1
|
Jiang C, Yang X, Huang Q, Lei T, Luo H, Wu D, Yang Z, Xu Y, Dou Y, Ma X, Gao H. Microglial-Biomimetic Memantine-Loaded Polydopamine Nanomedicines for Alleviating Depression. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417869. [PMID: 39838777 DOI: 10.1002/adma.202417869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/24/2024] [Indexed: 01/23/2025]
Abstract
Depression is a common psychiatric disorder, and monoamine-based antidepressants as first-line therapy remain ineffective in some patients. The synergistic modulation of neuroinflammation and neuroplasticity could be a major strategy for treating depression. In this study, an inflammation-targeted microglial biomimetic system, PDA-Mem@M, is reported for treating depression. Microglial membrane-coated nanoparticles penetrate the blood-brain barrier and facilitate microglial targeting. Subsequently, owing to the excellent free radical-scavenging capacity, PDA-Mem@M attenuate the brain inflammatory microenvironment. After on-demand release from the nanoparticles, memantine increases the expression of brain-derived neurotrophic factors and reverses the loss of synaptic dendritic spines. Further, in vivo studies demonstrate that PDA-Mem@M effectively alleviate depression-like behaviors to a greater extent than memantine or polydopamine nanoparticles (PDA) monotherapy. This synergistic strategy, with satisfactory biosafety and strong anti-inflammatory and synaptic plasticity restoration effects, is conducive to advances in depression therapy.
Collapse
Affiliation(s)
- Chaoqing Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Xiao Yang
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Qianqian Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Hang Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Dongxu Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Zixiao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Yanyan Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Yikai Dou
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Xiaohong Ma
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
2
|
Abbott JA, Wen H, Liu B, Gupta SS, Iacobucci GJ, Zheng W, Popescu GK. Allosteric inhibition of NMDA receptors by low dose ketamine. Mol Psychiatry 2025; 30:1009-1018. [PMID: 39237721 DOI: 10.1038/s41380-024-02729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Ketamine, a general anesthetic, has rapid and sustained antidepressant effects when administered at lower doses. Anesthetic levels of ketamine reduce excitatory transmission by binding deep into the pore of NMDA receptors where it blocks current influx. In contrast, the molecular targets responsible for antidepressant levels of ketamine remain controversial. We used electrophysiology, structure-based mutagenesis, and molecular and kinetic modeling to investigate the effects of ketamine on NMDA receptors across an extended range of concentrations. We report functional and structural evidence that, at nanomolar concentrations, ketamine interacts with membrane-accessible hydrophobic sites on NMDA receptors, which are distinct from the established pore-blocking site. These interactions stabilize receptors in pre-open states and produce an incomplete, voltage- and pH-dependent reduction in receptor gating. Notably, this allosteric inhibitory mechanism spares brief synaptic-like receptor activations and preferentially reduces currents from receptors activated tonically by ambient levels of neurotransmitters. We propose that the hydrophobic sites we describe here account for clinical effects of ketamine not shared by other NMDA receptor open-channel blockers such as memantine and represent promising targets for developing safe and effective neuroactive therapeutics.
Collapse
Affiliation(s)
- Jamie A Abbott
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Han Wen
- Department of Physics, College of Biological Sciences, Buffalo, NY, 14260, USA
| | - Beiying Liu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Sheila S Gupta
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Gary J Iacobucci
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Wenjun Zheng
- Department of Physics, College of Biological Sciences, Buffalo, NY, 14260, USA
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
3
|
Huang X, Sun X, Wang Q, Zhang J, Wen H, Chen WJ, Zhu S. Structural insights into the diverse actions of magnesium on NMDA receptors. Neuron 2025:S0896-6273(25)00047-9. [PMID: 40010346 DOI: 10.1016/j.neuron.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025]
Abstract
Magnesium (Mg2+) is a key regulatory ion of N-methyl-ᴅ-aspartate (NMDA) receptors, including conferring them to function as coincidence detectors for excitatory synaptic transmission. However, the structural basis underlying the Mg2+ action on NMDA receptors remains unclear. Here, we report the cryo-EM structures of GluN1-N2B receptors and identify three distinct Mg2+-binding pockets. Specifically, site Ⅰ is located at the selectivity filter where an asparagine ring forms coordination bonds with Mg2+ and is responsible for the voltage-dependent block. Sites Ⅱ and Ⅲ are located at the N-terminal domain (NTD) of the GluN2B subunit and involved in the allosteric potentiation and inhibition, respectively. Site Ⅱ consists of three acidic residues, and the combination of three mutations abolishes the GluN2B-specific Mg2+ potentiation, while site Ⅲ overlaps with the Zn2+ pocket, and mutations here significantly reduce the inhibition. Our study enhances the understanding of multifaceted roles of Mg2+ in NMDA receptors and synaptic plasticity.
Collapse
Affiliation(s)
- Xuejing Huang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Xiaole Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jilin Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Han Wen
- DP Technology, Beijing 100089, China; AI for Science Institute, Beijing 100085, China; State Key Laboratory of Medical Proteomics, Beijing 102206, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China.
| | - Shujia Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Martins D, Acha B, Cavalcante M, Pereira S, Viana A, Pinheiro-Neto FR, Mendes P, Dittz-Júnior D, Oliveira F, Ventura T, Lobo MDG, Ferreirinha F, Correia-de-Sá P, Almeida F. Anti-Hyperalgesic Effect of Isopulegol Involves GABA and NMDA Receptors in a Paclitaxel-Induced Neuropathic Pain Model. Pharmaceuticals (Basel) 2025; 18:256. [PMID: 40006070 PMCID: PMC11860001 DOI: 10.3390/ph18020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Neuropathic pain can be triggered by chemotherapy drugs such as paclitaxel (PTX). Management of pain is limited by drugs' ineffectiveness and adverse effects. Isopulegol (ISO) is a monoterpene present in the essential oils of several aromatic plants and has promising pharmacological activities. Objectives: to evaluate the antinociceptive activity of ISO in a PTX-induced neuropathic pain model. Methods: the toxicity of ISO was evaluated in healthy and cancerous cells. Behavioral assessments were performed using the von Frey and acetone tests. We investigated the involvement of the GABAergic pathway, NMDA, TNF-α, and the release of GABA and glutamate in the presence of ISO. Results: ISO showed little or no cytotoxicity in U87 and MDA-MB-231 cells. In both acute and subacute treatment, ISO at doses of 25, 50, and 100 mg/kg (* p < 0.05) increased the mechanical nociceptive threshold of neuropathic animals compared to the control group and reduced thermal sensitivity. Its action was reversed by pre-treatment with flumazenil and potentiated by the NMDA antagonist, MK-801. TNF-α and glutamate levels were reduced and GABA release was increased in the tests carried out. Conclusions: ISO shows low toxicity in neuronal cells and its association with PTX generated synergism in its cytotoxic action. The antinociceptive effect of ISO is due to activation of GABA and antagonism of NMDA receptors and involves the stabilization of neuronal plasma membranes leading to an imbalance in the release of neurotransmitters, favoring GABA-mediated inhibition over glutamatergic excitation.
Collapse
Affiliation(s)
- Deyna Martins
- Post Graduate Program in Pharmacology, Laboratory of Pain Pharmacology, Medicinal Plants Research Center, Federal University of Piauí—UFPI, Teresina 64049-550, Brazil; (S.P.); (F.R.P.-N.); (P.M.); (F.O.)
| | - Boris Acha
- Post Graduate Program in Biotechnology—RENORBIO, Federal University of Piauí—UFPI, Teresina 64049-550, Brazil;
| | - Mickael Cavalcante
- Laboratory of Experimental Cancerology, Medicinal Plants Research Center, Federal University of Piauí—UFPI, Teresina 64049-550, Brazil; (M.C.); (D.D.-J.)
| | - Suellen Pereira
- Post Graduate Program in Pharmacology, Laboratory of Pain Pharmacology, Medicinal Plants Research Center, Federal University of Piauí—UFPI, Teresina 64049-550, Brazil; (S.P.); (F.R.P.-N.); (P.M.); (F.O.)
| | - Ana Viana
- Nursing Department, State University of Maranhão (UEMA)-Campus Santa Inês, Maranhão 65306-219, Brazil;
| | - Flaviano Ribeiro Pinheiro-Neto
- Post Graduate Program in Pharmacology, Laboratory of Pain Pharmacology, Medicinal Plants Research Center, Federal University of Piauí—UFPI, Teresina 64049-550, Brazil; (S.P.); (F.R.P.-N.); (P.M.); (F.O.)
| | - Priscyla Mendes
- Post Graduate Program in Pharmacology, Laboratory of Pain Pharmacology, Medicinal Plants Research Center, Federal University of Piauí—UFPI, Teresina 64049-550, Brazil; (S.P.); (F.R.P.-N.); (P.M.); (F.O.)
| | - Dalton Dittz-Júnior
- Laboratory of Experimental Cancerology, Medicinal Plants Research Center, Federal University of Piauí—UFPI, Teresina 64049-550, Brazil; (M.C.); (D.D.-J.)
| | - Francisco Oliveira
- Post Graduate Program in Pharmacology, Laboratory of Pain Pharmacology, Medicinal Plants Research Center, Federal University of Piauí—UFPI, Teresina 64049-550, Brazil; (S.P.); (F.R.P.-N.); (P.M.); (F.O.)
| | - Tatiana Ventura
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP/RISE-Health), Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal; (T.V.); (M.d.G.L.); (F.F.); (P.C.-d.-S.)
| | - Maria da Graça Lobo
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP/RISE-Health), Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal; (T.V.); (M.d.G.L.); (F.F.); (P.C.-d.-S.)
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP/RISE-Health), Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal; (T.V.); (M.d.G.L.); (F.F.); (P.C.-d.-S.)
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP/RISE-Health), Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal; (T.V.); (M.d.G.L.); (F.F.); (P.C.-d.-S.)
| | - Fernanda Almeida
- Post Graduate Program in Pharmacology, Laboratory of Pain Pharmacology, Medicinal Plants Research Center, Federal University of Piauí—UFPI, Teresina 64049-550, Brazil; (S.P.); (F.R.P.-N.); (P.M.); (F.O.)
| |
Collapse
|
5
|
Doglioni G, Fernández-García J, Igelmann S, Altea-Manzano P, Blomme A, La Rovere R, Liu XZ, Liu Y, Tricot T, Nobis M, An N, Leclercq M, El Kharraz S, Karras P, Hsieh YH, Solari FA, Martins Nascentes Melo L, Allies G, Scopelliti A, Rossi M, Vermeire I, Broekaert D, Ferreira Campos AM, Neven P, Maetens M, Van Baelen K, Alkan HF, Planque M, Floris G, Sickmann A, Tasdogan A, Marine JC, Scheele CLGJ, Desmedt C, Bultynck G, Close P, Fendt SM. Aspartate signalling drives lung metastasis via alternative translation. Nature 2025; 638:244-250. [PMID: 39743589 DOI: 10.1038/s41586-024-08335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/01/2024] [Indexed: 01/04/2025]
Abstract
Lung metastases occur in up to 54% of patients with metastatic tumours1,2. Contributing factors to this high frequency include the physical properties of the pulmonary system and a less oxidative environment that may favour the survival of cancer cells3. Moreover, secreted factors from primary tumours alter immune cells and the extracellular matrix of the lung, creating a permissive pre-metastatic environment primed for the arriving cancer cells4,5. Nutrients are also primed during pre-metastatic niche formation6. Yet, whether and how nutrients available in organs in which tumours metastasize confer cancer cells with aggressive traits is mostly undefined. Here we found that pulmonary aspartate triggers a cellular signalling cascade in disseminated cancer cells, resulting in a translational programme that boosts aggressiveness of lung metastases. Specifically, we observe that patients and mice with breast cancer have high concentrations of aspartate in their lung interstitial fluid. This extracellular aspartate activates the ionotropic N-methyl-D-aspartate receptor in cancer cells, which promotes CREB-dependent expression of deoxyhypusine hydroxylase (DOHH). DOHH is essential for hypusination, a post-translational modification that is required for the activity of the non-classical translation initiation factor eIF5A. In turn, a translational programme with TGFβ signalling as a central hub promotes collagen synthesis in lung-disseminated breast cancer cells. We detected key proteins of this mechanism in lung metastases from patients with breast cancer. In summary, we found that aspartate, a classical biosynthesis metabolite, functions in the lung environment as an extracellular signalling molecule to promote aggressiveness of metastases.
