1
|
Meybodi SM, Rabori VS, Salkhorde D, Jafari N, Zeinaly M, Mojodi E, Kesharwani P, Saberiyan M, Sahebkar A. Dexamethasone in COVID-19 treatment: Analyzing monotherapy and combination therapy approaches. Cytokine 2024; 184:156794. [PMID: 39489912 DOI: 10.1016/j.cyto.2024.156794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The COVID-19 pandemic has prompted the exploration of effective treatment options, with dexamethasone emerging as a key corticosteroid for severe cases. This review evaluates the efficacy and safety of dexamethasone, highlighting its ability to reduce mortality rates, alleviate acute respiratory distress syndrome (ARDS), and mitigate hyperinflammation. While dexamethasone shows therapeutic promise, potential adverse effects-including cardiovascular issues, neuropsychiatric complications, lung infections, and liver damage-necessitate careful monitoring and individualized treatment strategies. The review also addresses the debate over using dexamethasone alone versus in combination with other therapies targeting SARS-CoV-2, examining potential synergistic effects and drug resistance. In summary, dexamethasone is a valuable treatment option for COVID-19 but its risks highlight the need for tailored surveillance approaches. Further research is essential to establish clear guidelines for optimizing treatment and improving patient outcomes.
Collapse
Affiliation(s)
| | | | - Darya Salkhorde
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negar Jafari
- Department of Cardiology, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahsa Zeinaly
- Department of Biology, Faculty of Science, University of Guilan
| | - Elham Mojodi
- Depatment of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Guarienti FA, Gonçalves JIB, Gonçalves JB, Antônio Costa Xavier F, Marinowic D, Machado DC. COVID-19: a multi-organ perspective. Front Cell Infect Microbiol 2024; 14:1425547. [PMID: 39492990 PMCID: PMC11527788 DOI: 10.3389/fcimb.2024.1425547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/18/2024] [Indexed: 11/05/2024] Open
Abstract
In this mini review, we explore the complex network of inflammatory reactions incited by SARS-CoV-2 infection, which extends its reach well beyond the respiratory domain to influence various organ systems. Synthesizing existing literature, it elucidates how the hyperinflammation observed in COVID-19 patients affects multiple organ systems leading to physiological impairments that can persist over long after the resolution of infection. By exploring the systemic manifestations of this inflammatory cascade, from acute respiratory distress syndrome (ARDS) to renal impairment and neurological sequelae, the review highlights the profound interplay between inflammation and organ dysfunction. By synthesizing recent research and clinical observations, this mini review aims to provide an overview of the systemic interactions and complications associated with COVID-19, underscoring the need for an integrated approach to treatment and management. Understanding these systemic effects is crucial for improving patient outcomes and preparing for future public health challenges.
Collapse
Affiliation(s)
- Fabiana Amaral Guarienti
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Júlia Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Fernando Antônio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Daniel Marinowic
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Denise Cantarelli Machado
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Wan EYF, Zhang R, Mathur S, Yan VKC, Lai FTT, Chui CSL, Li X, Wong CKH, Chan EWY, Lau CS, Wong ICK. Association of COVID-19 with acute and post-acute risk of multiple different complications and mortality in patients infected with omicron variant stratified by initial disease severity: a cohort study in Hong Kong. BMC Med 2024; 22:461. [PMID: 39402606 PMCID: PMC11476291 DOI: 10.1186/s12916-024-03630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Few studies have attempted to use clinical and laboratory parameters to stratify COVID-19 patients with severe versus non-severe initial disease and evaluate age-specific differences in developing multiple different COVID-19-associated disease outcomes. METHODS A retrospective cohort included patients from the electronic health database of Hong Kong Hospital Authority between 1 January 2022 and 15 August 2022 until 15 November 2022. The cohort was divided into three cohorts by age (≤ 40, 41-64, and ≥ 65 years old). Each age cohort was stratified into four groups: (1) COVID-19 critically exposed group (ICU admission, mechanical ventilation support, CRP > 80 mg/L, or D-dimer > 2 g/mL), (2) severely exposed group (CRP 30-80 mg/L, D-dimer 0.5-2 g/mL, or CT value < 20), (3) mildly-moderately exposed group (COVID-19 positive-tested but not fulfilling the criteria for the aforementioned critically and severely exposed groups), and (4) unexposed group (without COVID-19). The characteristics between groups were adjusted with propensity score-based marginal mean weighting through stratification. Cox regression was conducted to determine the association of COVID-19 disease severity with disease outcomes and mortality in the acute and post-acute phase (< 30 and ≥ 30 days from COVID-19 infection) in each age group. RESULTS A total of 286,114, 320,304 and 194,227 patients with mild-moderate COVID-19 infection; 18,419, 23,678 and 31,505 patients with severe COVID-19 infection; 1,168, 2,261 and 10,178 patients with critical COVID-19 infection, and 1,143,510, 1,369,365 and 1,012,177 uninfected people were identified in aged ≤ 40, 40-64, and ≥ 65 groups, respectively. Compared to the unexposed group, a general trend tending towards an increase in risks of multiple different disease outcomes as COVID-19 disease severity increases, with advancing age, was identified in both the acute and post-acute phases. Notably, the mildly-moderately exposed group were associated with either insignificant risks (aged ≤ 40) or the lowest risks (aged > 40) for the disease outcomes in the acute phase of infection (e.g., mortality risk HR (aged ≤ 40): 1.0 (95%CI: 0.5,2.0), HR (aged 41-64): 2.1 (95%CI: 1.8, 2.6), HR (aged > 65): 4.8 (95%CI: 4.6, 5.1)); while in the post-acute phase, these risks were largely insignificant in those aged < 65, remaining significant only in the elderly (age ≥ 65) (e.g., mortality risk HR (aged ≤ 40): 0.8 (95%CI: (0.5, 1.0)), HR (aged 41-64): 1.1 (95%CI: 1.0,1.2), HR (aged > 65): 1.5 (95%CI: 1.5,1.6)). Fully vaccinated patients were associated with lower risks of disease outcomes than those receiving less than two doses of vaccination. CONCLUSIONS The risk of multiple different disease outcomes in both acute and post-acute phases increased significantly with the increasing severity of acute COVID-19 illness, specifically among the elderly. Moreover, future studies could improve by risk-stratifying patients based on universally accepted thresholds for clinical parameters, particularly biomarkers, using biological evidence from immunological studies.
Collapse
Affiliation(s)
- Eric Yuk Fai Wan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L02-57 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ran Zhang
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sukriti Mathur
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vincent Ka Chun Yan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L02-57 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China
| | - Francisco Tsz Tsun Lai
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L02-57 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Celine Sze Ling Chui
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xue Li
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L02-57 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong`, Hong Kong, China
| | - Carlos King Ho Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L02-57 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Esther Wai Yin Chan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L02-57 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Department of Pharmacy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Chak Sing Lau
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong`, Hong Kong, China
| | - Ian Chi Kei Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L02-57 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China.
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China.
- Research Department of Practice and Policy, School of Pharmacy, University College London, London, UK.
- Aston Pharmacy School, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
4
|
Matula Z, Király V, Bekő G, Gönczi M, Zóka A, Steinhauser R, Uher F, Vályi-Nagy I. High prevalence of long COVID in anti-TPO positive euthyroid individuals with strongly elevated SARS-CoV-2-specific T cell responses and moderately raised anti-spike IgG levels 23 months post-infection. Front Immunol 2024; 15:1448659. [PMID: 39450181 PMCID: PMC11499158 DOI: 10.3389/fimmu.2024.1448659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, the causative agent of coronavirus disease 2019 (COVID-19), causes post-acute infection syndrome in a surprisingly large number of cases worldwide. This condition, also known as long COVID or post-acute sequelae of COVID-19, is characterized by extremely complex symptoms and pathology. There is a growing consensus that this condition is a consequence of virus-induced immune activation and the inflammatory cascade, with its prolonged duration caused by a persistent virus reservoir. Methods In this cross-sectional study, we analyzed the SARS-CoV-2-specific T cell response against the spike, nucleocapsid, and membrane proteins, as well as the levels of spike-specific IgG antibodies in 51 healthcare workers, categorized into long COVID or convalescent control groups based on the presence or absence of post-acute symptoms. Additionally, we compared the levels of autoantibodies previously identified during acute or critical COVID-19, including anti-dsDNA, anti-cardiolipin, anti-β2-glycoprotein I, anti-neutrophil cytoplasmic antibodies, and anti-thyroid peroxidase (anti-TPO). Furthermore, we analyzed the antibody levels targeting six nuclear antigens within the ENA-6 S panel, as positivity for certain anti-nuclear antibodies has recently been shown to associate not only with acute COVID-19 but also with long COVID. Finally, we examined the frequency of diabetes in both groups. Our investigations were conducted at an average of 18.2 months (convalescent control group) and 23.1 months (long COVID group) after confirmed acute COVID-19 infection, and an average of 21 months after booster vaccination. Results Our results showed significant differences between the two groups regarding the occurrence of acute infection relative to administering the individual vaccine doses, the frequency of acute symptoms, and the T cell response against all structural SARS-CoV-2 proteins. A statistical association was observed between the incidence of long COVID symptoms and highly elevated anti-TPO antibodies based on Pearson's chi-squared test. Although patients with long COVID showed moderately elevated anti-SARS-CoV-2 spike IgG serum antibody levels compared to control participants, and further differences were found regarding the positivity for anti-nuclear antibodies, anti-dsDNA, and HbA1c levels between the two groups, these differences were not statistically significant. Disscussion This study highlights the need for close monitoring of long COVID development in patients with elevated anti-TPO titers, which can be indicated by strongly elevated SARS-CoV-2-specific T cell response and moderately raised anti-spike IgG levels even long after the acute infection. However, our results do not exclude the possibility of new-onset thyroid autoimmunity after COVID-19, and further investigations are required to clarify the etiological link between highly elevated anti-TPO titers and long COVID.
Collapse
Affiliation(s)
- Zsolt Matula
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Viktória Király
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gabriella Bekő
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Márton Gönczi
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - András Zóka
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Róbert Steinhauser
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Ferenc Uher
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - István Vályi-Nagy
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| |
Collapse
|
5
|
Park SJ, Seo J, Han KH, Lee BS, Lee C, Kim BY, Ko KC, Kim YB. Safety pharmacology of human endogenous retrovirus-enveloped baculoviral DNA vaccines against SARS-CoV-2 in Sprague-Dawley rats and beagle dogs. Vaccine X 2024; 20:100545. [PMID: 39221182 PMCID: PMC11363860 DOI: 10.1016/j.jvacx.2024.100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) emerged as a major global health crisis, posing significant health, economic, and social challenges. Vaccine development has been a crucial response to the severe-acute-respiratory-syndrome-related coronavirus-2 pandemic owing to the critical role of immunization in controlling infectious diseases, leading to the expedited development of several effective vaccines. Although mRNA platform-based COVID-19 vaccines authorized under emergency-use authorization have been administered globally, concerns regarding the vaccines have increased owing to the occurrence of various side effects. The present study aimed to evaluate the safety of a non-replicating recombinant baculovirus expressing the human endogenous retrovirus envelope gene (AcHERV) vaccine encoding SARS-CoV-2 antigens. Owing to the limited number of existing safety pharmacology studies on AcHERV as a viral vector vaccine, we conducted neurobehavior (Modified Irwin's Test), body temperature, and respiratory function studies in rats and cardiovascular system studies in male beagle dogs, which were administered the AcHERV-COVID-19 vaccine using telemetry. The safety assessment revealed no significant toxicological alterations. However, in rats, both sexes administered with the AcHERV-COVID-19 vaccine exhibited a temporary increase in body temperature, which normalized or showed signs of recovery. In conclusion, AcHERV-COVID-19 demonstrates a sufficient safety profile that supports its potential evaluation in future clinical trials.
Collapse
Affiliation(s)
- Sang-Jin Park
- Korea Institute of Toxicology, 141 Gaejeongro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Joung‐Wook Seo
- Korea Institute of Toxicology, 141 Gaejeongro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Kang-Hyun Han
- Korea Institute of Toxicology, 141 Gaejeongro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Byoung-Seok Lee
- Korea Institute of Toxicology, 141 Gaejeongro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Chanyeong Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Bong Young Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyong-Cheol Ko
- Korea Preclinical Evaluation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yong-Bum Kim
- Korea Institute of Toxicology, 141 Gaejeongro, Yuseong-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|
6
|
Jeon D, Kim SH, Kim J, Jeong H, Uhm C, Oh H, Cho K, Cho Y, Park IH, Oh J, Kim JJ, Hwang JY, Lee HJ, Lee HY, Seo JY, Shin JS, Seong JK, Nam KT. Discovery of a new long COVID mouse model via systemic histopathological comparison of SARS-CoV-2 intranasal and inhalation infection. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167347. [PMID: 39019092 DOI: 10.1016/j.bbadis.2024.167347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
Intranasal infection is commonly used to establish a SARS-CoV-2 mouse model due to its non-invasive procedures and a minimal effect from the operation itself. However, mice intranasally infected with SARS-CoV-2 have a high mortality rate, which limits the utility of this model for exploring therapeutic strategies and the sequelae of non-fatal COVID-19 cases. To resolve these limitations, an aerosolised viral administration method has been suggested. However, an in-depth pathological analysis comparing the two models is lacking. Here, we show that inhalation and intranasal SARS-CoV-2 (106 PFU) infection models established in K18-hACE2 mice develop unique pathological features in both the respiratory and central nervous systems, which could be directly attributed to the infection method. While the inhalation-infection model exhibited relatively milder pathological parameters, it closely mimicked the prevalent chest CT pattern observed in COVID-19 patients with focal, peripheral lesions and fibrotic scarring in the recuperating lung. We also found the evidence of direct neuron-invasion from the olfactory receptor neurons to the olfactory bulb in the intranasal model and showed the trigeminal nerve as an alternative route of transmission to the brain in inhalation infected mice. Even after viral clearance confirmed at 14 days post-infection, mild lesions were still found in the brain of inhalation-infected mice. These findings suggest that the inhalation-infection model has advantages over the intranasal-infection model in closely mimicking the pathological features of non-fatal symptoms of COVID-19, demonstrating its potential to study the sequelae and possible interventions for long COVID.
