1
|
Long T, Li D, Vale G, Jiang Y, Schmiege P, Yang ZJ, McDonald JG, Li X. Molecular insights into human phosphatidylserine synthase 1 reveal its inhibition promotes LDL uptake. Cell 2024; 187:5665-5678.e18. [PMID: 39208797 PMCID: PMC11455612 DOI: 10.1016/j.cell.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
In mammalian cells, two phosphatidylserine (PS) synthases drive PS synthesis. Gain-of-function mutations in the Ptdss1 gene lead to heightened PS production, causing Lenz-Majewski syndrome (LMS). Recently, pharmacological inhibition of PSS1 has been shown to suppress tumorigenesis. Here, we report the cryo-EM structures of wild-type human PSS1 (PSS1WT), the LMS-causing Pro269Ser mutant (PSS1P269S), and PSS1WT in complex with its inhibitor DS55980254. PSS1 contains 10 transmembrane helices (TMs), with TMs 4-8 forming a catalytic core in the luminal leaflet. These structures revealed a working mechanism of PSS1 akin to the postulated mechanisms of the membrane-bound O-acyltransferase family. Additionally, we showed that both PS and DS55980254 can allosterically inhibit PSS1 and that inhibition by DS55980254 activates the SREBP pathways, thus enhancing the expression of LDL receptors and increasing cellular LDL uptake. This work uncovers a mechanism of mammalian PS synthesis and suggests that selective PSS1 inhibitors have the potential to lower blood cholesterol levels.
Collapse
Affiliation(s)
- Tao Long
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dongyu Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Goncalo Vale
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yaoyukun Jiang
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhongyue J Yang
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Xu R, Ning Y, Ren F, Gu C, Zhu Z, Pan X, Pshezhetsky AV, Ge J, Yu J. Structure and mechanism of lysosome transmembrane acetylation by HGSNAT. Nat Struct Mol Biol 2024; 31:1502-1508. [PMID: 38769387 DOI: 10.1038/s41594-024-01315-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Lysosomal transmembrane acetylation of heparan sulfates (HS) is catalyzed by HS acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT), whose dysfunction leads to lysosomal storage diseases. The mechanism by which HGSNAT, the sole non-hydrolase enzyme in HS degradation, brings cytosolic acetyl-coenzyme A (Ac-CoA) and lysosomal HS together for N-acyltransferase reactions remains unclear. Here, we present cryogenic-electron microscopy structures of HGSNAT alone, complexed with Ac-CoA and with acetylated products. These structures explain that Ac-CoA binding from the cytosolic side causes dimeric HGSNAT to form a transmembrane tunnel. Within this tunnel, catalytic histidine and asparagine approach the lumen and instigate the transfer of the acetyl group from Ac-CoA to the glucosamine group of HS. Our study unveils a transmembrane acetylation mechanism that may help advance therapeutic strategies targeting lysosomal storage diseases.
Collapse
Affiliation(s)
- Ruisheng Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingjie Ning
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fandong Ren
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chenxia Gu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhengjiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xuefang Pan
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Alexey V Pshezhetsky
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.
| | - Jingpeng Ge
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Jie Yu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| |
Collapse
|
3
|
Anderson AC, Schultz BJ, Snow ED, Brott AS, Stangherlin S, Malloch T, London JR, Walker S, Clarke AJ. The mechanism of peptidoglycan O-acetylation in Gram-negative bacteria typifies bacterial MBOAT-SGNH acyltransferases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613324. [PMID: 39345430 PMCID: PMC11429678 DOI: 10.1101/2024.09.17.613324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Bacterial cell envelope polymers are commonly modified with acyl groups that provide fitness advantages. Many polymer acylation pathways involve pairs of membrane-bound O-acyltransferase (MBOAT) and SGNH family proteins. As an example, the MBOAT protein PatA and the SGNH protein PatB are required in Gram-negative bacteria for peptidoglycan O-acetylation. The mechanism for how MBOAT-SGNH transferases move acyl groups from acyl-CoA donors made in the cytoplasm to extracellular polymers is unclear. Using the peptidoglycan O-acetyltransferase proteins PatAB, we explore the mechanism of MBOAT-SGNH pairs. We find that the MBOAT protein PatA catalyzes auto-acetylation of an invariant Tyr residue in its conserved C-terminal hexapeptide motif. We also show that PatB can use a synthetic hexapeptide containing an acetylated tyrosine to donate an acetyl group to a peptidoglycan mimetic. Finally, we report the structure of PatB, finding that it has structural features that shape its activity as an O-acetyltransferase and distinguish it from other SGNH esterases and hydrolases. Taken together, our results support a model for peptidoglycan acylation in which a tyrosine-containing peptide at the MBOAT's C-terminus shuttles an acyl group from the MBOAT active site to the SGNH active site, where it is transferred to peptidoglycan. This model likely applies to other systems containing MBOAT-SGNH pairs, such as those that O-acetylate alginate, cellulose, and secondary cell wall polysaccharides. The use of an acyl-tyrosine intermediate for MBOAT-SGNH acyl transfer is also shared with AT3-SGNH proteins, a second major group of acyltransferases that modify cell envelope polymers.
Collapse
Affiliation(s)
- Alexander C. Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario Canada N1G 2W1
| | - Bailey J. Schultz
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Eric D. Snow
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Ashley S. Brott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario Canada N1G 2W1
| | - Stefen Stangherlin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario Canada N1G 2W1
| | - Tyler Malloch
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, Ontario Canada N2L 3C5
| | - Jalen R. London
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Anthony J. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario Canada N1G 2W1
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, Ontario Canada N2L 3C5
| |
Collapse
|
4
|
Tamir TY, Chaudhary S, Li AX, Trojan SE, Flower CT, Vo P, Cui Y, Davis JC, Mukkamala RS, Venditti FN, Hillis AL, Toker A, Vander Heiden MG, Spinelli JB, Kennedy NJ, Davis RJ, White FM. Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-specific metabolic reprogramming in obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609894. [PMID: 39257804 PMCID: PMC11383994 DOI: 10.1101/2024.08.28.609894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Coordination of adaptive metabolism through cellular signaling networks and metabolic response is essential for balanced flow of energy and homeostasis. Post-translational modifications such as phosphorylation offer a rapid, efficient, and dynamic mechanism to regulate metabolic networks. Although numerous phosphorylation sites have been identified on metabolic enzymes, much remains unknown about their contribution to enzyme function and systemic metabolism. In this study, we stratify phosphorylation sites on metabolic enzymes based on their location with respect to functional and dimerization domains. Our analysis reveals that the majority of published phosphosites are on oxidoreductases, with particular enrichment of phosphotyrosine (pY) sites in proximity to binding domains for substrates, cofactors, active sites, or dimer interfaces. We identify phosphosites altered in obesity using a high fat diet (HFD) induced obesity model coupled to multiomics, and interrogate the functional impact of pY on hepatic metabolism. HFD induced dysregulation of redox homeostasis and reductive metabolism at the phosphoproteome and metabolome level in a sex-specific manner, which was reversed by supplementing with the antioxidant butylated hydroxyanisole (BHA). Partial least squares regression (PLSR) analysis identified pY sites that predict HFD or BHA induced changes of redox metabolites. We characterize predictive pY sites on glutathione S-transferase pi 1 (GSTP1), isocitrate dehydrogenase 1 (IDH1), and uridine monophosphate synthase (UMPS) using CRISPRi-rescue and stable isotope tracing. Our analysis revealed that sites on GSTP1 and UMPS inhibit enzyme activity while the pY site on IDH1 induces activity to promote reductive carboxylation. Overall, our approach provides insight into the convergence points where cellular signaling fine-tunes metabolism.
Collapse
Affiliation(s)
- Tigist Y Tamir
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shreya Chaudhary
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Annie X Li
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sonia E Trojan
- Koch Institute for Integrative Cancer Research
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cameron T Flower
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Program in Computational and Systems Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paula Vo
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yufei Cui
- Koch Institute for Integrative Cancer Research
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey C Davis
- Koch Institute for Integrative Cancer Research
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rachit S Mukkamala
- Koch Institute for Integrative Cancer Research
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Francesca N Venditti
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alissandra L Hillis
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Norman J Kennedy
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biological Engineering
- Program in Computational and Systems Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
5
|
Huang Y, Zhu T, Li Y, Huang D. Chain Extension of Piperazine in Ethanol: Synthesis of 2-(4-(2-(Phenylthio)ethyl)piperazinyl)acetonitriles and ACAT-1 Inhibitors. Molecules 2024; 29:3723. [PMID: 39202802 PMCID: PMC11356844 DOI: 10.3390/molecules29163723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
A base-induced synthesis of 2-(4-(2-(phenylthio)ethyl)piperazinyl) acetonitriles by reaction of disulfides, 1-(chloromethyl)-4-aza-1-azonia bicyclo[2.2.2]octane chloride and trimethylsilyl cyanide is reported. The scope of the method is demonstrated with 30 examples. The reaction mechanism research indicates that the three-component reaction would be a SN2 reaction. The products exhibit good activities towards advanced synthesis of aqueous soluble acyl-CoA: cholesterol O-acyltransferase-1 (ACAT-1) inhibitors. Our work is superior as it uses less-odor disulfides as carbon sources and EtOH as solvent in a water and dioxygen insensitive reaction system, followed by a simple purification process.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350002, China; (Y.H.); (T.Z.)
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Tingyu Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350002, China; (Y.H.); (T.Z.)
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yinghua Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350002, China; (Y.H.); (T.Z.)
| | - Deguang Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350002, China; (Y.H.); (T.Z.)
| |
Collapse
|
6
|
Ansell TB, Healy M, Coupland CE, Sansom MSP, Siebold C. Mapping structural and dynamic divergence across the MBOAT family. Structure 2024; 32:1011-1022.e3. [PMID: 38636523 DOI: 10.1016/j.str.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
Membrane-bound O-acyltransferases (MBOATs) are membrane-embedded enzymes that catalyze acyl chain transfer to a diverse group of substrates, including lipids, small molecules, and proteins. MBOATs share a conserved structural core, despite wide-ranging functional specificity across both prokaryotes and eukaryotes. The structural basis of catalytic specificity, regulation and interactions with the surrounding environment remain uncertain. Here, we combine comparative molecular dynamics (MD) simulations with bioinformatics to assess molecular and interactional divergence across the family. In simulations, MBOATs differentially distort the bilayer depending on their substrate type. Additionally, we identify lipid binding sites surrounding reactant gates in the surrounding membrane. Complementary bioinformatic analyses reveal a conserved role for re-entrant loop-2 in MBOAT fold stabilization and a key hydrogen bond bridging DGAT1 dimerization. Finally, we predict differences in MBOAT solvation and water gating properties. These data are pertinent to the design of MBOAT-specific inhibitors that encompass dynamic information within cellular mimetic environments.