Collapse
Affiliation(s)
- Ginevra Doglioni
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Juan Fernández-García
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sebastian Igelmann
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Laboratory of Metabolic Regulation and Signaling in Cancer, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-University of Seville-CSIC-University Pablo de Olavide, Seville, Spain
| | - Arnaud Blomme
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium
| | - Rita La Rovere
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Xiao-Zheng Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Yawen Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Tine Tricot
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Max Nobis
- Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
- Intravital Imaging Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ning An
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium
| | - Marine Leclercq
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium
| | - Sarah El Kharraz
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Yu-Heng Hsieh
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Fiorella A Solari
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | | | - Gabrielle Allies
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Annalisa Scopelliti
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Matteo Rossi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ines Vermeire
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Dorien Broekaert
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ana Margarida Ferreira Campos
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Patrick Neven
- Department of Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - Marion Maetens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Karen Van Baelen
- Department of Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - H Furkan Alkan
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Spatial Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Giuseppe Floris
- Department of Pathology, UZ Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Laboratory of Translational Cell And Tissue Research, KU Leuven, Leuven, Belgium
| | - Albert Sickmann
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
- Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Colinda L G J Scheele
- Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Pierre Close
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
6
|
Donello JE, McIntyre RS, Pickel DB, Stahl SM. Demystifying the Antidepressant Mechanism of Action of Stinels, a Novel Class of Neuroplastogens: Positive Allosteric Modulators of the NMDA Receptor. Pharmaceuticals (Basel) 2025; 18:157. [PMID: 40005971 PMCID: PMC11858332 DOI: 10.3390/ph18020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Plastogens are a class of therapeutics that function by rapidly promoting changes in neuroplasticity. A notable example, ketamine, is receiving great attention due to its combined rapid and long-term antidepressant effects. Ketamine is an N-methyl-D-aspartate receptor (NMDAR) antagonist, and, in addition to its therapeutic activity, it is associated with psychotomimetic and dissociative side effects. Stinels-rapastinel, apimostinel, and zelquistinel-are also plastogens not only with rapid and long-term antidepressant effects but also with improved safety and tolerability profiles compared to ketamine. Previous descriptions of the mechanism by which stinels modulate NMDAR activity have been inconsistent and, at times, contradictory. The purpose of this review is to clarify the mechanism of action and contextualize stinels within a broader class of NMDAR-targeting therapeutics. In this review, we present the rationale behind targeting NMDARs for treatment-resistant depression and other psychiatric conditions, describe the various mechanisms by which NMDAR activity is regulated by different classes of therapeutics, and present evidence for the stinel mechanism. In contrast with previous descriptions of glycine-like NMDAR partial agonists, we define stinels as positive allosteric modulators of NMDAR activity with a novel regulatory binding site.
Collapse
Affiliation(s)
| | - Roger S. McIntyre
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Stephen M. Stahl
- Department of Psychiatry and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Department of Psychiatry, University of Cambridge, Cambridge CB2 2QQ, UK
- California Department of State Hospitals, Sacramento, CA 95814, USA
| |
Collapse
|
7
|
Lodetti G, Baldin SL, de Farias ACS, de Pieri Pickler K, Teixeira AG, Dondossola ER, Bernardo HT, Maximino C, Rico EP. Repeated exposure to ethanol alters memory acquisition and neurotransmission parameters in zebrafish brain. Pharmacol Biochem Behav 2025; 246:173915. [PMID: 39586362 DOI: 10.1016/j.pbb.2024.173915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Alcohol is widely consumed worldwide and its abuse can cause cognitive dysfunction, affecting memory and learning due to several neurophysiological changes. An imbalance in several neurotransmitters, including the cholinergic and glutamatergic systems, have been implicated in these effects. Zebrafish are sensitive to alcohol, respond to reward stimuli, and tolerate and exhibit withdrawal behaviors. Therefore, we investigated the effects of repetitive exposure to ethanol (REE) and the NMDA receptor antagonist dizocilpine (MK-801) on memory acquisition and glutamatergic and cholinergic neurotransmission. Memory was assessed using the inhibitory avoidance and object recognition tasks. Brain glutamate levels and the activity of Na+-dependent transporters were evaluated as indexes of glutamatergic activity, while acetylcholinesterase (AChE) and choline acetyltransferase (ChAT), enzyme activity were evaluated as indexes of cholinergic activity. Behavioral assessments showed that REE impaired aversive and spatial memory, an effect that MK-801 mimicked. Glutamate levels, but not transporter activity, were significantly lower in the REE group; similarly, REE increased the activity of AChE, but not ChAT, activity. These findings suggest that intermittent exposure to ethanol leads to impairments in zebrafish memory consolidation, and that these effects could be associated with alterations in parameters related to neurotransmission systems mediated by glutamate and acetylcholine. These results provide a better understanding of the neurophysiological and behavioral changes caused by repetitive alcohol use.
Collapse
Affiliation(s)
- Guilherme Lodetti
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Samira Leila Baldin
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Ana Carolina Salvador de Farias
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Karolyne de Pieri Pickler
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Amanda Gomes Teixeira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Eduardo Ronconi Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Caio Maximino
- Laboratory of Neurosciences and Behavior, Institute of Health and Biological Studies, Federal University of South and Southeast of Pará, Marabá, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil.
| |
Collapse
|
8
|
Aljohani Y, Payne W, Yasuda RP, Olson T, Kellar KJ, Dezfuli G. Pharmacological target sites for restoration of age-associated deficits in NMDA receptor-mediated norepinephrine release in brain. J Neurochem 2025; 169:e16280. [PMID: 39655655 PMCID: PMC11629444 DOI: 10.1111/jnc.16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Aging affects virtually all organs of the body, but perhaps it has the most profound effects on the brain and its neurotransmitter systems, which influence a wide range of crucial functions, such as attention, focus, mood, neuroendocrine and autonomic functions, and sleep cycles. All of these essential functions, as well as fundamental cognitive processes such as memory, recall, and processing speed, utilize neuronal circuits that depend on neurotransmitter signaling between neurons. Glutamate (Glu), the main excitatory neurotransmitter in the CNS, is involved in most neuronal excitatory functions, including release of the neurotransmitter norepinephrine (NE). Previous studies from our lab demonstrated that the age-associated decline in Glu-stimulated NE release in rat cerebral cortex and hippocampus mediated by NMDA glutamate receptors, as well as deficits in dendritic spines, and cognitive functions are fully rescued by the CNS stimulant amphetamine. Here we further investigated Glu-stimulated NE release in the cerebral cortex to identify additional novel target sites for restoration of Glu-stimulated NE release. We found that blockade of alpha-2 adrenergic receptors fully restores Glu-stimulated NE release to the levels of young controls. In addition, we investigated the density and responsiveness of NMDA receptors as a potential underlying neuronal mechanism that could account for the observed age-associated decline in Glu-stimulated NE release. In the basal state of the receptor (no added glutamate and glycine) the density of NMDA receptors in the cortex from young and aged rats was similar. However, in contrast, in the presence of 10 μM added glutamate, which opens the receptor channel and increases the number of available [3H]-MK-801 binding sites within the channel, the density of [3H]-MK-801 binding sites was significantly less in the cortex from aged rats.
Collapse
Affiliation(s)
- Yousef Aljohani
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - William Payne
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Robert P. Yasuda
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Thao Olson
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Kenneth J. Kellar
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Ghazaul Dezfuli
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
9
|
Hao J, Qin X, Guan L, Chen S, Hao X, Zhang P, Bai H, Zhao W, Huang Z, Chu S, Shi H, Jia Z, Yang Z, Kong D, Zhang W. Chelerythrine inhibits NR2B NMDA receptor independent of PKC activity. Biochem Biophys Res Commun 2024; 739:150914. [PMID: 39536412 DOI: 10.1016/j.bbrc.2024.150914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
N-methyl-d-aspartate receptors (NMDARs), the ligand ion glutamate receptor channels, mediate major excitatory neurotransmission in central nervous system (CNS). They highly express in CNS and involve in multiple physiological processes. Many studies implicated that NMDAR plays a crucial role in number of neurological disorders, including ischemia, dementia, and pain, indicating its potential as a therapeutic target for treatments. Chelerythrine (CHE) is a benzo-phenanthridine alkaloid extracted from Chelidonium majus with many biological activities including anti-inflammatory, anticancer effect, and antidiabetic effect. But the mechanism of CHE is not well understood. The aim of this study was to investigate the effect of CHE on the NMDAR. The results demonstrated that CHE effectively suppressed NMDA-induced currents in primary cultured cortical neurons. To elucidate the underlying mechanism, we expressed NMDARs in HEK293T cells and found that CHE and some of its structural analogues inhibited NMDAR currents and facilitated the desensitization of GluN2B NMDARs. Notably, these effects were independent of protein kinase C activity, suggesting that the effect of CHE on GluN2B-containing NMDAR may occur through a mechanism of directly interaction with NMDAR. Moreover, the inhibitory effect of CHE on GluN2B NMDARs is pH-dependent. Molecular docking prediction in conjunction with mutagenesis analysis revealed that the M3 α-helical segment of the NMDAR in close proximity to the GluN2B Thr647 amino acid plays an important role in CHE inhibition of GluN2B. This study revealed a novel function of CHE and its structural analogues in inhibiting the NMDARs and promoting GluN2B-mediated desensitization by obstructing the receptor at the channel pore region.
Collapse
Affiliation(s)
- Jie Hao
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Xia Qin
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - LiZhao Guan
- ICE BIOSCIENCE INC, 101,floor, 1,Building, 16 Yard, 18 Kechuang 13th Street, Daxing District, Beijing, China
| | - Siruan Chen
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Xuenan Hao
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Panpan Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Hui Bai
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Wenya Zhao
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Haishui Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Zhanfeng Jia
- Department of Pharmacology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Zuxiao Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China.
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China.
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
10
|
Konecny J, Misiachna A, Chvojkova M, Kleteckova L, Kolcheva M, Novak M, Prchal L, Ladislav M, Hemelikova K, Netolicky J, Hrabinova M, Kobrlova T, Karasova JZ, Pejchal J, Fibigar J, Vecera Z, Kucera T, Jendelova P, Zahumenska P, Langore E, Doderovic J, Pang YP, Vales K, Korabecny J, Soukup O, Horak M. Dizocilpine derivatives as neuroprotective NMDA receptor antagonists without psychomimetic side effects. Eur J Med Chem 2024; 280:116981. [PMID: 39442339 DOI: 10.1016/j.ejmech.2024.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
We aimed to prepare novel dibenzo [a,d][7]annulen derivatives that act on N-methyl-d-aspartate (NMDA) receptors with potential neuroprotective effects. Our approach involved modifying the tropane moiety of MK-801, a potent open-channel blocker known for its psychomimetic side effects, by introducing a seven-membered ring with substituted base moieties specifically to alleviate these undesirable effects. Our in silico analyses showed that these derivatives should have high gastrointestinal absorption and cross the blood-brain barrier (BBB). Our pharmacokinetic studies in rats supported this conclusion and confirmed the ability of leading compounds 3l and 6f to penetrate the BBB. Electrophysiological experiments showed that all compounds exhibited different inhibitory activity towards the two major NMDA receptor subtypes, GluN1/GluN2A and GluN1/GluN2B. Of the selected compounds intentionally differing in the inhibitory efficacy, 6f showed high relative inhibition (∼90 % for GluN1/GluN2A), while 3l showed moderate inhibition (∼50 %). An in vivo toxicity study determined that compounds 3l and 6f were safe at 10 mg/kg doses with no adverse effects. Behavioral studies demonstrated that these compounds did not induce hyperlocomotion or impair prepulse inhibition of startle response in rats. Neuroprotective assays using a model of NMDA-induced hippocampal neurodegeneration showed that compound 3l at a concentration of 30 μM significantly reduced hippocampal damage in rats. These results suggest that these novel dibenzo [a,d][7]annulen derivatives are promising candidates for developing NMDA receptor-targeted therapies with minimal psychotomimetic side effects.
Collapse
Affiliation(s)
- Jan Konecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Anna Misiachna
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Marketa Chvojkova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Lenka Kleteckova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Marharyta Kolcheva
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Martin Novak
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Marek Ladislav
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Katarina Hemelikova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Jakub Netolicky
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Martina Hrabinova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Jana Zdarova Karasova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jakub Fibigar
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Zbynek Vecera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Petra Zahumenska
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Emily Langore
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Jovana Doderovic
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Yuan-Ping Pang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, 55905, MN, USA
| | - Karel Vales
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| | - Martin Horak
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic.
| |
Collapse
|
11
|
Le AA, Lauterborn JC, Jia Y, Cox CD, Lynch G, Gall CM. Metabotropic NMDAR Signaling Contributes to Sex Differences in Synaptic Plasticity and Episodic Memory. J Neurosci 2024; 44:e0438242024. [PMID: 39424366 PMCID: PMC11638816 DOI: 10.1523/jneurosci.0438-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
NMDA receptor (NMDAR)-mediated calcium influx triggers the induction and initial expression of long-term potentiation (LTP). Here we report that in male rodents, ion flux-independent (metabotropic) NMDAR signaling is critical for a third step in the production of enduring LTP, i.e., cytoskeletal changes that stabilize the activity-induced synaptic modifications. Surprisingly, females rely upon estrogen receptor alpha (ERα) for the metabotropic NMDAR operations used by males. Blocking NMDAR channels with MK-801 eliminated LTP expression in hippocampal field CA1 of both sexes but left intact theta burst stimulation (TBS)-induced actin polymerization within dendritic spines. A selective antagonist (Ro25-6981) of the NMDAR GluN2B subunit had minimal effects on synaptic responses but blocked actin polymerization and LTP consolidation in males only. Conversely, an ERα antagonist thoroughly disrupted TBS-induced actin polymerization and LTP in females while having no evident effect in males. In an episodic memory paradigm, Ro25-6981 prevented acquisition of spatial locations by males but not females, whereas an ERα antagonist blocked acquisition in females but not males. Sex differences in LTP consolidation were accompanied by pronounced differences in episodic memory in tasks involving minimal (for learning) cue sampling. Males did better on acquisition of spatial information whereas females had much higher scores than males on tests for acquisition of the identity of cues (episodic "what") and the order in which the cues were sampled (episodic "when"). We propose that sex differences in synaptic processes used to stabilize LTP result in differential encoding of the basic elements of episodic memory.
