1
|
Guo Y, Zhang Z, Huang H, Wu Y, Yin L, Zhou Y, Ding F, Hong S, Steinmetz NF, Cai H. Targeting S100A8/A9-NCF1 axis in tumor microenvironment to prevent tumor metastasis by self-assembled peptide nanofibers. Mol Ther 2025; 33:1502-1518. [PMID: 40040282 DOI: 10.1016/j.ymthe.2025.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/31/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
The immunosuppressive microenvironment plays a crucial role in driving and accelerating tumor metastasis. S100A8/A9, produced by myeloid-derived suppressor cells, is a potential therapeutic target for metastatic cancer due to its role in promoting premetastatic niche formation. Previous studies have revealed that the S100A9-targeted peptide (H6, MEWSLEKGYTIK) fused to the Fc region of mouse IgG2b antibodies exhibits antitumor effects; however, the mechanism remains unclear. Here, dual-function peptide nanofibers (H6-Q11) were constructed, consisting of peptide H6 and self-assembly peptide (Q11, QQKFQFQFEQQ), which achieved high avidity for S100A9. In vivo studies showed that H6-Q11 nanofibers significantly prolonged lung retention and inhibited pulmonary metastasis from melanoma and breast cancer without obvious toxicity. Immunological analyses indicated that treatment with H6-Q11 nanofibers decreased the infiltration of immunosuppressive cells while promoting the recruitment of immune effector cells to the lungs, potentially correlated with disturbances of S100A8/A9-NCF1 signaling in the tumor microenvironment. Our findings support a potential clinical application of S100A9-targeted peptide nanofibers as candidate nanomedicine for inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Yajing Guo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchanglu Road, Guangming District, Shenzhen 518107, China
| | - Zhifei Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchanglu Road, Guangming District, Shenzhen 518107, China
| | - Hongxia Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchanglu Road, Guangming District, Shenzhen 518107, China
| | - Ye Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchanglu Road, Guangming District, Shenzhen 518107, China
| | - Lixin Yin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchanglu Road, Guangming District, Shenzhen 518107, China
| | - Yang Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchanglu Road, Guangming District, Shenzhen 518107, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchanglu Road, Guangming District, Shenzhen 518107, China
| | - Sheng Hong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchanglu Road, Guangming District, Shenzhen 518107, China
| | - Nicole F Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Center for Nano Immuno-Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory University of California, San Diego, La Jolla, CA 92093, USA
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchanglu Road, Guangming District, Shenzhen 518107, China.
| |
Collapse
|
2
|
Wan R, Fang S, Zhang X, Zhou W, Bi X, Yuan L, Lv Q, Song Y, Tang W, Shi Y, Li T. S100A9 as a promising therapeutic target for diabetic foot ulcers. Chin Med J (Engl) 2025:00029330-990000000-01495. [PMID: 40143429 DOI: 10.1097/cm9.0000000000003543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Diabetic foot is a complex condition with high incidence, recurrence, mortality, and disability rates. Current treatments for diabetic foot ulcers are often insufficient. This study was conducted to identify potential therapeutic targets for diabetic foot. METHODS Datasets related to diabetic foot and diabetic skin were retrieved from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified using R software. Enrichment analysis was conducted to screen for critical gene functions and pathways. A protein interaction network was constructed to identify node genes corresponding to key proteins. The DEGs and node genes were overlapped to pinpoint target genes. Plasma and chronic ulcer samples from diabetic and non-diabetic individuals were collected. Western blotting, immunohistochemistry, and enzyme-linked immunosorbent assays were performed to verify the S100 calcium binding protein A9 (S100A9), inflammatory cytokine, and related pathway protein levels. Hematoxylin and eosin staining was used to measure epidermal layer thickness. RESULTS In total, 283 common DEGs and 42 node genes in diabetic foot ulcers were identified. Forty-three genes were differentially expressed in the skin of diabetic and non-diabetic individuals. The overlapping of the most significant DEGs and node genes led to the identification of S100A9 as a target gene. The S100A9 level was significantly higher in diabetic than in non-diabetic plasma (178.40 ± 44.65 ng/mL vs. 40.84 ± 18.86 ng/mL) and in chronic ulcers, and the wound healing time correlated positively with the plasma S100A9 level. The levels of inflammatory cytokines (tumor necrosis factor-α, interleukin [IL]-1, and IL-6) and related pathway proteins (phospho-extracellular signal regulated kinase [ERK], phospho-p38, phospho-p65, and p-protein kinase B [Akt]) were also elevated. The epidermal layer was notably thinner in chronic diabetic ulcers than in non-diabetic skin (24.17 ± 25.60 μm vs. 412.00 ± 181.60 μm). CONCLUSIONS S100A9 was significantly upregulated in diabetic foot and was associated with prolonged wound healing. S100A9 may impair diabetic wound healing by disrupting local inflammatory responses and skin re-epithelialization.
Collapse
Affiliation(s)
- Renhui Wan
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Shuo Fang
- Department of Plastics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xingxing Zhang
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Weiyi Zhou
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xiaoyan Bi
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Le Yuan
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Qian Lv
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yan Song
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wei Tang
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yongquan Shi
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Tuo Li
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
3
|
Li W, Chen Q, Peng C, Yang D, Liu S, Lv Y, Jiang L, Xu S, Huang L. Roles of the Receptor for Advanced Glycation End Products and Its Ligands in the Pathogenesis of Alzheimer's Disease. Int J Mol Sci 2025; 26:403. [PMID: 39796257 PMCID: PMC11721675 DOI: 10.3390/ijms26010403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
The Receptor for Advanced Glycation End Products (RAGE), part of the immunoglobulin superfamily, plays a significant role in various essential functions under both normal and pathological conditions, especially in the progression of Alzheimer's disease (AD). RAGE engages with several damage-associated molecular patterns (DAMPs), including advanced glycation end products (AGEs), beta-amyloid peptide (Aβ), high mobility group box 1 (HMGB1), and S100 calcium-binding proteins. This interaction impairs the brain's ability to clear Aβ, resulting in increased Aβ accumulation, neuronal injury, and mitochondrial dysfunction. This further promotes inflammatory responses and oxidative stress, ultimately leading to a range of age-related diseases. Given RAGE's significant role in AD, inhibitors that target RAGE and its ligands hold promise as new strategies for treating AD, offering new possibilities for alleviating and treating this serious neurodegenerative disease. This article reviews the various pathogenic mechanisms of AD and summarizes the literature on the interaction between RAGE and its ligands in various AD-related pathological processes, with a particular focus on the evidence and mechanisms by which RAGE interactions with AGEs, HMGB1, Aβ, and S100 proteins induce cognitive impairment in AD. Furthermore, the article discusses the principles of action of RAGE inhibitors and inhibitors targeting RAGE-ligand interactions, along with relevant clinical trials.
Collapse
Affiliation(s)
- Wen Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Qiuping Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Chengjie Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Dan Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Si Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Yanwen Lv
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Langqi Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihua Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| |
Collapse
|
4
|
Smolinska V, Klimova D, Danisovic L, Harsanyi S. Synovial Fluid Markers and Extracellular Vesicles in Rheumatoid Arthritis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1945. [PMID: 39768826 PMCID: PMC11678482 DOI: 10.3390/medicina60121945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
In recent years, numerous potential prognostic biomarkers for rheumatoid arthritis (RA) have been investigated. Despite these advancements, clinical practice primarily relies on autoantibody tests-for rheumatoid factor (RF) and anti-citrullinated protein antibody (anti-CCP)-alongside inflammatory markers, such as the erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP). Expanding the repertoire of diagnostic and therapeutic biomarkers is critical for improving clinical outcomes in RA. Emerging evidence highlights the significance of synovial fluid biomarkers, including aggrecan, matrix metalloproteinases, glucosyl-galactosyl-pyridinoline, hyaluronic acid, S100 proteins, calprotectin, and various cytokines, as well as immunological markers. Additionally, specific components of extracellular vesicles, such as non-coding RNAs, heat shock proteins, and lipids, are gaining attention. This review focuses on molecular markers found in synovial fluid and extracellular vesicles, excluding clinical and imaging biomarkers, and explores their potential applications in the diagnosis and management of RA.
Collapse
Affiliation(s)
- Veronika Smolinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
- National Institute of Rheumatic Diseases, Nábrežie Ivana Krasku 4, 921 12 Piestany, Slovakia
| | - Daniela Klimova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
- National Institute of Rheumatic Diseases, Nábrežie Ivana Krasku 4, 921 12 Piestany, Slovakia
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
| |
Collapse
|
5
|
Tian Q, Li Z, Yan Z, Jiang S, Zhao X, Wang L, Li M. Inflammatory role of S100A8/A9 in the central nervous system non-neoplastic diseases. Brain Res Bull 2024; 218:111100. [PMID: 39396712 DOI: 10.1016/j.brainresbull.2024.111100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
S100A8 (MRP8) and S100A9 (MRP14) are critical mediators of the inflammatory response; they are usually present as heterodimers because of the instability of homodimers. Studies have demonstrated that S100A8/A9 expression is significantly upregulated in several central nervous system (CNS) diseases. S100A8/A9 is actively released by neutrophils and monocytes; it plays a key role in regulating the inflammatory response by stimulating leukocyte recruitment and inducing cytokine secretion during inflammation. Additionally, S100A8/A9 can be used as a diagnostic biomarker for several CNS diseases and as a predictor of therapeutic response to inflammation-related diseases. In this work, we reviewed our current understanding of S100A8/A9 overexpression in inflammation and its importance in the development and progression of CNS inflammatory diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and stroke, and the functional roles and therapeutic applications of S100A8/A9 in these diseases. Finally, we discussed the current barriers and future research directions of S100A8/A9 in CNS diseases.
Collapse
Affiliation(s)
- Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Zhijie Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Ziang Yan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Shengming Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Xincan Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Lei Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443000, China; Department of Neurosurgery, Yichang Central People's Hospital, Yichang, Hubei, China.
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
6
|
Zheng H, Zhao P, Tan Z, Yu WM, Werner J, Stieglitz E, Porter C, Chandrakasan S, Wechsler D, Mendez-Ferrer S, Qu CK. Prototypical innate immune mechanism hijacked by leukemia-initiating mutant stem cells for selective advantage and immune evasion in Ptpn11-associated juvenile myelomonocytic leukemia. RESEARCH SQUARE 2024:rs.3.rs-4450642. [PMID: 39149498 PMCID: PMC11326406 DOI: 10.21203/rs.3.rs-4450642/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Juvenile myelomonocytic leukemia (JMML), a clonal hematologic malignancy, originates from mutated hematopoietic stem cells (HSCs). The mechanism sustaining the persistence of mutant stem cells, leading to leukemia development, remains elusive. In this study, we conducted comprehensive examination of gene expression profiles, transcriptional factor regulons, and cell compositions/interactions throughout various stages of tumor cell development in Ptpn11 mutation-associated JMML. Our analyses revealed that leukemia-initiating Ptpn11 E76K/+ mutant stem cells exhibited de novo activation of the myeloid transcriptional program and aberrant developmental trajectories. These mutant stem cells displayed significantly elevated expression of innate immunity-associated anti-microbial peptides and pro-inflammatory proteins, particularly S100a9 and S100a8. Biological experiments confirmed that S100a9/S100a8 conferred a selective advantage to the leukemia-initiating cells through autocrine effects and facilitated immune evasion by recruiting and promoting immune suppressive myeloid-derived suppressor cells (MDSCs) in the microenvironment. Importantly, pharmacological inhibition of S100a9/S100a8 signaling effectively impeded leukemia development from Ptpn11 E76K/+ mutant stem cells. These findings collectively suggest that JMML tumor-initiating cells exploit evolutionarily conserved innate immune and inflammatory mechanisms to establish clonal dominance.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA; Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Peng Zhao
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Zhenya Tan
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Wen-Mei Yu
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Juwita Werner
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California San Francisco, San Francisco, USA
| | - Elliot Stieglitz
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California San Francisco, San Francisco, USA
| | - Chris Porter
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Shanmuganathan Chandrakasan
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Daniel Wechsler
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Simon Mendez-Ferrer
- Department of Hematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Cheng-Kui Qu
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| |
Collapse
|
7
|
Pan B, Teng Y, Wang R, Chen D, Chen H. Deciphering the molecular nexus of BTG2 in periodontitis and diabetic kidney disease. BMC Med Genomics 2024; 17:152. [PMID: 38831322 PMCID: PMC11149328 DOI: 10.1186/s12920-024-01915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
OBJECTIVE To investigate the role of BTG2 in periodontitis and diabetic kidney disease (DKD) and its potential underlying mechanism. METHODS Gene expression data for periodontitis and DKD were acquired from the Gene Expression Omnibus (GEO) database. Differential expression analysis identified co-expressed genes between these conditions. The Nephroseq V5 online nephropathy database validated the role of these genes in DKD. Pearson correlation analysis identified genes associated with our target gene. We employed Gene Set Enrichment Analysis (GSEA) and Protein-Protein Interaction (PPI) networks to elucidate potential mechanisms. Expression levels of BTG2 mRNA were examined using quantitative polymerase Chain Reaction (qPCR) and immunofluorescence assays. Western blotting quantified proteins involved in epithelial-to-mesenchymal transition (EMT), apoptosis, mTORC1 signaling, and autophagy. Additionally, wound healing and flow cytometric apoptosis assays evaluated podocyte migration and apoptosis, respectively. RESULTS Analysis of GEO database data revealed BTG2 as a commonly differentially expressed gene in both DKD and periodontitis. BTG2 expression was reduced in DKD compared to normal conditions and correlated with proteinuria. GSEA indicated enrichment of BTG2 in the EMT and mTORC1 signaling pathways. The PPI network highlighted BTG2's relevance to S100A9, S100A12, and FPR1. Immunofluorescence assays demonstrated significantly lower BTG2 expression in podocytes under high glucose (HG) conditions. Reduced BTG2 expression in HG-treated podocytes led to increased levels of EMT markers (α-SMA, vimentin) and the apoptotic protein Bim, alongside a decrease in nephrin. Lower BTG2 levels were associated with increased podocyte mobility and apoptosis, as well as elevated RPS6KB1 and mTOR levels, but reduced autophagy marker LC3. CONCLUSION Our findings suggest that BTG2 is a crucial intermediary gene linking DKD and periodontitis. Modulating autophagy via inhibition of the mTORC1 signaling pathway, and consequently suppressing EMT, may be pivotal in the interplay between periodontitis and DKD.
