jung J, Park M, Kang J, Jeon S, Park CS, Kim T. Enhanced homeostatic sleep response and decreased neurodegenerative proteins in cereblon knock-out mice. Commun Biol 2024; 7:1218. [PMID: 39349747 PMCID: PMC11442454 DOI: 10.1038/s42003-024-06879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Energy homeostasis and sleep have a bidirectional relationship. Cereblon (CRBN) regulates energy levels by ubiquitinating the AMP-activated protein kinase(AMPK), an energy sensor. However, whether CRBN participates in sleep is unclear. Here, we examine sleep-wake patterns in Crbn+/+ and Crbn-/- mice during 24-h baseline, 6-h sleep deprivation (SD), and following 6-h recovery sleep (RS). At baseline, overall sleep patterns are similar between genotypes. However, SD decreases CRBN expression in Crbn+/+ mice and increases phospho-Tau, phospho-α-synuclein, DNAJA1 (DJ2), and DNAJB1 (DJ1) in both genotypes, with Crbn-/- mice showing a lesser extent of increase in p-Tau and p-α-synuclein and a higher level of heat shock protein 70 (HSP70), DJ2, and DJ1. During RS, Crbn-/- mice show increased slow-wave activity in the low-delta range (0.5-2.5 Hz), suggesting higher homeostatic sleep propensity associated with AMPK hyperactivation. By illuminating the role of CRBN in regulating sleep-wake behaviors through AMPK, we suggest CRBN as a potential therapeutic target for managing sleep disorders and preventing neurodegeneration.
Collapse
Affiliation(s)
- Jun-Hyung Jung
- School of Life Sciences, Gwangju Institute Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jinhong Kim
- Department of Biomedical Science and Engineering, GIST, Gwangju, Republic of Korea
| | - Uroos Akber
- School of Life Sciences, Gwangju Institute Science and Technology (GIST), Gwangju, Republic of Korea
| | - Na Young Lee
- School of Life Sciences, Gwangju Institute Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jeong-Won Baek
- School of Life Sciences, Gwangju Institute Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jieun Jung
- Department of Biomedical Science and Engineering, GIST, Gwangju, Republic of Korea
| | - Mincheol Park
- Department of Biomedical Science and Engineering, GIST, Gwangju, Republic of Korea
| | - Jiseung Kang
- Department of Biomedical Science and Engineering, GIST, Gwangju, Republic of Korea
| | - Seungje Jeon
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chul-Seung Park
- School of Life Sciences, Gwangju Institute Science and Technology (GIST), Gwangju, Republic of Korea.
| | - Tae Kim
- Department of Biomedical Science and Engineering, GIST, Gwangju, Republic of Korea.
| |
Collapse
|
14
|
Sawada T, Iino Y, Yoshida K, Okazaki H, Nomura S, Shimizu C, Arima T, Juichi M, Zhou S, Kurabayashi N, Sakurai T, Yagishita S, Yanagisawa M, Toyoizumi T, Kasai H, Shi S. Prefrontal synaptic regulation of homeostatic sleep pressure revealed through synaptic chemogenetics. Science 2024; 385:1459-1465. [PMID: 39325885 DOI: 10.1126/science.adl3043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/28/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Sleep is regulated by homeostatic processes, yet the biological basis of sleep pressure that accumulates during wakefulness, triggers sleep, and dissipates during sleep remains elusive. We explored a causal relationship between cellular synaptic strength and electroencephalography delta power indicating macro-level sleep pressure by developing a theoretical framework and a molecular tool to manipulate synaptic strength. The mathematical model predicted that increased synaptic strength promotes the neuronal "down state" and raises the delta power. Our molecular tool (synapse-targeted chemically induced translocation of Kalirin-7, SYNCit-K), which induces dendritic spine enlargement and synaptic potentiation through chemically induced translocation of protein Kalirin-7, demonstrated that synaptic potentiation of excitatory neurons in the prefrontal cortex (PFC) increases nonrapid eye movement sleep amounts and delta power. Thus, synaptic strength of PFC excitatory neurons dictates sleep pressure in mammals.
Collapse
Affiliation(s)
- Takeshi Sawada
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Iino
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kensuke Yoshida
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Hitoshi Okazaki
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinnosuke Nomura
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Chika Shimizu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomoki Arima
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Motoki Juichi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Siqi Zhou
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Molecular Behavioral Physiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sho Yagishita
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Taro Toyoizumi
- RIKEN Center for Brain Science, Wako, Saitama, Japan
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Haruo Kasai
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shoi Shi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
15
|
Pourdavood P, Jacob M. EEG spectral attractors identify a geometric core of brain dynamics. PATTERNS (NEW YORK, N.Y.) 2024; 5:101025. [PMID: 39568645 PMCID: PMC11573925 DOI: 10.1016/j.patter.2024.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/28/2024] [Accepted: 06/19/2024] [Indexed: 11/22/2024]
Abstract
Multidimensional reconstruction of brain attractors from electroencephalography (EEG) data enables the analysis of geometric complexity and interactions between signals in state space. Utilizing resting-state data from young and older adults, we characterize periodic (traditional frequency bands) and aperiodic (broadband exponent) attractors according to their geometric complexity and shared dynamical signatures, which we refer to as a geometric cross-parameter coupling. Alpha and aperiodic attractors are the least complex, and their global shapes are shared among all other frequency bands, affording alpha and aperiodic greater predictive power. Older adults show lower geometric complexity but greater coupling, resulting from dedifferentiation of gamma activity. The form and content of resting-state thoughts were further associated with the complexity of attractor dynamics. These findings support a process-developmental perspective on the brain's dynamic core, whereby more complex information differentiates out of an integrative and global geometric core.
Collapse
Affiliation(s)
- Parham Pourdavood
- Mental Health Service, San Francisco VA Medical Center, 4150 Clement St., San Francisco, CA 94121, USA
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Michael Jacob
- Mental Health Service, San Francisco VA Medical Center, 4150 Clement St., San Francisco, CA 94121, USA
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Iannacone MJ, Um P, Grubbs JI, van der Linden AM, Raizen DM. Quiescence Enhances Survival during Viral Infection in Caenorhabditis elegans. J Neurosci 2024; 44:e1700222024. [PMID: 39060176 PMCID: PMC11358607 DOI: 10.1523/jneurosci.1700-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Infection causes reduced activity, anorexia, and sleep, which are components of the phylogenetically conserved but poorly understood sickness behavior. We developed a Caenorhabditis elegans model to study quiescence during chronic infection, using infection with the Orsay virus. The Orsay virus infects intestinal cells yet strongly affects behavior, indicating gut-to-nervous system communication. Infection quiescence has the sleep properties of reduced responsiveness and rapid reversibility. Both the ALA and RIS neurons regulate virus-induced quiescence though ALA plays a more prominent role. Quiescence-defective animals have decreased survival when infected, indicating a benefit of quiescence during chronic infectious disease. The survival benefit of quiescence is not explained by a difference in viral load, indicating that it improves resilience rather than resistance to infection. Orsay infection is associated with a decrease in ATP levels, and this decrease is more severe in quiescence-defective animals. We propose that quiescence preserves energetic resources by reducing energy expenditures and/or by increasing extraction of energy from nutrients. This model presents an opportunity to explore the role of sleep and fatigue in chronic infectious illness.
Collapse
Affiliation(s)
- Michael J Iannacone
- Department of Neurology, and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Paul Um
- Department of Neurology, and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jeremy I Grubbs
- Department of Biology, University of Nevada, Reno, Nevada 89557
| | | | - David M Raizen
- Department of Neurology, and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
17
|
Wang Y, Song Z, Han Q, Luo F, Jiang C, Zhang Z, Wang N, Zou N, Liu G, Long M, Liu H, Xiao Q, Yue F, Xia J, He C, Hu Z, Ren S. Melatonin targets the paraventricular thalamus to promote non-rapid eye movement sleep in C3H/HeJ mice. Curr Biol 2024; 34:3792-3803.e5. [PMID: 39096908 DOI: 10.1016/j.cub.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 08/05/2024]
Abstract
Melatonin (MLT) is an important circadian signal for sleep regulation, but the neural circuitries underlying the sleep-promoting effects of MLT are poorly understood. The paraventricular thalamus (PVT) is a critical thalamic area for wakefulness control and expresses MLT receptors, raising a possibility that PVT neurons may mediate the sleep-promoting effects of MLT. Here, we found that MLT receptors were densely expressed on PVT neurons and exhibited circadian-dependent variations in C3H/HeJ mice. Application of exogenous MLT decreased the excitability of PVT neurons, resulting in hyperpolarization of membrane potential and reduction of action potential firing. MLT also inhibited the spontaneous activity of PVT neurons at both population and single-neuron levels in freely behaving mice. Furthermore, pharmacological manipulations revealed that local infusion of exogeneous MLT into the PVT promoted non-rapid eye movement (NREM) sleep and increased NREM sleep duration, whereas MLT receptor antagonists decreased NREM sleep. Moreover, we found that selectively knocking down endogenous MLT receptors in the PVT decreased NREM sleep and correspondingly increased wakefulness, with particular changes shortly after the onset of the dark or light phase. Taken together, these results demonstrate that PVT is an important target of MLT for promoting NREM sleep.