Collapse
Affiliation(s)
- Aliza A Le
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Julie C Lauterborn
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Yousheng Jia
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Conor D Cox
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Gary Lynch
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
- Psychiatry and Human Behavior, University of California, Irvine, California 92697
| | - Christine M Gall
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
- Neurobiology and Behavior, University of California, Irvine, California 92697
| |
Collapse
|
12
|
Chang CY, Wu CC, Tzeng CY, Li JR, Chen YF, Chen WY, Kuan YH, Liao SL, Chen CJ. NMDA receptor blockade attenuates Japanese encephalitis virus infection-induced microglia activation. J Neuroinflammation 2024; 21:291. [PMID: 39511597 PMCID: PMC11545997 DOI: 10.1186/s12974-024-03288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
Neurodegeneration and neuroinflammation are key components in the pathogenesis of Japanese Encephalitis caused by Japanese Encephalitis Virus (JEV) infection. The N-methyl-D-aspartate (NMDA)-type glutamate receptor displays excitatory neurotoxic and pro-inflammatory properties in a cell context-dependent manner. Herein, potential roles of the NMDA receptor in excitatory neurotoxicity and neuroinflammation and effects of NMDA receptor blockade against JEV pathogenesis were investigated in rat microglia, neuron/glia, neuron cultures, and C57BL/6 mice. In microglia, JEV infection induced glutamate release and activated post-receptor NMDA signaling, leading to activation of Ca2+ mobilization and Calcium/Calmodulin-dependent Protein Kinase II (CaMKII), accompanied by pro-inflammatory NF-κB and AP-1 activation and cytokine expression. Additionally, increased Dynamin-Related Protein-1 protein phosphorylation, NAPDH Oxidase-2/4 expression, free radical generation, and Endoplasmic Reticulum stress paralleled with the reactive changes of microglia after JEV infection. JEV infection-induced biochemical and molecular changes contributed to microglia reactivity and pro-inflammatory cytokine expression. NMDA receptor antagonists MK801 and memantine alleviated intracellular signaling and pro-inflammatory cytokine expression in JEV-infected microglia. JEV infection induced neuronal cell death in neuron/glia culture associated with the concurrent production of pro-inflammatory cytokines. Conditioned media of JEV-infected microglia compromised neuron viability in neuron culture. JEV infection-associated neuronal cell death was alleviated by MK801 and memantine. Activation of NMDA receptor-related inflammatory changes, microglia activation, and neurodegeneration as well as reversal effects of memantine were revealed in the brains of JEV-infected mice. The current findings highlight a crucial role of the glutamate/NMDA receptor axis in linking excitotoxicity and neuroinflammation during the course of JEV pathogenesis, and proposes the anti-inflammatory and neuroprotective potential of NMDA receptor blockade.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City, 420, Taiwan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City, 407, Taiwan
- Department of Financial Engineering, Providence University, Taichung City, 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung City, 433, Taiwan
| | - Chung-Yuh Tzeng
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung City, 407, Taiwan
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung City, 407, Taiwan
| | - Yu-Fang Chen
- Department of Microbiology & Immunology, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung City, 402, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung City, 407, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung City, 407, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
13
|
Jahanabadi S, Madvar MR. Unraveling the Interplay of 5-hydroxytryptamine-3 and N-methyl-d-aspartate Receptors in Seizure Susceptibility. Drug Res (Stuttg) 2024; 74:456-463. [PMID: 39299250 DOI: 10.1055/a-2406-5340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
BACKGROUND Epilepsy, a prevalent neurological disorder characterized by recurrent seizures, presents significant challenges in treatment and management. This study aimed to evaluate the effect of tropisetron, a selective 5-HT3 receptor antagonist on pentylenetetrazole (PTZ) - induced seizure in mice by exploring the potential role of the NMDA receptor and inflammatory responses. METHODS For this purpose, seizures were induced by intravenous PTZ infusion. Tropisetron at 1-, 2-, 3-, 5-, 10- mg/kg were administered intraperitoneally 30 minutes before PTZ. To evaluate probable role of NMDA signaling, selective NMDAR antagonists, ketamine and MK-801, were injected 15 minutes before tropisetron. Also, TNF-α level of hippocampus were measured following administration of mentioned drugs in mice. RESULTS Our results demonstrate that tropisetron displayed a dose-dependent impact on seizure threshold, with certain doses (5 and 10 mg/kg) exhibiting anticonvulsant properties. In addition, the noncompetitive NMDAR antagonists, ketamine (1 mg/kg) and MK-801 (0.5 mg/kg), at doses that had no effect on seizure threshold, augmented the anticonvulsant effect of tropisetron (3 mg/kg). Also, tropisetron led to a reduction in hippocampal TNF-α levels, indicating its anti-inflammatory potential independent of 5-HT receptor activity. CONCLUSION In conclusion, we demonstrated that the anticonvulsant effect of tropisetron is mediated by the inhibition of NMDA receptors and a decline in hippocampal TNF-α level. These findings highlight a potential connection between 5-HT3 and NMDA receptors in the pharmacological treatment of inflammatory diseases, such as seizure, warranting further investigation into their combined therapeutic effects.
Collapse
Affiliation(s)
- Samane Jahanabadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Pharmaceutical Science Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammadreza Riahi Madvar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Pharmaceutical Science Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
14
|
Nakashima M, Suga N, Fukumoto A, Yoshikawa S, Matsuda S. Caveolae with serotonin and NMDA receptors as promising targets for the treatment of Alzheimer's disease. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:96-110. [PMID: 39583750 PMCID: PMC11579522 DOI: 10.62347/mtwv3745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/13/2024] [Indexed: 11/26/2024]
Abstract
Alzheimer's disease is the most general type of cognitive impairments. Until recently, strategies that prevent its clinical progression have remained more elusive. Consequently, research direction should be for finding effective neuroprotective agents. It has been suggested oxidative stress, mitochondrial injury, and inflammation level might lead to brain cell death in many neurological disorders. Therefore, several autophagy-targeted bioactive compounds may be promising candidate therapeutics for the prevention of brain cell damage. Interestingly, some risk genes to Alzheimer's disease are expressed within brain cells, which may be linked to cholesterol metabolism, lipid transport, endocytosis, exocytosis and/or caveolae formation, suggesting that caveolae may be a fruitful therapeutic target to improve cognitive impairments. This review would highlight the latest advances in therapeutic technologies to improve the treatment of Alzheimer's disease. In particular, a paradigm that serotonin and N-methyl-d-aspartate (NMDA) receptors agonist/antagonist within caveolae structure might possibly improve the cognitive impairment. Consequently, cellular membrane biophysics should improve our understanding of the pathology of the cognitive dysfunction associated with Alzheimer's disease. Here, this research direction for the purpose of therapy may open the potential to move a clinical care toward disease-modifying treatment strategies with certain benefits for patients.
Collapse
Affiliation(s)
- Moeka Nakashima
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Naoko Suga
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Akari Fukumoto
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
15
|
Qian R, Xue J, Xu Y, Huang J. Alchemical Transformations and Beyond: Recent Advances and Real-World Applications of Free Energy Calculations in Drug Discovery. J Chem Inf Model 2024; 64:7214-7237. [PMID: 39360948 DOI: 10.1021/acs.jcim.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Computational methods constitute efficient strategies for screening and optimizing potential drug molecules. A critical factor in this process is the binding affinity between candidate molecules and targets, quantified as binding free energy. Among various estimation methods, alchemical transformation methods stand out for their theoretical rigor. Despite challenges in force field accuracy and sampling efficiency, advancements in algorithms, software, and hardware have increased the application of free energy perturbation (FEP) calculations in the pharmaceutical industry. Here, we review the practical applications of FEP in drug discovery projects since 2018, covering both ligand-centric and residue-centric transformations. We show that relative binding free energy calculations have steadily achieved chemical accuracy in real-world applications. In addition, we discuss alternative physics-based simulation methods and the incorporation of deep learning into free energy calculations.
Collapse
Affiliation(s)
- Runtong Qian
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Jing Xue
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - You Xu
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
16
|
Villéga F, Fernandes A, Jézéquel J, Uyttersprot F, Benac N, Zenagui S, Bastardo L, Gréa H, Bouchet D, Villetelle L, Nicole O, Rogemond V, Honnorat J, Dupuis JP, Groc L. Ketamine alleviates NMDA receptor hypofunction through synaptic trapping. Neuron 2024; 112:3311-3328.e9. [PMID: 39047728 DOI: 10.1016/j.neuron.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/16/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Activity-dependent modulations of N-methyl-D-aspartate glutamate receptor (NMDAR) trapping at synapses regulate excitatory neurotransmission and shape cognitive functions. Although NMDAR synaptic destabilization has been associated with severe neurological and psychiatric conditions, tuning NMDAR synaptic trapping to assess its clinical relevance for the treatment of brain conditions remains a challenge. Here, we report that ketamine (KET) and other clinically relevant NMDAR open channel blockers (OCBs) promote interactions between NMDAR and PDZ-domain-containing scaffolding proteins and enhance NMDAR trapping at synapses. We further show that KET-elicited trapping enhancement compensates for depletion in synaptic receptors triggered by autoantibodies from patients with anti-NMDAR encephalitis. Preventing synaptic depletion mitigates impairments in NMDAR-mediated CaMKII signaling and alleviates anxiety- and sensorimotor-gating-related behavioral deficits provoked by autoantibodies. Altogether, these findings reveal an unexpected dimension of OCB action and stress the potential of targeting receptor anchoring in NMDAR-related synaptopathies.
Collapse
Affiliation(s)
- Frédéric Villéga
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France; Department of Pediatric Neurology, CIC-1401, University Children's Hospital of Bordeaux, Bordeaux, France
| | - Alexandra Fernandes
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Julie Jézéquel
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Floriane Uyttersprot
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Nathan Benac
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Sarra Zenagui
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Laurine Bastardo
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Hélène Gréa
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Delphine Bouchet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Léa Villetelle
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Olivier Nicole
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Véronique Rogemond
- Synaptopathies and Autoantibodies Team, Institut NeuroMyoGene-MeLis, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon1, 69373 Lyon, France; French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 69677 Bron, France
| | - Jérôme Honnorat
- Synaptopathies and Autoantibodies Team, Institut NeuroMyoGene-MeLis, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon1, 69373 Lyon, France; French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 69677 Bron, France
| | - Julien P Dupuis
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France.
| | - Laurent Groc
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
17
|
Santos LW, Canzian J, Resmim CM, Fontana BD, Rosemberg DB. Contextual fear conditioning in zebrafish: Influence of different shock frequencies, context, and pharmacological modulation on behavior. Neurobiol Learn Mem 2024; 214:107963. [PMID: 39059760 DOI: 10.1016/j.nlm.2024.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Contextual fear conditioning is a protocol used to assess associative learning across species, including fish. Here, our goal was to expand the analysis of behavioral parameters that may reflect aversive behaviors in a contextual fear conditioning protocol using adult zebrafish (Danio rerio) and to verify how such parameters can be modulated. First, we analyzed the influence of an aversive stimulus (3 mild electric shocks for 5 s each at frequencies of 10, 100 or 1000 Hz) on fish behavior, and their ability to elicit fear responses in the absence of shock during a test session. To confirm whether the aversive responses are context-dependent, behaviors were also measured in a different experimental environment in a test session. Furthermore, we investigated the effects of dizocilpine (MK-801, 2 mg/kg, i.p.) on fear-related responses. Zebrafish showed significant changes in baseline activity immediately after shock exposure in the training session, in which 100 Hz induced robust contextual fear responses during the test session. Importantly, when introduced to a different environment, animals exposed to the aversive stimulus did not show any differences in locomotion and immobility-related parameters. MK-801 administered after the training session reduced fear responses during the test, indicating that glutamate NMDA-receptors play a key role in the consolidation of contextual fear-related memory in zebrafish. In conclusion, by further exploring fear-related behaviors in a contextual fear conditioning task, we show the effects of different shock frequencies and confirm the importance of context on aversive responses for associative learning in zebrafish. Additionally, our data support the use of zebrafish in contextual fear conditioning tasks, as well as for advancing pharmacological studies related to associative learning in translational neurobehavioral research.
