1
|
Zhong Z, Ye Y, Xia L, Na N. Identification of RNA-binding protein genes associated with renal rejection and graft survival. Ren Fail 2024; 46:2360173. [PMID: 38874084 PMCID: PMC11182075 DOI: 10.1080/0886022x.2024.2360173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Rejection is one of the major factors affecting the long-term prognosis of kidney transplantation, and timely recognition and aggressive treatment of rejection is essential to prevent disease progression. RBPs are proteins that bind to RNA to form ribonucleoprotein complexes, thereby affecting RNA stability, processing, splicing, localization, transport, and translation, which play a key role in post-transcriptional gene regulation. However, their role in renal transplant rejection and long-term graft survival is unclear. The aim of this study was to comprehensively analyze the expression of RPBs in renal rejection and use it to construct a robust prediction strategy for long-term graft survival. The microarray expression profiles used in this study were obtained from GEO database. In this study, a total of eight hub RBPs were identified, all of which were upregulated in renal rejection samples. Based on these RBPs, the renal rejection samples could be categorized into two different clusters (cluster A and cluster B). Inflammatory activation in cluster B and functional enrichment analysis showed a strong association with rejection-related pathways. The diagnostic prediction model had a high diagnostic accuracy for T cell mediated rejection (TCMR) in renal grafts (area under the curve = 0.86). The prognostic prediction model effectively predicts the prognosis and survival of renal grafts (p < .001) and applies to both rejection and non-rejection situations. Finally, we validated the expression of hub genes, and patient prognosis in clinical samples, respectively, and the results were consistent with the above analysis.
Collapse
Affiliation(s)
- Zhaozhong Zhong
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongrong Ye
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liubing Xia
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ning Na
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Krenz B, Lee J, Kannan T, Eilers M. Immune evasion: An imperative and consequence of MYC deregulation. Mol Oncol 2024; 18:2338-2355. [PMID: 38957016 PMCID: PMC11459038 DOI: 10.1002/1878-0261.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
MYC has been implicated in the pathogenesis of a wide range of human tumors and has been described for many years as a transcription factor that regulates genes with pleiotropic functions to promote tumorigenic growth. However, despite extensive efforts to identify specific target genes of MYC that alone could be responsible for promoting tumorigenesis, the field is yet to reach a consensus whether this is the crucial function of MYC. Recent work shifts the view on MYC's function from being a gene-specific transcription factor to an essential stress resilience factor. In highly proliferating cells, MYC preserves cell integrity by promoting DNA repair at core promoters, protecting stalled replication forks, and/or preventing transcription-replication conflicts. Furthermore, an increasing body of evidence demonstrates that MYC not only promotes tumorigenesis by driving cell-autonomous growth, but also enables tumors to evade the host's immune system. In this review, we summarize our current understanding of how MYC impairs antitumor immunity and why this function is evolutionarily hard-wired to the biology of the MYC protein family. We show why the cell-autonomous and immune evasive functions of MYC are mutually dependent and discuss ways to target MYC proteins in cancer therapy.
Collapse
Affiliation(s)
- Bastian Krenz
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career CenterWürzburgGermany
| | - Jongkuen Lee
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Toshitha Kannan
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Martin Eilers
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| |
Collapse
|
3
|
Huang Y, Jiang W, Zhou R. DAMP sensing and sterile inflammation: intracellular, intercellular and inter-organ pathways. Nat Rev Immunol 2024; 24:703-719. [PMID: 38684933 DOI: 10.1038/s41577-024-01027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules that are released from host cells as a result of cell death or damage. The release of DAMPs in tissues is associated with loss of tissue homeostasis. Sensing of DAMPs by innate immune receptors triggers inflammation, which can be beneficial in initiating the processes that restore tissue homeostasis but can also drive inflammatory diseases. In recent years, the sensing of intracellular DAMPs has received extensive attention in the field of sterile inflammation. However, emerging studies have shown that DAMPs that originate from neighbouring cells, and even from distal tissues or organs, also mediate sterile inflammatory responses. This multi-level sensing of DAMPs is crucial for intercellular, trans-tissue and trans-organ communication. Here, we summarize how DAMP-sensing receptors detect DAMPs from intracellular, intercellular or distal tissue and organ sources to mediate sterile inflammation. We also discuss the possibility of targeting DAMPs or their corresponding receptors to treat inflammatory diseases.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Wei Jiang
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
4
|
Lee JH, Sergi C, Kast RE, Kanwar BA, Bourbeau J, Oh S, Sohn MG, Lee CJ, Coleman MD. Aggravating mechanisms from COVID-19. Virol J 2024; 21:228. [PMID: 39334442 PMCID: PMC11430051 DOI: 10.1186/s12985-024-02506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces immune-mediated diseases. The pathophysiology of COVID-19 uses the following three mechanisms: (1) inflammasome activation mechanism; (2) cGAS-STING signaling mechanism; and (3) SAMHD1 tetramerization mechanism, which leads to IFN-I production. Interactions between the host and virus govern induction, resulting in multiorgan impacts. The NLRP3 with cGAS-STING constitutes the primary immune response. The expression of SARS-CoV-2 ORF3a, NSP6, NSP7, and NSP8 blocks innate immune activation and facilitates virus replication by targeting the RIG-I/MDA5, TRIF, and cGAS-STING signaling. SAMHD1 has a target motif for CDK1 to protect virion assembly, threonine 592 to modulate a catalytically active tetramer, and antiviral IFN responses to block retroviral infection. Plastic and allosteric nucleic acid binding of SAMHD1 modulates the antiretroviral activity of SAMHD1. Therefore, inflammasome activation, cGAS-STING signaling, and SAMHD1 tetramerization explain acute kidney injury, hepatic, cardiac, neurological, and gastrointestinal injury of COVID-19. It might be necessary to effectively block the pathological courses of diverse diseases.
Collapse
Affiliation(s)
- Jong Hoon Lee
- Science and Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Geriatrics, Gyeonggi Medical Center Pocheon Hospital, 1648 Pocheon-ro Sin-eup-dong, Pocheon-si, Gyeonggi-do, 11142, Republic of Korea.
| | - Consolato Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Richard E Kast
- IIAIGC Study Center, 11 Arlington Ct, Burlington, 05408 VT, USA
| | - Badar A Kanwar
- Haider Associates, 1999 Forest Ridge Dr, Bedford, TX, 76021, USA
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montréal, QC, Canada
| | - Sangsuk Oh
- Department of Food Engineering, Food Safety Laboratory, Memory Unit, Ewha Womans University, Seoul, 03670, Korea
| | - Mun-Gi Sohn
- Department of Food Science, KyungHee University College of Life Science, Seoul, 17104, Republic of Korea
| | - Chul Joong Lee
- Department of Anesthesiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Michael D Coleman
- College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
5
|
Tomaszowski KH, Chen Y, Roy S, Harris M, Zhang J, Tsai CL, Schlacher K. Diet induced mitochondrial DNA replication instability in Rad51c mutant mice drives sex-bias in anemia of inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.613572. [PMID: 39345482 PMCID: PMC11430050 DOI: 10.1101/2024.09.21.613572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Anemia of inflammation (AI) is a common comorbidity associated with obesity, diabetes, cardiac disease, aging, and during anti-cancer therapies. Mounting evidence illustrates that males are disproportionally affected by AI, but not why. Here we demonstrate a molecular cause for a sex-bias in inflammation. The data shows that mitochondrial DNA (mtDNA) instability induced by dietary stress causes anemia associated with inflamed macrophages and improper iron recycling in mice. These phenotypes are enhanced in mice with mutations in Fanco/Rad51c , which predisposes to the progeroid disease Fanconi Anemia. The data reveals a striking sex-bias whereby females are protected. We find that estrogen acts as a mitochondrial antioxidant that reduces diet-induced oxidative stress, mtDNA replication instability and the distinctively mtDNA-dependent unphosphorylated STAT1 response. Consequently, treatment of male Rad51c mutant mice with estrogen or mitochondrial antioxidants suppresses the inflammation-induced anemia. Collectively, this study uncovers estrogen-responsive mtDNA replication instability as a cause for sex-specific inflammatory responses and molecular driver for AI.
Collapse
|
6
|
Mou L, Sun D, Qu J, Tan X, Wang S, Zeng Q, Liu C. GRP78/IRE1 and cGAS/STING pathway crosstalk through CHOP facilitates iodoacetic acid-mediated testosterone decline. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135101. [PMID: 39002476 DOI: 10.1016/j.jhazmat.2024.135101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Iodoacetic acid (IAA) is an emerging unregulated iodinated disinfection byproduct with high toxicity and widespread exposure. IAA has potential reproductive toxicity and could damage male reproduction. However, the underlying mechanisms and toxicological targets of IAA on male reproductive impairment are still unclear, and thus Sprague-Dawley rats and Leydig cells were used in this work to decode these pending concerns. Results showed that after IAA exposure, the histomorphology and ultrastructure of rat testes were abnormally changed, numbers of Leydig cells were reduced, the hypothalamic-pituitary-testis (HPT) axis was disordered, and testosterone biosynthesis was inhibited. Proteomics analyses displayed that oxidative stress, endoplasmic reticulum stress, and steroid hormone biosynthesis were involved in IAA-caused reproductive injury. Antioxidant enzymes were depleted, while levels of ROS, MDA, 8-OHdG, and γ-H2A.X were increased by IAA. IAA triggered oxidative stress and DNA damage, and then activated the GRP78/IRE1/XBP1s and cGAS/STING/NF-κB pathways in Leydig cells. The two signaling pathways constructed an interactive network by synergistically regulating the downstream transcription factor CHOP, which in turn directly bound to and negatively modulated steroidogenic StAR, finally refraining testosterone biosynthesis in Leydig cells. Collectively, IAA as a reproductive toxicant has anti-androgenic effects, and the GRP78/IRE1 and cGAS/STING pathway crosstalk through CHOP facilitates IAA-mediated testosterone decline.
Collapse
Affiliation(s)
- Li Mou
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Daguang Sun
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Jiayuan Qu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Xiaoyin Tan
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Suli Wang
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Changjiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China.
| |
Collapse
|
7
|
Wang X, Yang S, Zheng C, Huang C, Yao H, Guo Z, Wu Y, Wang Z, Wu Z, Ge R, Cheng W, Yan Y, Jiang S, Sun J, Li X, Xie Q, Wang H. Multi-Omics Profiles of Small Intestine Organoids in Reaction to Breast Milk and Different Infant Formula Preparations. Nutrients 2024; 16:2951. [PMID: 39275267 PMCID: PMC11397455 DOI: 10.3390/nu16172951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Ensuring optimal infant nutrition is crucial for the health and development of children. Many infants aged 0-6 months are fed with infant formula rather than breast milk. Research on cancer cell lines and animal models is limited to examining the nutrition effects of formula and breast milk, as it does not comprehensively consider absorption, metabolism, and the health and social determinants of the infant and its physiology. Our study utilized small intestine organoids induced from human embryo stem cell (ESC) to compare the nutritional effects of breast milk from five donors during their postpartum lactation period of 1-6 months and three types of Stage 1 infant formulae from regular retail stores. Using transcriptomics and untargeted metabolomics approaches, we focused on the differences such as cell growth and development, cell junctions, and extracellular matrix. We also analyzed the roles of pathways including AMPK, Hippo, and Wnt, and identified key genes such as ALPI, SMAD3, TJP1, and WWTR1 for small intestine development. Through observational and in-vitro analysis, our study demonstrates ESC-derived organoids might be a promising model for exploring nutritional effects and underlying mechanisms.