Collapse
Affiliation(s)
- Donghun Jeon
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Hee Kim
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiseon Kim
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Haengdueng Jeong
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Chanyang Uhm
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Heeju Oh
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyungrae Cho
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Yejin Cho
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - In Ho Park
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jooyeon Oh
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong Jin Kim
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji-Yeon Hwang
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Nuclear Medicine, Seoul National University, College of Medicine, Seoul, South Korea
| | - Jun-Young Seo
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeon-Soo Shin
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, South Korea; BIO MAX Institute, Seoul National University, Seoul, South Korea; Interdisciplinary Program for Bioinformatics, Seoul National University, Seoul, South Korea.
| | - Ki Taek Nam
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
7
|
Uematsu T, Takai-Todaka R, Haga K, Kobayashi H, Imajima M, Kobayashi N, Katayama K, Hanaki H. Pharmacological effect of cepharanthine on SARS-CoV-2-induced disease in a Syrian hamster model. J Infect Chemother 2024:S1341-321X(24)00237-X. [PMID: 39197667 DOI: 10.1016/j.jiac.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health threat. Although several effective vaccines and therapeutics have been developed, continuous emergence of new variants necessitates development of drugs with different mechanisms of action. Recent studies indicate that cepharanthine, a chemical derivative purified from Stephania cepharantha, inhibits SARS-CoV-2 replication in vitro. METHODS This study examined the in vivo effects of cepharanthine using a Syrian hamster SARS-CoV-2 infection model. To evaluate the prophylactic and therapeutic effects, cepharanthine was intranasally administered before or after SARS-CoV-2 infection. Effects were assessed by monitoring body weight changes, lung pathology, lung viral load, and inflammatory response in the lungs. RESULTS Pre-infection administration of cepharanthine resulted in less weight loss, reduced virus titers, alleviated histopathological severity, and decreased lung inflammation. Furthermore, post-infection administration of cepharanthine also exhibited therapeutic effects. CONCLUSIONS This study demonstrated that both prophylactic and therapeutic administration of cepharanthine reduces the pathogenesis of COVID-19 in a Syrian hamster SARS-CoV-2 infection model. Our findings suggest that cepharanthine is a potential therapeutic agent against COVID-19.
Collapse
Affiliation(s)
- Takayuki Uematsu
- Biomedical Laboratory, Division of Biomedical Research, Kitasato University Medical Center, Arai, Kitamoto, Saitama, Japan.
| | - Reiko Takai-Todaka
- Laboratory of Viral Infection Control, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan.
| | - Kei Haga
- Laboratory of Viral Infection Control, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan.
| | - Hideyuki Kobayashi
- Tokyo New Drug Research Laboratories, Pharmaceutical Business Unit, Kowa Company, Ltd., Tokyo, Japan.
| | - Makiko Imajima
- Tokyo New Drug Research Laboratories, Pharmaceutical Business Unit, Kowa Company, Ltd., Tokyo, Japan.
| | - Noritada Kobayashi
- Biomedical Laboratory, Division of Biomedical Research, Kitasato University Medical Center, Arai, Kitamoto, Saitama, Japan.
| | - Kazuhiko Katayama
- Laboratory of Viral Infection Control, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan.
| | - Hideaki Hanaki
- Infection Control Research Center, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan.
| |
Collapse
|
8
|
Villareal JAB, Bathe T, Hery GP, Phillips JL, Tsering W, Prokop S. Deterioration of neuroimmune homeostasis in Alzheimer's Disease patients who survive a COVID-19 infection. J Neuroinflammation 2024; 21:202. [PMID: 39154174 PMCID: PMC11330027 DOI: 10.1186/s12974-024-03196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Growing evidence has implicated systemic infection as a significant risk factor for the development and advancement of Alzheimer's disease (AD). With the emergence of SARS-CoV-2 (COVID-19) and the resultant pandemic, many individuals from the same aging population vulnerable to AD suffered a severe systemic infection with potentially unidentified long-term consequences for survivors. To study the impact of COVID-19 survival on the brain's intrinsic immune system in a population also suffering from AD, we profiled post-mortem brain tissue from patients in the UF Neuromedicine Human Brain and Tissue Bank with a diagnosis of AD who survived a COVID-19 infection (COVID-AD) and contrasted our findings with AD patients who did not experience a COVID-19 infection, including a group of brain donors who passed away before arrival of SARS-CoV-2 in the United States. We assessed disease-relevant protein pathology and microglial and astrocytic markers by quantitative immunohistochemistry and supplemented these data with whole tissue gene expression analysis performed on the NanoString nCounter® platform. COVID-AD patients showed slightly elevated Aβ burden in the entorhinal, fusiform, and inferior temporal cortices compared to non-COVID-AD patients, while tau pathology burden did not differ between groups. Analysis of microglia revealed a significant loss of microglial homeostasis as well as exacerbated microgliosis in COVID-AD patients compared to non-COVID-AD patients in a brain region-dependent manner. Furthermore, COVID-AD patients showed reduced cortical astrocyte numbers, independent of functional subtype. Transcriptomic analysis supported these histological findings and, in addition, identified a dysregulation of oligodendrocyte and myelination pathways in the hippocampus of COVID-AD patients. In summary, our data demonstrate a profound impact of COVID-19 infection on neuroimmune and glial pathways in AD patients persisting for months post-infection, highlighting the importance of peripheral to central neuroimmune crosstalk in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan A B Villareal
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Tim Bathe
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Gabriela P Hery
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Jennifer L Phillips
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Wangchen Tsering
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Prokop
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32608, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
9
|
Rodriguez‐Nava G, El Kamari V, Chang H, Egoryan G, Bonilla HF. New-onset sarcoidosis in a patient with long COVID. Clin Case Rep 2024; 12:e9186. [PMID: 39130813 PMCID: PMC11316136 DOI: 10.1002/ccr3.9186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Long COVID, often following SARS-CoV-2 infection, may stem from sustained inflammation, overlapping with autoimmune diseases like sarcoidosis. Though specific treatments lack, this link could shape future diagnostic and therapeutic methods.
Collapse
Affiliation(s)
- Guillermo Rodriguez‐Nava
- Division of Infectious Diseases and Geographic Medicine, Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Vanessa El Kamari
- Division of Infectious Diseases and Geographic Medicine, Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Harvey Chang
- Department of PathologyMemorial Medical CenterModestoCaliforniaUSA
| | - Goar Egoryan
- Division of Oncology, Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Hector F. Bonilla
- Division of Infectious Diseases and Geographic Medicine, Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
- Stanford Post‐Acute COVID‐19 Syndrome ClinicStanford Health CareStanfordCaliforniaUSA
- Stanford Myalgic Encephalomyelitis/Chronic Fatigue Syndrome ClinicStanford Health CareStanfordCaliforniaUSA
| |
Collapse
|
10
|
Li P, Liu M, He WM. Integrated Transcriptomic Analysis Reveals Reciprocal Interactions between SARS-CoV-2 Infection and Multi-Organ Dysfunction, Especially the Correlation of Renal Failure and COVID-19. Life (Basel) 2024; 14:960. [PMID: 39202702 PMCID: PMC11355357 DOI: 10.3390/life14080960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
The COVID-19 pandemic, which is caused by the SARS-CoV-2 virus, has resulted in extensive health challenges globally. While SARS-CoV-2 primarily targets the respiratory system, clinical studies have revealed that it could also affect multiple organs, including the heart, kidneys, liver, and brain, leading to severe complications. To unravel the intricate molecular interactions between the virus and host tissues, we performed an integrated transcriptomic analysis to investigate the effects of SARS-CoV-2 on various organs, with a particular focus on the relationship between renal failure and COVID-19. A comparative analysis showed that SARS-CoV-2 triggers a systemic immune response in the brain, heart, and kidney tissues, characterized by significant upregulation of cytokine and chemokine secretion, along with enhanced migration of lymphocytes and leukocytes. A weighted gene co-expression network analysis demonstrated that SARS-CoV-2 could also induce tissue-specific transcriptional profiling. More importantly, single-cell sequencing revealed that COVID-19 patients with renal failure exhibited lower metabolic activity in lung epithelial and B cells, with reduced ligand-receptor interactions, especially CD226 and ICAM, suggesting a compromised immune response. A trajectory analysis revealed that COVID-19 patients with renal failure exhibited less mature alveolar type 1 cells. Furthermore, these patients showed potential fibrosis in the hearts, liver, and lung increased extracellular matrix remodeling activities. However, there was no significant metabolic dysregulation in the liver of COVID-19 patients with renal failure. Candidate drugs prediction by Drug Signatures database and LINCS L1000 Antibody Perturbations Database underscored the importance of considering multi-organ effects in COVID-19 management and highlight potential therapeutic strategies, including targeting viral entry and replication, controlling tissue fibrosis, and alleviating inflammation.
Collapse
Affiliation(s)
- Pai Li
- Capricorn Partner, 3000 Leuven, Belgium
| | - Meng Liu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Wei-Ming He
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
11
|
Pawlik VE, Mohi A, Rommel F, Kakkassery V, Ranjbar M, Grisanti S. [Transparent Depiction of Case Reports Linked to COVID-19 and its Vaccination - a Temporal Coincidence]. Klin Monbl Augenheilkd 2024; 241:828-833. [PMID: 35426111 DOI: 10.1055/a-1775-8405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Vera Elisabeth Pawlik
- Klinik für Augenheilkunde, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Deutschland
| | - Armin Mohi
- Klinik für Augenheilkunde, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Deutschland
| | - Felix Rommel
- Klinik für Augenheilkunde, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Deutschland
| | - Vinodh Kakkassery
- Klinik für Augenheilkunde, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Deutschland
| | - Mahdy Ranjbar
- Klinik für Augenheilkunde, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Deutschland
| | - Salvatore Grisanti
- Klinik für Augenheilkunde, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Deutschland
| |
Collapse
|
12
|
Witowski A, Palmowski L, Rahmel T, Nowak H, Ehrentraut SF, Putensen C, von Groote T, Zarbock A, Babel N, Anft M, Sitek B, Bracht T, Bayer M, Weber M, Weisheit C, Pfänder S, Eisenacher M, Adamzik M, Katharina R, Koos B, Ziehe D. Activation of the MAPK network provides a survival advantage during the course of COVID-19-induced sepsis: a real-world evidence analysis of a multicenter COVID-19 Sepsis Cohort. Infection 2024:10.1007/s15010-024-02325-7. [PMID: 38896372 DOI: 10.1007/s15010-024-02325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE There is evidence that lower activity of the RAF/MEK/ERK network is associated with positive outcomes in mild and moderate courses of COVID-19. The effect of this cascade in COVID-19 sepsis is still undetermined. Therefore, we tested the hypothesis that activity of the RAF/MEK/ERK network in COVID-19-induced sepsis is associated with an impact on 30-day survival. METHODS We used biomaterial from 81 prospectively recruited patients from the multicentric CovidDataNet.NRW-study cohort (German clinical trial registry: DRKS00026184) with their collected medical history, vital signs, laboratory parameters, microbiological findings and patient outcome. ERK activity was measured by evaluating ERK phosphorylation using a Proximity Ligation Assay. RESULTS An increased ERK activity at 4 days after diagnosis of COVID-19-induced sepsis was associated with a more than threefold increased chance of survival in an adjusted Cox regression model. ERK activity was independent of other confounders such as Charlson Comorbidity Index or SOFA score (HR 0.28, 95% CI 0.10-0.84, p = 0.02). CONCLUSION High activity of the RAF/MEK/ERK network during the course of COVID-19 sepsis is a protective factor and may indicate recovery of the immune system. Further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Andrea Witowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Lars Palmowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
- Zentrum für Künstliche Intelligenz, Medizininformatik und Datenwissenschaften, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Stefan F Ehrentraut
- Klinik für Anästhesiologie und operative Intensivmedizin, Universitätsklinikum Bonn, Bonn, Germany
| | - Christian Putensen
- Klinik für Anästhesiologie und operative Intensivmedizin, Universitätsklinikum Bonn, Bonn, Germany
| | - Thilo von Groote
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Münster, Germany
| | - Alexander Zarbock
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Münster, Germany
| | - Nina Babel
- Centrum für Translationale Medizin, Medizinische Klinik I, Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, Herne, Germany
| | - Moritz Anft
- Centrum für Translationale Medizin, Medizinische Klinik I, Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, Herne, Germany
| | - Barbara Sitek
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
- Medizinisches Proteom-Center, Ruhr Universität Bochum, Medizinische Fakultät, Bochum, Germany
| | - Thilo Bracht
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
- Medizinisches Proteom-Center, Ruhr Universität Bochum, Medizinische Fakultät, Bochum, Germany
| | - Malte Bayer
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
- Medizinisches Proteom-Center, Ruhr Universität Bochum, Medizinische Fakultät, Bochum, Germany
| | - Maike Weber
- Medizinisches Proteom-Center, Ruhr Universität Bochum, Medizinische Fakultät, Bochum, Germany
- Center for Protein Diagnostics (PRODI), Medical Proteome Analysis, Ruhr Universität Bochum, Bochum, Germany
| | - Christina Weisheit
- Klinik für Anästhesiologie und operative Intensivmedizin, Universitätsklinikum Bonn, Bonn, Germany
| | - Stephanie Pfänder
- Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
- University of Lübeck, Lübeck, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Ruhr Universität Bochum, Medizinische Fakultät, Bochum, Germany
- Center for Protein Diagnostics (PRODI), Medical Proteome Analysis, Ruhr Universität Bochum, Bochum, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Rump Katharina
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany.
| | - Dominik Ziehe
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| |
Collapse
|
13
|
Netti GS, Soccio P, Catalano V, De Luca F, Khalid J, Camporeale V, Moriondo G, Papale M, Scioscia G, Corso G, Foschino MP, Lo Caputo S, Lacedonia D, Ranieri E. The Onset of Antinuclear Antibodies (ANAs) as a Potential Risk Factor for Mortality and Morbidity in COVID-19 Patients: A Single-Center Retrospective Study. Biomedicines 2024; 12:1306. [PMID: 38927513 PMCID: PMC11201662 DOI: 10.3390/biomedicines12061306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The immune system's amplified response to SARS-CoV-2 may lead to the production of autoantibodies, but their specific impact on disease severity and outcome remains unclear. This study aims to assess if hospitalized COVID-19 patients face a worse prognosis based on ANA presence, even without autoimmune diseases. We performed a retrospective, single-center, observational cohort study, enrolling 638 COVID-19 patients hospitalized from April 2020 to March 2021 at Hospital "Policlinico Riuniti" of Foggia (Italy). COVID-19 patients with a positive ANA test exhibited a significantly lower 30-day survival rate (64.4% vs. 83.0%) and a higher likelihood of severe respiratory complications during hospitalization than those with negative ANA screening (35.4% vs. 17.0%) (p < 0.001). The association between poor prognosis and ANA status was identified by calculating the HALP score (Hemoglobin-Albumin-Lymphocyte-Platelet), which was lower in COVID-19 patients with a positive ANA test compared to ANA-negative patients (108.1 ± 7.4 vs. 218.6 ± 11.2 AU; p < 0.011). In detail, COVID-19 patients with a low HALP showed a lower 30-day survival rate (99.1% vs. 83.6% vs. 55.2% for high, medium, and low HALP, respectively; p < 0.001) and a higher incidence of adverse respiratory events compared to those with high and medium HALP (13.1% vs. 35.2% vs. 64.6% for high, medium, and low HALP, respectively; p < 0.001). In summary, ANA positivity in COVID-19 patients appears to be linked to a more aggressive disease phenotype with a reduced survival rate. Furthermore, we propose that the HALP score could serve as a valuable parameter to assess prognosis for COVID-19 patients.