Collapse
Affiliation(s)
- T Bertie Ansell
- Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK; Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Megan Healy
- Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| | - Claire E Coupland
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK; Molecular Medicine Program, The Hospital for Sick Children, 686 Bay Street, Toronto M5G 0A4, Canada
| | - Mark S P Sansom
- Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
7
|
Fu R, Xue W, Liang J, Li X, Zheng J, Wang L, Zhang M, Meng J. SOAT1 regulates cholesterol metabolism to induce EMT in hepatocellular carcinoma. Cell Death Dis 2024; 15:325. [PMID: 38724499 PMCID: PMC11082151 DOI: 10.1038/s41419-024-06711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Cholesterol metabolism reprogramming is one of the significant characteristics of hepatocellular carcinoma (HCC). Cholesterol increases the risk of epithelial-mesenchymal transition (EMT) in cancer. Sterol O-acyltransferases 1 (SOAT1) maintains the cholesterol homeostasis. However, the exact mechanistic contribution of SOAT1 to EMT in HCC remains unclear. Here we demonstrated that SOAT1 positively related to poor prognosis of HCC, EMT markers and promoted cell migration and invasion in vitro, which was mediated by the increased cholesterol in plasmalemma and cholesterol esters accumulation. Furthermore, we reported that SOAT1 disrupted cholesterol metabolism homeostasis to accelerate tumorigenesis and development in HCC xenograft and NAFLD-HCC. Also, we detected that nootkatone, a sesquiterpene ketone, inhibited EMT by targeting SOAT1 in vitro and in vivo. Collectively, our finding indicated that SOAT1 promotes EMT and contributes to hepatocarcinogenesis by increasing cholesterol esterification, which is suppressed efficiently by nootkatone. This study demonstrated that SOAT1 is a potential biomarker and therapeutic target in NAFLD-HCC and SOAT1-targeting inhibitors are expected to be the potential new therapeutic treatment for HCC.
Collapse
Affiliation(s)
- Rongrong Fu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenqing Xue
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jingjie Liang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinran Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Juan Zheng
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Lechen Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China.
- China-Russia Agricultural Products Processing Joint Laboratory, Tianjin Agricultural University, Tianjin, China.
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China.
- Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| |
Collapse
|
8
|
Sapia J, Vanni S. Molecular dynamics simulations of intracellular lipid droplets: a new tool in the toolbox. FEBS Lett 2024; 598:1143-1153. [PMID: 38627196 DOI: 10.1002/1873-3468.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 05/25/2024]
Abstract
Lipid droplets (LDs) are ubiquitous intracellular organelles with a central role in multiple lipid metabolic pathways. However, identifying correlations between their structural properties and their biological activity has proved challenging, owing to their unique physicochemical properties as compared with other cellular membranes. In recent years, molecular dynamics (MD) simulations, a computational methodology allowing the accurate description of molecular assemblies down to their individual components, have been demonstrated to be a useful and powerful approach for studying LD structural and dynamical properties. In this short review, we attempt to highlight, as comprehensively as possible, how MD simulations have contributed to our current understanding of multiple molecular mechanisms involved in LD biology.
Collapse
Affiliation(s)
- Jennifer Sapia
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Dudka W, Salo VT, Mahamid J. Zooming into lipid droplet biology through the lens of electron microscopy. FEBS Lett 2024; 598:1127-1142. [PMID: 38726814 DOI: 10.1002/1873-3468.14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Electron microscopy (EM), in its various flavors, has significantly contributed to our understanding of lipid droplets (LD) as central organelles in cellular metabolism. For example, EM has illuminated that LDs, in contrast to all other cellular organelles, are uniquely enclosed by a single phospholipid monolayer, revealed the architecture of LD contact sites with different organelles, and provided near-atomic resolution maps of key enzymes that regulate neutral lipid biosynthesis and LD biogenesis. In this review, we first provide a brief history of pivotal findings in LD biology unveiled through the lens of an electron microscope. We describe the main EM techniques used in the context of LD research and discuss their current capabilities and limitations, thereby providing a foundation for utilizing suitable EM methodology to address LD-related questions with sufficient level of structural preservation, detail, and resolution. Finally, we highlight examples where EM has recently been and is expected to be instrumental in expanding the frontiers of LD biology.
Collapse
Affiliation(s)
- Wioleta Dudka
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Veijo T Salo
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
| |
Collapse
|
10
|
Sun T, Xiao X. Targeting ACAT1 in cancer: from threat to treatment. Front Oncol 2024; 14:1395192. [PMID: 38720812 PMCID: PMC11076747 DOI: 10.3389/fonc.2024.1395192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Altered cholesterol metabolism has been identified as a critical feature of cancers. Cholesterol functions as the main component of cell membrane, cholesterol and is required for sustaining membrane integrity and mediating signaling transduction for cell survival. The intracellular level of cholesterol is dynamically regulated. Excessive cholesterol could be converted to less toxic cholesteryl esters by acyl-coenzyme A:cholesterol acyltransferases (ACATs). While ACAT2 has limited value in cancers, ACAT1 has been found to be widely participated in tumor initiation and progression. Moreover, due to the important role of cholesterol metabolism in immune function, ACAT1 is also essential for regulating anti-tumor immunity. ACAT1 inhibition may be exploited as a potential strategy to enhance the anti-tumor immunity and eliminate tumors. Herein, a comprehensive understanding of the role of ACAT1 in tumor development and anti-tumor immunity may provide new insights for anti-tumor strategies.
Collapse
Affiliation(s)
| | - Xuan Xiao
- Department of Thyroid and Breast Surgery, People’s Hospital of China Medical University (Liaoning Provincial People’s Hospital), Shenyang, China
| |
Collapse
|
11
|
Zhang P, Liu Z. Structural insights into the transporting and catalyzing mechanism of DltB in LTA D-alanylation. Nat Commun 2024; 15:3404. [PMID: 38649359 PMCID: PMC11035591 DOI: 10.1038/s41467-024-47783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
DltB, a model member of the Membrane-Bound O-AcylTransferase (MBOAT) superfamily, plays a crucial role in D-alanylation of the lipoteichoic acid (LTA), a significant component of the cell wall of gram-positive bacteria. This process stabilizes the cell wall structure, influences bacterial virulence, and modulates the host immune response. Despite its significance, the role of DltB is not well understood. Through biochemical analysis and cryo-EM imaging, we discover that Streptococcus thermophilus DltB forms a homo-tetramer on the cell membrane. We further visualize DltB in an apo form, in complex with DltC, and in complex with its inhibitor amsacrine (m-AMSA). Each tetramer features a central hole. The C-tunnel of each protomer faces the intratetramer interface and provides access to the periphery membrane. Each protomer binds a DltC without changing the tetrameric organization. A phosphatidylglycerol (PG) molecule in the substrate-binding site may serve as an LTA carrier. The inhibitor m-AMSA bound to the L-tunnel of each protomer blocks the active site. The tetrameric organization of DltB provides a scaffold for catalyzing D-alanyl transfer and regulating the channel opening and closing. Our findings unveil DltB's dual function in the D-alanylation pathway, and provide insight for targeting DltB as a anti-virulence antibiotic.
Collapse
Affiliation(s)
- Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
| |
Collapse
|
12
|
Wang Z, Cao Z, Dai Z. ACAT2 may be a novel predictive biomarker and therapeutic target in lung adenocarcinoma. Cancer Rep (Hoboken) 2024; 7:e1956. [PMID: 38213102 PMCID: PMC10849923 DOI: 10.1002/cnr2.1956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Acyl-coenzyme A cholesterol acyltransferase (ACAT) is a membrane-binding enzyme localized in the endoplasmic reticulum. ACAT2 can promote the development of colon cancer, but its efficacy in lung adenocarcinoma (LUAD) remains uncertain. METHOD ACAT2 expression was performed by using the TIMER2.0 database. The GEPIA database was utilized to analyze the correlation between ACAT2 expression and pathological stage of the tumor. Clinical prognosis was assessed through the Kaplan-Meier analysis. The CancerSEA database was employed to scrutinize the correlations between the ACAT2 expression and the functional status of various tumors, which were subsequently visualized as a heatmap. Furthermore, molecular interaction network analysis was performed by the STRING tool. RESULTS High ACAT2 expression was associated with a poor DFS and OS in LUAD patients. Cox regression analysis indicated that the poor outcomes may be related to tumor stage, nodal stage, distant metastatic stage. ACAT2 was found to play a crucial role in various biological processes, including the cell cycle, DNA repair, DNA damage response, and proliferation. Enrichment pathway analysis revealed four ACAT2 related genes, ACOX1, EHHADH, OXCT1, and DLAT. CONCLUSION Our study showed that ACAT2 was upregulated in LUAD, and had a worse survival. ACAT2 could be a novel predictive biomarker and therapeutic target in LUAD.
Collapse
Affiliation(s)
- Zhongchao Wang
- The Second HospitalDalian Medical UniversityDalianChina
- Xinyi People's HospitalXinyiChina
| | - Zhugen Cao
- Suqian First People's HospitalSuqianChina
| | - Zhaoxia Dai
- The Second HospitalDalian Medical UniversityDalianChina
| |
Collapse
|
13
|
Katopodi T, Petanidis S, Anestakis D, Charalampidis C, Chatziprodromidou I, Floros G, Eskitzis P, Zarogoulidis P, Koulouris C, Sevva C, Papadopoulos K, Dagher M, Karakousis VA, Varsamis N, Theodorou V, Mystakidou CM, Vlassopoulos K, Kosmidis S, Katsios NI, Farmakis K, Kosmidis C. Tumor cell metabolic reprogramming and hypoxic immunosuppression: driving carcinogenesis to metastatic colonization. Front Immunol 2024; 14:1325360. [PMID: 38292487 PMCID: PMC10824957 DOI: 10.3389/fimmu.2023.1325360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
A significant factor in the antitumor immune response is the increased metabolic reprogramming of immunological and malignant cells. Increasing data points to the fact that cancer metabolism affects not just cancer signaling, which is essential for maintaining carcinogenesis and survival, but also the expression of immune cells and immune-related factors such as lactate, PGE2, arginine, IDO, which regulate the antitumor immune signaling mechanism. In reality, this energetic interaction between the immune system and the tumor results in metabolic competition in the tumor ecosystem, limiting the amount of nutrients available and causing microenvironmental acidosis, which impairs the ability of immune cells to operate. More intriguingly, different types of immune cells use metabolic reprogramming to keep the body and self in a state of homeostasis. The process of immune cell proliferation, differentiation, and performance of effector functions, which is crucial to the immune response, are currently being linked to metabolic reprogramming. Here, we cover the regulation of the antitumor immune response by metabolic reprogramming in cancer cells and immune cells as well as potential strategies for metabolic pathway targeting in the context of anticancer immunotherapy. We also discuss prospective immunotherapy-metabolic intervention combinations that might be utilized to maximize the effectiveness of current immunotherapy regimes.