Collapse
Affiliation(s)
- Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shangzhi Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chengdong Zheng
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Chenxuan Huang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Haiyang Yao
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zimo Guo
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yilun Wu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zening Wang
- Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Zhenyang Wu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Ruihong Ge
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuanyuan Yan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shilong Jiang
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Jianguo Sun
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Xiaoguang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qinggang Xie
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
8
|
Stankovic S, Shekari S, Huang QQ, Gardner EJ, Ivarsdottir EV, Owens NDL, Mavaddat N, Azad A, Hawkes G, Kentistou KA, Beaumont RN, Day FR, Zhao Y, Jonsson H, Rafnar T, Tragante V, Sveinbjornsson G, Oddsson A, Styrkarsdottir U, Gudmundsson J, Stacey SN, Gudbjartsson DF, Kennedy K, Wood AR, Weedon MN, Ong KK, Wright CF, Hoffmann ER, Sulem P, Hurles ME, Ruth KS, Martin HC, Stefansson K, Perry JRB, Murray A. Genetic links between ovarian ageing, cancer risk and de novo mutation rates. Nature 2024; 633:608-614. [PMID: 39261734 PMCID: PMC11410666 DOI: 10.1038/s41586-024-07931-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2024] [Indexed: 09/13/2024]
Abstract
Human genetic studies of common variants have provided substantial insight into the biological mechanisms that govern ovarian ageing1. Here we report analyses of rare protein-coding variants in 106,973 women from the UK Biobank study, implicating genes with effects around five times larger than previously found for common variants (ETAA1, ZNF518A, PNPLA8, PALB2 and SAMHD1). The SAMHD1 association reinforces the link between ovarian ageing and cancer susceptibility1, with damaging germline variants being associated with extended reproductive lifespan and increased all-cause cancer risk in both men and women. Protein-truncating variants in ZNF518A are associated with shorter reproductive lifespan-that is, earlier age at menopause (by 5.61 years) and later age at menarche (by 0.56 years). Finally, using 8,089 sequenced trios from the 100,000 Genomes Project (100kGP), we observe that common genetic variants associated with earlier ovarian ageing associate with an increased rate of maternally derived de novo mutations. Although we were unable to replicate the finding in independent samples from the deCODE study, it is consistent with the expected role of DNA damage response genes in maintaining the genetic integrity of germ cells. This study provides evidence of genetic links between age of menopause and cancer risk.
Collapse
Affiliation(s)
- Stasa Stankovic
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Saleh Shekari
- University of Exeter Medical School, University of Exeter, Exeter, UK
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Qin Qin Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | - Nick D L Owens
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Nasim Mavaddat
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Ajuna Azad
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gareth Hawkes
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Robin N Beaumont
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Felix R Day
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | - Kitale Kennedy
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Andrew R Wood
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Michael N Weedon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ken K Ong
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Caroline F Wright
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Matthew E Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Katherine S Ruth
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - John R B Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Anna Murray
- University of Exeter Medical School, University of Exeter, Exeter, UK.
| |
Collapse
|
9
|
Oike T, Okuda K, Haruna S, Shibata A, Hayashi R, Isono M, Tateno K, Kubo N, Uchiyama A, Motegi SI, Ohno T, Uchihara Y, Kato Y, Shibata A. Exacerbated Inflammatory Gene Expression After Impaired G2/M-Checkpoint Arrest in Fibroblasts Derived From a Patient Exhibiting Severe Adverse Effects. Adv Radiat Oncol 2024; 9:101530. [PMID: 38993194 PMCID: PMC11238256 DOI: 10.1016/j.adro.2024.101530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/25/2024] [Indexed: 07/13/2024] Open
Abstract
Purpose Recent radiation therapy (RT), such as intensity modulated radiation therapy and particle RT, has improved the concentration of the radiation field targeting tumors. However, severe adverse effects still occur, possibly due to genetic factors in patients. We aimed to investigate the mechanism of exacerbated inflammation during RT. Methods and Materials Dermal fibroblasts derived from a patient with severe inflammatory adverse effects during RT were compared with 2 normal human dermal fibroblasts. Micronuclei formation, G2/M-checkpoint arrest, DNA damage signaling and repair, and inflammatory gene expression were comprehensively examined. Results We found greater micronuclei formation in radiation-sensitive fibroblasts (RS-Fs) after ionizing radiation (IR). RS-Fs exhibited premature G2/M-checkpoint release after IR, which triggers micronuclei formation because RS-Fs undergo mitosis with unrepaired DNA double-strand breaks (DSBs). Additionally, we found that DSB end-resection and activation of the ATR-Chk1 pathway were impaired in RS-Fs after IR. Consistent with the increase in the formation of micronuclei, which can deliver cytosolic nucleic acids resulting in an innate immune response, the expression of genes associated with inflammatory responses was highly upregulated in RS-Fs after IR. Conclusions Although this is a single case of RT-dependent adverse effect, our findings suggest that impaired G2/M-checkpoint arrest due to the lack of DSB end-resection and activation of the ATR-Chk1 pathway causes exacerbated inflammation during RT; therefore, genes involved in G2/M-checkpoint arrest may be a predictive marker for unexpected inflammatory responses in RT.
Collapse
Affiliation(s)
- Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, Japan
- Gunma University Heavy Ion Medical Center, Showa-machi, Maebashi, Gunma, Japan
| | - Ken Okuda
- Division of Molecular Oncological Pharmacy, Shibakoen, Minato-ku, Tokyo, Japan
| | - Shunji Haruna
- Division of Molecular Oncological Pharmacy, Shibakoen, Minato-ku, Tokyo, Japan
| | - Akiko Shibata
- Gunma University Heavy Ion Medical Center, Showa-machi, Maebashi, Gunma, Japan
| | - Ryota Hayashi
- Division of Molecular Oncological Pharmacy, Shibakoen, Minato-ku, Tokyo, Japan
| | - Mayu Isono
- Division of Molecular Oncological Pharmacy, Shibakoen, Minato-ku, Tokyo, Japan
| | - Kohei Tateno
- Division of Molecular Oncological Pharmacy, Shibakoen, Minato-ku, Tokyo, Japan
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Showa-machi, Maebashi, Japan
| | - Nobuteru Kubo
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, Japan
- Gunma University Heavy Ion Medical Center, Showa-machi, Maebashi, Gunma, Japan
| | - Akihiko Uchiyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, Japan
- Gunma University Heavy Ion Medical Center, Showa-machi, Maebashi, Gunma, Japan
| | - Yuki Uchihara
- Division of Molecular Oncological Pharmacy, Shibakoen, Minato-ku, Tokyo, Japan
| | - Yu Kato
- Division of Molecular Oncological Pharmacy, Shibakoen, Minato-ku, Tokyo, Japan
| | - Atsushi Shibata
- Division of Molecular Oncological Pharmacy, Shibakoen, Minato-ku, Tokyo, Japan
| |
Collapse
|
10
|
Yagüe-Capilla M, Rudd SG. Understanding the interplay between dNTP metabolism and genome stability in cancer. Dis Model Mech 2024; 17:dmm050775. [PMID: 39206868 PMCID: PMC11381932 DOI: 10.1242/dmm.050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The size and composition of the intracellular DNA precursor pool is integral to the maintenance of genome stability, and this relationship is fundamental to our understanding of cancer. Key aspects of carcinogenesis, including elevated mutation rates and induction of certain types of DNA damage in cancer cells, can be linked to disturbances in deoxynucleoside triphosphate (dNTP) pools. Furthermore, our approaches to treat cancer heavily exploit the metabolic interplay between the DNA and the dNTP pool, with a long-standing example being the use of antimetabolite-based cancer therapies, and this strategy continues to show promise with the development of new targeted therapies. In this Review, we compile the current knowledge on both the causes and consequences of dNTP pool perturbations in cancer cells, together with their impact on genome stability. We outline several outstanding questions remaining in the field, such as the role of dNTP catabolism in genome stability and the consequences of dNTP pool expansion. Importantly, we detail how our mechanistic understanding of these processes can be utilised with the aim of providing better informed treatment options to patients with cancer.
Collapse
Affiliation(s)
- Miriam Yagüe-Capilla
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sean G Rudd
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| |
Collapse
|
11
|
Guo H, Yang W, Li H, Yang J, Huang Y, Tang Y, Wang S, Ni F, Yang W, Yu XF, Wei W. The SAMHD1-MX2 axis restricts HIV-1 infection at postviral DNA synthesis. mBio 2024; 15:e0136324. [PMID: 38888311 PMCID: PMC11253599 DOI: 10.1128/mbio.01363-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
HIV-1 replication is tightly regulated in host cells, and various restriction factors have important roles in inhibiting viral replication. SAMHD1, a well-known restriction factor, suppresses HIV-1 replication by hydrolyzing intracellular dNTPs, thereby limiting the synthesis of viral cDNA in quiescent cells. In this study, we revealed an additional and distinct mechanism of SAMHD1 inhibition during the postviral cDNA synthesis stage. Using immunoprecipitation and mass spectrometry analysis, we demonstrated the interaction between SAMHD1 and MX2/MxB, an interferon-induced antiviral factor that inhibits HIV-1 cDNA nuclear import. The disruption of endogenous MX2 expression significantly weakened the ability of SAMHD1 to inhibit HIV-1. The crucial region within SAMHD1 that binds to MX2 has been identified. Notably, we found that SAMHD1 can act as a sensor that recognizes and binds to the incoming HIV-1 core, subsequently delivering it to the molecular trap formed by MX2, thereby blocking the nuclear entry of the HIV-1 core structure. SAMHD1 mutants unable to recognize the HIV-1 core showed a substantial decrease in antiviral activity. Certain mutations in HIV-1 capsids confer resistance to MX2 inhibition while maintaining susceptibility to suppression by the SAMHD1-MX2 axis. Overall, our study identifies an intriguing antiviral pattern wherein two distinct restriction factors, SAMHD1 and MX2, collaborate to establish an alternative mechanism deviating from their actions. These findings provide valuable insight into the complex immune defense networks against exogenous viral infections and have implications for the development of targeted anti-HIV therapeutics. IMPORTANCE In contrast to most restriction factors that directly bind to viral components to exert their antiviral effects, SAMHD1, the only known deoxynucleotide triphosphate (dNTP) hydrolase in eukaryotes, indirectly inhibits viral replication in quiescent cells by reducing the pool of dNTP substrates available for viral cDNA synthesis. Our study provides a novel perspective on the antiviral functions of SAMHD1. In addition to its role in dNTP hydrolysis, SAMHD1 cooperates with MX2 to inhibit HIV-1 nuclear import. In this process, SAMHD1 acts as a sensor for incoming HIV-1 cores, detecting and binding to them, before subsequently delivering the complex to the molecular trap formed by MX2, thereby immobilizing the virus. This study not only reveals a new antiviral pathway for SAMHD1 but also identifies a unique collaboration and interaction between two distinct restriction factors, establishing a novel line of defense against HIV-1 infection, which challenges the traditional view of restriction factors acting independently. Overall, our findings further indicate the intricate complexity of the host immune defense network and provide potential targets for promoting host antiviral immune defense.
