1
|
Matusova Z, Dykstra W, de Pablo Y, Zetterdahl OG, Canals I, van Gelder CAGH, Vos HR, Pérez-Sala D, Kubista M, Abaffy P, Ahlenius H, Valihrach L, Hol EM, Pekny M. Aberrant neurodevelopment in human iPS cell-derived models of Alexander disease. Glia 2025; 73:57-79. [PMID: 39308436 DOI: 10.1002/glia.24618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 12/21/2024]
Abstract
Alexander disease (AxD) is a rare and severe neurodegenerative disorder caused by mutations in glial fibrillary acidic protein (GFAP). While the exact disease mechanism remains unknown, previous studies suggest that mutant GFAP influences many cellular processes, including cytoskeleton stability, mechanosensing, metabolism, and proteasome function. While most studies have primarily focused on GFAP-expressing astrocytes, GFAP is also expressed by radial glia and neural progenitor cells, prompting questions about the impact of GFAP mutations on central nervous system (CNS) development. In this study, we observed impaired differentiation of astrocytes and neurons in co-cultures of astrocytes and neurons, as well as in neural organoids, both generated from AxD patient-derived induced pluripotent stem (iPS) cells with a GFAPR239C mutation. Leveraging single-cell RNA sequencing (scRNA-seq), we identified distinct cell populations and transcriptomic differences between the mutant GFAP cultures and a corrected isogenic control. These findings were supported by results obtained with immunocytochemistry and proteomics. In co-cultures, the GFAPR239C mutation resulted in an increased abundance of immature cells, while in unguided neural organoids and cortical organoids, we observed altered lineage commitment and reduced abundance of astrocytes. Gene expression analysis revealed increased stress susceptibility, cytoskeletal abnormalities, and altered extracellular matrix and cell-cell communication patterns in the AxD cultures, which also exhibited higher cell death after stress. Overall, our results point to altered cell differentiation in AxD patient-derived iPS-cell models, opening new avenues for AxD research.
Collapse
Affiliation(s)
- Zuzana Matusova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Werner Dykstra
- Department of Translational Neuroscience, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Oskar G Zetterdahl
- Stem Cells, Aging and Neurodegeneration Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
- Glial and Neuronal Biology Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Isaac Canals
- Glial and Neuronal Biology Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
- Division of Metabolism, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- ITINERARE-Innovative therapies in rare diseases, University Research Priority Program, University of Zurich, Zurich, Switzerland
| | - Charlotte A G H van Gelder
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Harmjan R Vos
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Henrik Ahlenius
- Stem Cells, Aging and Neurodegeneration Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
2
|
Abdelbasset M, Saron WAA, Ma D, Rathore APS, Kozaki T, Zhong C, Mantri CK, Tan Y, Tung CC, Tey HL, Chu JJH, Chen J, Ng LG, Wang H, Ginhoux F, St John AL. Differential contributions of fetal mononuclear phagocytes to Zika virus neuroinvasion versus neuroprotection during congenital infection. Cell 2024; 187:7511-7532.e20. [PMID: 39532096 DOI: 10.1016/j.cell.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Fetal immune cell functions during congenital infections are poorly understood. Zika virus (ZIKV) can vertically transmit from mother to fetus, causing nervous system infection and congenital ZIKV syndrome (CZS). We identified differential functional roles for fetal monocyte/macrophage cell types and microglia in ZIKV dissemination versus clearance using mouse models. Trafficking of ZIKV-infected primitive macrophages from the yolk sac allowed initial fetal virus inoculation, while recruited monocytes promoted non-productive neuroinflammation. Conversely, brain-resident differentiated microglia were protective, limiting infection and neuronal death. Single-cell RNA sequencing identified transcriptional profiles linked to the protective versus detrimental contributions of mononuclear phagocyte subsets. In human brain organoids, microglia also promoted neuroprotective transcriptional changes and infection clearance. Thus, microglia are protective before birth, contrasting with the disease-enhancing roles of primitive macrophages and monocytes. Differential modulation of myeloid cell phenotypes by genetically divergent ZIKVs underscores the potential of immune cells to regulate diverse outcomes during fetal infections.
Collapse
Affiliation(s)
- Muhammad Abdelbasset
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wilfried A A Saron
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Dongliang Ma
- Neuroscience & Behavioral Disorders Programme, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Abhay P S Rathore
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA
| | - Tatsuya Kozaki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Chengwei Zhong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Chinmay Kumar Mantri
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Yingrou Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore; National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Chi-Ching Tung
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Hong Liang Tey
- National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine affiliated Renji Hospital, Shanghai, China
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore; INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Ashley L St John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA; SingHealth Duke-NUS Global Health Institute, Singapore, Singapore.
| |
Collapse
|
3
|
Nie L, Irwin C, Geahchan S, Singh KK. Human pluripotent stem cell (hPSC)-derived models for autism spectrum disorder drug discovery. Expert Opin Drug Discov 2024:1-19. [PMID: 39718245 DOI: 10.1080/17460441.2024.2416484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/10/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder (NDD) with genetic and environmental origins. Currently, there are no effective pharmacological treatments targeting core ASD features. This leads to unmet medical needs of individuals with ASD and requires relevant human disease models recapitulating genetic and clinical heterogeneity to better understand underlying mechanisms and identify potential pharmacological therapies. Recent advancements in stem cell technology have enabled the generation of human pluripotent stem cell (hPSC)-derived two-dimensional (2D) and three-dimensional (3D) neural models, which serve as powerful tools for ASD modeling and drug discovery. AREAS COVERED This article reviews the applications of hPSC-derived 2D and 3D neural models in studying various forms of ASD using pharmacological perturbation and drug screenings, highlighting the potential use of these models to develop novel pharmacological treatment strategies for ASD. EXPERT OPINION hPSC-derived models recapitulate early human brain development spatiotemporally and have allowed patient-specific mechanistic investigation and therapeutic development using advanced molecular technologies, which will contribute to precision medicine for ASD therapy. Improvements are still required in hPSC-based models to further enhance their physiological relevance, clinical translation, and scalability for ASD drug discovery.
Collapse
Affiliation(s)
- Lingdi Nie
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Courtney Irwin
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sarah Geahchan
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karun K Singh
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Joshy D, Santpere G, Yi SV. Accelerated cell-type-specific regulatory evolution of the human brain. Proc Natl Acad Sci U S A 2024; 121:e2411918121. [PMID: 39680759 DOI: 10.1073/pnas.2411918121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/30/2024] [Indexed: 12/18/2024] Open
Abstract
The molecular basis of human brain evolution is a key piece in understanding the evolution of human-specific cognitive and behavioral traits. Comparative studies have suggested that human brain evolution was accompanied by accelerated changes of gene expression (referred to as "regulatory evolution"), especially those leading to an increase of gene products involved in energy production and metabolism. However, the signals of accelerated regulatory evolution were not always consistent across studies. One confounding factor is the diversity of distinctive cell types in the human brain. Here, we leveraged single-cell human and nonhuman primate transcriptomic data to investigate regulatory evolution at cell-type resolution. We relied on six well-established major cell types: excitatory and inhibitory neurons, astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. We found pervasive signatures of accelerated regulatory evolution in the human brains compared to the chimpanzee brains in the major six cell types, as well as across multiple neuronal subtypes. Moreover, regulatory evolution is highly cell type specific rather than shared between cell types and strongly associated with cellular-level epigenomic features. Evolutionarily differentially expressed genes (DEGs) exhibit greater cell-type specificity than other genes, suggesting their role in the functional specialization of individual cell types in the human brain. As we continue to unfold the cellular complexity of the brain, the actual scope of DEGs in the human brain appears to be much broader than previously estimated. Our study supports the acceleration of cell-type-specific functional programs as an important feature of human brain evolution.
Collapse
Affiliation(s)
- Dennis Joshy
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106
| | - Gabriel Santpere
- Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Catalonia, Spain
| | - Soojin V Yi
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106
- Department of Ecology, Evolution, Marine Biology, University of California, Santa Barbara, CA 93106
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106
| |
Collapse
|
5
|
Huang X, Kumarage P, Sandoval S, Zhao X, Wang D. Protocol for comparative gene expression data analysis between brains and organoids using a cloud-based web app. STAR Protoc 2024; 5:103375. [PMID: 39392746 DOI: 10.1016/j.xpro.2024.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024] Open
Abstract
Here, we present a protocol for using Brain and Organoid Manifold Alignment (BOMA), a cloud-based web app for comparative gene expression data analysis between brains and organoids. We describe steps for performing a global alignment of developmental gene expression data from both brains and organoids. We then detail procedures for investigating both shared and distinctive developmental pathways across brains and organoids by refining alignment locally using manifold learning. This protocol is applicable for working with single-cell and bulk RNA sequencing data. For complete details on the use and execution of this protocol, please refer to He et al.1.
Collapse
Affiliation(s)
- Xiang Huang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Pubudu Kumarage
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Soraya Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
6
|
Ramani A, Pasquini G, Gerkau NJ, Jadhav V, Vinchure OS, Altinisik N, Windoffer H, Muller S, Rothenaigner I, Lin S, Mariappan A, Rathinam D, Mirsaidi A, Goureau O, Ricci-Vitiani L, D'Alessandris QG, Wollnik B, Muotri A, Freifeld L, Jurisch-Yaksi N, Pallini R, Rose CR, Busskamp V, Gabriel E, Hadian K, Gopalakrishnan J. Reliability of high-quantity human brain organoids for modeling microcephaly, glioma invasion and drug screening. Nat Commun 2024; 15:10703. [PMID: 39702477 DOI: 10.1038/s41467-024-55226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Brain organoids offer unprecedented insights into brain development and disease modeling and hold promise for drug screening. Significant hindrances, however, are morphological and cellular heterogeneity, inter-organoid size differences, cellular stress, and poor reproducibility. Here, we describe a method that reproducibly generates thousands of organoids across multiple hiPSC lines. These High Quantity brain organoids (Hi-Q brain organoids) exhibit reproducible cytoarchitecture, cell diversity, and functionality, are free from ectopically active cellular stress pathways, and allow cryopreservation and re-culturing. Patient-derived Hi-Q brain organoids recapitulate distinct forms of developmental defects: primary microcephaly due to a mutation in CDK5RAP2 and progeria-associated defects of Cockayne syndrome. Hi-Q brain organoids displayed a reproducible invasion pattern for a given patient-derived glioma cell line. This enabled a medium-throughput drug screen to identify Selumetinib and Fulvestrant, as inhibitors of glioma invasion in vivo. Thus, the Hi-Q approach can easily be adapted to reliably harness brain organoids' application for personalized neurogenetic disease modeling and drug discovery.