Collapse
Affiliation(s)
- Binhui Pan
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, Zhejiang Province, China
| | - Yangyang Teng
- Department of Gastroenterology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Renban Wang
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, Zhejiang Province, China
| | - Dan Chen
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, Zhejiang Province, China
| | - Hui Chen
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
8
|
Paramasivam S, Perumal SS, Ekambaram SP. Computational Deciphering of the Role of S100A8 and S100A9 Proteins and Their Changes in the Structure Assembly Influences Their Interaction with TLR4, RAGE, and CD36. Protein J 2024; 43:243-258. [PMID: 38431537 DOI: 10.1007/s10930-024-10186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
S100A8 and S100A9 belong to the calcium-binding, damage associated molecular pattern (DAMP) proteins shown to aggravate the pathogenesis of rheumatoid arthritis (RA) through their interaction with the TLR4, RAGE and CD36 receptors. S100A8 and S100A9 proteins tend to exist in monomeric, homo and heterodimeric forms, which have been implicated in the pathogenesis of RA, via interacting with Pattern Recognition receptors (PRRs). The study aims to assess the influence of changes in the structure and biological assembly of S100A8 and S100A9 proteins as well as their interaction with significant receptors in RA through computational methods and surface plasmon resonance (SPR) analysis. Molecular docking analysis revealed that the S100A9 homodimer and S100A8/A9 heterodimer showed higher binding affinity towards the target receptors. Most S100 proteins showed good binding affinity towards TLR4 compared to other receptors. Based on the 50 ns MD simulations, TLR4, RAGE, and CD36 formed stable complexes with the monomeric and dimeric forms of S100A8 and S100A9 proteins. However, SPR analysis showed that the S100A8/A9 heterodimers formed stable complexes and exhibited high binding affinity towards the receptors. SPR data also indicated that TLR4 and its interactions with S100A8/A9 proteins may play a primary role in the pathogenesis of RA, with additional contributions from CD36 and RAGE interactions. Subsequent in vitro and in vivo investigations are warranted to corroborate the involvement of S100A8/A9 and the expression of TLR4, RAGE, and CD36 in the pathophysiology of RA.
Collapse
Affiliation(s)
- Sivasakthi Paramasivam
- Department of Pharmaceutical Technology, Bharathidasan Institute of Technology Campus, University College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Senthamil Selvan Perumal
- Department of Pharmaceutical Technology, Bharathidasan Institute of Technology Campus, University College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Sanmuga Priya Ekambaram
- Department of Pharmaceutical Technology, Bharathidasan Institute of Technology Campus, University College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
9
|
O'Reilly S. S100A4 a classical DAMP as a therapeutic target in fibrosis. Matrix Biol 2024; 127:1-7. [PMID: 38219976 DOI: 10.1016/j.matbio.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Fibrosis regardless of aetiology is characterised by persistently activated myofibroblasts that are contractile and secrete excessive amounts of extracellular matrix molecules that leads to loss of organ function. Damage-Associated Molecular Patterns (DAMPs) are endogenous host-derived molecules that are released from cells dying or under stress that can be triggered by a variety of insults, either chemical or physical, leading to an inflammatory response. Among these DAMPs is S100A4, part of the S100 family of calcium binding proteins that participate in a variety of cellular processes. S100A4 was first described in context of cancer as a pro-metastatic factor. It is now appreciated that aside from its role in cancer promotion, S100A4 is intimately involved in tissue fibrosis. The extracellular form of S100A4 exerts its effects through multiple receptors including Toll-Like Receptor 4 and RAGE to evoke signalling cascades involving downstream mediators facilitating extracellular matrix deposition and myofibroblast generation and can play a role in persistent activation of myofibroblasts. S100A4 may be best understood as an amplifier of inflammatory and fibrotic processes. S100A4 appears critical in systemic sclerosis pathogenesis and blocking the extracellular form of S100A4 in vivo in various animal models of disease mitigates fibrosis and may even reverse established disease. This review appraises S100A4's position as a DAMP and its role in fibrotic conditions and highlight therapeutically targeting this protein to halt fibrosis, suggesting that it is a tractable target.
Collapse
Affiliation(s)
- Steven O'Reilly
- Biosciences, Durham University, South Road, Durham, United Kingdom.
| |
Collapse
|
10
|
La Bella S, Di Ludovico A, Di Donato G, Basaran O, Ozen S, Gattorno M, Chiarelli F, Breda L. The pyrin inflammasome, a leading actor in pediatric autoinflammatory diseases. Front Immunol 2024; 14:1341680. [PMID: 38250061 PMCID: PMC10796709 DOI: 10.3389/fimmu.2023.1341680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
The activation of the pyrin inflammasome represents a highly intriguing mechanism employed by the innate immune system to effectively counteract pathogenic agents. Despite its key role in innate immunity, pyrin has also garnered significant attention due to its association with a range of autoinflammatory diseases (AIDs) including familial Mediterranean fever caused by disruption of the MEFV gene, or in other genes involved in its complex regulation mechanisms. Pyrin activation is strictly dependent on homeostasis-altering molecular processes, mostly consisting of the disruption of the small Ras Homolog Family Member A (RhoA) GTPases by pathogen toxins. The downstream pathways are regulated by the phosphorylation of specific pyrin residues by the kinases PKN1/2 and the binding of the chaperone 14-3-3. Furthermore, a key role in pyrin activation is played by the cytoskeleton and gasdermin D, which is responsible for membrane pores in the context of pyroptosis. In addition, recent evidence has highlighted the role of steroid hormone catabolites and alarmins S100A8/A9 and S100A12 in pyrin-dependent inflammation. The aim of this article is to offer a comprehensive overview of the most recent evidence on the pyrin inflammasome and its molecular pathways to better understand the pathogenesis behind the significant group of pyrin-related AIDs.
Collapse
Affiliation(s)
- Saverio La Bella
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Armando Di Ludovico
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Giulia Di Donato
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Ozge Basaran
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Seza Ozen
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Marco Gattorno
- UOC Rheumatology and Autoinflammatory Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Luciana Breda
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| |
Collapse
|
11
|
Jiang H, Zhao Y, Su M, Sun L, Chen M, Zhang Z, Ilyas I, Wang Z, Little PJ, Wang L, Weng J, Ge J, Xu S. A proteome-wide screen identifies the calcium binding proteins, S100A8/S100A9, as clinically relevant therapeutic targets in aortic dissection. Pharmacol Res 2024; 199:107029. [PMID: 38056513 DOI: 10.1016/j.phrs.2023.107029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023]
Abstract
Aortic dissection (AD) is a fatal cardiovascular disease with limited pharmacotherapies. To discover novel therapeutic targets for AD, the present study was conducted on ascending aorta samples from AD patients versus those from control subjects using proteomic analysis. Integrated proteomic data analysis identified S100 calcium-binding proteins A8 and A9 (S100A8/A9) as new therapeutic targets for AD. As assessed by ELISA, the circulating levels of S100A8/A9 were elevated in AD patients. In addition, we validated the upregulation of S100A8/A9 in a mouse model of AD. In vitro and in vivo studies substantiated that S100A8/A9, as danger-associated molecular pattern molecules, promotes the smooth muscle cells phenotypic switch by inhibiting serum response factor (SRF) activity but elevating NF-κB dependent inflammatory response. Depletion of S100A8/A9 attenuates the occurrence and development of AD. As a proof of concept, we tested the safety and efficacy of pharmacological inhibition of S100A8/A9 by ABR-25757 (paquinimod) in a mouse model of AD. We observed that ABR-25757 ameliorated the incidence of rupture and improved elastin morphology associated with AD. Further single-cell RNA sequencing disclosed that the phenotypic switch of vascular smooth muscle cells (VSMCs) and inflammatory response pathways were responsible for ABR-25757-mediated protection against AD. Thus, this study reveals the regulatory mechanism of S100A8/A9 in AD and offers a potential therapeutic avenue to treat AD by targeting S100A8/A9.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yaping Zhao
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Meiming Su
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Lu Sun
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Meijie Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Zhidan Zhang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Iqra Ilyas
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Zhihua Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Jianjun Ge
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China.
| |
Collapse
|
12
|
Chen B, Di B. Endogenous Ligands of TLR4 in Microglia: Potential Targets for Related Neurological Diseases. Curr Drug Targets 2024; 25:953-970. [PMID: 39234911 DOI: 10.2174/0113894501316051240821060249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Chronic inflammation mediated by microglia is a cause of some neuroinflammatory diseases. TLR4, a natural immune receptor on microglia, plays an important role in the occurrence of inflammation and the process of diseases. TLR4 can be activated by a variety of ligands to trigger inflammatory responses, including endogenous ligands HMGB1, S100A8/9, Heme, and Fetuin-A. As ligands derived from the body itself, they have the ability to bind directly to TLR4 and can be used as inducers of aseptic inflammation. In the past 20 years, targeting ligands rather than receptors has become an emerging therapeutic strategy for the treatment of diseases, so understanding the relationship between microglia, TLR4, TLR4 ligands, and corresponding diseases may have new implications for the treatment of diseases. In the article, we will discuss the TLR4 and the endogenous substances that can activate the TLR4 signaling pathway and present literature support for their role in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Bo Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
- Office of China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, P.R. China
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
- Office of China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, P.R. China
| |
Collapse
|
13
|
Wang Q, Long G, Luo H, Zhu X, Han Y, Shang Y, Zhang D, Gong R. S100A8/A9: An emerging player in sepsis and sepsis-induced organ injury. Biomed Pharmacother 2023; 168:115674. [PMID: 37812889 DOI: 10.1016/j.biopha.2023.115674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
Sepsis, the foremost contributor to mortality in intensive care unit patients, arises from an uncontrolled systemic response to invading infections, resulting in extensive harm across multiple organs and systems. Recently, S100A8/A9 has emerged as a promising biomarker for sepsis and sepsis-induced organ injury, and targeting S100A8/A9 appeared to ameliorate inflammation-induced tissue damage and improve adverse outcomes. S100A8/A9, a calcium-binding heterodimer mainly found in neutrophils and monocytes, serves as a causative molecule with pro-inflammatory and immunosuppressive properties, which are vital in the pathogenesis of sepsis. Therefore, improving our comprehension of how S100A8/A9 acts as a pathological player in the development of sepsis is imperative for advancing research on sepsis. Our review is the first-to the best of our knowledge-to discuss the biology of S100A8/A9 and its release mechanisms, summarize recent advances concerning the vital roles of S100A8/A9 in sepsis and the consequential organ damage, and underscore its potential as a promising diagnostic biomarker and therapeutic target for sepsis.
