1
|
Wang W, Lu D, Yang H, Chen Z, Ling W, Song S, Peng L, Liu Q, Jiang G. Unveiling the Origin of Copper Accumulation in Plasma with Aging. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:58-67. [PMID: 39839250 PMCID: PMC11744393 DOI: 10.1021/envhealth.4c00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 01/23/2025]
Abstract
Aging is intricately linked to various diseases including cancers, neurodegenerative disorders, and metabolic irregularities. Copper (Cu) overexposure has been found to be linked to many diseases during aging, particularly neurodegenerative diseases. Meanwhile, as an essential element, Cu has been implicated in key processes associated with aging, raising questions about its role in age-related health issues. This study delves into the mechanisms behind the copper imbalance during aging. By analyzing blood copper concentrations of healthy individuals (including data from healthy subjects (26 ≤ age ≤ 90, n = 62) and publicly available data from the National Health and Nutrition Examination Survey (18 ≤ age < 80, n = 1624)) and employing C57BL/6N male mice models (n = 22), we reveal a consistent age-related increase in copper levels, particularly in plasma. Utilizing stable copper isotopic analysis, copper-associated protein analysis, and metabolomic analysis, we trace the sources of Cu imbalance associated with aging. Our findings reveal that aged mice had a higher copper concentrations and an enrichment of light copper isotope (63Cu) in plasma compared to controls. Additionally, copper reductases and copper transporters are upregulated in the intestine tract, associated with the AMPK and mTOR signaling pathways. We suggest that aged mice have an abnormally high copper intake requirement, probably due to deregulated nutrient sensing, leading to increased expression levels of copper reductases and copper transporters for extra copper absorption in the intestines. This research provides a copper-centric perspective on the connection between deregulated nutrient sensing and aging, thus shedding light on the aspect of aging and copper overexposure.
Collapse
Affiliation(s)
- Weichao Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Dawei Lu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Yang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zigu Chen
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibo Ling
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanjun Song
- National
Institute of Metrology, Beijing 100029, China
| | - Linyi Peng
- Department
of Rheumatology & Clinical Immunology, National Clinical Research
Center for Dermatologic & Immunologic Diseases (NCRC-DID), Peking
Union Medical College Hospital, Chinese
Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Qian Liu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
2
|
Ma S, Wang WX. Significance of zinc re-absorption in Zn dynamic regulation in marine fish revealed by pharmacokinetic model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125106. [PMID: 39393760 DOI: 10.1016/j.envpol.2024.125106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
Zinc (Zn) is an essential but toxic trace element and is widely available in the natural environment. In the present study, we developed a re-absorption physiologically based pharmacokinetic (PBPK) model based on long-term dietary exposure to gain insights into the physiological mechanisms of uptake, tissue distribution, storage, and excretion of Zn in marine juvenile gilt-head breams Sparus aurata (with stomach). The PBPK model incorporated the kinetic processes of Zn transfer from fish liver to gastrointestinal system and used the Markov Monte Carlo algorithm to estimate the distribution of model parameters. The model fit indicated that the stomach and intestine of fish were key organs in regulating the concentration of Zn entering the internal environment, with excess exogenous Zn (120 mg/kg) being excreted in feces (rate constant of 5.23 d-1). Modeling results also indicated that liver (3.00 d-1), spleen (1.41 d-1) and kidney (0.51 d-1) were the main tissues responding to blood Zn flux by accumulation and detoxification. Fish kidneys exposed to 60 mg/kg and 120 mg/kg Zn had different regenerative capacities, resulting in different detoxification functions. A higher dietary Zn (120 mg/kg) disrupted the intestinal reabsorption process in marine fish. This study showed that exogenous Zn was directly accumulated in organs through the gastrointestinal-hepatic system, which is an important pathways for regulating metal homeostasis in marine fish. The results provided important understanding of the mechanisms of metal regulation and transport in marine fish.
Collapse
Affiliation(s)
- Shuoli Ma
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
3
|
Wang W, Chen JS, He PY, Zhang MH, Cao HQ, Palli SR, Sheng CW. Identification and pharmacological characterization of pH-sensitive chloride channels in the fall armyworm, Spodoptera frugiperda. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 177:104243. [PMID: 39645056 DOI: 10.1016/j.ibmb.2024.104243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/11/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The pH-sensitive chloride channels (pHCls) are unique to invertebrates and play crucial roles in fluid regulation, food selection, and intake. In this study, we identified and isolated two cDNAs encoding the SfpHCl1 and SfpHCl2 subunits from the fall armyworm, Spodoptera frugiperda. Both subunits exhibited similar expression patterns. When expressed in Xenopus laevis oocytes, SfpHCl1 and SfpHCl2 formed functional chloride channels with reversal potentials indicative of chloride selectivity. Shifts in extracellular pH from acidic to alkaline conditions induced inward currents in both SfpHCl1 and SfpHCl2, with EC50 values of pH 8.24 and 8.49, respectively. Zinc ions (Zn2⁺) and the insecticide emamectin benzoate (EB) also activated concentration-dependent inward currents in these channels, whether expressed individually or co-expressed. Notably, SfpHCl1 and SfpHCl2 channels exhibited significant differences in their activation and deactivation time constants. These findings elucidate the biophysical and pharmacological characteristics of pH-sensitive, zinc-gated chloride channels, which, being exclusive to invertebrates, present a promising target for the development of highly specific insecticides.
Collapse
Affiliation(s)
- Wei Wang
- The Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China
| | - Jia-Sheng Chen
- The Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China; Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Pei-Yun He
- The Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China
| | - Mo-Han Zhang
- The Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China
| | - Hai-Qun Cao
- The Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Cheng-Wang Sheng
- The Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China.
| |
Collapse
|
4
|
Vonolfen MC, Meyer Zu Altenschildesche FL, Nam HJ, Brodesser S, Gyenis A, Buellesbach J, Lam G, Thummel CS, Storelli G. Drosophila HNF4 acts in distinct tissues to direct a switch between lipid storage and export in the gut. Cell Rep 2024; 43:114693. [PMID: 39235946 DOI: 10.1016/j.celrep.2024.114693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Nutrient digestion, absorption, and export must be coordinated in the gut to meet the nutritional needs of the organism. We used the Drosophila intestine to characterize the mechanisms that coordinate the fate of dietary lipids. We identified enterocytes specialized in absorbing and exporting lipids to peripheral organs. Distinct hepatocyte-like cells, called oenocytes, communicate with these enterocytes to adjust intestinal lipid storage and export. A single transcription factor, Drosophila hepatocyte nuclear factor 4 (dHNF4), supports this gut-liver axis. In enterocytes, dHNF4 maximizes dietary lipid export by preventing their sequestration in cytoplasmic lipid droplets. In oenocytes, dHNF4 promotes the expression of the insulin antagonist ImpL2 to activate Foxo and suppress lipid retention in enterocytes. Disruption of this switch between lipid storage and export is associated with intestinal inflammation, suggesting a lipidic origin for inflammatory bowel diseases. These studies establish dHNF4 as a central regulator of intestinal metabolism and inter-organ lipid trafficking.