Collapse
Affiliation(s)
- Giuseppe Stefano Netti
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (V.C.); (F.D.L.); (J.K.); (V.C.); (E.R.)
- Unit of Clinical Pathology, Department of Laboratory Diagnostics, University Hospital “Policlinico Riuniti”, 71122 Foggia, Italy; (M.P.); (G.C.)
| | - Piera Soccio
- Unit of Respiratory Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.S.); (G.M.); (G.S.); (M.P.F.); (D.L.)
| | - Valeria Catalano
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (V.C.); (F.D.L.); (J.K.); (V.C.); (E.R.)
| | - Federica De Luca
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (V.C.); (F.D.L.); (J.K.); (V.C.); (E.R.)
| | - Javeria Khalid
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (V.C.); (F.D.L.); (J.K.); (V.C.); (E.R.)
| | - Valentina Camporeale
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (V.C.); (F.D.L.); (J.K.); (V.C.); (E.R.)
| | - Giorgia Moriondo
- Unit of Respiratory Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.S.); (G.M.); (G.S.); (M.P.F.); (D.L.)
| | - Massimo Papale
- Unit of Clinical Pathology, Department of Laboratory Diagnostics, University Hospital “Policlinico Riuniti”, 71122 Foggia, Italy; (M.P.); (G.C.)
| | - Giulia Scioscia
- Unit of Respiratory Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.S.); (G.M.); (G.S.); (M.P.F.); (D.L.)
| | - Gaetano Corso
- Unit of Clinical Pathology, Department of Laboratory Diagnostics, University Hospital “Policlinico Riuniti”, 71122 Foggia, Italy; (M.P.); (G.C.)
- Clinical Biochemistry, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Pia Foschino
- Unit of Respiratory Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.S.); (G.M.); (G.S.); (M.P.F.); (D.L.)
| | - Sergio Lo Caputo
- Unit of Infectious Diseases, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Donato Lacedonia
- Unit of Respiratory Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.S.); (G.M.); (G.S.); (M.P.F.); (D.L.)
| | - Elena Ranieri
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (V.C.); (F.D.L.); (J.K.); (V.C.); (E.R.)
- Unit of Clinical Pathology, Department of Laboratory Diagnostics, University Hospital “Policlinico Riuniti”, 71122 Foggia, Italy; (M.P.); (G.C.)
| |
Collapse
|
14
|
Pandey S, Bapat V, Abraham JN, Abraham NM. Long COVID: From olfactory dysfunctions to viral Parkinsonism. World J Otorhinolaryngol Head Neck Surg 2024; 10:137-147. [PMID: 38855289 PMCID: PMC11156689 DOI: 10.1002/wjo2.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 06/11/2024] Open
Abstract
Neurological and psychiatric complications continue to be a public health concern in long coronavirus disease 2019 (COVID-19). This varies from olfactory dysfunctions such as parosmia to cognitive and emotional challenges. Historically, the surge of neurological disorders followed the viral pandemics, for example, the emergence of Encephalitis Lethargica after the outbreak of Spanish Influenza. During and after COVID-19 infection, the problems associated with the sense of smell and the reports of affected olfactory and limbic brain areas are leading to a growing concern about the similarity with the symptoms and the pattern of degeneration observed at the onset of Parkinson's disease and Alzheimer's disease. These reports reveal the essentiality of long-term studies of olfactory and cognitive functions in the post-COVID era and the experiments using animal models to dissect the neural basis of these complications. In this manuscript, we summarize the research reporting the potential correlation between neurological disorders and viral pandemic outbreaks with a historical perspective. Further, we discuss the studies providing evidence of neurodegeneration due to severe acute respiratory syndrome coronavirus 2 infection by focusing on viral Parkinsonism.
Collapse
Affiliation(s)
- Sanyukta Pandey
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
| | - Vibha Bapat
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
| | - Jancy Nixon Abraham
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
- Department of Life Sciences, Centre of Excellence in EpigeneticsShiv Nadar Institution of EminenceGautam Buddha NagarUttar PradeshIndia
| | - Nixon M. Abraham
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
| |
Collapse
|
15
|
Gando S, Akiyama T. Disseminated intravascular coagulation is associated with poor prognosis in patients with COVID-19. Sci Rep 2024; 14:12443. [PMID: 38816405 PMCID: PMC11139854 DOI: 10.1038/s41598-024-63078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024] Open
Abstract
This study aimed to investigate the incidence and significance of disseminated intravascular coagulation (DIC) in coronavirus disease 2019 (COVID-19). A multicenter cohort study was conducted using large-scale COVID-19 registry data. The patients were classified into DIC and non-DIC groups based on the diagnosis on admission (day 1) and on any of the days 1, 4, 8, and 15. In total, 23,054 patients were divided into DIC (n = 264) and non-DIC (n = 22,790) groups on admission. Thereafter, 1654 patients were divided into 181 patients with DIC and 1473 non-DIC patients based on the DIC diagnosis on any of the days from 1 to 15. DIC incidence was 1.1% on admission, increasing to 10.9% by day 15. DIC diagnosis on admission had moderate predictive performance for developing multiple organ dysfunction syndrome (MODS) on day 4 and in-hospital death and was independently associated with MODS and in-hospital death. DIC diagnosis on any of the days from 1 to 15, especially days 8 and 15, was associated with lower survival probability than those without DIC and showed significant association with in-hospital death. In conclusion, despite its low incidence, DIC, particularly late-onset DIC, plays a significant role in the pathogenesis of poor prognosis in patients with COVID-19.
Collapse
Affiliation(s)
- Satoshi Gando
- Department of Acute and Critical Care Medicine, Sapporo Higashi Tokushukai Hospital, N34, E14, Higashi-ku, Sapporo, 065-0033, Japan.
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
| | - Takayuki Akiyama
- Large-Scale Data Archiving and Processing Section, Institute of Economic Research, Hitotsubashi University, Tokyo, Japan
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Raisi-Estabragh Z. Dispelling concerns: the mild nature of coronavirus disease 2019 vaccine-related myocarditis. J Cardiovasc Magn Reson 2024; 26:101044. [PMID: 38729578 PMCID: PMC11129083 DOI: 10.1016/j.jocmr.2024.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Affiliation(s)
- Zahra Raisi-Estabragh
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK.
| |
Collapse
|
17
|
Hsieh KH, Chao CH, Cheng YL, Lai YC, Chuang YC, Wang JR, Chang SY, Hung YP, Chen YMA, Liu WL, Chuang WJ, Yeh TM. Enhancement of NETosis by ACE2-cross-reactive anti-SARS-CoV-2 RBD antibodies in patients with COVID-19. J Biomed Sci 2024; 31:39. [PMID: 38637878 PMCID: PMC11027296 DOI: 10.1186/s12929-024-01026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND High levels of neutrophil extracellular trap (NET) formation or NETosis and autoantibodies are related to poor prognosis and disease severity of COVID-19 patients. Human angiotensin-converting enzyme 2 (ACE2) cross-reactive anti-severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain (SARS-CoV-2 RBD) antibodies (CR Abs) have been reported as one of the sources of anti-ACE2 autoantibodies. However, the pathological implications of CR Abs in NET formation remain unknown. METHODS In this study, we first assessed the presence of CR Abs in the sera of COVID-19 patients with different severity by serological analysis. Sera and purified IgG from CR Abs positive COVID-19 patients as well as a mouse monoclonal Ab (mAb 127) that can recognize both ACE2 and the RBD were tested for their influence on NETosis and the possible mechanisms involved were studied. RESULTS An association between CR Abs levels and the severity of COVID-19 in 120 patients was found. The CR Abs-positive sera and IgG from severe COVID-19 patients and mAb 127 significantly activated human leukocytes and triggered NETosis, in the presence of RBD. This NETosis, triggered by the coexistence of CR Abs and RBD, activated thrombus-related cells but was abolished when the interaction between CR Abs and ACE2 or Fc receptors was disrupted. We also revealed that CR Abs-induced NETosis was suppressed in the presence of recombinant ACE2 or the Src family kinase inhibitor, dasatinib. Furthermore, we found that COVID-19 vaccination not only reduced COVID-19 severity but also prevented the production of CR Abs after SARS-CoV-2 infection. CONCLUSIONS Our findings provide possible pathogenic effects of CR Abs in exacerbating COVID-19 by enhancing NETosis, highlighting ACE2 and dasatinib as potential treatments, and supporting the benefit of vaccination in reducing disease severity and CR Abs production in COVID-19 patients.
Collapse
Affiliation(s)
- Kun-Han Hsieh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiao-Hsuan Chao
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory and Regenerative Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Yi-Ling Cheng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chung Lai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Yung-Chun Chuang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Leadgene Biomedical, Inc, Tainan, Taiwan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Diseases and Vaccinology, National Institute of Infectious National Health Research Institutes, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
- Department of Internal Medicine, National Cheng Kung University, Medical College and Hospital, Tainan, Taiwan
| | - Yi-Ming Arthur Chen
- Laboratory of Important Infectious Diseases and Cancer, Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan
- Diseases and Vaccinology, National Institute of Infectious National Health Research Institutes, Miaoli County, 350, Taiwan
| | - Wei-Lun Liu
- School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan
- Department of Critical Care Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, 243, Taiwan
- Data Science Center, College of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Woei-Jer Chuang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
18
|
Pérez-Díez A, Liu X, Calderon S, Bennett A, Lisco A, Kellog A, Galindo F, Memoli MJ, Rocco JM, Epling BP, Laidlaw E, Sneller MC, Manion M, Wortmann GW, Poon R, Kumar P, Sereti I. Prevalence of anti-lymphocyte IgM autoantibodies driving complement activation in COVID-19 patients. Front Immunol 2024; 15:1352330. [PMID: 38694513 PMCID: PMC11061367 DOI: 10.3389/fimmu.2024.1352330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/27/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction COVID-19 patients can develop autoantibodies against a variety of secreted and membrane proteins, including some expressed on lymphocytes. However, it is unclear what proportion of patients might develop anti-lymphocyte antibodies (ALAb) and what functional relevance they might have. Methods We evaluated the presence and lytic function of ALAb in the sera of a cohort of 85 COVID-19 patients (68 unvaccinated and 17 vaccinated) assigned to mild (N=63), or moderate/severe disease (N=22) groups. Thirty-seven patients were followed-up after recovery. We also analyzed in vivo complement deposition on COVID-19 patients' lymphocytes and examined its correlation with lymphocyte numbers during acute disease. Results Compared with healthy donors (HD), patients had an increased prevalence of IgM ALAb, which was significantly higher in moderate/severe disease patients and persisted after recovery. Sera from IgM ALAb+ patients exhibited complement-dependent cytotoxicity (CDC) against HD lymphocytes. Complement protein C3b deposition on patients' CD4 T cells was inversely correlated with CD4 T cell numbers. This correlation was stronger in moderate/severe disease patients. Discussion IgM ALAb and complement activation against lymphocytes may contribute to the acute lymphopenia observed in COVID-19 patients.
Collapse
Affiliation(s)
- Ainhoa Pérez-Díez
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Xiangdong Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Stephanie Calderon
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Ashlynn Bennett
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Anela Kellog
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Frances Galindo
- Division of Clinical Research, NIAID, NIH, Bethesda, MD, United States
| | - Matthew J. Memoli
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Joseph M. Rocco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Brian P. Epling
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Elizabeth Laidlaw
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Mike C. Sneller
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Maura Manion
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Glenn W. Wortmann
- Section of Infectious Diseases, MedStar Washington Hospital Center, Washington, DC, United States
| | - Rita Poon
- Division of Hospital Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Princy Kumar
- Division of Infectious Diseases and Tropical Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| |
Collapse
|
19
|
Oliveira VLS, Queiroz-Junior CM, Hoorelbeke D, Santos FRDS, Chaves IDM, Teixeira MM, Russo RDC, Proost P, Costa VV, Struyf S, Amaral FA. The glycosaminoglycan-binding chemokine fragment CXCL9(74-103) reduces inflammation and tissue damage in mouse models of coronavirus infection. Front Immunol 2024; 15:1378591. [PMID: 38686377 PMCID: PMC11056509 DOI: 10.3389/fimmu.2024.1378591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Pulmonary diseases represent a significant burden to patients and the healthcare system and are one of the leading causes of mortality worldwide. Particularly, the COVID-19 pandemic has had a profound global impact, affecting public health, economies, and daily life. While the peak of the crisis has subsided, the global number of reported COVID-19 cases remains significantly high, according to medical agencies around the world. Furthermore, despite the success of vaccines in reducing the number of deaths caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there remains a gap in the treatment of the disease, especially in addressing uncontrolled inflammation. The massive recruitment of leukocytes to lung tissue and alveoli is a hallmark factor in COVID-19, being essential for effectively responding to the pulmonary insult but also linked to inflammation and lung damage. In this context, mice models are a crucial tool, offering valuable insights into both the pathogenesis of the disease and potential therapeutic approaches. Methods Here, we investigated the anti-inflammatory effect of the glycosaminoglycan (GAG)-binding chemokine fragment CXCL9(74-103), a molecule that potentially decreases neutrophil transmigration by competing with chemokines for GAG-binding sites, in two models of pneumonia caused by coronavirus infection. Results In a murine model of betacoronavirus MHV-3 infection, the treatment with CXCL9(74-103) decreased the accumulation of total leukocytes, mainly neutrophils, to the alveolar space and improved several parameters of lung dysfunction 3 days after infection. Additionally, this treatment also reduced the lung damage. In the SARS-CoV-2 model in K18-hACE2-mice, CXCL9(74-103) significantly improved the clinical manifestations of the disease, reducing pulmonary damage and decreasing viral titers in the lungs. Discussion These findings indicate that CXCL9(74-103) resulted in highly favorable outcomes in controlling pneumonia caused by coronavirus, as it effectively diminishes the clinical consequences of the infections and reduces both local and systemic inflammation.