Collapse
Affiliation(s)
- Anand Ramani
- Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany
| | - Giovanni Pasquini
- Department of Ophthalmology, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Niklas J Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Vaibhav Jadhav
- Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany
| | - Omkar Suhas Vinchure
- Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany
| | - Nazlican Altinisik
- Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany
| | - Hannes Windoffer
- Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany
| | - Sarah Muller
- Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany
| | - Ina Rothenaigner
- Research Unit Signaling and Translation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Sean Lin
- Research Unit Signaling and Translation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Aruljothi Mariappan
- Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany
| | - Dhanasekaran Rathinam
- Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany
| | | | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012, Paris, France
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Alysson Muotri
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital-San Diego, San Diego, USA
- Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093, MC 0695, USA
| | - Limor Freifeld
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Roberto Pallini
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Volker Busskamp
- Department of Ophthalmology, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Elke Gabriel
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Kamyar Hadian
- Research Unit Signaling and Translation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany.
| |
Collapse
|
7
|
Luo S, Wang PY, Zhou P, Zhang WJ, Gu YJ, Liang XY, Zhang JW, Luo JX, Zhang HW, Lan S, Zhang TT, Yang JH, Sun SZ, Guo XY, Wang JL, Deng LF, Xu ZH, Jin L, He YY, Ye ZL, Gu WY, Li BM, Shi YW, Liu XR, Yan HJ, Yi YH, Jiang YW, Mao X, Li WL, Meng H, Liao WP. Variants in EP400, encoding a chromatin remodeler, cause epilepsy with neurodevelopmental disorders. Am J Hum Genet 2024:S0002-9297(24)00419-1. [PMID: 39708813 DOI: 10.1016/j.ajhg.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024] Open
Abstract
EP400 encodes a core catalytic ATPase subunit of ATP-dependent chromatin remodeling complexes. The gene-disease association of EP400 is undetermined. In this study, we performed trio-based whole-exome sequencing in a cohort of 402 families with epilepsy and neurodevelopmental disorders (NDDs) and identified compound heterozygous EP400 variants in six unrelated individuals. Six additional EP400 individuals were recruited via the match platform of China, including two de novo heterozygous and four compound heterozygous variants. The individual with a heterozygous de novo frameshift variant presented with NDDs, while the others exhibited epilepsy and NDDs, explained by the damaged genetic dependence quantity. EP400 presented significantly higher excesses of variants in the individuals. Clustering analysis revealed that the majority paralogs of EP400 were associated with NDDs/epilepsy and co-expressed highly with EP400. Analysis of the spatiotemporal expression indicated that EP400 is highly expressed in the developing brain and cells during differentiation, indicating its vital role in neurodevelopment; EP400 is predominantly expressed in inhibitory neurons in the early stage but in excitatory neurons in the mature stage. The development-dependent expression pattern of neuron specificity explained the favorable outcome of epilepsy. Knockdown of EP400 ortholog in Drosophila caused significantly increased susceptibility to seizures and abnormal neuronal firing. The ep400 crispant zebrafish exhibited brain developmental abnormalities, poorer adaptability, lower response to stimulation, epileptic discharges, abnormal cellular apoptosis, and increased susceptibility to seizures. Transcriptome analysis showed that ep400 deficiency caused expressional dysregulation of 84 epilepsy/NDD-associated genes, including 11 highly dose-sensitive genes. This study identified EP400 as a causative gene of epilepsy/NDDs.
Collapse
Affiliation(s)
- Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Peng-Yu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Wen-Jun Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yu-Jie Gu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Xiao-Yu Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Jing-Wen Zhang
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jun-Xia Luo
- Epilepsy Center, Qilu Children's Hospital of Shandong University, Jinan 250000, Shandong, China
| | - Hong-Wei Zhang
- Epilepsy Center, Qilu Children's Hospital of Shandong University, Jinan 250000, Shandong, China
| | - Song Lan
- Department of Neurology, Maoming People's Hospital, Maoming 525000, Guangdong, China
| | - Ting-Ting Zhang
- Department of Psychology, Guangdong Sanjiu Brain Hospital, Guangzhou 510440, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie-Hua Yang
- Department of Neurology, Second Affiliated Hospital of Shantou University, Shantou 515000, Guangdong, China
| | - Su-Zhen Sun
- Department of Neurology, Hebei Children's Hospital, Shijiazhuang 050000, Hebei, China
| | - Xiang-Yang Guo
- Department of Pediatrics, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Ju-Li Wang
- Epilepsy Center, Jiamusi Central Hospital, Jiamusi 154002, Heilongjiang, China
| | - Lin-Fan Deng
- Department of Pediatrics, Mianyang Central Hospital, Mianyang 621000, Sichuan, China
| | - Ze-Hai Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Liang Jin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yun-Yan He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Zi-Long Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Wei-Yue Gu
- Beijing Chigene Translational Medicine Research Center Co., Ltd., Beijing 100000, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yi-Wu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Hong-Jun Yan
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou 510440, Guangdong, China
| | - Yong-Hong Yi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yu-Wu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiao Mao
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Wen-Ling Li
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Heng Meng
- Department of Neurology, the First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Avenue, Guangzhou, China.
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China.
| |
Collapse
|
8
|
Birtele M, Lancaster M, Quadrato G. Modelling human brain development and disease with organoids. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00804-1. [PMID: 39668188 DOI: 10.1038/s41580-024-00804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/14/2024]
Abstract
Organoids are systems derived from pluripotent stem cells at the interface between traditional monolayer cultures and in vivo animal models. The structural and functional characteristics of organoids enable the modelling of early stages of brain development in a physiologically relevant 3D environment. Moreover, organoids constitute a tool with which to analyse how individual genetic variation contributes to the susceptibility and progression of neurodevelopmental disorders. This Roadmap article describes the features of brain organoids, focusing on the neocortex, and their advantages and limitations - in comparison with other model systems - for the study of brain development, evolution and disease. We highlight avenues for enhancing the physiological relevance of brain organoids by integrating bioengineering techniques and unbiased high-throughput analyses, and discuss future applications. As organoids advance in mimicking human brain functions, we address the ethical and societal implications of this technology.
Collapse
Affiliation(s)
- Marcella Birtele
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Madeline Lancaster
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Giorgia Quadrato
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Yuan J, Dong K, Wu H, Zeng X, Liu X, Liu Y, Dai J, Yin J, Chen Y, Guo Y, Luo W, Liu N, Sun Y, Zhang S, Su B. Single-nucleus multi-omics analyses reveal cellular and molecular innovations in the anterior cingulate cortex during primate evolution. CELL GENOMICS 2024; 4:100703. [PMID: 39631404 DOI: 10.1016/j.xgen.2024.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/17/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
The anterior cingulate cortex (ACC) of the human brain is involved in higher-level cognitive functions such as emotion and self-awareness. We generated profiles of human and macaque ACC gene expression and chromatin accessibility at single-nucleus resolution. We characterized the conserved patterns of gene expression, chromatin accessibility, and transcription factor binding in different cell types. Combining the published mouse data, we discovered the molecular identities and cell-lineage origin of the primate von Economo neurons (VENs). Our in vitro and in vivo experiments identified a group of primate-shared and human-specific VEN marker genes, such as PCSK6, ADAMTSL3, and CDHR3, potentially contributing to VEN morphogenesis. We demonstrated that the human-specific sequence changes account for the cellular and functional innovations in the ACC during primate evolution and human origin. These findings provide new insights into understanding the cellular composition and molecular regulation of ACC and its evolutionary role in shaping human-owned higher cognitive skills.
Collapse
Affiliation(s)
- Jiamiao Yuan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Kangning Dong
- School of Mathematics, Renmin University of China, Beijing 100872, China; NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixu Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xuerui Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xingyan Liu
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan 430074, China; Chinese Brain Bank Center, South-Central Minzu University, Wuhan 430074, China
| | - Jichao Yin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yongjie Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wenhao Luo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Na Liu
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan 430074, China; Chinese Brain Bank Center, South-Central Minzu University, Wuhan 430074, China
| | - Yan Sun
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan 430074, China; Chinese Brain Bank Center, South-Central Minzu University, Wuhan 430074, China
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
10
|
Hu T, Kong Y, Tan Y, Ma P, Wang J, Sun X, Xiang K, Mao B, Wu Q, Yi SV, Shi L. Cis-Regulatory Evolution of CCNB1IP1 Driving Gradual Increase of Cortical Size and Folding in primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.08.627376. [PMID: 39713381 PMCID: PMC11661109 DOI: 10.1101/2024.12.08.627376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Neocortex expansion has a concerted relationship with folding, underlying evolution of human cognitive functions. However, molecular mechanisms underlying this significant evolutionary process remains unknown. Here, using tree shrew as an outgroup of primates, we identify a new regulator CCNB1IP1, which acquired its expression before the emergence of primates. Following the evolution of cis-regulatory elements, the CCNB1IP1 expression has steadily increased over the course of primate brain evolution, mirroring the gradual increase of neocortex. Mechanistically, we elucidated that CCNB1IP1 expression can cause an increase in neural progenitors through shortening G1 phase. Consistently, the CCNB1IP1 knock-in mouse model exhibited traits associated with enhanced learning and memory abilities. Together, our study reveals how changes in CCNB1IP1 expression may have contributed to the gradual evolution in primate brain.
Collapse
Affiliation(s)
- Ting Hu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, P.R. China
| | - Yifan Kong
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, P.R. China
| | - Yulian Tan
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, P.R. China
| | - Pengcheng Ma
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, P.R. China
| | - Jianhong Wang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, P.R. China
| | - Xuelian Sun
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Kun Xiang
- The First People’s Hospital of Yunnan Province, Kunming, Yunnan, 650034, P.R. China
| | - Bingyu Mao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, P.R. China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Qingfeng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing 100045, China
| | - Soojin V. Yi
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Lei Shi
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, P.R. China
| |
Collapse
|
11
|
Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q, Song G. Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther 2024; 9:340. [PMID: 39627201 PMCID: PMC11615378 DOI: 10.1038/s41392-024-02030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
The dynamic regulation of chromatin accessibility is one of the prominent characteristics of eukaryotic genome. The inaccessible regions are mainly located in heterochromatin, which is multilevel compressed and access restricted. The remaining accessible loci are generally located in the euchromatin, which have less nucleosome occupancy and higher regulatory activity. The opening of chromatin is the most important prerequisite for DNA transcription, replication, and damage repair, which is regulated by genetic, epigenetic, environmental, and other factors, playing a vital role in multiple biological progresses. Currently, based on the susceptibility difference of occupied or free DNA to enzymatic cleavage, solubility, methylation, and transposition, there are many methods to detect chromatin accessibility both in bulk and single-cell level. Through combining with high-throughput sequencing, the genome-wide chromatin accessibility landscape of many tissues and cells types also have been constructed. The chromatin accessibility feature is distinct in different tissues and biological states. Research on the regulation network of chromatin accessibility is crucial for uncovering the secret of various biological processes. In this review, we comprehensively introduced the major functions and mechanisms of chromatin accessibility variation in different physiological and pathological processes, meanwhile, the targeted therapies based on chromatin dynamics regulation are also summarized.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yong Li
- Hepatobiliary Pancreatic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lingli Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
12
|
Ambrozkiewicz MC, Lorenz S. Understanding ubiquitination in neurodevelopment by integrating insights across space and time. Nat Struct Mol Biol 2024:10.1038/s41594-024-01422-3. [PMID: 39633012 DOI: 10.1038/s41594-024-01422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024]
Abstract
Ubiquitination regulates a myriad of eukaryotic signaling cascades by modifying substrate proteins, thereby determining their functions and fates. In this perspective, we discuss current challenges in investigating the ubiquitin system in the developing brain. We foster the concept that ubiquitination pathways are spatiotemporally regulated and tightly intertwined with molecular and cellular transitions during neurogenesis and neural circuit assembly. Focusing on the neurologically highly relevant class of homologous to E6AP C-terminus (HECT) ubiquitin ligases, we propose cross-disciplinary translational approaches bridging state-of-the-art cell biology, proteomics, biochemistry, structural biology and neuroscience to dissect ubiquitination in neurodevelopment and its specific perturbations in brain diseases. We highlight that a comprehensive understanding of ubiquitin signaling in the brain may reveal new horizons in basic neuroscience and clinical applications.