Collapse
Affiliation(s)
- Yaling Wang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| | - Zhenbo Song
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Qi Han
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Fenlan Luo
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Chenggang Jiang
- Department of Medical Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Zehui Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Na Wang
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Nan Zou
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Guoying Liu
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Meiling Long
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hanshu Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qin Xiao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Faguo Yue
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Chongqing 402760, China
| | - Jianxia Xia
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Chao He
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zhian Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| | - Shuancheng Ren
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
18
|
Flores CC, Pasetto NA, Wang H, Dimitrov AG, Davis JF, Jiang Z, Davis CJ, Gerstner JR. Sleep and diurnal alternative polyadenylation sites associated with human APA-linked brain disorders. RESEARCH SQUARE 2024:rs.3.rs-4707772. [PMID: 39149473 PMCID: PMC11326403 DOI: 10.21203/rs.3.rs-4707772/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Disruption of sleep and circadian rhythms are a comorbid feature of many pathologies, and can negatively influence many health conditions, including neurodegenerative disease, metabolic illness, cancer, and various neurological disorders. Genetic association studies linking sleep and circadian disturbances with disease susceptibility have mainly focused on changes in gene expression due to mutations, such as single-nucleotide polymorphisms. The interaction between sleep and/or circadian rhythms with the use of Alternative Polyadenylation (APA) has been largely undescribed, particularly in the context of other disorders. APA is a process that generates various transcript isoforms of the same gene affecting its mRNA translation, stability, localization, and subsequent function. Here we identified unique APAs expressed in rat brain over time-of-day, immediately following sleep deprivation, and the subsequent recovery period. From these data, we performed a secondary analysis of these sleep- or time-of-day associated PASs with recently described APA-linked human brain disorder susceptibility genes.
Collapse
|
19
|
Chaturvedi R, Emery P. Fly into tranquility: GABA's role in Drosophila sleep. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101219. [PMID: 38848811 PMCID: PMC11290982 DOI: 10.1016/j.cois.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
Sleep is conserved across the animal kingdom, and Drosophila melanogaster is a prime model to understand its intricate circadian and homeostatic control. GABA (gamma-aminobutyric acid), the brain's main inhibitory neurotransmitter, plays a central role in sleep. This review delves into GABA's complex mechanisms of actions within Drosophila's sleep-regulating neural networks. We discuss how GABA promotes sleep, both by inhibiting circadian arousal neurons and by being a key neurotransmitter in sleep homeostatic circuits. GABA's impact on sleep is modulated by glia through astrocytic GABA recapture and metabolism. Interestingly, GABA can be coexpressed with other neurotransmitters in sleep-regulating neurons, which likely contributes to context-based sleep plasticity.
Collapse
Affiliation(s)
- Ratna Chaturvedi
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
20
|
Inami S, Koh K. Sleep induced by mechanosensory stimulation provides cognitive and health benefits in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602891. [PMID: 39026689 PMCID: PMC11257551 DOI: 10.1101/2024.07.10.602891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Study Objectives Sleep is a complex phenomenon regulated by various factors, including sensory input. Anecdotal observations have suggested that gentle rocking helps babies fall asleep, and experimental studies have verified that rocking promotes sleep in both humans and mice. Recent studies have expanded this understanding, demonstrating that gentle vibration also induces sleep in Drosophila. Natural sleep serves multiple functions, including learning and memory, synaptic downscaling, and clearance of harmful substances associated with neurodegenerative diseases. Here, we investigated whether vibration-induced sleep provides similar cognitive and health benefits in Drosophila. Methods We administered gentle vibration to flies that slept very little due to a forced activation of wake-promoting neurons and investigated how the vibration influenced learning and memory in the courtship conditioning paradigm. Additionally, we examined the effects of VIS on synaptic downscaling by counting synapse numbers of select neurons. Finally, we determined whether vibration could induce sleep in Drosophila models of Alzheimer's disease (AD) and promote the clearance of Amyloid b (Ab) and Tubulin Associated Unit (TAU). Results Vibration-induced sleep enhanced performance in a courtship conditioning paradigm and reduced the number of synapses in select neurons. Moreover, vibration improved sleep in Drosophila models of AD, promoting the clearance of Ab and TAU. Conclusions Mechanosensory stimulation offers a promising non-invasive avenue for enhancing sleep, potentially providing associated cognitive and health benefits.
Collapse
Affiliation(s)
- Sho Inami
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University
| | - Kyunghee Koh
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University
| |
Collapse
|
21
|
Gallman K, Rastogi A, North O, O'Gorman M, Hutton P, Lloyd E, Warren W, Kowalko JE, Duboue ER, Rohner N, Keene AC. Postprandial sleep in short-sleeping Mexican cavefish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.602003. [PMID: 39005273 PMCID: PMC11244998 DOI: 10.1101/2024.07.03.602003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Interaction between sleep and feeding behaviors are critical for adaptive fitness. Diverse species suppress sleep when food is scarce to increase the time spent foraging. Post-prandial sleep, an increase in sleep time following a feeding event, has been documented in vertebrate and invertebrate animals. While interactions between sleep and feeding appear to be highly conserved, the evolution of postprandial sleep in response to changes in food availability remains poorly understood. Multiple populations of the Mexican cavefish, Astyanax mexicanus, have independently evolved sleep loss and increased food consumption compared to surface-dwelling fish of the same species, providing the opportunity to investigate the evolution of interactions between sleep and feeding. Here, we investigate effects of feeding on sleep in larval and adult surface fish, and two parallelly evolved cave populations of A. mexicanus. Larval surface and cave populations of A. mexicanus increase sleep immediately following a meal, providing the first evidence of postprandial sleep in a fish model. The amount of sleep was not correlated to meal size and occurred independently of feeding time. In contrast to larvae, postprandial sleep was not detected in adult surface or cavefish, that can survive for months without food. Together, these findings reveal that postprandial sleep is present in multiple short-sleeping populations of cavefish, suggesting sleep-feeding interactions are retained despite the evolution of sleep loss. These findings raise the possibility that postprandial sleep is critical for energy conservation and survival in larvae that are highly sensitive to food deprivation.
Collapse
Affiliation(s)
- Kathryn Gallman
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Aakriti Rastogi
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Owen North
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Morgan O'Gorman
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Pierce Hutton
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Evan Lloyd
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Wes Warren
- Department of Genomics, University of Missouri, Columbia, MO 65201
| | - Johanna E Kowalko
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | | | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX 77840
| |
Collapse
|
22
|
Di T, Zhang L, Meng S, Liu W, Guo Y, Zheng E, Xie C, Xiang S, Jia T, Lu L, Sun Y, Shi J. The impact of REM sleep loss on human brain connectivity. Transl Psychiatry 2024; 14:270. [PMID: 38956035 PMCID: PMC11219886 DOI: 10.1038/s41398-024-02985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
Brain function is vulnerable to the consequences of inadequate sleep, an adverse trend that is increasingly prevalent. The REM sleep phase has been implicated in coordinating various brain structures and is hypothesized to have potential links to brain variability. However, traditional imaging research have encountered challenges in attributing specific brain region activity to REM sleep, remained understudied at the whole-brain connectivity level. Through the spilt-night paradigm, distinct patterns of REM sleep phases were observed among the full-night sleep group (n = 36), the early-night deprivation group (n = 41), and the late-night deprivation group (n = 36). We employed connectome-based predictive modeling (CPM) to delineate the effects of REM sleep deprivation on the functional connectivity of the brain (REM connectome) during its resting state. The REM sleep-brain connectome was characterized by stronger connectivity within the default mode network (DMN) and between the DMN and visual networks, while fewer predictive edges were observed. Notably, connections such as those between the cingulo-opercular network (CON) and the auditory network, as well as between the subcortex and visual networks, also made significant contributions. These findings elucidate the neural signatures of REM sleep loss and reveal common connectivity patterns across individuals, validated at the group level.
Collapse
Affiliation(s)
- Tianqi Di
- Department of Pharmacology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Libo Zhang
- Department of Pharmacology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Shiqiu Meng
- Department of Pharmacology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Wangyue Liu
- Department of Pharmacology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
| | - Yang Guo
- Department of Pharmacology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
| | - Enyu Zheng
- Department of Pharmacology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
| | - Chao Xie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Shitong Xiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Lin Lu
- Department of Pharmacology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
| | - Yan Sun
- Department of Pharmacology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
- Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
| | - Jie Shi
- Department of Pharmacology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
- Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing, 100191, China.