Collapse
Affiliation(s)
- Theodora Katopodi
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Savvas Petanidis
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Doxakis Anestakis
- Department of Anatomy, Medical School, University of Cyprus, Nicosia, Cyprus
| | | | | | - George Floros
- Department of Electrical and Computer Engineering, University of Thessaly, Volos, Greece
| | | | - Paul Zarogoulidis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charilaos Koulouris
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christina Sevva
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Papadopoulos
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marios Dagher
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Nikolaos Varsamis
- Department of Surgery, Interbalkan Medical Center, Thessaloniki, Greece
| | - Vasiliki Theodorou
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysi Maria Mystakidou
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Vlassopoulos
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stylianos Kosmidis
- Department of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Konstantinos Farmakis
- Pediatric Surgery Clinic, General Hospital of Thessaloniki “G. Gennimatas”, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christoforos Kosmidis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
14
|
Sugi T, Katoh Y, Ikeda T, Seta D, Iwata T, Nishio H, Sugawara M, Kato D, Katoh K, Kawana K, Yaguchi T, Kawakami Y, Hirai S. SCD1 inhibition enhances the effector functions of CD8 + T cells via ACAT1-dependent reduction of esterified cholesterol. Cancer Sci 2024; 115:48-58. [PMID: 37879607 PMCID: PMC10823278 DOI: 10.1111/cas.15999] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
We previously reported that the inhibition of stearoyl-CoA desaturase 1 (SCD1) enhances the antitumor function of CD8+ T cells indirectly via restoring production of DC recruiting chemokines by cancer cells and subsequent induction of antitumor CD8+ T cells. In this study, we investigated the molecular mechanism of direct enhancing effects of SCD1 inhibitors on CD8+ T cells. In vitro treatment of CD8+ T cells with SCD1 inhibitors enhanced IFN-γ production and cytotoxic activity of T cells along with decreased oleic acid and esterified cholesterol, which is generated by cholesterol esterase, acetyl-CoA acetyltransferase 1 (ACAT1), in CD8+ T cells. The addition of oleic acid or cholesteryl oleate reversed the enhanced functions of CD8+ T cells treated with SCD1 inhibitors. Systemic administration of SCD1 inhibitor to MCA205 tumor-bearing mice enhanced IFN-γ production of tumor-infiltrating CD8+ T cells, in which oleic acid and esterified cholesterol, but not cholesterol, were decreased. These results indicated that SCD1 suppressed effector functions of CD8+ T cells through the increased esterified cholesterol in an ACAT1-dependent manner, and SCD1 inhibition enhanced T cell activity directly through decreased esterified cholesterol. Finally, SCD1 inhibitors or ACAT1 inhibitors synergistically enhanced the antitumor effects of anti-PD-1 antibody therapy or CAR-T cell therapy in mouse tumor models. Therefore, the SCD1-ACAT1 axis is regulating effector functions of CD8+ T cells, and SCD1 inhibitors, and ACAT1 inhibitors are attractive drugs for cancer immunotherapy.
Collapse
Affiliation(s)
- Toshihiro Sugi
- Department of Obstetrics and GynecologyNihon University School of MedicineTokyoJapan
| | - Yuki Katoh
- Division of Anatomical Science, Department of Functional MorphologyNihon University School of MedicineTokyoJapan
- Department of Obstetrics and GynecologyKeio University School of MedicineTokyoJapan
| | - Toshikatsu Ikeda
- Division of Anatomical Science, Department of Functional MorphologyNihon University School of MedicineTokyoJapan
| | - Daichi Seta
- Nihon University School of MedicineTokyoJapan
| | - Takashi Iwata
- Department of Obstetrics and GynecologyKeio University School of MedicineTokyoJapan
| | - Hiroshi Nishio
- Department of Obstetrics and GynecologyKeio University School of MedicineTokyoJapan
| | - Masaki Sugawara
- Department of Obstetrics and GynecologyKeio University School of MedicineTokyoJapan
| | - Daiki Kato
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kanoko Katoh
- Department of Obstetrics and GynecologyNihon University School of MedicineTokyoJapan
| | - Kei Kawana
- Department of Obstetrics and GynecologyNihon University School of MedicineTokyoJapan
| | - Tomonori Yaguchi
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and ImmunobiologyKyoto University Graduate School of MedicineKyotoJapan
| | - Yutaka Kawakami
- Department of Immunology, School of MedicineInternational University of Health and WelfareChibaJapan
| | - Shuichi Hirai
- Division of Anatomical Science, Department of Functional MorphologyNihon University School of MedicineTokyoJapan
| |
Collapse
|
15
|
Ishibashi Y, Sadamitsu S, Fukahori Y, Yamamoto Y, Tanogashira R, Watanabe T, Hayashi M, Ito M, Okino N. Characterization of thraustochytrid-specific sterol O-acyltransferase: modification of DGAT2-like enzyme to increase the sterol production in Aurantiochytrium limacinum mh0186. Appl Environ Microbiol 2023; 89:e0100123. [PMID: 37874286 PMCID: PMC10686087 DOI: 10.1128/aem.01001-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/04/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Since the global market for sterols and vitamin D are grown with a high compound annual growth rate, a sustainable source of these compounds is required to keep up with the increasing demand. Thraustochytrid is a marine oleaginous microorganism that can synthesize several sterols, which are stored as SE in lipid droplets. DGAT2C is an unconventional SE synthase specific to thraustochytrids. Although the primary structure of DGAT2C shows high similarities with that of DGAT, DGAT2C utilizes sterol as an acceptor substrate instead of diacylglycerol. In this study, we examined more detailed enzymatic properties, intracellular localization, and structure-activity relationship of DGAT2C. Furthermore, we successfully developed a method to increase sterol and provitamin D3 productivity of thraustochytrid by more than threefold in the process of elucidating the function of the DGAT2C-specific N-terminal region. Our findings could lead to sustainable sterol and vitamin D production using thraustochytrid.
Collapse
Affiliation(s)
- Yohei Ishibashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Shohei Sadamitsu
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitomo Fukahori
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Yamamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Rin Tanogashira
- Kyushu University Future Creators in Science Project (QFC-SP), Fukuoka, Japan
| | - Takashi Watanabe
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Hayashi
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Pierce M, Ji J, Novak SX, Sieburg MA, Nangia S, Nangia S, Hougland JL. Combined Computational-Biochemical Approach Offers an Accelerated Path to Membrane Protein Solubilization. J Chem Inf Model 2023; 63:7159-7170. [PMID: 37939203 PMCID: PMC10685452 DOI: 10.1021/acs.jcim.3c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
Membrane proteins are difficult to isolate and purify due to their dependence on the surrounding lipid membrane for structural stability. Detergents are often used to solubilize these proteins, with this approach requiring a careful balance between protein solubilization and denaturation. Determining which detergent is most appropriate for a given protein has largely been done empirically through screening, which requires large amounts of membrane protein and associated resources. Here, we describe an alternative to conventional detergent screening using a computational modeling approach to identify the most likely candidate detergents for solubilizing a protein of interest. We demonstrate our approach using ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase family of integral membrane enzymes that has not been solubilized or purified in active form. A computationally derived GOAT structural model provides the only structural information required for this approach. Using computational analysis of detergent ability to penetrate phospholipid bilayers and stabilize the GOAT structure, a panel of common detergents were rank-ordered for their proposed ability to solubilize GOAT. The simulations were performed at all-atom resolution for a combined simulation time of 24 μs. Independently, we biologically screened these detergents for their solubilization of fluorescently tagged GOAT constructs. We found computational prediction of protein structural stabilization was the better predictor of detergent solubilization ability, but neither approach was effective for predicting detergents that would support GOAT enzymatic function. The current rapid expansion of membrane protein computational models lacking experimental structural information and our computational detergent screening approach can greatly improve the efficiency of membrane protein detergent solubilization, supporting downstream functional and structural studies.
Collapse
Affiliation(s)
- Mariah
R. Pierce
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Sadie X. Novak
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Michelle A. Sieburg
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Shivangi Nangia
- Department
of Chemistry, University of Hartford, West Hartford, Connecticut 06117, United States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse, Syracuse, New York 13244, United States
| | - James L. Hougland
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
17
|
Schiffmann A, Ahlswede L, Gimpl G. Reversible translocation of acyl-CoA:cholesterol acyltransferase (ACAT) between the endoplasmic reticulum and vesicular structures. Front Mol Biosci 2023; 10:1258799. [PMID: 38028547 PMCID: PMC10667705 DOI: 10.3389/fmolb.2023.1258799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The enzyme acyl-CoA:cholesterol acyltransferase (ACAT) is normally localized in the endoplasmic reticulum (ER) where it can esterify cholesterol for storage in lipid droplets and/or the formation of lipoproteins. Here, we report that ACAT can translocate from the ER into vesicular structures in response to different ACAT inhibitors. The translocation was fast (within minutes), reversible and occurred in different cell types. Interestingly, oleic acid was able to fasten the re-translocation from vesicles back into the reticular ER network. The process of ACAT translocation could also be induced by cyclodextrins, cholesterol, lanosterol (but not 4-cholestene-3 one), 25-hydroxycholesterol, and by certain stress stimuli such as hyperosmolarity (sucrose treatment), temperature change, or high-density cultivation. In vitro esterification showed that ACAT remains fully active after it has been translocated to vesicles in response to hyperosmotic sucrose treatment of the cells. The translocation process was not accompanied by changes in the electrophoretic mobility of ACAT, even after chemical crosslinking. Interestingly, the protein synthesis inhibitor cycloheximide showed a stimulating effect on ACAT activity and prevented the translocation of ACAT from the ER into vesicles.