Collapse
Affiliation(s)
- Laura W Santos
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Barbara D Fontana
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
18
|
Beaurain M, Salabert AS, Payoux P, Gras E, Talmont F. NMDA Receptors: Distribution, Role, and Insights into Neuropsychiatric Disorders. Pharmaceuticals (Basel) 2024; 17:1265. [PMID: 39458906 PMCID: PMC11509972 DOI: 10.3390/ph17101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND N-methyl-D-aspartate receptors (NMDARs) are members of the ionotropic glutamate receptor family. These ligand-gated channels are entwined with numerous fundamental neurological functions within the central nervous system (CNS), and numerous neuropsychiatric disorders may arise from their malfunction. METHODS The purpose of the present review is to provide a detailed description of NMDARs by addressing their molecular structures, activation mechanisms, and physiological roles in the mammalian brain. In the second part, their role in various neuropsychiatric disorders including stroke, epilepsy, anti-NMDA encephalitis, Alzheimer's and Huntington's diseases, schizophrenia, depression, neuropathic pain, opioid-induced tolerance, and hyperalgesia will be covered. RESULTS Finally, through a careful exploration of the main non-competitive NMDARs antagonists (channel-blockers). CONCLUSION We discuss the strengths and limitations of the various molecular structures developed for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Marie Beaurain
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Emmanuel Gras
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, UPS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France;
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
19
|
Zhigulin AS, Novikova AO, Barygin OI. Mechanisms of NMDA Receptor Inhibition by Biguanide Compounds. Pharmaceuticals (Basel) 2024; 17:1234. [PMID: 39338396 PMCID: PMC11434645 DOI: 10.3390/ph17091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are inhibited by many medicinal drugs. The recent successful repurposing of NMDA receptor antagonists ketamine and dextromethorphan for the treatment of major depressive disorder further enhanced the interest in this field. In this work, we performed a screening for the activity against native NMDA receptors of rat CA1 hippocampal pyramidal neurons among biguanide compounds using the whole-cell patch-clamp method. Antimalarial biguanides proguanil and cycloguanil, as well as hypoglycemic biguanide phenformin, inhibited them in micromolar concentrations, while another hypoglycemic biguanide metformin and antiviral biguanide moroxydine were practically ineffective. IC50 values at -80 mV holding voltage were 3.4 ± 0.6 µM for cycloguanil, 9.0 ± 2.2 µM for proguanil and 13 ± 1 µM for phenformin. The inhibition by all three compounds was not competitive. Cycloguanil acted as an NMDA receptor voltage-dependent trapping channel blocker, while proguanil and phenformin acted as allosteric inhibitors. Our results support the potential clinical repurposing of biguanide compounds for the treatment of neurodegenerative disorders linked to glutamatergic excitotoxicity while also providing a better understanding of structural determinants of NMDA receptor antagonism by biguanides.
Collapse
Affiliation(s)
| | | | - Oleg I. Barygin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44, Toreza Prospekt, Saint Petersburg 194223, Russia; (A.S.Z.); (A.O.N.)
| |
Collapse
|
20
|
Cheng Q, He K, Zhu J, Li X, Wu X, Zeng C, Lei G, Wang N, Li H, Wei J. Memantine attenuates the development of osteoarthritis by blocking NMDA receptor mediated calcium overload and chondrocyte senescence. J Orthop Translat 2024; 48:204-216. [PMID: 39280634 PMCID: PMC11399475 DOI: 10.1016/j.jot.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 06/22/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024] Open
Abstract
Background Memantine, which is an FDA-proven drug for the treatment of dementia, exerts its function by blocking the function of NMDA (N-methyl-D-aspartate) receptor, a calcium-permeable ion channel that reduces cytotoxic calcium overload. Chondrocyte senescence is a crucial cellular event that contributes to articular cartilage degeneration during osteoarthritis (OA) development. To date, the effects of memantine and its downstream NMDA receptor on chondrocyte senescence and OA have been rarely reported. Methods The protein levels of NMDA receptor and its agonistic ligand, glutamate, were compared between normal and OA chondrocytes. The quantity of intracellular calcium ions and the level of mitochondrial damage were evaluated using specific fluorescent probes and transmission electron microscopy (TEM), respectively. Chondrocyte senescence was evaluated by senescence-associated β-galactosidase (SA-β-Gal) staining and p16INK4a analysis. The function of NMDA receptor in chondrocyte senescence and OA was tested via agonists activation and gene knockdown experiments. The therapeutic effects of memantine on OA were examined both in vitro and in vivo. Additionally, to verify the findings from animal samples, a propensity score-matched cohort study was conducted using data from a United Kingdom primary care database (i.e., IQVIA Medical Research Database [IMRD]) to compare the risk of OA-related joint replacement involved in memantine initiators versus active comparators (i.e., acetylcholinesterase [AchE] initiators) in patients with dementia. Results The protein expression of NMDA receptor and the secretion of glutamate were both significantly increased in OA chondrocytes. NMDA receptor activation was found to stimulate chondrocyte calcium overload, which further led to mitochondrial fragmentation and chondrocyte senescence. Blocking the NMDA receptor with memantine and N-methyl-D-aspartate receptor subunit 1(NR1, the gene encoding NMDA receptor) knockdown resulted in reduced calcium influx, mitochondrial fragmentation, as well as cellular senescence in OA chondrocytes. Intra-articular injection of memantine in OA mice also exhibited protective effects against cartilage degeneration. Moreover, in the 1:5 propensity score-matched cohort study consisting of 6218 patients (n = 1435 in the memantine cohort; n = 4783 in the AchE cohort), the memantine initiator was associated with a lower risk of OA-related joint replacement than AchE initiators (Hazard ratio = 0.56, 95 % confidence interval: 0.34 to 0.99). Conclusion NMDA receptor plays an important role in inflammatory-induced cytotoxic calcium overload in chondrocytes, while memantine can effectively block the NMDA receptor to reduce chondrocyte senescence and retard the development of OA. The translational potential of this article As a clinically licensed drug used for the treatment of dementia, memantine has shown promising therapeutic effects on OA. Mechanistically, it functions by blocking NMDA receptor from mediating chondrocyte senescence. The protective effects of memantine against OA were verified not only by in vivo and in vitro experiments but also via a propensity score-matched human cohort study. These findings presented robust evidence for repurposing memantine for the treatment of OA.
Collapse
Affiliation(s)
- Qingmei Cheng
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Ke He
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Junyu Zhu
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxiao Li
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Wu
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Zeng
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guanghua Lei
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Wang
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wei
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Misiachna A, Konecny J, Kolcheva M, Ladislav M, Prchal L, Netolicky J, Kortus S, Zahumenska P, Langore E, Novak M, Hemelikova K, Hermanova Z, Hrochova M, Pelikanova A, Odvarkova J, Pejchal J, Kassa J, Zdarova Karasova J, Korabecny J, Soukup O, Horak M. Potent and reversible open-channel blocker of NMDA receptor derived from dizocilpine with enhanced membrane-to-channel inhibition. Biomed Pharmacother 2024; 178:117201. [PMID: 39053419 DOI: 10.1016/j.biopha.2024.117201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) play a significant role in developing several central nervous system (CNS) disorders. Currently, memantine, used for treating Alzheimer's disease, and ketamine, known for its anesthetic and antidepressant properties, are two clinically used NMDAR open-channel blockers. However, despite extensive research into NMDAR modulators, many have shown either harmful side effects or inadequate effectiveness. For instance, dizocilpine (MK-801) is recognized for its powerful psychomimetic effects due to its high-affinity and nearly irreversible inhibition of the GluN1/GluN2 NMDAR subtypes. Unlike ketamine, memantine and MK-801 also act through a unique, low-affinity "membrane-to-channel inhibition" (MCI). We aimed to develop an open-channel blocker based on MK-801 with distinct inhibitory characteristics from memantine and MK-801. Our novel compound, K2060, demonstrated effective voltage-dependent inhibition in the micromolar range at key NMDAR subtypes, GluN1/GluN2A and GluN1/GluN2B, even in the presence of Mg2+. K2060 showed reversible inhibitory dynamics and a partially trapping open-channel blocking mechanism with a significantly stronger MCI than memantine. Using hippocampal slices, 30 µM K2060 inhibited excitatory postsynaptic currents in CA1 hippocampal neurons by ∼51 %, outperforming 30 µM memantine (∼21 % inhibition). K2060 exhibited No Observed Adverse Effect Level (NOAEL) of 15 mg/kg upon intraperitoneal administration in mice. Administering K2060 at a 10 mg/kg dosage resulted in brain concentrations of approximately 2 µM, with peak concentrations (Tmax) achieved within 15 minutes. Finally, applying K2060 with trimedoxime and atropine in mice exposed to tabun improved treatment outcomes. These results underscore K2060's potential as a therapeutic agent for CNS disorders linked to NMDAR dysfunction.
Collapse
Affiliation(s)
- Anna Misiachna
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Jan Konecny
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defense, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 50005, Czech Republic
| | - Marharyta Kolcheva
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Marek Ladislav
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Lukas Prchal
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Jakub Netolicky
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Stepan Kortus
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Petra Zahumenska
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Emily Langore
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Martin Novak
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Katarina Hemelikova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Zuzana Hermanova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Michaela Hrochova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Anezka Pelikanova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Jitka Odvarkova
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defense, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 50005, Czech Republic
| | - Jaroslav Pejchal
- University of Defense, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 50005, Czech Republic
| | - Jiri Kassa
- University of Defense, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 50005, Czech Republic
| | - Jana Zdarova Karasova
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defense, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 50005, Czech Republic
| | - Jan Korabecny
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defense, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 50005, Czech Republic
| | - Ondrej Soukup
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defense, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 50005, Czech Republic.
| | - Martin Horak
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic.
| |
Collapse
|
22
|
Nakashima M, Suga N, Yoshikawa S, Matsuda S. Caveolae with GLP-1 and NMDA Receptors as Crossfire Points for the Innovative Treatment of Cognitive Dysfunction Associated with Neurodegenerative Diseases. Molecules 2024; 29:3922. [PMID: 39203005 PMCID: PMC11357136 DOI: 10.3390/molecules29163922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Some neurodegenerative diseases may be characterized by continuing behavioral and cognitive dysfunction that encompasses memory loss and/or apathy. Alzheimer's disease is the most typical type of such neurodegenerative diseases that are characterized by deficits of cognition and alterations of behavior. Despite the huge efforts against Alzheimer's disease, there has yet been no successful treatment for this disease. Interestingly, several possible risk genes for cognitive dysfunction are frequently expressed within brain cells, which may also be linked to cholesterol metabolism, lipid transport, exosomes, and/or caveolae formation, suggesting that caveolae may be a therapeutic target for cognitive dysfunctions. Interestingly, the modulation of autophagy/mitophagy with the alteration of glucagon-like peptide-1 (GLP-1) and N-methyl-d-aspartate (NMDA) receptor signaling may offer a novel approach to preventing and alleviating cognitive dysfunction. A paradigm showing that both GLP-1 and NMDA receptors at caveolae sites may be promising and crucial targets for the treatment of cognitive dysfunctions has been presented here, which may also be able to modify the progression of Alzheimer's disease. This research direction may create the potential to move clinical care toward disease-modifying treatment strategies with maximal benefits for patients without detrimental adverse events for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan (N.S.)
| |
Collapse
|
23
|
Barragan EV, Anisimova M, Vijayakumar V, Coblentz A, Park DK, Salaka RJ, Nisan AFK, Petshow S, Dore K, Zito K, Gray JA. d-Serine Inhibits Non-ionotropic NMDA Receptor Signaling. J Neurosci 2024; 44:e0140242024. [PMID: 38942470 PMCID: PMC11308331 DOI: 10.1523/jneurosci.0140-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
NMDA-type glutamate receptors (NMDARs) are widely recognized as master regulators of synaptic plasticity, most notably for driving long-term changes in synapse size and strength that support learning. NMDARs are unique among neurotransmitter receptors in that they require binding of both neurotransmitter (glutamate) and co-agonist (e.g., d-serine) to open the receptor channel, which leads to the influx of calcium ions that drive synaptic plasticity. Over the past decade, evidence has accumulated that NMDARs also support synaptic plasticity via ion flux-independent (non-ionotropic) signaling upon the binding of glutamate in the absence of co-agonist, although conflicting results have led to significant controversy. Here, we hypothesized that a major source of contradictory results might be attributed to variable occupancy of the co-agonist binding site under different experimental conditions. To test this hypothesis, we manipulated co-agonist availability in acute hippocampal slices from mice of both sexes. We found that enzymatic scavenging of endogenous co-agonists enhanced the magnitude of long-term depression (LTD) induced by non-ionotropic NMDAR signaling in the presence of the NMDAR pore blocker MK801. Conversely, a saturating concentration of d-serine completely inhibited LTD and spine shrinkage induced by glutamate binding in the presence of MK801 or Mg2+ Using a Förster resonance energy transfer (FRET)-based assay in cultured neurons, we further found that d-serine completely blocked NMDA-induced conformational movements of the GluN1 cytoplasmic domains in the presence of MK801. Our results support a model in which d-serine availability serves to modulate NMDAR signaling and synaptic plasticity even when the NMDAR is blocked by magnesium.