Collapse
Affiliation(s)
- Qian Wang
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China
| | - Gangyu Long
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China
| | - Hong Luo
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China
| | - Xiqun Zhu
- Hubei Cancer Hospital, Tongji Medical College, HUST, Wuhan 430079, China
| | - Yang Han
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan 430023, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan 430030, China.
| | - Dingyu Zhang
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China; Hubei Clinical Research Center for Infectious Diseases, Wuhan 430023, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan 430023, China; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China.
| | - Rui Gong
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
14
|
Centa M, Thermidor C, Fiel MI, Alexandropoulos K. Profiling of mouse and human liver diseases identifies targets for therapeutic treatment of autoimmune hepatitis. Clin Immunol 2023; 256:109807. [PMID: 37821072 DOI: 10.1016/j.clim.2023.109807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Autoimmune hepatitis (AIH), primary sclerosing cholangitis (PSC), and non-alcoholic steatohepatitis (NASH) are chronic liver diseases (CLDs) of distinct etiologies that represent a public health risk with limited therapeutic options. A common feature among CLDs is an aggressive T cell response resulting in destruction of liver tissue and fibrosis. Here, we assessed the presence and nature of T cell inflammation in late-stage human AIH, PSC and NASH and examined whether targeting the T cell response can improve disease pathology in a mouse model (Traf6ΔTEC) of spontaneous AIH. T cell infiltration and ensuing inflammatory pathways were present in human AIH and PSC and to a lesser extent in NASH. However, we observed qualitative differences in infiltrating T cell subsets and upregulation of inflammatory pathways among these diseases, while mouse and human AIH exhibited similar immunogenic signatures. While gene expression profiles differed among diseases, we identified 52 genes commonly upregulated across all diseases that included the JAK3 tyrosine kinase. Therapeutic targeting of chronic AIH with the JAK inhibitor tofacitinib reduced hepatic T cell infiltration, AIH histopathology and associated immune parameters in treated Traf6ΔTEC mice. Our results indicate that targeting T cell responses in established hepatic autoimmune inflammation is a feasible strategy for developing novel therapeutic approaches to treat AIH and possibly other CLDs irrespective of etiology.
Collapse
Affiliation(s)
- Monica Centa
- Department of Medicine, Division of Clinical Immunology, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christelle Thermidor
- Department of Medicine, Division of Clinical Immunology, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Konstantina Alexandropoulos
- Department of Medicine, Division of Clinical Immunology, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
15
|
Zhang Y, Sun C, Duan Y, Cheng S, Hu W. Carbon dots-functionalized extended gate organic field effect transistor-based biosensors for low abundance proteins. NANOSCALE 2023; 15:16458-16465. [PMID: 37791597 DOI: 10.1039/d3nr03405d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Organic field effect transistors have emerged as promising platforms for biosensing applications. However, the challenge lies in optimizing functionalization strategies for the sensing interface, enabling the simultaneous detection of low abundance proteins while maintaining device performance. Here, we designed a carbon dots-functionalized extended gate organic field effect transistor. Leveraging the advantages of facile synthesis, tunable modification, small particle size, and cost-effectiveness of carbon dots, we implemented their integration onto the electrode surface. Through harnessing the covalent interactions of functional groups on the surface of carbon dots, we achieved effective immobilization of low abundance proteins without compromising device performance. Consequently, this biosensor exhibits a remarkably low limit of detection of 2.7 pg mL-1 and demonstrates high selectivity for the carcinoembryonic antigen. These findings highlight the superior capabilities of carbon dots in enhancing biosensor performance and emphasize their potential for early cancer detection.
Collapse
Affiliation(s)
- Yanmin Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences School of Science, Tianjin University, Tianjin 300072, China
| | - Chenfang Sun
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Insitute, Tianjin University of Technology, Tianjin 300384, China
| | - Yuchen Duan
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences School of Science, Tianjin University, Tianjin 300072, China
| | - Shanshan Cheng
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences School of Science, Tianjin University, Tianjin 300072, China
| | - Wenping Hu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences School of Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
16
|
Vaňková L, Bufka J, Křížková V. Pathophysiological and clinical point of view on Kawasaki disease and MIS-C. Pediatr Neonatol 2023; 64:495-504. [PMID: 37453902 PMCID: PMC10286520 DOI: 10.1016/j.pedneo.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/24/2023] [Accepted: 05/19/2023] [Indexed: 07/18/2023] Open
Abstract
This article compares two important pathophysiological states, Kawasaki disease, and multisystem inflammatory syndrome, in children associated with COVID-19 (MIS-C). Both occur predominantly in children, have a temporal association with an infectious agent, and are associated with immune-system alteration and systemic inflammation under certain circumstances. The two share common pathophysiology, including enhancement of interleukin-1 neutrophils, activation of the inflammasome, pyroptosis, or NETosis. Moreover, the clinical presentation of the diseases overlaps. However, they are indeed two separate diseases, proven by the differences in the epidemiological and etiological aspects and the pathophysiological processes involved in the development and frequency of some clinical signs. This article highlights potentially exciting areas that have not yet been studied in detail, which could help better understand the development of these diseases.
Collapse
Affiliation(s)
- Lenka Vaňková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Czech Republic.
| | - Jiří Bufka
- Department of Pediatrics, Teaching Hospital in Pilsen, Czech Republic
| | - Věra Křížková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| |
Collapse
|
17
|
Anil S, Malaiappan S, George AK, Joseph B. Calprotectin, S100A8, and S100A9: Potential Biomarkers of Periodontal Inflammation: A Scoping Review. WORLD JOURNAL OF DENTISTRY 2023; 14:559-567. [DOI: 10.5005/jp-journals-10015-2244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
|
18
|
Hu Y, Han Y, He M, Zhang Y, Zou X. S100 proteins in head and neck squamous cell carcinoma (Review). Oncol Lett 2023; 26:362. [PMID: 37545618 PMCID: PMC10398633 DOI: 10.3892/ol.2023.13948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/30/2023] [Indexed: 08/08/2023] Open
Abstract
The most common tumor affecting the head and neck is head and neck squamous cell carcinoma (HNSCC). The characteristics of HNSCC include a rapid onset, a lack of early diagnosis, drug resistance, relapse and systemic adverse effects, leading to inadequate prevention, diagnosis and treatment. Notably, previous research suggests that there is an association between S100 proteins and HNSCC. S100A8, S100A9 and S100A14 interfere with tumor cell proliferation by blocking the cell cycle. The present review discusses this association. S100A4 enhances cancer stem cell properties, and interacts with actin and tropomyosin to promote tumor cell migration. S100A1, S100A8, S100A9, S100A10, S100A14 and S100P are involved in the initiation and progression of HNSCC via Hippo, nuclear factor κB, phosphatidylinositol kinase/protein kinase B/mammalian target of rapamycin and other signaling pathways. In addition, certain long non-coding RNAs and microRNAs are involved in regulating the expression of S100 proteins in HNSCC. Reducing the expression of certain members of the S100 protein family may enhance the chemosensitivity of HNSCC. Collectively, it is suggested that S100 proteins may function as markers and targets for the prevention, diagnosis and treatment of HNSCC.
Collapse
Affiliation(s)
- Yihong Hu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
- School of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Yucheng Han
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
- School of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Minhui He
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
- School of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Yanqun Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xianqiong Zou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
- School of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| |
Collapse
|
19
|
Shi W, Wan TT, Li HH, Guo SB. Blockage of S100A8/A9 ameliorates septic nephropathy in mice. Front Pharmacol 2023; 14:1172356. [PMID: 37547329 PMCID: PMC10398385 DOI: 10.3389/fphar.2023.1172356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023] Open
Abstract
Septic acute kidney injury (AKI) is the commonest cause of complication of sepsis in intensive care units, but its pathophysiology remains unclear. Calprotectin (S100A8/A9), which is a damage-associated molecular patterns (DAMPs) molecule, exerts a critical role in modulating leukocyte recruitment and inflammatory response during various diseases. However, role of S100A8/A9 in septic AKI is largely unknown. In this research, Septic AKI was triggered by cecal ligation and puncture (CLP) operation in wild-type mice, which treated with or without an S100A9 inhibitor, Paquinimod (Paq, 10 mg/kg) that prevents S100A8/A9 to bind to Toll-like receptor 4 (TLR4). Renal function, pathological changes, cell death, and oxidative stress were evaluated. Our research indicated that the mRNA and protein expression of S100A9 are time-dependently elevated in the kidney following CLP. Moreover, the administration of Paq for 24 h significantly improved CLP-induced renal dysfunction and pathological alterations compared with vehicle treatment in mice. These beneficial effects were associated with the inhibition of CLP-triggered renal tubular epithelial cell apoptosis, inflammation, superoxide production, and mitochondrial dynamic imbalance. What's more, we further confirmed the above findings by cell co-culture experiments. Our study demonstrates that S100A9 is a prominent protein to lead to septic AKI, and the selective inhibition of S100A9 could represent a new therapeutic approach which can treat septic AKI.
Collapse
Affiliation(s)
| | | | - Hui-Hua Li
- *Correspondence: Shu-Bin Guo, ; Hui-Hua Li,
| | | |
Collapse
|
20
|
Sirkis DW, Warly Solsberg C, Johnson TP, Bonham LW, Sturm VE, Lee SE, Rankin KP, Rosen HJ, Boxer AL, Seeley WW, Miller BL, Geier EG, Yokoyama JS. Single-cell RNA-seq reveals alterations in peripheral CX3CR1 and nonclassical monocytes in familial tauopathy. Genome Med 2023; 15:53. [PMID: 37464408 PMCID: PMC10354988 DOI: 10.1186/s13073-023-01205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Emerging evidence from mouse models is beginning to elucidate the brain's immune response to tau pathology, but little is known about the nature of this response in humans. In addition, it remains unclear to what extent tau pathology and the local inflammatory response within the brain influence the broader immune system. METHODS To address these questions, we performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) from carriers of pathogenic variants in MAPT, the gene encoding tau (n = 8), and healthy non-carrier controls (n = 8). Primary findings from our scRNA-seq analyses were confirmed and extended via flow cytometry, droplet digital (dd)PCR, and secondary analyses of publicly available transcriptomics datasets. RESULTS Analysis of ~ 181,000 individual PBMC transcriptomes demonstrated striking differential expression in monocytes and natural killer (NK) cells in MAPT pathogenic variant carriers. In particular, we observed a marked reduction in the expression of CX3CR1-the gene encoding the fractalkine receptor that is known to modulate tau pathology in mouse models-in monocytes and NK cells. We also observed a significant reduction in the abundance of nonclassical monocytes and dysregulated expression of nonclassical monocyte marker genes, including FCGR3A. Finally, we identified reductions in TMEM176A and TMEM176B, genes thought to be involved in the inflammatory response in human microglia but with unclear function in peripheral monocytes. We confirmed the reduction in nonclassical monocytes by flow cytometry and the differential expression of select biologically relevant genes dysregulated in our scRNA-seq data using ddPCR. CONCLUSIONS Our results suggest that human peripheral immune cell expression and abundance are modulated by tau-associated pathophysiologic changes. CX3CR1 and nonclassical monocytes in particular will be a focus of future work exploring the role of these peripheral signals in additional tau-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
| | - Caroline Warly Solsberg
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, 94158, USA
| | - Taylor P Johnson
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
| | - Luke W Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, USA
| | - Virginia E Sturm
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA, 94158, USA
- Trinity College Dublin, Dublin, Ireland
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA, 94158, USA
- Trinity College Dublin, Dublin, Ireland
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Department of Pathology, University of California, San Francisco, CA, 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA, 94158, USA
- Trinity College Dublin, Dublin, Ireland
| | - Ethan G Geier
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Transposon Therapeutics, Inc, San Diego, CA, 92122, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA.
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, 94158, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, USA.
- Global Brain Health Institute, University of California, San Francisco, CA, 94158, USA.
- Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
21
|
Zhang Y, Zhang X, Han J, Guo Y, He J, Yang F, Mao R, Huang Y, Zhang J. Plasma S100A8 and S100A9 Are Strong Prognostic Factors for Hepatitis B Virus-Related Acute-on-Chronic Liver Failure. Can J Gastroenterol Hepatol 2023; 2023:6164611. [PMID: 37469934 PMCID: PMC10352535 DOI: 10.1155/2023/6164611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/07/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
Objectives The rapidly evolving organ failure and high short-run mortality of acute-on-chronic liver failure (ACLF) are inseparable from the role of systemic inflammatory response. S100A8 and S100A9 are associated with the excessive cytokine storm and play a decisive part within the process of inflammation. We aimed to clarify the role of them in predicting prognosis of hepatitis B virus-related ACLF (HBV-ACLF). Methods S100A8 and S100A9 levels were analyzed in plasma of 187 transplant-free HBV-ACLF patients, 28 healthy controls and 40 chronic hepatitis B (CHB) patients. S100A8 and S100A9 mRNAs were checked in liver samples from 32 HBV-ACLF patients with liver transplantation, 19 patients undergoing surgery for hepatic hemangioma and 10 CHB patients with needle biopsy. Results The plasma levels of the S100A8 and S100A9 were higher in HBV-ACLF patients than in CHB patients (S100A8 : P < 0.001 and S100A9 : P < 0.001) and healthy controls (S100A8 : P < 0.001 and S100A9 : P < 0.001), and similar results were obtained for mRNA expression. Moreover, both proteins were related to ACLF grade, different types of organ failure, and infection, and they correlated with other prognostic scoring systems. S100A8 and S100A9 can dependently predict 28/90-day mortality (28-day: S100A8: hazard ratio (HR): 1.027; 95% confidence interval (CI): 1.007-1.048; P=0.026, S100A9 : HR: 1.009; 95% CI: 1.001-1.017; P=0.007, 90-day: S100A8 : HR: 1.023; 95% CI: 1.011-1.035; P=0.004, S100A9 : HR: 1.008; 95% CI: 1.004-1.012; and P < 0.001). Among all of the scoring systems, the combined scoring model (S100A8 and S100A9 jointly with the Chronic Liver Failure-Consortium Organ Failure score (CLIF-C OFs)) displayed the highest area under the receiver operating curve (0.923 (95% CI, 0.887-0.961)) in the prediction of 90-day mortality. Conclusions S100A8 and S100A9 are promising biomarkers for the analysis of risk stratification and prognosis in ACLF patients. In addition, combining them with the CLIF-C OFs may better predict the prognosis of ACLF.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiajia Han
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yifei Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjing He
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Feifei Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Hepatitis Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Jorch SK, McNally A, Berger P, Wolf J, Kaiser K, Chetrusca Covash A, Robeck S, Pastau I, Fehler O, Jauch-Speer SL, Hermann S, Schäfers M, Van Gorp H, Kanneganti A, Dehoorne J, Haerynck F, Penco F, Gattorno M, Chae JJ, Kubes P, Lamkanfi M, Wullaert A, Sperandio M, Vogl T, Roth J, Austermann J. Complex regulation of alarmins S100A8/A9 and secretion via gasdermin D pores exacerbates autoinflammation in familial Mediterranean fever. J Allergy Clin Immunol 2023; 152:230-243. [PMID: 36822481 DOI: 10.1016/j.jaci.2023.01.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Familial Mediterranean fever (FMF), caused by mutations in the pyrin-encoding MEFV gene, is characterized by uncontrolled caspase-1 activation and IL-1β secretion. A similar mechanism drives inflammation in cryopyrin-associated periodic fever syndrome (CAPS) caused by mutations in NLRP3. CAPS and FMF, however, result in largely different clinical manifestations, pointing to additional, autoinflammatory pathways involved in FMF. Another hallmark of FMF is extraordinarily high expression of S100A8 and S100A9. These alarmins are ligands of Toll-like receptor 4 and amplifiers of inflammation. However, the relevance of this inflammatory pathway for the pathogenesis of FMF is unknown. OBJECTIVE This study investigated whether mutations in pyrin result in specific secretion of S100A8/A9 alarmins through gasdermin D pores' amplifying FMF pathology. METHODS S100A8/A9 levels in FMF patients were quantified by enzyme-linked immunosorbent assay. In vitro models with knockout cell lines and specific protein inhibitors were used to unravel the S100A8/A9 secretion mechanism. The impact of S100A8/A9 to the pathophysiology of FMF was analyzed with FMF (MEFVV726A/V726A) and S100A9-/- mouse models. Pyrin-S100A8/A9 interaction was investigated by coimmunoprecipitation, immunofluorescence, and enzyme-linked immunosorbent assay studies. RESULTS The S100A8/A9 complexes directly interacted with pyrin. Knocking out pyrin, caspase-1, or gasdermin D inhibited the secretion of these S100 alarmins. Inflammatory S100A8/A9 dimers were inactivated by tetramer formation. Blocking this inactivation by targeted S100A9 deletion in a murine FMF model demonstrated the relevance of this novel autoinflammatory pathway in FMF. CONCLUSION This is the first proof that members of the S100 alarmin family are released in a pyrin/caspase-1/gasdermin D-dependent pathway and directly drive autoinflammation in vivo.
Collapse
Affiliation(s)
- Selina K Jorch
- Institute of Immunology, University of Münster, Münster, Germany; Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany
| | - Annika McNally
- Institute of Immunology, University of Münster, Münster, Germany
| | - Philipp Berger
- Institute of Immunology, University of Münster, Münster, Germany
| | - Jonas Wolf
- Institute of Immunology, University of Münster, Münster, Germany
| | - Kim Kaiser
- Institute of Immunology, University of Münster, Münster, Germany
| | | | - Stefanie Robeck
- Institute of Immunology, University of Münster, Münster, Germany
| | - Isabell Pastau
- Institute of Immunology, University of Münster, Münster, Germany
| | - Olesja Fehler
- Institute of Immunology, University of Münster, Münster, Germany
| | | | - Sven Hermann
- European Institute for Molecular Imaging, University of Münster, Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Münster, Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| | - Hanne Van Gorp
- VIB Center for Inflammation Research, Ghent, and the Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Apurva Kanneganti
- VIB Center for Inflammation Research, Ghent, and the Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Joke Dehoorne
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Federica Penco
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS "Giannina Gaslini," Genoa, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS "Giannina Gaslini," Genoa, Italy
| | - Jae Jin Chae
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Md
| | - Paul Kubes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| | - Mohamed Lamkanfi
- VIB Center for Inflammation Research, Ghent, and the Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Andy Wullaert
- VIB Center for Inflammation Research, Ghent, and the Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Markus Sperandio
- Ludwig Maximilians University Munich, Walter Brendel Center for Experimental Medicine, Munich, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany.
| | | |
Collapse
|
23
|
Yao RQ, Zhao PY, Li ZX, Liu YY, Zheng LY, Duan Y, Wang L, Yang RL, Kang HJ, Hao JW, Li JY, Dong N, Wu Y, Du XH, Zhu F, Ren C, Wu GS, Xia ZF, Yao YM. Single-cell transcriptome profiling of sepsis identifies HLA-DR lowS100A high monocytes with immunosuppressive function. Mil Med Res 2023; 10:27. [PMID: 37337301 DOI: 10.1186/s40779-023-00462-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Sustained yet intractable immunosuppression is commonly observed in septic patients, resulting in aggravated clinical outcomes. However, due to the substantial heterogeneity within septic patients, precise indicators in deciphering clinical trajectories and immunological alterations for septic patients remain largely lacking. METHODS We adopted cross-species, single-cell RNA sequencing (scRNA-seq) analysis based on two published datasets containing circulating immune cell profile of septic patients as well as immune cell atlas of murine model of sepsis. Flow cytometry, laser scanning confocal microscopy (LSCM) imaging and Western blotting were applied to identify the presence of S100A9+ monocytes at protein level. To interrogate the immunosuppressive function of this subset, splenic monocytes isolated from septic wild-type or S100a9-/- mice were co-cultured with naïve CD4+ T cells, followed by proliferative assay. Pharmacological inhibition of S100A9 was implemented using Paquinimod via oral gavage. RESULTS ScRNA-seq analysis of human sepsis revealed substantial heterogeneity in monocyte compartments following the onset of sepsis, for which distinct monocyte subsets were enriched in disparate subclusters of septic patients. We identified a unique monocyte subset characterized by high expression of S100A family genes and low expression of human leukocyte antigen DR (HLA-DR), which were prominently enriched in septic patients and might exert immunosuppressive function. By combining single-cell transcriptomics of murine model of sepsis with in vivo experiments, we uncovered a similar subtype of monocyte significantly associated with late sepsis and immunocompromised status of septic mice, corresponding to HLA-DRlowS100Ahigh monocytes in human sepsis. Moreover, we found that S100A9+ monocytes exhibited profound immunosuppressive function on CD4+ T cell immune response and blockade of S100A9 using Paquinimod could partially reverse sepsis-induced immunosuppression. CONCLUSIONS This study identifies HLA-DRlowS100Ahigh monocytes correlated with immunosuppressive state upon septic challenge, inhibition of which can markedly mitigate sepsis-induced immune depression, thereby providing a novel therapeutic strategy for the management of sepsis.
Collapse
Affiliation(s)
- Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Peng-Yue Zhao
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhi-Xuan Li
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu-Yang Liu
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Duan
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Lu Wang
- Department of Critical Care Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Rong-Li Yang
- Intensive Care Unit, Dalian Municipal Central Hospital Affiliated Dalian University of Technology, Dalian, 116033, Liaoning, China
| | - Hong-Jun Kang
- Department of Critical Care Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Ji-Wei Hao
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing-Yan Li
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Ning Dong
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiao-Hui Du
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Feng Zhu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chao Ren
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Guo-Sheng Wu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Zhao-Fan Xia
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
24
|
Liang H, Li J, Zhang K. Pathogenic role of S100 proteins in psoriasis. Front Immunol 2023; 14:1191645. [PMID: 37346040 PMCID: PMC10279876 DOI: 10.3389/fimmu.2023.1191645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease. The histopathological features of psoriasis include excessive proliferation of keratinocytes and infiltration of immune cells. The S100 proteins are a group of EF-hand Ca2+-binding proteins, including S100A2, -A7, -A8/A9, -A12, -A15, which expression levels are markedly upregulated in psoriatic skin. These proteins exert numerous functions such as serving as intracellular Ca2+ sensors, transduction of Ca2+ signaling, response to extracellular stimuli, energy metabolism, and regulating cell proliferation and apoptosis. Evidence shows a crucial role of S100 proteins in the development and progress of inflammatory diseases, including psoriasis. S100 proteins can possibly be used as potential therapeutic target and diagnostic biomarkers. This review focuses on the pathogenic role of S100 proteins in psoriasis.
Collapse
Affiliation(s)
- Huifang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| | - Junqin Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| |
Collapse
|
25
|
Noack M, Miossec P. Heterogeneous effects of S100 proteins during cell interactions between immune cells and stromal cells from synovium or skin. Clin Exp Immunol 2023; 212:276-284. [PMID: 36866451 PMCID: PMC10243843 DOI: 10.1093/cei/uxad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/07/2023] [Accepted: 03/01/2023] [Indexed: 03/04/2023] Open
Abstract
Cell interactions represent an important mechanism involved in the pathogenesis of chronic inflammation. The key S100 proteins A8 and A9 have been studied in several models of chronic inflammatory diseases with highly heterogeneous conclusions. In this context, the aim of this study was to determine the role of cell interactions on S100 protein production and their effect on cytokine production during cell interactions, between immune and stromal cells from synovium or skin. Peripheral blood mononuclear cells (PBMC) were cultured alone or with synoviocytes or skin fibroblasts, with or without phytohemagglutinin, exogenous A8, A9, A8/A9 proteins or anti-A8/A9 antibody. Production of IL-6, IL-1β, IL-17, TNF, A8, A9, and A8/A9 was measured by ELISA. Cell interactions with synoviocytes had no effect on A8, A9, or A8/A9 secretion, while cell interactions with skin fibroblasts decreased A8 production. This highlights the importance of stromal cell origin. The addition of S100 proteins in co-cultures with synoviocytes did not increase the production of IL-6, IL-17, or IL-1β, except for an increase of IL-6 secretion with A8. The presence of anti-S100A8/A9 antibody did not show obvious effects. Low concentration or absence of serum in the culture medium decreased the production of IL-17, IL-6, and IL-1β but despite these conditions, the addition of S100 proteins did not increase cytokine secretion. In conclusion, the role of A8/A9 in cell interactions during chronic inflammation appears complex and heterogeneous, depending on multiple factors, notably the origin of stromal cells that can affect their secretion.
Collapse
Affiliation(s)
- Mélissa Noack
- Immunogenomics and Inflammation Research Unit, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
26
|
Frade-Sosa B, Chacur CA, Augé JM, Ponce A, Sarmiento-Monroy JC, Azuaga AB, Sapena N, Ramírez J, Ruiz-Esquide V, Morlà R, Farietta S, Corzo P, Cañete JD, Sanmartí R, Gómez-Puerta JA. Calprotectin in Patients with Rheumatic Immunomediated Adverse Effects Induced by Checkpoints Inhibitors. Cancers (Basel) 2023; 15:cancers15112984. [PMID: 37296947 DOI: 10.3390/cancers15112984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND this is an exploratory study to evaluate calprotectin serum levels in patients with rheumatic immune-related adverse events (irAEs) induced by immune checkpoint inhibitor (ICI) treatment. METHODS this is a retrospective observational study including patients with irAEs rheumatic syndromes. We compared the calprotectin levels to those in a control group of patients with RA and with a control group of healthy individuals. Additionally, we included a control group of patients treated with ICI but without irAEs to check calprotectin levels. We also analysed the performance of calprotectin for the identification of active rheumatic disease using receiver operating characteristic curves (ROC). RESULTS 18 patients with rheumatic irAEs were compared to a control group of 128 RA patients and another group of 29 healthy donors. The mean calprotectin level in the irAE group was 5.15 μg/mL, which was higher than the levels in both the RA group (3.19 μg/mL) and the healthy group (3.81 μg/mL) (cut-off 2 μg/mL). Additionally, 8 oncology patients without irAEs were included. In this group, calprotectin levels were similar to those of the healthy controls. In patients with active inflammation, the calprotectin levels in the irAE group were significantly higher (8.43 μg/mL) compared to the RA group (3.94 μg/mL). ROC curve analysis showed that calprotectin had a very good discriminatory capacity to identify inflammatory activity in patients with rheumatic irAEs (AUC of 0.864). CONCLUSIONS the results suggest that calprotectin may serve as a marker of inflammatory activity in patients with rheumatic irAEs induced by treatment with ICIs.