Collapse
Affiliation(s)
- Maximilian C Vonolfen
- University of Cologne, Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Fenja L Meyer Zu Altenschildesche
- University of Cologne, Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Hyuck-Jin Nam
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - Susanne Brodesser
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Akos Gyenis
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Jan Buellesbach
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| | - Geanette Lam
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - Gilles Storelli
- University of Cologne, Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Fan Y, Zhou W, Li G, Liu X, Zhong P, Liu K, Liu Y, Wang D. Protective effects of sodium humate and its zinc and selenium chelate on the oxidative stress, inflammatory, and intestinal barrier damage of Salmonella Typhimurium-challenged broiler chickens. Poult Sci 2024; 103:103541. [PMID: 38471228 PMCID: PMC11067757 DOI: 10.1016/j.psj.2024.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
The objective of this study was to investigate the protective effects and mechanisms of dietary administration of sodium humate (HNa) and its zinc and selenium chelate (Zn/Se-HNa) in mitigating Salmonella Typhimurium (S. Typhi) induced intestinal injury in broiler chickens. Following the gavage of 109 CFU S. Typhi to 240 broilers from 21-d to 23-d aged, various growth performance parameters such as body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), and feed ratio (FCR) were measured before and after infection. Intestinal morphology was assessed to determine the villus height, crypt depth, and chorionic cryptologic ratio. To evaluate intestinal barrier integrity, levels of serum diamine oxidase (DAO), D-lactic acid, tight junction proteins, and the related genes were measured in each group of broilers. An analysis was conducted on inflammatory-related cytokines, oxidase activity, and Nuclear Factor Kappa B (NF-κB) and Nuclear factor erythroid2-related factor 2 (Nrf2) pathway-related proteins and mRNA expression. The results revealed a significant decrease in BW, ADG, and FCR in S. typhi-infected broilers. HNa tended to increase FCR (P = 0.056) while the supplementation of Zn/Se-HNa significantly restored BW and ADG (P < 0.05). HNa and Zn/Se-HNa exhibit favorable and comparable effects in enhancing the levels of serum DAO, D-lactate, and mRNA and protein expression of jejunum and ileal tight junction. In comparison to HNa, Zn/Se-HNa demonstrates a greater reduction in S. Typhi shedding in feces, as well as superior efficacy in enhancing the intestinal morphology, increasing serum catalase (CAT) activity, inhibiting pro-inflammatory cytokines, and suppressing the activation of the NF-κB pathway. Collectively, Zn/Se-HNa was a more effective treatment than HNa to alleviate adverse impact of S. Typhi infection in broiler chickens.
Collapse
Affiliation(s)
- Yuying Fan
- Department of Veterinary Clinic, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, Heilongjiang, China
| | - Wenzhu Zhou
- Department of Veterinary Clinic, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, Heilongjiang, China
| | - Guili Li
- Qiqihar Center for Disease Control and Prevention Qiqihar, China
| | - Xuesong Liu
- Laboratory of Veterinary Pharmacology, Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Peng Zhong
- Laboratory of Veterinary Pharmacology, Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Kexin Liu
- Department of Veterinary Clinic, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, Heilongjiang, China
| | - Yun Liu
- Department of Veterinary Clinic, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, Heilongjiang, China.
| | - Dong Wang
- Department of Veterinary Clinic, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, Heilongjiang, China; College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
6
|
Ott S, Xu S, Lee N, Hong I, Anns J, Suresh DD, Zhang Z, Zhang X, Harion R, Ye W, Chandramouli V, Jesuthasan S, Saheki Y, Claridge-Chang A. Kalium channelrhodopsins effectively inhibit neurons. Nat Commun 2024; 15:3480. [PMID: 38658537 PMCID: PMC11043423 DOI: 10.1038/s41467-024-47203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
The analysis of neural circuits has been revolutionized by optogenetic methods. Light-gated chloride-conducting anion channelrhodopsins (ACRs)-recently emerged as powerful neuron inhibitors. For cells or sub-neuronal compartments with high intracellular chloride concentrations, however, a chloride conductance can have instead an activating effect. The recently discovered light-gated, potassium-conducting, kalium channelrhodopsins (KCRs) might serve as an alternative in these situations, with potentially broad application. As yet, KCRs have not been shown to confer potent inhibitory effects in small genetically tractable animals. Here, we evaluated the utility of KCRs to suppress behavior and inhibit neural activity in Drosophila, Caenorhabditis elegans, and zebrafish. In direct comparisons with ACR1, a KCR1 variant with enhanced plasma-membrane trafficking displayed comparable potency, but with improved properties that include reduced toxicity and superior efficacy in putative high-chloride cells. This comparative analysis of behavioral inhibition between chloride- and potassium-selective silencing tools establishes KCRs as next-generation optogenetic inhibitors for in vivo circuit analysis in behaving animals.
Collapse
Affiliation(s)
- Stanislav Ott
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Sangyu Xu
- Institute for Molecular and Cell Biology, A*STAR Agency for Science, Technology and Research, Singapore, Singapore
| | - Nicole Lee
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Ivan Hong
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Jonathan Anns
- Institute for Molecular and Cell Biology, A*STAR Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Danesha Devini Suresh
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Zhiyi Zhang
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Xianyuan Zhang
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Raihanah Harion
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Weiying Ye
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Vaishnavi Chandramouli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Adam Claridge-Chang
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore.
- Institute for Molecular and Cell Biology, A*STAR Agency for Science, Technology and Research, Singapore, Singapore.
- Department of Physiology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Kurio M, Tsukasa Y, Uemura T, Usui T. Refinement of a technique for collecting and evaluating the osmolality of haemolymph from Drosophila larvae. J Exp Biol 2024; 227:jeb247249. [PMID: 38634259 DOI: 10.1242/jeb.247249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Ex vivo physiological experiments using small insect models such as Drosophila larvae have become increasingly useful to address fundamental biological questions. To perform such experiments, various artificial saline solutions have been developed, but their osmolality varies significantly from one to the next. Such a variation of osmolality stems, in part, from the difficulty of determining the true value of haemolymph osmolality in Drosophila larvae. Thus, there is a pressing need to refine protocols for collecting and measuring the osmolality of the larval haemolymph. Two major obstacles are thought to impede the accurate analysis of haemolymph collected from small insects: melanin formation and gut-derived contamination. Here, we greatly refined existing haemolymph collection methods, evaluated the purity of the collected haemolymph under melanin-free conditions, and concluded that the true value of haemolymph osmolality is close to 306.0 mOsm kg-1 in Drosophila larvae.
Collapse
Affiliation(s)
- Misato Kurio
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuma Tsukasa
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan
- Center for Living Systems Information Science (CeLiSIS), Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tadao Usui
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan
- Center for Living Systems Information Science (CeLiSIS), Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Settembre C, Perera RM. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat Rev Mol Cell Biol 2024; 25:223-245. [PMID: 38001393 DOI: 10.1038/s41580-023-00676-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/26/2023]
Abstract
Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.