Collapse
Affiliation(s)
- Eden V Barragan
- Center for Neuroscience, University of California, Davis, California 95618
| | - Margarita Anisimova
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Vishnu Vijayakumar
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego, San Diego, California 92093
| | - Azariah Coblentz
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Deborah K Park
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Raghava Jagadeesh Salaka
- Center for Neuroscience, University of California, Davis, California 95618
- Neurology, University of California, Davis, California 95618
| | - Atheer F K Nisan
- Center for Neuroscience, University of California, Davis, California 95618
| | - Samuel Petshow
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Kim Dore
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego, San Diego, California 92093
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - John A Gray
- Center for Neuroscience, University of California, Davis, California 95618
- Neurology, University of California, Davis, California 95618
- Psychiatry and Behavioral Sciences, University of California, Davis, California 95618
| |
Collapse
|
24
|
Chou TH, Epstein M, Fritzemeier RG, Akins NS, Paladugu S, Ullman EZ, Liotta DC, Traynelis SF, Furukawa H. Molecular mechanism of ligand gating and opening of NMDA receptor. Nature 2024; 632:209-217. [PMID: 39085540 PMCID: PMC11376105 DOI: 10.1038/s41586-024-07742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024]
Abstract
Glutamate transmission and activation of ionotropic glutamate receptors are the fundamental means by which neurons control their excitability and neuroplasticity1. The N-methyl-D-aspartate receptor (NMDAR) is unique among all ligand-gated channels, requiring two ligands-glutamate and glycine-for activation. These receptors function as heterotetrameric ion channels, with the channel opening dependent on the simultaneous binding of glycine and glutamate to the extracellular ligand-binding domains (LBDs) of the GluN1 and GluN2 subunits, respectively2,3. The exact molecular mechanism for channel gating by the two ligands has been unclear, particularly without structures representing the open channel and apo states. Here we show that the channel gate opening requires tension in the linker connecting the LBD and transmembrane domain (TMD) and rotation of the extracellular domain relative to the TMD. Using electron cryomicroscopy, we captured the structure of the GluN1-GluN2B (GluN1-2B) NMDAR in its open state bound to a positive allosteric modulator. This process rotates and bends the pore-forming helices in GluN1 and GluN2B, altering the symmetry of the TMD channel from pseudofourfold to twofold. Structures of GluN1-2B NMDAR in apo and single-liganded states showed that binding of either glycine or glutamate alone leads to distinct GluN1-2B dimer arrangements but insufficient tension in the LBD-TMD linker for channel opening. This mechanistic framework identifies a key determinant for channel gating and a potential pharmacological strategy for modulating NMDAR activity.
Collapse
Affiliation(s)
- Tsung-Han Chou
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Max Epstein
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | - Srinu Paladugu
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Elijah Z Ullman
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Hiro Furukawa
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
25
|
Chai Z, Zheng J, Shen J. Mechanism of ferroptosis regulating ischemic stroke and pharmacologically inhibiting ferroptosis in treatment of ischemic stroke. CNS Neurosci Ther 2024; 30:e14865. [PMID: 39042604 PMCID: PMC11265528 DOI: 10.1111/cns.14865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Ferroptosis is a newly discovered form of programmed cell death that is non-caspase-dependent and is characterized by the production of lethal levels of iron-dependent lipid reactive oxygen species (ROS). In recent years, ferroptosis has attracted great interest in the field of cerebral infarction because it differs morphologically, physiologically, and genetically from other forms of cell death such as necrosis, apoptosis, autophagy, and pyroptosis. In addition, ROS is considered to be an important prognostic factor for ischemic stroke, making it a promising target for stroke treatment. This paper summarizes the induction and defense mechanisms associated with ferroptosis, and explores potential treatment strategies for ischemic stroke in order to lay the groundwork for the development of new neuroprotective drugs.
Collapse
Affiliation(s)
- Zhaohui Chai
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| | - Jiesheng Zheng
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| | - Jian Shen
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| |
Collapse
|
26
|
Ugale V, Deshmukh R, Lokwani D, Narayana Reddy P, Khadse S, Chaudhari P, Kulkarni PP. GluN2B subunit selective N-methyl-D-aspartate receptor ligands: Democratizing recent progress to assist the development of novel neurotherapeutics. Mol Divers 2024; 28:1765-1792. [PMID: 37266849 PMCID: PMC10234801 DOI: 10.1007/s11030-023-10656-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play essential roles in vital aspects of brain functions. NMDARs mediate clinical features of neurological diseases and thus, represent a potential therapeutic target for their treatments. Many findings implicated the GluN2B subunit of NMDARs in various neurological disorders including epilepsy, ischemic brain damage, and neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, Huntington's chorea, and amyotrophic lateral sclerosis. Although a large amount of information is growing consistently on the importance of GluN2B subunit, however, limited recent data is available on how subunit-selective ligands impact NMDAR functions, which blunts the ability to render the diagnosis or craft novel treatments tailored to patients. To bridge this gap, we have focused on and summarized recently reported GluN2B selective ligands as emerging subunit-selective antagonists and modulators of NMDAR. Herein, we have also presented an overview of the structure-function relationship for potential GluN2B/NMDAR ligands with their binding sites and connection to CNS functionalities. Understanding of design rules and roles of GluN2B selective compounds will provide the link to medicinal chemists and neuroscientists to explore novel neurotherapeutic strategies against dysfunctions of glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Vinod Ugale
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India.
- Bioprospecting Group, Agharkar Research Institute, Pune, Maharashtra, India.
| | - Rutuja Deshmukh
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Deepak Lokwani
- Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - P Narayana Reddy
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, India
| | - Saurabh Khadse
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Prashant Chaudhari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Prasad P Kulkarni
- Bioprospecting Group, Agharkar Research Institute, Pune, Maharashtra, India.
| |
Collapse
|
27
|
Barragan EV, Anisimova M, Vijayakumar V, Coblentz AC, Park DK, Salaka RJ, Nisan AFK, Petshow S, Dore K, Zito K, Gray JA. D-Serine inhibits non-ionotropic NMDA receptor signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596266. [PMID: 38854020 PMCID: PMC11160797 DOI: 10.1101/2024.05.29.596266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
NMDA-type glutamate receptors (NMDARs) are widely recognized as master regulators of synaptic plasticity, most notably for driving long-term changes in synapse size and strength that support learning. NMDARs are unique among neurotransmitter receptors in that they require binding of both neurotransmitter (glutamate) and co-agonist (e.g. d -serine) to open the receptor channel, which leads to the influx of calcium ions that drive synaptic plasticity. Over the past decade, evidence has accumulated that NMDARs also support synaptic plasticity via ion flux-independent (non-ionotropic) signaling upon the binding of glutamate in the absence of co-agonist, although conflicting results have led to significant controversy. Here, we hypothesized that a major source of contradictory results can be attributed to variable occupancy of the co-agonist binding site under different experimental conditions. To test this hypothesis, we manipulated co-agonist availability in acute hippocampal slices from mice of both sexes. We found that enzymatic scavenging of endogenous co-agonists enhanced the magnitude of LTD induced by non-ionotropic NMDAR signaling in the presence of the NMDAR pore blocker, MK801. Conversely, a saturating concentration of d -serine completely inhibited both LTD and spine shrinkage induced by glutamate binding in the presence of MK801. Using a FRET-based assay in cultured neurons, we further found that d -serine completely blocked NMDA-induced conformational movements of the GluN1 cytoplasmic domains in the presence of MK801. Our results support a model in which d -serine inhibits ion flux-independent NMDAR signaling and plasticity, and thus d -serine availability could serve to modulate NMDAR signaling even when the NMDAR is blocked by magnesium. Significance Statement NMDARs are glutamate-gated cation channels that are key regulators of neurodevelopment and synaptic plasticity and unique in their requirement for binding of a co-agonist (e.g. d -serine) in order for the channel to open. NMDARs have been found to drive synaptic plasticity via non-ionotropic (ion flux-independent) signaling upon the binding of glutamate in the absence of co-agonist, though conflicting results have led to controversy. Here, we found that d -serine inhibits non-ionotropic NMDAR-mediated LTD and LTD-associated spine shrinkage. Thus, a major source of the contradictory findings might be attributed to experimental variability in d -serine availability. In addition, the developmental regulation of d -serine levels suggests a role for non-ionotropic NMDAR plasticity during critical periods of plasticity.
Collapse
|
28
|
Li S, Wen B, Zhao W, Wang L, Chen X. Design, Synthesis and Biological Evaluation of Novel Ketamine Derivatives as NMDAR Antagonists. Molecules 2024; 29:2459. [PMID: 38893335 PMCID: PMC11173549 DOI: 10.3390/molecules29112459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
Depression is a chronic, severe, and often life-threatening neurological disorder. It not only causes depression in patients and affects daily life but, in severe cases, may lead to suicidal behavior and have adverse effects on families and society. In recent years, it has been found that sub-anesthetic doses of ketamine have a rapid antidepressant effect on patients with treatment-resistant depression and can significantly reduce the suicidal tendencies of patients with major depressive disorder. Current studies suggest that ketamine may exert antidepressant effects by blocking NMDAR ion channels, but its anesthetic and psychotomimetic side effects limit its application. Here, we report efforts to design and synthesize a novel series of ketamine derivatives of NMDAR antagonists, among which compounds 23 and 24 have improved activity compared with ketamine, introducing a new direction for the development of rapid-acting antidepressant drugs.
Collapse
Affiliation(s)
- Shiyun Li
- Qingyuan Innovation Laboratory, Quanzhou 362801, China;
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bin Wen
- Qingyuan Innovation Laboratory, Quanzhou 362801, China;
| | - Wei Zhao
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China; (W.Z.); (L.W.)
| | - Lulu Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China; (W.Z.); (L.W.)
| | - Xingquan Chen
- Qingyuan Innovation Laboratory, Quanzhou 362801, China;
| |
Collapse
|
29
|
Jiang L, Liu N, Zhao F, Huang B, Kang D, Zhan P, Liu X. Discovery of GluN2A subtype-selective N-methyl-d-aspartate (NMDA) receptor ligands. Acta Pharm Sin B 2024; 14:1987-2005. [PMID: 38799621 PMCID: PMC11119548 DOI: 10.1016/j.apsb.2024.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 05/29/2024] Open
Abstract
The N-methyl-d-aspartate (NMDA) receptors, which belong to the ionotropic Glutamate receptors, constitute a family of ligand-gated ion channels. Within the various subtypes of NMDA receptors, the GluN1/2A subtype plays a significant role in central nervous system (CNS) disorders. The present article aims to provide a comprehensive review of ligands targeting GluN2A-containing NMDA receptors, encompassing negative allosteric modulators (NAMs), positive allosteric modulators (PAMs) and competitive antagonists. Moreover, the ligands' structure-activity relationships (SARs) and the binding models of representative ligands are also discussed, providing valuable insights for the clinical rational design of effective drugs targeting CNS diseases.
Collapse
Affiliation(s)
| | | | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
30
|
Lv D, Xiao B, Liu H, Wang L, Li Y, Zhang YH, Jin Q. Enhanced NMDA receptor pathway and glutamate transmission in the hippocampal dentate gyrus mediate the spatial learning and memory impairment of obese rats. Pflugers Arch 2024; 476:821-831. [PMID: 38416255 PMCID: PMC11033237 DOI: 10.1007/s00424-024-02924-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/29/2024]
Abstract
Obesity has been linked with the impairment of spatial memory and synaptic plasticity but the molecular mechanisms remained unidentified. Since glutamatergic transmission and NMDA receptor neural pathways in hippocampal dentate gyrus (DG) are essential in the learning and memory, we aimed to investigate glutamate (Glu) and NMDA receptor signaling of DG in spatial learning and memory in diet-induced obesity (DIO) rats. Spatial learning and memory were assessed via Morris water maze (MWM) test on control (Ctr) and DIO rats. Extracellular concentration of Glu in the DG was determined using in vivo microdialysis and HPLC. The protein expressions of NMDA receptor subunit 2B (NR2B), brain-derived neurotrophic factor (BDNF), the activation of calcium/calmodulin-dependent kinase II (CaMKII) and cAMP-response-element-binding protein (CREB) in the DG were observed by western blot. Spatial learning and memory were impaired in DIO rats compared to those of Ctr. NR2B expression was increased, while BDNF expression and CaMKII and CREB activation were decreased in DG of DIO rats. Extracellular concentration of Glu was increased in Ctr on the 3rd and 4th days of the MWM test, but significant further increment was observed in DIO rats. Microinjection of an NMDA antagonist (MK-801) into the DG reversed spatial learning and memory impairment. Such effects were accompanied by greater BDNF expression and CaMKII/CREB activation in the DG of DIO rats. In conclusion, the enhancement of Glu-NMDA receptor transmission in the hippocampal DG contributes to the impairment of spatial learning and memory in DIO rats, maybe via the modulation of CaMKII-CREB-BDNF signaling pathway.