Collapse
Affiliation(s)
| | | | - Gerald Gimpl
- Department of Chemistry and Biochemistry, Biocenter II, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
18
|
Indelicato E, Faserl K, Amprosi M, Nachbauer W, Schneider R, Wanschitz J, Sarg B, Boesch S. Skeletal muscle proteome analysis underpins multifaceted mitochondrial dysfunction in Friedreich's ataxia. Front Neurosci 2023; 17:1289027. [PMID: 38027498 PMCID: PMC10644315 DOI: 10.3389/fnins.2023.1289027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Friedreich's ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA pathology are developmental, the causes underlying the steady progression are unclear. The inaccessibility of key affected tissues to sampling is a main hurdle. Skeletal muscle displays a disease phenotype and may be sampled in vivo to address open questions on FRDA pathophysiology. Thus, we performed a quantitative mass spectrometry-based proteomics analysis in gastrocnemius skeletal muscle biopsies from genetically confirmed FRDA patients (n = 5) and controls. Obtained data files were processed using Proteome Discoverer and searched by Sequest HT engine against a UniProt human reference proteome database. Comparing skeletal muscle proteomics profiles between FRDA and controls, we identified 228 significant differentially expressed (DE) proteins, of which 227 were downregulated in FRDA. Principal component analysis showed a clear separation between FRDA and control samples. Interactome analysis revealed clustering of DE proteins in oxidative phosphorylation, ribosomal elements, mitochondrial architecture control, and fission/fusion pathways. DE findings in the muscle-specific proteomics suggested a shift toward fast-twitching glycolytic fibers. Notably, most DE proteins (169/228, 74%) are target of the transcription factor nuclear factor-erythroid 2. Our data corroborate a mitochondrial biosignature of FRDA, which extends beyond a mere oxidative phosphorylation failure. Skeletal muscle proteomics highlighted a derangement of mitochondrial architecture and maintenance pathways and a likely adaptive metabolic shift of contractile proteins. The present findings are relevant for the design of future therapeutic strategies and highlight the value of skeletal muscle-omics as disease state readout in FRDA.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Faserl
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Amprosi
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Nachbauer
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rainer Schneider
- Institute of Biochemistry, Center of Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens University Innsbruck, Innsbruck, Austria
| | - Julia Wanschitz
- Laboratory of Tissue Diagnostics, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Sarg
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Zhu K, Ni L, Han J, Yan Z, Zhang Y, Wang F, Wang L, Yang X. Acetyl-coenzyme A acetyltransferase 1 promotes brown adipogenesis by activating the AMPK-PGC1α signaling pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159369. [PMID: 37582428 DOI: 10.1016/j.bbalip.2023.159369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Brown adipose tissue (BAT) is thermogenic, expressing high levels of uncoupling protein-1 to convert nutrient energy to heat energy, bypassing ATP synthesis. BAT is a promising therapeutic target for treatment of obesity and type 2 diabetes since it converts fatty acids into heat but mechanisms controlling brown adipogenesis remain unclear. Knockdown of acetyl-Coenzyme A acetyltransferase 1 (ACAT1) in C3H10T1/2 cells suppressed brown adipocyte maturation during the current study and ACAT1 overexpression promoted brown adipocyte maturation. The downstream target of AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1-α (PGC1α), was involved in the action of ACAT1 on brown adipocyte maturation. ACAT1 overexpression enhanced AMPK phosphorylation and promoted PGC1α expression. It is suggested that ACAT1 promotes brown adipocyte maturation by activating the AMPK-PGC1α signaling pathway.
Collapse
Affiliation(s)
- Kaixiang Zhu
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui 230601, PR China
| | - Ling Ni
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui 230601, PR China
| | - Jianxiong Han
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui 230601, PR China
| | - Zhongkang Yan
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui 230601, PR China
| | - Yin Zhang
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui 230601, PR China
| | - Feifei Wang
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui 230601, PR China
| | - Lili Wang
- School of Life Science, Anhui University, Hefei, Anhui 230601, PR China.
| | - Xingyuan Yang
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui 230601, PR China.
| |
Collapse
|
20
|
Campaña M, Davis TR, Novak SX, Cleverdon ER, Bates M, Krishnan N, Curtis ER, Childs MD, Pierce MR, Morales-Rodriguez Y, Sieburg MA, Hehnly H, Luyt LG, Hougland JL. Cellular Uptake of a Fluorescent Ligand Reveals Ghrelin O-Acyltransferase Interacts with Extracellular Peptides and Exhibits Unexpected Localization for a Secretory Pathway Enzyme. ACS Chem Biol 2023; 18:1880-1890. [PMID: 37494676 PMCID: PMC10442857 DOI: 10.1021/acschembio.3c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Ghrelin O-acyltransferase (GOAT) plays a central role in the maturation and activation of the peptide hormone ghrelin, which performs a wide range of endocrinological signaling roles. Using a tight-binding fluorescent ghrelin-derived peptide designed for high selectivity for GOAT over the ghrelin receptor GHSR, we demonstrate that GOAT interacts with extracellular ghrelin and facilitates ligand cell internalization in both transfected cells and prostate cancer cells endogenously expressing GOAT. Coupled with enzyme mutagenesis, ligand uptake studies support the interaction of the putative histidine general base within GOAT with the ghrelin peptide acylation site. Our work provides a new understanding of GOAT's catalytic mechanism, establishes that GOAT can interact with ghrelin and other peptides located outside the cell, and raises the possibility that other peptide hormones may exhibit similar complexity in their intercellular and organismal-level signaling pathways.
Collapse
Affiliation(s)
- Maria
B. Campaña
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Tasha R. Davis
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Sadie X. Novak
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | | | - Michael Bates
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - Nikhila Krishnan
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - Erin R. Curtis
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - Marina D. Childs
- Department
of Chemistry, University of Western Ontario, London, Ontario N6A 2K7, Canada
| | - Mariah R. Pierce
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | | | - Michelle A. Sieburg
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Heidi Hehnly
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Leonard G. Luyt
- Department
of Chemistry, University of Western Ontario, London, Ontario N6A 2K7, Canada
- Department
of Oncology and Department of Medical Imaging, London Regional Cancer
Program, Lawson Health Research Institute, 800 Commissioners Road East, London, Ontario N6A 5W9, Canada
| | - James L. Hougland
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
21
|
Schultz BJ, Snow ED, Walker S. Mechanism of D-alanine transfer to teichoic acids shows how bacteria acylate cell envelope polymers. Nat Microbiol 2023; 8:1318-1329. [PMID: 37308592 PMCID: PMC10664464 DOI: 10.1038/s41564-023-01411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/17/2023] [Indexed: 06/14/2023]
Abstract
Bacterial cell envelope polymers are often modified with acyl esters that modulate physiology, enhance pathogenesis and provide antibiotic resistance. Here, using the D-alanylation of lipoteichoic acid (Dlt) pathway as a paradigm, we have identified a widespread strategy for how acylation of cell envelope polymers occurs. In this strategy, a membrane-bound O-acyltransferase (MBOAT) protein transfers an acyl group from an intracellular thioester onto the tyrosine of an extracytoplasmic C-terminal hexapeptide motif. This motif shuttles the acyl group to a serine on a separate transferase that moves the cargo to its destination. In the Dlt pathway, here studied in Staphylococcus aureus and Streptococcus thermophilus, the C-terminal 'acyl shuttle' motif that forms the crucial pathway intermediate is found on a transmembrane microprotein that holds the MBOAT protein and the other transferase together in a complex. In other systems, found in both Gram-negative and Gram-positive bacteria as well as some archaea, the motif is fused to the MBOAT protein, which interacts directly with the other transferase. The conserved chemistry uncovered here is widely used for acylation throughout the prokaryotic world.
Collapse
Affiliation(s)
- Bailey J Schultz
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Eric D Snow
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Wang K, Lee CW, Sui X, Kim S, Wang S, Higgs AB, Baublis AJ, Voth GA, Liao M, Walther TC, Farese RV. The structure of phosphatidylinositol remodeling MBOAT7 reveals its catalytic mechanism and enables inhibitor identification. Nat Commun 2023; 14:3533. [PMID: 37316513 PMCID: PMC10267149 DOI: 10.1038/s41467-023-38932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
Cells remodel glycerophospholipid acyl chains via the Lands cycle to adjust membrane properties. Membrane-bound O-acyltransferase (MBOAT) 7 acylates lyso-phosphatidylinositol (lyso-PI) with arachidonyl-CoA. MBOAT7 mutations cause brain developmental disorders, and reduced expression is linked to fatty liver disease. In contrast, increased MBOAT7 expression is linked to hepatocellular and renal cancers. The mechanistic basis of MBOAT7 catalysis and substrate selectivity are unknown. Here, we report the structure and a model for the catalytic mechanism of human MBOAT7. Arachidonyl-CoA and lyso-PI access the catalytic center through a twisted tunnel from the cytosol and lumenal sides, respectively. N-terminal residues on the ER lumenal side determine phospholipid headgroup selectivity: swapping them between MBOATs 1, 5, and 7 converts enzyme specificity for different lyso-phospholipids. Finally, the MBOAT7 structure and virtual screening enabled identification of small-molecule inhibitors that may serve as lead compounds for pharmacologic development.
Collapse
Affiliation(s)
- Kun Wang
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Chia-Wei Lee
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Xuewu Sui
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Siyoung Kim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Shuhui Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Aidan B Higgs
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Aaron J Baublis
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Harvard T.H. Chan Advanced Multi-Omics Platform, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Harvard T.H. Chan Advanced Multi-Omics Platform, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
23
|
Chen F, Lu Y, Lin J, Kang R, Liu J. Cholesterol metabolism in cancer and cell death. Antioxid Redox Signal 2023. [PMID: 37300482 DOI: 10.1089/ars.2023.0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Cholesterol is a type of lipid that plays a crucial role in building and maintaining cell membranes, producing certain hormones, and aiding in digestion. The two main types of cholesterol are low-density lipoprotein and high-density lipoprotein, and maintaining a healthy balance between them is essential for cellular function and organism health. RECENT ADVANCES Cholesterol metabolism is a complex and dynamic process that involves biosynthesis, uptake, efflux, transport, and esterification. Disruptions in cholesterol metabolism are implicated in all stages of cancer, contributing to drug resistance, immune evasion, and autophagy dysfunction. These disruptions have also been linked to various types of regulated cell death, such as apoptosis, anoikis, lysosome-dependent cell death, pyroptosis, NETosis, necroptosis, entosis, ferroptosis, alkaliptosis, immunogenic cell death, and paraptosis. CRITICAL ISSUES Understanding the complex interplay between cholesterol metabolism and cell death and their impact on cancer development and progression is still a significant challenge. Additionally, there is currently a lack of reliable biomarkers that can accurately reflect cholesterol metabolism dysregulation in cancer. FUTURE DIRECTIONS To develop more specific and effective cholesterol metabolism-targeted therapies, a better understanding of the mechanisms by which cholesterol metabolism dysregulation contributes to cell death and cancer progression is needed. Additionally, improving the accuracy and reliability of biomarkers will be crucial for monitoring and diagnosing cholesterol-related cancer subtypes and evaluating the effectiveness of cholesterol metabolism-targeted therapies. These efforts will require ongoing research and collaboration among multidisciplinary teams of scientists and clinicians.
Collapse
Affiliation(s)
- Fangquan Chen
- Guangzhou Medical University, 26468, Guangzhou, Guangdong, China;
| | - Yanjiao Lu
- Guangzhou Medical University, 26468, Guangzhou, Guangdong, China;
| | - Junhao Lin
- Guangzhou Medical University, 26468, Guangzhou, Guangdong, China;
| | - Rui Kang
- University of Texas Southwestern Medical Center Dallas, 5323 Harry Hine Blvd, Dallas, Dallas, Texas, United States, 75390;
| | - Jiao Liu
- Guangzhou Medical University, 26468, Guangzhou, Guangdong, China;
| |
Collapse
|
24
|
Coupland CE, Ansell TB, Sansom MSP, Siebold C. Rocking the MBOAT: Structural insights into the membrane bound O-acyltransferase family. Curr Opin Struct Biol 2023; 80:102589. [PMID: 37040671 DOI: 10.1016/j.sbi.2023.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 04/13/2023]
Abstract
The membrane-bound O-acyltransferase (MBOAT) superfamily catalyses the transfer of acyl chains to substrates implicated in essential cellular functions. Aberrant function of MBOATs is associated with various diseases and MBOATs are promising drug targets. There has been recent progress in structural characterisation of MBOATs, advancing our understanding of their functional mechanism. Integrating information across the MBOAT family, we characterise a common MBOAT fold and provide a blueprint for substrate and inhibitor engagement. This work provides context for the diverse substrates, mechanisms, and evolutionary relationships of protein and small-molecule MBOATs. Further work should aim to characterise MBOATs, as inherently lipid-associated proteins, within their membrane environment.