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, 453000, China.
| |
Collapse
|
23
|
Keleş MF, Sapci AOB, Brody C, Palmer I, Le C, Taştan Ö, Keleş S, Wu MN. FlyVISTA, an Integrated Machine Learning Platform for Deep Phenotyping of Sleep in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564733. [PMID: 37961473 PMCID: PMC10635029 DOI: 10.1101/2023.10.30.564733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Animal behavior depends on internal state. While subtle movements can signify significant changes in internal state, computational methods for analyzing these "microbehaviors" are lacking. Here, we present FlyVISTA, a machine-learning platform to characterize microbehaviors in freely-moving flies, which we use to perform deep phenotyping of sleep. This platform comprises a high-resolution closed-loop video imaging system, coupled with a deep-learning network to annotate 35 body parts, and a computational pipeline to extract behaviors from high-dimensional data. FlyVISTA reveals the distinct spatiotemporal dynamics of sleep-associated microbehaviors in flies. We further show that stimulation of dorsal fan-shaped body neurons induces micromovements, not sleep, whereas activating R5 ring neurons triggers rhythmic proboscis extension followed by persistent sleep. Importantly, we identify a novel microbehavior ("haltere switch") exclusively seen during quiescence that indicates a deeper sleep stage. These findings enable the rigorous analysis of sleep in Drosophila and set the stage for computational analyses of microbehaviors.
Collapse
Affiliation(s)
- Mehmet F. Keleş
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ali Osman Berk Sapci
- Department of Computer Science, Sabanci University, Tuzla, Istanbul, 34956, Turkey
| | - Casey Brody
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Isabelle Palmer
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Christin Le
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Öznur Taştan
- Department of Computer Science, Sabanci University, Tuzla, Istanbul, 34956, Turkey
| | - Sündüz Keleş
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark N. Wu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
24
|
Ratliff JM, Terral G, Lutzu S, Heiss J, Mota J, Stith B, Lechuga AV, Ramakrishnan C, Fenno LE, Daigle T, Deisseroth K, Zeng H, Ngai J, Tasic B, Sjulson L, Rudolph S, Kilduff TS, Batista-Brito R. Neocortical long-range inhibition promotes cortical synchrony and sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599756. [PMID: 38948753 PMCID: PMC11213009 DOI: 10.1101/2024.06.20.599756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Behavioral states such as sleep and wake are highly correlated with specific patterns of rhythmic activity in the cortex. During low arousal states such as slow wave sleep, the cortex is synchronized and dominated by low frequency rhythms coordinated across multiple regions. Although recent evidence suggests that GABAergic inhibitory neurons are key players in cortical state modulation, the in vivo circuit mechanisms coordinating synchronized activity among local and distant neocortical networks are not well understood. Here, we show that somatostatin and chondrolectin co-expressing cells (Sst-Chodl cells), a sparse and unique class of neocortical inhibitory neurons, are selectively active during low arousal states and are largely silent during periods of high arousal. In contrast to other neocortical inhibitory neurons, we show these neurons have long-range axons that project across neocortical areas. Activation of Sst-Chodl cells is sufficient to promote synchronized cortical states characteristic of low arousal, with increased spike co-firing and low frequency brain rhythms, and to alter behavioral states by promoting sleep. Contrary to the prevailing belief that sleep is exclusively driven by subcortical mechanisms, our findings reveal that these long-range inhibitory neurons not only track changes in behavioral state but are sufficient to induce both sleep-like cortical states and sleep behavior, establishing a crucial circuit component in regulating behavioral states.
Collapse
Affiliation(s)
- Jacob M Ratliff
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Geoffrey Terral
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Stefano Lutzu
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Jaime Heiss
- Biosciences Division, SRI International, Menlo Park, CA 94025, United States
| | - Julie Mota
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Bianca Stith
- Albert Einstein College of Medicine, New York City, NY, United States
| | | | | | - Lief E Fenno
- The University of Texas at Austin, Austin, TX, United States
| | - Tanya Daigle
- Allen Institute for Brain Science, Seattle, WA, United States
| | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, United States
| | - John Ngai
- National Institute of Neurological Disease and Stroke, Bethesda, MD, United States
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA, United States
| | - Lucas Sjulson
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Stephanie Rudolph
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Thomas S. Kilduff
- Biosciences Division, SRI International, Menlo Park, CA 94025, United States
| | | |
Collapse
|
25
|
Norman H, Munson A, Cortese D, Koeck B, Killen SS. The interplay between sleep and ecophysiology, behaviour and responses to environmental change in fish. J Exp Biol 2024; 227:jeb247138. [PMID: 38860399 PMCID: PMC11213526 DOI: 10.1242/jeb.247138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Evidence of behavioural sleep has been observed in every animal species studied to date, but current knowledge of the behaviour, neurophysiology and ecophysiology associated with sleep is concentrated on mammals and birds. Fish are a hugely diverse group that can offer novel insights into a variety of sleep-related behaviours across environments, but the ecophysiological relevance of sleep in fish has been largely overlooked. Here, we systematically reviewed the literature to assess the current breadth of knowledge on fish sleep, and surveyed the diverse physiological effects and behaviours associated with sleep. We also discuss possible ways in which unstudied external factors may alter sleep behaviours. For example, predation risk may alter sleep patterns, as has been shown in mammalian, avian and reptilian species. Other environmental factors - such as water temperature and oxygen availability - have the potential to alter sleep patterns in fish differently than for terrestrial endotherms. Understanding the ecological influences on sleep in fish is vital, as sleep deprivation has the potential to affect waking behaviour and fitness owing to cognitive and physiological impairments, possibly affecting ecological phenomena and sensitivity to environmental stressors in ways that have not been considered.
Collapse
Affiliation(s)
- Helena Norman
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Amelia Munson
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daphne Cortese
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Barbara Koeck
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Shaun S. Killen
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
26
|
Škop V, Liu N, Xiao C, Stinson E, Chen KY, Hall KD, Piaggi P, Gavrilova O, Reitman ML. Beyond day and night: The importance of ultradian rhythms in mouse physiology. Mol Metab 2024; 84:101946. [PMID: 38657735 PMCID: PMC11070603 DOI: 10.1016/j.molmet.2024.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Our circadian world shapes much of metabolic physiology. In mice ∼40% of the light and ∼80% of the dark phase time is characterized by bouts of increased energy expenditure (EE). These ultradian bouts have a higher body temperature (Tb) and thermal conductance and contain virtually all of the physical activity and awake time. Bout status is a better classifier of mouse physiology than photoperiod, with ultradian bouts superimposed on top of the circadian light/dark cycle. We suggest that the primary driver of ultradian bouts is a brain-initiated transition to a higher defended Tb of the active/awake state. Increased energy expenditure from brown adipose tissue, physical activity, and cardiac work combine to raise Tb from the lower defended Tb of the resting/sleeping state. Thus, unlike humans, much of mouse metabolic physiology is episodic with large ultradian increases in EE and Tb that correlate with the active/awake state and are poorly aligned with circadian cycling.
Collapse
Affiliation(s)
- Vojtěch Škop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic.
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Emma Stinson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, AZ 85016, USA
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Kevin D Hall
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, AZ 85016, USA; Department of Information Engineering, University of Pisa, Pisa 56122, Italy
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Suppermpool A, Lyons DG, Broom E, Rihel J. Sleep pressure modulates single-neuron synapse number in zebrafish. Nature 2024; 629:639-645. [PMID: 38693264 PMCID: PMC11096099 DOI: 10.1038/s41586-024-07367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/27/2024] [Indexed: 05/03/2024]
Abstract
Sleep is a nearly universal behaviour with unclear functions1. The synaptic homeostasis hypothesis proposes that sleep is required to renormalize the increases in synaptic number and strength that occur during wakefulness2. Some studies examining either large neuronal populations3 or small patches of dendrites4 have found evidence consistent with the synaptic homeostasis hypothesis, but whether sleep merely functions as a permissive state or actively promotes synaptic downregulation at the scale of whole neurons is unclear. Here, by repeatedly imaging all excitatory synapses on single neurons across sleep-wake states of zebrafish larvae, we show that synapses are gained during periods of wake (either spontaneous or forced) and lost during sleep in a neuron-subtype-dependent manner. However, synapse loss is greatest during sleep associated with high sleep pressure after prolonged wakefulness, and lowest in the latter half of an undisrupted night. Conversely, sleep induced pharmacologically during periods of low sleep pressure is insufficient to trigger synapse loss unless adenosine levels are boosted while noradrenergic tone is inhibited. We conclude that sleep-dependent synapse loss is regulated by sleep pressure at the level of the single neuron and that not all sleep periods are equally capable of fulfilling the functions of synaptic homeostasis.