Collapse
Affiliation(s)
- Beatriz Frade-Sosa
- Department of Rheumatology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Chafik Alejandro Chacur
- Department of Rheumatology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Josep M Augé
- Department of Biochemistry and Molecular Genetics (CDB), Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Andrés Ponce
- Department of Rheumatology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Juan C Sarmiento-Monroy
- Department of Rheumatology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ana Belén Azuaga
- Department of Rheumatology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Nuria Sapena
- Department of Rheumatology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Julio Ramírez
- Department of Rheumatology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Virginia Ruiz-Esquide
- Department of Rheumatology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Rosa Morlà
- Department of Rheumatology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Sandra Farietta
- Department of Rheumatology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Patricia Corzo
- Department of Rheumatology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Juan D Cañete
- Department of Rheumatology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Raimon Sanmartí
- Department of Rheumatology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - José A Gómez-Puerta
- Department of Rheumatology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
27
|
Möller A, Jauch-Speer SL, Gandhi S, Vogl T, Roth J, Fehler O. The roles of toll-like receptor 4, CD33, CD68, CD69, or CD147/EMMPRIN for monocyte activation by the DAMP S100A8/S100A9. Front Immunol 2023; 14:1110185. [PMID: 37056775 PMCID: PMC10086345 DOI: 10.3389/fimmu.2023.1110185] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The S100A8/A9 heterocomplex is an abundant damage-associated molecular pattern and mainly expressed by monocytes, inflammatory activated keratinocytes and neutrophilic granulocytes. The heterocomplex as well as the heterotetramer are involved in a variety of diseases and tumorous processes. However, their detailed mode of action and especially which receptors are involved hereby remains to be fully revealed. Several cell surface receptors are reported to interact with S100A8 and/or S100A9, the best studied being the pattern recognition receptor TLR4. RAGE, CD33, CD68, CD69, and CD147, all of them are involved as receptors in various inflammatory processes, are also among these putative binding partners for S100A8 and S100A9. Interactions between S100 proteins and these receptors described so far come from a wide variety of cell culture systems but their biological relevance in vivo for the inflammatory response of myeloid immune cells is not yet clear. In this study, we compared the effect of CRISPR/Cas9 mediated targeted deletion of CD33, CD68, CD69, and CD147 in ER-Hoxb8 monocytes on S100A8 or S100A9 induced cytokine release with TLR4 knockout monocytes. Whereas deletion of TLR4 abolished the S100-induced inflammatory response in monocyte stimulation experiments with both S100A8 and S100A9, knockouts of CD33, CD68, CD69, or CD147 revealed no effect on the cytokine response in monocytes. Thus, TLR4 is the dominant receptor for S100-triggered inflammatory activation of monocytes.
Collapse
|
28
|
Li Q, Lan P. Activation of immune signals during organ transplantation. Signal Transduct Target Ther 2023; 8:110. [PMID: 36906586 PMCID: PMC10008588 DOI: 10.1038/s41392-023-01377-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The activation of host's innate and adaptive immune systems can lead to acute and chronic graft rejection, which seriously impacts graft survival. Thus, it is particularly significant to clarify the immune signals, which are critical to the initiation and maintenance of rejection generated after transplantation. The initiation of response to graft is dependent on sensing of danger and stranger molecules. The ischemia and reperfusion of grafts lead to cell stress or death, followed by releasing a variety of damage-associated molecular patterns (DAMPs), which are recognized by pattern recognition receptors (PRRs) of host immune cells to activate intracellular immune signals and induce sterile inflammation. In addition to DAMPs, the graft exposed to 'non-self' antigens (stranger molecules) are recognized by the host immune system, stimulating a more intense immune response and further aggravating the graft damage. The polymorphism of MHC genes between different individuals is the key for host or donor immune cells to identify heterologous 'non-self' components in allogeneic and xenogeneic organ transplantation. The recognition of 'non-self' antigen by immune cells mediates the activation of immune signals between donor and host, resulting in adaptive memory immunity and innate trained immunity to the graft, which poses a challenge to the long-term survival of the graft. This review focuses on innate and adaptive immune cells receptor recognition of damage-associated molecular patterns, alloantigens and xenoantigens, which is described as danger model and stranger model. In this review, we also discuss the innate trained immunity in organ transplantation.
Collapse
Affiliation(s)
- Qingwen Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
29
|
Ji H, Dong H, Lan Y, Bi Y, Gu X, Han Y, Yang C, Cheng M, Gao J. Metformin attenuates fibroblast activation during pulmonary fibrosis by targeting S100A4 via AMPK-STAT3 axis. Front Pharmacol 2023; 14:1089812. [PMID: 36817136 PMCID: PMC9936158 DOI: 10.3389/fphar.2023.1089812] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Fibroblasts activation is a crucial process for development of fibrosis during idiopathic pulmonary fibrosis pathogenesis, and transforming growth factor (TGF)-β1 plays a key regulatory role in fibroblast activation. It has been reported that metformin (MET) alleviated bleomycin (BLM)-induced pulmonary fibrosis (PF) by regulating TGF-β1-induced fibroblasts activation, but the underlying mechanisms still deserve further investigations. In this study, MET blocked α-smooth muscle actin (α-SMA) accumulation in vivo accompanied with S100A4 expression and STAT3 phosphorylation inhibition, resulting in attenuating the progression of lung fibrosis after BLM administration. We determined that S100A4 plays critical roles in fibroblasts activation in vitro, evidenced by siRNA knockdown of S100A4 expression downregulated TGF-β1 induced α-SMA production in Human fetal lung fibroblast (HFL1) cells. Importantly, we found for the first time that the expression of S100A4 in fibroblasts was regulated by STAT3. Stattic, an effective small molecule inhibitor of STAT3 phosphorylation, reduced S100A4 level in TGF-β1- treated HFL1 cells accompanied with less α-SMA production. We further found that MET, which inhibits STAT3 phosphorylation by AMPK activation, also inhibits fibroblasts activation by targeting S100A4 in vitro. Together all these results, we conclude that S100A4 contributes to TGF-β1- induced pro-fibrogenic function in fibroblasts activation, and MET was able to protect against TGF-β1-induced fibroblasts activation and BLM-induced PF by down-regulating S100A4 expression through AMPK-STAT3 axis. These results provide a useful clue for a clinical strategy to prevent PF.
Collapse
Affiliation(s)
- Huimin Ji
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Hongliang Dong
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuejiao Lan
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Jilin Province People's Hospital, Changchun, Jilin, China
| | - Yuqian Bi
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Gu
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,3201 Hospital, Hanzhong, Shaanxi, China
| | - Yongyue Han
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chongyang Yang
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Minghan Cheng
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Jian Gao, ; Minghan Cheng,
| | - Jian Gao
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Jian Gao, ; Minghan Cheng,
| |
Collapse
|
30
|
Roszkowski L, Jaszczyk B, Plebańczyk M, Ciechomska M. S100A8 and S100A12 Proteins as Biomarkers of High Disease Activity in Patients with Rheumatoid Arthritis That Can Be Regulated by Epigenetic Drugs. Int J Mol Sci 2022; 24:ijms24010710. [PMID: 36614150 PMCID: PMC9820830 DOI: 10.3390/ijms24010710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease that is still not well understood in terms of its pathogenesis and presents diagnostic and therapeutic challenges. Monocytes are key players in initiating and maintaining inflammation through the production of pro-inflammatory cytokines and S100 proteins in RA. This study aimed to test a specific DNA methylation inhibitor (RG108) and activator (budesonide) in the regulation of pro-inflammatory mediators-especially the S100 proteins. We also searched for new biomarkers of high disease activity in RA patients. RNA sequencing analysis of healthy controls (HCs) and RA monocytes was performed. Genes such as the S100 family, TNF, and IL-8 were validated by qRT-PCR following DNA-methylation-targeted drug treatment in a monocytic THP-1 cell line. The concentrations of the S100A8, S100A11, and S100A12 proteins in the sera and synovial fluids of RA patients were tested and correlated with clinical parameters. We demonstrated that RA monocytes had significantly increased levels of S100A8, S100A9, S100A11, S100A12, MYD88, JAK3, and IQGAP1 and decreased levels of IL10RA and TGIF1 transcripts. In addition, stimulation of THP-1 cells with budesonide statistically reduced the expression of the S100 family, IL-8, and TNF genes. In contrast, THP-1 cells treated with RG108 had increased levels of the S100 family and TNF genes. We also revealed a significant upregulation of S100A8, S100A11, and S100A12 in RA patients, especially in early RA compared to HC sera. In addition, protein levels of S100A8, S100A11, and S100A12 in RA synovial fluids compared to HC sera were significantly increased. Overall, our data suggest that the S100A8 and S100A12 proteins are strongly elevated during ongoing inflammation, so they could be used as a better biomarker of disease activity than CRP. Interestingly, epigenetic drugs can regulate these S100 proteins, suggesting their potential use in targeting RA inflammation.
Collapse
Affiliation(s)
- Leszek Roszkowski
- Department of Outpatient Clinics, National Institute of Geriatrics, Rheumatology and Rehabilitation (NIGRiR), 02-637 Warsaw, Poland
| | - Bożena Jaszczyk
- Department of Outpatient Clinics, National Institute of Geriatrics, Rheumatology and Rehabilitation (NIGRiR), 02-637 Warsaw, Poland
| | - Magdalena Plebańczyk
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation (NIGRiR), 02-637 Warsaw, Poland
| | - Marzena Ciechomska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation (NIGRiR), 02-637 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-670-95-63
| |
Collapse
|
31
|
Russo A, Schürmann H, Brandt M, Scholz K, Matos ALL, Grill D, Revenstorff J, Rembrink M, von Wulffen M, Fischer‐Riepe L, Hanley PJ, Häcker H, Prünster M, Sánchez‐Madrid F, Hermann S, Klotz L, Gerke V, Betz T, Vogl T, Roth J. Alarming and Calming: Opposing Roles of S100A8/S100A9 Dimers and Tetramers on Monocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201505. [PMID: 36310133 PMCID: PMC9798971 DOI: 10.1002/advs.202201505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/30/2022] [Indexed: 05/16/2023]
Abstract
Mechanisms keeping leukocytes distant of local inflammatory processes in a resting state despite systemic release of inflammatory triggers are a pivotal requirement for avoidance of overwhelming inflammation but are ill defined. Dimers of the alarmin S100A8/S100A9 activate Toll-like receptor-4 (TLR4) but extracellular calcium concentrations induce S100A8/S100A9-tetramers preventing TLR4-binding and limiting their inflammatory activity. So far, only antimicrobial functions of released S100A8/S100A9-tetramers (calprotectin) are described. It is demonstrated that extracellular S100A8/S100A9 tetramers significantly dampen monocyte dynamics as adhesion, migration, and traction force generation in vitro and immigration of monocytes in a cutaneous granuloma model and inflammatory activity in a model of irritant contact dermatitis in vivo. Interestingly, these effects are not mediated by the well-known binding of S100A8/S100A9-dimers to TLR-4 but specifically mediated by S100A8/S100A9-tetramer interaction with CD69. Thus, the quaternary structure of these S100-proteins determines distinct and even antagonistic effects mediated by different receptors. As S100A8/S100A9 are released primarily as dimers and subsequently associate to tetramers in the high extracellular calcium milieu, the same molecules promote inflammation locally (S100-dimer/TLR4) but simultaneously protect the wider environment from overwhelming inflammation (S100-tetramer/CD69).