Collapse
Affiliation(s)
- Claire E Coupland
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - T Bertie Ansell
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
25
|
Sui X, Wang K, Song K, Xu C, Song J, Lee CW, Liao M, Farese RV, Walther TC. Mechanism of action for small-molecule inhibitors of triacylglycerol synthesis. Nat Commun 2023; 14:3100. [PMID: 37248213 PMCID: PMC10227072 DOI: 10.1038/s41467-023-38934-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Inhibitors of triacylglycerol (TG) synthesis have been developed to treat metabolism-related diseases, but we know little about their mechanisms of action. Here, we report cryo-EM structures of the TG-synthesis enzyme acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a membrane bound O-acyltransferase (MBOAT), in complex with two different inhibitors, T863 and DGAT1IN1. Each inhibitor binds DGAT1's fatty acyl-CoA substrate binding tunnel that opens to the cytoplasmic side of the ER. T863 blocks access to the tunnel entrance, whereas DGAT1IN1 extends further into the enzyme, with an amide group interacting with more deeply buried catalytic residues. A survey of DGAT1 inhibitors revealed that this amide group may serve as a common pharmacophore for inhibition of MBOATs. The inhibitors were minimally active against the related MBOAT acyl-CoA:cholesterol acyltransferase 1 (ACAT1), yet a single-residue mutation sensitized ACAT1 for inhibition. Collectively, our studies provide a structural foundation for developing DGAT1 and other MBOAT inhibitors.
Collapse
Affiliation(s)
- Xuewu Sui
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Kun Wang
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Kangkang Song
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Cryo-EM Core Facility, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chen Xu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Cryo-EM Core Facility, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jiunn Song
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Chia-Wei Lee
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
26
|
Pierce MR, Hougland JL. A rising tide lifts all MBOATs: recent progress in structural and functional understanding of membrane bound O-acyltransferases. Front Physiol 2023; 14:1167873. [PMID: 37250116 PMCID: PMC10213974 DOI: 10.3389/fphys.2023.1167873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Acylation modifications play a central role in biological and physiological processes. Across a range of biomolecules from phospholipids to triglycerides to proteins, introduction of a hydrophobic acyl chain can dramatically alter the biological function and cellular localization of these substrates. Amongst the enzymes catalyzing these modifications, the membrane bound O-acyltransferase (MBOAT) family occupies an intriguing position as the combined substrate selectivities of the various family members span all three classes of these biomolecules. MBOAT-dependent substrates are linked to a wide range of health conditions including metabolic disease, cancer, and neurodegenerative disease. Like many integral membrane proteins, these enzymes have presented challenges to investigation due to their intractability to solubilization and purification. However, over the last several years new solubilization approaches coupled with computational modeling, crystallography, and cryoelectron microscopy have brought an explosion of structural information for multiple MBOAT family members. These studies enable comparison of MBOAT structure and function across members catalyzing modifications of all three substrate classes, revealing both conserved features amongst all MBOATs and distinct architectural features that correlate with different acylation substrates ranging from lipids to proteins. We discuss the methods that led to this renaissance of MBOAT structural investigations, our new understanding of MBOAT structure and implications for catalytic function, and the potential impact of these studies for development of new therapeutics targeting MBOAT-dependent physiological processes.
Collapse
Affiliation(s)
- Mariah R. Pierce
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
| | - James L. Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
- Department of Biology, Syracuse University, Syracuse, NY, United States
- BioInspired Syracuse, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
27
|
Zelnik ID, Mestre B, Weinstein JJ, Dingjan T, Izrailov S, Ben-Dor S, Fleishman SJ, Futerman AH. Computational design and molecular dynamics simulations suggest the mode of substrate binding in ceramide synthases. Nat Commun 2023; 14:2330. [PMID: 37087500 PMCID: PMC10122649 DOI: 10.1038/s41467-023-38047-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/13/2023] [Indexed: 04/24/2023] Open
Abstract
Until now, membrane-protein stabilization has relied on iterations of mutations and screening. We now validate a one-step algorithm, mPROSS, for stabilizing membrane proteins directly from an AlphaFold2 model structure. Applied to the lipid-generating enzyme, ceramide synthase, 37 designed mutations lead to a more stable form of human CerS2. Together with molecular dynamics simulations, we propose a pathway by which substrates might be delivered to the ceramide synthases.
Collapse
Affiliation(s)
- Iris D Zelnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Beatriz Mestre
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Jonathan J Weinstein
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Stav Izrailov
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shifra Ben-Dor
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
28
|
Harned TC, Stan RV, Cao Z, Chakrabarti R, Higgs HN, Chang CCY, Chang TY. Acute ACAT1/SOAT1 Blockade Increases MAM Cholesterol and Strengthens ER-Mitochondria Connectivity. Int J Mol Sci 2023; 24:5525. [PMID: 36982602 PMCID: PMC10059652 DOI: 10.3390/ijms24065525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Cholesterol is a key component of all mammalian cell membranes. Disruptions in cholesterol metabolism have been observed in the context of various diseases, including neurodegenerative disorders such as Alzheimer's disease (AD). The genetic and pharmacological blockade of acyl-CoA:cholesterol acyltransferase 1/sterol O-acyltransferase 1 (ACAT1/SOAT1), a cholesterol storage enzyme found on the endoplasmic reticulum (ER) and enriched at the mitochondria-associated ER membrane (MAM), has been shown to reduce amyloid pathology and rescue cognitive deficits in mouse models of AD. Additionally, blocking ACAT1/SOAT1 activity stimulates autophagy and lysosomal biogenesis; however, the exact molecular connection between the ACAT1/SOAT1 blockade and these observed benefits remain unknown. Here, using biochemical fractionation techniques, we observe cholesterol accumulation at the MAM which leads to ACAT1/SOAT1 enrichment in this domain. MAM proteomics data suggests that ACAT1/SOAT1 inhibition strengthens the ER-mitochondria connection. Confocal and electron microscopy confirms that ACAT1/SOAT1 inhibition increases the number of ER-mitochondria contact sites and strengthens this connection by shortening the distance between these two organelles. This work demonstrates how directly manipulating local cholesterol levels at the MAM can alter inter-organellar contact sites and suggests that cholesterol buildup at the MAM is the impetus behind the therapeutic benefits of ACAT1/SOAT1 inhibition.
Collapse
Affiliation(s)
- Taylor C. Harned
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| | - Radu V. Stan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| | - Ze Cao
- Chinese Academy of Sciences, Beijing 100045, China;
| | - Rajarshi Chakrabarti
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Henry N. Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| | - Catherine C. Y. Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| | - Ta Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| |
Collapse
|
29
|
Li L, Chao Z, Waikeong U, Xiao J, Ge Y, Wang Y, Xiong Z, Ma S, Wang Z, Hu Z, Zeng X. Metabolic classifications of renal cell carcinoma reveal intrinsic connections with clinical and immune characteristics. J Transl Med 2023; 21:146. [PMID: 36829161 PMCID: PMC9960222 DOI: 10.1186/s12967-023-03978-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Kidney cancer undergoes a dramatic metabolic shift and has demonstrated responsiveness to immunotherapeutic intervention. However, metabolic classification and the associations between metabolic alterations and immune infiltration in Renal cell carcinoma still remain elucidative. METHODS Unsupervised consensus clustering was conducted on the TCGA cohorts for metabolic classification. GESA, mRNAsi, prognosis, clinical features, mutation load, immune infiltration and differentially expressed gene differences among different clusters were compared. The prognosis model and nomograms were constructed based on metabolic gene signatures and verified using external ICGC datasets. Immunohistochemical results from Human Protein Atlas database and Tongji hospital were used to validate gene expression levels in normal tissues and tumor samples. CCK8, apoptosis analysis, qPCR, subcutaneously implanted murine models and flowcytometry analysis were applied to investigate the roles of ACAA2 in tumor progression and anti-tumor immunity. RESULTS Renal cell carcinoma was classified into 3 metabolic subclusters and the subcluster with low metabolic profiles displayed the poorest prognosis, highest invasiveness and AJCC grade, enhanced immune infiltration but suppressive immunophenotypes. ACAA2, ACAT1, ASRGL1, AKR1B10, ABCC2, ANGPTL4 were identified to construct the 6 gene-signature prognosis model and verified both internally and externally with ICGC cohorts. ACAA2 was demonstrated as a tumor suppressor and was associated with higher immune infiltration and elevated PD-1 expression of CD8+ T cells. CONCLUSIONS Our research proposed a new metabolic classification method for RCC and revealed intrinsic associations between metabolic phenotypes and immune profiles. The identified gene signatures might serve as key factors bridging tumor metabolism and tumor immunity and warrant further in-depth investigations.
Collapse
Affiliation(s)
- Le Li
- grid.412793.a0000 0004 1799 5032Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China
| | - Zheng Chao
- grid.412793.a0000 0004 1799 5032Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China
| | - Un Waikeong
- grid.412793.a0000 0004 1799 5032Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China
| | - Jun Xiao
- grid.412793.a0000 0004 1799 5032Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China
| | - Yue Ge
- grid.412793.a0000 0004 1799 5032Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China
| | - Yanan Wang
- grid.412793.a0000 0004 1799 5032Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China
| | - Zezhong Xiong
- grid.412793.a0000 0004 1799 5032Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China
| | - Sheng Ma
- grid.412793.a0000 0004 1799 5032Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China
| | - Zhihua Wang
- grid.412793.a0000 0004 1799 5032Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China.
| | - Xing Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China.
| |
Collapse
|
30
|
Zhang J, Zou S, Fang L. Metabolic reprogramming in colorectal cancer: regulatory networks and therapy. Cell Biosci 2023; 13:25. [PMID: 36755301 PMCID: PMC9906896 DOI: 10.1186/s13578-023-00977-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
With high prevalence and mortality, together with metabolic reprogramming, colorectal cancer is a leading cause of cancer-related death. Metabolic reprogramming gives tumors the capacity for long-term cell proliferation, making it a distinguishing feature of cancer. Energy and intermediate metabolites produced by metabolic reprogramming fuel the rapid growth of cancer cells. Aberrant metabolic enzyme-mediated tumor metabolism is regulated at multiple levels. Notably, tumor metabolism is affected by nutrient levels, cell interactions, and transcriptional and posttranscriptional regulation. Understanding the crosstalk between metabolic enzymes and colorectal carcinogenesis factors is particularly important to advance research for targeted cancer therapy strategies via the investigation into the aberrant regulation of metabolic pathways. Hence, the abnormal roles and regulation of metabolic enzymes in recent years are reviewed in this paper, which provides an overview of targeted inhibitors for targeting metabolic enzymes in colorectal cancer that have been identified through tumor research or clinical trials.