Collapse
Affiliation(s)
- Anya Suppermpool
- Department of Cell and Developmental Biology, University College London, London, UK
- UCL Ear Institute, University College London, London, UK
| | - Declan G Lyons
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Elizabeth Broom
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, UK.
| |
Collapse
|
28
|
Mortlock E, Silovský V, Güldenpfennig J, Faltusová M, Olejarz A, Börger L, Ježek M, Jennings DJ, Capellini I. Sleep in the wild: the importance of individual effects and environmental conditions on sleep behaviour in wild boar. Proc Biol Sci 2024; 291:20232115. [PMID: 38808449 DOI: 10.1098/rspb.2023.2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/19/2024] [Indexed: 05/30/2024] Open
Abstract
Sleep serves vital physiological functions, yet how sleep in wild animals is influenced by environmental conditions is poorly understood. Here we use high-resolution biologgers to investigate sleep in wild animals over ecologically relevant time scales and quantify variability between individuals under changing conditions. We developed a robust classification for accelerometer data and measured multiple dimensions of sleep in the wild boar (Sus scrofa) over an annual cycle. In support of the hypothesis that environmental conditions determine thermoregulatory challenges, which regulate sleep, we show that sleep quantity, efficiency and quality are reduced on warmer days, sleep is less fragmented in longer and more humid days, while greater snow cover and rainfall promote sleep quality. Importantly, this longest and most detailed analysis of sleep in wild animals to date reveals large inter- and intra-individual variation. Specifically, short-sleepers sleep up to 46% less than long-sleepers but do not compensate for their short sleep through greater plasticity or quality, suggesting they may pay higher costs of sleep deprivation. Given the major role of sleep in health, our results suggest that global warming and the associated increase in extreme climatic events are likely to negatively impact sleep, and consequently health, in wildlife, particularly in nocturnal animals.
Collapse
Affiliation(s)
- Euan Mortlock
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Václav Silovský
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Prague 6-Suchdol 165 00, Czech Republic
| | - Justine Güldenpfennig
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Prague 6-Suchdol 165 00, Czech Republic
| | - Monika Faltusová
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Prague 6-Suchdol 165 00, Czech Republic
| | - Astrid Olejarz
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Prague 6-Suchdol 165 00, Czech Republic
| | - Luca Börger
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Miloš Ježek
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Prague 6-Suchdol 165 00, Czech Republic
| | - Dómhnall J Jennings
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Isabella Capellini
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| |
Collapse
|
29
|
Pandi-Perumal SR, Saravanan KM, Paul S, Namasivayam GP, Chidambaram SB. Waking Up the Sleep Field: An Overview on the Implications of Genetics and Bioinformatics of Sleep. Mol Biotechnol 2024; 66:919-931. [PMID: 38198051 DOI: 10.1007/s12033-023-01009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024]
Abstract
Sleep genetics is an intriguing, as yet less understood, understudied, emerging area of biological and medical discipline. A generalist may not be aware of the current status of the field given the variety of journals that have published studies on the genetics of sleep and the circadian clock over the years. For researchers venturing into this fascinating area, this review thus includes fundamental features of circadian rhythm and genetic variables impacting sleep-wake cycles. Sleep/wake pathway medication exposure and susceptibility are influenced by genetic variations, and the responsiveness of sleep-related medicines is influenced by several functional polymorphisms. This review highlights the features of the circadian timing system and then a genetic perspective on wakefulness and sleep, as well as the relationship between sleep genetics and sleep disorders. Neurotransmission genes, as well as circadian and sleep/wake receptors, exhibit functional variability. Experiments on animals and humans have shown that these genetic variants impact clock systems, signaling pathways, nature, amount, duration, type, intensity, quality, and quantity of sleep. In this regard, the overview covers research on sleep genetics, the genomic properties of several popular model species used in sleep studies, homologs of mammalian genes, sleep disorders, and related genes. In addition, the study includes a brief discussion of sleep, narcolepsy, and restless legs syndrome from the viewpoint of a model organism. It is suggested that the understanding of genetic clues on sleep function and sleep disorders may, in future, result in an evidence-based, personalized treatment of sleep disorders.
Collapse
Affiliation(s)
- Seithikurippu R Pandi-Perumal
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India
| | - Sayan Paul
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Ganesh Pandian Namasivayam
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), A210, Kyoto University Institute for Advanced Study, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Saravana Babu Chidambaram
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India.
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India.
- Special Interest Group - Brain, Behaviour and Cognitive Neurosciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India.
| |
Collapse
|
30
|
Nguyen AD, Costa PC, Raizen DM. A perfect storm: sleep loss causes systemic inflammation and death. Cell Res 2024; 34:341-342. [PMID: 38212509 PMCID: PMC11061133 DOI: 10.1038/s41422-023-00924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Affiliation(s)
- Andrew D Nguyen
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paula Carvalho Costa
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David M Raizen
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Feng H, Qiao QC, Luo QF, Zhou JY, Lei F, Chen Y, Wen SY, Chen WH, Pang YJ, Hu ZA, Jiang YB, Zhang XY, Zhou TY, Zhang XY, Yang N, Zhang J, Hu R. Orexin Neurons to Sublaterodorsal Tegmental Nucleus Pathway Prevents Sleep Onset REM Sleep-Like Behavior by Relieving the REM Sleep Pressure. RESEARCH (WASHINGTON, D.C.) 2024; 7:0355. [PMID: 38694202 PMCID: PMC11062508 DOI: 10.34133/research.0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024]
Abstract
Proper timing of vigilance states serves fundamental brain functions. Although disturbance of sleep onset rapid eye movement (SOREM) sleep is frequently reported after orexin deficiency, their causal relationship still remains elusive. Here, we further study a specific subgroup of orexin neurons with convergent projection to the REM sleep promoting sublaterodorsal tegmental nucleus (OXSLD neurons). Intriguingly, although OXSLD and other projection-labeled orexin neurons exhibit similar activity dynamics during REM sleep, only the activation level of OXSLD neurons exhibits a significant positive correlation with the post-inter-REM sleep interval duration, revealing an essential role for the orexin-sublaterodorsal tegmental nucleus (SLD) neural pathway in relieving REM sleep pressure. Monosynaptic tracing reveals that multiple inputs may help shape this REM sleep-related dynamics of OXSLD neurons. Genetic ablation further shows that the homeostatic architecture of sleep/wakefulness cycles, especially avoidance of SOREM sleep-like transition, is dependent on this activity. A positive correlation between the SOREM sleep occurrence probability and depression states of narcoleptic patients further demonstrates the possible significance of the orexin-SLD pathway on REM sleep homeostasis.
Collapse
Affiliation(s)
- Hui Feng
- Department of Neurobiology,
Army Medical University, 400038 Chongqing, P.R. China
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Army Medical University, 400038 Chongqing, P.R. China
| | - Qi-Cheng Qiao
- Department of Physiology,
Army Medical University, 400038 Chongqing, P.R. China
| | - Qi-Fa Luo
- Department of Physiology,
Army Medical University, 400038 Chongqing, P.R. China
| | - Jun-Ying Zhou
- Sleep Medicine Center, West China Hospital,
Sichuan University, 610000 Chengdu, Sichuan, P.R. China
| | - Fei Lei
- Sleep Medicine Center, West China Hospital,
Sichuan University, 610000 Chengdu, Sichuan, P.R. China
| | - Yao Chen
- Department of Physiology,
Army Medical University, 400038 Chongqing, P.R. China
| | - Si-Yi Wen
- Department of Physiology,
Army Medical University, 400038 Chongqing, P.R. China
| | - Wen-Hao Chen
- Department of Physiology,
Army Medical University, 400038 Chongqing, P.R. China
| | - Yu-Jie Pang
- Department of Physiology,
Army Medical University, 400038 Chongqing, P.R. China
| | - Zhi-An Hu
- Department of Physiology,
Army Medical University, 400038 Chongqing, P.R. China
| | - Yi-Bin Jiang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Army Medical University, 400038 Chongqing, P.R. China
| | - Xu-Yang Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Army Medical University, 400038 Chongqing, P.R. China
| | - Teng-Yuan Zhou
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Army Medical University, 400038 Chongqing, P.R. China
| | - Xin-Yan Zhang
- Sleep Medicine Center, West China Hospital,
Sichuan University, 610000 Chengdu, Sichuan, P.R. China
| | - Nian Yang
- Department of Physiology,
Army Medical University, 400038 Chongqing, P.R. China
| | - Jun Zhang
- Department of Neurobiology,
Army Medical University, 400038 Chongqing, P.R. China
- Department of Physiology,
Army Medical University, 400038 Chongqing, P.R. China
| | - Rong Hu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Army Medical University, 400038 Chongqing, P.R. China
| |
Collapse
|
32
|
Mao X, Han D, Guo W, Zhang W, Wang H, Zhang G, Zhang N, Jin L, Nie B, Li H, Song Y, Wu Y, Chang L. Lateralized brunt of sleep deprivation on white matter injury in a rat model of Alzheimer's disease. GeroScience 2024; 46:2295-2315. [PMID: 37940789 PMCID: PMC10828179 DOI: 10.1007/s11357-023-01000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
Sleep disturbance is a recognized risk factor for Alzheimer's disease (AD), but the underlying micro-pathological evidence remains limited. To bridge this gap, we established an amyloid-β oligomers (AβO)-induced rat model of AD and subjected it to intermittent sleep deprivation (SD). Diffusion tensor imaging (DTI) and transmission electron microscopy were employed to assess white matter (WM) integrity and ultrastructural changes in myelin sheaths. Our findings demonstrated that SD exacerbated AβO-induced cognitive decline. Furthermore, we found SD aggravated AβO-induced asymmetrical impairments in WM, presenting with reductions in tract integrity observed in commissural fibers and association fasciculi, particularly the right anterior commissure, right corpus callosum, and left cingulum. Ultrastructural changes in myelin sheaths within the hippocampus and corpus callosum further confirmed a lateralized effect. Moreover, SD worsened AβO-induced lateralized disruption of the brain structural network, with impairments in critical nodes of the left hemisphere strongly correlated with cognitive dysfunction. This work represents the first identification of a lateralized impact of SD on the mesoscopic network and cognitive deficits in an AD rat model. These findings could deepen our understanding of the complex interplay between sleep disturbance and AD pathology, providing valuable insights into the early progression of the disease, as well as the development of neuroimaging biomarkers for screening early AD patients with self-reported sleep disturbances. Enhanced understanding of these mechanisms may pave the way for targeted interventions to alleviate cognitive decline and improve the quality of life for individuals at risk of or affected by AD.