Collapse
Affiliation(s)
- Dingding Lv
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, 133002, China
| | - Bin Xiao
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, 133002, China
| | - Huaying Liu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, 133002, China
| | - Linping Wang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, 133002, China
| | - Yingshun Li
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, 133002, China
| | - Yin Hua Zhang
- Department of Physiology and Biomedical Sciences, Ischemia/Hypoxic Disease Institute, Seoul National University, College of Medicine, Seoul, Korea.
| | - Qinghua Jin
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
31
|
Mai N, Wu L, Uruk G, Mocanu E, Swanson RA. Bioenergetic and excitotoxic determinants of cofilactin rod formation. J Neurochem 2024; 168:899-909. [PMID: 38299375 PMCID: PMC11102304 DOI: 10.1111/jnc.16065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
Cofilactin rods (CARs), which are 1:1 aggregates of cofilin-1 and actin, lead to neurite loss in ischemic stroke and other disorders. The biochemical pathways driving CAR formation are well-established, but how these pathways are engaged under ischemic conditions is less clear. Brain ischemia produces both ATP depletion and glutamate excitotoxicity, both of which have been shown to drive CAR formation in other settings. Here, we show that CARs are formed in cultured neurons exposed to ischemia-like conditions: oxygen-glucose deprivation (OGD), glutamate, or oxidative stress. Of these conditions, only OGD produced significant ATP depletion, showing that ATP depletion is not required for CAR formation. Moreover, the OGD-induced CAR formation was blocked by the glutamate receptor antagonists MK-801 and kynurenic acid; the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors GSK2795039 and apocynin; as well as an ROS scavenger. The findings identify a biochemical pathway leading from OGD to CAR formation in which the glutamate release induced by energy failure leads to activation of neuronal glutamate receptors, which in turn activates NADPH oxidase to generate oxidative stress and CARs.
Collapse
Affiliation(s)
- Nguyen Mai
- Department of Neurology, University of California, San Francisco, California, USA
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Long Wu
- Department of Neurology, University of California, San Francisco, California, USA
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gökhan Uruk
- Department of Neurology, University of California, San Francisco, California, USA
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Ebony Mocanu
- Department of Neurology, University of California, San Francisco, California, USA
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, California, USA
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
32
|
Michalski K, Furukawa H. Structure and function of GluN1-3A NMDA receptor excitatory glycine receptor channel. SCIENCE ADVANCES 2024; 10:eadl5952. [PMID: 38598639 PMCID: PMC11006217 DOI: 10.1126/sciadv.adl5952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
N-methyl-d-aspartate receptors (NMDARs) and other ionotropic glutamate receptors (iGluRs) mediate most of the excitatory signaling in the mammalian brains in response to the neurotransmitter glutamate. Uniquely, NMDARs composed of GluN1 and GluN3 are activated exclusively by glycine, the neurotransmitter conventionally mediating inhibitory signaling when it binds to pentameric glycine receptors. The GluN1-3 NMDARs are vital for regulating neuronal excitability, circuit function, and specific behaviors, yet our understanding of their functional mechanism at the molecular level has remained limited. Here, we present cryo-electron microscopy structures of GluN1-3A NMDARs bound to an antagonist, CNQX, and an agonist, glycine. The structures show a 1-3-1-3 subunit heterotetrameric arrangement and an unprecedented pattern of GluN3A subunit orientation shift between the glycine-bound and CNQX-bound structures. Site-directed disruption of the unique subunit interface in the glycine-bound structure mitigated desensitization. Our study provides a foundation for understanding the distinct structural dynamics of GluN3 that are linked to the unique function of GluN1-3 NMDARs.
Collapse
|
33
|
Belinskaia DA, Shestakova NN. Structure- and Cation-Dependent Mechanism of Interaction of Tricyclic Antidepressants with NMDA Receptor According to Molecular Modeling Data. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:507-522. [PMID: 38648769 DOI: 10.1134/s0006297924030106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 04/25/2024]
Abstract
Some tricyclic antidepressants (TCAs), including amitriptyline (ATL), clomipramine (CLO), and desipramine (DES), are known to be effective for management of neuropathic pain. It was previously determined that ATL, CLO, and DES are capable of voltage-dependent blocking of NMDA receptors of glutamate (NMDAR), which play a key role in pathogenesis of neuropathic pain. Despite the similar structure of ATL, CLO, and DES, efficacy of their interaction with NMDAR varies significantly. In the study presented here, we applied molecular modeling methods to investigate the mechanism of binding of ATL, CLO, and DES to NMDAR and to identify structural features of the drugs that determine their inhibitory activity against NMDAR. Molecular docking of the studied TCAs into the NMDAR channel was performed. Conformational behavior of the obtained complexes in the lipid bilayer was simulated by the method of molecular dynamics (MD). A single binding site (upper) for the tertiary amines ATL and CLO and two binding sites (upper and lower) for the secondary amine DES were identified inside the NMDAR channel. The upper and lower binding sites are located along the channel axis at different distances from the extracellular side of the plasma membrane. MD simulation revealed that the position of DES in the lower site is stabilized only in the presence of sodium cation inside the NMDAR channel. DES binds more strongly to NMDAR compared to ATL and CLO due to simultaneous interaction of two hydrogen atoms of its cationic group with the asparagine residues of the ion pore of the receptor. This feature may be responsible for the stronger side effects of DES. It has been hypothesized that ATL binds to NMDAR less efficiently compared to DES and CLO due to its lower conformational mobility. The identified features of the structure- and cation-dependent mechanism of interaction between TCAs and NMDAR will help in the further development of effective and safe analgesic therapy.
Collapse
Affiliation(s)
- Daria A Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia.
| | - Natalia N Shestakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| |
Collapse
|
34
|
Yamamoto K, Kosukegawa S, Kobayashi M. P2X receptor- and postsynaptic NMDA receptor-mediated long-lasting facilitation of inhibitory synapses in the rat insular cortex. Neuropharmacology 2024; 245:109817. [PMID: 38104767 DOI: 10.1016/j.neuropharm.2023.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Adenosine triphosphate (ATP) changes the efficacy of synaptic transmission. Despite recent progress in terms of the roles of purinergic receptors in cerebrocortical excitatory synaptic transmission, their contribution to inhibitory synaptic transmission is unknown. To elucidate the effects of α,β-methylene ATP (αβ-mATP), a selective agonist of P2X receptors (P2XRs), on inhibitory synaptic transmission in the insular cortex (IC), we performed whole-cell patch-clamp recording from IC pyramidal neurons (PNs) and fast-spiking neurons (FSNs) in either sex of VGAT-Venus transgenic rats. αβ-mATP increased the amplitude of miniature IPSCs (mIPSCs) under conditions in which NMDA receptors (NMDARs) are recruitable. αβ-mATP-induced facilitation of mIPSCs was sustained even after the washout of αβ-mATP, which was blocked by preincubation with fluorocitrate. The preapplication of NF023 (a P2X1 receptor antagonist) or AF-353 (a P2X3 receptor antagonist) blocked αβ-mATP-induced mIPSC facilitation. Intracellular application of the NMDAR antagonist MK801 blocked the facilitation. d-serine, which is an intrinsic agonist of NMDARs, mimicked αβ-mATP-induced mIPSC facilitation. The intracellular application of BAPTA a Ca2+ chelator, or the bath application of KN-62, a CaMKII inhibitor, blocked αβ-mATP-induced mIPSC facilitation, thus indicating that mIPSC facilitation by αβ-mATP required postsynaptic [Ca2+]i elevation through NMDAR activation. Paired whole-cell patch-clamp recordings from FSNs and PNs demonstrated that αβ-mATP increased the amplitude of unitary IPSCs without changing the paired-pulse ratio. These results suggest that αβ-mATP-induced IPSC facilitation is mediated by postsynaptic NMDAR activations through d-serine released from astrocytes. Subsequent [Ca2+]i increase and postsynaptic CaMKII activation may release retrograde messengers that upregulate GABA release from presynaptic inhibitory neurons, including FSNs. (250/250 words).
Collapse
Affiliation(s)
- Kiyofumi Yamamoto
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Satoshi Kosukegawa
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| |
Collapse
|
35
|
Karimi Tari P, Parsons CG, Collingridge GL, Rammes G. Memantine: Updating a rare success story in pro-cognitive therapeutics. Neuropharmacology 2024; 244:109737. [PMID: 37832633 DOI: 10.1016/j.neuropharm.2023.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
The great potential for NMDA receptor modulators as druggable targets in neurodegenerative disorders has been met with limited success. Considered one of the rare exceptions, memantine has consistently demonstrated restorative and prophylactic properties in many AD models. In clinical trials memantine slows the decline in cognitive performance associated with AD. Here, we provide an overview of the basic properties including pharmacological targets, toxicology and cellular effects of memantine. Evidence demonstrating reductions in molecular, physiological and behavioural indices of AD-like impairments associated with memantine treatment are also discussed. This represents both an extension and homage to Dr. Chris Parson's considerable contributions to our fundamental understanding of a success story in the AD treatment landscape.
Collapse
Affiliation(s)
- Parisa Karimi Tari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Chris G Parsons
- Galimedix Therapeutics, Inc., 2704 Calvend Lane, Kensington, 20895, MD, USA
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada; TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care Medicine of the Technical University of Munich, School of Medicine, 22, 81675, Munich, Germany.
| |
Collapse
|
36
|
Mellios N, Papageorgiou G, Gorgievski V, Maxson G, Hernandez M, Otero M, Varangis M, Dell'Orco M, Perrone-Bizzozero N, Tzavara E. Regulation of neuronal circHomer1 biogenesis by PKA/CREB/ERK-mediated pathways and effects of glutamate and dopamine receptor blockade. RESEARCH SQUARE 2024:rs.3.rs-3547375. [PMID: 38260249 PMCID: PMC10802743 DOI: 10.21203/rs.3.rs-3547375/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
There are currently only very few efficacious drug treatments for SCZ and BD, none of which can significantly ameliorate cognitive symptoms. Thus, further research is needed in elucidating molecular pathways linked to cognitive function and antipsychotic treatment. Circular RNAs (circRNAs) are stable brain-enriched non-coding RNAs, derived from the covalent back-splicing of precursor mRNA molecules. CircHomer1 is a neuronal-enriched, activity-dependent circRNA, derived from the precursor of the long HOMER1B mRNA isoform, which is significantly downregulated in the prefrontal cortex of subjects with psychosis and is able to regulate cognitive function. Even though its relevance to psychiatric disorders and its role in brain function and synaptic plasticity have been well established, little is known about the molecular mechanisms that underlie circHomer1 biogenesis in response to neuronal activity and psychiatric drug treatment. Here we suggest that the RNA-binding protein (RBP) FUS positively regulates neuronal circHomer1 expression. Furthermore, we show that the MEK/ERK and PKA/CREB pathways positively regulate neuronal circHomer1 expression, as well as promote the transcription of Fus and Eif4a3, another RBP previously shown to activate circHomer1 biogenesis. We then demonstrate via both in vitro and in vivo studies that NMDA and mGluR5 receptors are upstream modulators of circHomer1 expression. Lastly, we report that in vivo D2R antagonism increases circHomer1 expression, whereas 5HT2AR blockade reduces circHomer1 levels in multiple brain regions. Taken together, this study allows us to gain novel insights into the molecular circuits that underlie the biogenesis of a psychiatric disease-associated circRNA.
Collapse
|
37
|
Huang X, Chen W, Zhu S. Expression and Purification of Mammalian NMDA Receptor Protein for Functional Characterization. Methods Mol Biol 2024; 2799:13-27. [PMID: 38727900 DOI: 10.1007/978-1-0716-3830-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
N-methyl-D-aspartate (NMDA) receptors are critical for brain function and serve as drug targets for the treatment of neurological and psychiatric disorders. They typically form the tetrameric assembly of GluN1-GluN2 (2A to 2D) subtypes, with their diverse three-dimensional conformations linked with the physiologically relevant function in vivo. Purified proteins of tetrameric assembled NMDA receptors have broad applications in the structural elucidation, hybridoma technology for antibody production, and high-throughput drug screening. However, obtaining sufficient quantity and monodisperse NMDA receptor protein is still technically challenging. Here, we summarize a paradigm for the expression and purification of diverse NMDA receptor subtypes, with detailed descriptions on screening constructs by fluorescence size-exclusion chromatography (FSEC), generation of recombinant baculovirus, expression in the eukaryotic expression system, protein purification by affinity chromatography and size-exclusion chromatography (SEC), biochemical and functional validation assays.