Collapse
Affiliation(s)
- Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Wanying Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Huili Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Jiaxin Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Yuehan Huang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Yubin Tang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Shijin Wang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Fushun Ni
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | | | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Técher H, Gopaul D, Heuzé J, Bouzalmad N, Leray B, Vernet A, Mettling C, Moreaux J, Pasero P, Lin YL. MRE11 and TREX1 control senescence by coordinating replication stress and interferon signaling. Nat Commun 2024; 15:5423. [PMID: 38926338 PMCID: PMC11208572 DOI: 10.1038/s41467-024-49740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Oncogene-induced senescence (OIS) arrests cell proliferation in response to replication stress (RS) induced by oncogenes. OIS depends on the DNA damage response (DDR), but also on the cGAS-STING pathway, which detects cytosolic DNA and induces type I interferons (IFNs). Whether and how RS and IFN responses cooperate to promote OIS remains unknown. Here, we show that the induction of OIS by the H-RASV12 oncogene in immortalized human fibroblasts depends on the MRE11 nuclease. Indeed, treatment with the MRE11 inhibitor Mirin prevented RS, micronuclei formation and IFN response induced by RASV12. Overexpression of the cytosolic nuclease TREX1 also prevented OIS. Conversely, overexpression of a dominant negative mutant of TREX1 or treatment with IFN-β was sufficient to induce RS and DNA damage, independent of RASV12 induction. These data suggest that the IFN response acts as a positive feedback loop to amplify DDR in OIS through a process regulated by MRE11 and TREX1.
Collapse
Affiliation(s)
- Hervé Técher
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
- Institute for Research on Cancer and Aging of Nice (IRCAN), Université Côte d'Azur, CNRS UMR7284 - INSERM U1081, Nice, France
| | - Diyavarshini Gopaul
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 N, Copenhagen, Denmark
| | - Jonathan Heuzé
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Nail Bouzalmad
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Baptiste Leray
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Audrey Vernet
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Clément Mettling
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | - Jérôme Moreaux
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France.
| | - Yea-Lih Lin
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France.
| |
Collapse
|
13
|
Maxwell MB, Hom-Tedla MS, Yi J, Li S, Rivera SA, Yu J, Burns MJ, McRae HM, Stevenson BT, Coakley KE, Ho J, Gastelum KB, Bell JC, Jones AC, Eskander RN, Dykhuizen EC, Shadel GS, Kaech SM, Hargreaves DC. ARID1A suppresses R-loop-mediated STING-type I interferon pathway activation of anti-tumor immunity. Cell 2024; 187:3390-3408.e19. [PMID: 38754421 PMCID: PMC11193641 DOI: 10.1016/j.cell.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/26/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.
Collapse
Affiliation(s)
- Matthew B Maxwell
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92092, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Marianne S Hom-Tedla
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Gynecologic Oncology, University of California, San Diego, San Diego, CA, USA
| | - Jawoon Yi
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Shitian Li
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92092, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Samuel A Rivera
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92092, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jingting Yu
- Integrative Genomics and Bioinformatics Core, Salk Institute of Biological Studies, La Jolla, CA 92037, USA
| | - Mannix J Burns
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Helen M McRae
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Braden T Stevenson
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Katherine E Coakley
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Gynecologic Oncology, University of California, San Diego, San Diego, CA, USA
| | - Josephine Ho
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Joshua C Bell
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alexander C Jones
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ramez N Eskander
- Center for Personalized Cancer Therapy and Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Gerald S Shadel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Diana C Hargreaves
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Zhang P, Hu X, Li Z, Liu Q, Liu L, Jin Y, Liu S, Zhao X, Wang J, Hao D, Chen H, Liu D. Schlafen 11 triggers innate immune responses through its ribonuclease activity upon detection of single-stranded DNA. Sci Immunol 2024; 9:eadj5465. [PMID: 38875319 DOI: 10.1126/sciimmunol.adj5465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 05/16/2024] [Indexed: 06/16/2024]
Abstract
Nucleic acids are major structures detected by the innate immune system. Although intracellular single-stranded DNA (ssDNA) accumulates during pathogen infection or disease, it remains unclear whether and how intracellular ssDNA stimulates the innate immune system. Here, we report that intracellular ssDNA triggers cytokine expression and cell death in a CGT motif-dependent manner. We identified Schlafen 11 (SLFN11) as an ssDNA-activated RNase, which is essential for the innate immune responses induced by intracellular ssDNA and adeno-associated virus infection. We found that SLFN11 directly binds ssDNA containing CGT motifs through its carboxyl-terminal domain, translocates to the cytoplasm upon ssDNA recognition, and triggers innate immune responses through its amino-terminal ribonuclease activity that cleaves transfer RNA (tRNA). Mice deficient in Slfn9, a mouse homolog of SLFN11, exhibited resistance to CGT ssDNA-induced inflammation, acute hepatitis, and septic shock. This study identifies CGT ssDNA and SLFN11/9 as a class of immunostimulatory nucleic acids and pattern recognition receptors, respectively, and conceptually couples DNA immune sensing to controlled RNase activation and tRNA cleavage.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xiaoqing Hu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zekun Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Qian Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Lele Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yingying Jin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Sizhe Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xiang Zhao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jianqiao Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Delong Hao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Houzao Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Depei Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Haihe Laboratory of Cell Ecosystem, Tianjin 300301, China
| |
Collapse
|
15
|
Thapa G, Bhattacharya A, Bhattacharya S. Molecular dynamics investigation of DNA fragments bound to the anti-HIV protein SAMHD1 reveals alterations in allosteric communications. J Mol Graph Model 2024; 129:108748. [PMID: 38452417 DOI: 10.1016/j.jmgm.2024.108748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
The sterile alpha motif and histidine-aspartate domain-containing protein 1 (or SAMHD1), a human dNTP-triphosphohydrolase, contributes to HIV-1 restriction in select terminally differentiated cells of the immune system. While the prevailing hypothesis is that the catalytically active form of the protein is an allosterically triggered tetramer, whose HIV-1 restriction properties are attributed to its dNTP - triphosphohydrolase activity, it is also known to bind to ssRNA and ssDNA oligomers. A complete picture of the structure-function relationship of the enzyme is still elusive and the function corresponding to its nucleic acid binding ability is debated. In this in silico study, we investigate the stability, preference and allosteric effects of DNA oligomers bound to SAMHD1. In particular, we compare the binding of DNA and RNA oligomers of the same sequence and also consider the binding of DNA fragments with phosphorothioate bonds in the backbone. The results are compared with the canonical form with the monomers connected by GTP/dATP crossbridges. The simulations indicate that SAMHD1 dimers preferably bind to DNA and RNA oligomers compared to GTP/dATP. However, allosteric communication channels are altered in the nucleic acid acid bound complexes compared to the canonical form. All results are consistent with the hypothesis that the DNA bound form of the protein correspond to an unproductive off-pathway state where the protein is sequestered and not available for dNTP hydrolysis.
Collapse
Affiliation(s)
- Gauri Thapa
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | | | - Swati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
16
|
Kwok M, Agathanggelou A, Stankovic T. DNA damage response defects in hematologic malignancies: mechanistic insights and therapeutic strategies. Blood 2024; 143:2123-2144. [PMID: 38457665 DOI: 10.1182/blood.2023019963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024] Open
Abstract
ABSTRACT The DNA damage response (DDR) encompasses the detection and repair of DNA lesions and is fundamental to the maintenance of genome integrity. Germ line DDR alterations underlie hereditary chromosome instability syndromes by promoting the acquisition of pathogenic structural variants in hematopoietic cells, resulting in increased predisposition to hematologic malignancies. Also frequent in hematologic malignancies are somatic mutations of DDR genes, typically arising from replication stress triggered by oncogene activation or deregulated tumor proliferation that provides a selective pressure for DDR loss. These defects impair homology-directed DNA repair or replication stress response, leading to an excessive reliance on error-prone DNA repair mechanisms that results in genomic instability and tumor progression. In hematologic malignancies, loss-of-function DDR alterations confer clonal growth advantage and adverse prognostic impact but may also provide therapeutic opportunities. Selective targeting of functional dependencies arising from these defects could achieve synthetic lethality, a therapeutic concept exemplified by inhibition of poly-(adenosine 5'-diphosphate ribose) polymerase or the ataxia telangiectasia and Rad 3 related-CHK1-WEE1 axis in malignancies harboring the BRCAness phenotype or genetic defects that increase replication stress. Furthermore, the role of DDR defects as a source of tumor immunogenicity, as well as their impact on the cross talk between DDR, inflammation, and tumor immunity are increasingly recognized, thus providing rationale for combining DDR modulation with immune modulation. The nature of the DDR-immune interface and the cellular vulnerabilities conferred by DDR defects may nonetheless be disease-specific and remain incompletely understood in many hematologic malignancies. Their comprehensive elucidation will be critical for optimizing therapeutic strategies to target DDR defects in these diseases.
Collapse
Affiliation(s)
- Marwan Kwok
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Angelo Agathanggelou
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tatjana Stankovic
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
17
|
Herr LM, Schaffer ED, Fuchs KF, Datta A, Brosh RM. Replication stress as a driver of cellular senescence and aging. Commun Biol 2024; 7:616. [PMID: 38777831 PMCID: PMC11111458 DOI: 10.1038/s42003-024-06263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Replication stress refers to slowing or stalling of replication fork progression during DNA synthesis that disrupts faithful copying of the genome. While long considered a nexus for DNA damage, the role of replication stress in aging is under-appreciated. The consequential role of replication stress in promotion of organismal aging phenotypes is evidenced by an extensive list of hereditary accelerated aging disorders marked by molecular defects in factors that promote replication fork progression and operate uniquely in the replication stress response. Additionally, recent studies have revealed cellular pathways and phenotypes elicited by replication stress that align with designated hallmarks of aging. Here we review recent advances demonstrating the role of replication stress as an ultimate driver of cellular senescence and aging. We discuss clinical implications of the intriguing links between cellular senescence and aging including application of senotherapeutic approaches in the context of replication stress.
Collapse
Affiliation(s)
- Lauren M Herr
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ethan D Schaffer
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kathleen F Fuchs
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Arindam Datta
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
18
|
Acton OJ, Sheppard D, Kunzelmann S, Caswell SJ, Nans A, Burgess AJO, Kelly G, Morris ER, Rosenthal PB, Taylor IA. Platform-directed allostery and quaternary structure dynamics of SAMHD1 catalysis. Nat Commun 2024; 15:3775. [PMID: 38710701 PMCID: PMC11074143 DOI: 10.1038/s41467-024-48237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
SAMHD1 regulates cellular nucleotide homeostasis, controlling dNTP levels by catalysing their hydrolysis into 2'-deoxynucleosides and triphosphate. In differentiated CD4+ macrophage and resting T-cells SAMHD1 activity results in the inhibition of HIV-1 infection through a dNTP blockade. In cancer, SAMHD1 desensitizes cells to nucleoside-analogue chemotherapies. Here we employ time-resolved cryogenic-EM imaging and single-particle analysis to visualise assembly, allostery and catalysis by this multi-subunit enzyme. Our observations reveal how dynamic conformational changes in the SAMHD1 quaternary structure drive the catalytic cycle. We capture five states at high-resolution in a live catalytic reaction, revealing how allosteric activators support assembly of a stable SAMHD1 tetrameric core and how catalysis is driven by the opening and closing of active sites through pairwise coupling of active sites and order-disorder transitions in regulatory domains. This direct visualisation of enzyme catalysis dynamics within an allostery-stabilised platform sets a precedent for mechanistic studies into the regulation of multi-subunit enzymes.