Collapse
Affiliation(s)
- Antonella Russo
- Institute of ImmunologyUniversity of Münster48149MünsterGermany
- Cells in Motion Interfaculty CentreUniversity of Münster48149MünsterGermany
| | - Hendrik Schürmann
- Institute of Cell BiologyCentre for Molecular Biology of InflammationZMBEUniversity of Münster48149MünsterGermany
| | - Matthias Brandt
- Institute of Cell BiologyCentre for Molecular Biology of InflammationZMBEUniversity of Münster48149MünsterGermany
| | - Katja Scholz
- Institute of ImmunologyUniversity of Münster48149MünsterGermany
| | - Anna Livia L. Matos
- Cells in Motion Interfaculty CentreUniversity of Münster48149MünsterGermany
- Institute of Medical BiochemistryCentre of Molecular Biology of InflammationZMBEUniversity of Münster48149MünsterGermany
| | - David Grill
- Institute of Medical BiochemistryCentre of Molecular Biology of InflammationZMBEUniversity of Münster48149MünsterGermany
| | | | | | | | | | - Peter J. Hanley
- Faculty of MedicineHMU Health and Medical University Potsdam14471PotsdamGermany
| | - Hans Häcker
- Department of PathologyDivision of Microbiology and ImmunologyUniversity of UtahSalt Lake CityUT84112USA
| | - Monika Prünster
- BioMedical CenterWalter‐Brendel‐Centre for Experimental MedicineLudwig‐Maximilians‐UniversityPlanegg‐Martinsried82152MunichGermany
| | - Francisco Sánchez‐Madrid
- Immunology ServiceHospital de la PrincesaUniversidad Autónoma de MadridInstituto Investigación Sanitaria PrincesaMadrid28006Spain
- Department of Vascular Biology and InflammationCentro Nacional de Investigaciones Cardiovasculares (CNIC)Madrid28029Spain
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI)University of Münster48149MünsterGermany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Muenster48149MuensterGermany
| | - Volker Gerke
- Cells in Motion Interfaculty CentreUniversity of Münster48149MünsterGermany
- Institute of Medical BiochemistryCentre of Molecular Biology of InflammationZMBEUniversity of Münster48149MünsterGermany
| | - Timo Betz
- Cells in Motion Interfaculty CentreUniversity of Münster48149MünsterGermany
- Institute of Cell BiologyCentre for Molecular Biology of InflammationZMBEUniversity of Münster48149MünsterGermany
- Third Institute of Physics– BiophysicsGeorg August University Göttingen37077GöttingenGermany
| | - Thomas Vogl
- Institute of ImmunologyUniversity of Münster48149MünsterGermany
| | - Johannes Roth
- Institute of ImmunologyUniversity of Münster48149MünsterGermany
- Cells in Motion Interfaculty CentreUniversity of Münster48149MünsterGermany
| |
Collapse
|
32
|
Inciarte-Mundo J, Frade-Sosa B, Sanmartí R. From bench to bedside: Calprotectin (S100A8/S100A9) as a biomarker in rheumatoid arthritis. Front Immunol 2022; 13:1001025. [PMID: 36405711 PMCID: PMC9672845 DOI: 10.3389/fimmu.2022.1001025] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 12/30/2022] Open
Abstract
S100A9/S100A8 (calprotectin), a member of the S100 protein family, has been shown to play a pivotal role in innate immunity activation. Calprotectin plays a critical role in the pathogenesis of rheumatoid arthritis (RA), as it triggers chemotaxis, phagocyte migration and modulation of neutrophils and macrophages. Higher calprotectin levels have been found in synovial fluid, plasma, and serum from RA patients. Recent studies have demonstrated better correlations between serum or plasma calprotectin and composite inflammatory disease activity indexes than c-reactive protein (CRP) or the erythrocyte sedimentation rate (ESR). Calprotectin serum levels decreased after treatment, independently of the DMARD type or strategy. Calprotectin has shown the strongest correlations with other sensitive techniques to detect inflammation, such as ultrasound. Calprotectin independently predicts radiographic progression. However, its value as a biomarker of treatment response and flare after tapering is unclear. This update reviews the current understanding of calprotectin in RA and discusses possible applications as a biomarker in clinical practice.
Collapse
Affiliation(s)
- José Inciarte-Mundo
- Biological aggression and Response Mechanisms, Inflammatory joint diseases (IJDs), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Beatriz Frade-Sosa
- Rheumatology Department, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Raimon Sanmartí
- Biological aggression and Response Mechanisms, Inflammatory joint diseases (IJDs), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain,Rheumatology Department, Hospital Clinic, University of Barcelona, Barcelona, Spain,*Correspondence: Raimon Sanmartí,
| |
Collapse
|
33
|
Yao CY, Lin CC, Wang YH, Hsu CL, Kao CJ, Hou HA, Chou WC, Tien HF. The clinical and biological characterization of acute myeloid leukemia patients with S100A4 overexpression. J Formos Med Assoc 2022:S0929-6646(22)00422-3. [DOI: 10.1016/j.jfma.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
|
34
|
Zou S, Huang Z, Wu J. Predictive value of S100A4 in eosinophilic chronic rhinosinusitis with nasal polyps. Front Surg 2022; 9:989489. [PMID: 36386522 PMCID: PMC9663474 DOI: 10.3389/fsurg.2022.989489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE S100A4 is a pro-inflammatory mediator which has been implicated in airway inflammatory diseases. However, its role in chronic rhinosinusitis with nasal polyps (CRSwNP) remains unclear. The purpose of this study is to determine the expression of S100A4 and evaluate its potential value in distinguishing its endotypes. METHODS Sixty CRSwNP patients, 30 chronic rhinosinusitis without nasal polyps (CRSsNP) patients, and 30 healthy controls (HC) were enrolled in this study, and serum and tissue samples were collected. Serum and tissue S100A4 levels were detected by enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, western blotting and immunofluorescence. Their clinical values in predicting postoperative recurrence of CRSwNP were evaluated by multivariate analysis and ROC curves. RESULTS Serum levels of S100A4 were notably increased in the CRSwNP group than in the CRSsNP and HC groups (p < 0.05), and positively correlated with tissue and peripheral eosinophil count and percentage (p < 0.05). The serum S100A4 concentrations were significantly elevated in the Eos CRSwNP group in comparison with the non-Eos CRSwNP group (p < 0.05). Multivariate analysis and ROC curve presented that serum S100A4 levels were associated with CRSwNP endotypes. Additionally, tissue S100A4 mRNA and protein levels were significantly enhanced in the CRSwNP group than in the HC group and CRSsNP group, especially in the Eos CRSwNP group. CONCLUSION Our results demonstrated that the S100A4 expression was increased in CRSwNP patients and associated with the endotypes. S100A4 could be a serologic biomarker for evaluating tissue eosinophilic inflammation and predicting endotypes in CRSwNP patients.
Collapse
Affiliation(s)
- Shangchu Zou
- The Affiliated Nanhua Hospital, Department of Otolaryngology Head and Neck Surgery, Hengyang Medical School, The University of South China, Hengyang, China,Correspondence: Shangchu Zou
| | - Zhicheng Huang
- The Second Affiliated Hospital, Department of Otolaryngology Head and Neck Surgery, Hengyang Medical School, University of South China, Hengyang, China
| | - Jinpeng Wu
- The First Affiliated Hospital, Department of Otorhinolaryngology Head and Neck Surgery, Xiamen University, Xiamen, China
| |
Collapse
|
35
|
Ailioaie LM, Ailioaie C, Litscher G. Biomarkers in Systemic Juvenile Idiopathic Arthritis, Macrophage Activation Syndrome and Their Importance in COVID Era. Int J Mol Sci 2022; 23:12757. [PMID: 36361547 PMCID: PMC9655921 DOI: 10.3390/ijms232112757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 08/30/2023] Open
Abstract
Systemic juvenile idiopathic arthritis (sJIA) and its complication, macrophage activation syndrome (sJIA-MAS), are rare but sometimes very serious or even critical diseases of childhood that can occasionally be characterized by nonspecific clinical signs and symptoms at onset-such as non-remitting high fever, headache, rash, or arthralgia-and are biologically accompanied by an increase in acute-phase reactants. For a correct positive diagnosis, it is necessary to rule out bacterial or viral infections, neoplasia, and other immune-mediated inflammatory diseases. Delays in diagnosis will result in late initiation of targeted therapy. A set of biomarkers is useful to distinguish sJIA or sJIA-MAS from similar clinical entities, especially when arthritis is absent. Biomarkers should be accessible to many patients, with convenient production and acquisition prices for pediatric medical laboratories, as well as being easy to determine, having high sensitivity and specificity, and correlating with pathophysiological disease pathways. The aim of this review was to identify the newest and most powerful biomarkers and their synergistic interaction for easy and accurate recognition of sJIA and sJIA-MAS, so as to immediately guide clinicians in correct diagnosis and in predicting disease outcomes, the response to treatment, and the risk of relapses. Biomarkers constitute an exciting field of research, especially due to the heterogeneous nature of cytokine storm syndromes (CSSs) in the COVID era. They must be selected with utmost care-a fact supported by the increasingly improved genetic and pathophysiological comprehension of sJIA, but also of CSS-so that new classification systems may soon be developed to define homogeneous groups of patients, although each with a distinct disease.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, Traditional Chinese Medicine (TCM) Research Center Graz, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| |
Collapse
|
36
|
Zhou Y, Bréchard S. Neutrophil Extracellular Vesicles: A Delicate Balance between Pro-Inflammatory Responses and Anti-Inflammatory Therapies. Cells 2022; 11:cells11203318. [PMID: 36291183 PMCID: PMC9600967 DOI: 10.3390/cells11203318] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are released in the extracellular environment during cell activation or apoptosis. Working as signal transducers, EVs are important mediators of intercellular communication through the convoying of proteins, nucleic acids, lipids, and metabolites. Neutrophil extracellular vesicles (nEVs) contain molecules acting as key modulators of inflammation and immune responses. Due to their potential as therapeutic tools, studies about nEVs have been increasing in recent years. However, our knowledge about nEVs is still in its infancy. In this review, we summarize the current understanding of the role of nEVs in the framework of neutrophil inflammation functions and disease development. The therapeutic potential of nEVs as clinical treatment strategies is deeply discussed. Moreover, the promising research landscape of nEVs in the near future is also examined.
Collapse
|
37
|
Al-Hakim A, Mistry A, Savic S. Improving Diagnosis and Clinical Management of Acquired Systemic Autoinflammatory Diseases. J Inflamm Res 2022; 15:5739-5755. [PMID: 36238769 PMCID: PMC9553278 DOI: 10.2147/jir.s343261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Systemic autoinflammatory diseases (SAID) are conditions caused by dysregulation or disturbance of the innate immune system, with neutrophils and macrophages the main effector cells. Although there are now more than 40 distinct, genetically defined SAIDs, the genetic/molecular diagnosis remains unknown for a significant proportion of patients with the disease onset in adulthood. This review focuses on new developments related to acquired/late onset SAID, including phenocopies of monogenic disorders, Schnitzler's syndrome, Adult onset Still's disease, VEXAS syndrome, and autoinflammatory complications associated with myelodysplastic syndrome.
Collapse
Affiliation(s)
- Adam Al-Hakim
- Department of Clinical Immunology and Allergy, St James’s University Hospital, Leeds, UK
| | - Anoop Mistry
- Department of Clinical Immunology and Allergy, St James’s University Hospital, Leeds, UK
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James’s University Hospital, Leeds, UK,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK,Correspondence: Sinisa Savic, Leeds Institute of Rheumatic and Musculoskeletal Medicine, Clinical Science Building, St James’s University Hospital, Leeds, LS9 7TF, UK, Tel +441132065567, Email
| |
Collapse
|
38
|
Frade-Sosa B, Ponce A, Inciarte-Mundo J, Morlà R, Ruiz-Esquide V, Macías L, Azuaga AB, Ramirez J, Cañete JD, Yague J, Auge JM, Gomez-Puerta JA, Sanmarti R. Plasma calprotectin as a biomarker of ultrasound synovitis in rheumatoid arthritis patients receiving IL-6 antagonists or JAK inhibitors. Ther Adv Musculoskelet Dis 2022; 14:1759720X221114105. [PMID: 36148395 PMCID: PMC9486267 DOI: 10.1177/1759720x221114105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022] Open
Abstract
Objectives To analyse the accuracy of plasma calprotectin in patients with rheumatoid arthritis (RA) receiving monoclonal antibodies against IL-6 receptors (anti-rIL-6) or JAK inhibitors (JAKis) in detecting ultrasound (US) synovitis and compare it with acute phase reactants [high-sensitivity C-reactive protein (hs-CRP) and ESR]. Methods An observational cross-sectional study of RA patients receiving anti-rIL-6 (tocilizumab or sarilumab) or JAKi, (baricitinib or tofacitinib) was made. Plasma calprotectin for the diagnosis of US synovitis [synovial hypertrophy grade (SH) ⩾ 2 plus power Doppler signal (PD) ⩾ 1] was analysed using receiver operating characteristic curves (ROCs). The performance of ESR and hs-CRP was also studied. The three ROC curves were compared to determine which had the highest discriminatory power. Associations between plasma calprotectin and US scores were made using correlation analysis. Results Sixty-three RA patients were included. Mean plasma calprotectin levels were significantly higher in patients with US synovitis than in those without (0.89 ± 0.85 vs 0.30 ± 0.12 μg/ml; p = 0.0003). A moderate correlation between calprotectin and all US scores (HS score Rho = 0.479; PD score Rho = 0.492; and global score Rho = 0.495) was found. The discriminatory capacity of plasma calprotectin showed an AUC of 0.795 (95% CI: 0.687-0.904). The AUC of hs-CRP and ESR was 0.721 and 0.564, respectively. hs-CRP serum levels showed a low positive correlation with the three US scores (Rho < 0.40). After analysis according to the drugs administered, the correlation disappeared in patients receiving anti-rIL-6. Conclusion Plasma calprotectin may be a sensitive biomarker of synovial inflammation in RA patients treated with anti-rIL-6 or JAKi.