Collapse
Affiliation(s)
- Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - Rushika M Perera
- Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Ribeiro JM, Hartmann D, Bartošová-Sojková P, Debat H, Moos M, Šimek P, Fara J, Palus M, Kučera M, Hajdušek O, Sojka D, Kopáček P, Perner J. Blood-feeding adaptations and virome assessment of the poultry red mite Dermanyssus gallinae guided by RNA-seq. Commun Biol 2023; 6:517. [PMID: 37179447 PMCID: PMC10183022 DOI: 10.1038/s42003-023-04907-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Dermanyssus gallinae is a blood-feeding mite that parasitises wild birds and farmed poultry. Its remarkably swift processing of blood, together with the capacity to blood-feed during most developmental stages, makes this mite a highly debilitating pest. To identify specific adaptations to digestion of a haemoglobin-rich diet, we constructed and compared transcriptomes from starved and blood-fed stages of the parasite and identified midgut-enriched transcripts. We noted that midgut transcripts encoding cysteine proteases were upregulated with a blood meal. Mapping the full proteolytic apparatus, we noted a reduction in the suite of cysteine proteases, missing homologues for Cathepsin B and C. We have further identified and phylogenetically analysed three distinct transcripts encoding vitellogenins that facilitate the reproductive capacity of the mites. We also fully mapped transcripts for haem biosynthesis and the ferritin-based system of iron storage and inter-tissue trafficking. Additionally, we identified transcripts encoding proteins implicated in immune signalling (Toll and IMD pathways) and activity (defensins and thioester-containing proteins), RNAi, and ion channelling (with targets for commercial acaricides such as Fluralaner, Fipronil, and Ivermectin). Viral sequences were filtered from the Illumina reads and we described, in part, the RNA-virome of D. gallinae with identification of a novel virus, Red mite quaranjavirus 1.
Collapse
Affiliation(s)
- José M Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - David Hartmann
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Humberto Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba, Argentina
| | - Martin Moos
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Petr Šimek
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Jiří Fara
- International Poultry Testing Station Ústrašice, Ústrašice, Czech Republic
| | - Martin Palus
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Matěj Kučera
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Ondřej Hajdušek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Daniel Sojka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
10
|
|
11
|
Mi T, Mack JO, Koolmees W, Lyon Q, Yochimowitz L, Teng ZQ, Jiang P, Montell C, Zhang YV. Alkaline taste sensation through the alkaliphile chloride channel in Drosophila. Nat Metab 2023; 5:466-480. [PMID: 36941450 PMCID: PMC10665042 DOI: 10.1038/s42255-023-00765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/09/2023] [Indexed: 03/23/2023]
Abstract
The sense of taste is an important sentinel governing what should or should not be ingested by an animal, with high pH sensation playing a critical role in food selection. Here we explore the molecular identities of taste receptors detecting the basic pH of food using Drosophila melanogaster as a model. We identify a chloride channel named alkaliphile (Alka), which is both necessary and sufficient for aversive taste responses to basic food. Alka forms a high-pH-gated chloride channel and is specifically expressed in a subset of gustatory receptor neurons (GRNs). Optogenetic activation of alka-expressing GRNs is sufficient to suppress attractive feeding responses to sucrose. Conversely, inactivation of these GRNs causes severe impairments in the aversion to high pH. Altogether, our discovery of Alka as an alkaline taste receptor lays the groundwork for future research on alkaline taste sensation in other animals.
Collapse
Affiliation(s)
- Tingwei Mi
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - John O Mack
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | | | - Quinn Lyon
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | | | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Yali V Zhang
- Monell Chemical Senses Center, Philadelphia, PA, USA.
- Department of Physiology, The Diabetes Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Okamoto N, Watanabe A. Interorgan communication through peripherally derived peptide hormones in Drosophila. Fly (Austin) 2022; 16:152-176. [PMID: 35499154 PMCID: PMC9067537 DOI: 10.1080/19336934.2022.2061834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
In multicellular organisms, endocrine factors such as hormones and cytokines regulate development and homoeostasis through communication between different organs. For understanding such interorgan communications through endocrine factors, the fruit fly Drosophila melanogaster serves as an excellent model system due to conservation of essential endocrine systems between flies and mammals and availability of powerful genetic tools. In Drosophila and other insects, functions of neuropeptides or peptide hormones from the central nervous system have been extensively studied. However, a series of recent studies conducted in Drosophila revealed that peptide hormones derived from peripheral tissues also play critical roles in regulating multiple biological processes, including growth, metabolism, reproduction, and behaviour. Here, we summarise recent advances in understanding target organs/tissues and functions of peripherally derived peptide hormones in Drosophila and describe how these hormones contribute to various biological events through interorgan communications.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Watanabe
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
13
|
Stojanović O, Miguel-Aliaga I, Trajkovski M. Intestinal plasticity and metabolism as regulators of organismal energy homeostasis. Nat Metab 2022; 4:1444-1458. [PMID: 36396854 DOI: 10.1038/s42255-022-00679-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
The small intestine displays marked anatomical and functional plasticity that includes adaptive alterations in adult gut morphology, enteroendocrine cell profile and their hormone secretion, as well as nutrient utilization and storage. In this Perspective, we examine how shifts in dietary and environmental conditions bring about changes in gut size, and describe how the intestine adapts to changes in internal state, bowel resection and gastric bypass surgery. We highlight the critical importance of these intestinal remodelling processes in maintaining energy balance of the organism, and in protecting the metabolism of other organs. The intestinal resizing is supported by changes in the microbiota composition, and by activation of carbohydrate and fatty acid metabolism, which govern the intestinal stem cell proliferation, intestinal cell fate, as well as survivability of differentiated epithelial cells. The discovery that intestinal remodelling is part of the normal physiological adaptation to various triggers, and the potential for harnessing the reversible gut plasticity, in our view, holds extraordinary promise for developing therapeutic approaches against metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Ozren Stojanović
- Department of Cell Physiology and Metabolism, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
14
|
Raubenheimer D, Senior AM, Mirth C, Cui Z, Hou R, Le Couteur DG, Solon-Biet SM, Léopold P, Simpson SJ. An integrative approach to dietary balance across the life course. iScience 2022; 25:104315. [PMID: 35602946 PMCID: PMC9117877 DOI: 10.1016/j.isci.2022.104315] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Animals require specific blends of nutrients that vary across the life course and with circumstances, e.g., health and activity levels. Underpinning and complicating these requirements is that individual traits may be optimized on different dietary compositions leading to nutrition-mediated trade-offs among outcomes. Additionally, the food environment may constrain which nutrient mixtures are achievable. Natural selection has equipped animals for solving such multi-dimensional, dynamic challenges of nutrition, but little is understood about the details and their theoretical and practical implications. We present an integrative framework, nutritional geometry, which models complex nutritional interactions in the context of multiple nutrients and across levels of biological organization (e.g., cellular, individual, and population) and levels of analysis (e.g., mechanistic, developmental, ecological, and evolutionary). The framework is generalizable across different situations and taxa. We illustrate this using examples spanning insects to primates and settings (laboratory, and the wild), and demonstrate its relevance for human health.