Collapse
Affiliation(s)
- Mateusz C Ambrozkiewicz
- Institute of Cell Biology and Neurobiology, Research Group 'Proteostasis', Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, Germany.
| | - Sonja Lorenz
- Max Planck Institute for Multidisciplinary Sciences, Research Group 'Ubiquitin Signaling Specificity', Am Fassberg 11, Göttingen, Germany.
| |
Collapse
|
13
|
Adameyko I, Bakken T, Bhaduri A, Chhatbar C, Filbin MG, Gate D, Hochgerner H, Kim CN, Krull J, La Manno G, Li Q, Linnarsson S, Ma Q, Mayer C, Menon V, Nano P, Prinz M, Quake S, Walsh CA, Yang J, Bayraktar OA, Gokce O, Habib N, Konopka G, Liddelow SA, Nowakowski TJ. Applying single-cell and single-nucleus genomics to studies of cellular heterogeneity and cell fate transitions in the nervous system. Nat Neurosci 2024; 27:2278-2291. [PMID: 39627588 DOI: 10.1038/s41593-024-01827-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/22/2024] [Indexed: 12/13/2024]
Abstract
Single-cell and single-nucleus genomic approaches can provide unbiased and multimodal insights. Here, we discuss what constitutes a molecular cell atlas and how to leverage single-cell omics data to generate hypotheses and gain insights into cell transitions in development and disease of the nervous system. We share points of reflection on what to consider during study design and implementation as well as limitations and pitfalls.
Collapse
Affiliation(s)
- Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Aparna Bhaduri
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Chintan Chhatbar
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, MA, USA
| | - David Gate
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hannah Hochgerner
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Chang Nam Kim
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Jordan Krull
- Department of Biomedical Informatics, College of Medicine, the Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, the James Comprehensive Cancer Center, the Ohio State University, Columbus, OH, USA
| | - Gioele La Manno
- Laboratory of Neurodevelopmental Systems Biology, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Qingyun Li
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, the Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, the James Comprehensive Cancer Center, the Ohio State University, Columbus, OH, USA
| | - Christian Mayer
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Patricia Nano
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Steve Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Jin Yang
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | - Ozgun Gokce
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Naomi Habib
- The Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Wang H, Li X, You X, Zhao G. Harnessing the power of artificial intelligence for human living organoid research. Bioact Mater 2024; 42:140-164. [PMID: 39280585 PMCID: PMC11402070 DOI: 10.1016/j.bioactmat.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
As a powerful paradigm, artificial intelligence (AI) is rapidly impacting every aspect of our day-to-day life and scientific research through interdisciplinary transformations. Living human organoids (LOs) have a great potential for in vitro reshaping many aspects of in vivo true human organs, including organ development, disease occurrence, and drug responses. To date, AI has driven the revolutionary advances of human organoids in life science, precision medicine and pharmaceutical science in an unprecedented way. Herein, we provide a forward-looking review, the frontiers of LOs, covering the engineered construction strategies and multidisciplinary technologies for developing LOs, highlighting the cutting-edge achievements and the prospective applications of AI in LOs, particularly in biological study, disease occurrence, disease diagnosis and prediction and drug screening in preclinical assay. Moreover, we shed light on the new research trends harnessing the power of AI for LO research in the context of multidisciplinary technologies. The aim of this paper is to motivate researchers to explore organ function throughout the human life cycle, narrow the gap between in vitro microphysiological models and the real human body, accurately predict human-related responses to external stimuli (cues and drugs), accelerate the preclinical-to-clinical transformation, and ultimately enhance the health and well-being of patients.
Collapse
Affiliation(s)
- Hui Wang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
| | - Xiangyang Li
- Henan Engineering Research Center of Food Microbiology, College of food and bioengineering, Henan University of Science and Technology, Luoyang, 471023, PR China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, PR China
| | - Xiaoyan You
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
- Henan Engineering Research Center of Food Microbiology, College of food and bioengineering, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Guoping Zhao
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, PR China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, PR China
| |
Collapse
|
15
|
Tynianskaia L, Heide M. Human-specific genetic hallmarks in neocortical development: focus on neural progenitors. Curr Opin Genet Dev 2024; 89:102267. [PMID: 39378630 DOI: 10.1016/j.gde.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/07/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024]
Abstract
The evolutionary expansion of the neocortex in the ape lineage is the basis for the development of higher cognitive abilities. However, the human brain has uniquely increased in size and degree of folding, forming an essential foundation for advanced cognitive functions. This raises the question: what factors distinguish humans from our closest living primate relatives, such as chimpanzees and bonobos, which exhibit comparatively constrained cognitive capabilities? In this review, we focus on recent studies examining (modern) human-specific genetic traits that influence neural progenitor cells, whose behavior and activity are crucial for shaping cortical morphology. We emphasize the role of human-specific genetic modifications in signaling pathways that enhance the abundance of apical and basal progenitors, as well as the importance of basal progenitor metabolism in their proliferation in human. Additionally, we discuss how changes in neuron morphology contribute to the evolution of human cognition and provide our perspective on future directions in the field.
Collapse
Affiliation(s)
- Lidiia Tynianskaia
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany. https://twitter.com/@TynTynSci
| | - Michael Heide
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.
| |
Collapse
|
16
|
Lin CC'J, Tian Y, Tanzi RE, Jorfi M. Approaches for studying neuroimmune interactions in Alzheimer's disease. Trends Immunol 2024; 45:971-986. [PMID: 39537528 PMCID: PMC11624993 DOI: 10.1016/j.it.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Peripheral immune cells play an important role in the pathology of Alzheimer's disease (AD), impacting processes such as amyloid and tau protein aggregation, glial activation, neuronal integrity, and cognitive decline. Here, we examine cutting-edge strategies - encompassing animal and cellular models - used to investigate the roles of peripheral immune cells in AD. Approaches such as antibody-mediated depletion, genetic ablation, and bone marrow chimeras in mouse models have been instrumental in uncovering T, B, and innate immune cell disease-modifying functions. However, challenges such as specificity, off-target effects, and differences between human and mouse immune systems underscore the need for more human-relevant models. Emerging multicellular models replicating critical aspects of human brain tissue and neuroimmune interactions increasingly offer fresh insights into the role of immune cells in AD pathogenesis. Refining these methodologies can deepen our understanding of immune cell contributions to AD and support the development of novel immune-related therapeutic interventions.
Collapse
Affiliation(s)
- Chih-Chung 'Jerry' Lin
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yuyao Tian
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Mehdi Jorfi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
17
|
Baumgartner M, Ji Y, Noonan JP. Reconstructing human-specific regulatory functions in model systems. Curr Opin Genet Dev 2024; 89:102259. [PMID: 39270593 PMCID: PMC11588545 DOI: 10.1016/j.gde.2024.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
Uniquely human physical traits, such as an expanded cerebral cortex and changes in limb morphology that allow us to use tools and walk upright, are in part due to human-specific genetic changes that altered when, where, and how genes are expressed during development. Over 20 000 putative regulatory elements with potential human-specific functions have been discovered. Understanding how these elements contributed to human evolution requires identifying candidates most likely to have shaped human traits, then studying them in genetically modified animal models. Here, we review the progress and challenges in generating and studying such models and propose a pathway for advancing the field. Finally, we highlight that large-scale collaborations across multiple research domains are essential to decipher what makes us human.
Collapse
Affiliation(s)
| | - Yu Ji
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510 USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
18
|
Werner JM, Gillis J. Meta-analysis of single-cell RNA sequencing co-expression in human neural organoids reveals their high variability in recapitulating primary tissue. PLoS Biol 2024; 22:e3002912. [PMID: 39621752 PMCID: PMC11637388 DOI: 10.1371/journal.pbio.3002912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2024] [Accepted: 10/24/2024] [Indexed: 12/14/2024] Open
Abstract
Human neural organoids offer an exciting opportunity for studying inaccessible human-specific brain development; however, it remains unclear how precisely organoids recapitulate fetal/primary tissue biology. We characterize field-wide replicability and biological fidelity through a meta-analysis of single-cell RNA-sequencing data for first and second trimester human primary brain (2.95 million cells, 51 data sets) and neural organoids (1.59 million cells, 173 data sets). We quantify the degree primary tissue cell type marker expression and co-expression are recapitulated in organoids across 10 different protocol types. By quantifying gene-level preservation of primary tissue co-expression, we show neural organoids lie on a spectrum ranging from virtually no signal to co-expression indistinguishable from primary tissue, demonstrating a high degree of variability in biological fidelity among organoid systems. Our preserved co-expression framework provides cell type-specific measures of fidelity applicable to diverse neural organoids, offering a powerful tool for uncovering unifying axes of variation across heterogeneous neural organoid experiments.
Collapse
Affiliation(s)
- Jonathan M. Werner
- The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Jesse Gillis
- The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Fair T, Pavlovic BJ, Swope D, Castillo OE, Schaefer NK, Pollen AA. Mapping cis- and trans-regulatory target genes of human-specific deletions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573461. [PMID: 38234800 PMCID: PMC10793408 DOI: 10.1101/2023.12.27.573461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Deletion of functional sequence is predicted to represent a fundamental mechanism of molecular evolution1,2. Comparative genetic studies of primates2,3 have identified thousands of human-specific deletions (hDels), and the cis-regulatory potential of short (≤31 base pairs) hDels has been assessed using reporter assays4. However, how structural variant-sized (≥50 base pairs) hDels influence molecular and cellular processes in their native genomic contexts remains unexplored. Here, we design genome-scale libraries of single-guide RNAs targeting 7.2 megabases of sequence in 6,358 hDels and present a systematic CRISPR interference (CRISPRi) screening approach to identify hDels that modify cellular proliferation in chimpanzee pluripotent stem cells. By intersecting hDels with chromatin state features and performing single-cell CRISPRi (Perturb-seq) to identify their cis- and trans-regulatory target genes, we discovered 20 hDels controlling gene expression. We highlight two hDels, hDel_2247 and hDel_585, with tissue-specific activity in the brain. Our findings reveal a molecular and cellular role for sequences lost in the human lineage and establish a framework for functionally interrogating human-specific genetic variants.
Collapse
Affiliation(s)
- Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Bryan J Pavlovic
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Dani Swope
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Octavio E Castillo
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Nathan K Schaefer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
20
|
Colonna M, Konopka G, Liddelow SA, Nowakowski T, Awatramani R, Bateup HS, Cadwell CR, Caglayan E, Chen JL, Gillis J, Kampmann M, Krienen F, Marsh SE, Monje M, O'Dea MR, Patani R, Pollen AA, Quintana FJ, Scavuzzo M, Schmitz M, Sloan SA, Tesar PJ, Tollkuhn J, Tosches MA, Urbanek ME, Werner JM, Bayraktar OA, Gokce O, Habib N. Implementation and validation of single-cell genomics experiments in neuroscience. Nat Neurosci 2024; 27:2310-2325. [PMID: 39627589 DOI: 10.1038/s41593-024-01814-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/15/2024] [Indexed: 12/13/2024]
Abstract
Single-cell or single-nucleus transcriptomics is a powerful tool for identifying cell types and cell states. However, hypotheses derived from these assays, including gene expression information, require validation, and their functional relevance needs to be established. The choice of validation depends on numerous factors. Here, we present types of orthogonal and functional validation experiment to strengthen preliminary findings obtained using single-cell and single-nucleus transcriptomics as well as the challenges and limitations of these approaches.