Collapse
Affiliation(s)
- Jieping Zhang
- grid.12981.330000 0001 2360 039XDepartment of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655 Guangdong China ,Guangdong Institute of Gastroenterology, Guangzhou, 510655 China
| | - Shaomin Zou
- grid.12981.330000 0001 2360 039XDepartment of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655 Guangdong China ,Guangdong Institute of Gastroenterology, Guangzhou, 510655 China
| | - Lekun Fang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655, Guangdong, China. .,Guangdong Institute of Gastroenterology, Guangzhou, 510655, China.
| |
Collapse
|
31
|
Yao H, Cai H, Li D. Fluorescence-Detection Size-Exclusion Chromatography-Based Thermostability Assay for Membrane Proteins. Methods Mol Biol 2023; 2564:299-315. [PMID: 36107350 DOI: 10.1007/978-1-0716-2667-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Green fluorescent proteins (GFPs) have lightened up almost every aspect of biological research including protein sciences. In the field of membrane protein structural biology, GFPs have been used widely to monitor membrane protein localization, expression level, the purification process and yield, and the stability inside the cells and in the test tube. Of particular interest is the fluorescence-detector size-exclusion chromatography-based thermostability assay (FSEC-TS). By simple heating and FSEC, the generally applicable method allows rapid assessment of the thermostability of GFP-fused membrane proteins without purification. Here we describe the experimental details and some typical results for the FSEC-TS method.
Collapse
Affiliation(s)
| | | | - Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
32
|
The lipid flippase SLC47A1 blocks metabolic vulnerability to ferroptosis. Nat Commun 2022; 13:7965. [PMID: 36575162 PMCID: PMC9794750 DOI: 10.1038/s41467-022-35707-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Ferroptosis is a type of regulated necrosis caused by unrestricted lipid peroxidation and subsequent plasma membrane rupture. However, the lipid remodeling mechanism that determines sensitivity to ferroptosis remains poorly understood. Here, we report a previously unrecognized role for the lipid flippase solute carrier family 47 member 1 (SLC47A1) as a regulator of lipid remodeling and survival during ferroptosis. Among 49 phospholipid scramblases, flippases, and floppases we analyzed, only SLC47A1 had mRNA that was selectively upregulated in multiple cancer cells exposed to ferroptotic inducers. Large-scale lipidomics and functional analyses revealed that the silencing of SLC47A1 increased RSL3- or erastin-induced ferroptosis by favoring ACSL4-SOAT1-mediated production of polyunsaturated fatty acid cholesterol esters. We identified peroxisome proliferator activated receptor alpha (PPARA) as a transcription factor that transactivates SLC47A1. The depletion of PPARA and SLC47A1 similarly sensitized cells to ferroptosis induction, whereas transfection-enforced re-expression of SLC47A1 restored resistance to ferroptosis in PPARA-deficient cells. Pharmacological or genetic blockade of the PPARA-SLC47A1 pathway increased the anticancer activity of a ferroptosis inducer in mice. These findings establish a direct molecular link between ferroptosis and lipid transporters, which may provide metabolic targets for overcoming drug resistance.
Collapse
|
33
|
Bhattacharjee P, Rutland N, Iyer MR. Targeting Sterol O-Acyltransferase/Acyl-CoA:Cholesterol Acyltransferase (ACAT): A Perspective on Small-Molecule Inhibitors and Their Therapeutic Potential. J Med Chem 2022; 65:16062-16098. [PMID: 36473091 DOI: 10.1021/acs.jmedchem.2c01265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sterol O-acyltransferase (SOAT) is a membrane-bound enzyme that aids the esterification of cholesterol and fatty acids to cholesterol esters. SOAT has been studied extensively as a potential drug target, since its inhibition can serve as an alternative to statin therapy. Two SOAT isozymes that have discrete functions in the human body, namely, SOAT1 and SOAT2, have been characterized. Over three decades of research has focused on candidate SOAT1 inhibitors with unsatisfactory results in clinical trials. Recent research has focused on targeting SOAT2 selectively. In this perspective, we summarize the literature covering various SOAT inhibitory agents and discuss the design, structural requirements, and mode of action of SOAT inhibitors.
Collapse
Affiliation(s)
- Pinaki Bhattacharjee
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Nicholas Rutland
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| |
Collapse
|
34
|
Computational mass spectrometry accelerates C = C position-resolved untargeted lipidomics using oxygen attachment dissociation. Commun Chem 2022; 5:162. [PMID: 36698019 PMCID: PMC9814143 DOI: 10.1038/s42004-022-00778-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Mass spectrometry-based untargeted lipidomics has revealed the lipidome atlas of living organisms at the molecular species level. Despite the double bond (C = C) position being a crucial factor in biological system, the C = C defined structures have not yet been characterized comprehensively. Here, we present an approach for C = C position-resolved untargeted lipidomics using a combination of oxygen attachment dissociation and computational mass spectrometry to increase the annotation rate. We validated the accuracy of our platform as per the authentic standards of 85 lipids and the biogenic standards of 52 molecules containing polyunsaturated fatty acids (PUFAs) from the cultured cells fed with various fatty acid-enriched media. By analyzing human and mice-derived samples, we characterized 648 unique lipids with the C = C position-resolved level encompassing 24 lipid subclasses defined by LIPIDMAPS. Our platform also illuminated the unique profiles of tissue-specific lipids containing n-3 and/or n-6 very long-chain PUFAs (carbon [Formula: see text] 28 and double bonds [Formula: see text] 4) in the eye, testis, and brain of the mouse.
Collapse
|
35
|
Guan J, Jiang X, Guo Y, Zhao W, Li J, Li Y, Cheng M, Fu L, Zhao Y, Li Q. Autophagy inhibition and reactive oxygen species elimination by acetyl-CoA acetyltransferase 1 through fused in sarcoma protein to promote prostate cancer. BMC Cancer 2022; 22:1313. [PMID: 36517760 PMCID: PMC9753422 DOI: 10.1186/s12885-022-10426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Prostate cancer is a major health issue affecting the male population worldwide, and its etiology remains relatively unknown. As presented on the Gene Expression Profiling Interactive Analysis database, acetyl-CoA acetyltransferase 1 (ACAT1) acts as a prostate cancer-promoting factor. ACAT1 expression in prostate cancer tissues is considerably higher than that in normal tissues, leading to a poor prognosis in patients with prostate cancer. Here, we aimed to study the role of the ACAT1-fused in sarcoma (FUS) complex in prostate cancer and identify new targets for the diagnosis and treatment of the disease. METHODS We conducted immunohistochemical analysis of 57 clinical samples and in vitro and in vivo experiments using a mouse model and plasmid constructs to determine the expression of ACAT1 in prostate cancer. RESULTS The relationship between the expression of ACAT1 and the Gleason score was significant. The expression of ACAT1 was higher in tissues with a Gleason score of > 7 than in tissues with a Gleason score of ≤7 (P = 0.0011). In addition, we revealed that ACAT1 can interact with the FUS protein. CONCLUSIONS In prostate cancer, ACAT1 promotes the expression of P62 and Nrf2 through FUS and affects reactive oxygen species scavenging. These effects are due to the inhibition of autophagy by ACAT1. That is, ACAT1 promotes prostate cancer by inhibiting autophagy and eliminating active oxygen species. The expression of ACAT1 is related to prostate cancer. Studying the underlying mechanism may provide a new perspective on the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jingqian Guan
- grid.412449.e0000 0000 9678 1884Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province People’s Republic of China
| | - Xizi Jiang
- grid.412636.40000 0004 1757 9485Department of Pathology, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, Liaoning Province People’s Republic of China
| | - Yaoxing Guo
- grid.412449.e0000 0000 9678 1884Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province People’s Republic of China
| | - Wenhui Zhao
- grid.412449.e0000 0000 9678 1884Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province People’s Republic of China
| | - Ji Li
- grid.412449.e0000 0000 9678 1884Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province People’s Republic of China
| | - Yizhuo Li
- grid.412449.e0000 0000 9678 1884Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province People’s Republic of China
| | - Ming Cheng
- grid.412449.e0000 0000 9678 1884Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province People’s Republic of China
| | - Lin Fu
- grid.412449.e0000 0000 9678 1884Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province People’s Republic of China ,grid.412636.40000 0004 1757 9485Department of Pathology, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, Liaoning Province People’s Republic of China
| | - Yue Zhao
- grid.412449.e0000 0000 9678 1884Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province People’s Republic of China ,grid.412636.40000 0004 1757 9485Department of Pathology, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, Liaoning Province People’s Republic of China
| | - Qingchang Li
- grid.412449.e0000 0000 9678 1884Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province People’s Republic of China ,grid.412636.40000 0004 1757 9485Department of Pathology, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, Liaoning Province People’s Republic of China
| |
Collapse
|
36
|
Mansouri S, Gogoi H, Patel S, Katikaneni DS, Singh A, Aybar-Torres A, de Lartigue G, Jin L. MPYS Modulates Fatty Acid Metabolism and Immune Tolerance at Homeostasis Independent of Type I IFNs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2114-2132. [PMID: 36261171 PMCID: PMC9679991 DOI: 10.4049/jimmunol.2200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 01/04/2023]
Abstract
MPYS/STING (stimulator of IFN genes) senses cyclic dinucleotides (CDNs), generates type I IFNs, and plays a critical role in infection, inflammation, and cancer. In this study, analyzing genotype and haplotype data from the 1000 Genomes Project, we found that the R71H-G230A-R293Q (HAQ) MPYS allele frequency increased 57-fold in East Asians compared with sub-Saharan Africans. Meanwhile, the G230A-R293Q (AQ) allele frequency decreased by 98% in East Asians compared with sub-Saharan Africans. We propose that the HAQ and AQ alleles underwent a natural selection during the out-of-Africa migration. We used mouse models of HAQ and AQ to investigate the underlying mechanism. We found that the mice carrying the AQ allele, which disappeared in East Asians, had normal CDN-type I IFN responses. Adult AQ mice, however, had less fat mass than did HAQ or wild-type mice on a chow diet. AQ epididymal adipose tissue had increased regulatory T cells and M2 macrophages with protein expression associated with enhanced fatty acid oxidation. Conditional knockout mice and adoptive cell transfer indicate a macrophage and regulatory T cell-intrinsic role of MPYS in fatty acid metabolism. Mechanistically, AQ/IFNAR1-/- mice had a similar lean phenotype as for the AQ mice. MPYS intrinsic tryptophan fluorescence revealed that the R71H change increased MPYS hydrophilicity. Lastly, we found that the second transmembrane (TM) and the TM2-TM3 linker region of MPYS interact with activated fatty acid, fatty acyl-CoA. In summary, studying the evolution of the human MPYS gene revealed an MPYS function in modulating fatty acid metabolism that may be critical during the out-of-Africa migration.