Collapse
Affiliation(s)
- Xuejing Huang
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wanjin Chen
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
38
|
Koldsø H, Jensen MØ, Jogini V, Shaw DE. Functional dynamics and allosteric modulation of TRPA1. Structure 2023; 31:1556-1566.e3. [PMID: 37729917 DOI: 10.1016/j.str.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/29/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
The cation channel TRPA1 is a potentially important drug target, and characterization of TRPA1 functional dynamics might help guide structure-based drug design. Here, we present results from long-timescale molecular dynamics simulations of TRPA1 with an allosteric activator, allyl isothiocyanate (AITC), in which we observed spontaneous transitions from a closed, non-conducting channel conformation into an open, conducting conformation. Based on these transitions, we propose a gating mechanism in which movement of a regulatory TRP-like domain allosterically translates into pore opening in a manner reminiscent of pore opening in voltage-gated ion channels. In subsequent experiments, we found that mutations that disrupt packing of the S4-S5 linker-TRP-like domain and the S5 and S6 helices also affected channel activity. In simulations, we also observed A-967079, a known allosteric inhibitor, binding between helices S5 and S6, suggesting that A-967079 may suppress activity by stabilizing a non-conducting pore conformation-a finding consistent with our proposed gating mechanism.
Collapse
Affiliation(s)
| | | | | | - David E Shaw
- D. E. Shaw Research, New York, NY 10036, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
39
|
Islam MS, Lai CC, Wang LH, Lin HH. Inhibition of NMDA Receptor Activation in the Rostral Ventrolateral Medulla by Amyloid-β Peptide in Rats. Biomolecules 2023; 13:1736. [PMID: 38136607 PMCID: PMC10741979 DOI: 10.3390/biom13121736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors, are important in regulating sympathetic tone and cardiovascular function in the rostral ventrolateral medulla (RVLM). Amyloid-beta peptide (Aβ) is linked to the pathogenesis of Alzheimer's disease (AD). Cerebro- and cardiovascular diseases might be the risk factors for developing AD. The present study examines the acute effects of soluble Aβ on the function of NMDA receptors in rats RVLM. We used the magnitude of increases in the blood pressure (pressor responses) induced by microinjection of NMDA into the RVLM as an index of NMDA receptor function in the RVLM. Soluble Aβ was applied by intracerebroventricular (ICV) injection. Aβ1-40 at a lower dose (0.2 nmol) caused a slight reduction, and a higher dose (2 nmol) showed a significant decrease in NMDA-induced pressor responses 10 min after administration. ICV injection of Aβ1-42 (2 nmol) did not affect NMDA-induced pressor responses in the RVLM. Co-administration of Aβ1-40 with ifenprodil or memantine blocked the inhibitory effects of Aβ1-40. Immunohistochemistry analysis showed a significant increase in the immunoreactivity of phosphoserine 1480 of GluN2B subunits (pGluN2B-serine1480) in the neuron of the RVLM without significant changes in phosphoserine 896 of GluN1 subunits (pGluN1-serine896), GluN1 and GluN2B, 10 min following Aβ1-40 administration compared with saline. Interestingly, we found a much higher level of Aβ1-40 compared to that of Aβ1-42 in the cerebrospinal fluid (CSF) measured using enzyme-linked immunosorbent assay 10 min following ICV administration of the same dose (2 nmol) of the peptides. In conclusion, the results suggest that ICV Aβ1-40, but not Aβ1-42, produced an inhibitory effect on NMDA receptor function in the RVLM, which might result from changes in pGluN2B-serine1480 (regulated by casein kinase II). The different elimination of the peptides in the CSF might contribute to the differential effects of Aβ1-40 and Aβ1-42 on NMDA receptor function.
Collapse
Affiliation(s)
- Md Sharyful Islam
- Master and Ph.D. Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Chih-Chia Lai
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Lan-Hui Wang
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Hsun-Hsun Lin
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| |
Collapse
|
40
|
Janus A, Lustyk K, Pytka K. MK-801 and cognitive functions: Investigating the behavioral effects of a non-competitive NMDA receptor antagonist. Psychopharmacology (Berl) 2023; 240:2435-2457. [PMID: 37725119 PMCID: PMC10640442 DOI: 10.1007/s00213-023-06454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
RATIONALE MK-801 (dizocilpine) is a non-competitive NMDA receptor antagonist originally explored for anticonvulsant potential. Despite its original purpose, its amnestic properties led to the development of pivotal models of various cognitive impairments widely employed in research and greatly impacting scientific progress. MK-801 offers several advantages; however, it also presents drawbacks, including inducing dose-dependent hyperlocomotion or ambiguous effects on anxiety, which can impact the interpretation of behavioral research results. OBJECTIVES The present review attempts to summarize and discuss the effects of MK-801 on different types of memory and cognitive functions in animal studies. RESULTS A plethora of behavioral research suggests that MK-801 can detrimentally impact cognitive functions. The specific effect of this compound is influenced by variables including developmental stage, gender, species, strain, and, crucially, the administered dose. Notably, when considering the undesirable effects of MK-801, doses up to 0.1 mg/kg were found not to induce stereotypy or hyperlocomotion. CONCLUSION Dizocilpine continues to be of significant importance in preclinical research, facilitating the exploration of various procognitive therapeutic agents. However, given its potential undesirable effects, it is imperative to meticulously determine the appropriate dosages and conduct supplementary evaluations for any undesirable outcomes, which could complicate the interpretation of the findings.
Collapse
Affiliation(s)
- Anna Janus
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| |
Collapse
|
41
|
Wu E, Zhang J, Zhang J, Zhu S. Structural insights into gating mechanism and allosteric regulation of NMDA receptors. Curr Opin Neurobiol 2023; 83:102806. [PMID: 37950957 DOI: 10.1016/j.conb.2023.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/28/2023] [Accepted: 10/13/2023] [Indexed: 11/13/2023]
Abstract
N-methyl-d-aspartate receptors (NMDARs) belong to the ionotropic glutamate receptors (iGluRs) superfamily and act as coincidence detectors that are crucial to neuronal development and synaptic plasticity. They typically assemble as heterotetramers of two obligatory GluN1 subunits and two alternative GluN2 (from 2A to 2D) and/or GluN3 (3A and 3B) subunits. These alternative subunits mainly determine the diverse biophysical and pharmacological properties of different NMDAR subtypes. Over the past decade, the unprecedented advances in structure elucidation of these tetrameric NMDARs have provided atomic insights into channel gating, allosteric modulation and the action of therapeutic drugs. A wealth of structural and functional information would accelerate the artificial intelligence-based drug design to exploit more NMDAR subtype-specific molecules for the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Enjiang Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China. https://twitter.com/DuDaDa_Flower
| | - Jilin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
42
|
Bartsch CJ, Jacobs JT, Mojahed N, Qasem E, Smith M, Caldwell O, Aaflaq S, Nordman JC. Visualizing traumatic stress-induced structural plasticity in a medial amygdala pathway using mGRASP. Front Mol Neurosci 2023; 16:1313635. [PMID: 38098941 PMCID: PMC10720331 DOI: 10.3389/fnmol.2023.1313635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Traumatic stress has been shown to contribute to persistent behavioral changes, yet the underlying neural pathways are not fully explored. Structural plasticity, a form of long-lasting neural adaptability, offers a plausible mechanism. To scrutinize this, we used the mGRASP imaging technique to visualize synaptic modifications in a pathway formed between neurons of the posterior ventral segment of the medial amygdala and ventrolateral segment of the ventromedial hypothalamus (MeApv-VmHvl), areas we previously showed to be involved in stress-induced excessive aggression. We subjected mice (7-8 weeks of age) to acute stress through foot shocks, a reliable and reproducible form of traumatic stress, and compared synaptic changes to control animals. Our data revealed an increase in synapse formation within the MeApv-VmHvl pathway post-stress as evidenced by an increase in mGRASP puncta and area. Chemogenetic inhibition of CaMKIIα-expressing neurons in the MeApv during the stressor led to reduced synapse formation, suggesting that the structural changes were driven by excitatory activity. To elucidate the molecular mechanisms, we administered the NMDAR antagonist MK-801, which effectively blocked the stress-induced synaptic changes. These findings suggest a strong link between traumatic stress and enduring structural changes in an MeApv-VmHvl neural pathway. Furthermore, our data point to NMDAR-dependent mechanisms as key contributors to these synaptic changes. This structural plasticity could offer insights into persistent behavioral consequences of traumatic stress, such as symptoms of PTSD and social deficits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jacob C. Nordman
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, United States
| |
Collapse
|
43
|
Yuan D, Hu J, Ju X, Putz EM, Zheng S, Koda S, Sun G, Deng X, Xu Z, Nie W, Zhao Y, Li X, Dougall WC, Shao S, Chen Y, Tang R, Zheng K, Yan J. NMDAR antagonists suppress tumor progression by regulating tumor-associated macrophages. Proc Natl Acad Sci U S A 2023; 120:e2302126120. [PMID: 37967215 PMCID: PMC10666127 DOI: 10.1073/pnas.2302126120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023] Open
Abstract
Neurotransmitter receptors are increasingly recognized to play important roles in anti-tumor immunity. The expression of the ion channel N-methyl-D-aspartate receptor (NMDAR) on macrophages was reported, but the role of NMDAR on macrophages in the tumor microenvironment (TME) remains unknown. Here, we show that the activation of NMDAR triggered calcium influx and reactive oxygen species production, which fueled immunosuppressive activities in tumor-associated macrophages (TAMs) in the hepatocellular sarcoma and fibrosarcoma tumor settings. NMDAR antagonists, MK-801, memantine, and magnesium, effectively suppressed these processes in TAMs. Single-cell RNA sequencing analysis revealed that blocking NMDAR functionally and metabolically altered TAM phenotypes, such that they could better promote T cell- and Natural killer (NK) cell-mediated anti-tumor immunity. Treatment with NMDAR antagonists in combination with anti-PD-1 antibody led to the elimination of the majority of established preclinical liver tumors. Thus, our study uncovered an unknown role for NMDAR in regulating macrophages in the TME of hepatocellular sarcoma and provided a rationale for targeting NMDAR for tumor immunotherapy.
Collapse
Affiliation(s)
- Dongchen Yuan
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Jing Hu
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
- Department of Genetics, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Xiaoman Ju
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Eva Maria Putz
- St. Anna Children's Cancer Research Institute, Medical University of Vienna, Vienna1210, Austria
| | - Simin Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Stephane Koda
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Guowei Sun
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Xiaoran Deng
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu211166, China
| | - Wei Nie
- Department of Pulmonary Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu210023, China
- Department of Biochemistry and Molecular Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu210023, China
| | - Xianyang Li
- Department of Research and Development, OriCell Therapeutics Co. Ltd, Shanghai200131, China
| | - William C. Dougall
- Translational Oncology Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane4702, Australia
| | - Simin Shao
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Yan Chen
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Renxian Tang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Kuiyang Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Juming Yan
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| |
Collapse
|
44
|
Gattuso JJ, Wilson C, Hannan AJ, Renoir T. Acute administration of the NMDA receptor antagonists ketamine and MK-801 reveals dysregulation of glutamatergic signalling and sensorimotor gating in the Sapap3 knockout mouse model of compulsive-like behaviour. Neuropharmacology 2023; 239:109689. [PMID: 37597609 DOI: 10.1016/j.neuropharm.2023.109689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/30/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Obsessive-compulsive disorder (OCD) is characterised by excessive intrusive thoughts that may cause an individual to engage in compulsive behaviours. Frontline pharmacological treatments (i.e., selective serotonin reuptake inhibitors (SSRIs)) leave approximately 40% of patients refractory to treatment. To investigate the possibility of novel pharmacological therapies for OCD, as well as the potential mechanisms underlying its pathology, we used the Sapap3 knockout (KO) mouse model of OCD, which exhibits increased anxiety and compulsive grooming behaviours. Firstly, we investigated whether administration of the NMDA receptor (NMDAR) antagonist ketamine (30 mg/kg), would reduce anxiety and grooming behaviour in Sapap3 KO mice. Anxiety-like behaviour was measured via time spent in the light component of the light-dark box test. Grooming behaviour was recorded and scored in freely moving mice. In line with previous works conducted in older animals (i.e. typically between 6 and 9 months of age), we confirmed here that Sapap3 KO mice exhibit an anxious, compulsive grooming, hypolocomotive and reduced body weight phenotype even at a younger age (i.e., 2-3 months of age). However, we found that acute administration of ketamine did not cause a reduction in anxiety or grooming behaviour. We then investigated in vivo glutamatergic function via the administration of a different NMDAR antagonist, MK-801 (0.25 mg/kg), prior to locomotion and prepulse inhibition assays. We found evidence of altered functional NMDAR activity, as well as sexually dimorphic prepulse inhibition, a measure of sensorimotor gating, in Sapap3 KO mice. These results are suggestive of in vivo glutamatergic dysfunction and their functional consequences, enabling future research to further investigate novel treatments for OCD.