Collapse
Affiliation(s)
- Vivian Louise Soares Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Celso Martins Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Delphine Hoorelbeke
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Felipe Rocha da Silva Santos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ian de Meira Chaves
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo de Castro Russo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paul Proost
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vivian Vasconcelos Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sofie Struyf
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Flávio Almeida Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
20
|
Chow EJ, Chopra A. Untangling the Landscape of Neurologic and Psychiatric Post-COVID-19 Conditions. Neurology 2024; 102:e209211. [PMID: 38381997 DOI: 10.1212/wnl.0000000000209211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/20/2023] [Indexed: 02/23/2024] Open
Affiliation(s)
- Eric J Chow
- From the Public Health-Seattle & King County (E.J.C.); Division of Allergy and Infectious Diseases (E.J.C.), Department of Epidemiology, and Department of Medicine (A.C.), University of Washington, Seattle
| | - Anita Chopra
- From the Public Health-Seattle & King County (E.J.C.); Division of Allergy and Infectious Diseases (E.J.C.), Department of Epidemiology, and Department of Medicine (A.C.), University of Washington, Seattle
| |
Collapse
|
21
|
Duindam HB, Mengel D, Kox M, Göpfert JC, Kessels RPC, Synofzik M, Pickkers P, Abdo WF. Systemic inflammation relates to neuroaxonal damage associated with long-term cognitive dysfunction in COVID-19 patients. Brain Behav Immun 2024; 117:510-520. [PMID: 38336025 DOI: 10.1016/j.bbi.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Cognitive deficits are increasingly recognized as a long-term sequela of severe COVID-19. The underlying processes and molecular signatures associated with these long-term neurological sequalae of COVID-19 remain largely unclear, but may be related to systemic inflammation-induced effects on the brain. We studied the systemic inflammation-brain interplay and its relation to development of long-term cognitive impairment in patients who survived severe COVID-19. Trajectories of systemic inflammation and neuroaxonal damage blood biomarkers during ICU admission were analyzed and related to long-term cognitive outcomes. METHODS Prospective longitudinal cohort study of patients with severe COVID-19 surviving ICU admission. During admission, blood was sampled consecutively to assess levels of inflammatory cytokines and neurofilament light chain (NfL) using an ultrasensitive multiplex Luminex assay and single molecule array technique (Simoa). Cognitive functioning was evaluated using a comprehensive neuropsychological assessment six months after ICU-discharge. RESULTS Ninety-six patients (median [IQR] age 61 [55-69] years) were enrolled from March 2020 to June 2021 and divided into two cohorts: those who received no COVID-19-related immunotherapy (n = 28) and those treated with either dexamethasone or dexamethasone and tocilizumab (n = 68). Plasma NfL concentrations increased in 95 % of patients during their ICU stay, from median [IQR] 23 [18-38] pg/mL at admission to 250 [160-271] pg/mL after 28 days, p < 0.001. Besides age, glomerular filtration rate, immunomodulatory treatment, and C-reactive protein, more specific markers of systemic inflammation at day 14 (i.e., interleukin (IL)-8, tumour necrosis factor, and IL-1 receptor antagonist) were significant predictors of blood NfL levels at day 14 of ICU admission (R2 = 44 %, p < 0.001), illustrating the association between sustained systemic inflammation and neuroaxonal damage. Twenty-six patients (27 %) exhibited cognitive impairment six months after discharge from the ICU. NfL concentrations showed a more pronounced increase in patients that developed cognitive impairment (p = 0.03). Higher NfL predicted poorer outcome in information processing speed (Trail Making Test A, r = -0.26, p = 0.01; Letter Digit Substitution Test, r = -0.24, p = 0.02). DISCUSSION Prolonged systemic inflammation in critically ill COVID-19 patients is related to neuroaxonal damage and subsequent long-term cognitive impairment. Moreover, our findings suggest that plasma NfL concentrations during ICU stay may possess prognostic value in predicting future long-term cognitive impairment in patients that survived severe COVID-19.
Collapse
Affiliation(s)
- H B Duindam
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands
| | - D Mengel
- Center for Neurology and Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - M Kox
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands
| | - J C Göpfert
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - R P C Kessels
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Radboud University Medical Center, Department of Medical Psychology and Radboudumc Alzheimer Center, Nijmegen, the Netherlands; Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands
| | - M Synofzik
- Center for Neurology and Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - P Pickkers
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands
| | - W F Abdo
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands.
| |
Collapse
|
22
|
Seo JW, Kim SE, Kim Y, Kim EJ, Kim T, Kim T, Lee SH, Lee E, Lee J, Seo YB, Jeong YH, Jung YH, Choi YJ, Song JY. Updated Clinical Practice Guidelines for the Diagnosis and Management of Long COVID. Infect Chemother 2024; 56:122-157. [PMID: 38527781 PMCID: PMC10990882 DOI: 10.3947/ic.2024.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/27/2024] Open
Abstract
"Long COVID" is a term used to describe a condition when the symptoms and signs associated with coronavirus disease 2019 (COVID-19) persist for more than three months among patients infected with COVID-19; this condition has been reported globally and poses a serious public health issue. Long COVID can manifest in various forms, highlighting the need for appropriate evaluation and management by experts from various fields. However, due to the lack of clear clinical definitions, knowledge of pathophysiology, diagnostic methods, and treatment protocols, it is necessary to develop the best standard clinical guidelines based on the scientific evidence reported to date. We developed this clinical guideline for diagnosing and treating long COVID by analyzing the latest research data collected from the start of the COVID-19 pandemic until June 2023, along with the consensus of expert opinions. This guideline provides recommendations for diagnosis and treatment that can be applied in clinical practice, based on a total of 32 key questions related to patients with long COVID. The evaluation of patients with long COVID should be comprehensive, including medical history, physical examination, blood tests, imaging studies, and functional tests. To reduce the risk of developing long COVID, vaccination and antiviral treatment during the acute phase are recommended. This guideline will be revised when there is a reasonable need for updates based on the availability of new knowledge on the diagnosis and treatment of long COVID.
Collapse
Affiliation(s)
- Jun-Won Seo
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Seong Eun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Yoonjung Kim
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Eun Jung Kim
- Health, Welfare, Family and Gender Equality Team, National Assembly Research Service, Seoul, Korea
| | - Tark Kim
- Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Taehwa Kim
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - So Hee Lee
- Department of Psychiatry, National Medical Center, Seoul, Korea
| | - Eunjung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Jacob Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Yu Bin Seo
- Division of Infectious Diseases, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Young-Hoon Jeong
- CAU Thrombosis and Biomarker Center, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, and Division of Cardiology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Young Hee Jung
- Department of Neurology, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea
| | - Yu Jung Choi
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
23
|
Patro M, Gothi D, Anand S, Priyadarshini DPDK, Ojha UC, Pal RS, Malhotra N, Kumar R, Jain A, Kumar S, Agarwal P. Follow-up study of COVID-19 sequelae (FOSCO study). Lung India 2024; 41:103-109. [PMID: 38700403 PMCID: PMC10959308 DOI: 10.4103/lungindia.lungindia_400_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/10/2023] [Accepted: 11/06/2023] [Indexed: 05/05/2024] Open
Abstract
INTRODUCTION We undertook the first study from India to evaluate the long-term health effects of coronavirus disease 2019 (COVID-19). METHODS The patients enrolled in our post-COVID-19 clinic were followed up for assessment at 1, 3, 6 and 12 months after recovery from acute disease prospectively. RESULTS 200 patients with mean age of 50.72 years and 57.5% males were analysed. 42.5% had severe and 17% had moderate disease at the time of diagnosis. The persistence of symptoms beyond 1 month of diagnosis was seen in 72.5% (145/200) patients. 8% (16/200) of the patients had post-COVID-19 complications that required rehospitalisation after discharge or recovery from acute COVID-19. The complications included respiratory failure (2%), lung cavities (3.5%), fungal infection, pericardial effusion, pneumothorax and death. The symptoms were persistent beyond 3 months in 51% (102/200) and beyond 6 months in 17.5% (35/200) of cases. The patients with persistent symptoms beyond 3 months and 6 months had significantly higher intensive care unit (ICU) admission during acute COVID-19, severe disease during acute COVID-19, and higher prevalence of comorbidities compared to the recovered patients. The clinical recovery was attained in 95.5% (91/200) patients, and the radiological recovery was attained in 97.92% patients at 1 year. The mean duration to clinical recovery was 174.2 days. CONCLUSIONS COVID-19 recovery takes longer time. However, clinico-radiological recovery is attained in >95% cases by one year.
Collapse
Affiliation(s)
- Mahismita Patro
- Department of Pulmonary and Critical Care Medicine, AIIMS Bhubaneswar, Odisha, India
| | - Dipti Gothi
- Department of Pulmonary and Critical Care Medicine, ESI-PGIMSR, New Delhi, India
| | - Shweta Anand
- Department of Pulmonary Medicine, ESI-PGIMSR, New Delhi, India
| | | | - Umesh C. Ojha
- Department of Pulmonary and Critical Care Medicine, ESI-PGIMSR, New Delhi, India
| | - Ramesh S. Pal
- Department of Pulmonary and Critical Care Medicine, ESI-PGIMSR, New Delhi, India
| | - Nipun Malhotra
- Department of Pulmonary Medicine, ESI-PGIMSR, New Delhi, India
| | - Rahul Kumar
- Department of Pulmonary Medicine, ESI-PGIMSR, New Delhi, India
| | - Anshul Jain
- Department of Pulmonary Medicine, ESI-PGIMSR, New Delhi, India
| | - Sunil Kumar
- Department of Pulmonary Medicine, ESI-PGIMSR, New Delhi, India
| | - Pranzal Agarwal
- Department of Pulmonary Medicine, ESI-PGIMSR, New Delhi, India
| |
Collapse
|
24
|
Kim MS, Lee H, Lee SW, Kwon R, Rhee SY, Lee JA, Koyanagi A, Smith L, Fond G, Boyer L, Lee J, Rahmati M, Shin JY, Min C, Shin JI, Yon DK. Long-Term Autoimmune Inflammatory Rheumatic Outcomes of COVID-19 : A Binational Cohort Study. Ann Intern Med 2024; 177:291-302. [PMID: 38437702 DOI: 10.7326/m23-1831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Some data suggest a higher incidence of diagnosis of autoimmune inflammatory rheumatic diseases (AIRDs) among patients with a history of COVID-19 compared with uninfected patients. However, these studies had methodological shortcomings. OBJECTIVE To investigate the effect of COVID-19 on long-term risk for incident AIRD over various follow-up periods. DESIGN Binational, longitudinal, propensity-matched cohort study. SETTING Nationwide claims-based databases in South Korea (K-COV-N cohort) and Japan (JMDC cohort). PARTICIPANTS 10 027 506 Korean and 12 218 680 Japanese patients aged 20 years or older, including those with COVID-19 between 1 January 2020 and 31 December 2021, matched to patients with influenza infection and to uninfected control patients. MEASUREMENTS The primary outcome was onset of AIRD (per appropriate codes from the International Classification of Diseases, 10th Revision) 1, 6, and 12 months after COVID-19 or influenza infection or the respective matched index date of uninfected control patients. RESULTS Between 2020 and 2021, among the 10 027 506 Korean participants (mean age, 48.4 years [SD, 13.4]; 50.1% men), 394 274 (3.9%) and 98 596 (0.98%) had a history of COVID-19 or influenza, respectively. After propensity score matching, beyond the first 30 days after infection, patients with COVID-19 were at increased risk for incident AIRD compared with uninfected patients (adjusted hazard ratio, 1.25 [95% CI, 1.18 to 1.31]) and influenza-infected control patients (adjusted hazard ratio, 1.30 [CI, 1.02 to 1.59]). The risk for incident AIRD was higher with more severe acute COVID-19. Similar patterns were observed in the Japanese cohort. LIMITATIONS Referral bias due to the pandemic; residual confounding. CONCLUSION SARS-CoV-2 infection was associated with increased risk for incident AIRD compared with matched patients without SARS-CoV-2 infection or with influenza infection. The risk for incident AIRD was higher with greater severity of acute COVID-19. PRIMARY FUNDING SOURCE National Research Foundation of Korea.
Collapse
Affiliation(s)
- Min Seo Kim
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts (M.S.K.)
| | - Hayeon Lee
- Department of Biomedical Engineering, Kyung Hee University, Yongin, South Korea, and Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea (H.L.)
| | - Seung Won Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, South Korea (S.W.L.)
| | - Rosie Kwon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea (R.K., C.M.)
| | - Sang Youl Rhee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, and Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, South Korea (S.Y.R.)
| | - Jin A Lee
- Department of Biomedical Engineering, Kyung Hee University, Yongin, South Korea (J.A.L., J.L.)
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Deu, Barcelona, Spain (A.K.)
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, United Kingdom (L.S.)
| | - Guillaume Fond
- Research Centre on Health Services and Quality of Life, Assistance Publique-Hôpitaux de Marseille, Aix Marseille University, Marseille, France (G.F., L.B.)
| | - Laurent Boyer
- Research Centre on Health Services and Quality of Life, Assistance Publique-Hôpitaux de Marseille, Aix Marseille University, Marseille, France (G.F., L.B.)
| | - Jinseok Lee
- Department of Biomedical Engineering, Kyung Hee University, Yongin, South Korea (J.A.L., J.L.)