Collapse
Affiliation(s)
- David Raubenheimer
- The University of Sydney, Charles Perkins Centre and School of Life and Environmental Sciences, Sydney, Australia
- Zhengzhou University, Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou, China
| | - Alistair M. Senior
- The University of Sydney, Charles Perkins Centre and School of Life and Environmental Sciences, Sydney, Australia
- The University of Sydney, School of Mathematics and Statistics, Sydney, Australia
| | - Christen Mirth
- Monash University, School of Biological Science, Melbourne, Australia
| | - Zhenwei Cui
- Zhengzhou University, Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou, China
| | - Rong Hou
- Northwest University, Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Xi’an, China
| | - David G. Le Couteur
- The University of Sydney, Charles Perkins Centre and Faculty of Medicine and Health, Concord Clinical School, ANZAC Research Institute, Centre for Education and Research on Ageing, Sydney, Australia
| | - Samantha M. Solon-Biet
- The University of Sydney, Charles Perkins Centre and School of Medical Sciences, Sydney, Australia
| | - Pierre Léopold
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, Paris, France
| | - Stephen J. Simpson
- The University of Sydney, Charles Perkins Centre and School of Life and Environmental Sciences, Sydney, Australia
| |
Collapse
|
15
|
Deshpande R, Lee B, Qiao Y, Grewal SS. TOR signalling is required for host lipid metabolic remodelling and survival following enteric infection in Drosophila. Dis Model Mech 2022; 15:dmm049551. [PMID: 35363274 PMCID: PMC9118046 DOI: 10.1242/dmm.049551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022] Open
Abstract
When infected by enteric pathogenic bacteria, animals need to initiate local and whole-body defence strategies. Although most attention has focused on the role of innate immune anti-bacterial responses, less is known about how changes in host metabolism contribute to host defence. Using Drosophila as a model system, we identify induction of intestinal target-of-rapamycin (TOR) kinase signalling as a key adaptive metabolic response to enteric infection. We find that enteric infection induces both local and systemic induction of TOR independently of the Immune deficiency (IMD) innate immune pathway, and we see that TOR functions together with IMD signalling to promote infection survival. These protective effects of TOR signalling are associated with remodelling of host lipid metabolism. Thus, we see that TOR is required to limit excessive infection-mediated wasting of host lipid stores by promoting an increase in the levels of gut- and fat body-expressed lipid synthesis genes. Our data support a model in which induction of TOR represents a host tolerance response to counteract infection-mediated lipid wasting in order to promote survival. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | - Savraj S. Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
16
|
Abstract
SignificanceZinc deficiency in the human population, a major public health concern, can also be a consequence of nutritional deficiency in protein uptake. The discovery that tryptophan metabolites 3-hydroxykynurenine and xanthurenic acid are major zinc-binding ligands in insect cells establishes the kynurenine pathway as a regulator of systemic zinc homeostasis. Many biological processes influenced by zinc and the kynurenine pathway, including the regulation of innate and acquired immune responses to viral infections, have not been studied in light of the direct molecular links revealed in this study.
Collapse
|
17
|
Mitchell EL, Viscarra F, Bermudez I, Hawkins J, Goodchild JA, Jones AK. The Apis mellifera alpha 5 nicotinic acetylcholine receptor subunit expresses as a homomeric receptor that is sensitive to serotonin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105055. [PMID: 35249651 DOI: 10.1016/j.pestbp.2022.105055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Insect nicotinic acetylcholine receptors (nAChRs) are molecular targets of highly effective insecticides such as neonicotinoids. Functional expression of these receptors provides useful insights into their functional and pharmacological properties. Here, we report that the α5 nAChR subunit of the honey bee, Apis mellifera, functionally expresses in Xenopus laevis oocytes, which is the first time a homomeric insect nAChR has been robustly expressed in a heterologous system without the need for chaperone proteins. Using two-electrode voltage-clamp electrophysiology we show that the α5 receptor has low sensitivity to acetylcholine with an EC50 of 2.37 mM. However, serotonin acts as an agonist with a considerably lower EC50 at 119 μM that is also more efficacious than acetylcholine in activating the receptor. Molecular modelling indicates that residues in the complementary binding site may be involved in the selectivity towards serotonin. This is the first report of a ligand-gated ion channel activated by serotonin from an insect and phylogenetic analysis shows that the α5 subunit of A. mellifera and other non-Dipteran insects, including pest species, belong to a distinct subgroup of subunits, which may represent targets for the development of novel classes of insecticides.
Collapse
Affiliation(s)
- Eleanor L Mitchell
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom.
| | - Franco Viscarra
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom.
| | - Isabel Bermudez
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom.
| | - Joseph Hawkins
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom.
| | - Jim A Goodchild
- Syngenta, Jealotts Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom.
| | - Andrew K Jones
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom.
| |
Collapse
|
18
|
Li Z, Qian W, Song W, Zhao T, Yang Y, Wang W, Wei L, Zhao D, Li Y, Perrimon N, Xia Q, Cheng D. A salivary gland-secreted peptide regulates insect systemic growth. Cell Rep 2022; 38:110397. [PMID: 35196492 DOI: 10.1016/j.celrep.2022.110397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/10/2021] [Accepted: 01/26/2022] [Indexed: 11/03/2022] Open
Abstract
Insect salivary glands have been previously shown to function in pupal attachment and food lubrication by secreting factors into the lumen via an exocrine way. Here, we find in Drosophila that a salivary gland-derived secreted factor (Sgsf) peptide regulates systemic growth via an endocrine way. Sgsf is specifically expressed in salivary glands and secreted into the hemolymph. Sgsf knockout or salivary gland-specific Sgsf knockdown decrease the size of both the body and organs, phenocopying the effects of genetic ablation of salivary glands, while salivary gland-specific Sgsf overexpression increases their size. Sgsf promotes systemic growth by modulating the secretion of the insulin-like peptide Dilp2 from the brain insulin-producing cells (IPCs) and affecting mechanistic target of rapamycin (mTOR) signaling in the fat body. Altogether, our study demonstrates that Sgsf mediates the roles of salivary glands in Drosophila systemic growth, establishing an endocrine function of salivary glands.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Wei Song
- Medical Research Institute, Wuhan University, Wuhan 430071, China; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tujing Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Yan Yang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Weina Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Ling Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Dongchao Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Yaoyao Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China.