Collapse
Affiliation(s)
- Samira Mansouri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Himanshu Gogoi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Seema Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Divya S. Katikaneni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Arashdeep Singh
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL; and
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL
| | - Alexandra Aybar-Torres
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL; and
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
37
|
The effects of scoparone on alcohol and high-fat diet-induced liver injury revealed by RNA sequencing. Biomed Pharmacother 2022; 155:113770. [DOI: 10.1016/j.biopha.2022.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
|
38
|
Towards crucial post-modification in biosynthesis of terpenoids and steroids: C3 oxidase and acetyltransferase. Enzyme Microb Technol 2022; 162:110148. [DOI: 10.1016/j.enzmictec.2022.110148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022]
|
39
|
Yin X, Xu R, Song J, Ruze R, Chen Y, Wang C, Xu Q. Lipid metabolism in pancreatic cancer: emerging roles and potential targets. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1234-1256. [PMID: 36107801 PMCID: PMC9759769 DOI: 10.1002/cac2.12360] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/05/2022] [Accepted: 08/05/2022] [Indexed: 01/25/2023]
Abstract
Pancreatic cancer is one of the most serious health issues in developed and developing countries, with a 5-year overall survival rate currently <9%. Patients typically present with advanced disease due to vague symptoms or lack of screening for early cancer detection. Surgical resection represents the only chance for cure, but treatment options are limited for advanced diseases, such as distant metastatic or locally progressive tumors. Although adjuvant chemotherapy has improved long-term outcomes in advanced cancer patients, its response rate is low. So, exploring other new treatments is urgent. In recent years, increasing evidence has shown that lipid metabolism can support tumorigenesis and disease progression as well as treatment resistance through enhanced lipid synthesis, storage, and catabolism. Therefore, a better understanding of lipid metabolism networks may provide novel and promising strategies for early diagnosis, prognosis estimation, and targeted therapy for pancreatic cancer patients. In this review, we first enumerate and discuss current knowledge about the advances made in understanding the regulation of lipid metabolism in pancreatic cancer. In addition, we summarize preclinical studies and clinical trials with drugs targeting lipid metabolic systems in pancreatic cancer. Finally, we highlight the challenges and opportunities for targeting lipid metabolism pathways through precision therapies in pancreatic cancer.
Collapse
Affiliation(s)
- Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| | - Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| |
Collapse
|
40
|
Leikin-Frenkel A, Cohen H, Keshet R, Shnerb-GanOr R, Kandel-Kfir M, Harari A, Hollander KS, Shaish A, Harats D, Kamari Y. The effect of α-linolenic acid enrichment in perinatal diets in preventing high fat diet-induced SCD1 increased activity and lipid disarray in adult offspring of low density lipoprotein receptor knockout (LDLRKO) mice. Prostaglandins Leukot Essent Fatty Acids 2022; 184:102475. [PMID: 35940045 DOI: 10.1016/j.plefa.2022.102475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/29/2022]
Abstract
The present study examined the effects of maternal perinatal dietary ALA enrichment on the high fat diet (HFD)-induced lipid disarray in the adult offspring of low density lipoprotein receptor knock-out (LDLRKO) mice. Female LDLRKO mice received, during pregnancy and lactation, isocaloric diets with either corn oil, RD, or flax oil, ALA. The weaning offspring was given a regular chow diet for a washout period of eight weeks, which was followed by HFD for eight weeks. Plasma and liver lipids and SCD1 activity were then analyzed. The HFD-fed RD adult offspring had substantially higher plasma cholesterol levels than the HFD-fed ALA offspring (15.7 versus 9.7 mmole/l, p<0.00001) and non-alcoholic fatty liver disease (NAFLD) (65.0 versus 23.9 mg/g lipids, p<0.00001). Liver lipids oleic acid (OA) content and monounsaturated to saturated fatty acids (MUFA/SAT) ratio, were two times lower in RD compared to ALA (p<0.0001). The threefold HFD-induced SCD1 raised activity (p<0.00001), and OA produced from SA, observed in RD adult offspring were prevented by perinatal ALA. In conclusion, the resilience of SCD1 to HFD- induced increased activity may account for the beneficial effects of perinatal ALA dietary enrichment in preventing NAFLD and hypercholesterolemia from occurring in adult LDLRKO offspring mice.
Collapse
Affiliation(s)
- A Leikin-Frenkel
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel.
| | - H Cohen
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - R Keshet
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - R Shnerb-GanOr
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - M Kandel-Kfir
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - A Harari
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - K S Hollander
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - A Shaish
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Achva Academic College, Israel
| | - D Harats
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Y Kamari
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|
41
|
Kou Y, Geng F, Guo D. Lipid Metabolism in Glioblastoma: From De Novo Synthesis to Storage. Biomedicines 2022; 10:1943. [PMID: 36009491 PMCID: PMC9405736 DOI: 10.3390/biomedicines10081943] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor. With limited therapeutic options, novel therapies are desperately needed. Recent studies have shown that GBM acquires large amounts of lipids for rapid growth through activation of sterol regulatory element-binding protein 1 (SREBP-1), a master transcription factor that regulates fatty acid and cholesterol synthesis, and cholesterol uptake. Interestingly, GBM cells divert substantial quantities of lipids into lipid droplets (LDs), a specific storage organelle for neutral lipids, to prevent lipotoxicity by increasing the expression of diacylglycerol acyltransferase 1 (DGAT1) and sterol-O-acyltransferase 1 (SOAT1), which convert excess fatty acids and cholesterol to triacylglycerol and cholesteryl esters, respectively. In this review, we will summarize recent progress on our understanding of lipid metabolism regulation in GBM to promote tumor growth and discuss novel strategies to specifically induce lipotoxicity to tumor cells through disrupting lipid storage, a promising new avenue for treating GBM.
Collapse
Affiliation(s)
- Yongjun Kou
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, College of Medicine at The Ohio State University, Columbus, OH 43012, USA
| | - Feng Geng
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, College of Medicine at The Ohio State University, Columbus, OH 43012, USA
| | - Deliang Guo
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, College of Medicine at The Ohio State University, Columbus, OH 43012, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
42
|
Mechanisms and inhibition of Porcupine-mediated Wnt acylation. Nature 2022; 607:816-822. [PMID: 35831507 DOI: 10.1038/s41586-022-04952-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022]
Abstract
Wnt signalling is essential for regulation of embryonic development and adult tissue homeostasis1-3, and aberrant Wnt signalling is frequently associated with cancers4. Wnt signalling requires palmitoleoylation on a hairpin 2 motif by the endoplasmic reticulum-resident membrane-bound O-acyltransferase Porcupine5-7 (PORCN). This modification is indispensable for Wnt binding to its receptor Frizzled, which triggers signalling8,9. Here we report four cryo-electron microscopy structures of human PORCN: the complex with the palmitoleoyl-coenzyme A (palmitoleoyl-CoA) substrate; the complex with the PORCN inhibitor LGK974, an anti-cancer drug currently in clinical trials10; the complex with LGK974 and WNT3A hairpin 2 (WNT3Ap); and the complex with a synthetic palmitoleoylated WNT3Ap analogue. The structures reveal that hairpin 2 of WNT3A, which is well conserved in all Wnt ligands, inserts into PORCN from the lumenal side, and the palmitoleoyl-CoA accesses the enzyme from the cytosolic side. The catalytic histidine triggers the transfer of the unsaturated palmitoleoyl group to the target serine on the Wnt hairpin 2, facilitated by the proximity of the two substrates. The inhibitor-bound structure shows that LGK974 occupies the palmitoleoyl-CoA binding site to prevent the reaction. Thus, this work provides a mechanism for Wnt acylation and advances the development of PORCN inhibitors for cancer treatment.
Collapse
|
43
|
Reed A, Ichu TA, Milosevich N, Melillo B, Schafroth MA, Otsuka Y, Scampavia L, Spicer TP, Cravatt BF. LPCAT3 Inhibitors Remodel the Polyunsaturated Phospholipid Content of Human Cells and Protect from Ferroptosis. ACS Chem Biol 2022; 17:1607-1618. [PMID: 35658397 DOI: 10.1021/acschembio.2c00317] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
LPCAT3 is an integral membrane acyltransferase in the Lands cycle responsible for generating C20:4 phospholipids and has been implicated in key biological processes such as intestinal lipid absorption, lipoprotein assembly, and ferroptosis. Small-molecule inhibitors of LPCAT3 have not yet been described and would offer complementary tools to genetic models of LPCAT3 loss, which causes neonatal lethality in mice. Here, we report the discovery by high-throughput screening of a class of potent, selective, and cell-active inhibitors of LPCAT3. We provide evidence that these compounds inhibit LPCAT3 in a biphasic manner, possibly reflecting differential activity at each subunit of the LPCAT3 homodimer. LPCAT3 inhibitors cause rapid rewiring of polyunsaturated phospholipids in human cells that mirrors the changes observed in LPCAT3-null cells. Notably, these changes include not only the suppression of C20:4 phospholipids but also corresponding increases in C22:4 phospholipids, providing a potential mechanistic explanation for the partial but incomplete protection from ferroptosis observed in cells with pharmacological or genetic disruption of LPCAT3.