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran, and Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran (M.R.)
| | - Ju-Young Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea (J.-Y.S.)
| | - Chanyang Min
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea (R.K., C.M.)
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea (J.I.S.)
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine; Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine; and Department of Regulatory Science, Kyung Hee University, Seoul, South Korea (D.K.Y.)
| |
Collapse
|
25
|
Ikenouchi H, Suzuki K, Sato A, Yamamoto N, Miyamoto T, Endo K. A case of meningoencephalitis caused by multisystem inflammatory syndrome in adult SARS-CoV-2 infection. J Infect Chemother 2024; 30:263-265. [PMID: 37863259 DOI: 10.1016/j.jiac.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
A 37-year-old woman was hospitalized with fever and consciousness disturbance. She showed systemic inflammation with stress cardiomyopathy. Brain computed tomography showed diffuse brain edema. Cerebrospinal fluid (CSF) findings revealed markedly elevated cerebrospinal fluid pressure with pleocytosis, elevated protein, and elevated interleukin 6. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nicking enzyme amplification reaction test using a nasopharyngeal swab was positive, and the patient was diagnosed with SARS-CoV-2 infection. From the negative result of the CSF SARS-CoV-2 polymerase chain reaction test and no findings of bacterial or viral infection, we diagnosed meningoencephalitis by multisystem inflammation syndrome in adults (MIS-A). Intravenous methylprednisolone pulse therapy improved her symptoms and brain edema. There have been no cases of MIS-A with meningoencephalitis, and no initial treatment strategy has been established, especially in emergency cases of suspected MIS-A. The present case suggested Early intravenous methylprednisolone pulse with anti-coronaviral therapies after the exclusion of bacterial infection would be useful in suspected MIS-A with emergent meningoencephalitis cases.
Collapse
Affiliation(s)
- Hajime Ikenouchi
- Division of Neurology, Sendai City Hospital, 1-1-1 Asuto-Nagamachi, Taihaku-ku, Sendai, 982-8502, Japan.
| | - Keisuke Suzuki
- Division of Cardiology, Sendai City Hospital, 1-1-1 Asuto-Nagamachi, Taihaku-ku, Sendai, 982-8502, Japan
| | - Ayumi Sato
- Division of Neurology, Sendai City Hospital, 1-1-1 Asuto-Nagamachi, Taihaku-ku, Sendai, 982-8502, Japan
| | - Naoki Yamamoto
- Division of Neurology, Sendai City Hospital, 1-1-1 Asuto-Nagamachi, Taihaku-ku, Sendai, 982-8502, Japan
| | - Tatsuo Miyamoto
- Division of Neurology, Sendai City Hospital, 1-1-1 Asuto-Nagamachi, Taihaku-ku, Sendai, 982-8502, Japan
| | - Kaoru Endo
- Division of Neurology, Sendai City Hospital, 1-1-1 Asuto-Nagamachi, Taihaku-ku, Sendai, 982-8502, Japan
| |
Collapse
|
26
|
Hromić-Jahjefendić A, Lundstrom K, Adilović M, Aljabali AAA, Tambuwala MM, Serrano-Aroca Á, Uversky VN. Autoimmune response after SARS-CoV-2 infection and SARS-CoV-2 vaccines. Autoimmun Rev 2024; 23:103508. [PMID: 38160960 DOI: 10.1016/j.autrev.2023.103508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The complicated relationships between autoimmunity, COVID-19, and COVID-19 vaccinations are described, giving insight into their intricacies. Antinuclear antibodies (ANA), anti-Ro/SSA, rheumatoid factor, lupus anticoagulant, and antibodies against interferon (IFN)-I have all been consistently found in COVID-19 patients, indicating a high prevalence of autoimmune reactions following viral exposure. Furthermore, the discovery of human proteins with structural similarities to SARS-CoV-2 peptides as possible autoantigens highlights the complex interplay between the virus and the immune system in initiating autoimmunity. An updated summary of the current status of COVID-19 vaccines is presented. We present probable pathways underpinning the genesis of COVID-19 autoimmunity, such as bystander activation caused by hyperinflammatory conditions, viral persistence, and the creation of neutrophil extracellular traps. These pathways provide important insights into the development of autoimmune-related symptoms ranging from organ-specific to systemic autoimmune and inflammatory illnesses, demonstrating the wide influence of COVID-19 on the immune system.
Collapse
Affiliation(s)
- Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | | | - Muhamed Adilović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan.
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, UK.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001, Valencia, Spain.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
27
|
Zhang Z, Wang S, Jiang L, Wei J, Lu C, Li S, Diao Y, Fang Z, He S, Tan T, Yang Y, Zou K, Shi J, Lin J, Chen L, Bao C, Fei J, Fang H. Priority index for critical Covid-19 identifies clinically actionable targets and drugs. Commun Biol 2024; 7:189. [PMID: 38366110 PMCID: PMC10873402 DOI: 10.1038/s42003-024-05897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
While genome-wide studies have identified genomic loci in hosts associated with life-threatening Covid-19 (critical Covid-19), the challenge of resolving these loci hinders further identification of clinically actionable targets and drugs. Building upon our previous success, we here present a priority index solution designed to address this challenge, generating the target and drug resource that consists of two indexes: the target index and the drug index. The primary purpose of the target index is to identify clinically actionable targets by prioritising genes associated with Covid-19. We illustrate the validity of the target index by demonstrating its ability to identify pre-existing Covid-19 phase-III drug targets, with the majority of these targets being found at the leading prioritisation (leading targets). These leading targets have their evolutionary origins in Amniota ('four-leg vertebrates') and are predominantly involved in cytokine-cytokine receptor interactions and JAK-STAT signaling. The drug index highlights opportunities for repurposing clinically approved JAK-STAT inhibitors, either individually or in combination. This proposed strategic focus on the JAK-STAT pathway is supported by the active pursuit of therapeutic agents targeting this pathway in ongoing phase-II/III clinical trials for Covid-19.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lulu Jiang
- Translational Health Sciences, University of Bristol, Bristol, BS1 3NY, UK
| | - Jianwen Wei
- Network and Information Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chang Lu
- MRC London Institute of Medical Sciences, Imperial College London, London, W12 0HS, UK
| | - Shengli Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yizhu Diao
- College of Finance and Statistics, Hunan University, Changsha, 410079, Hunan, China
| | - Zhongcheng Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuo He
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tingting Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yisheng Yang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kexin Zou
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiantao Shi
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - James Lin
- Network and Information Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liye Chen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| | - Chaohui Bao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China.
| | - Jian Fei
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China.
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
28
|
Caetano CCS, Azamor T, Meyer NM, Onwubueke C, Calabrese CM, Calabrese LH, Visperas A, Piuzzi NS, Husni ME, Foo SS, Chen W. Mechanistic insights into bone remodelling dysregulation by human viral pathogens. Nat Microbiol 2024; 9:322-335. [PMID: 38316931 PMCID: PMC11045166 DOI: 10.1038/s41564-023-01586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/12/2023] [Indexed: 02/07/2024]
Abstract
Bone-related diseases (osteopathologies) associated with human virus infections have increased around the globe. Recent findings have highlighted the intricate interplay between viral infection, the host immune system and the bone remodelling process. Viral infections can disrupt bone homeostasis, contributing to conditions such as arthritis and soft tissue calcifications. Osteopathologies can occur after arbovirus infections such as chikungunya virus, dengue virus and Zika virus, as well as respiratory viruses, such as severe acute respiratory syndrome coronavirus 2 and enteroviruses such as Coxsackievirus B. Here we explore how human viruses dysregulate bone homeostasis, detailing viral factors, molecular mechanisms, host immune response changes and bone remodelling that ultimately result in osteopathologies. We highlight model systems and technologies to advance mechanistic understanding of viral-mediated bone alterations. Finally, we propose potential prophylactic and therapeutic strategies, introduce 'osteovirology' as a research field highlighting the underestimated roles of viruses in bone-related diseases, and discuss research avenues for further investigation.
Collapse
Affiliation(s)
- Camila C S Caetano
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tamiris Azamor
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nikki M Meyer
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chineme Onwubueke
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Cassandra M Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Leonard H Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Anabelle Visperas
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Nicolas S Piuzzi
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - M Elaine Husni
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Suan-Sin Foo
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Weiqiang Chen
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
29
|
Boyarchuk O, Volianska L. Autoimmunity and long COVID in children. Reumatologia 2024; 61:492-501. [PMID: 38322108 PMCID: PMC10839920 DOI: 10.5114/reum/176464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/06/2023] [Indexed: 02/08/2024] Open
Abstract
Numerous hypotheses regarding the pathogenetic mechanisms of long COVID have been proposed. Immune dysregulation and autoimmunity are among the leading hypotheses. In this article, we present two clinical cases of long COVID. The first case demonstrates the phenotype of long COVID with pain and musculoskeletal symptoms, which is often associated with autoimmunity and mimics systemic connective tissue diseases. In the second case, a high titer of antinuclear antibodies was observed after SARS-CoV-2 infection, but the clinical symptoms were limited to fever and headache. Only a comprehensive evaluation of clinical symptoms and thorough objective examination can confirm or exclude autoimmune diseases after a previous SARS-CoV-2 infection. A systematic search in the PubMed Medline database was carried out for studies focusing on immune dysregulation, autoimmunity, and its association with the clinical phenotype of long COVID. The question of the role of autoimmunity in the development of long COVID and the management approaches are discussed.
Collapse
Affiliation(s)
- Oksana Boyarchuk
- Department of Children's Diseases and Pediatric Surgery, I. Horbachevsky Ternopil National Medical University, Ukraine
| | - Liubov Volianska
- Department of Children's Diseases and Pediatric Surgery, I. Horbachevsky Ternopil National Medical University, Ukraine
| |
Collapse
|
30
|
SeyedAlinaghi S, Mirzapour P, Mehraeen E. Can Waves of Autoimmune Diseases Occur after the COVID-19 Pandemic? Infect Disord Drug Targets 2024; 24:67-68. [PMID: 38115613 DOI: 10.2174/0118715265272448231211101718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/23/2023] [Accepted: 10/12/2023] [Indexed: 12/21/2023]
Affiliation(s)
- SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Mirzapour
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Mehraeen
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
| |
Collapse
|
31
|
Ho M, Levy TJ, Koulas I, Founta K, Coppa K, Hirsch JS, Davidson KW, Spyropoulos AC, Zanos TP. Longitudinal dynamic clinical phenotypes of in-hospital COVID-19 patients across three dominant virus variants in New York. Int J Med Inform 2024; 181:105286. [PMID: 37956643 PMCID: PMC10843635 DOI: 10.1016/j.ijmedinf.2023.105286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND COVID-19 is a challenging disease to characterize given its wide-ranging heterogeneous symptomatology. Several studies have attempted to extract clinical phenotypes but often relied on data from small patient cohorts, usually limited to only one viral variant and utilizing a static snapshot of patient data. OBJECTIVE This study aimed to identify clinical phenotypes of hospitalized COVID-19 patients and investigate their longitudinal dynamics throughout the pandemic, with the goal to relate these phenotypes to clinical outcomes and treatment strategies. METHODS We utilized routinely collected demographic and clinical data throughout the hospitalization of 38,077 patients admitted between 3/2020 to 5/2022, in 12 New York hospitals. Uniform Manifold Approximation and Projection and agglomerative hierarchical clustering were used to derive the clusters, followed by exploratory data analysis to compare the prevalence of comorbidities and treatments per cluster. RESULTS 4 distinct clinical phenotypes remained robust in multi-site validation and were associated with different mortality rates. The temporal progression of these phenotypes throughout the COVID-19 pandemic demonstrated increased variability across the waves of the three dominant viral variants (alpha, delta, omicron). Longitudinal analysis evaluating changes in clinical phenotypes of each patient throughout the course of a 4-week hospital stay exemplified the dynamic nature of the disease progression. Factors such as sex, race/ethnicity and specific treatment modalities revealed significant and clinically relevant differences between the observed phenotypes. CONCLUSIONS Our proposed methodology has the potential of enabling clinicians and policy makers to draw evidence-based conclusions for guiding treatment modalities in a dynamic fashion.
Collapse
Affiliation(s)
- Matthew Ho
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY 11549
| | - Todd J Levy
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Ioannis Koulas
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Kyriaki Founta
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY 11549
| | - Kevin Coppa
- Department of Clinical Digital Solutions, Northwell Health, New Hyde Park, NY 11042
| | - Jamie S Hirsch
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY 11549; Department of Clinical Digital Solutions, Northwell Health, New Hyde Park, NY 11042
| | - Karina W Davidson
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY 11549
| | - Alex C Spyropoulos
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY 11549
| | - Theodoros P Zanos
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY 11549.
| |
Collapse
|
32
|
Lenci I, Milana M, Savino L, Signorello A, Baiocchi L. Development of Autoimmune Hepatitis after COVID-19 Infection in Vaccinated Women. Rev Recent Clin Trials 2024; 19:267-272. [PMID: 38797899 DOI: 10.2174/0115748871292641240514114921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE SARS-CoV-2 infection has been associated with the impairment of several organs, including the liver. In addition, cases of autoimmune hepatitis have been described in association with COVID-19 disease. According to some case reports, vaccination has also been suggested to elicit the immune liver disorder. CASE DESCRIPTION We report on the case series of two middle-aged women developing COVID-19 infection despite a completed vaccination schedule. More interestingly, the infection was followed by the onset of acute hepatitis with a significant increase in the values of liver function tests (x 10 normal values). After ruling out the main causes of liver damage (viral, toxic, etc.), a diagnosis of autoimmune hepatitis was made and supported by liver histology in both cases. The clinical picture was quickly reverted with immunosuppressive (steroid) therapy, also confirming the diagnosis. CONCLUSION We observed a possible relationship between COVID-19 infection and the onset of autoimmune hepatitis and also described this occurrence in vaccinated subjects. It remains to be clarified whether repeated exposure to viral antigens (vaccination plus true infection) or specific emerging viral genotype (omicron strain) may facilitate the onset of this immune liver disease.