Collapse
Affiliation(s)
- James J Gattuso
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Carey Wilson
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
45
|
Rech TDST, Strelow DN, Krüger LD, Neto JSS, Blödorn GB, Alves D, Brüning CA, Bortolatto CF. Pharmacological evidence for glutamatergic pathway involvement in the antidepressant-like effects of 2-phenyl-3-(phenylselanyl)benzofuran in male Swiss mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3033-3044. [PMID: 37160481 DOI: 10.1007/s00210-023-02508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Depression is a multifactorial and heterogeneous disease with several neurobiological mechanisms underlying its pathophysiology, including dysfunctional glutamatergic neurotransmission, which makes the exploration of the glutamate pathway an interesting strategy for developing novel rapid-acting antidepressant treatments. In the present study, we aimed to evaluate the possible glutamatergic pathway relation in the antidepressant-like action of 2-phenyl-3-(phenylselanyl)benzofuran (SeBZF1) in Swiss mice employing the tail suspension test (TST). Male Swiss mice received drugs targeting glutamate receptors before acute SeBZF1 administration at effective (50 mg/kg) or subeffective (1 mg/kg) doses by intragastric route (ig). TST and the open-field test (OFT) were employed in all behavioral experiments. The pretreatment of mice with N-methyl-D-aspartate (NMDA) (0.1 pmol/site, intracerebroventricular, icv, a selective agonist of the NMDA receptors), D-serine (30 µg/site, icv, a co-agonist at the NMDA receptor), arcaine (1 mg/kg, intraperitoneal, ip, an antagonist of the polyamine-binding site at the NMDA receptor), and 6,7-dinitroquinoxaline-2,3-dione (DNQX) (2,5 µg/site, icv, an antagonist of the AMPA/kainate type of glutamate receptors) inhibited the antidepressant-like effects of SeBZF1 (50 mg/kg, ig) in the TST. Coadministration of a subeffective dose of SeBZF1 with low doses of MK-801 (0.001 mg/kg, ip, a non-competitive NMDA receptor antagonist) or ketamine (0.1 mg/kg, ip, a non-selective antagonist of the NMDA receptors) produced significant antidepressant-like effects (synergistic action). These findings suggest the involvement of the glutamatergic system, probably through modulation of ionotropic glutamate receptors, in the antidepressant-like action of SeBZF1 in mice and contribute to a better understanding of the mechanisms underlying its pharmacological effects.
Collapse
Affiliation(s)
- Taís da Silva Teixeira Rech
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil
| | - Dianer Nornberg Strelow
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil
| | - Letícia Devantier Krüger
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil
| | | | - Gustavo Bierhals Blödorn
- Programa de Pós-Graduação em Química (PPGQ), Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil
| | - Diego Alves
- Programa de Pós-Graduação em Química (PPGQ), Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil
| | - César Augusto Brüning
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil.
| | - Cristiani Folharini Bortolatto
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil.
| |
Collapse
|
46
|
Zhigulin AS, Barygin OI. Mechanisms of NMDA Receptor Inhibition by Sepimostat-Comparison with Nafamostat and Diarylamidine Compounds. Int J Mol Sci 2023; 24:15685. [PMID: 37958669 PMCID: PMC10649274 DOI: 10.3390/ijms242115685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are inhibited by many amidine and guanidine compounds. In this work, we studied the mechanisms of their inhibition by sepimostat-an amidine-containing serine protease inhibitor with neuroprotective properties. Sepimostat inhibited native NMDA receptors in rat hippocampal CA1 pyramidal neurons with IC50 of 3.5 ± 0.3 µM at -80 mV holding voltage. It demonstrated complex voltage dependence with voltage-independent and voltage-dependent components, suggesting the presence of shallow and deep binding sites. At -80 mV holding voltage, the voltage-dependent component dominates, and we observed pronounced tail currents and overshoots evidencing a "foot-in-the-door" open channel block. At depolarized voltages, the voltage-independent inhibition by sepimostat was significantly attenuated by the increase of agonist concentration. However, the voltage-independent inhibition was non-competitive. We further compared the mechanisms of the action of sepimostat with those of structurally-related amidine and guanidine compounds-nafamostat, gabexate, furamidine, pentamidine, diminazene, and DAPI-investigated previously. The action of all these compounds can be described by the two-component mechanism. All compounds demonstrated similar affinity to the shallow site, which is responsible for the voltage-independent inhibition, with binding constants in the range of 3-30 µM. In contrast, affinities to the deep site differed dramatically, with nafamostat, furamidine, and pentamidine being much more active.
Collapse
Affiliation(s)
| | - Oleg I. Barygin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44, Toreza Prospekt, 194223 Saint Petersburg, Russia;
| |
Collapse
|
47
|
Xiao X, Wang X, Zhu K, Li L, He Y, Zhang J, Li L, Hu H, Cui Y, Zhang J, Zheng Y. BACE1 in PV interneuron tunes hippocampal CA1 local circuits and resets priming of fear memory extinction. Mol Psychiatry 2023; 28:4151-4162. [PMID: 37452089 DOI: 10.1038/s41380-023-02176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
BACE1 is the rate-limiting enzyme for β-amyloid (Aβ) production and therefore is considered a prime drug target for treating Alzheimer's disease (AD). Nevertheless, the BACE1 inhibitors failed in clinical trials, even exhibiting cognitive worsening, implying that BACE1 may function in regulating cognition-relevant neural circuits. Here, we found that parvalbumin-positive inhibitory interneurons (PV INs) in hippocampal CA1 express BACE1 at a high level. We designed and developed a mouse strain with conditional knockout of BACE1 in PV neurons. The CA1 fast-spiking PV INs with BACE1 deletion exhibited an enhanced response of postsynaptic N-methyl-D-aspartate (NMDA) receptors to local stimulation on CA1 oriens, with average intrinsic electrical properties and fidelity in synaptic integration. Intriguingly, the BACE1 deletion reorganized the CA1 recurrent inhibitory motif assembled by the heterogeneous pyramidal neurons (PNs) and the adjacent fast-spiking PV INs from the superficial to the deep layer. Moreover, the conditional BACE1 deletion impaired the AMPARs-mediated excitatory transmission of deep CA1 PNs. Further rescue experiments confirmed that these phenotypes require the enzymatic activity of BACE1. Above all, the BACE1 deletion resets the priming of the fear memory extinction. Our findings suggest a neuron-specific working model of BACE1 in regulating learning and memory circuits. The study may provide a potential path of targeting BACE1 and NMDAR together to circumvent cognitive worsening due to a single application of BACE1 inhibitor in AD patients.
Collapse
Affiliation(s)
- Xuansheng Xiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Xiaotong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Ke Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Lijuan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Ying He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Jinglan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Linying Li
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Hanning Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Yanqiu Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jianliang Zhang
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yan Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
48
|
Popescu G, Abbott J, Wen H, Liu B, Gupta S, Iacobucci G, Zheng W. Allosteric Site Mediates Inhibition of Tonic NMDA Receptor Activity by Low Dose Ketamine. RESEARCH SQUARE 2023:rs.3.rs-3304783. [PMID: 37790558 PMCID: PMC10543308 DOI: 10.21203/rs.3.rs-3304783/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Ketamine, a general anesthetic, has rapid and sustained antidepressant effects when administered at lower doses. At anesthetic doses, ketamine causes a drastic reduction in excitatory transmission by lodging in the centrally located hydrophilic pore of the NMDA receptor, where it blocks ionic flow. In contrast, the molecular and cellular targets responsible for the antidepressant effects of ketamine remain controversial. Here, we report functional and structural evidence that, at nanomolar concentrations, ketamine interacts with membrane-accessible hydrophobic sites where it stabilizes desensitized receptors to cause an incomplete, voltage- and pH-dependent reduction in NMDA receptor activity. This allosteric mechanism spares brief receptor activations and reduces preferentially currents from tonically active receptors. The hydrophobic site is a promising target for safe and effective therapies against acute and chronic neurodegeneration.
Collapse
Affiliation(s)
- Gabriela Popescu
- Jacobs School of Medicine and Biomedical Sciences/University at Buffalo, SUNY
| | - Jamie Abbott
- Jacobs School of Medicine and Biomedical Sciences/University at Buffalo, SUN
| | | | | | - Sheila Gupta
- Jacobs School of Medicine and Biomedical Sciences/University at Buffalo, SUN
| | | | | |
Collapse
|
49
|
Zhang Z, Yu Z, Yuan Y, Yang J, Wang S, Ma H, Hao L, Ma J, Li Z, Zhang Z, Hölscher C. Cholecystokinin Signaling can Rescue Cognition and Synaptic Plasticity in the APP/PS1 Mouse Model of Alzheimer's Disease. Mol Neurobiol 2023; 60:5067-5089. [PMID: 37247071 DOI: 10.1007/s12035-023-03388-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Synaptic impairment and loss are an important pathological feature of Alzheimer's disease (AD). Memory is stored in neural networks through changes in synaptic activity, and synaptic dysfunction can cause cognitive dysfunction and memory loss. Cholecystokinin (CCK) is one of the major neuropeptides in the brain, and plays a role as a neurotransmitter and growth factor. The level of CCK in the cerebrospinal fluid is decreased in AD patients. In this study, a novel CCK analogue was synthesized on the basis of preserving the minimum bioactive fragment of endogenous CCK to investigate whether the novel CCK analogue could improve synaptic plasticity in the hippocampus of the APP/PS1 transgenic mouse model of AD and its possible molecular biological mechanism. Our study found that the CCK analogue could effectively improve spatial learning and memory, enhance synaptic plasticity in the hippocampus, normalize synapse numbers and morphology and the levels of key synaptic proteins, up-regulate the PI3K/Akt signaling pathway and normalize PKA, CREB, BDNF and TrkB receptor levels in APP/PS1 mice. The amyloid plaque load in the brain was reduced by CCK, too. The use of a CCKB receptor antagonist and targeted knockdown of the CCKB receptor (CCKBR) attenuated the neuroprotective effect of the CCK analogue. These results demonstrate that the neuroprotective effect of CCK analogue is achieved by activating the PI3K/Akt as well as the PKA/CREB-BDNF/TrkB signaling pathway that leads to protection of synapses and cognition.
Collapse
Affiliation(s)
- Zijuan Zhang
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Ziyang Yu
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Ye Yuan
- Academy of Chinese Medical Sciences, Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases With Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Jing Yang
- Academy of Chinese Medical Sciences, Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases With Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Shijie Wang
- Academy of Chinese Medical Sciences, Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases With Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - He Ma
- Academy of Chinese Medical Sciences, Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases With Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Li Hao
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Jinlian Ma
- Academy of Chinese Medical Sciences, Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases With Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Zhonghua Li
- Academy of Chinese Medical Sciences, Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases With Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases With Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China.
| | - Christian Hölscher
- Academy of Chinese Medical Sciences, Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases With Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China.
| |
Collapse
|
50
|
Zhang D, Ivica J, Krieger JM, Ho H, Yamashita K, Stockwell I, Baradaran R, Cais O, Greger IH. Structural mobility tunes signalling of the GluA1 AMPA glutamate receptor. Nature 2023; 621:877-882. [PMID: 37704721 PMCID: PMC10533411 DOI: 10.1038/s41586-023-06528-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023]
Abstract
AMPA glutamate receptors (AMPARs), the primary mediators of excitatory neurotransmission in the brain, are either GluA2 subunit-containing and thus Ca2+-impermeable, or GluA2-lacking and Ca2+-permeable1. Despite their prominent expression throughout interneurons and glia, their role in long-term potentiation and their involvement in a range of neuropathologies2, structural information for GluA2-lacking receptors is currently absent. Here we determine and characterize cryo-electron microscopy structures of the GluA1 homotetramer, fully occupied with TARPγ3 auxiliary subunits (GluA1/γ3). The gating core of both resting and open-state GluA1/γ3 closely resembles GluA2-containing receptors. However, the sequence-diverse N-terminal domains (NTDs) give rise to a highly mobile assembly, enabling domain swapping and subunit re-alignments in the ligand-binding domain tier that are pronounced in desensitized states. These transitions underlie the unique kinetic properties of GluA1. A GluA2 mutant (F231A) increasing NTD dynamics phenocopies this behaviour, and exhibits reduced synaptic responses, reflecting the anchoring function of the AMPAR NTD at the synapse. Together, this work underscores how the subunit-diverse NTDs determine subunit arrangement, gating properties and ultimately synaptic signalling efficiency among AMPAR subtypes.
Collapse
Affiliation(s)
- Danyang Zhang
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Josip Ivica
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - James M Krieger
- Biocomputing Unit, National Center of Biotechnology, CSIC, Madrid, Spain
| | - Hinze Ho
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Keitaro Yamashita
- Structural Studies Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Imogen Stockwell
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Rozbeh Baradaran
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Ondrej Cais
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Ingo H Greger
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|