Collapse
Affiliation(s)
- Oliver J Acton
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- AstraZeneca, The Discovery Centre, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Devon Sheppard
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sarah J Caswell
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- AstraZeneca, The Discovery Centre, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ailidh J O Burgess
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Elizabeth R Morris
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Biosciences, University of Durham, Durham, DH1 3LE, UK
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
19
|
Haruna S, Okuda K, Shibata A, Isono M, Tateno K, Sato H, Oike T, Uchihara Y, Kato Y, Shibata A. Characterization of the signal transduction cascade for inflammatory gene expression in fibroblasts with ATM-ATR deficiencies after Ionizing radiation. Radiother Oncol 2024; 194:110198. [PMID: 38438016 DOI: 10.1016/j.radonc.2024.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND AND PURPOSE Ionizing radiation (IR) induces DNA double-strand breaks (DSBs), leading to micronuclei formation, which has emerged as a key mediator of inflammatory responses after IR. This study aimed to investigate the signaling cascade in inflammatory gene expression using fibroblasts harboring DNA damage response deficiency after exposure to IR. MATERIALS AND METHODS Micronuclei formation was examined in human dermal fibroblasts derived from patients with deficiencies in ATM, ATR, MRE11, XLF, Artemis, or BRCA2 after IR. RNA-sequencing analysis was performed to assess gene expression, pathway mapping, and the balance of transcriptional activity using the transcription factor-based downstream gene expression mapping (TDEM) method developed in this study. RESULTS Deficiencies in ATM, ATR, or MRE11 led to increased micronuclei formation after IR compared to normal cells. RNA-seq analysis revealed significant upregulation of inflammatory expression in cells deficient in ATM, ATR, or MRE11 following IR. Pathway mapping analysis identified the upregulation of RIG-I, MDA-5, IRF7, IL6, and interferon stimulated gene expression after IR. These changes were pronounced in cells deficient in ATM, ATR, or MRE11. TDEM analysis suggested the differential activation of STAT1/3-pathway between ATM and ATR deficiency. CONCLUSION Enhanced micronuclei formation upon ATM, ATR, or MRE11 deficiency activated the cGAS/STING, RIG-I-MDA-5-IRF7-IL6 pathway, resulting in its downstream interferon stimulated gene expression following exposure to IR. Our study provides comprehensive information regarding the status of inflammation-related gene expression under DSB repair deficiency after IR. The generated dataset may be useful in developing functional biomarkers to accurately identify patients sensitive to radiotherapy.
Collapse
Affiliation(s)
- Shunji Haruna
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Ken Okuda
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Akiko Shibata
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Mayu Isono
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kohei Tateno
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi 371-8511, Japan
| | - Hiro Sato
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Takahiro Oike
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yuki Uchihara
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yu Kato
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Atsushi Shibata
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
20
|
Tong J, Song J, Zhang W, Zhai J, Guan Q, Wang H, Liu G, Zheng C. When DNA-damage responses meet innate and adaptive immunity. Cell Mol Life Sci 2024; 81:185. [PMID: 38630271 PMCID: PMC11023972 DOI: 10.1007/s00018-024-05214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
When cells proliferate, stress on DNA replication or exposure to endogenous or external insults frequently results in DNA damage. DNA-Damage Response (DDR) networks are complex signaling pathways used by multicellular organisms to prevent DNA damage. Depending on the type of broken DNA, the various pathways, Base-Excision Repair (BER), Nucleotide Excision Repair (NER), Mismatch Repair (MMR), Homologous Recombination (HR), Non-Homologous End-Joining (NHEJ), Interstrand Crosslink (ICL) repair, and other direct repair pathways, can be activated separately or in combination to repair DNA damage. To preserve homeostasis, innate and adaptive immune responses are effective defenses against endogenous mutation or invasion by external pathogens. It is interesting to note that new research keeps showing how closely DDR components and the immune system are related. DDR and immunological response are linked by immune effectors such as the cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway. These effectors act as sensors of DNA damage-caused immune response. Furthermore, DDR components themselves function in immune responses to trigger the generation of inflammatory cytokines in a cascade or even trigger programmed cell death. Defective DDR components are known to disrupt genomic stability and compromise immunological responses, aggravating immune imbalance and leading to serious diseases such as cancer and autoimmune disorders. This study examines the most recent developments in the interaction between DDR elements and immunological responses. The DDR network's immune modulators' dual roles may offer new perspectives on treating infectious disorders linked to DNA damage, including cancer, and on the development of target immunotherapy.
Collapse
Affiliation(s)
- Jie Tong
- College of Life Science, Hebei University, Baoding, 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100089, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Qingli Guan
- The Affiliated Hospital of Chinese PLA 80th Group Army, Weifang, 261000, China
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Gentao Liu
- Department of Oncology, Tenth People's Hospital Affiliated to Tongji University & Cancer Center, Tongji University School of Medicine, Shanghai, 20000, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
21
|
Ma M, Jiang W, Zhou R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity 2024; 57:752-771. [PMID: 38599169 DOI: 10.1016/j.immuni.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules produced in cellular damage or stress, and they can activate the innate immune system. DAMPs contain multiple types of molecules, including nucleic acids, proteins, ions, glycans, and metabolites. Although these endogenous molecules do not trigger immune response under steady-state condition, they may undergo changes in distribution, physical or chemical property, or concentration upon cellular damage or stress, and then they become DAMPs that can be sensed by innate immune receptors to induce inflammatory response. Thus, DAMPs play an important role in inflammation and inflammatory diseases. In this review, we summarize the conversion of homeostatic molecules into DAMPs; the diverse nature and classification, cellular origin, and sensing of DAMPs; and their role in inflammation and related diseases. Furthermore, we discuss the clinical strategies to treat DAMP-associated diseases via targeting DAMP-sensing receptors.
Collapse
Affiliation(s)
- Ming Ma
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Wei Jiang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
22
|
Tang W, Zhou W, Ji M, Yang X. Role of STING in the treatment of non-small cell lung cancer. Cell Commun Signal 2024; 22:202. [PMID: 38566036 PMCID: PMC10986073 DOI: 10.1186/s12964-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent form of lung cancer. Patients with advanced NSCLC are currently being treated with various therapies, including traditional radiotherapy, chemotherapy, molecular targeted therapies and immunotherapy. However, a considerable proportion of advance patients who cannot benefit from them. Consequently, it is essential to identify a novel research target that offers an encouraging perspective. The stimulator of interferon genes (STING) has emerged as such a target. At present, it is confirmed that activating STING in NSCLC tumor cells can impede the proliferation and metastasis of dormant tumor cells. This review focuses on the role of STING in NSCLC treatment and the factors influencing its activation. Additionally, it explores the correlation between STING activation and diverse therapy modalities for NSCLC, such as radiotherapy, chemotherapy, molecular targeted therapies and immunotherapy. Furthermore, it proposes the prospect of innovative therapy methods involving nanoparticles, with the aim of using the features of STING to develop more strategies for NSCLC therapy.
Collapse
Affiliation(s)
- Wenhua Tang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Wenjie Zhou
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Mei Ji
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Xin Yang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
23
|
Ngoi NYL, Pilié PG, McGrail DJ, Zimmermann M, Schlacher K, Yap TA. Targeting ATR in patients with cancer. Nat Rev Clin Oncol 2024; 21:278-293. [PMID: 38378898 DOI: 10.1038/s41571-024-00863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick G Pilié
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katharina Schlacher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
24
|
Yang K, Jeltema D, Yan N. Innate immune sensing of macromolecule homeostasis. Adv Immunol 2024; 161:17-51. [PMID: 38763701 DOI: 10.1016/bs.ai.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The innate immune system uses a distinct set of germline-encoded pattern recognition receptors to recognize molecular patterns initially thought to be unique to microbial invaders, named pathogen-associated molecular patterns. The concept was later further developed to include similar molecular patterns originating from host cells during tissue damage, known as damage-associated molecular patterns. However, recent advances in the mechanism of monogenic inflammatory diseases have highlighted a much more expansive repertoire of cellular functions that are monitored by innate immunity. Here, we summarize several examples in which an innate immune response is triggered when homeostasis of macromolecule in the cell is disrupted in non-infectious or sterile settings. These ever-growing sensing mechanisms expand the repertoire of innate immune recognition, positioning it not only as a key player in host defense but also as a gatekeeper of cellular homeostasis. Therapeutics inspired by these advances to restore cellular homeostasis and correct the immune system could have far-reaching implications.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
25
|
Ye Z, Xu S, Shi Y, Cheng X, Zhang Y, Roy S, Namjoshi S, Longo MA, Link TM, Schlacher K, Peng G, Yu D, Wang B, Tainer JA, Ahmed Z. GRB2 stabilizes RAD51 at reversed replication forks suppressing genomic instability and innate immunity against cancer. Nat Commun 2024; 15:2132. [PMID: 38459011 PMCID: PMC10923831 DOI: 10.1038/s41467-024-46283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
Growth factor receptor-bound protein 2 (GRB2) is a cytoplasmic adapter for tyrosine kinase signaling and a nuclear adapter for homology-directed-DNA repair. Here we find nuclear GRB2 protects DNA at stalled replication forks from MRE11-mediated degradation in the BRCA2 replication fork protection axis. Mechanistically, GRB2 binds and inhibits RAD51 ATPase activity to stabilize RAD51 on stalled replication forks. In GRB2-depleted cells, PARP inhibitor (PARPi) treatment releases DNA fragments from stalled forks into the cytoplasm that activate the cGAS-STING pathway to trigger pro-inflammatory cytokine production. Moreover in a syngeneic mouse metastatic ovarian cancer model, GRB2 depletion in the context of PARPi treatment reduced tumor burden and enabled high survival consistent with immune suppression of cancer growth. Collective findings unveil GRB2 function and mechanism for fork protection in the BRCA2-RAD51-MRE11 axis and suggest GRB2 as a potential therapeutic target and an enabling predictive biomarker for patient selection for PARPi and immunotherapy combination.