Collapse
Affiliation(s)
- Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Genevieve Konopka
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Tomasz Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
| | - Rajeshwar Awatramani
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, USA
| | - Helen S Bateup
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Cathryn R Cadwell
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Emre Caglayan
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jerry L Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Center for Neurophotonics, Boston University, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Jesse Gillis
- Department of Physiology and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Fenna Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Samuel E Marsh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Michael R O'Dea
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, Human Stem Cells and Neurodegeneration Laboratory, London, UK
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marissa Scavuzzo
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, OH, USA
- Institute for Glial Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matthew Schmitz
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, OH, USA
- Institute for Glial Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | - Madeleine E Urbanek
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan M Werner
- Department of Physiology and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Ozgun Gokce
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Naomi Habib
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
21
|
Shan Z, Zhao Y, Chen X, Zhan G, Huang J, Yang X, Xu C, Guo N, Xiong Z, Wu F, Liu Y, Liu H, Chen B, Chen B, Sun J, He J, Guo Y, Cao S, Wu K, Mao R, Wu G, Lin L, Zou X, Wang J, Chen J. KMT2D deficiency leads to cellular developmental disorders and enhancer dysregulation in neural-crest-containing brain organoids. Sci Bull (Beijing) 2024; 69:3533-3546. [PMID: 39327125 DOI: 10.1016/j.scib.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/15/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024]
Abstract
KMT2D, a H3K4me1 methyltransferase primarily regulating enhancers, is a leading cause of KABUKI syndrome. This multisystem disorder leads to craniofacial and cognitive abnormalities, possibly through neural crest and neuronal lineages. However, the impacted cell-of-origin and molecular mechanism of KMT2D during the development of KABUKI disease remains unknown. Here we have optimized a brain organoid model to investigate neural crest and neuronal differentiation. To pinpoint KMT2D's enhancer target, we developed a genome-wide cis-regulatory element explorer (GREE) based on single-cell multiomic integration. Single cell RNA-seq revealed that KMT2D-knockout (KO) and patient-derived organoids exhibited neural crest deformities and GABAergic overproduction. Mechanistically, GREE identified that KMT2D targets a roof-plate-like niche cell and activates the niche cell-specific WNT3A enhancer, providing the microenvironment for neural crest and neuronal development. Interestingly, KMT2D-mutated mice displayed decreased WNT3A expression in the diencephalon roof plate, indicating impaired niche cell function. Deleting the WNT3A enhancer in the organoids presented phenotypic similarities to KMT2D-depletion, emphasizing the WNT3A enhancer as the predominant target of KMT2D. Conversely, reactivating WNT signaling in KMT2D-KO rescued the lineage defects by restoring the microenvironment. Overall, our discovery of KMT2D's primary target provides insights for reconciling complex phenotypes of KABUKI syndrome and establishes a new paradigm for dissecting the mechanisms of genetic disorders from genotype to phenotype.
Collapse
Affiliation(s)
- Ziyun Shan
- Center for Cell Lineage and Development, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Zhao
- Center for Cell Lineage and Development, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong 999077, China
| | - Xiuyu Chen
- Center for Cell Lineage and Development, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Zhan
- Child Development and Behavior Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Junju Huang
- Center for Cell Lineage and Development, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou 511436, China
| | - Xuejie Yang
- Center for Cell Lineage and Development, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chongshen Xu
- Center for Cell Lineage and Development, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ning Guo
- Center for Cell Lineage and Development, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou 511436, China
| | - Zhi Xiong
- Center for Cell Lineage and Development, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Laboratory, Guangzhou 510005, China
| | - Fang Wu
- Center for Cell Lineage and Development, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujian Liu
- Center for Cell Lineage and Development, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - He Liu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou 510005, China; The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Biyuan Chen
- Child Development and Behavior Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Bingqiu Chen
- Center for Cell Lineage and Development, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jiangping He
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou 510005, China; Guangzhou Laboratory, Guangzhou 510005, China
| | - Yiping Guo
- Center for Cell Lineage and Development, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | - Kaixin Wu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou 510005, China
| | - Rui Mao
- Animal Research Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | - Lihui Lin
- Center for Cell Lineage and Development, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaobing Zou
- Child Development and Behavior Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Jie Wang
- Center for Cell Lineage and Development, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Jiekai Chen
- Center for Cell Lineage and Development, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong 999077, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou 510005, China; Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
22
|
Katikaneni A, Lowe CB. Novelty versus innovation of gene regulatory elements in human evolution and disease. Curr Opin Genet Dev 2024; 90:102279. [PMID: 39591813 DOI: 10.1016/j.gde.2024.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
It is not currently understood how much of human evolution is due to modifying existing functional elements in the genome versus forging novel elements from nonfunctional DNA. Many early experiments that aimed to assign genetic changes on the human lineage to their resulting phenotypic change have focused on mutations that modify existing elements. However, a number of recent studies have highlighted the potential ease and importance of forging novel gene regulatory elements from nonfunctional sequences on the human lineage. In this review, we distinguish gene regulatory element novelty from innovation. We propose definitions for these terms and emphasize their importance in studying the genetic basis of human uniqueness. We discuss why the forging of novel regulatory elements may have been less emphasized during the previous decades, and why novel regulatory elements are likely to play a significant role in both human adaptation and disease.
Collapse
Affiliation(s)
- Anushka Katikaneni
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
23
|
Han X, He Y, Wang Y, Hu W, Chu C, Huang L, Hong Y, Han L, Zhang X, Gao Y, Lin Y, Ma H, Shen H, Ke X, Liu Y, Hu Z. Deficiency of FABP7 Triggers Premature Neural Differentiation in Idiopathic Normocephalic Autism Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406849. [PMID: 39556706 DOI: 10.1002/advs.202406849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/30/2024] [Indexed: 11/20/2024]
Abstract
Autism spectrum disorder (ASD), which is caused by heterogeneous genetic and environmental factors, is characterized by diverse clinical phenotypes linked to distinct pathological mechanisms. ASD individuals with a shared clinical phenotype might contribute to revealing the molecular mechanism underlying ASD progression. Here, it is generated induced pluripotent stem cell (iPSC)-derived cerebral organoids from normocephalic individuals with ASD in a prospective birth cohort with a shared clinical diagnosis. Multiple cell lines and time series scRNA-seq combined with a histomorphological analysis revealed premature neural differentiation of neural stem cells (NSCs) and decreased expression of Fatty acid binding protein 7 (FABP7) in ASD organoids. It is subsequently revealed alterations in the phosphorylation levels of Mitogen-Activated Protein Kinase Kinase 1/2 (MEK1/2), which are downstream of FABP7, and the regulation of the FABP7/MEK pathway reversed improper neural differentiation in the ASD organoids. Moreover, both Fabp7-knockdown and MEK2-overexpressing mice exhibited repetitive stereotyped behaviors and social defects relevant to autism. This study reveals the role of the FABP7/MEK pathway in abnormal NSC differentiation in normocephalic individuals with ASD, which might provide a promising therapeutic target for ASD treatment.
Collapse
Affiliation(s)
- Xiao Han
- Interdisciplinary Inno Center for Organoids, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
- Institute of Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Innovation Center of Suzhou, Nanjing Medical University, Suzhou, 215000, China
| | - Yuanlin He
- Interdisciplinary Inno Center for Organoids, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Innovation Center of Suzhou, Nanjing Medical University, Suzhou, 215000, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuanhao Wang
- Interdisciplinary Inno Center for Organoids, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
- Institute of Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Wenzhu Hu
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chu Chu
- Institute of Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Lei Huang
- Interdisciplinary Inno Center for Organoids, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuan Hong
- Institute of Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Lu Han
- Autism Research Center, State Key Laboratory of Reproductive Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xu Zhang
- Interdisciplinary Inno Center for Organoids, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yao Gao
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuan Lin
- Interdisciplinary Inno Center for Organoids, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongxia Ma
- Interdisciplinary Inno Center for Organoids, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyan Ke
- Autism Research Center, State Key Laboratory of Reproductive Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yan Liu
- Interdisciplinary Inno Center for Organoids, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
- Institute of Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Innovation Center of Suzhou, Nanjing Medical University, Suzhou, 215000, China
| | - Zhibin Hu
- Interdisciplinary Inno Center for Organoids, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Innovation Center of Suzhou, Nanjing Medical University, Suzhou, 215000, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
24
|
Nolbrant S, Wallace JL, Ding J, Zhu T, Sevetson JL, Kajtez J, Baldacci IA, Corrigan EK, Hoglin K, McMullen R, Schmitz MT, Breevoort A, Swope D, Wu F, Pavlovic BJ, Salama SR, Kirkeby A, Huang H, Schaefer NK, Pollen AA. INTERSPECIES ORGANOIDS REVEAL HUMAN-SPECIFIC MOLECULAR FEATURES OF DOPAMINERGIC NEURON DEVELOPMENT AND VULNERABILITY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623592. [PMID: 39605599 PMCID: PMC11601475 DOI: 10.1101/2024.11.14.623592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The disproportionate expansion of telencephalic structures during human evolution involved tradeoffs that imposed greater connectivity and metabolic demands on midbrain dopaminergic neurons. Despite the central role of dopaminergic neurons in human-enriched disorders, molecular specializations associated with human-specific features and vulnerabilities of the dopaminergic system remain unexplored. Here, we establish a phylogeny-in-a-dish approach to examine gene regulatory evolution by differentiating pools of human, chimpanzee, orangutan, and macaque pluripotent stem cells into ventral midbrain organoids capable of forming long-range projections, spontaneous activity, and dopamine release. We identify human-specific gene expression changes related to axonal transport of mitochondria and reactive oxygen species buffering and candidate cis- and trans-regulatory mechanisms underlying gene expression divergence. Our findings are consistent with a model of evolved neuroprotection in response to tradeoffs related to brain expansion and could contribute to the discovery of therapeutic targets and strategies for treating disorders involving the dopaminergic system.
Collapse
Affiliation(s)
- Sara Nolbrant
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Jenelle L. Wallace
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Jingwen Ding
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Tianjia Zhu
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Jess L. Sevetson
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Cruz, CA, United States of America
- Genomics Institute, University of California Santa Cruz, CA, United States of America
| | - Janko Kajtez
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW)), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Isabella A. Baldacci
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Emily K. Corrigan
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Kaylynn Hoglin
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Reed McMullen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew T. Schmitz
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Arnar Breevoort
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Dani Swope
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Fengxia Wu
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Anatomy and Neurobiology, Shandong University, Jinan, Shandong Province, China
| | - Bryan J. Pavlovic
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Sofie R. Salama
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Cruz, CA, United States of America
- Genomics Institute, University of California Santa Cruz, CA, United States of America
| | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW)), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Hao Huang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Nathan K. Schaefer
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Alex A. Pollen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Lead contact
| |
Collapse
|
25
|
LaNoce E, Zhang DY, Garcia-Epelboim A, Su Y, Sun Y, Alepa G, Angelucci AR, Akay-Espinoza C, Jordan-Sciutto KL, Song H, Ming GL, Christian KM. Exposure to the antiretroviral drug dolutegravir impairs structure and neurogenesis in a forebrain organoid model of human embryonic cortical development. Front Mol Neurosci 2024; 17:1459877. [PMID: 39569018 PMCID: PMC11576471 DOI: 10.3389/fnmol.2024.1459877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/13/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction For many therapeutic drugs, including antiretroviral drugs used to treat people living with HIV-1 (PLWH), we have little data on the potential effects on the developing human brain due to limited access to tissue and historical constraints on the inclusion of pregnant populations in clinical trials. Human induced pluripotent stem cells (iPSCs) offer a new avenue to gain insight on how drugs may impact human cell types representative of the developing central nervous system. To prevent vertical transmission of HIV and promote the health of pregnant PLWH, antiretroviral therapy must be initiated and/or maintained throughout pregnancy. However, many antiretroviral drugs are approved for widespread use following clinical testing only in non-pregnant populations and there may be limited information on potential teratogenicity until pregnancy outcomes are evaluated. The integrase strand transfer inhibitor dolutegravir (DTG) is a frontline antiretroviral drug that is effective in viral suppression of HIV but was previously reported to be associated with a slight increase in the risk for neural tube defects in one study, although this has not been replicated in other cohorts. Methods To directly investigate the potential impact of DTG on human cortical neurogenesis, we measured the effects of daily drug exposure on the early stages of corticogenesis in a human iPSC-based forebrain organoid model. We quantified organoid size and structure and analyzed gene and protein expression to evaluate the impact of several doses of DTG on organoid development. Results We observed deficits in organoid structure and impaired neurogenesis in DTG-treated organoids compared to vehicle-treated control organoids after 20 or 40 days in culture. Our highest dose of DTG (10 μM) resulted in significantly smaller organoids with a reduced density of neural rosette structures compared to vehicle-treated controls. Mechanistically, RNA-sequencing and immunohistological analysis suggests dysregulated amino acid transport and activation of the integrated stress response in the DTG-treated organoids, and functionally, a small molecule integrated stress response inhibitor (ISRIB) could partially rescue increased expression of proteins related to cell cycle regulation. Discussion Together, these results illustrate the potential for human iPSC-based strategies to reveal biological processes during neurogenesis that may be affected by therapeutic drugs and provide complementary data in relevant human cell types to augment preclinical investigations of drug safety during pregnancy.