Collapse
Affiliation(s)
- Xin Mao
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ding Han
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wensheng Guo
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wanning Zhang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hongqi Wang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Guitao Zhang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liangyun Jin
- Electron Microscope Room of Central Laboratory, Capital Medical University, Beijing, 100069, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| | - Lirong Chang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
33
|
Ren S, Zhang C, Yue F, Tang J, Zhang W, Zheng Y, Fang Y, Wang N, Song Z, Zhang Z, Zhang X, Qin H, Wang Y, Xia J, Jiang C, He C, Luo F, Hu Z. A midbrain GABAergic circuit constrains wakefulness in a mouse model of stress. Nat Commun 2024; 15:2722. [PMID: 38548744 PMCID: PMC10978901 DOI: 10.1038/s41467-024-46707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Enhancement of wakefulness is a prerequisite for adaptive behaviors to cope with acute stress, but hyperarousal is associated with impaired behavioral performance. Although the neural circuitries promoting wakefulness in acute stress conditions have been extensively identified, less is known about the circuit mechanisms constraining wakefulness to prevent hyperarousal. Here, we found that chemogenetic or optogenetic activation of GAD2-positive GABAergic neurons in the midbrain dorsal raphe nucleus (DRNGAD2) decreased wakefulness, while inhibition or ablation of these neurons produced an increase in wakefulness along with hyperactivity. Surprisingly, DRNGAD2 neurons were paradoxically wakefulness-active and were further activated by acute stress. Bidirectional manipulations revealed that DRNGAD2 neurons constrained the increase of wakefulness and arousal level in a mouse model of stress. Circuit-specific investigations demonstrated that DRNGAD2 neurons constrained wakefulness via inhibition of the wakefulness-promoting paraventricular thalamus. Therefore, the present study identified a wakefulness-constraining role DRNGAD2 neurons in acute stress conditions.
Collapse
Affiliation(s)
- Shuancheng Ren
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
- No. 953 Army Hospital, Shigatse, Tibet Autonomous Region, 857000, China.
| | - Cai Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Faguo Yue
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Jinxiang Tang
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Wei Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yue Zheng
- Department of Anesthesiology, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yuanyuan Fang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Na Wang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zhenbo Song
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Zehui Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xiaolong Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Han Qin
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Yaling Wang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jianxia Xia
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Chenggang Jiang
- Psychology Department, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, 401147, China
| | - Chao He
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Fenlan Luo
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Zhian Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
34
|
Zhao J, Ji Y, Zuo Y, Zhang L, Ku C, Wang W, Wang P, Yang Y, Kang Y, Wang F. Association of Oxidative Stress and Proinflammation with Insomnia in Perimenopause. J Womens Health (Larchmt) 2024; 33:379-387. [PMID: 38394165 DOI: 10.1089/jwh.2023.0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Background: The levels of oxidative stress and proinflammatory factors in perimenopausal females increased, and they were also deeply troubled by insomnia. The occurrence of insomnia is related to the changes of oxidative stress and inflammation levels in the body. Perimenopausal insomnia may be related to mild systemic inflammation, and oxidative stress can promote chronic inflammation. However, the underlying mechanism behind the phenomenon is still unclear. Objective: The aim was to investigate whether the occurrence of perimenopausal insomnia disorder is related to higher levels of oxidative stress and inflammation in the body, and to explore the role of inducible nitric oxide synthase (iNOS) in perimenopausal insomnia. Methods: A total of 127 perimenopausal participants were recruited in this study. Participants with global scores of the Pittsburgh sleep quality index (PSQI) >7 were diagnosed with insomnia (n = 54). The patient health questionnaire-9 (PHQ-9) and generalized anxiety disorder-7 (GAD-7) were evaluated, and sociodemographic data were obtained. The serum concentrations of iNOS, interleukin 6 (IL6), and tumor necrosis factor α (TNFα) were measured using commercial assays. Results: In the insomnia group, IL6 levels were positively correlated with scores of component 5 and component 7 of PSQI, respectively. PHQ-9 and GAD-7 were positively correlated with the global score of PSQI component 7 and PSQI, respectively; PHQ-9 was positively correlated with the global score of PSQI component 1. Finally, PHQ-9, iNOS, and IL6 were found to be independent predictors of perimenopausal insomnia using logistic regression. Conclusions: Moderate oxidative stress caused by a certain concentration of iNOS plays a protective role in perimenopausal insomnia, while proinflammation and depression are potential risk factors.
Collapse
Affiliation(s)
- Jing Zhao
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, China
- Department of Basic Medical Teaching and Research, Ordos Institute of Technology, Ordos, China
| | - Yubo Ji
- Department of Medical Psychology, Inner Mongolia Medical University, Huhhot, China
| | - Yanni Zuo
- Physical Examination Center, Beijing Changping Hospital of Chinese Medicine, Beijing, China
| | - Long Zhang
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Congwen Ku
- Dongzhimen Hospital, the First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Wenyan Wang
- School of Pharmacy, Yantai University, Yantai, China
| | - Pengxiang Wang
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, China
| | - Yan Yang
- Urumqi Fourth People's Hospital, Urumqi, China
| | - Yimin Kang
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, China
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
| |
Collapse
|
35
|
Stolicyn A, Lyall LM, Lyall DM, Høier NK, Adams MJ, Shen X, Cole JH, McIntosh AM, Whalley HC, Smith DJ. Comprehensive assessment of sleep duration, insomnia, and brain structure within the UK Biobank cohort. Sleep 2024; 47:zsad274. [PMID: 37889226 PMCID: PMC10851840 DOI: 10.1093/sleep/zsad274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
STUDY OBJECTIVES To assess for associations between sleeping more than or less than recommended by the National Sleep Foundation (NSF), and self-reported insomnia, with brain structure. METHODS Data from the UK Biobank cohort were analyzed (N between 9K and 32K, dependent on availability, aged 44 to 82 years). Sleep measures included self-reported adherence to NSF guidelines on sleep duration (sleeping between 7 and 9 hours per night), and self-reported difficulty falling or staying asleep (insomnia). Brain structural measures included global and regional cortical or subcortical morphometry (thickness, surface area, volume), global and tract-related white matter microstructure, brain age gap (difference between chronological age and age estimated from brain scan), and total volume of white matter lesions. RESULTS Longer-than-recommended sleep duration was associated with lower overall grey and white matter volumes, lower global and regional cortical thickness and volume measures, higher brain age gap, higher volume of white matter lesions, higher mean diffusivity globally and in thalamic and association fibers, and lower volume of the hippocampus. Shorter-than-recommended sleep duration was related to higher global and cerebellar white matter volumes, lower global and regional cortical surface areas, and lower fractional anisotropy in projection fibers. Self-reported insomnia was associated with higher global gray and white matter volumes, and with higher volumes of the amygdala, hippocampus, and putamen. CONCLUSIONS Sleeping longer than recommended by the NSF is associated with a wide range of differences in brain structure, potentially indicative of poorer brain health. Sleeping less than recommended is distinctly associated with lower cortical surface areas. Future studies should assess the potential mechanisms of these differences and investigate long sleep duration as a putative marker of brain health.