Collapse
Affiliation(s)
- Zu Ye
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Shengfeng Xu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yin Shi
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xueqian Cheng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuan Zhang
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sunetra Roy
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sarita Namjoshi
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael A Longo
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Todd M Link
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Katharina Schlacher
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dihua Yu
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bin Wang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John A Tainer
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Zamal Ahmed
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Guo X, Yang L, Wang J, Wu Y, Li Y, Du L, Li L, Fang Z, Zhang X. The cytosolic DNA-sensing cGAS-STING pathway in neurodegenerative diseases. CNS Neurosci Ther 2024; 30:e14671. [PMID: 38459658 PMCID: PMC10924111 DOI: 10.1111/cns.14671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/10/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND With the widespread prevalence of neurodegenerative diseases (NDs) and high rates of mortality and disability, it is imminent to find accurate targets for intervention. There is growing evidence that neuroimmunity is pivotal in the pathology of NDs and that interventions targeting neuroimmunity hold great promise. Exogenous or dislocated nucleic acids activate the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS), activating the stimulator of interferon genes (STING). The activated STING triggers innate immune responses and then the cGAS-STING signaling pathway links abnormal nucleic acid sensing to the immune response. Recently, numerous studies have shown that neuroinflammation regulated by cGAS-STING signaling plays an essential role in NDs. AIMS In this review, we summarized the mechanism of cGAS-STING signaling in NDs and focused on inhibitors targeting cGAS-STING. CONCLUSION The cGAS-STING signaling plays an important role in the pathogenesis of NDs. Inhibiting the cGAS-STING signaling may provide new measures in the treatment of NDs.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
- Department of Intensive Care UnitJoint Logistics Force No. 988 HospitalZhengzhouChina
| | - Lin Yang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Jiawei Wang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - You Wu
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Yi Li
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Lixia Du
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Ling Li
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Zongping Fang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
- Department of Anesthesiology, Xijing HospitalFourth Military Medical UniversityShaanxiChina
- Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xijing Zhang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| |
Collapse
|
27
|
Daddacha W, Monroe D, Schlafstein A, Withers A, Thompson E, Danelia D, Luong N, Sesay F, Rath S, Usoro E, Essien M, Jung A, Jiang J, Hu J, Mahboubi B, Williams A, Steinbeck J, Yang X, Buchwald Z, Dynan W, Switchenko J, Kim B, Khan M, Jaye D, Yu D. SAMHD1 expression contributes to doxorubicin resistance and predicts survival outcomes in diffuse large B-cell lymphoma patients. NAR Cancer 2024; 6:zcae007. [PMID: 38406263 PMCID: PMC10894040 DOI: 10.1093/narcan/zcae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a commonly diagnosed, aggressive non-Hodgkin's lymphoma. While R-CHOP chemoimmunotherapy is potentially curative, about 40% of DLBCL patients will fail, highlighting the need to identify biomarkers to optimize management. SAMHD1 has a dNTPase-independent role in promoting resection to facilitate DNA double-strand break (DSB) repair by homologous recombination. We evaluated the relationship of SAMHD1 levels with sensitivity to DSB-sensitizing agents in DLBCL cells and the association of SAMHD1 expression with clinical outcomes in 79 DLBCL patients treated with definitive therapy and an independent cohort dataset of 234 DLBCL patients. Low SAMHD1 expression, Vpx-mediated, or siRNA-mediated degradation/depletion in DLBCL cells was associated with greater sensitivity to doxorubicin and PARP inhibitors. On Kaplan-Meier log-rank survival analysis, low SAMHD1 expression was associated with improved overall survival (OS), which on subset analysis remained significant only in patients with advanced stage (III-IV) and moderate to high risk (2-5 International Prognostic Index (IPI)). The association of low SAMHD1 expression with improved OS remained significant on multivariate analysis independent of other adverse factors, including IPI, and was validated in an independent cohort. Our findings suggest that SAMHD1 expression mediates doxorubicin resistance and may be an important prognostic biomarker in advanced, higher-risk DLBCL patients.
Collapse
Affiliation(s)
- Waaqo Daddacha
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dominique Monroe
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashley J Schlafstein
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allison E Withers
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Elizabeth B Thompson
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Diana Danelia
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nho C Luong
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fatmata Sesay
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sandip K Rath
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edidiong R Usoro
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mark E Essien
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew T Jung
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jinmeng G Jiang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jiaxuan Hu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bijan Mahboubi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Arilyn Williams
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Julia E Steinbeck
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zachary S Buchwald
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William S Dynan
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeffrey M Switchenko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mohammad K Khan
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David L Jaye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David S Yu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
28
|
Mecca M, Picerno S, Cortellino S. The Killer's Web: Interconnection between Inflammation, Epigenetics and Nutrition in Cancer. Int J Mol Sci 2024; 25:2750. [PMID: 38473997 DOI: 10.3390/ijms25052750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammation is a key contributor to both the initiation and progression of tumors, and it can be triggered by genetic instability within tumors, as well as by lifestyle and dietary factors. The inflammatory response plays a critical role in the genetic and epigenetic reprogramming of tumor cells, as well as in the cells that comprise the tumor microenvironment. Cells in the microenvironment acquire a phenotype that promotes immune evasion, progression, and metastasis. We will review the mechanisms and pathways involved in the interaction between tumors, inflammation, and nutrition, the limitations of current therapies, and discuss potential future therapeutic approaches.
Collapse
Affiliation(s)
- Marisabel Mecca
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Simona Picerno
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Salvatore Cortellino
- Laboratory of Preclinical and Translational Research, Responsible Research Hospital, 86100 Campobasso, CB, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, 80138 Naples, NA, Italy
- S.H.R.O. Italia Foundation ETS, 10060 Candiolo, TO, Italy
| |
Collapse
|
29
|
Yang K, Tang Z, Xing C, Yan N. STING signaling in the brain: Molecular threats, signaling activities, and therapeutic challenges. Neuron 2024; 112:539-557. [PMID: 37944521 PMCID: PMC10922189 DOI: 10.1016/j.neuron.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Stimulator of interferon genes (STING) is an innate immune signaling protein critical to infections, autoimmunity, and cancer. STING signaling is also emerging as an exciting and integral part of many neurological diseases. Here, we discuss recent advances in STING signaling in the brain. We summarize how molecular threats activate STING signaling in the diseased brain and how STING signaling activities in glial and neuronal cells cause neuropathology. We also review human studies of STING neurobiology and consider therapeutic challenges in targeting STING to treat neurological diseases.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhen Tang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cong Xing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
30
|
Zhang SM, Paulin CB, Shu H, Yagüe-Capilla M, Michel M, Marttila P, Ortis F, Bwanika HC, Dirks C, Venkatram RP, Wiita E, Jemth AS, Almlöf I, Loseva O, Hormann FM, Koolmeister T, Linde E, Lee S, Llona-Minguez S, Haraldsson M, Axelsson H, Strömberg K, Homan EJ, Scobie M, Lundbäck T, Helleday T, Rudd SG. Identification and evaluation of small-molecule inhibitors against the dNTPase SAMHD1 via a comprehensive screening funnel. iScience 2024; 27:108907. [PMID: 38318365 PMCID: PMC10839966 DOI: 10.1016/j.isci.2024.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 09/05/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
SAMHD1 is a dNTP triphosphohydrolase governing nucleotide pool homeostasis and can detoxify chemotherapy metabolites controlling their clinical responses. To understand SAMHD1 biology and investigate the potential of targeting SAMHD1 as neoadjuvant to current chemotherapies, we set out to discover selective small-molecule inhibitors. Here, we report a discovery pipeline encompassing a biochemical screening campaign and a set of complementary biochemical, biophysical, and cell-based readouts for rigorous characterization of the screen output. The identified small molecules, TH6342 and analogs, accompanied by inactive control TH7126, demonstrated specific, low μM potency against both physiological and oncology-drug-derived substrates. By coupling kinetic studies with thermal shift assays, we reveal the inhibitory mechanism of TH6342 and analogs, which engage pre-tetrameric SAMHD1 and deter oligomerization and allosteric activation without occupying nucleotide-binding pockets. Altogether, our study diversifies inhibitory modes against SAMHD1, and the discovery pipeline reported herein represents a thorough framework for future SAMHD1 inhibitor development.
Collapse
Affiliation(s)
- Si Min Zhang
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Cynthia B.J. Paulin
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Huazhang Shu
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Miriam Yagüe-Capilla
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Maurice Michel
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Petra Marttila
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Florian Ortis
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Henri Colyn Bwanika
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Christopher Dirks
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Rajagopal Papagudi Venkatram
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Elisée Wiita
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ann-Sofie Jemth
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Olga Loseva
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Femke M. Hormann
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Tobias Koolmeister
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Erika Linde
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sun Lee
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sabin Llona-Minguez
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory (SciLifeLab), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Hanna Axelsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory (SciLifeLab), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Kia Strömberg
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Evert J. Homan
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Martin Scobie
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratory (SciLifeLab), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Sean G. Rudd
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| |
Collapse
|
31
|
Randolph ME, Afifi M, Gorthi A, Weil R, Wilky BA, Weinreb J, Ciero P, Hoeve NT, van Diest PJ, Raman V, Bishop AJ, Loeb DM. RNA helicase DDX3 regulates RAD51 localization and DNA damage repair in Ewing sarcoma. iScience 2024; 27:108925. [PMID: 38323009 PMCID: PMC10844834 DOI: 10.1016/j.isci.2024.108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/09/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
We previously demonstrated that RNA helicase DDX3X (DDX3) can be a therapeutic target in Ewing sarcoma (EWS), but its role in EWS biology remains unclear. The present work demonstrates that DDX3 plays a unique role in DNA damage repair (DDR). We show that DDX3 interacts with several proteins involved in homologous recombination, including RAD51, RECQL1, RPA32, and XRCC2. In particular, DDX3 colocalizes with RAD51 and RNA:DNA hybrid structures in the cytoplasm of EWS cells. Inhibition of DDX3 RNA helicase activity increases cytoplasmic RNA:DNA hybrids, sequestering RAD51 in the cytoplasm, which impairs nuclear translocation of RAD51 to sites of double-stranded DNA breaks, thus increasing sensitivity of EWS to radiation treatment, both in vitro and in vivo. This discovery lays the foundation for exploring new therapeutic approaches directed at manipulating DDR protein localization in solid tumors.
Collapse
Affiliation(s)
- Matthew E. Randolph
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marwa Afifi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Aparna Gorthi
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Rachel Weil
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Breelyn A. Wilky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua Weinreb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul Ciero
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Natalie ter Hoeve
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Paul J. van Diest
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Venu Raman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Pharmacology, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander J.R. Bishop
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - David M. Loeb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
32
|
Goddard AM, Cho MG, Lerner LM, Gupta GP. Mechanisms of Immune Sensing of DNA Damage. J Mol Biol 2024; 436:168424. [PMID: 38159716 DOI: 10.1016/j.jmb.2023.168424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Genomic stability relies on a multifaceted and evolutionarily conserved DNA damage response (DDR). In multicellular organisms, an integral facet of the DDR involves the activation of the immune system to eliminate cells with persistent DNA damage. Recent research has shed light on a complex array of nucleic acid sensors crucial for innate immune activation in response to oncogenic stress-associated DNA damage, a process vital for suppressing tumor formation. Yet, these immune sensing pathways may also be co-opted to foster tolerance of chromosomal instability, thereby driving cancer progression. This review aims to provide an updated overview of how the innate immune system detects and responds to DNA damage. An improved understanding of the regulatory intricacies governing this immune response may uncover new avenues for cancer prevention and therapeutic intervention.