Collapse
Affiliation(s)
- Emma LaNoce
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Y Zhang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alan Garcia-Epelboim
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yijing Su
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yusha Sun
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Giana Alepa
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Angelina R Angelucci
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Cagla Akay-Espinoza
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kelly L Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kimberly M Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
26
|
He Z, Dony L, Fleck JS, Szałata A, Li KX, Slišković I, Lin HC, Santel M, Atamian A, Quadrato G, Sun J, Pașca SP, Camp JG, Theis FJ, Treutlein B. An integrated transcriptomic cell atlas of human neural organoids. Nature 2024; 635:690-698. [PMID: 39567792 PMCID: PMC11578878 DOI: 10.1038/s41586-024-08172-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
Human neural organoids, generated from pluripotent stem cells in vitro, are useful tools to study human brain development, evolution and disease. However, it is unclear which parts of the human brain are covered by existing protocols, and it has been difficult to quantitatively assess organoid variation and fidelity. Here we integrate 36 single-cell transcriptomic datasets spanning 26 protocols into one integrated human neural organoid cell atlas totalling more than 1.7 million cells1-26. Mapping to developing human brain references27-30 shows primary cell types and states that have been generated in vitro, and estimates transcriptomic similarity between primary and organoid counterparts across protocols. We provide a programmatic interface to browse the atlas and query new datasets, and showcase the power of the atlas to annotate organoid cell types and evaluate new organoid protocols. Finally, we show that the atlas can be used as a diverse control cohort to annotate and compare organoid models of neural disease, identifying genes and pathways that may underlie pathological mechanisms with the neural models. The human neural organoid cell atlas will be useful to assess organoid fidelity, characterize perturbed and diseased states and facilitate protocol development.
Collapse
Affiliation(s)
- Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| | - Leander Dony
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Jonas Simon Fleck
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Artur Szałata
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- School of Computation, Information, and Technology, Technical University of Munich, Munich, Germany
| | - Katelyn X Li
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Irena Slišković
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Hsiu-Chuan Lin
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Malgorzata Santel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Alexander Atamian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Giorgia Quadrato
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jieran Sun
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute and Bio-X, Stanford, CA, USA
| | - J Gray Camp
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
- Biozentrum, University of Basel, Basel, Switzerland.
| | - Fabian J Theis
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- School of Computation, Information, and Technology, Technical University of Munich, Munich, Germany.
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
27
|
Bosone C, Castaldi D, Burkard TR, Guzman SJ, Wyatt T, Cheroni C, Caporale N, Bajaj S, Bagley JA, Li C, Sorre B, Villa CE, Testa G, Krenn V, Knoblich JA. A polarized FGF8 source specifies frontotemporal signatures in spatially oriented cell populations of cortical assembloids. Nat Methods 2024; 21:2147-2159. [PMID: 39294368 PMCID: PMC11541204 DOI: 10.1038/s41592-024-02412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Organoids generating major cortical cell types in distinct compartments are used to study cortical development, evolution and disorders. However, the lack of morphogen gradients imparting cortical positional information and topography in current systems hinders the investigation of complex phenotypes. Here, we engineer human cortical assembloids by fusing an organizer-like structure expressing fibroblast growth factor 8 (FGF8) with an elongated organoid to enable the controlled modulation of FGF8 signaling along the longitudinal organoid axis. These polarized cortical assembloids mount a position-dependent transcriptional program that in part matches the in vivo rostrocaudal gene expression patterns and that is lost upon mutation in the FGFR3 gene associated with temporal lobe malformations and intellectual disability. By producing spatially oriented cell populations with signatures related to frontal and temporal area identity within individual assembloids, this model recapitulates in part the early transcriptional divergence embedded in the protomap and enables the study of cortical area-relevant alterations underlying human disorders.
Collapse
Affiliation(s)
- Camilla Bosone
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Davide Castaldi
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Thomas Rainer Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Segundo Jose Guzman
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Tom Wyatt
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, University of Paris, Paris, France
| | | | - Nicolò Caporale
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Sunanjay Bajaj
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Joshua Adam Bagley
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Chong Li
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Benoit Sorre
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, University of Paris, Paris, France
- Physics of Cells and Cancer, Institut Curie, Université PSL, Sorbonne University, CNRS UMR168, Paris, France
| | | | - Giuseppe Testa
- Human Technopole, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Veronica Krenn
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy.
| | - Jürgen Arthur Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Department of Neurology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Xue J, Chu Y, Huang Y, Chen M, Sun M, Fan Z, Wu Y, Chen L. A tumorigenicity evaluation platform for cell therapies based on brain organoids. Transl Neurodegener 2024; 13:53. [PMID: 39472972 PMCID: PMC11520457 DOI: 10.1186/s40035-024-00446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Tumorigenicity represents a critical challenge in stem cell-based therapies requiring rigorous monitoring. Conventional approaches for tumorigenicity evaluation are based on animal models and have numerous limitations. Brain organoids, which recapitulate the structural and functional complexity of the human brain, have been widely used in neuroscience research. However, the capacity of brain organoids for tumorigenicity evaluation needs to be further elucidated. METHODS A cerebral organoid model produced from human pluripotent stem cells (hPSCs) was employed. Meanwhile, to enhance the detection sensitivity for potential tumorigenic cells, we created a glioblastoma-like organoid (GBM organoid) model from TP53-/-/PTEN-/- hPSCs to provide a tumor microenvironment for injected cells. Midbrain dopamine (mDA) cells from human embryonic stem cells were utilized as a cell therapy product. mDA cells, hPSCs, mDA cells spiked with hPSCs, and immature mDA cells were then injected into the brain organoids and NOD SCID mice. The injected cells within the brain organoids were characterized, and compared with those injected in vivo to evaluate the capability of the brain organoids for tumorigenicity evaluation. Single-cell RNA sequencing was performed to identify the differential gene expression between the cerebral organoids and the GBM organoids. RESULTS Both cerebral organoids and GBM organoids supported maturation of the injected mDA cells. The hPSCs and immature mDA cells injected in the GBM organoids showed a significantly higher proliferative capacity than those injected in the cerebral organoids and in NOD SCID mice. Furthermore, the spiked hPSCs were detectable in both the cerebral organoids and the GBM organoids. Notably, the GBM organoids demonstrated a superior capacity to enhance proliferation and pluripotency of spiked hPSCs compared to the cerebral organoids and the mouse model. Kyoto Encyclopedia of Genes and Genomes analysis revealed upregulation of tumor-related metabolic pathways and cytokines in the GBM organoids, suggesting that these factors underlie the high detection sensitivity for tumorigenicity evaluation. CONCLUSIONS Our findings suggest that brain organoids could represent a novel and effective platform for evaluating the tumorigenic risk in stem cell-based therapies. Notably, the GBM organoids offer a superior platform that could complement or potentially replace traditional animal-based models for tumorigenicity evaluation.
Collapse
Affiliation(s)
- Jun Xue
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Youjun Chu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Yanwang Huang
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ming Chen
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Meng Sun
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Zhiqin Fan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Yonghe Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
29
|
Liu Y, Luo X, Sun Y, Chen K, Hu T, You B, Xu J, Zhang F, Cheng Q, Meng X, Yan T, Li X, Qi X, He X, Guo X, Li C, Su B. Comparative single-cell multiome identifies evolutionary changes in neural progenitor cells during primate brain development. Dev Cell 2024:S1534-5807(24)00605-1. [PMID: 39481377 DOI: 10.1016/j.devcel.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/17/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Understanding the cellular and genetic mechanisms driving human-specific features of cortical development remains a challenge. We generated a cell-type resolved atlas of transcriptome and chromatin accessibility in the developing macaque and mouse prefrontal cortex (PFC). Comparing with published human data, our findings demonstrate that although the cortex cellular composition is overall conserved across species, progenitor cells show significant evolutionary divergence in cellular properties. Specifically, human neural progenitors exhibit extensive transcriptional rewiring in growth factor and extracellular matrix (ECM) pathways. Expression of the human-specific progenitor marker ITGA2 in the fetal mouse cortex increases the progenitor proliferation and the proportion of upper-layer neurons. These transcriptional divergences are primarily driven by altered activity in the distal regulatory elements. The chromatin regions with human-gained accessibility are enriched with human-specific sequence changes and polymorphisms linked to intelligence and neuropsychiatric disorders. Our results identify evolutionary changes in neural progenitors and putative gene regulatory mechanisms shaping primate brain evolution.
Collapse
Affiliation(s)
- Yuting Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Xin Luo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China.
| | - Yiming Sun
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Kaimin Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Benhui You
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Jiahao Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Fengyun Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Cheng
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China
| | - Xiaoyu Meng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Tong Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Xiaoxuan Qi
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China
| | - Xiechao He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing 100871, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
30
|
Wu X, Li B, Wang Y, Xue J, Zhao H, Huang Z, Zheng Z, Liang N, Wei Z. Microfluidic Chip-Based Automatic System for Sequencing Patient-Derived Organoids at the Single-Cell Level. Anal Chem 2024; 96:17027-17036. [PMID: 39399894 DOI: 10.1021/acs.analchem.4c05111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Genetically sequencing patient-derived organoids (PDOs) at the single-cell level has emerged as a promising method to infer cell-level heterogeneity of original organs and improve cancer precision medicine. Unfortunately, because of the limited starting quantity and uncontrolled establishing process of PDOs, the existing single-cell sequencing technologies, either manual-operation-based or microfluid-based, are inefficient in processing PDOs originating from clinical tissue samples. To address such issues, this study presents a microfluidic chip-based automatic system for sequencing organoids at the single-cell level, named as MASSO. By performing all required procedures, including PDO establishment/culturing/digesting and single-cell isolation/lysis/whole-genome amplification, in a single microfluidic chip, the possible loss of precious PDO is avoided, and the high quality of on-chip whole-genome amplification of a single PDO cell is ensured. By automating the entire operation process, possible human error is eliminated, and the data repeatability is improved, therefore bridging the technical gap between laboratorial proof-of-concept studies and clinical practices. After characterizing the organoid single-cell whole-genome amplification chip (named as OSA-Chip) and the MASSO, the first successful attempt, to the best of our knowledge, on whole-genome sequencing lung cancer PDO at the single-cell level was performed by MASSO. The results reveal that the MASSO is capable of not only identifying common cancer-related mutations but also discovering specific mutations that affect drug responses, therefore laying the technical foundation for efficiently understanding the cell-level heterogeneities of PDOs and corresponding original organs.