Collapse
Affiliation(s)
| | | | | | - Rosa Morlà
- Department of Rheumatology, Hospital Clinic of
Barcelona, Barcelona, Spain
| | | | - Laura Macías
- Biochemistry and Molecular Genetics Department,
Hospital Clínic of Barcelona, Barcelona, Spain
| | - Ana Belen Azuaga
- Department of Rheumatology, Hospital Clinic of
Barcelona, Barcelona, Spain
| | - Julio Ramirez
- Department of Rheumatology, Hospital Clinic of
Barcelona, Barcelona, Spain
| | - Juan D. Cañete
- Department of Rheumatology, Hospital Clinic of
Barcelona, Barcelona, Spain
| | - Jordi Yague
- Department of Immunology, Hospital Clinic –
CDB, Barcelona, Spain
| | - Josep M. Auge
- Biochemistry and Molecular Genetics
Department, Hospital Clínic of Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
39
|
Delangre E, Oppliger E, Berkcan S, Gjorgjieva M, Correia de Sousa M, Foti M. S100 Proteins in Fatty Liver Disease and Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms231911030. [PMID: 36232334 PMCID: PMC9570375 DOI: 10.3390/ijms231911030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 01/27/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent and slow progressing hepatic pathology characterized by different stages of increasing severity which can ultimately give rise to the development of hepatocellular carcinoma (HCC). Besides drastic lifestyle changes, few drugs are effective to some extent alleviate NAFLD and HCC remains a poorly curable cancer. Among the deregulated molecular mechanisms promoting NAFLD and HCC, several members of the S100 proteins family appear to play an important role in the development of hepatic steatosis, non-alcoholic steatohepatitis (NASH) and HCC. Specific members of this Ca2+-binding protein family are indeed significantly overexpressed in either parenchymal or non-parenchymal liver cells, where they exert pleiotropic pathological functions driving NAFLD/NASH to severe stages and/or cancer development. The aberrant activity of S100 specific isoforms has also been reported to drive malignancy in liver cancers. Herein, we discuss the implication of several key members of this family, e.g., S100A4, S100A6, S100A8, S100A9 and S100A11, in NAFLD and HCC, with a particular focus on their intracellular versus extracellular functions in different hepatic cell types. Their clinical relevance as non-invasive diagnostic/prognostic biomarkers for the different stages of NAFLD and HCC, or their pharmacological targeting for therapeutic purpose, is further debated.
Collapse
|
40
|
Wang X, Wen D, You C, Ma L. Identification of the key immune-related genes in aneurysmal subarachnoid hemorrhage. Front Mol Neurosci 2022; 15:931753. [PMID: 36172261 PMCID: PMC9511034 DOI: 10.3389/fnmol.2022.931753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a major cause of death and morbidity worldwide, often due to rupture of intracranial aneurysms (IAs). Immune infiltration and inflammatory activation play key roles in the process of aneurysmal SAH (aSAH). This study aimed to elaborate the immune infiltration and identify related biomarkers both in blood and tissue samples from patients with aSAH. Expression data of aSAH and healthy control samples were obtained from gene expression omnibus (GEO) database. Overall, a blood sample dataset GSE36791 and a tissue sample dataset GSE122897 were included. Differentially expressed genes (DEGs) between aSAH and healthy samples were explored. We applied GO biological and Gene Set Enrichment Analyses (GSEA) processes to access the functional enrichment. Then feature elimination algorithms based on random forest were used to screen and verify the biomarkers of aSAH. We performed three computational algorithms including Cell type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT), Microenvironment Cell Populations-counter (MCPcounter), and xcell to evaluate the immune cell infiltration landscape to identify the unique infiltration characteristics associated with rupturing. We found 2,220 DEGs (856 upregulated and 1,364 downregulated) in the original dataset. Functional analysis revealed most of these genes are enriched in immunological process, especially related with neutrophil response. Similar signaling pathway enrichment patterns were observed in tissue sample dataset and ClueGo. Analysis of immune microenvironment infiltration suggested neutrophils were abnormally upregulated in aSAH compared with those in the control group. Key gene SRPK1 was then filtered based on feature elimination algorithms, and transcription factor (TF) ZNF281 is assumed to participate in immunomodulation by regulating expression of SRPK1. Several immunomodulators such as CXCR1 and CXCR2 also appear to be involved in the progression of aSAH. In the present study, we performed a comprehensive stratification and quantification of the immune infiltration status of aSAH. By exploring the potential mechanism for aSAH based on several computational algorithms, key genes including SRPK1 and ZNF281 were filtered. This study may be of benefit to patients who are at high risk of suffering aSAH which allows for early diagnosis and potential therapy.
Collapse
Affiliation(s)
- Xing Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Dingke Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- West China Brain Research Centre, Sichuan University, Chengdu, China
- *Correspondence: Chao You Lu Ma
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Chao You Lu Ma
| |
Collapse
|
41
|
McHugh J. A protective role for epidermal S100A9 in PsA. Nat Rev Rheumatol 2022; 18:495. [PMID: 35918611 DOI: 10.1038/s41584-022-00821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Rao S, Tsang LSL, Zhao M, Shi W, Lu Q. Adult-onset Still’s disease: A disease at the crossroad of innate immunity and autoimmunity. Front Med (Lausanne) 2022; 9:881431. [PMID: 36072947 PMCID: PMC9442343 DOI: 10.3389/fmed.2022.881431] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/27/2022] [Indexed: 01/12/2023] Open
Abstract
Adult-onset Still’s disease (AOSD) is a rare disease affecting multiple systems and organs with unknown etiology, and the clinical symptoms are usually described as spiking fever, arthritis, evanescent salmon-pink eruptions, lymphadenopathy, splenomegaly, and other manifestations. The laboratory indicators are not specific, often presenting as increased leukocyte counts and neutrophil percentage, elevated erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP), hyperferritinemia, and increased inflammatory factors. ANA, ENA, and RF are negative. According to those unspecific clinical presentations and laboratory findings, infection, tumor, connective tissue disease, and other diseases must be ruled out before diagnosis. The diagnosis of AOSD is a great challenge for clinicians. The mechanism of AOSD pathogenesis is complicated and still being studied. There is a new opinion that atypical persistent skin eruptions (APSEs) with specific histological manifestations are unique for AOSD, and APSEs might be on a spectrum with classical evanescent eruptions. Studies on APSEs showed that IL-1β and IFN-γ are strongly correlated with the pathogenesis of necrosis keratinocytes in APSEs. IL-1β is strongly involved in inflammatory disease when it is abnormal, and plays an important role in the pathogenesis of neutrophil dermatosis. In the early stage of AOSD, skin lesions appear to be evanescent urticaria-like eruptions accompanied by fever, and only neutrophils infiltrate around the blood vessels in the dermis pathologically. As the course of the disease progresses, IL-1β is gradually released. Through the stimulation of other inflammatory factors and the influence of unknown factors, IL-1β gradually infiltrates into the stratum corneum and finally accumulates around the necrotic keratinocytes of the stratum corneum. However, the detailed mechanism is still unknown. IFN-γ could play a pro-inflammatory or regulatory role in some disorders. IL-1β can enhance the expression of IFN-γ, and IFN-γ can cause keratinocyte apoptosis by activating the autocrine of caspase. Also, several pieces of evidence indicate that adaptive immunity is also involved in the pathogenesis of AOSD. Increased α-soluble receptors of IL-2 may suggest T-cell activation and proliferation in AOSD patients. Increased IL-4- and IFN-γ-producing T cells were found in active AOSD and related to disease severity. Frequencies of Treg cells in AOSD were significantly lower and were inversely correlated with disease severity. According to these, more and more researchers have reached a consensus that AOSD is a disease at the crossroads of innate immunity and autoimmunity. In this review, we will provide a comprehensive insight into AOSD, describing research progress and the immunological mechanism contribution to the disease. In the meantime, different treatment options and the efficacy and safety of various biologic agents are also discussed. A further understanding of AOSD requires closer cooperation among doctors from different departments, and this review will provide a new idea for diagnosis and therapeutic options.
Collapse
Affiliation(s)
- Shijia Rao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Lemuel Shui-Lun Tsang
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Wei Shi,
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Qianjin Lu,
| |
Collapse
|
43
|
Figueira AJ, Moreira GG, Saavedra J, Cardoso I, Gomes CM. Tetramerization of the S100B Chaperone Spawns a Ca 2+ Independent Regulatory Surface that Enhances Anti-aggregation Activity and Client Specificity. J Mol Biol 2022; 434:167791. [PMID: 35970403 DOI: 10.1016/j.jmb.2022.167791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Alzheimer's disease (AD) hallmarks include the aggregation of amyloid-β (Aβ), tau and neuroinflammation promoted by several alarmins. Among these is S100B, a small astrocytic homodimeric protein, upregulated in AD, whose multiple biological activities depend on localization, concentration, and assembly state. S100B was reported to inhibit the aggregation and toxicity of Aβ42 and tau similarly to a holdase-type chaperone. This activity is dependent of Ca2+-binding, which triggers the exposure of a regulatory binding cleft at the S100B dimer interface with which amyloidogenic clients dynamically interact. Although the dimer prevails, a significant portion of secreted S100B in the human brain occurs as higher order multimers, whose protective functions remain uncharacterized and which we here investigate. Resorting to ThT-monitored aggregation kinetics, we determined that unlike the dimer, tetrameric S100B inhibits Aβ42 aggregation at sub/equimolar ratios, an effect that persists in the absence of Ca2+ binding. Structural analysis revealed that S100B tetramerization spawns a novel extended cleft accommodating an aggregation-prone surface that mediates interactions with monomeric Aβ client via hydrophobic interactions, as corroborated by Bis-ANS fluorescence and docking analysis. Correspondingly, at high ionic strength that reduces solvation and favours hydrophobic contacts, the inhibition of Aβ42 aggregation by tetrameric S100B is 3-fold increased. Interestingly, this extended Ca2+-independent surface favours Aβ42 as substrate, as tau K18 aggregation is not inhibited by the apo tetramer. Overall, results illustrate a mechanism through which oligomerization of the S100B chaperone fine-tunes anti-aggregation activity and client specificity, highlighting the potential functional relevance of S100B multimers in the regulation of AD proteotoxicity.