Collapse
Affiliation(s)
- Anna M Goddard
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Min-Guk Cho
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lynn M Lerner
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Genetics and Molecular Biology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
33
|
Leuzzi G, Vasciaveo A, Taglialatela A, Chen X, Firestone TM, Hickman AR, Mao W, Thakar T, Vaitsiankova A, Huang JW, Cuella-Martin R, Hayward SB, Kesner JS, Ghasemzadeh A, Nambiar TS, Ho P, Rialdi A, Hebrard M, Li Y, Gao J, Gopinath S, Adeleke OA, Venters BJ, Drake CG, Baer R, Izar B, Guccione E, Keogh MC, Guerois R, Sun L, Lu C, Califano A, Ciccia A. SMARCAL1 is a dual regulator of innate immune signaling and PD-L1 expression that promotes tumor immune evasion. Cell 2024; 187:861-881.e32. [PMID: 38301646 PMCID: PMC10980358 DOI: 10.1016/j.cell.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 07/23/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Genomic instability can trigger cancer-intrinsic innate immune responses that promote tumor rejection. However, cancer cells often evade these responses by overexpressing immune checkpoint regulators, such as PD-L1. Here, we identify the SNF2-family DNA translocase SMARCAL1 as a factor that favors tumor immune evasion by a dual mechanism involving both the suppression of innate immune signaling and the induction of PD-L1-mediated immune checkpoint responses. Mechanistically, SMARCAL1 limits endogenous DNA damage, thereby suppressing cGAS-STING-dependent signaling during cancer cell growth. Simultaneously, it cooperates with the AP-1 family member JUN to maintain chromatin accessibility at a PD-L1 transcriptional regulatory element, thereby promoting PD-L1 expression in cancer cells. SMARCAL1 loss hinders the ability of tumor cells to induce PD-L1 in response to genomic instability, enhances anti-tumor immune responses and sensitizes tumors to immune checkpoint blockade in a mouse melanoma model. Collectively, these studies uncover SMARCAL1 as a promising target for cancer immunotherapy.
Collapse
Affiliation(s)
- Giuseppe Leuzzi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alessandro Vasciaveo
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiao Chen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | - Wendy Mao
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tanay Thakar
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alina Vaitsiankova
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jen-Wei Huang
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Raquel Cuella-Martin
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Samuel B Hayward
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jordan S Kesner
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ali Ghasemzadeh
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tarun S Nambiar
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Patricia Ho
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexander Rialdi
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maxime Hebrard
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Yinglu Li
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jinmei Gao
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | | | | | - Charles G Drake
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard Baer
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Benjamin Izar
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Raphael Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lu Sun
- EpiCypher Inc., Durham, NC 27709, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
34
|
Usluer S, Galhuber M, Khanna Y, Bourgeois B, Spreitzer E, Michenthaler H, Prokesch A, Madl T. Disordered regions mediate the interaction of p53 and MRE11. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119654. [PMID: 38123020 DOI: 10.1016/j.bbamcr.2023.119654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
The genome is frequently targeted by genotoxic agents, resulting in the formation of DNA scars. However, cells employ diverse repair mechanisms to restore DNA integrity. Among these processes, the Mre11-Rad50-Nbs1 complex detects double-strand breaks (DSBs) and recruits DNA damage response proteins such as ataxia-telangiectasia-mutated (ATM) kinase to DNA damage sites. ATM phosphorylates the transactivation domain (TAD) of the p53 tumor suppressor, which in turn regulates DNA repair, growth arrest, apoptosis, and senescence following DNA damage. The disordered glycine-arginine-rich (GAR) domain of double-strand break protein MRE11 (MRE11GAR) and its methylation are important for DSB repair, and localization to Promyelocytic leukemia nuclear bodies (PML-NBs). There is preliminary evidence that p53, PML protein, and MRE11 might co-localize and interact at DSB sites. To uncover the molecular details of these interactions, we aimed to identify the domains mediating the p53-MRE11 interaction and to elucidate the regulation of the p53-MRE11 interaction by post-translational modifications (PTMs) through a combination of biophysical techniques. We discovered that, in vitro, p53 binds directly to MRE11GAR mainly through p53TAD2 and that phosphorylation further enhances this interaction. Furthermore, we found that MRE11GAR methylation still allows for binding to p53. Overall, we demonstrated that p53 and MRE11 interaction is facilitated by disordered regions. We provide for the first time insight into the molecular details of the p53-MRE11 complex formation and elucidate potential regulatory mechanisms that will promote our understanding of the DNA damage response. Our findings suggest that PTMs regulate the p53-MRE11 interaction and subsequently their colocalization to PML-NBs upon DNA damage.
Collapse
Affiliation(s)
- Sinem Usluer
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria; Research Unit Integrative Structural Biology, Medical University of Graz, Austria
| | - Markus Galhuber
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria
| | - Yukti Khanna
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria; Research Unit Integrative Structural Biology, Medical University of Graz, Austria
| | - Benjamin Bourgeois
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria; Research Unit Integrative Structural Biology, Medical University of Graz, Austria
| | - Emil Spreitzer
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria; Research Unit Integrative Structural Biology, Medical University of Graz, Austria
| | - Helene Michenthaler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria; BioTechMed-Graz, Austria
| | - Tobias Madl
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria; BioTechMed-Graz, Austria.
| |
Collapse
|
35
|
Liang Y, Wei X, Yue PJ, Zhang HC, Li ZN, Wang XX, Sun YY, Fu WN. MYCT1 inhibits hematopoiesis in diffuse large B-cell lymphoma by suppressing RUNX1 transcription. Cell Mol Biol Lett 2024; 29:5. [PMID: 38172714 PMCID: PMC10763471 DOI: 10.1186/s11658-023-00522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The abnormality of chromosomal karyotype is one factor causing poor prognosis of lymphoma. In the analysis of abnormal karyotype of lymphoma patients, three smallest overlap regions were found, in which MYCT1 was located. MYCT1 is the first tumor suppressor gene cloned by our research team, but its studies relating to the occurrence and development of lymphoma have not been reported. METHODS R banding analyses were employed to screen the abnormality of chromosomal karyotype in clinical specimen and MYCT1 over-expression cell lines. FISH was to monitor MYCT1 copy number aberration. RT-PCR and Western blot were to detect the mRNA and protein levels of the MYCT1 and RUNX1 genes, respectively. The MYCT1 and RUNX1 protein levels in clinical specimen were evaluated by immunohistochemical DAB staining. The interaction between MYCT1 and MAX proteins was identified via Co-IP and IF. The binding of MAX on the promoter of the RUNX1 gene was detected by ChIP and Dual-luciferase reporter assay, respectively. Flow cytometry and CCK-8 assay were to explore the effects of MYCT1 and RUNX1 on the cell cycle and proliferation, respectively. RESULTS MYCT1 was located in one of three smallest overlap regions of diffuse large B-cell lymphoma, it altered chromosomal instability of diffuse large B-cell lymphoma cells. MYCT1 negatively correlated with RUNX1 in lymphoma tissues of the patients. MAX directly promoted the RUNX1 gene transcription by binding to its promoter region. MYCT1 may represses RUNX1 transcription by binding MAX in diffuse large B-cell lymphoma cells. MYCT1 binding to MAX probably suppressed RUNX1 transcription, leading to the inhibition of proliferation and cell cycle of the diffuse large B-cell lymphoma cells. CONCLUSION This study finds that there is a MYCT1-MAX-RUNX1 signaling pathway in diffuse large B-cell lymphoma. And the study provides clues and basis for the in-depth studies of MYCT1 in the diagnosis, treatment and prognosis of lymphoma.
Collapse
Affiliation(s)
- Ying Liang
- Department of Medical Genetics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xin Wei
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Peng-Jie Yue
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - He-Cheng Zhang
- Department of Medical Genetics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Zhen-Ning Li
- Department of Oromaxillofacial-Head and Neck Surgery, Liaoning Province Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, People's Republic of China
| | - Xiao-Xue Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuan-Yuan Sun
- Department of Medical Genetics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China.
| | - Wei-Neng Fu
- Department of Medical Genetics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China.
| |
Collapse
|
36
|
Cho MG, Kumar RJ, Lin CC, Boyer JA, Shahir JA, Fagan-Solis K, Simpson DA, Fan C, Foster CE, Goddard AM, Lerner LM, Ellington SW, Wang Q, Wang Y, Ho AY, Liu P, Perou CM, Zhang Q, McGinty RK, Purvis JE, Gupta GP. MRE11 liberates cGAS from nucleosome sequestration during tumorigenesis. Nature 2024; 625:585-592. [PMID: 38200309 PMCID: PMC10794148 DOI: 10.1038/s41586-023-06889-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/22/2023] [Indexed: 01/12/2024]
Abstract
Oncogene-induced replication stress generates endogenous DNA damage that activates cGAS-STING-mediated signalling and tumour suppression1-3. However, the precise mechanism of cGAS activation by endogenous DNA damage remains enigmatic, particularly given that high-affinity histone acidic patch (AP) binding constitutively inhibits cGAS by sterically hindering its activation by double-stranded DNA (dsDNA)4-10. Here we report that the DNA double-strand break sensor MRE11 suppresses mammary tumorigenesis through a pivotal role in regulating cGAS activation. We demonstrate that binding of the MRE11-RAD50-NBN complex to nucleosome fragments is necessary to displace cGAS from acidic-patch-mediated sequestration, which enables its mobilization and activation by dsDNA. MRE11 is therefore essential for cGAS activation in response to oncogenic stress, cytosolic dsDNA and ionizing radiation. Furthermore, MRE11-dependent cGAS activation promotes ZBP1-RIPK3-MLKL-mediated necroptosis, which is essential to suppress oncogenic proliferation and breast tumorigenesis. Notably, downregulation of ZBP1 in human triple-negative breast cancer is associated with increased genome instability, immune suppression and poor patient prognosis. These findings establish MRE11 as a crucial mediator that links DNA damage and cGAS activation, resulting in tumour suppression through ZBP1-dependent necroptosis.
Collapse
Affiliation(s)
- Min-Guk Cho
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rashmi J Kumar
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC MD-PhD Program, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Chien-Chu Lin
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joshua A Boyer
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jamshaid A Shahir
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katerina Fagan-Solis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dennis A Simpson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christine E Foster
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anna M Goddard
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lynn M Lerner
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Simon W Ellington
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qinhong Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ying Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alice Y Ho
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qi Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert K McGinty
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy E Purvis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- UNC MD-PhD Program, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
37
|
Nassour J, Przetocka S, Karlseder J. Telomeres as hotspots for innate immunity and inflammation. DNA Repair (Amst) 2024; 133:103591. [PMID: 37951043 PMCID: PMC10842095 DOI: 10.1016/j.dnarep.2023.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/05/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Aging is marked by the gradual accumulation of deleterious changes that disrupt organ function, creating an altered physiological state that is permissive for the onset of prevalent human diseases. While the exact mechanisms governing aging remain a subject of ongoing research, there are several cellular and molecular hallmarks that contribute to this biological process. This review focuses on two factors, namely telomere dysfunction and inflammation, which have emerged as crucial contributors to the aging process. We aim to discuss the mechanistic connections between these two distinct hallmarks and provide compelling evidence highlighting the loss of telomere protection as a driver of pro-inflammatory states associated with aging. By reevaluating the interplay between telomeres, innate immunity, and inflammation, we present novel perspectives on the etiology of aging and its associated diseases.