Collapse
Affiliation(s)
- Xin Wu
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Bowen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianchao Xue
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huiting Zhao
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhicheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhibo Zheng
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zewen Wei
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
31
|
Lancaster MA. Unraveling mechanisms of human brain evolution. Cell 2024; 187:5838-5857. [PMID: 39423803 PMCID: PMC7617105 DOI: 10.1016/j.cell.2024.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/19/2024] [Accepted: 08/28/2024] [Indexed: 10/21/2024]
Abstract
Evolutionary changes in human brain structure and function have enabled our specialized cognitive abilities. How these changes have come about genetically and functionally has remained an open question. However, new methods are providing a wealth of information about the genetic, epigenetic, and transcriptomic differences that set the human brain apart. Combined with in vitro models that allow access to developing brain tissue and the cells of our closest living relatives, the puzzle pieces are now coming together to yield a much more complete picture of what is actually unique about the human brain. The challenge now will be linking these observations and making the jump from correlation to causation. However, elegant genetic manipulations are now possible and, when combined with model systems such as organoids, will uncover a mechanistic understanding of how evolutionary changes at the genetic level have led to key differences in development and function that enable human cognition.
Collapse
Affiliation(s)
- Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
32
|
Namba T, Huttner WB. What Makes Us Human: Insights from the Evolution and Development of the Human Neocortex. Annu Rev Cell Dev Biol 2024; 40:427-452. [PMID: 39356810 DOI: 10.1146/annurev-cellbio-112122-032521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
"What makes us human?" is a central question of many research fields, notably anthropology. In this review, we focus on the development of the human neocortex, the part of the brain with a key role in cognition, to gain neurobiological insight toward answering this question. We first discuss cortical stem and progenitor cells and human-specific genes that affect their behavior. We thus aim to understand the molecular foundation of the expansion of the neocortex that occurred in the course of human evolution, as this expansion is generally thought to provide a basis for our unique cognitive abilities. We then review the emerging evidence pointing to differences in the development of the neocortex between present-day humans and Neanderthals, our closest relatives. Finally, we discuss human-specific genes that have been implicated in neuronal circuitry and offer a perspective for future studies addressing the question of what makes us human.
Collapse
Affiliation(s)
- Takashi Namba
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany;
| |
Collapse
|
33
|
Wu X, Yang X, Dai Y, Zhao Z, Zhu J, Guo H, Yang R. Single-cell sequencing to multi-omics: technologies and applications. Biomark Res 2024; 12:110. [PMID: 39334490 PMCID: PMC11438019 DOI: 10.1186/s40364-024-00643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Cells, as the fundamental units of life, contain multidimensional spatiotemporal information. Single-cell RNA sequencing (scRNA-seq) is revolutionizing biomedical science by analyzing cellular state and intercellular heterogeneity. Undoubtedly, single-cell transcriptomics has emerged as one of the most vibrant research fields today. With the optimization and innovation of single-cell sequencing technologies, the intricate multidimensional details concealed within cells are gradually unveiled. The combination of scRNA-seq and other multi-omics is at the forefront of the single-cell field. This involves simultaneously measuring various omics data within individual cells, expanding our understanding across a broader spectrum of dimensions. Single-cell multi-omics precisely captures the multidimensional aspects of single-cell transcriptomes, immune repertoire, spatial information, temporal information, epitopes, and other omics in diverse spatiotemporal contexts. In addition to depicting the cell atlas of normal or diseased tissues, it also provides a cornerstone for studying cell differentiation and development patterns, disease heterogeneity, drug resistance mechanisms, and treatment strategies. Herein, we review traditional single-cell sequencing technologies and outline the latest advancements in single-cell multi-omics. We summarize the current status and challenges of applying single-cell multi-omics technologies to biological research and clinical applications. Finally, we discuss the limitations and challenges of single-cell multi-omics and potential strategies to address them.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yunhan Dai
- Medical School, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Junmeng Zhu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
34
|
Jia Z, Chang C, Hu S, Li J, Ge M, Dong W, Ma H. Artificial intelligence-enabled multipurpose smart detection in active-matrix electrowetting-on-dielectric digital microfluidics. MICROSYSTEMS & NANOENGINEERING 2024; 10:139. [PMID: 39327430 PMCID: PMC11427566 DOI: 10.1038/s41378-024-00765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 09/28/2024]
Abstract
An active-matrix electrowetting-on-dielectric (AM-EWOD) system integrates hundreds of thousands of active electrodes for sample droplet manipulation, which can enable simultaneous, automatic, and parallel on-chip biochemical reactions. A smart detection system is essential for ensuring a fully automatic workflow and online programming for the subsequent experimental steps. In this work, we demonstrated an artificial intelligence (AI)-enabled multipurpose smart detection method in an AM-EWOD system for different tasks. We employed the U-Net model to quantitatively evaluate the uniformity of the applied droplet-splitting methods. We used the YOLOv8 model to monitor the droplet-splitting process online. A 97.76% splitting success rate was observed with 18 different AM-EWOD chips. A 99.982% model precision rate and a 99.980% model recall rate were manually verified. We employed an improved YOLOv8 model to detect single-cell samples in nanolitre droplets. Compared with manual verification, the model achieved 99.260% and 99.193% precision and recall rates, respectively. In addition, single-cell droplet sorting and routing experiments were demonstrated. With an AI-based smart detection system, AM-EWOD has shown great potential for use as a ubiquitous platform for implementing true lab-on-a-chip applications.
Collapse
Affiliation(s)
- Zhiqiang Jia
- College of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun, Jilin Province, 130022, PR China
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, 215163, PR China
- Guangdong ACXEL Micro & Nano Tech Co. Ltd, Foshan, Guangdong Province, 528000, PR China
| | - Chunyu Chang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, 215163, PR China
- Guangdong ACXEL Micro & Nano Tech Co. Ltd, Foshan, Guangdong Province, 528000, PR China
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, 215163, PR China
- Guangdong ACXEL Micro & Nano Tech Co. Ltd, Foshan, Guangdong Province, 528000, PR China
| | - Jiahao Li
- ACX Instruments Ltd, Cambridge, CB4 0WS, UK
| | - Mingfeng Ge
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, 215163, PR China
| | - Wenfei Dong
- College of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun, Jilin Province, 130022, PR China.
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, 215163, PR China.
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, 215163, PR China.
- Guangdong ACXEL Micro & Nano Tech Co. Ltd, Foshan, Guangdong Province, 528000, PR China.
- ACX Instruments Ltd, Cambridge, CB4 0WS, UK.
| |
Collapse
|
35
|
van der Geest AT, Jakobs CE, Ljubikj T, Huffels CFM, Cañizares Luna M, Vieira de Sá R, Adolfs Y, de Wit M, Rutten DH, Kaal M, Zwartkruis MM, Carcolé M, Groen EJN, Hol EM, Basak O, Isaacs AM, Westeneng HJ, van den Berg LH, Veldink JH, Schlegel DK, Pasterkamp RJ. Molecular pathology, developmental changes and synaptic dysfunction in (pre-) symptomatic human C9ORF72-ALS/FTD cerebral organoids. Acta Neuropathol Commun 2024; 12:152. [PMID: 39289761 PMCID: PMC11409520 DOI: 10.1186/s40478-024-01857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024] Open
Abstract
A hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Human brain imaging and experimental studies indicate early changes in brain structure and connectivity in C9-ALS/FTD, even before symptom onset. Because these early disease phenotypes remain incompletely understood, we generated iPSC-derived cerebral organoid models from C9-ALS/FTD patients, presymptomatic C9ORF72-HRE (C9-HRE) carriers, and controls. Our work revealed the presence of all three C9-HRE-related molecular pathologies and developmental stage-dependent size phenotypes in cerebral organoids from C9-ALS/FTD patients. In addition, single-cell RNA sequencing identified changes in cell type abundance and distribution in C9-ALS/FTD organoids, including a reduction in the number of deep layer cortical neurons and the distribution of neural progenitors. Further, molecular and cellular analyses and patch-clamp electrophysiology detected various changes in synapse structure and function. Intriguingly, organoids from all presymptomatic C9-HRE carriers displayed C9-HRE molecular pathology, whereas the extent to which more downstream cellular defects, as found in C9-ALS/FTD models, were detected varied for the different presymptomatic C9-HRE cases. Together, these results unveil early changes in 3D human brain tissue organization and synaptic connectivity in C9-ALS/FTD that likely constitute initial pathologies crucial for understanding disease onset and the design of therapeutic strategies.
Collapse
Affiliation(s)
- Astrid T van der Geest
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Channa E Jakobs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tijana Ljubikj
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Christiaan F M Huffels
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marta Cañizares Luna
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Renata Vieira de Sá
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marina de Wit
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Daan H Rutten
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marthe Kaal
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maria M Zwartkruis
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mireia Carcolé
- UK Dementia Research Institute at UCL and Dept. of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Ewout J N Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Onur Basak
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Adrian M Isaacs
- UK Dementia Research Institute at UCL and Dept. of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Henk-Jan Westeneng
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Domino K Schlegel
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
36
|
Kim SK, Seo S, Stein-O'Brien G, Jaishankar A, Ogawa K, Micali N, Luria V, Karger A, Wang Y, Kim H, Hyde TM, Kleinman JE, Voss T, Fertig EJ, Shin JH, Bürli R, Cross AJ, Brandon NJ, Weinberger DR, Chenoweth JG, Hoeppner DJ, Sestan N, Colantuoni C, McKay RD. Individual variation in the emergence of anterior-to-posterior neural fates from human pluripotent stem cells. Stem Cell Reports 2024; 19:1336-1350. [PMID: 39151428 PMCID: PMC11411333 DOI: 10.1016/j.stemcr.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/19/2024] Open
Abstract
Variability between human pluripotent stem cell (hPSC) lines remains a challenge and opportunity in biomedicine. In this study, hPSC lines from multiple donors were differentiated toward neuroectoderm and mesendoderm lineages. We revealed dynamic transcriptomic patterns that delineate the emergence of these lineages, which were conserved across lines, along with individual line-specific transcriptional signatures that were invariant throughout differentiation. These transcriptomic signatures predicted an antagonism between SOX21-driven forebrain fates and retinoic acid-induced hindbrain fates. Replicate lines and paired adult tissue demonstrated the stability of these line-specific transcriptomic traits. We show that this transcriptomic variation in lineage bias had both genetic and epigenetic origins, aligned with the anterior-to-posterior structure of early mammalian development, and was present across a large collection of hPSC lines. These findings contribute to developing systematic analyses of PSCs to define the origin and consequences of variation in the early events orchestrating individual human development.
Collapse
Affiliation(s)
- Suel-Kee Kim
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Seungmae Seo
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | | | - Amritha Jaishankar
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Kazuya Ogawa
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Nicola Micali
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA 02115, USA
| | - Yanhong Wang
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Hyojin Kim
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Departments of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ty Voss
- Division of Preclinical Innovation, Nation Center for Advancing Translational Science, NIH, Bethesda, MD 20892, USA
| | - Elana J Fertig
- Departments of Oncology, Biomedical Engineering, and Applied Mathematics and Statistics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joo-Heon Shin
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Roland Bürli
- Astra-Zeneca Neuroscience iMED., 141 Portland Street, Cambridge, MA 01239, USA
| | - Alan J Cross
- Astra-Zeneca Neuroscience iMED., 141 Portland Street, Cambridge, MA 01239, USA
| | - Nicholas J Brandon
- Astra-Zeneca Neuroscience iMED., 141 Portland Street, Cambridge, MA 01239, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Departments of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Departments of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joshua G Chenoweth
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Daniel J Hoeppner
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Genetics, Psychiatry, and Comparative Medicine, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Carlo Colantuoni
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Departments of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Ronald D McKay
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Departments of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
37
|
Glass MR, Waxman EA, Yamashita S, Lafferty M, Beltran AA, Farah T, Patel NK, Singla R, Matoba N, Ahmed S, Srivastava M, Drake E, Davis LT, Yeturi M, Sun K, Love MI, Hashimoto-Torii K, French DL, Stein JL. Cross-site reproducibility of human cortical organoids reveals consistent cell type composition and architecture. Stem Cell Reports 2024; 19:1351-1367. [PMID: 39178845 PMCID: PMC11411306 DOI: 10.1016/j.stemcr.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024] Open
Abstract
While guided human cortical organoid (hCO) protocols reproducibly generate cortical cell types at one site, variability in hCO phenotypes across sites using a harmonized protocol has not yet been evaluated. To determine the cross-site reproducibility of hCO differentiation, three independent research groups assayed hCOs in multiple differentiation replicates from one induced pluripotent stem cell (iPSC) line using a harmonized miniaturized spinning bioreactor protocol across 3 months. hCOs were mostly cortical progenitor and neuronal cell types in reproducible proportions that were consistently organized in cortical wall-like buds. Cross-site differences were detected in hCO size and expression of metabolism and cellular stress genes. Variability in hCO phenotypes correlated with stem cell gene expression prior to differentiation and technical factors associated with seeding, suggesting iPSC quality and treatment are important for differentiation outcomes. Cross-site reproducibility of hCO cell type proportions and organization encourages future prospective meta-analytic studies modeling neurodevelopmental disorders in hCOs.