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
19
|
Missirlis F. Regulation and biological function of metal ions in Drosophila. CURRENT OPINION IN INSECT SCIENCE 2021; 47:18-24. [PMID: 33581350 DOI: 10.1016/j.cois.2021.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
A conceptual framework is offered for critically approaching the formidable ability of insects to segregate metal ions to their multiple destinations in proteins and subcellular compartments. New research in Drosophila melanogaster suggests that nuclear iron regulatory proteins and oxidative stress transcription factors mediate metal-responsive gene expression. Identification of a zinc-regulated chaperone in the endoplasmic reticulum potentially explains membrane protein trafficking defects observed in zinc transporter mutants. Compartmentalized zinc is utilized in fertilization, embryogenesis and for the activation of zinc-finger transcription factors - the latter function demonstrated during muscle development, while dietary zinc is sensed through gating of a chloride channel. Another emerging theme in cellular metal homeostasis is that transporters and related proteins meet at endoplasmic reticulum-mitochondria associated membranes with physiologically relevant consequences during aging.
Collapse
Affiliation(s)
- Fanis Missirlis
- Department of Physiology, Biophysics & Neuroscience, Cinvestav, Mexico.
| |
Collapse
|
20
|
Jones AK, Goven D, Froger JA, Bantz A, Raymond V. The cys-loop ligand-gated ion channel gene superfamilies of the cockroaches Blattella germanica and Periplaneta americana. PEST MANAGEMENT SCIENCE 2021; 77:3787-3799. [PMID: 33347700 DOI: 10.1002/ps.6245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/27/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cockroaches are serious urban pests that can transfer disease-causing microorganisms as well as trigger allergic reactions and asthma. They are commonly managed by pesticides that act on cys-loop ligand-gated ion channels (cysLGIC). To provide further information that will enhance our understanding of how insecticides act on their molecular targets in cockroaches, we used genome and reverse transcriptase polymerase chain reaction (RT-PCR) data to characterize the cysLGIC gene superfamilies from Blattella germanica and Periplaneta americana. RESULTS The B. germanica and P. americana cysLGIC superfamilies consist of 30 and 32 subunit-encoding genes, respectively, which are the largest insect cysLGIC superfamilies characterized to date. As with other insects, the cockroaches possess ion channels predicted to be gated by acetylcholine, γ-aminobutyric acid, glutamate and histamine, as well as orthologues of the drosophila pH-sensitive chloride channel (pHCl), CG8916 and CG12344. The large cysLGIC superfamilies of cockroaches are a result of an expanded number of divergent nicotinic acetylcholine receptor subunits, with B. germanica and P. americana, respectively, possessing eight and ten subunit genes. Diversity of the cockroach cysLGICs is also broadened by alternative splicing and RNA A-to-I editing. Unusually, both cockroach species possess a second glutamate-gated chloride channel as well as another CG8916 subunit. CONCLUSION These findings on B. germanica and P. americana enhance our understanding of the evolution of the insect cysLGIC superfamily and provide a useful basis for the study of their function, the detection and management of insecticide resistance, and for the development of improved pesticides with greater specificity towards these major pests. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrew K Jones
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Delphine Goven
- Laboratoire « Signalisation Fonctionnelle des Canaux Ioniques et Récepteurs » (SiFCIR), UPRES-EA2647 USC INRAE 1330, SFR 4207 QUASAV, UFR Sciences, Université d'Angers, Angers, France
| | - Josy-Anne Froger
- Laboratoire « Signalisation Fonctionnelle des Canaux Ioniques et Récepteurs » (SiFCIR), UPRES-EA2647 USC INRAE 1330, SFR 4207 QUASAV, UFR Sciences, Université d'Angers, Angers, France
| | - Alexandre Bantz
- Laboratoire « Signalisation Fonctionnelle des Canaux Ioniques et Récepteurs » (SiFCIR), UPRES-EA2647 USC INRAE 1330, SFR 4207 QUASAV, UFR Sciences, Université d'Angers, Angers, France
| | - Valerie Raymond
- Laboratoire « Signalisation Fonctionnelle des Canaux Ioniques et Récepteurs » (SiFCIR), UPRES-EA2647 USC INRAE 1330, SFR 4207 QUASAV, UFR Sciences, Université d'Angers, Angers, France
| |
Collapse
|
21
|
Keith SA, Bishop C, Fallacaro S, McCartney BM. Arc1 and the microbiota together modulate growth and metabolic traits in Drosophila. Development 2021; 148:271091. [PMID: 34323271 DOI: 10.1242/dev.195222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/01/2021] [Indexed: 12/20/2022]
Abstract
Perturbations to animal-associated microbial communities (the microbiota) have deleterious effects on various aspects of host fitness, but the molecular processes underlying these impacts are poorly understood. Here, we identify a connection between the microbiota and the neuronal factor Arc1 that affects growth and metabolism in Drosophila. We find that Arc1 exhibits tissue-specific microbiota-dependent expression changes, and that germ-free flies bearing a null mutation of Arc1 exhibit delayed and stunted larval growth, along with a variety of molecular, cellular and organismal traits indicative of metabolic dysregulation. Remarkably, we show that the majority of these phenotypes can be fully suppressed by mono-association with a single Acetobacter sp. isolate, through mechanisms involving both bacterial diet modification and live bacteria. Additionally, we provide evidence that Arc1 function in key neuroendocrine cells of the larval brain modulates growth and metabolic homeostasis under germ-free conditions. Our results reveal a role for Arc1 in modulating physiological responses to the microbial environment, and highlight how host-microbe interactions can profoundly impact the phenotypic consequences of genetic mutations in an animal host.
Collapse
Affiliation(s)
- Scott A Keith
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cassandra Bishop
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samantha Fallacaro
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
22
|
Peng L, Yin HY, Huang C. CNMa-CNMa receptor at microbiome-gut-brain axis: novel target to regulate feeding decision. Signal Transduct Target Ther 2021; 6:283. [PMID: 34305136 PMCID: PMC8310888 DOI: 10.1038/s41392-021-00708-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/19/2021] [Accepted: 07/05/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
- Liyuan Peng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hai-Yan Yin
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
23
|
Kim SK, Tsao DD, Suh GSB, Miguel-Aliaga I. Discovering signaling mechanisms governing metabolism and metabolic diseases with Drosophila. Cell Metab 2021; 33:1279-1292. [PMID: 34139200 PMCID: PMC8612010 DOI: 10.1016/j.cmet.2021.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022]
Abstract
There has been rapid growth in the use of Drosophila and other invertebrate systems to dissect mechanisms governing metabolism. New assays and approaches to physiology have aligned with superlative genetic tools in fruit flies to provide a powerful platform for posing new questions, or dissecting classical problems in metabolism and disease genetics. In multiple examples, these discoveries exploit experimental advantages as-yet unavailable in mammalian systems. Here, we illustrate how fly studies have addressed long-standing questions in three broad areas-inter-organ signaling through hormonal or neural mechanisms governing metabolism, intestinal interoception and feeding, and the cellular and signaling basis of sexually dimorphic metabolism and physiology-and how these findings relate to human (patho)physiology. The imaginative application of integrative physiology and related approaches in flies to questions in metabolism is expanding, and will be an engine of discovery, revealing paradigmatic features of metabolism underlying human diseases and physiological equipoise in health.