Collapse
Affiliation(s)
- Joe Nassour
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, 12801 E. 17th Ave, Aurora, CO 80045, USA; The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sara Przetocka
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
38
|
Orris B, Sung MW, Bhat S, Xu Y, Huynh KW, Han S, Johnson DC, Bosbach B, Shields DJ, Stivers JT. Guanine-containing ssDNA and RNA induce dimeric and tetrameric structural forms of SAMHD1. Nucleic Acids Res 2023; 51:12443-12458. [PMID: 37930833 PMCID: PMC10711556 DOI: 10.1093/nar/gkad971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/19/2023] [Accepted: 10/14/2023] [Indexed: 11/08/2023] Open
Abstract
The dNTPase activity of tetrameric SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) plays a critical role in cellular dNTP regulation. SAMHD1 also associates with stalled DNA replication forks, DNA repair foci, ssRNA and telomeres. The above functions require nucleic acid binding by SAMHD1, which may be modulated by its oligomeric state. Here we establish in cryo-EM and biochemical studies that the guanine-specific A1 activator site of each SAMHD1 monomer is used to target the enzyme to guanine nucleotides within single-stranded (ss) DNA and RNA. Remarkably, nucleic acid strands containing a single guanine base induce dimeric SAMHD1, while two or more guanines with ∼20 nucleotide spacing induce a tetrameric form. A cryo-EM structure of ssRNA-bound tetrameric SAMHD1 shows how ssRNA strands bridge two SAMHD1 dimers and stabilize the structure. This ssRNA-bound tetramer is inactive with respect to dNTPase and RNase activity.
Collapse
Affiliation(s)
- Benjamin Orris
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine 725 North Wolfe Street Baltimore, MD 21205, USA
| | | | - Shridhar Bhat
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine 725 North Wolfe Street Baltimore, MD 21205, USA
| | - Yingrong Xu
- Medicine Design, Pfizer, Groton, CT 06340, USA
| | | | - Seungil Han
- Medicine Design, Pfizer, Groton, CT 06340, USA
| | - Darren C Johnson
- Centers for Therapeutic Innovation (CTI), Pfizer, New York, NY 10016, USA
| | - Benedikt Bosbach
- Centers for Therapeutic Innovation (CTI), Pfizer, New York, NY 10016, USA
| | - David J Shields
- Centers for Therapeutic Innovation (CTI), Pfizer, New York, NY 10016, USA
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine 725 North Wolfe Street Baltimore, MD 21205, USA
| |
Collapse
|
39
|
Bruyer A, Dutrieux L, de Boussac H, Martin T, Chemlal D, Robert N, Requirand G, Cartron G, Vincent L, Herbaux C, Lutzmann M, Bret C, Pasero P, Moreaux J, Ovejero S. Combined inhibition of Wee1 and Chk1 as a therapeutic strategy in multiple myeloma. Front Oncol 2023; 13:1271847. [PMID: 38125947 PMCID: PMC10730928 DOI: 10.3389/fonc.2023.1271847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by an abnormal clonal proliferation of malignant plasma cells. Despite the introduction of novel agents that have significantly improved clinical outcome, most patients relapse and develop drug resistance. MM is characterized by genomic instability and a high level of replicative stress. In response to replicative and DNA damage stress, MM cells activate various DNA damage signaling pathways. In this study, we reported that high CHK1 and WEE1 expression is associated with poor outcome in independent cohorts of MM patients treated with high dose melphalan chemotherapy or anti-CD38 immunotherapy. Combined targeting of Chk1 and Wee1 demonstrates synergistic toxicities on MM cells and was associated with higher DNA double-strand break induction, as evidenced by an increased percentage of γH2AX positive cells subsequently leading to apoptosis. The therapeutic interest of Chk1/Wee1 inhibitors' combination was validated on primary MM cells of patients. The toxicity was specific of MM cells since normal bone marrow cells were not significantly affected. Using deconvolution approach, MM patients with high CHK1 expression exhibited a significant lower percentage of NK cells whereas patients with high WEE1 expression displayed a significant higher percentage of regulatory T cells in the bone marrow. These data emphasize that MM cell adaptation to replicative stress through Wee1 and Chk1 upregulation may decrease the activation of the cell-intrinsic innate immune response. Our study suggests that association of Chk1 and Wee1 inhibitors may represent a promising therapeutic approach in high-risk MM patients characterized by high CHK1 and WEE1 expression.
Collapse
Affiliation(s)
| | - Laure Dutrieux
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | | | - Thibaut Martin
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Djamila Chemlal
- Diag2Tec, Montpellier, France
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Guillaume Cartron
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Laure Vincent
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Charles Herbaux
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Malik Lutzmann
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Caroline Bret
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Philippe Pasero
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Jérôme Moreaux
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Sara Ovejero
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| |
Collapse
|
40
|
Lebdy R, Canut M, Patouillard J, Cadoret JC, Letessier A, Ammar J, Basbous J, Urbach S, Miotto B, Constantinou A, Abou Merhi R, Ribeyre C. The nucleolar protein GNL3 prevents resection of stalled replication forks. EMBO Rep 2023; 24:e57585. [PMID: 37965896 DOI: 10.15252/embr.202357585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Faithful DNA replication requires specific proteins that protect replication forks and so prevent the formation of DNA lesions that may damage the genome. Identification of new proteins involved in this process is essential to understand how DNA lesions accumulate in cancer cells and how they tolerate them. Here, we show that human GNL3/nucleostemin, a GTP-binding protein localized mostly in the nucleolus and highly expressed in cancer cells, prevents nuclease-dependent resection of nascent DNA in response to replication stress. We demonstrate that inhibiting origin firing reduces resection. This suggests that the heightened replication origin activation observed upon GNL3 depletion largely drives the observed DNA resection probably due to the exhaustion of the available RPA pool. We show that GNL3 and DNA replication initiation factor ORC2 interact in the nucleolus and that the concentration of GNL3 in the nucleolus is required to limit DNA resection. We propose that the control of origin firing by GNL3 through the sequestration of ORC2 in the nucleolus is critical to prevent nascent DNA resection in response to replication stress.
Collapse
Affiliation(s)
- Rana Lebdy
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
- Faculty of Sciences, Genomics and Surveillance Biotherapy (GSBT) Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Marine Canut
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Julie Patouillard
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | | | - Anne Letessier
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Josiane Ammar
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Jihane Basbous
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Serge Urbach
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Inserm U1191, Université de Montpellier, Montpellier Cedex 5, France
| | - Benoit Miotto
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Angelos Constantinou
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Raghida Abou Merhi
- Faculty of Sciences, Genomics and Surveillance Biotherapy (GSBT) Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Cyril Ribeyre
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
41
|
Korneenko TV, Pestov NB, Nevzorov IA, Daks AA, Trachuk KN, Solopova ON, Barlev NA. At the Crossroads of the cGAS-cGAMP-STING Pathway and the DNA Damage Response: Implications for Cancer Progression and Treatment. Pharmaceuticals (Basel) 2023; 16:1675. [PMID: 38139802 PMCID: PMC10747911 DOI: 10.3390/ph16121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
The evolutionary conserved DNA-sensing cGAS-STING innate immunity pathway represents one of the most important cytosolic DNA-sensing systems that is activated in response to viral invasion and/or damage to the integrity of the nuclear envelope. The key outcome of this pathway is the production of interferon, which subsequently stimulates the transcription of hundreds of genes. In oncology, the situation is complex because this pathway may serve either anti- or pro-oncogenic roles, depending on context. The prevailing understanding is that when the innate immune response is activated by sensing cytosolic DNA, such as DNA released from ruptured micronuclei, it results in the production of interferon, which attracts cytotoxic cells to destroy tumors. However, in tumor cells that have adjusted to significant chromosomal instability, particularly in relapsed, treatment-resistant cancers, the cGAS-STING pathway often supports cancer progression, fostering the epithelial-to-mesenchymal transition (EMT). Here, we review this intricate pathway in terms of its association with cancer progression, giving special attention to pancreatic ductal adenocarcinoma and gliomas. As the development of new cGAS-STING-modulating small molecules and immunotherapies such as oncolytic viruses involves serious challenges, we highlight several recent fundamental discoveries, such as the proton-channeling function of STING. These discoveries may serve as guiding lights for potential pharmacological advancements.
Collapse
Affiliation(s)
- Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikolay B. Pestov
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Ivan A. Nevzorov
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Alexandra A. Daks
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Kirill N. Trachuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Olga N. Solopova
- Research Institute of Experimental Diagnostics and Tumor Therapy, Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
42
|
Heuzé J, Kemiha S, Barthe A, Vilarrubias AT, Aouadi E, Aiello U, Libri D, Lin Y, Lengronne A, Poli J, Pasero P. RNase H2 degrades toxic RNA:DNA hybrids behind stalled forks to promote replication restart. EMBO J 2023; 42:e113104. [PMID: 37855233 PMCID: PMC10690446 DOI: 10.15252/embj.2022113104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
R-loops represent a major source of replication stress, but the mechanism by which these structures impede fork progression remains unclear. To address this question, we monitored fork progression, arrest, and restart in Saccharomyces cerevisiae cells lacking RNase H1 and H2, two enzymes responsible for degrading RNA:DNA hybrids. We found that while RNase H-deficient cells could replicate their chromosomes normally under unchallenged growth conditions, their replication was impaired when exposed to hydroxyurea (HU) or methyl methanesulfonate (MMS). Treated cells exhibited increased levels of RNA:DNA hybrids at stalled forks and were unable to generate RPA-coated single-stranded (ssDNA), an important postreplicative intermediate in resuming replication. Similar impairments in nascent DNA resection and ssDNA formation at HU-arrested forks were observed in human cells lacking RNase H2. However, fork resection was fully restored by addition of triptolide, an inhibitor of transcription that induces RNA polymerase degradation. Taken together, these data indicate that RNA:DNA hybrids not only act as barriers to replication forks, but also interfere with postreplicative fork repair mechanisms if not promptly degraded by RNase H.