Collapse
Affiliation(s)
- Aleks Stolicyn
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Laura M Lyall
- School of Health & Wellbeing, University of Glasgow, Glasgow, UK
| | - Donald M Lyall
- School of Health & Wellbeing, University of Glasgow, Glasgow, UK
| | - Nikolaj Kjær Høier
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Copenhagen Research Center for Mental Health CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mark J Adams
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - James H Cole
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Andrew M McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Heather C Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniel J Smith
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
36
|
Liu C, Zhang Q, Liu C, Liu T, Song M, Zhang Q, Xie H, Lin S, Ren J, Chen Y, Zheng X, Shi J, Deng L, Shi H, Wu S. Age Differences in the Association of Sleep Duration Trajectory With Cancer Risk and Cancer-Specific Mortality: Prospective Cohort Study. JMIR Public Health Surveill 2024; 10:e50836. [PMID: 38324354 PMCID: PMC10882471 DOI: 10.2196/50836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/21/2023] [Accepted: 12/13/2023] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Baseline sleep duration is associated with cancer risk and cancer-specific mortality; however, the association between longitudinal patterns of sleep duration and these risks remains unknown. OBJECTIVE This study aimed to elucidate the association between sleep duration trajectory and cancer risk and cancer-specific mortality. METHODS The participants recruited in this study were from the Kailuan cohort, with all participants aged between 18 and 98 years and without cancer at baseline. The sleep duration of participants was continuously recorded in 2006, 2008, and 2010. Latent mixture modeling was used to identify shared sleep duration trajectories. Furthermore, the Cox proportional risk model was used to examine the association of sleep duration trajectory with cancer risk and cancer-specific mortality. RESULTS A total of 53,273 participants were included in the present study, of whom 40,909 (76.79%) were men and 12,364 (23.21%) were women. The average age of the participants was 49.03 (SD 11.76) years. During a median follow-up of 10.99 (IQR 10.27-11.15) years, 2705 participants developed cancers. Three sleep duration trajectories were identified: normal-stable (44,844/53,273, 84.18%), median-stable (5877/53,273, 11.03%), and decreasing low-stable (2552/53,273, 4.79%). Compared with the normal-stable group, the decreasing low-stable group had increased cancer risk (hazard ratio [HR] 1.39, 95% CI 1.16-1.65) and cancer-specific mortality (HR 1.54, 95% CI 1.18-2.06). Dividing the participants by an age cutoff of 45 years revealed an increase in cancer risk (HR 1.88, 95% CI 1.30-2.71) and cancer-specific mortality (HR 2.52, 95% CI 1.22-5.19) only in participants younger than 45 years, rather than middle-aged or older participants. Joint analysis revealed that compared with participants who had a stable sleep duration within the normal range and did not snore, those with a shortened sleep duration and snoring had the highest cancer risk (HR 2.62, 95% CI 1.46-4.70). CONCLUSIONS Sleep duration trajectories and quality are closely associated with cancer risk and cancer-specific mortality. However, these associations differ with age and are more pronounced in individuals aged <45 years. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR-TNRC-11001489; http://tinyurl.com/2u89hrhx.
Collapse
Affiliation(s)
- Chenan Liu
- Department of Gastrointestinal Surgery and Clinical Nutrition, Beijing Shijitan Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of of Cancer Food for Special Medical Purposes for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Qingsong Zhang
- Department of General Surgery, Kailuan General Hospital, Tangshan, China
| | - Chenning Liu
- Department of Obstetrics and Gynecology, Dongguan Maternal and Child Health Care Hospital, Dongguan, China
| | - Tong Liu
- Department of Gastrointestinal Surgery and Clinical Nutrition, Beijing Shijitan Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of of Cancer Food for Special Medical Purposes for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Mengmeng Song
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Qi Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Hailun Xie
- Department of Gastrointestinal Surgery and Clinical Nutrition, Beijing Shijitan Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of of Cancer Food for Special Medical Purposes for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Shiqi Lin
- Department of Gastrointestinal Surgery and Clinical Nutrition, Beijing Shijitan Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of of Cancer Food for Special Medical Purposes for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jiangshan Ren
- Department of Oncology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yue Chen
- Department of Gastrointestinal Surgery and Clinical Nutrition, Beijing Shijitan Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of of Cancer Food for Special Medical Purposes for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xin Zheng
- Department of Gastrointestinal Surgery and Clinical Nutrition, Beijing Shijitan Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of of Cancer Food for Special Medical Purposes for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jinyu Shi
- Department of Gastrointestinal Surgery and Clinical Nutrition, Beijing Shijitan Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of of Cancer Food for Special Medical Purposes for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Li Deng
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of of Cancer Food for Special Medical Purposes for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery and Clinical Nutrition, Beijing Shijitan Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of of Cancer Food for Special Medical Purposes for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| |
Collapse
|
37
|
Aviles S, Subramanian S, Nelson MD. New alleles of nlp-2 , nlp-22 , and nlp-23 demonstrate that they are dispensable for stress-induced sleep in C. elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001109. [PMID: 38371321 PMCID: PMC10870154 DOI: 10.17912/micropub.biology.001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Sleep is ancient and genetically conserved across phylogeny. Neuropeptide signaling plays a fundamental role in the regulation of sleep for mammals, fish, and invertebrates like Caenorhabditis elegans . Developmentally timed-sleep and stress-induced sleep of C. elegans are controlled by distinct and overlapping neuropeptide pathways. The RPamide neuropeptides nlp-2 , nlp-22 , and nlp-23 , play antagonistic roles during the regulation of developmentally-timed sleep, however, their role in stress-induced sleep has not been explored. These genes are linked on the X chromosome, which has made genetic analyses challenging. Here we used CRISPR to generate new alleles of nlp-22 and nlp-23 , nlp-22 ; nlp-23 double mutants, and nlp-2 ; nlp-22 ; nlp-23 triple mutants. Confirming previous studies, we find that nlp-22 is required for developmentally-timed sleep, and show that nlp-23 is also required. However, all three genes are dispensable for stress-induced sleep.
Collapse
Affiliation(s)
- Sage Aviles
- Biology, Saint Joseph's University, Philadelphia, Pennsylvania, United States
| | - Sanjita Subramanian
- Biology, Saint Joseph's University, Philadelphia, Pennsylvania, United States
| | - Matthew D Nelson
- Biology, Saint Joseph's University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
38
|
Ma L, Huo Y, Peng T, Liu Z, Ye J, Chen L, Wu D, Du W, Chen J. Assessing the journey of calcium supplementation: A mendelian randomization study on the causal link between calcium levels and sleep disorders. Clin Nutr ESPEN 2024; 59:1-8. [PMID: 38220361 DOI: 10.1016/j.clnesp.2023.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND & AIM Sleep disorder is a growing concern, and calcium supplementation is often recommended as a potential intervention for sleep disorders. However, the causal relationship between calcium levels and the incidence of sleep disorders remains unclear. Mendelian randomization techniques utilizing genetic variants that affect calcium levels, can provide valuable insights into causality. This study aims to examine the association between calcium levels and sleep disorders in a diverse population that includes both adolescents and adults, and investigate the effects of calcium levels on sleep disorders. METHODS Mendelian randomization analysis was conducted using data from UK Biobank and FinnGen datasets. The inverse-variance weighting (IVW) was selected as the primary method. In addition, traditional mediation analysis was performed on a subset of the NHANES data spanning from 2007 to 2018. RESULTS Our findings provide evidence supporting a causal relationship between calcium intake and reduced risk of sleep disorders (beta = -0.079, SE = 0.0395, P = 0.0457). While not reaching statistical significance, other MR methods such as weighted median and Mr-Egger exhibited similar directional trends. Analysis of the NHANES cohort revealed a negative association between calcium levels and the prevalence of sleep disorders in male, black, and physically active populations. However, this association was not observed in other demographic groups. CONCLUSION Our results suggested that there is no significant correlation between calcium levels and sleep disorder in non-exercise populations. This raises concerns about the long-term high-dose calcium supplementation in clinical practice, which requires further investigation.
Collapse
Affiliation(s)
- Ling Ma
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyan Huo
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Peng
- Department of Neonatology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Zhongling Liu
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangfeng Ye
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Lingyan Chen
- Department of Occupational Therapy Science, Nagasaki University Graduate School of Biomedical Science, 1-7-1 Sakamoto, Nagasaki 852-8520, Japan
| | - Dan Wu
- Department of Cognitive Neuroscience, Donders Center for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Wenchong Du
- NTU Psychology, Nottingham Trent University, Burton Street, Nottingham, NG1 4BU, United Kingdom.
| | - Jinjin Chen
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Children's Hospital Dipro Medical Research Center, China.
| |
Collapse
|
39
|
Flores CC, Pasetto NA, Wang H, Dimitrov A, Davis JF, Jiang Z, Davis CJ, Gerstner JR. Identification of sleep and circadian alternative polyadenylation sites associated with APA-linked human brain disorders. RESEARCH SQUARE 2024:rs.3.rs-3867797. [PMID: 38313253 PMCID: PMC10836116 DOI: 10.21203/rs.3.rs-3867797/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Sleep and circadian rhythm disruptions are comorbid features of many pathologies and can negatively influence numerous health conditions, including degenerative diseases, metabolic illnesses, cancer, and various neurological disorders. Genetic association studies linking sleep and circadian disturbances with disease susceptibility have mainly focused on changes in gene expression due to mutations, such as single-nucleotide polymorphisms. Thus, associations between sleep and/or circadian rhythm and alternative polyadenylation (APA), particularly in the context of other health challenges, are largely undescribed. APA is a process that generates various transcript isoforms from the same gene, resulting in effects on mRNA translation, stability, localization, and subsequent function. Here, we have identified unique APAs in rat brain that exhibit time-of-day-dependent oscillations in expression as well as APAs that are altered by sleep deprivation and the subsequent recovery period. Genes affected by APA usage include Mapt/Tau, Ntrk2, Homer1A, Sin3band Sorl. Sorl1 has two APAs which cycle with a 24 h period, one additional APA cycles with a 12 h period and one more that is reduced during recovery sleep. Finally, we compared sleep- or circadian-associated APAs with recently described APA-linked brain disorder susceptibility genes and found 46 genes in common.