Collapse
Affiliation(s)
- Madison R Glass
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elisa A Waxman
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Satoshi Yamashita
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Michael Lafferty
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alvaro A Beltran
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tala Farah
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Niyanta K Patel
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rubal Singla
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nana Matoba
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sara Ahmed
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mary Srivastava
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emma Drake
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liam T Davis
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meghana Yeturi
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kexin Sun
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA; Departments of Pediatrics, and Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason L Stein
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
38
|
Sun S, Motazedian A, Li JY, Wijanarko K, Zhu JJ, Tharmarajah K, Strumila KA, Shkaruta A, Nigos LR, Schiesser JV, Yu Y, Neeson PJ, Ng ES, Elefanty AG, Stanley EG. Efficient generation of human NOTCH ligand-expressing haemogenic endothelial cells as infrastructure for in vitro haematopoiesis and lymphopoiesis. Nat Commun 2024; 15:7698. [PMID: 39227582 PMCID: PMC11371830 DOI: 10.1038/s41467-024-51974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/14/2024] [Indexed: 09/05/2024] Open
Abstract
Arterial endothelial cells (AECs) are the founder cells for intraembryonic haematopoiesis. Here, we report a method for the efficient generation of human haemogenic DLL4+ AECs from pluripotent stem cells (PSC). Time-series single-cell RNA-sequencing reveals the dynamic evolution of haematopoiesis and lymphopoiesis, generating cell types with counterparts present in early human embryos, including stages marked by the pre-haematopoietic stem cell genes MECOM/EVI1, MLLT3 and SPINK2. DLL4+ AECs robustly support lymphoid differentiation, without the requirement for exogenous NOTCH ligands. Using this system, we find IL7 acts as a morphogenic factor determining the fate choice between the T and innate lymphoid lineages and also plays a role in regulating the relative expression level of RAG1. Moreover, we document a developmental pathway by which human RAG1+ lymphoid precursors give rise to the natural killer cell lineage. Our study describes an efficient method for producing lymphoid progenitors, providing insights into their endothelial and haematopoietic ontogeny, and establishing a platform to investigate the development of the human blood system.
Collapse
Affiliation(s)
- Shicheng Sun
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Changping Laboratory, Beijing, China.
| | - Ali Motazedian
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Jacky Y Li
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Kevin Wijanarko
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Joe Jiang Zhu
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Kothila Tharmarajah
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Kathleen A Strumila
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Anton Shkaruta
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - L Rayburn Nigos
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jacqueline V Schiesser
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Yi Yu
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Elizabeth S Ng
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia.
| |
Collapse
|
39
|
Tomasello DL, Barrasa MI, Mankus D, Alarcon KI, Lytton-Jean AKR, Liu XS, Jaenisch R. Mitochondrial dysfunction and increased reactive oxygen species production in MECP2 mutant astrocytes and their impact on neurons. Sci Rep 2024; 14:20565. [PMID: 39232000 PMCID: PMC11374804 DOI: 10.1038/s41598-024-71040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Studies on MECP2 function and its implications in Rett Syndrome (RTT) have traditionally centered on neurons. Here, using human embryonic stem cell (hESC) lines, we modeled MECP2 loss-of-function to explore its effects on astrocyte (AST) development and dysfunction in the brain. Ultrastructural analysis of RTT hESC-derived cerebral organoids revealed significantly smaller mitochondria compared to controls (CTRs), particularly pronounced in glia versus neurons. Employing a multiomics approach, we observed increased gene expression and accessibility of a subset of nuclear-encoded mitochondrial genes upon mutation of MECP2 in ASTs compared to neurons. Analysis of hESC-derived ASTs showed reduced mitochondrial respiration and altered key proteins in the tricarboxylic acid cycle and electron transport chain in RTT versus CTRs. Additionally, RTT ASTs exhibited increased cytosolic amino acids under basal conditions, which were depleted upon increased energy demands. Notably, mitochondria isolated from RTT ASTs exhibited increased reactive oxygen species and influenced neuronal activity when transferred to cortical neurons. These findings underscore MECP2 mutation's differential impact on mitochondrial and metabolic pathways in ASTs versus neurons, suggesting that dysfunctional AST mitochondria may contribute to RTT pathophysiology by affecting neuronal health.
Collapse
Affiliation(s)
| | | | - David Mankus
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katia I Alarcon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Abigail K R Lytton-Jean
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - X Shawn Liu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
40
|
Zhu Y, Benos PV, Chikina M. A hybrid constrained continuous optimization approach for optimal causal discovery from biological data. Bioinformatics 2024; 40:ii87-ii97. [PMID: 39230691 PMCID: PMC11373380 DOI: 10.1093/bioinformatics/btae411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
MOTIVATION Understanding causal effects is a fundamental goal of science and underpins our ability to make accurate predictions in unseen settings and conditions. While direct experimentation is the gold standard for measuring and validating causal effects, the field of causal graph theory offers a tantalizing alternative: extracting causal insights from observational data. Theoretical analysis has shown that this is indeed possible, given a large dataset and if certain conditions are met. However, biological datasets, frequently, do not meet such requirements but evaluation of causal discovery algorithms is typically performed on synthetic datasets, which they meet all requirements. Thus, real-life datasets are needed, in which the causal truth is reasonably known. In this work we first construct such a large-scale real-life dataset and then we perform on it a comprehensive benchmarking of various causal discovery methods. RESULTS We find that the PC algorithm is particularly accurate at estimating causal structure, including the causal direction which is critical for biological applicability. However, PC does only produces cause-effect directionality, but not estimates of causal effects. We propose PC-NOTEARS (PCnt), a hybrid solution, which includes the PC output as an additional constraint inside the NOTEARS optimization. This approach combines PC algorithm's strengths in graph structure prediction with the NOTEARS continuous optimization to estimate causal effects accurately. PCnt achieved best aggregate performance across all structural and effect size metrics. AVAILABILITY AND IMPLEMENTATION https://github.com/zhu-yh1/PC-NOTEARS.
Collapse
Affiliation(s)
- Yuehua Zhu
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15217, United States
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Panayiotis V Benos
- Department of Epidemiology, University of Florida, Gainesville, FL 32610, United States
| | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15217, United States
| |
Collapse
|
41
|
Patton MH, Thomas KT, Bayazitov IT, Newman KD, Kurtz NB, Robinson CG, Ramirez CA, Trevisan AJ, Bikoff JB, Peters ST, Pruett-Miller SM, Jiang Y, Schild AB, Nityanandam A, Zakharenko SS. Synaptic plasticity in human thalamocortical assembloids. Cell Rep 2024; 43:114503. [PMID: 39018245 PMCID: PMC11407288 DOI: 10.1016/j.celrep.2024.114503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
Synaptic plasticities, such as long-term potentiation (LTP) and depression (LTD), tune synaptic efficacy and are essential for learning and memory. Current studies of synaptic plasticity in humans are limited by a lack of adequate human models. Here, we modeled the thalamocortical system by fusing human induced pluripotent stem cell-derived thalamic and cortical organoids. Single-nucleus RNA sequencing revealed that >80% of cells in thalamic organoids were glutamatergic neurons. When fused to form thalamocortical assembloids, thalamic and cortical organoids formed reciprocal long-range axonal projections and reciprocal synapses detectable by light and electron microscopy, respectively. Using whole-cell patch-clamp electrophysiology and two-photon imaging, we characterized glutamatergic synaptic transmission. Thalamocortical and corticothalamic synapses displayed short-term plasticity analogous to that in animal models. LTP and LTD were reliably induced at both synapses; however, their mechanisms differed from those previously described in rodents. Thus, thalamocortical assembloids provide a model system for exploring synaptic plasticity in human circuits.
Collapse
Affiliation(s)
- Mary H Patton
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kristen T Thomas
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ildar T Bayazitov
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kyle D Newman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nathaniel B Kurtz
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Camenzind G Robinson
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cody A Ramirez
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alexandra J Trevisan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jay B Bikoff
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Samuel T Peters
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yanbo Jiang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andrew B Schild
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anjana Nityanandam
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
42
|
Moriano J, Leonardi O, Vitriolo A, Testa G, Boeckx C. A multi-layered integrative analysis reveals a cholesterol metabolic program in outer radial glia with implications for human brain evolution. Development 2024; 151:dev202390. [PMID: 39114968 PMCID: PMC11385646 DOI: 10.1242/dev.202390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 07/18/2024] [Indexed: 08/28/2024]
Abstract
The definition of molecular and cellular mechanisms contributing to brain ontogenetic trajectories is essential to investigate the evolution of our species. Yet their functional dissection at an appropriate level of granularity remains challenging. Capitalizing on recent efforts that have extensively profiled neural stem cells from the developing human cortex, we develop an integrative computational framework to perform trajectory inference and gene regulatory network reconstruction, (pseudo)time-informed non-negative matrix factorization for learning the dynamics of gene expression programs, and paleogenomic analysis for a higher-resolution mapping of derived regulatory variants in our species in comparison with our closest relatives. We provide evidence for cell type-specific regulation of gene expression programs during indirect neurogenesis. In particular, our analysis uncovers a key role for a cholesterol program in outer radial glia, regulated by zinc-finger transcription factor KLF6. A cartography of the regulatory landscape impacted by Homo sapiens-derived variants reveals signals of selection clustering around regulatory regions associated with GLI3, a well-known regulator of radial glial cell cycle, and impacting KLF6 regulation. Our study contributes to the evidence of significant changes in metabolic pathways in recent human brain evolution.
Collapse
Affiliation(s)
- Juan Moriano
- Department of General Linguistics, University of Barcelona, 08007 Barcelona, Spain
- University of Barcelona Institute of Complex Systems, 08007 Barcelona, Spain
| | | | - Alessandro Vitriolo
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy
| | - Giuseppe Testa
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy
| | - Cedric Boeckx
- Department of General Linguistics, University of Barcelona, 08007 Barcelona, Spain
- University of Barcelona Institute of Complex Systems, 08007 Barcelona, Spain
- University of Barcelona Institute of Neurosciences, 08007 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), 08007 Barcelona, Spain
| |
Collapse
|
43
|
Ishahak M, Han RH, Annamalai D, Woodiwiss T, McCornack C, Cleary RT, DeSouza PA, Qu X, Dahiya S, Kim AH, Millman JR. Modeling glioblastoma tumor progression via CRISPR-engineered brain organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606387. [PMID: 39211284 PMCID: PMC11361109 DOI: 10.1101/2024.08.02.606387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) is an aggressive form of brain cancer that is highly resistant to therapy due to significant intra-tumoral heterogeneity. The lack of robust in vitro models to study early tumor progression has hindered the development of effective therapies. Here, we develop engineered GBM organoids (eGBOs) harboring GBM subtype-specific oncogenic mutations to investigate the underlying transcriptional regulation of tumor progression. Single-cell and spatial transcriptomic analyses revealed that these mutations disrupt normal neurodevelopment gene regulatory networks resulting in changes in cellular composition and spatial organization. Upon xenotransplantation into immunodeficient mice, eGBOs form tumors that recapitulate the transcriptional and spatial landscape of human GBM samples. Integrative single-cell trajectory analysis of both eGBO-derived tumor cells and patient GBM samples revealed the dynamic gene expression changes in developmental cell states underlying tumor progression. This analysis of eGBOs provides an important validation of engineered cancer organoid models and demonstrates their utility as a model of GBM tumorigenesis for future preclinical development of therapeutics.