Collapse
Affiliation(s)
- Jonathan Heuzé
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Samira Kemiha
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Antoine Barthe
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Alba Torán Vilarrubias
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Elyès Aouadi
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Umberto Aiello
- Université Paris Cité, CNRS, Institut Jacques MonodParisFrance
- Department of GeneticsStanford UniversityStanfordCAUSA
| | - Domenico Libri
- Université Paris Cité, CNRS, Institut Jacques MonodParisFrance
- Present address:
Institut de Génétique Moléculaire de MontpellierUniversité de Montpellier, CNRSMontpellierFrance
| | - Yea‐Lih Lin
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Armelle Lengronne
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Jérôme Poli
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
- Institut Universitaire de France (IUF)ParisFrance
| | - Philippe Pasero
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| |
Collapse
|
43
|
Huang KW, Wu CY, Toh SI, Liu TC, Tu CI, Lin YH, Cheng AJ, Kao YT, Chu JW, Hsiao YY. Molecular insight into the specific enzymatic properties of TREX1 revealing the diverse functions in processing RNA and DNA/RNA hybrids. Nucleic Acids Res 2023; 51:11927-11940. [PMID: 37870446 PMCID: PMC10681709 DOI: 10.1093/nar/gkad910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
In various autoimmune diseases, dysfunctional TREX1 (Three prime Repair Exonuclease 1) leads to accumulation of endogenous single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and DNA/RNA hybrids in the cytoplasm and triggers immune activation through the cGAS-STING pathway. Although inhibition of TREX1 could be a useful strategy for cancer immunotherapy, profiling cellular functions in terms of its potential substrates is a key step. Particularly important is the functionality of processing DNA/RNA hybrids and RNA substrates. The exonuclease activity measurements conducted here establish that TREX1 can digest both ssRNA and DNA/RNA hybrids but not dsRNA. The newly solved structures of TREX1-RNA product and TREX1-nucleotide complexes show that 2'-OH does not impose steric hindrance or specific interactions for the recognition of RNA. Through all-atom molecular dynamics simulations, we illustrate that the 2'-OH-mediated intra-chain hydrogen bonding in RNA would affect the binding with TREX1 and thereby reduce the exonuclease activity. This notion of higher conformational rigidity in RNA leading TREX1 to exhibit weaker catalytic cleavage is further validated by the binding affinity measurements with various synthetic DNA-RNA junctions. The results of this work thus provide new insights into the mechanism by which TREX1 processes RNA and DNA/RNA hybrids and contribute to the molecular-level understanding of the complex cellular functions of TREX1 as an exonuclease.
Collapse
Affiliation(s)
- Kuan-Wei Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Chia-Yun Wu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Shu-Ing Toh
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Tung-Chang Liu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Chun-I Tu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Yin-Hsin Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - An-Ju Cheng
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Ya-Ting Kao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Jhih-Wei Chu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Yu-Yuan Hsiao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Drug Development and Value Creation Research Center, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
44
|
Meng FW, Murphy KE, Makowski CE, Delatte B, Murphy PJ. Competition for H2A.Z underlies the developmental impacts of repetitive element de-repression. Development 2023; 150:dev202338. [PMID: 37938830 PMCID: PMC10651094 DOI: 10.1242/dev.202338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023]
Abstract
The histone variant H2A.Z is central to early embryonic development, determining transcriptional competency through chromatin regulation of gene promoters and enhancers. In addition to genic loci, we find that H2A.Z resides at a subset of evolutionarily young repetitive elements, including DNA transposons, long interspersed nuclear elements and long terminal repeats, during early zebrafish development. Moreover, increases in H2A.Z occur when repetitive elements become transcriptionally active. Acquisition of H2A.Z corresponds with a reduction in the levels of the repressive histone modification H3K9me3 and a moderate increase in chromatin accessibility. Notably, however, de-repression of repetitive elements also leads to a significant reduction in H2A.Z over non-repetitive genic loci. Genic loss of H2A.Z is accompanied by transcriptional silencing at adjacent coding sequences, but remarkably, these impacts are mitigated by augmentation of total H2A.Z protein via transgenic overexpression. Our study reveals that levels of H2A.Z protein determine embryonic sensitivity to de-repression of repetitive elements, that repetitive elements can function as a nuclear sink for epigenetic factors and that competition for H2A.Z greatly influences overall transcriptional output during development. These findings uncover general mechanisms in which counteractive biological processes underlie phenotypic outcomes.
Collapse
Affiliation(s)
- Fanju W. Meng
- University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | - Benjamin Delatte
- Advanced Research Laboratory, Active Motif, 1914 Palomar Oaks Way STE 150, Carlsbad, CA 92008, USA
| | | |
Collapse
|
45
|
Schüssler M, Schott K, Fuchs NV, Oo A, Zahadi M, Rauch P, Kim B, König R. Gene editing of SAMHD1 in macrophage-like cells reveals complex relationships between SAMHD1 phospho-regulation, HIV-1 restriction, and cellular dNTP levels. mBio 2023; 14:e0225223. [PMID: 37800914 PMCID: PMC10653793 DOI: 10.1128/mbio.02252-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE We introduce BLaER1 cells as an alternative myeloid cell model in combination with CRISPR/Cas9-mediated gene editing to study the influence of sterile α motif and HD domain-containing protein 1 (SAMHD1) T592 phosphorylation on anti-viral restriction and the control of cellular dNTP levels in an endogenous, physiologically relevant context. A proper understanding of the mechanism of the anti-viral function of SAMHD1 will provide attractive strategies aiming at selectively manipulating SAMHD1 without affecting other cellular functions. Even more, our toolkit may inspire further genetic analysis and investigation of restriction factors inhibiting retroviruses and their cellular function and regulation, leading to a deeper understanding of intrinsic anti-viral immunity.
Collapse
Affiliation(s)
- Moritz Schüssler
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Adrian Oo
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Morssal Zahadi
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Paula Rauch
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Baek Kim
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
46
|
Ponnienselvan K, Liu P, Nyalile T, Oikemus S, Joynt AT, Kelly K, Guo D, Chen Z, Lee JM, Schiffer CA, Emerson CP, Lawson ND, Watts JK, Sontheimer EJ, Luban J, Wolfe SA. Addressing the dNTP bottleneck restricting prime editing activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.21.563443. [PMID: 37904991 PMCID: PMC10614944 DOI: 10.1101/2023.10.21.563443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Prime editing efficiency is modest in cells that are quiescent or slowly proliferating where intracellular dNTP levels are tightly regulated. MMLV-reverse transcriptase - the prime editor polymerase subunit - requires high intracellular dNTPs levels for efficient polymerization. We report that prime editing efficiency in primary cells and in vivo is increased by mutations that enhance the enzymatic properties of MMLV-reverse transcriptase and can be further complemented by targeting SAMHD1 for degradation.
Collapse
|
47
|
Egleston M, Dong L, Howlader AH, Bhat S, Orris B, Bianchet MA, Greenberg MM, Stivers JT. Deoxyguanosine-Linked Bifunctional Inhibitor of SAMHD1 dNTPase Activity and Nucleic Acid Binding. ACS Chem Biol 2023; 18:2200-2210. [PMID: 37233733 PMCID: PMC10596003 DOI: 10.1021/acschembio.3c00118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Sterile alpha motif histidine-aspartate domain protein 1 (SAMHD1) is a deoxynucleotide triphosphohydrolase that exists in monomeric, dimeric, and tetrameric forms. It is activated by GTP binding to an A1 allosteric site on each monomer subunit, which induces dimerization, a prerequisite for dNTP-induced tetramerization. SAMHD1 is a validated drug target stemming from its inactivation of many anticancer nucleoside drugs leading to drug resistance. The enzyme also possesses a single-strand nucleic acid binding function that promotes RNA and DNA homeostasis by several mechanisms. To discover small molecule inhibitors of SAMHD1, we screened a custom ∼69 000-compound library for dNTPase inhibitors. Surprisingly, this effort yielded no viable hits and indicated that exceptional barriers for discovery of small molecule inhibitors existed. We then took a rational fragment-based inhibitor design approach using a deoxyguanosine (dG) A1 site targeting fragment. A targeted chemical library was synthesized by coupling a 5'-phosphoryl propylamine dG fragment (dGpC3NH2) to 376 carboxylic acids (RCOOH). Direct screening of the products (dGpC3NHCO-R) yielded nine initial hits, one of which (R = 3-(3'-bromo-[1,1'-biphenyl]), 5a) was investigated extensively. Amide 5a is a competitive inhibitor against GTP binding to the A1 site and induces inactive dimers that are deficient in tetramerization. Surprisingly, 5a also prevented ssDNA and ssRNA binding, demonstrating that the dNTPase and nucleic acid binding functions of SAMHD1 can be disrupted by a single small molecule. A structure of the SAMHD1-5a complex indicates that the biphenyl fragment impedes a conformational change in the C-terminal lobe that is required for tetramerization.
Collapse
Affiliation(s)
- Matthew Egleston
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Linghao Dong
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - A. Hasan Howlader
- Department
of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Shridhar Bhat
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Benjamin Orris
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Mario A. Bianchet
- Department
of Neurology and Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Marc M. Greenberg
- Department
of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - James T. Stivers
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
48
|
Paniagua I, Jacobs JJL. Freedom to err: The expanding cellular functions of translesion DNA polymerases. Mol Cell 2023; 83:3608-3621. [PMID: 37625405 DOI: 10.1016/j.molcel.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/02/2023] [Accepted: 07/07/2023] [Indexed: 08/27/2023]
Abstract
Translesion synthesis (TLS) DNA polymerases were originally described as error-prone enzymes involved in the bypass of DNA lesions. However, extensive research over the past few decades has revealed that these enzymes play pivotal roles not only in lesion bypass, but also in a myriad of other cellular processes. Such processes include DNA replication, DNA repair, epigenetics, immune signaling, and even viral infection. This review discusses the wide range of functions exhibited by TLS polymerases, including their underlying biochemical mechanisms and associated mutagenicity. Given their multitasking ability to alleviate replication stress, TLS polymerases represent a cellular dependency and a critical vulnerability of cancer cells. Hence, this review also highlights current and emerging strategies for targeting TLS polymerases in cancer therapy.
Collapse
Affiliation(s)
- Inés Paniagua
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
49
|
Liu A, Ying S. Aicardi-Goutières syndrome: A monogenic type I interferonopathy. Scand J Immunol 2023; 98:e13314. [PMID: 37515439 DOI: 10.1111/sji.13314] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/26/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Aicardi-Goutières syndrome (AGS) is a rare monogenic autoimmune disease that primarily affects the brains of children patients. Its main clinical features include encephalatrophy, basal ganglia calcification, leukoencephalopathy, lymphocytosis and increased interferon-α (IFN-α) levels in the patient's cerebrospinal fluid (CSF) and serum. AGS may be caused by mutations in any one of nine genes (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, IFIH1, LSM11 and RNU7-1) that result in accumulation of self-nucleic acids in the cytoplasm or aberrant sensing of self-nucleic acids. This triggers overproduction of type I interferons (IFNs) and subsequently causes AGS, the prototype of type I interferonopathies. This review describes the discovery history of AGS with various genotypes and provides the latest knowledge of clinical manifestations and causative genes of AGS. The relationship between AGS and type I interferonopathy and potential therapeutic methods for AGS are also discussed in this review.
Collapse
Affiliation(s)
- Anran Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
50
|
Heuzé J, Lin YL, Lengronne A, Poli J, Pasero P. Impact of R-loops on oncogene-induced replication stress in cancer cells. C R Biol 2023; 346:95-105. [PMID: 37779381 DOI: 10.5802/crbiol.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 10/03/2023]
Abstract
Replication stress is an alteration in the progression of replication forks caused by a variety of events of endogenous or exogenous origin. In precancerous lesions, this stress is exacerbated by the deregulation of oncogenic pathways, which notably disrupts the coordination between replication and transcription, and leads to genetic instability and cancer development. It is now well established that transcription can interfere with genome replication in different ways, such as head-on collisions between polymerases, accumulation of positive DNA supercoils or formation of R-loops. These structures form during transcription when nascent RNA reanneals with DNA behind the RNA polymerase, forming a stable DNA:RNA hybrid. In this review, we discuss how these different cotranscriptional processes disrupt the progression of replication forks and how they contribute to genetic instability in cancer cells.
Collapse
|