Collapse
Affiliation(s)
- Ilaria Lenci
- Hepatology Unit, Department of Clinical Medicine, Policlinico Universitario Tor Vergata, Rome, Italy
| | - Martina Milana
- Hepatology Unit, Department of Clinical Medicine, Policlinico Universitario Tor Vergata, Rome, Italy
| | - Luca Savino
- Pathological Anatomy, Department for Assistential Process Integration, Policlinico Universitario Tor Vergata, Rome, Italy
| | - Alessandro Signorello
- Hepatology Unit, Department of Clinical Medicine, Policlinico Universitario Tor Vergata, Rome, Italy
| | - Leonardo Baiocchi
- Hepatology Unit, Department of Clinical Medicine, Policlinico Universitario Tor Vergata, Rome, Italy
| |
Collapse
|
33
|
Rubinstein A, Kudryavtsev I, Malkova A, Mammedova J, Isakov D, Isakova-Sivak I, Kudlay D, Starshinova A. Sarcoidosis-related autoimmune inflammation in COVID-19 convalescent patients. Front Med (Lausanne) 2023; 10:1271198. [PMID: 38179278 PMCID: PMC10765615 DOI: 10.3389/fmed.2023.1271198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Currently, there are a large number of reports about the development of autoimmune conditions after COVID-19. Also, there have been cases of sarcoid-like granulomas in convalescents as a part of the post-COVID-19 syndrome. Since one of the etiological theories of sarcoidosis considers it to be an autoimmune disease, we decided to study changes in the adaptive humoral immune response in sarcoidosis and SARS-CoV-2 infection and to find out whether COVID-19 can provoke the development of sarcoidosis. This review discusses histological changes in lymphoid organs in sarcoidosis and COVID-19, changes in B cell subpopulations, T-follicular helper cells (Tfh), and T-follicular regulatory cells (Tfr), and analyzes various autoantibodies detected in these pathologies. Based on the data studied, we concluded that SARS-CoV-2 infection may cause the development of autoimmune pathologies, in particular contributing to the onset of sarcoidosis in convalescents.
Collapse
Affiliation(s)
- Artem Rubinstein
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Institution of Experimental Medicine, Saint Petersburg, Russia
| | - Igor Kudryavtsev
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Institution of Experimental Medicine, Saint Petersburg, Russia
- Far Eastern Federal University, Vladivostok, Russia
| | - Annа Malkova
- Ariel University Faculty of Natural Sciences, Ariel, Israel
| | | | - Dmitry Isakov
- First Saint Petersburg State I. Pavlov Medical University, Saint Petersburg, Russia
| | | | - Dmitry Kudlay
- Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- NRC Institute of Immunology, Moscow, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Moscow, Russia
| | - Anna Starshinova
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
34
|
Sideratou CM, Papaneophytou C. Persisting Shadows: Unraveling the Impact of Long COVID-19 on Respiratory, Cardiovascular, and Nervous Systems. Infect Dis Rep 2023; 15:806-830. [PMID: 38131885 PMCID: PMC10742861 DOI: 10.3390/idr15060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), instigated by the zoonotic Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), rapidly transformed from an outbreak in Wuhan, China, into a widespread global pandemic. A significant post-infection condition, known as 'long- COVID-19' (or simply 'long- COVID'), emerges in a substantial subset of patients, manifesting with a constellation of over 200 reported symptoms that span multiple organ systems. This condition, also known as 'post-acute sequelae of SARS-CoV-2 infection' (PASC), presents a perplexing clinical picture with far-reaching implications, often persisting long after the acute phase. While initial research focused on the immediate pulmonary impact of the virus, the recognition of COVID-19 as a multiorgan disruptor has unveiled a gamut of protracted and severe health issues. This review summarizes the primary effects of long COVID on the respiratory, cardiovascular, and nervous systems. It also delves into the mechanisms underlying these impacts and underscores the critical need for a comprehensive understanding of long COVID's pathogenesis.
Collapse
Affiliation(s)
| | - Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus;
| |
Collapse
|
35
|
Wu J, Yang H, Yu D, Yang X. Blood-derived product therapies for SARS-CoV-2 infection and long COVID. MedComm (Beijing) 2023; 4:e426. [PMID: 38020714 PMCID: PMC10651828 DOI: 10.1002/mco2.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is capable of large-scale transmission and has caused the coronavirus disease 2019 (COVID-19) pandemic. Patients with COVID-19 may experience persistent long-term health issues, known as long COVID. Both acute SARS-CoV-2 infection and long COVID have resulted in persistent negative impacts on global public health. The effective application and development of blood-derived products are important strategies to combat the serious damage caused by COVID-19. Since the emergence of COVID-19, various blood-derived products that target or do not target SARS-CoV-2 have been investigated for therapeutic applications. SARS-CoV-2-targeting blood-derived products, including COVID-19 convalescent plasma, COVID-19 hyperimmune globulin, and recombinant anti-SARS-CoV-2 neutralizing immunoglobulin G, are virus-targeting and can provide immediate control of viral infection in the short term. Non-SARS-CoV-2-targeting blood-derived products, including intravenous immunoglobulin and human serum albumin exhibit anti-inflammatory, immunomodulatory, antioxidant, and anticoagulatory properties. Rational use of these products can be beneficial to patients with SARS-CoV-2 infection or long COVID. With evidence accumulated since the pandemic began, we here summarize the progress of blood-derived product therapies for COVID-19, discuss the effective methods and scenarios regarding these therapies, and provide guidance and suggestions for clinical treatment.
Collapse
Affiliation(s)
- Junzheng Wu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd.ChengduChina
| | | | - Ding Yu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd.ChengduChina
- Beijing Tiantan Biological Products Co., Ltd.BeijingChina
| | | |
Collapse
|
36
|
Bouayed MZ, Laaribi I, Benaini I, Yeznasn A, Berrajaa S, Oujidi Y, Bkiyar H, Abda N, Housni B. Therapeutic plasma exchange in the treatment of COVID-19 induced cytokine storm: the first Moroccan experience. BMC Infect Dis 2023; 23:829. [PMID: 38007416 PMCID: PMC10676591 DOI: 10.1186/s12879-023-08816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023] Open
Abstract
INTRODUCTION COVID-19 induced cytokine storm is a well-documented phenomena that contributes significantly in the disease's evolution and prognosis. Therefore, therapies such as therapeutic plasma exchange, constitute a mainstay of therapeutic management especially for critically-ill patients. METHODS We conducted a monocentric retrospective cohort study in the Resuscitation Department of the Mohammed VI University Hospital of Oujda-Morocco, to evaluate the efficiency of therapeutic plasma exchange on critically-ill COVID-19 patients over a 6 months period. We divided our patients into two groups: patients who received TPE (Therapeutic Plasma Exchange) sessions (TPE group) and patients who only benefited from the standard protocol treatment (non TPE group). RESULTS Our study included a total of 165 patients, 34.5% of which benefited from TPE sessions. We observed an improvement of oxygenation parameters (SpO2 and PaO2/FiO2 ratio) and a progressive respiratory weaning, as well as a significant decrease of biomarkers indicative of inflammation (lymphocyte count, CRP (C Reactive Protein), IL-6, Ferritin) and coagulopathy (d-dimers, fibrinogen) in the TPE group after 5 consecutive TPE sessions. In comparison with the non-TPE group, The TPE-group patients had a shorter ICU (Intensive Care Unit) length of stay, required less frequently mechanical ventilation, and we more likely to be extubated. Furthermore, the TPE group had a lower mortality rate. DISCUSSION Multiple studies have reported the safety and efficiency of therapeutic plasma exchange in the COVID-19 induced cytokine storm. Given the urgent character of the pandemic at the time, each center followed its own protocol in implementing plasma exchange. CONCLUSION Similar to the results reported in the literature, our study reports positive results after using TPE specifically in terms of respiratory weaning and an improvement of the cytokine storm biomarkers, and more importantly a lower mortality rate.
Collapse
Affiliation(s)
- Mohamed Zakaria Bouayed
- Anesthesia, Intensive Care and Resuscitation Department, Mohammed VI University Hospital of Oujda, Oujda, Morocco.
| | - Ilyass Laaribi
- Anesthesia, Intensive Care and Resuscitation Department, Mohammed VI University Hospital of Oujda, Oujda, Morocco
| | - Iliass Benaini
- Anesthesia, Intensive Care and Resuscitation Department, Mohammed VI University Hospital of Oujda, Oujda, Morocco
| | - Asmae Yeznasn
- Laboratory of Epidemiology, Clinical Research and Public Health (LERCSP), Faculty of Medicine and Pharmacy, Mohammed I University, Oujda, Morocco
| | - Sara Berrajaa
- Anesthesia, Intensive Care and Resuscitation Department, Mohammed VI University Hospital of Oujda, Oujda, Morocco
| | - Younes Oujidi
- Anesthesia, Intensive Care and Resuscitation Department, Mohammed VI University Hospital of Oujda, Oujda, Morocco
| | - Houssam Bkiyar
- Anesthesia, Intensive Care and Resuscitation Department, Mohammed VI University Hospital of Oujda, Oujda, Morocco
- Simulation Center, Laboratory of Anatomy, Microsurgery, Experimental Surgery and Medical Simulation (LAMESMS), Faculty of Medicine and Pharmacy, Mohammed I University, Oujda, Morocco
| | - Naima Abda
- Anesthesia, Intensive Care and Resuscitation Department, Mohammed VI University Hospital of Oujda, Oujda, Morocco
- Simulation Center, Laboratory of Anatomy, Microsurgery, Experimental Surgery and Medical Simulation (LAMESMS), Faculty of Medicine and Pharmacy, Mohammed I University, Oujda, Morocco
| | - Brahim Housni
- Anesthesia, Intensive Care and Resuscitation Department, Mohammed VI University Hospital of Oujda, Oujda, Morocco
- Simulation Center, Laboratory of Anatomy, Microsurgery, Experimental Surgery and Medical Simulation (LAMESMS), Faculty of Medicine and Pharmacy, Mohammed I University, Oujda, Morocco
| |
Collapse
|
37
|
Soltane R, Almulla N, Alasiri A, Elashmawy NF, Qumsani AT, Alshehrei FM, Keshek DEG, Alqadi T, AL-Ghamdi SB, Allayeh AK. A Comparative Analysis of MicroRNA Expression in Mild, Moderate, and Severe COVID-19: Insights from Urine, Serum, and Nasopharyngeal Samples. Biomolecules 2023; 13:1681. [PMID: 38136554 PMCID: PMC10742216 DOI: 10.3390/biom13121681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
COVID-19, caused by the SARS-CoV-2 virus, manifests with a wide range of clinical symptoms that vary from mild respiratory issues to severe respiratory distress. To effectively manage and predict the outcomes of the disease, it is important to understand the molecular mechanisms underlying its severity. This study focuses on analyzing and comparing the expression patterns of microRNAs (miRNAs) in serum, urine, and nasopharyngeal samples from patients with mild, moderate, and severe COVID-19. The aim is to identify potential associations with disease progression and discover suitable markers for diagnosis and prognosis. Our findings indicate the consistent upregulation of miR-21, miR-146a, and miR-155 in urine, serum, and nasopharyngeal samples from patients with mild COVID-19. In moderate cases, there were more significant changes in miRNA expression compared to mild cases. Specifically, miR-let-7 demonstrated upregulation, while miR-146b exhibited downregulation. The most notable alterations in miRNA expression profiles were observed in severe COVID-19 cases, with a significant upregulation of miR-223. Moreover, our analysis using Receiver-operating characteristic (ROC) curves demonstrated that miR-155, miR-let-7, and miR-223 exhibited high sensitivity and specificity, suggesting their potential as biomarkers for distinguishing COVID-19 patients from healthy individuals. Overall, this comparative analysis revealed distinct patterns in miRNA expression. The overlapping expression patterns of miRNAs in urine, serum, and nasopharyngeal samples suggest their potential utility in discriminating disease status.
Collapse
Affiliation(s)
- Raya Soltane
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (N.A.); (A.A.); (T.A.)
| | - Nuha Almulla
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (N.A.); (A.A.); (T.A.)
| | - Ahlam Alasiri
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (N.A.); (A.A.); (T.A.)
| | - Nabila F. Elashmawy
- Biology Department, College of Science, Jazan University, Jazan 82817, Saudi Arabia;
| | - Alaa T. Qumsani
- Department of Biology, Jumum College University, Umm Al-Qura University, P.O Box 7388, Makkah 21955, Saudi Arabia; (A.T.Q.); (F.M.A.); (D.E.-G.K.)
| | - Fatimah M. Alshehrei
- Department of Biology, Jumum College University, Umm Al-Qura University, P.O Box 7388, Makkah 21955, Saudi Arabia; (A.T.Q.); (F.M.A.); (D.E.-G.K.)
| | - Doaa El-Ghareeb Keshek
- Department of Biology, Jumum College University, Umm Al-Qura University, P.O Box 7388, Makkah 21955, Saudi Arabia; (A.T.Q.); (F.M.A.); (D.E.-G.K.)
- Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Centre, Giza 12512, Egypt
| | - Taha Alqadi
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (N.A.); (A.A.); (T.A.)
| | | | - Abdou Kamal Allayeh
- Virology Lab 176, Environment and Climate Change Institute, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
38
|
Stadler JT, Habisch H, Prüller F, Mangge H, Bärnthaler T, Kargl J, Pammer A, Holzer M, Meissl S, Rani A, Madl T, Marsche G. HDL-Related Parameters and COVID-19 Mortality: The Importance of HDL Function. Antioxidants (Basel) 2023; 12:2009. [PMID: 38001862 PMCID: PMC10669705 DOI: 10.3390/antiox12112009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
COVID-19, caused by the SARS-CoV-2 coronavirus, emerged as a global pandemic in late 2019, resulting in significant global public health challenges. The emerging evidence suggests that diminished high-density lipoprotein (HDL) cholesterol levels are associated with the severity of COVID-19, beyond inflammation and oxidative stress. Here, we used nuclear magnetic resonance spectroscopy to compare the lipoprotein and metabolic profiles of COVID-19-infected patients with non-COVID-19 pneumonia. We compared the control group and the COVID-19 group using inflammatory markers to ensure that the differences in lipoprotein levels were due to COVID-19 infection. Our analyses revealed supramolecular phospholipid composite (SPC), phenylalanine, and HDL-related parameters as key discriminators between COVID-19-positive and non-COVID-19 pneumonia patients. More specifically, the levels of HDL parameters, including apolipoprotein A-I (ApoA-I), ApoA-II, HDL cholesterol, and HDL phospholipids, were significantly different. These findings underscore the potential impact of HDL-related factors in patients with COVID-19. Significantly, among the HDL-related metrics, the cholesterol efflux capacity (CEC) displayed the strongest negative association with COVID-19 mortality. CEC is a measure of how well HDL removes cholesterol from cells, which may affect the way SARS-CoV-2 enters cells. In summary, this study validates previously established markers of COVID-19 infection and further highlights the potential significance of HDL functionality in the context of COVID-19 mortality.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
| | - Hansjörg Habisch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (H.H.); (T.M.)
| | - Florian Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria;
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria;
| | - Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
- BioTechMed Graz, 8010 Graz, Austria
| | - Anja Pammer
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
| | - Michael Holzer
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
| | - Sabine Meissl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
| | - Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (H.H.); (T.M.)
- BioTechMed Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
39
|
S Mesquita F, Abrami L, Bracq L, Panyain N, Mercier V, Kunz B, Chuat A, Carlevaro-Fita J, Trono D, van der Goot FG. SARS-CoV-2 hijacks a cell damage response, which induces transcription of a more efficient Spike S-acyltransferase. Nat Commun 2023; 14:7302. [PMID: 37952051 PMCID: PMC10640587 DOI: 10.1038/s41467-023-43027-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
SARS-CoV-2 infection requires Spike protein-mediated fusion between the viral and cellular membranes. The fusogenic activity of Spike depends on its post-translational lipid modification by host S-acyltransferases, predominantly ZDHHC20. Previous observations indicate that SARS-CoV-2 infection augments the S-acylation of Spike when compared to mere Spike transfection. Here, we find that SARS-CoV-2 infection triggers a change in the transcriptional start site of the zdhhc20 gene, both in cells and in an in vivo infection model, resulting in a 67-amino-acid-long N-terminally extended protein with approx. 40 times higher Spike acylating activity, resulting in enhanced fusion of viruses with host cells. Furthermore, we observed the same induced transcriptional change in response to other challenges, such as chemically induced colitis and pore-forming toxins, indicating that SARS-CoV-2 hijacks an existing cell damage response pathway to optimize it fusion glycoprotein.
Collapse
Affiliation(s)
| | - Laurence Abrami
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Lucie Bracq
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Nattawadee Panyain
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Vincent Mercier
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
- ACCESS, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Béatrice Kunz
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Audrey Chuat
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | | | - Didier Trono
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | | |
Collapse
|
40
|
Das S, Parul, Samanta M. Autoimmune diseases post-COVID 19 infection in children in intensive care unit: A case series. Int J Rheum Dis 2023; 26:2288-2293. [PMID: 37157177 DOI: 10.1111/1756-185x.14724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
SARS-CoV2 primarily affects the respiratory system but a hyperinflammatory response leading to multisystem inflammatory syndrome - children (MIS-C), immune dysfunction and various autoimmune manifestations has also been noted. Autoimmunity depends on various factors, including genetic predisposition, environmental factors, immune dysregulation and infections acting as triggers like Epstein-Barr virus, cytomegalovirus, human immunodeficiency virus, hepatitis B. Molecular mimicry, bystander T-cell activation and persistence of viral infection are the main mechanisms behind these manifestations. We present here 3 cases of newly diagnosed connective tissue disease with high titers of COVID19 immunoglobulin G antibody in children. A 9-year-old girl with fever, oliguria and malar rash (prior history of sore throat) and a 10-year-old girl with fever for 2 weeks and choreoathetoid movements were diagnosed as systemic lupus erythematosus (SLE) nephritis (stage 4) and neuropsychiatric SLE, respectively as per European League Against Rheumatism / American College of Rheumatology 2019 criteria. An 8-year-old girl with fever, joint pain and respiratory distress (a recent contact with a positive COVID19 patient) presented with altered sensorium, Raynaud's phenomenon noted, and eventually diagnosed as mixed connective tissue disease as per Kusukawa criteria. The immune-mediated manifestations post-COVID infection are a de-novo phenomenon which necessitates further workup as not many studies exist in the pediatric population.
Collapse
Affiliation(s)
- Subhadipa Das
- Department of Paediatrics, Nilrantan Sircar Medical College, Kolkata, West Bengal, India
| | - Parul
- Department of Paediatrics, Nilrantan Sircar Medical College, Kolkata, West Bengal, India
| | - Moumita Samanta
- Department of Paediatrics, Nilrantan Sircar Medical College, Kolkata, West Bengal, India
| |
Collapse
|
41
|
Hetlevik Ø, Wensaas KA, Baste V, Emberland KE, Özgümüs T, Håberg SE, Rortveit G. Prevalence and predictors of post-COVID-19 symptoms in general practice - a registry-based nationwide study. BMC Infect Dis 2023; 23:721. [PMID: 37880583 PMCID: PMC10599052 DOI: 10.1186/s12879-023-08727-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND With Norwegian national registry data, we assessed the prevalence of post-COVID-19 symptoms at least 3 months after confirmed infection, and whether sociodemographic factors and pre-pandemic health problems were risk factors for these symptoms. METHODS All persons with a positive SARS-CoV-2 PCR test from February 2020 to February 2021 (exposed) were compared to a group without a positive test (unexposed) matched on age, sex, and country of origin. We used Cox regression to estimate hazard ratios (HR) for 18 outcome symptoms commonly described as post-COVID-19 related, registered by GPs. We compared relative risks (RR) for fatigue, memory disturbance, or shortness of breath among exposed and unexposed using Poisson regression models, assessing sex, age, education, country of origin, and pre-pandemic presence of the same symptom and comorbidity as possible risk factors, with additional analyses to assess hospitalisation for COVID-19 as a risk factor among exposed. RESULTS The exposed group (N = 53 846) had a higher prevalence of most outcome symptoms compared to the unexposed (N = 485 757), with the highest risk for shortness of breath (HR 2.75; 95%CI 2.59-2.93), fatigue (2.08; 2.00-2.16) and memory disturbance (1.41;1.26-1.59). High HRs were also found for disturbance of smell/taste and hair loss, but frequencies were low. Concerning risk factors, sociodemographic factors were at large similarly associated with outcome symptoms in both groups. Registration of the outcome symptom before the pandemic increased the risk for fatigue, memory disturbance and shortness of breath after COVID-19, but these associations were weaker among exposed. Comorbidity was not associated with fatigue and shortness of breath in the COVID-19 group. For memory disturbance, the RR was slightly increased with the higher comorbidity score both among exposed and unexposed. CONCLUSION COVID-19 was associated with a range of symptoms lasting more than three months after the infection.
Collapse
Affiliation(s)
- Øystein Hetlevik
- Department of Global Public Health and Primary Care, University of Bergen, Postbox 7804, Bergen, NO-5020, Norway.
| | - Knut-Arne Wensaas
- Research Unit for General Practice, NORCE Norwegian Research Centre, Bergen, Norway
| | - Valborg Baste
- National Centre for Emergency Primary Health Care, NORCE Norwegian Research Centre, Bergen, Norway
| | - Knut Erik Emberland
- Department of Global Public Health and Primary Care, University of Bergen, Postbox 7804, Bergen, NO-5020, Norway
| | - Türküler Özgümüs
- Department of Global Public Health and Primary Care, University of Bergen, Postbox 7804, Bergen, NO-5020, Norway
| | - Siri Eldevik Håberg
- Centre for Fertility and Health, The Norwegian Institute of Public Health, Oslo, Norway
| | - Guri Rortveit
- Department of Global Public Health and Primary Care, University of Bergen, Postbox 7804, Bergen, NO-5020, Norway
| |
Collapse
|
42
|
Aboul-Fotouh S, Mahmoud AN, Elnahas EM, Habib MZ, Abdelraouf SM. What are the current anti-COVID-19 drugs? From traditional to smart molecular mechanisms. Virol J 2023; 20:241. [PMID: 37875904 PMCID: PMC10594888 DOI: 10.1186/s12985-023-02210-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Coronavirus disease 19 (COVID-19) is the disease caused by SARS-CoV-2, a highly infectious member of the coronavirus family, which emerged in December 2019 in "Wuhan, China". It induces respiratory illness ranging from mild symptoms to severe disease. It was declared a "pandemic" by the World Health Organization (WHO) in March 2020. Since then, a vast number of clinical and experimental studies have been conducted to identify effective approaches for its prevention and treatment. MAIN BODY The pathophysiology of COVID-19 represents an unprecedented challenge; it triggers a strong immune response, which may be exacerbated by "a cytokine storm syndrome". It also induces thrombogenesis and may trigger multi-organ injury. Therefore, different drug classes have been proposed for its treatment and prevention, such as antivirals, anti-SARS-CoV-2 antibody agents (monoclonal antibodies, convalescent plasma, and immunoglobulins), anti-inflammatory drugs, immunomodulators, and anticoagulant drugs. To the best of our knowledge, this review is the first to present, discuss, and summarize the current knowledge about the different drug classes used for the treatment of COVID-19, with special emphasis on their targets, mechanisms of action, and important adverse effects and drug interactions. Additionally, we spotlight the latest "October 2023" important guidelines (NIH, IDSA, and NICE) and FDA approval or authorization regarding the use of these agents in the management of COVID-19. CONCLUSION Despite the wide array of therapeutic strategies introduced for the treatment of COVID-19, one of the most prominent therapeutic challenges is SARS-CoV-2 mutations and emerging new variants and subvariants. Currently, the anti-COVID-19 drug pipeline is continuously affording novel treatments to face this growing challenge.
Collapse
Affiliation(s)
- Sawsan Aboul-Fotouh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Clinical Pharmacology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Nageh Mahmoud
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Esraa M Elnahas
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Z Habib
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Sahar M Abdelraouf
- Department of Biochemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
43
|
Yu S, Li H, Zhang K, Cheng G, Wang Y, Jia Y, Su L, Jin Y, Shao M, He J. Aberrant Immune Features after Recovery from COVID-19 in Patients with Systemic Lupus Erythematosus and Other Autoimmune Diseases. Biomedicines 2023; 11:2807. [PMID: 37893180 PMCID: PMC10603977 DOI: 10.3390/biomedicines11102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Considering the large number of individuals who have already been infected and may have reinfection, the post-infection effects of COVID-19 are of great importance for clinical practice and predicting disease trends. However, our understanding of the potential long-term effects, particularly on immunity, after recovering from COVID-19 remains limited. The aim of this study was to investigate the abnormal immunological factors that contribute to the prolonged immunological effects of COVID-19. Two groups of patients were enrolled in the study, including 11 individuals with various autoimmune diseases (AIDs) and 16 patients diagnosed with systemic lupus erythematosus (SLE). Detailed clinical symptoms were closely monitored, and peripheral mononuclear cells were analyzed using flow cytometry. The clinical status was evaluated using the SLE Disease Activity Index (SLEDAI) and the Clinical Global Impressions (CGI) index. The proportions of follicular T helper cells (Tfh) exhibited significant increases in both cohorts (AID: p = 0.03; SLE: p = 0.0008). Conversely, the percentages of Foxp3+ and CD4+ regulatory T cells (Treg) were reduced in patients following COVID-19 infection (AID: p = 0.009, 0.05, resp.; SLE: p = 0.02, 0.0009, resp.). The percentages of Th2 and Th17 cells were significantly increased in SLE patients (p < 0.05). Exacerbated conditions were observed in SLE patients two months after infection (SLEDAI, p < 0.05). Our findings show that COVID-19 infection increases Tfh cells and decreases Treg cells in patients of AIDs, worsening pathogenetic immune status in post-recovery populations.
Collapse
Affiliation(s)
- Siyue Yu
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing 100044, China; (S.Y.); (H.L.); (K.Z.); (G.C.); (Y.W.); (Y.J.); (Y.J.); (M.S.)
| | - Hao Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing 100044, China; (S.Y.); (H.L.); (K.Z.); (G.C.); (Y.W.); (Y.J.); (Y.J.); (M.S.)
| | - Kai Zhang
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing 100044, China; (S.Y.); (H.L.); (K.Z.); (G.C.); (Y.W.); (Y.J.); (Y.J.); (M.S.)
| | - Gong Cheng
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing 100044, China; (S.Y.); (H.L.); (K.Z.); (G.C.); (Y.W.); (Y.J.); (Y.J.); (M.S.)
| | - Yifan Wang
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing 100044, China; (S.Y.); (H.L.); (K.Z.); (G.C.); (Y.W.); (Y.J.); (Y.J.); (M.S.)
| | - Yuan Jia
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing 100044, China; (S.Y.); (H.L.); (K.Z.); (G.C.); (Y.W.); (Y.J.); (Y.J.); (M.S.)
| | - Linchong Su
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Enshi 430074, China;
| | - Yuebo Jin
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing 100044, China; (S.Y.); (H.L.); (K.Z.); (G.C.); (Y.W.); (Y.J.); (Y.J.); (M.S.)
| | - Miao Shao
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing 100044, China; (S.Y.); (H.L.); (K.Z.); (G.C.); (Y.W.); (Y.J.); (Y.J.); (M.S.)
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing 100044, China; (S.Y.); (H.L.); (K.Z.); (G.C.); (Y.W.); (Y.J.); (Y.J.); (M.S.)
| |
Collapse
|
44
|
Salomão MLM, Queiroz F, Mendes LDM, Lima TMD, Tuckumantel MDS, Catelan MW, Oliveira NED, Nogueira ML, Estofolete CF. COVID-19-related multisystem inflammatory syndrome in adult: the first death in Brazil. Rev Inst Med Trop Sao Paulo 2023; 65:e50. [PMID: 37820246 PMCID: PMC10564457 DOI: 10.1590/s1678-9946202365050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023] Open
Abstract
The precise pathogenesis of COVID-19-related multisystem inflammatory syndrome remains largely elusive, despite its rarity. The syndrome symptoms often overlap with those of other infections, posing challenges for prompt diagnosis. A male patient, 34 years old, was admitted with suspicion of severe dengue, rapidly progressing to multiple organ dysfunction. Dengue tests resulted negative, and he passed away after four days. This case occurred approximately four weeks after the initial onset of COVID-19 and met all diagnostic criteria as defined by the Centers for Disease Control and Prevention. This report presents the first documented case of fatal multisystem inflammatory syndrome in adult (MIS-A) in Brazil. Recognizing the significance of suspecting this syndrome and promptly initiating treatment at an early stage are essential for minimizing damage and mortality.