Collapse
Affiliation(s)
- Alex Reed
- Department of Chemistry, The Scripps Research Institute, La Jolla, San Diego, California 92037, United States
| | - Taka-Aki Ichu
- Department of Chemistry, The Scripps Research Institute, La Jolla, San Diego, California 92037, United States
| | - Natalia Milosevich
- Department of Chemistry, The Scripps Research Institute, La Jolla, San Diego, California 92037, United States
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, San Diego, California 92037, United States
| | - Michael A Schafroth
- Department of Chemistry, The Scripps Research Institute, La Jolla, San Diego, California 92037, United States
| | - Yuka Otsuka
- UF Scripps HTS Facility, UF Scripps, Jupiter, Florida 33458, United States
| | - Louis Scampavia
- UF Scripps HTS Facility, UF Scripps, Jupiter, Florida 33458, United States
| | - Timothy P Spicer
- UF Scripps HTS Facility, UF Scripps, Jupiter, Florida 33458, United States
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, San Diego, California 92037, United States
| |
Collapse
|
44
|
Structural enzymology of cholesterol biosynthesis and storage. Curr Opin Struct Biol 2022; 74:102369. [DOI: 10.1016/j.sbi.2022.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/02/2022] [Accepted: 03/01/2022] [Indexed: 11/15/2022]
|
45
|
Li J, Wang H, Xu J, Wu S, Han M, Li J, Wang Q, Ge Z. Mimic Lipoproteins Responsive to Intratumoral pH and Allosteric Enzyme for Efficient Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:404-416. [PMID: 34962752 DOI: 10.1021/acsami.1c21810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Discoid-reconstituted high-density lipoprotein (d-rHDL) is advantageous for tumor-targeted drug delivery due to its small size, long circulation, and efficient internalization into cancer cells. Nevertheless, an allosteric reaction catalyzed by serum lecithin-cholesterol acyltransferase (LCAT) may cause drug leakage from d-rHDL and reduce its targeting efficiency. Conversely, similar "structural weakening" catalyzed by acyl-coenzyme A-cholesterol acyltransferase (ACAT) inside tumor cells can stimulate precise intracellular drug release. Therefore, we synthesized and characterized a pH-sensitive n-butyraldehyde bi-cholesterol (BCC) to substitute for cholesterol in the d-rHDL particle, and bovine serum albumin (BSA) was used as the targeting agent. This dual pH- and ACAT-sensitive d-rHDL (d-d-rHDL) was small with a disk-like appearance. Morphological transformation observation, in vitro release assays, and differences in internalization upon LCAT treatment confirmed that BCC effectively inhibited the remodeling behavior and enhanced the tumor-targeting efficiency. The accumulation of d-d-rHDL in HepG2 cells was significantly higher than that in LO2 cells, and accumulation was inhibited by free BSA. The pH sensitivity was verified, and d-d-rHDL achieved efficient drug release in vitro and inside tumor cells after exposure to acidic conditions and ACAT. Confocal laser scanning microscopy demonstrated that d-d-rHDL escaped from lysosomes and became distributed evenly throughout cells. Moreover, in vivo imaging assays in a tumor-bearing mouse model demonstrated tumor-targeting properties of d-d-rHDL, and paclitaxel-loaded d-d-rHDL showed strong anticancer activity in these mice. This dual-sensitive d-d-rHDL thus combines structural stability in plasma and an intracellular pH/ACAT-triggered drug release to facilitate inhibition of tumor growth.
Collapse
Affiliation(s)
- Jin Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Hui Wang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Jingbo Xu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Shengyue Wu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Mengmeng Han
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Jianfei Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Qianqian Wang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Zhiming Ge
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| |
Collapse
|
46
|
Ueno G, Iwagami Y, Kobayashi S, Mitsufuji S, Yamada D, Tomimaru Y, Akita H, Asaoka T, Noda T, Gotoh K, Mori M, Doki Y, Eguchi H. ACAT-1-Regulated Cholesteryl Ester Accumulation Modulates Gemcitabine Resistance in Biliary Tract Cancer. Ann Surg Oncol 2022; 29:2899-2909. [PMID: 34994902 DOI: 10.1245/s10434-021-11152-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Biliary tract cancer (BTC) has few choices of chemotherapy, including gemcitabine, therefore exploring the mechanisms of gemcitabine resistance is important. We focused on lipid metabolism because biliary tract epithelial cells are essential in cholesterol and bile acid metabolism and the messenger RNA (mRNA) microarray analysis showed high acyl coenzyme A: cholesterol acyltransferase 1 (ACAT-1) expression in BTC gemcitabine-resistant (GR) cell lines. We hypothesized that aberrant accumulation of cholesteryl ester (CE) regulated by ACAT-1 could modulate GR in BTC. METHODS CE accumulations were measured in human BTC cell lines, and the relationships between CE levels, ACAT-1 expressions, and gemcitabine sensitivity were analyzed. We performed a small-interfering RNA (siRNA)-mediated knockdown and biochemical inhibition of ACAT-1 in BTC cell lines and alterations of gemcitabine sensitivity were evaluated. To evaluate the clinical significance of ACAT-1 in regard to GR, immunohistochemistry was performed and ACAT-1 expressions were analyzed in resected BTC specimens. RESULTS CE levels were correlated with ACAT-1 expressions and GR in four human BTC cell lines. siRNA-mediated knockdown of ACAT-1 in two independent GR cell clones as well as ACAT-1 inhibitor treatment significantly increased gemcitabine sensitivity; knockdown of ACAT-1: 5.63- and 8.02-fold; ACAT-1 inhibitor: 8.75- and 9.13-fold, respectively. ACAT-1 expression in resected BTC specimens revealed that the disease-free survival of the ACAT-1 low-intensity group (median 2.3 years) had a significantly better outcome than that of the ACAT-1 high-intensity group (median 1.1 years) under gemcitabine treatment after surgery (*p < 0.05). CONCLUSIONS Our findings suggest that CE and ACAT-1 might be a novel therapeutic target for GR in BTC.
Collapse
Affiliation(s)
- Goro Ueno
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Suguru Mitsufuji
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
47
|
Abstract
Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology, particularly in solving the structures of large protein complexes or cellular machineries that play important biological functions. This review focuses on the contribution and future potential of cryo-EM in related emerging applications-enzymatic mechanisms and dynamic processes. Work on these subjects can benefit greatly from the capability of cryo-EM to solve the structures of specific protein complexes in multiple conditions, including variations in the buffer condition, ligands, and temperature, and to capture multiple conformational states, conformational change intermediates, and reaction intermediates. These studies can expand the structural landscape of specific proteins or protein complexes in multiple dimensions and drive new advances in the fields of enzymology and dynamic processes. The advantages and complementarity of cryo-EM relative to X-ray crystallography and nuclear magnetic resonance with regard to these applications are also addressed. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; .,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan;
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; .,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
48
|
Coupland CE, Andrei SA, Ansell TB, Carrique L, Kumar P, Sefer L, Schwab RA, Byrne EFX, Pardon E, Steyaert J, Magee AI, Lanyon-Hogg T, Sansom MSP, Tate EW, Siebold C. Structure, mechanism, and inhibition of Hedgehog acyltransferase. Mol Cell 2021; 81:5025-5038.e10. [PMID: 34890564 PMCID: PMC8693861 DOI: 10.1016/j.molcel.2021.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/27/2021] [Accepted: 11/17/2021] [Indexed: 01/20/2023]
Abstract
The Sonic Hedgehog (SHH) morphogen pathway is fundamental for embryonic development and stem cell maintenance and is implicated in various cancers. A key step in signaling is transfer of a palmitate group to the SHH N terminus, catalyzed by the multi-pass transmembrane enzyme Hedgehog acyltransferase (HHAT). We present the high-resolution cryo-EM structure of HHAT bound to substrate analog palmityl-coenzyme A and a SHH-mimetic megabody, revealing a heme group bound to HHAT that is essential for HHAT function. A structure of HHAT bound to potent small-molecule inhibitor IMP-1575 revealed conformational changes in the active site that occlude substrate binding. Our multidisciplinary analysis provides a detailed view of the mechanism by which HHAT adapts the membrane environment to transfer an acyl chain across the endoplasmic reticulum membrane. This structure of a membrane-bound O-acyltransferase (MBOAT) superfamily member provides a blueprint for other protein-substrate MBOATs and a template for future drug discovery.
Collapse
Affiliation(s)
- Claire E Coupland
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Sebastian A Andrei
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - T Bertie Ansell
- Department of Biochemistry, University of Oxford, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Loic Carrique
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Pramod Kumar
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Lea Sefer
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Rebekka A Schwab
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Eamon F X Byrne
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, Vlaams Instituut Biotechnologie (VIB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, Vlaams Instituut Biotechnologie (VIB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Anthony I Magee
- National Heart and Lung Institute, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Thomas Lanyon-Hogg
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK.
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
49
|
Yu J, Liao PJ, Xu W, Jones JR, Everman DB, Flanagan-Steet H, Keller TH, Virshup DM. Structural model of human PORCN illuminates disease-associated variants and drug-binding sites. J Cell Sci 2021; 134:273795. [PMID: 34817055 DOI: 10.1242/jcs.259383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022] Open
Abstract
Wnt signaling is essential for normal development and is a therapeutic target in cancer. The enzyme PORCN, or porcupine, is a membrane-bound O-acyltransferase (MBOAT) that is required for the post-translational modification of all Wnts, adding an essential mono-unsaturated palmitoleic acid to a serine on the tip of Wnt hairpin 2. Inherited mutations in PORCN cause focal dermal hypoplasia, and therapeutic inhibition of PORCN slows the growth of Wnt-dependent cancers. Based on homology to mammalian MBOAT proteins, we developed and validated a structural model of human PORCN. The model accommodates palmitoleoyl-CoA and Wnt hairpin 2 in two tunnels in the conserved catalytic core, shedding light on the catalytic mechanism. The model predicts how previously uncharacterized human variants of uncertain significance can alter PORCN function. Drugs including ETC-159, IWP-L6 and LGK-974 dock in the PORCN catalytic site, providing insights into PORCN pharmacologic inhibition. This structural model enhances our mechanistic understanding of PORCN substrate recognition and catalysis, as well as the inhibition of its enzymatic activity, and can facilitate the development of improved inhibitors and the understanding of disease-relevant PORCN mutants. This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Jia Yu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
| | - Pei-Ju Liao
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
| | - Weijun Xu
- Discovery Chemistry, Experimental Drug Development Centre, 10 Biopolis Road, Chromos, 138670, Singapore
| | - Julie R Jones
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - David B Everman
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | - Thomas H Keller
- Discovery Chemistry, Experimental Drug Development Centre, 10 Biopolis Road, Chromos, 138670, Singapore
| | - David M Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore.,Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
50
|
Valentine WJ, Yanagida K, Kawana H, Kono N, Noda NN, Aoki J, Shindou H. Update and nomenclature proposal for mammalian lysophospholipid acyltransferases which create membrane phospholipid diversity. J Biol Chem 2021; 298:101470. [PMID: 34890643 PMCID: PMC8753187 DOI: 10.1016/j.jbc.2021.101470] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The diversity of glycerophospholipid species in cellular membranes is immense and affects various biological functions. Glycerol-3-phosphate acyltransferases (GPATs) and lysophospholipid acyltransferases (LPLATs), in concert with phospholipase A1/2s enzymes, contribute to this diversity via selective esterification of fatty acyl chains at the sn-1 or sn-2 positions of membrane phospholipids. These enzymes are conserved across all kingdoms, and in mammals four GPATs of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family and at least 14 LPLATs, either of the AGPAT or the membrane-bound O-acyltransferase (MBOAT) families, have been identified. Here we provide an overview of the biochemical and biological activities of these mammalian enzymes, including their predicted structures, involvements in human diseases, and essential physiological roles as revealed by gene-deficient mice. Recently, the nomenclature used to refer to these enzymes has generated some confusion due to the use of multiple names to refer to the same enzyme and instances of the same name being used to refer to completely different enzymes. Thus, this review proposes a more uniform LPLAT enzyme nomenclature, as well as providing an update of recent advances made in the study of LPLATs, continuing from our JBC mini review in 2009.
Collapse
Affiliation(s)
- William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Keisuke Yanagida
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo 141-0021, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|