Collapse
|
40
|
Sang D, Lin K, Yang Y, Ran G, Li B, Chen C, Li Q, Ma Y, Lu L, Cui XY, Liu Z, Lv SQ, Luo M, Liu Q, Li Y, Zhang EE. Prolonged sleep deprivation induces a cytokine-storm-like syndrome in mammals. Cell 2023; 186:5500-5516.e21. [PMID: 38016470 DOI: 10.1016/j.cell.2023.10.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/17/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
Most animals require sleep, and sleep loss induces serious pathophysiological consequences, including death. Previous experimental approaches for investigating sleep impacts in mice have been unable to persistently deprive animals of both rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Here, we report a "curling prevention by water" paradigm wherein mice remain awake 96% of the time. After 4 days of exposure, mice exhibit severe inflammation, and approximately 80% die. Sleep deprivation increases levels of prostaglandin D2 (PGD2) in the brain, and we found that elevated PGD2 efflux across the blood-brain-barrier-mediated by ATP-binding cassette subfamily C4 transporter-induces both accumulation of circulating neutrophils and a cytokine-storm-like syndrome. Experimental disruption of the PGD2/DP1 axis dramatically reduced sleep-deprivation-induced inflammation. Thus, our study reveals that sleep-related changes in PGD2 in the central nervous system drive profound pathological consequences in the peripheral immune system.
Collapse
Affiliation(s)
- Di Sang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Keteng Lin
- National Institute of Biological Sciences, Beijing, China; College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yini Yang
- Peking University School of Life Sciences, Beijing, China
| | - Guangdi Ran
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Bohan Li
- Peking-Tsinghua Center for Life Sciences, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chen Chen
- National Institute of Biological Sciences, Beijing, China
| | - Qi Li
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Lihui Lu
- National Institute of Biological Sciences, Beijing, China
| | - Xi-Yang Cui
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhibo Liu
- Peking-Tsinghua Center for Life Sciences, Beijing, China; Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Chongqing, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Qinghua Liu
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Yulong Li
- Peking University School of Life Sciences, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China; State Key Laboratory of Membrane Biology, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Eric Erquan Zhang
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
41
|
Hashem MM, Abdalla AA, Mohamed AM, Mohamed LA, Shamaa HA, Ahmed GK. The relationship between alexithymia, emotion regulation, and sleep problems in school-aged children: A multicentric study. Sleep Med 2023; 112:39-45. [PMID: 37806034 DOI: 10.1016/j.sleep.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVES Alexithymia, mood dysregulation, and sleep quality have complicated effects on children's development. The current study aimed to investigate the relationship between alexithymia, emotion regulation, psychiatric problems, and sleep problems among Egyptian school-aged children. METHODS A total of 564 Egyptian children, aged 6 to 14, were divided into two groups based on their total Children's Sleep Habits Questionnaire abbreviated score: group 1 (N = 300) with sleep problems and group 2 (N = 264) with non-sleep problems. Their parents completed the Strengths and Difficulties Questionnaire (SDQ) and subjectively assessed the children's emotions using the Children's Alexithymia Measure (CAM) and the Clinical Evaluation of Emotional Regulation-9 (CEER-9). RESULTS Males were more proportional in the sleep problems group than others. The sleep problem group was significantly younger and had a longer daily sleep duration than the non-sleep problem group. Alexithymia and emotion dysregulation had the highest mean in the sleep problem group. Furthermore, alexithymia, emotion dysregulation, emotion difficulty, conduct, and prosocial problems were the most significant contributing factors and risk factors for sleep problems in children. CONCLUSION Sleep problems in children were associated with younger male children with lengthy daily sleep duration and emotional, behavioural, and prosocial difficulties. Furthermore, alexithymia and emotion dysregulation are significant contributors and risk factors for sleep problems in school-aged children.
Collapse
Affiliation(s)
- Mustafa M Hashem
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Alaa A Abdalla
- Department of Neurology and Psychiatry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | - Lobna A Mohamed
- Department of Neurology and Psychiatry, Alexandria University, Alexandria, Egypt
| | - Hala A Shamaa
- General Secretariat of Mental Health and Addiction Treatment, Demira Mental Health Hospital, Dakahlya Governorate, Egypt
| | - Gellan K Ahmed
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University, Assiut, Egypt; Department of Child & Adolescent Psychiatry, King's College London, London, SE5 8AF, UK
| |
Collapse
|
42
|
Li C, Long P, He M, Han F, Jiang W, Li Y, Hu Y, Wen X. Phyllanthus emblica Linn. fruit polyphenols improve acute paradoxical sleep deprivation-induced cognitive impairment and anxiety via Nrf2 pathway. J Funct Foods 2023; 110:105884. [DOI: 10.1016/j.jff.2023.105884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
|
43
|
Koutsoumparis A, Busack I, Chen CK, Hayashi Y, Braeckman BP, Meierhofer D, Bringmann H. Reverse genetic screening during L1 arrest reveals a role of the diacylglycerol kinase 1 gene dgk-1 and sphingolipid metabolism genes in sleep regulation. Genetics 2023; 225:iyad124. [PMID: 37682641 DOI: 10.1093/genetics/iyad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/01/2023] [Indexed: 09/10/2023] Open
Abstract
Sleep is a fundamental state of behavioral quiescence and physiological restoration. Sleep is controlled by environmental conditions, indicating a complex regulation of sleep by multiple processes. Our knowledge of the genes and mechanisms that control sleep during various conditions is, however, still incomplete. In Caenorhabditis elegans, sleep is increased when development is arrested upon starvation. Here, we performed a reverse genetic sleep screen in arrested L1 larvae for genes that are associated with metabolism. We found over 100 genes that are associated with a reduced sleep phenotype. Enrichment analysis revealed sphingolipid metabolism as a key pathway that controls sleep. A strong sleep loss was caused by the loss of function of the diacylglycerol kinase 1 gene, dgk-1, a negative regulator of synaptic transmission. Rescue experiments indicated that dgk-1 is required for sleep in cholinergic and tyraminergic neurons. The Ring Interneuron S (RIS) neuron is crucial for sleep in C. elegans and activates to induce sleep. RIS activation transients were abolished in dgk-1 mutant animals. Calcium transients were partially rescued by a reduction-of-function mutation of unc-13, suggesting that dgk-1 might be required for RIS activation by limiting synaptic vesicle release. dgk-1 mutant animals had impaired L1 arrest survival and dampened expression of the protective heat shock factor gene hsp-12.6. These data suggest that dgk-1 impairment causes broad physiological deficits. Microcalorimetry and metabolomic analyses of larvae with impaired RIS showed that RIS is broadly required for energy conservation and metabolic control, including for the presence of sphingolipids. Our data support the notion that metabolism broadly influences sleep and that sleep is associated with profound metabolic changes. We thus provide novel insights into the interplay of lipids and sleep and provide a rich resource of mutants and metabolic pathways for future sleep studies.
Collapse
Affiliation(s)
- Anastasios Koutsoumparis
- Chair of Cellular Circuits and Systems, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Am Tatzberg 47/49, Dresden, Saxony 01307, Germany
| | - Inka Busack
- Chair of Cellular Circuits and Systems, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Am Tatzberg 47/49, Dresden, Saxony 01307, Germany
| | - Chung-Kuan Chen
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - David Meierhofer
- Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Henrik Bringmann
- Chair of Cellular Circuits and Systems, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Am Tatzberg 47/49, Dresden, Saxony 01307, Germany
| |
Collapse
|
44
|
Esfahani MJ, Farboud S, Ngo HVV, Schneider J, Weber FD, Talamini LM, Dresler M. Closed-loop auditory stimulation of sleep slow oscillations: Basic principles and best practices. Neurosci Biobehav Rev 2023; 153:105379. [PMID: 37660843 DOI: 10.1016/j.neubiorev.2023.105379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Sleep is essential for our physical and mental well-being. During sleep, despite the paucity of overt behavior, our brain remains active and exhibits a wide range of coupled brain oscillations. In particular slow oscillations are characteristic for sleep, however whether they are directly involved in the functions of sleep, or are mere epiphenomena, is not yet fully understood. To disentangle the causality of these relationships, experiments utilizing techniques to detect and manipulate sleep oscillations in real-time are essential. In this review, we first overview the theoretical principles of closed-loop auditory stimulation (CLAS) as a method to study the role of slow oscillations in the functions of sleep. We then describe technical guidelines and best practices to perform CLAS and analyze results from such experiments. We further provide an overview of how CLAS has been used to investigate the causal role of slow oscillations in various sleep functions. We close by discussing important caveats, open questions, and potential topics for future research.