Collapse
Affiliation(s)
- Maria Lúcia Machado Salomão
- Faculdade de Medicina de São José do Rio Preto, Departamento de Epidemiologia e Saúde Coletiva, São José do Rio Preto, São Paulo, Brazil
- Hospital de Base, São José do Rio Preto, São Paulo, Brazil
| | - Flávia Queiroz
- Hospital de Base, São José do Rio Preto, São Paulo, Brazil
| | | | | | | | - Marcia Wakai Catelan
- Faculdade de Medicina de São José do Rio Preto, Departamento de Epidemiologia e Saúde Coletiva, São José do Rio Preto, São Paulo, Brazil
- Hospital da Criança e Maternidade de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | | | - Maurício Lacerda Nogueira
- Faculdade de Medicina de São José do Rio Preto, Laboratório de Pesquisas em Virologia, São José do Rio Preto, São Paulo, Brazil
- University of Texas Medical Branch, Department of Pathology, Galveston, Texas, United States of America
| | - Cassia Fernanda Estofolete
- Hospital de Base, São José do Rio Preto, São Paulo, Brazil
- Faculdade de Medicina de São José do Rio Preto, Laboratório de Pesquisas em Virologia, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
45
|
Ruiz-Pablos M, Paiva B, Zabaleta A. Epstein-Barr virus-acquired immunodeficiency in myalgic encephalomyelitis-Is it present in long COVID? J Transl Med 2023; 21:633. [PMID: 37718435 PMCID: PMC10506247 DOI: 10.1186/s12967-023-04515-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023] Open
Abstract
Both myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) and long COVID (LC) are characterized by similar immunological alterations, persistence of chronic viral infection, autoimmunity, chronic inflammatory state, viral reactivation, hypocortisolism, and microclot formation. They also present with similar symptoms such as asthenia, exercise intolerance, sleep disorders, cognitive dysfunction, and neurological and gastrointestinal complaints. In addition, both pathologies present Epstein-Barr virus (EBV) reactivation, indicating the possibility of this virus being the link between both pathologies. Therefore, we propose that latency and recurrent EBV reactivation could generate an acquired immunodeficiency syndrome in three steps: first, an acquired EBV immunodeficiency develops in individuals with "weak" EBV HLA-II haplotypes, which prevents the control of latency I cells. Second, ectopic lymphoid structures with EBV latency form in different tissues (including the CNS), promoting inflammatory responses and further impairment of cell-mediated immunity. Finally, immune exhaustion occurs due to chronic exposure to viral antigens, with consolidation of the disease. In the case of LC, prior to the first step, there is the possibility of previous SARS-CoV-2 infection in individuals with "weak" HLA-II haplotypes against this virus and/or EBV.
Collapse
Affiliation(s)
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain
| | - Aintzane Zabaleta
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain.
| |
Collapse
|
46
|
Krishna B, Wills M, Sithole N. Long COVID: what is known and what gaps need to be addressed. Br Med Bull 2023; 147:6-19. [PMID: 37434326 PMCID: PMC10502447 DOI: 10.1093/bmb/ldad016] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 05/12/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023]
Abstract
INTRODUCTION Long COVID is a chronic condition that follows after acute COVID-19 and is characterized by a wide range of persistent, cyclic symptoms. SOURCES OF DATA PubMed search for publications featuring 'Long COVID' or 'post-acute sequelae of COVID-19'. AREAS OF AGREEMENT Long COVID occurs frequently post-acute COVID-19, with a majority of people experiencing at least one symptom (such as cough, fatigue, myalgia, anosmia and dyspnoea) 4 weeks after infection. AREAS OF CONTROVERSY The specific symptoms and the minimum duration of symptoms required to be defined as Long COVID. GROWING POINTS There is a consistent reduction in Long COVID incidence amongst vaccinated individuals, although the extent of this effect remains unclear. AREAS TIMELY FOR DEVELOPING RESEARCH There is an urgent need to understand the causes of Long COVID, especially extreme fatigue more than 6 months after infection. We must understand who is at risk and whether reinfections similarly risk Long COVID.
Collapse
Affiliation(s)
- Benjamin Krishna
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Mark Wills
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Nyaradzai Sithole
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| |
Collapse
|
47
|
Haudenschild AK, Christiansen BA, Orr S, Ball EE, Weiss CM, Liu H, Fyhrie DP, Yik JH, Coffey LL, Haudenschild DR. Acute bone loss following SARS-CoV-2 infection in mice. J Orthop Res 2023; 41:1945-1952. [PMID: 36815216 PMCID: PMC10440245 DOI: 10.1002/jor.25537] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/28/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has infected more than 650 million people worldwide. Approximately 23% of these patients developed lasting "long-haul" COVID symptoms, including fatigue, joint pain, and systemic hyperinflammation. However, the direct clinical impact of SARS-CoV-2 infection on the skeletal system including bone and joint health has not been determined. Utilizing a humanized mouse model of COVID-19, this study provides the first direct evidence that SARS-CoV-2 infection leads to acute bone loss, increased osteoclast number, and thinner growth plates. This bone loss could decrease whole-bone mechanical strength and increase the risk of fragility fractures, particularly in older patients, while thinner growth plates may create growth disturbances in younger patients. Evaluating skeletal health in patients that have recovered from COVID-19 will be crucial to identify at-risk populations and develop effective countermeasures.
Collapse
Affiliation(s)
- Anne K. Haudenschild
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, 95817 USA 94065 USA
| | - Blaine A. Christiansen
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, 95817 USA 94065 USA
| | - Sophie Orr
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, 95817 USA 94065 USA
| | - Erin E. Ball
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA 95616 USA
| | | | | | - David P. Fyhrie
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, 95817 USA 94065 USA
| | - Jasper H.N. Yik
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, 95817 USA 94065 USA
| | - Lark L. Coffey
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA 95616 USA
| | - Dominik R. Haudenschild
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, 95817 USA 94065 USA
| |
Collapse
|
48
|
Tane M, Kosako H, Hosoi H, Tabata K, Hiroi T, Osawa K, Iwamoto R, Murata S, Mushino T, Murata SI, Araki SI, Fujii T, Sonoki T. Severe systemic inflammation mimicking TAFRO syndrome following COVID-19. Int J Hematol 2023; 118:374-380. [PMID: 37000328 PMCID: PMC10063432 DOI: 10.1007/s12185-023-03589-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023]
Abstract
TAFRO syndrome is a rare systemic inflammatory disease. Its pathogenesis mainly involves excessive cytokine secretion and autoimmune dysfunction. Although its etiology is unclear, some viral infections have been reported to cause it. Here, we report a case of severe systemic inflammation mimicking TAFRO syndrome that arose after COVID-19. A 61-years-old woman suffered from a continuous fever, ascites, and edema after contracting COVID-19. She developed progressive thrombocytopenia, renal failure, and elevated C-reactive protein levels. She was tentatively diagnosed with multisystem inflammatory syndrome in adults (MIS-A) and received steroid pulse therapy. However, she exhibited worsening fluid retention and progressive renal failure, which are not typical of MIS-A. A bone marrow examination showed reticulin myelofibrosis and an increased number of megakaryocytes. Although a definitive diagnosis of TAFRO syndrome was not made according to current diagnostic criteria, we determined that her symptoms were clinically consistent with those of TAFRO syndrome. Combination therapy, including steroid pulse therapy, plasma exchange, rituximab, and cyclosporine, improved her symptoms. There are pathological similarities between hyperinflammation that arises after COVID-19 and TAFRO syndrome in terms of the associated cytokine storms. COVID-19 may have triggered the development of systemic inflammation mimicking TAFRO syndrome in this case.
Collapse
Affiliation(s)
- Misato Tane
- Department of Hematology/Oncology, Wakayama Medical University, Kimiidera 811-1, Wakayama, 641-8510, Japan
| | - Hideki Kosako
- Department of Hematology/Oncology, Wakayama Medical University, Kimiidera 811-1, Wakayama, 641-8510, Japan
| | - Hiroki Hosoi
- Department of Hematology/Oncology, Wakayama Medical University, Kimiidera 811-1, Wakayama, 641-8510, Japan.
- Department of Internal Medicine, Kainan Municipal Medical Center, Wakayama, Japan.
| | - Kayoko Tabata
- Department of Rheumatology and Clinical Immunology, Wakayama Medical University, Wakayama, Japan
| | - Takayuki Hiroi
- Department of Internal Medicine, Kainan Municipal Medical Center, Wakayama, Japan
| | - Kosuke Osawa
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | - Ryuta Iwamoto
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Shogo Murata
- Department of Hematology/Oncology, Wakayama Medical University, Kimiidera 811-1, Wakayama, 641-8510, Japan
| | - Toshiki Mushino
- Department of Hematology/Oncology, Wakayama Medical University, Kimiidera 811-1, Wakayama, 641-8510, Japan
| | - Shin-Ichi Murata
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Shin-Ichi Araki
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | - Takao Fujii
- Department of Rheumatology and Clinical Immunology, Wakayama Medical University, Wakayama, Japan
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Kimiidera 811-1, Wakayama, 641-8510, Japan
| |
Collapse
|
49
|
Jeffrey J, Miller C, O'Sullivan J, Cahill E, Barrios A, Power D. Reducing neuropathies between the 2020 and 2021 Covid-19 surges in a large UK intensive care unit: A quality improvement project. Nurs Crit Care 2023; 28:789-799. [PMID: 37644907 PMCID: PMC9538016 DOI: 10.1111/nicc.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/19/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Peripheral nerve injuries (PNIs) can be acquired by patients in intensive care unit (ICU) who are critically unwell with Covid pneumonitis. Prone position ventilation has been linked to this life-changing complication. AIM To reduce the occurrence and severity of PNIs for patients with Covid pneumonitis requiring prone positioning whilst sedated and ventilated in ICU. STUDY DESIGN This study is a quality improvement project that evolved over the course of the first two surges of Covid pneumonitis admissions within the ICU at the Queen Elizabeth Hospital Birmingham (Surge 1: March 2020-July 2020, 93 prone ventilation survivors; Surge 2: September 2020-May 2021, 309 prone ventilation survivors). Implementation of updated prone positioning guidelines that aimed to reduce the risk of PNI. This was supplemented by face-to-face teaching for ICU professionals. The number of patients who sustained PNI and the severity of such injuries were recorded. RESULTS During the first surge 21 patients (22.6%) had at least one high grade PNI. During the second surge there were 12 patients (3.9%) sustaining an intermediate or high grade PNI. For PNI patients, there was an increase in the mean proning episodes (6-13) and duration (17.8-18.6 h). This represents an 82% reduction in PNI cases. High grade injuries reduced from 14/21 (66%) to 4/12 (33%). CONCLUSIONS Optimizing the position of patients in the prone position in ICU with Covid pneumonitis may be key in reducing the development of PNI. Changes to pharmacological management may have influenced the results seen in this study. RELEVANCE TO CLINICAL PRACTICE Clinicians working within ICU with acutely unwell patients with Covid pneumonitis should acknowledge the heightened risk of PNI and take relevant steps to reduce the risk of injury acquisition.
Collapse
Affiliation(s)
- Jack Jeffrey
- Therapy ServicesQueen Elizabeth Hospital Birmingham (University Hospitals Birmingham NHS Foundation Trust)BirminghamUK
| | - Caroline Miller
- Therapy ServicesQueen Elizabeth Hospital Birmingham (University Hospitals Birmingham NHS Foundation Trust)BirminghamUK
- Hand and Peripheral Nerve Research Network (HaPPeN), Institute of Translational MedicineQueen Elizabeth Hospital Birmingham (University Hospitals Birmingham NHS Foundation Trust)BirminghamUK
| | - Joel O'Sullivan
- Therapy ServicesQueen Elizabeth Hospital Birmingham (University Hospitals Birmingham NHS Foundation Trust)BirminghamUK
| | - Emma Cahill
- Therapy ServicesQueen Elizabeth Hospital Birmingham (University Hospitals Birmingham NHS Foundation Trust)BirminghamUK
| | - Alejandro Barrios
- Department of AnaestheticsQueen Elizabeth Hospital Birmingham (University Hospitals Birmingham NHS Foundation Trust)BirminghamUK
| | - Dominic Power
- Hand and Peripheral Nerve Research Network (HaPPeN), Institute of Translational MedicineQueen Elizabeth Hospital Birmingham (University Hospitals Birmingham NHS Foundation Trust)BirminghamUK
- Birmingham Peripheral Nerve Injury ServiceQueen Elizabeth Hospital Birmingham (University Hospitals Birmingham NHS Foundation Trust)BirminghamUK
| |
Collapse
|
50
|
Lazo JS, Colunga-Biancatelli RML, Solopov PA, Catravas JD. An acute respiratory distress syndrome drug development collaboration stimulated by the Virginia Drug Discovery Consortium. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:249-254. [PMID: 36796645 PMCID: PMC9930264 DOI: 10.1016/j.slasd.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The genesis of most older medicinal agents has generally been empirical. During the past one and a half centuries, at least in the Western countries, discovering and developing drugs has been primarily the domain of pharmaceutical companies largely built upon concepts emerging from organic chemistry. Public sector funding for the discovery of new therapeutics has more recently stimulated local, national, and international groups to band together and focus on new human disease targets and novel treatment approaches. This Perspective describes one contemporary example of a newly formed collaboration that was simulated by a regional drug discovery consortium. University of Virginia, Old Dominion University, and a university spinout company, KeViRx, Inc., partnered under a NIH Small Business Innovation Research grant, to produce potential therapeutics for acute respiratory distress syndrome resulting from the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- John S Lazo
- Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, VA, USA.
| | | | - Pavel A Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|