Collapse
Affiliation(s)
- Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Deborah D Tsao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
24
|
Léopold P. Sizes, proportions and environment. C R Biol 2021; 344:165-175. [PMID: 34213854 DOI: 10.5802/crbiol.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022]
Abstract
The sizes of living organisms range over twenty orders of magnitude. Within the same species, the size of individuals also varies according to the environmental conditions to which they are subjected. From the studies conducted on organisms as diverse as the drosophila, the salamander or the mouse, laws and conserved mechanisms emerge that shed light on the fundamental aspects of growth, but also on more medical issues such as tissue regeneration, metabolic homeostasis and cancer.
Collapse
Affiliation(s)
- Pierre Léopold
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| |
Collapse
|
25
|
Response of the microbiome-gut-brain axis in Drosophila to amino acid deficit. Nature 2021; 593:570-574. [PMID: 33953396 DOI: 10.1038/s41586-021-03522-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/08/2021] [Indexed: 02/03/2023]
Abstract
A balanced intake of macronutrients-protein, carbohydrate and fat-is essential for the well-being of organisms. An adequate calorific intake but with insufficient protein consumption can lead to several ailments, including kwashiorkor1. Taste receptors (T1R1-T1R3)2 can detect amino acids in the environment, and cellular sensors (Gcn2 and Tor)3 monitor the levels of amino acids in the cell. When deprived of dietary protein, animals select a food source that contains a greater proportion of protein or essential amino acids (EAAs)4. This suggests that food selection is geared towards achieving the target amount of a particular macronutrient with assistance of the EAA-specific hunger-driven response, which is poorly understood. Here we show in Drosophila that a microbiome-gut-brain axis detects a deficit of EAAs and stimulates a compensatory appetite for EAAs. We found that the neuropeptide CNMamide (CNMa)5 was highly induced in enterocytes of the anterior midgut during protein deprivation. Silencing of the CNMa-CNMa receptor axis blocked the EAA-specific hunger-driven response in deprived flies. Furthermore, gnotobiotic flies bearing an EAA-producing symbiotic microbiome exhibited a reduced appetite for EAAs. By contrast, gnotobiotic flies with a mutant microbiome that did not produce leucine or other EAAs showed higher expression of CNMa and a greater compensatory appetite for EAAs. We propose that gut enterocytes sense the levels of diet- and microbiome-derived EAAs and communicate the EAA-deprived condition to the brain through CNMa.
Collapse
|
26
|
Luo R, Zhang Y, Jia Y, Zhang Y, Li Z, Zhao J, Liu T, Zhang W. Molecular basis and homeostatic regulation of Zinc taste. Protein Cell 2021; 13:462-469. [PMID: 33891304 PMCID: PMC9095774 DOI: 10.1007/s13238-021-00845-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Rui Luo
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yuxiang Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yinjun Jia
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yan Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Zongyang Li
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Jieqing Zhao
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Ting Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Wei Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
27
|
Sasaki A, Nishimura T, Takano T, Naito S, Yoo SK. white regulates proliferative homeostasis of intestinal stem cells during ageing in Drosophila. Nat Metab 2021; 3:546-557. [PMID: 33820991 DOI: 10.1038/s42255-021-00375-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 02/25/2021] [Indexed: 12/19/2022]
Abstract
Tissue integrity is contingent on maintaining stem cells. Intestinal stem cells (ISCs) over-proliferate during ageing, leading to tissue dysplasia in Drosophila melanogaster. Here we describe a role for white, encoding the evolutionarily conserved ATP-binding cassette transporter subfamily G, with a particularly well-characterized role in eye colour pigmentation, in ageing-induced ISC proliferation in the midgut. ISCs increase expression of white during ageing. ISC-specific inhibition of white suppresses ageing-induced ISC dysregulation and prolongs lifespan. Of the proteins that form heterodimers with White, Brown mediates ISC dysregulation during ageing. Metabolomics analyses reveal previously unappreciated, profound metabolic impacts of white inhibition on organismal metabolism. Among the metabolites affected by White, tetrahydrofolate is transported by White, is accumulated in ISCs during ageing and is indispensable for ageing-induced ISC over-proliferation. Since Thomas Morgan's isolation of a white mutant as the first Drosophila mutant, white mutants have been used extensively as genetic systems and often as controls. Our findings provide insights into metabolic regulation of stem cells mediated by the classic gene white.
Collapse
Affiliation(s)
- Ayaka Sasaki
- Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
| | | | - Tomomi Takano
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
| | - Saki Naito
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Sa Kan Yoo
- Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan.
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan.
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan.
| |
Collapse
|
28
|
Xia P, Lian S, Wu Y, Yan L, Quan G, Zhu G. Zinc is an important inter-kingdom signal between the host and microbe. Vet Res 2021; 52:39. [PMID: 33663613 PMCID: PMC7931793 DOI: 10.1186/s13567-021-00913-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Zinc (Zn) is an essential trace element in living organisms and plays a vital role in the regulation of both microbial virulence and host immune responses. A growing number of studies have shown that zinc deficiency or the internal Zn concentration does not meet the needs of animals and microbes, leading to an imbalance in zinc homeostasis and intracellular signalling pathway dysregulation. Competition for zinc ions (Zn2+) between microbes and the host exists in the use of Zn2+ to maintain cell structure and physiological functions. It also affects the interplay between microbial virulence factors and their specific receptors in the host. This review will focus on the role of Zn in the crosstalk between the host and microbe, especially for changes in microbial pathogenesis and nociceptive neuron-immune interactions, as it may lead to new ways to prevent or treat microbial infections.
Collapse
Affiliation(s)
- Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Li Yan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Guomei Quan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
29
|
Redhai S, Boutros M. The Role of Organelles in Intestinal Function, Physiology, and Disease. Trends Cell Biol 2021; 31:485-499. [PMID: 33551307 DOI: 10.1016/j.tcb.2021.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
The intestine maintains homeostasis by coordinating internal biological processes to adjust to fluctuating external conditions. The intestinal epithelium is continuously renewed and comprises multiple cell types, including absorptive cells, secretory cells, and resident stem cells. An important feature of this organ is its ability to coordinate many processes including cell proliferation, differentiation, regeneration, damage/stress response, immune activity, feeding behavior, and age-related changes by using conserved signaling pathways. However, the subcellular spatial organization of these signaling events and the organelles involved has only recently been studied in detail. Here we discuss how organelles of intestinal cells serve to initiate, mediate, and terminate signals, that are vital for homeostasis.
Collapse
Affiliation(s)
- Siamak Redhai
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| |
Collapse
|
30
|
Krall RF, Tzounopoulos T, Aizenman E. The Function and Regulation of Zinc in the Brain. Neuroscience 2021; 457:235-258. [PMID: 33460731 DOI: 10.1016/j.neuroscience.2021.01.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/31/2022]
Abstract
Nearly sixty years ago Fredrich Timm developed a histochemical technique that revealed a rich reserve of free zinc in distinct regions of the brain. Subsequent electron microscopy studies in Timm- stained brain tissue found that this "labile" pool of cellular zinc was highly concentrated at synaptic boutons, hinting a possible role for the metal in synaptic transmission. Although evidence for activity-dependent synaptic release of zinc would not be reported for another twenty years, these initial findings spurred decades of research into zinc's role in neuronal function and revealed a diverse array of signaling cascades triggered or regulated by the metal. Here, we delve into our current understanding of the many roles zinc plays in the brain, from influencing neurotransmission and sensory processing, to activating both pro-survival and pro-death neuronal signaling pathways. Moreover, we detail the many mechanisms that tightly regulate cellular zinc levels, including metal binding proteins and a large array of zinc transporters.