Collapse
Affiliation(s)
| | - Soha Farboud
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, the Netherlands
| | - Hong-Viet V Ngo
- Department of Psychology, University of Essex, United Kingdom; Department of Psychology, University of Lübeck, Germany; Center for Brain, Behaviour and Metabolism, University of Lübeck, Germany
| | - Jules Schneider
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Frederik D Weber
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Lucia M Talamini
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands.
| |
Collapse
|
45
|
Mondino A, Ludwig C, Menchaca C, Russell K, Simon KE, Griffith E, Kis A, Lascelles BDX, Gruen ME, Olby NJ. Development and validation of a sleep questionnaire, SNoRE 3.0, to evaluate sleep in companion dogs. Sci Rep 2023; 13:13340. [PMID: 37587172 PMCID: PMC10432410 DOI: 10.1038/s41598-023-40048-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
Disturbances in the sleep-wake cycle are a debilitating, yet rather common condition not only in humans, but also in family dogs. While there is an emerging need for easy-to-use tools to document sleep alterations (in order to ultimately treat and/or prevent them), the veterinary tools which yield objective data (e.g. polysomnography, activity monitors) are both labor intensive and expensive. In this study, we developed a modified version of a previously used sleep questionnaire (SNoRE) and determined criterion validity in companion dogs against polysomnography and physical activity monitors (PAMs). Since a negative correlation between sleep time and cognitive performance in senior dogs has been demonstrated, we evaluated the correlation between the SNoRE scores and the Canine Dementia Scale (CADES, which includes a factor concerning sleep). There was a significant correlation between SNoRE 3.0 questionnaire scores and polysomnography data (latency to NREM sleep, ρ = 0.507, p < 0.001) as well as PAMs' data (activity between 1:00 and 3:00 AM, p < 0.05). There was a moderate positive correlation between the SNoRE 3.0 scores and the CADES scores (ρ = 0.625, p < 0.001). Additionally, the questionnaire structure was validated by a confirmatory factor analysis, and it also showed an adequate test-retest reliability. In conclusion the present paper describes a valid and reliable questionnaire tool, that can be used as a cost-effective way to monitor dog sleep in clinical settings.
Collapse
Affiliation(s)
- A Mondino
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - C Ludwig
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - C Menchaca
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - K Russell
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - K E Simon
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - E Griffith
- Department of Statistics, North Carolina State University, Raleigh, NC, 27606, USA
| | - A Kis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - B D X Lascelles
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
- Translational Research in Pain, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - M E Gruen
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - N J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA.
| |
Collapse
|
46
|
Le E, McCarthy T, Honer M, Curtin CE, Fingerut J, Nelson MD. The neuropeptide receptor npr-38 regulates avoidance and stress-induced sleep in Caenorhabditis elegans. Curr Biol 2023; 33:3155-3168.e9. [PMID: 37419114 DOI: 10.1016/j.cub.2023.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/19/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
Although essential and conserved, sleep is not without its challenges that must be overcome; most notably, it renders animals vulnerable to threats in the environment. Infection and injury increase sleep demand, which dampens sensory responsiveness to stimuli, including those responsible for the initial insult. Stress-induced sleep in Caenorhabditis elegans occurs in response to cellular damage following noxious exposures the animals attempted to avoid. Here, we describe a G-protein-coupled receptor (GPCR) encoded by npr-38, which is required for stress-related responses including avoidance, sleep, and arousal. Overexpression of npr-38 shortens the avoidance phase and causes animals to initiate movement quiescence and arouse early. npr-38 functions in the ADL sensory neurons, which express neuropeptides encoded by nlp-50, also required for movement quiescence. npr-38 regulates arousal by acting on the DVA and RIS interneurons. Our work demonstrates that this single GPCR regulates multiple aspects of the stress response by functioning in sensory and sleep interneurons.
Collapse
Affiliation(s)
- Emily Le
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Teagan McCarthy
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Madison Honer
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Caroline E Curtin
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Jonathan Fingerut
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Matthew D Nelson
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA.
| |
Collapse
|
47
|
Hartmann C, Kempf A. Mitochondrial control of sleep. Curr Opin Neurobiol 2023; 81:102733. [PMID: 37390796 DOI: 10.1016/j.conb.2023.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 07/02/2023]
Abstract
The function of sleep remains one of biology's biggest mysteries. A solution to this problem is likely to come from a better understanding of sleep homeostasis, and in particular of the cellular and molecular processes that sense sleep need and settle sleep debt. Here, we highlight recent work in the fruit fly showing that changes in the mitochondrial redox state of sleep-promoting neurons lie at the heart of a homeostatic sleep-regulatory mechanism. Since the function of homeostatically controlled behaviours is often linked to the regulated variable itself, these findings corroborate with the hypothesis that sleep serves a metabolic function.
Collapse
Affiliation(s)
- Celina Hartmann
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Anissa Kempf
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland.
| |
Collapse
|
48
|
Frank MG. Editorial: Recent advancements in sleep homeostasis. Front Neurosci 2023; 17:1231785. [PMID: 37383110 PMCID: PMC10296198 DOI: 10.3389/fnins.2023.1231785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/30/2023] Open
|
49
|
Wang W, Ige OO, Ding Y, He M, Long P, Wang S, Zhang Y, Wen X. Insights into the potential benefits of triphala polyphenols toward the promotion of resilience against stress-induced depression and cognitive impairment. Curr Res Food Sci 2023; 6:100527. [PMID: 37377497 PMCID: PMC10291000 DOI: 10.1016/j.crfs.2023.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
In response to environmental challenges, stress is a common reaction, but dysregulation of the stress response can lead to neuropsychiatric disorders, including depression and cognitive impairment. Particularly, there is ample evidence that overexposure to mental stress can have lasting detrimental consequences for psychological health, cognitive function, and ultimately well-being. In fact, some individuals are resilient to the same stressor. A major benefit of enhancing stress resilience in at-risk groups is that it may help prevent the onset of stress-induced mental health problems. A potential therapeutic strategy for maintaining a healthy life is to address stress-induced health problems with botanicals or dietary supplements such as polyphenols. Triphala, also known as Zhe Busong decoction in Tibetan, is a well-recognized Ayurvedic polyherbal medicine comprising dried fruits from three different plant species. As a promising food-sourced phytotherapy, triphala polyphenols have been used throughout history to treat a variety of medical conditions, including brain health maintenance. Nevertheless, a comprehensive review is still lacking. Here, the primary objective of this review article is to provide an overview of the classification, safety, and pharmacokinetics of triphala polyphenols, as well as recommendations for the development of triphala polyphenols as a novel therapeutic strategy for promoting resilience in susceptible individuals. Additionally, we summarize recent advances demonstrating that triphala polyphenols are beneficial to cognitive and psychological resilience by regulating 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) receptors, gut microbiota, and antioxidant-related signaling pathways. Overall, scientific exploration of triphala polyphenols is warranted to understand their therapeutic efficacy. In addition to providing novel insights into the mechanisms of triphala polyphenols for promoting stress resilience, blood brain barrier (BBB) permeability and systemic bioavailability of triphala polyphenols also need to be improved by the research community. Moreover, well-designed clinical trials are needed to increase the scientific validity of triphala polyphenols' beneficial effects for preventing and treating cognitive impairment and psychological dysfunction.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Olufola Oladoyin Ige
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Mengshan He
- The Academy of Chinese Health Risks, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, 610021, China
| |
Collapse
|
50
|
Yeganegi H, Ondracek JM. Multi-channel recordings reveal age-related differences in the sleep of juvenile and adult zebra finches. Sci Rep 2023; 13:8607. [PMID: 37244927 DOI: 10.1038/s41598-023-35160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/13/2023] [Indexed: 05/29/2023] Open
Abstract
Despite their phylogenetic differences and distinct pallial structures, mammals and birds show similar electroencephalography (EEG) traces during sleep, consisting of distinct rapid eye movement (REM) sleep and slow wave sleep (SWS) stages. Studies in human and a limited number of other mammalian species show that this organization of sleep into interleaving stages undergoes radical changes during lifetime. Do these age-dependent variations in sleep patterns also occur in the avian brain? Does vocal learning have an effect on sleep patterns in birds? To answer these questions, we recorded multi-channel sleep EEG from juvenile and adult zebra finches for several nights. Whereas adults spent more time in SWS and REM sleep, juveniles spent more time in intermediate sleep (IS). The amount of IS was significantly larger in male juveniles engaged in vocal learning compared to female juveniles, which suggests that IS could be important for vocal learning. In addition, we observed that functional connectivity increased rapidly during maturation of young juveniles, and was stable or declined at older ages. Synchronous activity during sleep was larger for recording sites in the left hemisphere for both juveniles and adults, and generally intra-hemispheric synchrony was larger than inter-hemispheric synchrony during sleep. A graph theory analysis revealed that in adults, highly correlated EEG activity tended to be distributed across fewer networks that were spread across a wider area of the brain, whereas in juveniles, highly correlated EEG activity was distributed across more numerous, albeit smaller, networks in the brain. Overall, our results reveal that significant changes occur in the neural signatures of sleep during maturation in an avian brain.
Collapse
Affiliation(s)
- Hamed Yeganegi
- Technical University of Munich, Liesel-Beckmann-Str. 4, 85354, Freising-Weihenstephan, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Janie M Ondracek
- Technical University of Munich, Liesel-Beckmann-Str. 4, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|