Collapse
|
44
|
Starr AL, Fraser HB. A general principle governing neuronal evolution reveals a human-accelerated neuron type potentially underlying the high prevalence of autism in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606407. [PMID: 39131279 PMCID: PMC11312593 DOI: 10.1101/2024.08.02.606407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The remarkable ability of a single genome sequence to encode a diverse collection of distinct cell types, including the thousands of cell types found in the mammalian brain, is a key characteristic of multicellular life. While it has been observed that some cell types are far more evolutionarily conserved than others, the factors driving these differences in evolutionary rate remain unknown. Here, we hypothesized that highly abundant neuronal cell types may be under greater selective constraint than rarer neuronal types, leading to variation in their rates of evolution. To test this, we leveraged recently published cross-species single-nucleus RNA-sequencing datasets from three distinct regions of the mammalian neocortex. We found a strikingly consistent relationship where more abundant neuronal subtypes show greater gene expression conservation between species, which replicated across three independent datasets covering >106 neurons from six species. Based on this principle, we discovered that the most abundant type of neocortical neurons-layer 2/3 intratelencephalic excitatory neurons-has evolved exceptionally quickly in the human lineage compared to other apes. Surprisingly, this accelerated evolution was accompanied by the dramatic down-regulation of autism-associated genes, which was likely driven by polygenic positive selection specific to the human lineage. In sum, we introduce a general principle governing neuronal evolution and suggest that the exceptionally high prevalence of autism in humans may be a direct result of natural selection for lower expression of a suite of genes that conferred a fitness benefit to our ancestors while also rendering an abundant class of neurons more sensitive to perturbation.
Collapse
Affiliation(s)
| | - Hunter B. Fraser
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
45
|
Brazovskaja A, Gomes T, Holtackers R, Wahle P, Körner C, He Z, Schaffer T, Eckel JC, Hänsel R, Santel M, Seimiya M, Denecke T, Dannemann M, Brosch M, Hampe J, Seehofer D, Damm G, Camp JG, Treutlein B. Cell atlas of the regenerating human liver after portal vein embolization. Nat Commun 2024; 15:5827. [PMID: 38992008 PMCID: PMC11239663 DOI: 10.1038/s41467-024-49236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
The liver has the remarkable capacity to regenerate. In the clinic, regeneration is induced by portal vein embolization, which redirects portal blood flow, resulting in liver hypertrophy in locations with increased blood supply, and atrophy of embolized segments. Here, we apply single-cell and single-nucleus transcriptomics on healthy, hypertrophied, and atrophied patient-derived liver samples to explore cell states in the regenerating liver. Our data unveils pervasive upregulation of genes associated with developmental processes, cellular adhesion, and inflammation in post-portal vein embolization liver, disrupted portal-central hepatocyte zonation, and altered cell subtype composition of endothelial and immune cells. Interlineage crosstalk analysis reveals mesenchymal cells as an interaction hub between immune and endothelial cells, and highlights the importance of extracellular matrix proteins in liver regeneration. Moreover, we establish tissue-scale iterative indirect immunofluorescence imaging for high-dimensional spatial analysis of perivascular microenvironments, uncovering changes to tissue architecture in regenerating liver lobules. Altogether, our data is a rich resource revealing cellular and histological changes in human liver regeneration.
Collapse
Affiliation(s)
| | - Tomás Gomes
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| | - Rene Holtackers
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Philipp Wahle
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Christiane Körner
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Theresa Schaffer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julian Connor Eckel
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - René Hänsel
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig University, Leipzig, Germany
| | - Malgorzata Santel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Makiko Seimiya
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Timm Denecke
- Department of Diagnostic and Interventional Radiology, Leipzig University, Leipzig, Germany
| | - Michael Dannemann
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mario Brosch
- Medical Department 1, University Hospital Dresden, Technical University Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technical University Dresden, Dresden, Germany
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, Technical University Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technical University Dresden, Dresden, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany.
| | - J Gray Camp
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| | - Barbara Treutlein
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
46
|
Kang R, Park S, Shin S, Bak G, Park JC. Electrophysiological insights with brain organoid models: a brief review. BMB Rep 2024; 57:311-317. [PMID: 38919012 PMCID: PMC11289503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Brain organoid is a three-dimensional (3D) tissue derived from stem cells such as induced pluripotent stem cells (iPSCs) embryonic stem cells (ESCs) that reflect real human brain structure. It replicates the complexity and development of the human brain, enabling studies of the human brain in vitro. With emerging technologies, its application is various, including disease modeling and drug screening. A variety of experimental methods have been used to study structural and molecular characteristics of brain organoids. However, electrophysiological analysis is necessary to understand their functional characteristics and complexity. Although electrophysiological approaches have rapidly advanced for monolayered cells, there are some limitations in studying electrophysiological and neural network characteristics due to the lack of 3D characteristics. Herein, electrophysiological measurement and analytical methods related to neural complexity and 3D characteristics of brain organoids are reviewed. Overall, electrophysiological understanding of brain organoids allows us to overcome limitations of monolayer in vitro cell culture models, providing deep insights into the neural network complex of the real human brain and new ways of disease modeling. [BMB Reports 2024; 57(7): 311-317].
Collapse
Affiliation(s)
- Rian Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Department of Metabiohealth, Sungkyunkwan University, Suwon 16419, Korea
| | - Soomin Park
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Saewoon Shin
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Gyusoo Bak
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Department of Metabiohealth, Sungkyunkwan University, Suwon 16419, Korea
| | - Jong-Chan Park
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Department of Metabiohealth, Sungkyunkwan University, Suwon 16419, Korea
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
47
|
Noble MA, Ji Y, Yim KM, Yang JW, Morales M, Abu-Shamma R, Pal A, Poulsen R, Baumgartner M, Noonan JP. Human Accelerated Regions regulate gene networks implicated in apical-to-basal neural progenitor fate transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601407. [PMID: 39005466 PMCID: PMC11244942 DOI: 10.1101/2024.06.30.601407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The evolution of the human cerebral cortex involved modifications in the composition and proliferative potential of the neural stem cell (NSC) niche during brain development. Human Accelerated Regions (HARs) exhibit a significant excess of human-specific sequence changes and have been implicated in human brain evolution. Multiple studies support that HARs include neurodevelopmental enhancers with novel activities in humans, but their biological functions in NSCs have not been empirically assessed at scale. Here we conducted a direct-capture Perturb-seq screen repressing 180 neurodevelopmentally active HARs in human iPSC-derived NSCs with single-cell transcriptional readout. After profiling >188,000 NSCs, we identified a set of HAR perturbations with convergent transcriptional effects on gene networks involved in NSC apicobasal polarity, a cellular process whose precise regulation is critical to the developmental emergence of basal radial glia (bRG), a progenitor population that is expanded in humans. Across multiple HAR perturbations, we found convergent dysregulation of specific apicobasal polarity and adherens junction regulators, including PARD3, ABI2, SETD2 , and PCM1 . We found that the repression of one candidate from the screen, HAR181, as well as its target gene CADM1 , disrupted apical PARD3 localization and NSC rosette formation. Our findings reveal interconnected roles for HARs in NSC biology and cortical development and link specific HARs to processes implicated in human cortical expansion.
Collapse
|
48
|
Nehme R, Pietiläinen O, Barrett LE. Genomic, molecular, and cellular divergence of the human brain. Trends Neurosci 2024; 47:491-505. [PMID: 38897852 DOI: 10.1016/j.tins.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
While many core biological processes are conserved across species, the human brain has evolved with unique capacities. Current understanding of the neurobiological mechanisms that endow human traits as well as associated vulnerabilities remains limited. However, emerging data have illuminated species divergence in DNA elements and genome organization, in molecular, morphological, and functional features of conserved neural cell types, as well as temporal differences in brain development. Here, we summarize recent data on unique features of the human brain and their complex implications for the study and treatment of brain diseases. We also consider key outstanding questions in the field and discuss the technologies and foundational knowledge that will be required to accelerate understanding of human neurobiology.
Collapse
Affiliation(s)
- Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Olli Pietiläinen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
49
|
Zenk F, Fleck JS, Jansen SMJ, Kashanian B, Eisinger B, Santel M, Dupré JS, Camp JG, Treutlein B. Single-cell epigenomic reconstruction of developmental trajectories from pluripotency in human neural organoid systems. Nat Neurosci 2024; 27:1376-1386. [PMID: 38914828 PMCID: PMC11239525 DOI: 10.1038/s41593-024-01652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/17/2024] [Indexed: 06/26/2024]
Abstract
Cell fate progression of pluripotent progenitors is strictly regulated, resulting in high human cell diversity. Epigenetic modifications also orchestrate cell fate restriction. Unveiling the epigenetic mechanisms underlying human cell diversity has been difficult. In this study, we use human brain and retina organoid models and present single-cell profiling of H3K27ac, H3K27me3 and H3K4me3 histone modifications from progenitor to differentiated neural fates to reconstruct the epigenomic trajectories regulating cell identity acquisition. We capture transitions from pluripotency through neuroepithelium to retinal and brain region and cell type specification. Switching of repressive and activating epigenetic modifications can precede and predict cell fate decisions at each stage, providing a temporal census of gene regulatory elements and transcription factors. Removing H3K27me3 at the neuroectoderm stage disrupts fate restriction, resulting in aberrant cell identity acquisition. Our single-cell epigenome-wide map of human neural organoid development serves as a blueprint to explore human cell fate determination.
Collapse
Affiliation(s)
- Fides Zenk
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- Brain Mind Institute, School of Life Sciences EPFL, Lausanne, Switzerland.
| | - Jonas Simon Fleck
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Bijan Kashanian
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Benedikt Eisinger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Małgorzata Santel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Jean-Samuel Dupré
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - J Gray Camp
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
50
|
Chen R, Nie P, Wang J, Wang GZ. Deciphering brain cellular and behavioral mechanisms: Insights from single-cell and spatial RNA sequencing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1865. [PMID: 38972934 DOI: 10.1002/wrna.1865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 07/09/2024]
Abstract
The brain is a complex computing system composed of a multitude of interacting neurons. The computational outputs of this system determine the behavior and perception of every individual. Each brain cell expresses thousands of genes that dictate the cell's function and physiological properties. Therefore, deciphering the molecular expression of each cell is of great significance for understanding its characteristics and role in brain function. Additionally, the positional information of each cell can provide crucial insights into their involvement in local brain circuits. In this review, we briefly overview the principles of single-cell RNA sequencing and spatial transcriptomics, the potential issues and challenges in their data processing, and their applications in brain research. We further outline several promising directions in neuroscience that could be integrated with single-cell RNA sequencing, including neurodevelopment, the identification of novel brain microstructures, cognition and behavior, neuronal cell positioning, molecules and cells related to advanced brain functions, sleep-wake cycles/circadian rhythms, and computational modeling of brain function. We believe that the deep integration of these directions with single-cell and spatial RNA sequencing can contribute significantly to understanding the roles of individual cells or cell types in these specific functions, thereby making important contributions to addressing critical questions in those fields. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA in Disease and Development > RNA in Development RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Renrui Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pengxing Nie
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|