Collapse
Affiliation(s)
- António J Figueira
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal. https://twitter.com/Antonio27902425
| | - Guilherme G Moreira
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal. https://twitter.com/GuilhermeGilMo1
| | - Joana Saavedra
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Isabel Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Cláudio M Gomes
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| |
Collapse
|
44
|
Singh P, Ali SA. Multifunctional Role of S100 Protein Family in the Immune System: An Update. Cells 2022; 11:cells11152274. [PMID: 35892571 PMCID: PMC9332480 DOI: 10.3390/cells11152274] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
S100 is a broad subfamily of low-molecular weight calcium-binding proteins (9–14 kDa) with structural similarity and functional discrepancy. It is required for inflammation and cellular homeostasis, and can work extracellularly, intracellularly, or both. S100 members participate in a variety of activities in a healthy cell, including calcium storage and transport (calcium homeostasis). S100 isoforms that have previously been shown to play important roles in the immune system as alarmins (DAMPs), antimicrobial peptides, pro-inflammation stimulators, chemo-attractants, and metal scavengers during an innate immune response. Currently, during the pandemic, it was found that several members of the S100 family are implicated in the pathophysiology of COVID-19. Further, S100 family protein members were proposed to be used as a prognostic marker for COVID-19 infection identification using a nasal swab. In the present review, we compiled the vast majority of recent studies that focused on the multifunctionality of S100 proteins in the complex immune system and its associated activities. Furthermore, we shed light on the numerous molecular approaches and signaling cascades regulated by S100 proteins during immune response. In addition, we discussed the involvement of S100 protein members in abnormal defense systems during the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Parul Singh
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal 132001, India;
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal 132001, India;
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +91-8708591790
| |
Collapse
|
45
|
Pollak AJ, Zhao L, Vickers TA, Huggins IJ, Liang XH, Crooke ST. Insights into innate immune activation via PS-ASO-protein-TLR9 interactions. Nucleic Acids Res 2022; 50:8107-8126. [PMID: 35848907 PMCID: PMC9371907 DOI: 10.1093/nar/gkac618] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Non-CpG PS-ASOs can activate the innate immune system, leading to undesired outcomes. This response can vary—in part—as a function of 2′modifications and sequence. Here we investigated the molecular steps involved in the varied effects of PS-ASOs on the innate immune system. We found that pro-inflammatory PS-ASOs require TLR9 signaling based on the experimental systems used. However, the innate immunity of PS-ASOs does not correlate with their binding affinity with TLR9. Furthermore, the innate immune responses of pro-inflammatory PS-ASOs were reduced by coincubation with non-inflammatory PS-ASOs, suggesting that both pro-inflammatory and non-inflammatory PS-ASOs can interact with TLR9. We show that the kinetics of the PS-ASO innate immune responses can vary, which we speculate may be due to the existence of alternative PS-ASO binding sites on TLR9, leading to full, partial, or no activation of the pathway. In addition, we found that several extracellular proteins, including HMGB1, S100A8 and HRG, enhance the innate immune responses of PS-ASOs. Reduction of the binding affinity by reducing the PS content of PS-ASOs decreased innate immune responses, suggesting that PS-ASO–protein complexes may be sensed by TLR9. These findings thus provide critical information concerning how PS-ASOs can interact with and activate TLR9.
Collapse
Affiliation(s)
| | - Luyi Zhao
- Ionis Pharmaceuticals, Inc. Carlsbad, CA 92010, USA
| | | | | | | | | |
Collapse
|
46
|
Berg AR, Hong CG, Svirydava M, Li H, Parel PM, Florida E, O'Hagan R, Pantoja CJ, Lateef SS, Anzenberg P, Harrington CL, Ward G, Zhou W, Sorokin AV, Chen MY, Teague HL, Buckler AJ, Playford MP, Gelfand JM, Mehta NN. Association of S100A8/A9 with lipid-rich necrotic core and treatment with biologic therapy in patients with psoriasis: results from an observational cohort study. J Invest Dermatol 2022; 142:2909-2919. [PMID: 35750149 DOI: 10.1016/j.jid.2022.05.1085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
Abstract
Psoriasis is a systemic inflammatory disease with increased risk of atherosclerotic events and premature cardiovascular disease. S100A7, A8/A9, and A12 are protein complexes that are produced by activated neutrophils, monocytes, and keratinocytes in psoriasis. Lipid-rich necrotic core (LRNC) is a high-risk coronary plaque feature previously found to be associated with cardiovascular risk factors and psoriasis severity. LRNC can decrease with biologic therapy, but how this occurs remains unknown. We investigated the relationship between S100 proteins, LRNC, and biologic therapy in psoriasis. S100A8/A9 associated with LRNC in fully adjusted models (β = 0.27, P = 0.009, n=125 psoriasis patients with available coronary CT angiography scans, LRNC analyses, and serum S100A7, S100A8, S100A9, S100A12, and S100A8/A9 levels). At one year, in patients receiving biologic therapy (36 of 73 patients had 1-year CCTA scans available), a 79% reduction in S100A8/A9 levels (-172 (-291.7-26.4) vs -29.9 (-137.9- 50.5) P = 0.04) and a 0.6 mm2 reduction in average LRNC area (0.04 (-0.48-0.77) vs -0.56 (-1.8- 0.13); P = 0.02) were noted. These results highlight the potential role of S100A8/A9 in the development of high-risk coronary plaque in psoriasis.
Collapse
Affiliation(s)
- Alexander R Berg
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Christin G Hong
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Maryia Svirydava
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Haiou Li
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Philip M Parel
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Elizabeth Florida
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ross O'Hagan
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Carla J Pantoja
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sundus S Lateef
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Paula Anzenberg
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Charlotte L Harrington
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Grace Ward
- St. Jude's Research Hospital, Memphis, TN
| | - Wunan Zhou
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Alexander V Sorokin
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Marcus Y Chen
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Heather L Teague
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Martin P Playford
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Joel M Gelfand
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
47
|
Austermann J, Roth J, Barczyk-Kahlert K. The Good and the Bad: Monocytes' and Macrophages' Diverse Functions in Inflammation. Cells 2022; 11:cells11121979. [PMID: 35741108 PMCID: PMC9222172 DOI: 10.3390/cells11121979] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Monocytes and macrophages are central players of the innate immune response and play a pivotal role in the regulation of inflammation. Thereby, they actively participate in all phases of the immune response, from initiating inflammation and triggering the adaptive immune response, through to the clearance of cell debris and resolution of inflammation. In this review, we described the mechanisms of monocyte and macrophage adaptation to rapidly changing microenvironmental conditions and discussed different forms of macrophage polarization depending on the environmental cues or pathophysiological condition. Therefore, special focus was placed on the tight regulation of the pro- and anti-inflammatory immune response, and the diverse functions of S100A8/S100A9 proteins and the scavenger receptor CD163 were highlighted, respectively. We paid special attention to the function of pro- and anti-inflammatory macrophages under pathological conditions.
Collapse
|
48
|
Helfen A, Rieß J, Fehler O, Stölting M, An Z, Kocman V, Schnepel A, Geyer C, Gerwing M, Masthoff M, Vogl T, Höltke C, Roth J, Ng T, Wildgruber M, Eisenblätter M. In vivo imaging of microenvironmental and anti-PD-L1-mediated dynamics in cancer using S100A8/S100A9 as an imaging biomarker. Neoplasia 2022; 28:100792. [PMID: 35367789 PMCID: PMC8983428 DOI: 10.1016/j.neo.2022.100792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/22/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE As a promotor of tumor invasion and tumor microenvironment (TME) formation, the protein complex S100A8/S100A9 is associated with poor prognosis. Our aim was to further evaluate its origin and regulatory effects, and to establish an imaging biomarker for TME activity. METHODS S100A9-/-cells (ko) were created from syngeneic murine breast cancer 4T1 (high malignancy) and 67NR (low malignancy) wildtype (wt) cell lines and implanted into either female BALB/c wildtype or S100A9-/- mice (n = 10 each). Anti-S100A9-Cy5.5-targeted fluorescence reflectance imaging was performed at 0 h and 24 h after injection. Potential early changes of S100A9-presence under immune checkpoint inhibition (anti-PD-L1, n = 7 vs. rat IgG2b as isotype control, n = 3) were evaluated. RESULTS In S100A9-/-mice contrast-to-noise-ratios were significantly reduced for wt and S100A9-/-tumors. No significant differences were detected for 4T1 ko and 67NR ko cells as compared to wildtype cells. Under anti-PD-L1 treatment S100A9 presence significantly decreased compared with the control group. CONCLUSION Our results confirm a secretion of S100A8/S100A9 by the TME, while tumor cells do not apparently release the protein. Under immune checkpoint inhibition S100A9-imaging reports an early decrease of TME activity. Therefore, S100A9-specific imaging may serve as an imaging biomarker for TME formation and activity.
Collapse
Affiliation(s)
- Anne Helfen
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany.
| | - Jan Rieß
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Olesja Fehler
- Institute of Immunology, University of Muenster, D-48149 Muenster, Germany
| | - Miriam Stölting
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Zhengwen An
- The CRUK City of London Cancer Centre, SE1 9RT London, UK
| | - Vanessa Kocman
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Annika Schnepel
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Christiane Geyer
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Mirjam Gerwing
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Max Masthoff
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Muenster, D-48149 Muenster, Germany
| | - Carsten Höltke
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Muenster, D-48149 Muenster, Germany
| | - Tony Ng
- The CRUK City of London Cancer Centre, SE1 9RT London, UK; UCL Cancer Institute, University College London, SE1 9RT London, UK; School of Cancer and Pharmaceutical Sciences, King´s College London, SE1 9RT London, UK
| | - Moritz Wildgruber
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany; Department for Radiology, LMU Munich, D-81377 Munich, Germany
| | - Michel Eisenblätter
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany; Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, D-79106 Freiburg, Germany
| |
Collapse
|
49
|
Jauch-Speer SL, Herrera-Rivero M, Ludwig N, Véras De Carvalho BC, Martens L, Wolf J, Imam Chasan A, Witten A, Markus B, Schieffer B, Vogl T, Rossaint J, Stoll M, Roth J, Fehler O. C/EBPδ-induced epigenetic changes control the dynamic gene transcription of S100a8 and S100a9. eLife 2022; 11:75594. [PMID: 35543413 PMCID: PMC9122501 DOI: 10.7554/elife.75594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
The proinflammatory alarmins S100A8 and S100A9 are among the most abundant proteins in neutrophils and monocytes but are completely silenced after differentiation to macrophages. The molecular mechanisms of the extraordinarily dynamic transcriptional regulation of S100a8 and S100a9 genes, however, are only barely understood. Using an unbiased genome-wide CRISPR/Cas9 knockout (KO)-based screening approach in immortalized murine monocytes, we identified the transcription factor C/EBPδ as a central regulator of S100a8 and S100a9 expression. We showed that S100A8/A9 expression and thereby neutrophil recruitment and cytokine release were decreased in C/EBPδ KO mice in a mouse model of acute lung inflammation. S100a8 and S100a9 expression was further controlled by the C/EBPδ antagonists ATF3 and FBXW7. We confirmed the clinical relevance of this regulatory network in subpopulations of human monocytes in a clinical cohort of cardiovascular patients. Moreover, we identified specific C/EBPδ-binding sites within S100a8 and S100a9 promoter regions, and demonstrated that C/EBPδ-dependent JMJD3-mediated demethylation of H3K27me3 is indispensable for their expression. Overall, our work uncovered C/EBPδ as a novel regulator of S100a8 and S100a9 expression. Therefore, C/EBPδ represents a promising target for modulation of inflammatory conditions that are characterized by S100a8 and S100a9 overexpression.
Collapse
Affiliation(s)
| | | | - Nadine Ludwig
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | | | - Leonie Martens
- Institute of Immunology, University of Münster, Münster, Germany
| | - Jonas Wolf
- Institute of Immunology, University of Münster, Münster, Germany
| | | | - Anika Witten
- Department of Genetic Epidemiology, University of Münster, Münster, Germany
| | - Birgit Markus
- Clinic for Cardiology, Angiology and Internal Intensive Medicine, University Hospital Marburg, Marburg, Germany
| | - Bernhard Schieffer
- Clinic for Cardiology, Angiology and Internal Intensive Medicine, University Hospital Marburg, Marburg, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Monika Stoll
- Department of Genetic Epidemiology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Olesja Fehler
- Institute of Immunology, University of Münster, Münster, Germany
| |
Collapse
|
50
|
Bai H, Si L, Jiang A, Belgur C, Zhai Y, Plebani R, Oh CY, Rodas M, Patil A, Nurani A, Gilpin SE, Powers RK, Goyal G, Prantil-Baun R, Ingber DE. Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip. Nat Commun 2022; 13:1928. [PMID: 35396513 PMCID: PMC8993817 DOI: 10.1038/s41467-022-29562-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Mechanical breathing motions have a fundamental function in lung development and disease, but little is known about how they contribute to host innate immunity. Here we use a human lung alveolus chip that experiences cyclic breathing-like deformations to investigate whether physical forces influence innate immune responses to viral infection. Influenza H3N2 infection of mechanically active chips induces a cascade of host responses including increased lung permeability, apoptosis, cell regeneration, cytokines production, and recruitment of circulating immune cells. Comparison with static chips reveals that breathing motions suppress viral replication by activating protective innate immune responses in epithelial and endothelial cells, which are mediated in part through activation of the mechanosensitive ion channel TRPV4 and signaling via receptor for advanced glycation end products (RAGE). RAGE inhibitors suppress cytokines induction, while TRPV4 inhibition attenuates both inflammation and viral burden, in infected chips with breathing motions. Therefore, TRPV4 and RAGE may serve as new targets for therapeutic intervention in patients infected with influenza and other potential pandemic viruses that cause life-threatening lung inflammation.
Collapse
Affiliation(s)
- Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Longlong Si
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Amanda Jiang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Chaitra Belgur
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Yunhao Zhai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Roberto Plebani
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66023, Italy
| | - Crystal Yuri Oh
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Melissa Rodas
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Aditya Patil
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Atiq Nurani
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Sarah E Gilpin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Rani K Powers
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02138, USA.
| |
Collapse
|