Collapse
Affiliation(s)
- Rebecca F Krall
- Department of Neurobiology, University of Pittsburgh School of Medicine, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, USA
| | - Thanos Tzounopoulos
- Department of Otolaryngology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA.
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, USA.
| |
Collapse
|
31
|
Boulan L, Léopold P. What determines organ size during development and regeneration? Development 2021; 148:148/1/dev196063. [PMID: 33431590 DOI: 10.1242/dev.196063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The sizes of living organisms span over 20 orders of magnitude or so. This daunting observation could intimidate researchers aiming to understand the general mechanisms controlling growth. However, recent progress suggests the existence of principles common to organisms as diverse as fruit flies, mice and humans. As we review here, these studies have provided insights into both autonomous and non-autonomous mechanisms controlling organ growth as well as some of the principles underlying growth coordination between organs and across bilaterally symmetrical organisms. This research tackles several aspects of developmental biology and integrates inputs from physics, mathematical modelling and evolutionary biology. Although many open questions remain, this work also helps to shed light on medically related conditions such as tissue and limb regeneration, as well as metabolic homeostasis and cancer.
Collapse
Affiliation(s)
- Laura Boulan
- Institut Curie, PSL University, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology unit, 75005 Paris, France
| | - Pierre Léopold
- Institut Curie, PSL University, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology unit, 75005 Paris, France
| |
Collapse
|
32
|
Fernández‐Gallego N, Sánchez‐Madrid F, Jiménez‐Saiz R. Thinking small: Zinc sensing by the gut epithelium. Allergy 2021; 76:411-413. [PMID: 32738826 DOI: 10.1111/all.14531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Nieves Fernández‐Gallego
- Servicio de Inmunología Hospital Universitario La Princesa Instituto Investigación Sanitaria Princesa (IIS‐IP) Universidad Autónoma de Madrid (UAM) Madrid Spain
- Vascular Pathophysiology Area Centro Nacional de Investigaciones Cardiovasculares (CNIC) Madrid Spain
| | - Francisco Sánchez‐Madrid
- Servicio de Inmunología Hospital Universitario La Princesa Instituto Investigación Sanitaria Princesa (IIS‐IP) Universidad Autónoma de Madrid (UAM) Madrid Spain
- Vascular Pathophysiology Area Centro Nacional de Investigaciones Cardiovasculares (CNIC) Madrid Spain
- CIBER de Enfermedades Cardiovasculares Instituto de Salud Carlos III Madrid Spain
| | - Rodrigo Jiménez‐Saiz
- Department of Immunology and Oncology Centro Nacional de Biotecnología (CNB)‐CSIC Madrid Spain
- McMaster Immunology Research Centre (MIRC) Department of Pathology and Molecular Medicine McMaster University Hamilton ON Canada
- Faculty of Experimental Sciences Universidad Francisco de Vitoria Madrid Spain
| |
Collapse
|
33
|
Lim SY, You H, Lee J, Lee J, Lee Y, Lee KA, Kim B, Lee JH, Jeong J, Jang S, Kim B, Choi H, Hwang G, Choi MS, Yoon SE, Kwon JY, Lee WJ, Kim YJ, Suh GSB. Identification and characterization of GAL4 drivers that mark distinct cell types and regions in the Drosophila adult gut. J Neurogenet 2020; 35:33-44. [PMID: 33326321 DOI: 10.1080/01677063.2020.1853722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The gastrointestinal tract in the adult Drosophila serves as a model system for exploring the mechanisms underlying digestion, absorption and excretion, stem cell plasticity, and inter-organ communication, particularly through the gut-brain axis. It is also useful for studying the cellular and adaptive responses to dietary changes, alterations in microbiota and immunity, and systematic and endocrine signals. Despite the various cell types and distinct regions in the gastrointestinal tract, few tools are available to target and manipulate the activity of each cell type and region, and their gene expression. Here, we report 353 GAL4 lines and several split-GAL4 lines that are expressed in enteric neurons (ENs), progenitors (ISCs and EBs), enterocytes (ECs), enteroendocrine cells (EEs), or/and other cell types that are yet to be identified in distinct regions of the gut. We had initially collected approximately 600 GAL4 lines that may be expressed in the gut based on RNA sequencing data, and then crossed them to UAS-GFP to perform immunohistochemistry to identify those that are expressed selectively in the gut. The cell types and regional expression patterns that are associated with the entire set of GAL4 drivers and split-GAL4 combinations are annotated online at http://kdrc.kr/index.php (K-Gut Project). This GAL4 resource can be used to target specific populations of distinct cell types in the fly gut, and therefore, should permit a more precise investigation of gut cells that regulate important biological processes.
Collapse
Affiliation(s)
- Seung Yeon Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyejin You
- School of Biological Science, Seoul National University and National Creative Research Initiative Center for hologenomics, Seoul, Republic of Korea
| | - Jinhyeong Lee
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jaejin Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yoojin Lee
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kyung-Ah Lee
- School of Biological Science, Seoul National University and National Creative Research Initiative Center for hologenomics, Seoul, Republic of Korea
| | - Boram Kim
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ji-Hoon Lee
- School of Biological Science, Seoul National University and National Creative Research Initiative Center for hologenomics, Seoul, Republic of Korea
| | - JiHyeon Jeong
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sooin Jang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Byoungsoo Kim
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyungjun Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Gayoung Hwang
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Min Sung Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sung-Eun Yoon
- Korea Drosophila Resource Center, Gwangju, Republic of Korea
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Won-Jae Lee
- School of Biological Science, Seoul National University and National Creative Research Initiative Center for hologenomics, Seoul, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.,Korea Drosophila Resource Center, Gwangju, Republic of Korea
| | - Greg S B Suh
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
34
|
Hood SE, Kofler XV, Chen Q, Scott J, Ortega J, Lehmann M. Nuclear translocation ability of Lipin differentially affects gene expression and survival in fed and fasting Drosophila. J Lipid Res 2020; 61:1720-1732. [PMID: 32989002 PMCID: PMC7707171 DOI: 10.1194/jlr.ra120001051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipins are eukaryotic proteins with functions in lipid synthesis and the homeostatic control of energy balance. They execute these functions by acting as phosphatidate phosphatase enzymes in the cytoplasm and by changing gene expression after translocation into the cell nucleus, in particular under fasting conditions. Here, we asked whether nuclear translocation and the enzymatic activity of Drosophila Lipin serve essential functions and how gene expression changes, under both fed and fasting conditions, when nuclear translocation is impaired. To address these questions, we created a Lipin null mutant, a mutant expressing Lipin lacking a nuclear localization signal (LipinΔNLS ), and a mutant expressing enzymatically dead Lipin. Our data support the conclusion that the enzymatic but not nuclear gene regulatory activity of Lipin is essential for survival. Notably, adult LipinΔNLS flies were not only viable but also exhibited improved life expectancy. In contrast, they were highly susceptible to starvation. Both the improved life expectancy in the fed state and the decreased survival in the fasting state correlated with changes in metabolic gene expression. Moreover, increased life expectancy of fed flies was associated with a decreased metabolic rate. Interestingly, in addition to metabolic genes, genes involved in feeding behavior and the immune response were misregulated in LipinΔNLS flies. Altogether, our data suggest that the nuclear activity of Lipin influences the genomic response to nutrient availability with effects on life expectancy and starvation resistance. Thus, nutritional or therapeutic approaches that aim at lowering nuclear translocation of lipins in humans may be worth exploring.
Collapse
Affiliation(s)
- Stephanie E Hood
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Xeniya V Kofler
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Quiyu Chen
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Judah Scott
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Jason Ortega
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Michael Lehmann
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
35
|
Keil C, Maares M, Kröncke N, Benning R, Haase H. Dietary zinc enrichment reduces the cadmium burden of mealworm beetle (Tenebrio molitor) larvae. Sci Rep 2020; 10:20033. [PMID: 33208833 PMCID: PMC7674442 DOI: 10.1038/s41598-020-77079-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/05/2020] [Indexed: 11/12/2022] Open
Abstract
The industrial production of Tenebrio molitor L. requires optimized rearing and processing conditions to generate insect biomass with high nutritional value in large quantities. One of the problems arising from processing is a tremendous loss in mineral accessibility, affecting, amongst others, the essential trace element Zn. As a feasible strategy this study investigates Zn-enrichment of mealworms during rearing to meet the nutritional requirements for humans and animals. Following feeding ZnSO4-spiked wheat bran substrates late instar mealworm larvae were evaluated for essential micronutrients and human/animal toxic elements. In addition, growth rate and viability were assessed to select optimal conditions for future mass-rearing. Zn-feeding dose-dependently raised the total Zn content, yet the Znlarvae/Znwheat bran ratio decreased inversely related to its concentration, indicating an active Zn homeostasis within the mealworms. The Cu status remained stable, suggesting that, in contrast to mammals, the intestinal Cu absorption in mealworm larvae is not affected by Zn. Zn biofortification led to a moderate Fe and Mn reduction in mealworms, a problem that certainly can be overcome by Fe/Mn co-supplementation during rearing. Most importantly, Zn feeding massively reduced the levels of the human/animal toxicant Cd within the mealworm larvae, a technological novelty of outstanding importance to be implemented in the future production process to ensure the consumer safety of this edible insect species.
Collapse
Affiliation(s)
- Claudia Keil
- Institute for Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Maria Maares
- Institute for Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Nina Kröncke
- Institute of Food Technology and Bioprocess Engineering, University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568, Bremerhaven, Germany
| | - Rainer Benning
- Institute of Food Technology and Bioprocess Engineering, University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568, Bremerhaven, Germany
| | - Hajo Haase
- Institute for Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
36
|
Shin HR, Zoncu R. The Lysosome at the Intersection of Cellular Growth and Destruction. Dev Cell 2020; 54:226-238. [PMID: 32610045 DOI: 10.1016/j.devcel.2020.06.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/01/2020] [Indexed: 12/27/2022]
Abstract
The lysosome is an essential catabolic organelle that consumes cellular biomass to regenerate basic building blocks that can fuel anabolic reactions. This simple view has evolved more recently to integrate novel functions of the lysosome as a key signaling center, which can steer the metabolic trajectory of cells in response to changes in nutrients, growth factors, and stress. Master protein kinases and transcription factors mediate the growth-promoting and catabolic activities of the lysosome and undergo a complex interplay that enables cellular adaptation to ever-changing metabolic conditions. Understanding how this coordination occurs will shed light on the fundamental logic of how the lysosome functions to control growth in the context of development, tissue homeostasis, and cancer.
Collapse
Affiliation(s)
- Hijai R Shin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California Berkeley, Berkeley, CA 94720, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
37
|
Funk MC, Zhou J, Boutros M. Ageing, metabolism and the intestine. EMBO Rep 2020; 21:e50047. [PMID: 32567155 PMCID: PMC7332987 DOI: 10.15252/embr.202050047] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/18/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
The intestinal epithelium serves as a dynamic barrier to the environment and integrates a variety of signals, including those from metabolites, commensal microbiota, immune responses and stressors upon ageing. The intestine is constantly challenged and requires a high renewal rate to replace damaged cells in order to maintain its barrier function. Essential for its renewal capacity are intestinal stem cells, which constantly give rise to progenitor cells that differentiate into the multiple cell types present in the epithelium. Here, we review the current state of research of how metabolism and ageing control intestinal stem cell function and epithelial homeostasis. We focus on recent insights gained from model organisms that indicate how changes in metabolic signalling during ageing are a major driver for the loss of stem cell plasticity and epithelial homeostasis, ultimately affecting the resilience of an organism and limiting its lifespan. We compare findings made in mouse and Drosophila and discuss differences and commonalities in the underlying signalling pathways and mechanisms in the context of ageing.
Collapse
Affiliation(s)
- Maja C Funk
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| | - Jun Zhou
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
38
|
A zinc-sensing protein gives flies a gut feeling for growth. Nature 2020; 580:187-188. [DOI: 10.1038/d41586-020-00728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Hernández-Gallardo AK, Missirlis F. Cellular iron sensing and regulation: Nuclear IRP1 extends a classic paradigm. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118705. [PMID: 32199885 DOI: 10.1016/j.bbamcr.2020.118705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/02/2020] [Accepted: 03/16/2020] [Indexed: 01/26/2023]
Abstract
The classic view is that iron regulatory proteins operate at the post-transcriptional level. Iron Regulatory Protein 1 (IRP1) shifts between an apo-form that binds mRNAs and a holo-form that harbors a [4Fe4S] cluster. The latter form is not considered relevant to iron regulation, but rather thought to act as a non-essential cytosolic aconitase. Recent work in Drosophila, however, shows that holo-IRP1 can also translocate to the nucleus, where it appears to downregulate iron metabolism genes, preparing the cell for a decline in iron uptake. The shifting of IRP1 between states requires a functional mitoNEET pathway that includes a glycogen branching enzyme for the repair or disassembly of IRP1's oxidatively damaged [3Fe4S] cluster. The new findings add to the notion that glucose metabolism is modulated by iron metabolism. Furthermore, we propose that ferritin ferroxidase activity participates in the repair of the IRP1 [3Fe4S] cluster leading to the hypothesis that cytosolic ferritin directly contributes to cellular iron sensing.
Collapse
Affiliation(s)
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, CDMX, Mexico.
| |
Collapse
|