1
|
Xiao B, Chu C, Lin Z, Fang T, Zhou Y, Zhang C, Shan J, Chen S, Li L. Treadmill exercise in combination with acousto-optic and olfactory stimulation improves cognitive function in APP/PS1 mice through the brain-derived neurotrophic factor- and Cygb-associated signaling pathways. Neural Regen Res 2025; 20:2706-2726. [PMID: 39105365 DOI: 10.4103/nrr.nrr-d-23-01681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/23/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00031/figure1/v/2024-11-05T132919Z/r/image-tiff A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease. Consequently, enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression. Nonetheless, non-pharmacological interventions aimed at inducing adult neurogenesis are currently limited. Although individual non-pharmacological interventions, such as aerobic exercise, acousto-optic stimulation, and olfactory stimulation, have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease, the therapeutic effect of a strategy that combines these interventions has not been fully explored. In this study, we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months. Amyloid deposition became evident at 4 months, while neurogenesis declined by 6 months, further deteriorating as the disease progressed. However, following a 4-week multifactor stimulation protocol, which encompassed treadmill running (46 min/d, 10 m/min, 6 days per week), 40 Hz acousto-optic stimulation (1 hour/day, 6 days/week), and olfactory stimulation (1 hour/day, 6 days/week), we found a significant increase in the number of newborn cells (5'-bromo-2'-deoxyuridine-positive cells), immature neurons (doublecortin-positive cells), newborn immature neurons (5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells), and newborn astrocytes (5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells). Additionally, the amyloid-beta load in the hippocampus decreased. These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice. Furthermore, cognitive abilities were improved, and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation, as evidenced by Morris water maze, novel object recognition, forced swimming test, and tail suspension test results. Notably, the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2 weeks after treatment cessation. At the molecular level, multifactor stimulation upregulated the expression of neuron-related proteins (NeuN, doublecortin, postsynaptic density protein-95, and synaptophysin), anti-apoptosis-related proteins (Bcl-2 and PARP), and an autophagy-associated protein (LC3B), while decreasing the expression of apoptosis-related proteins (BAX and caspase-9), in the hippocampus of amyloid precursor protein/presenilin 1 mice. These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways. Furthermore, serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis, oxidative damage, and cognition. Collectively, these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Biao Xiao
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Chaoyang Chu
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Zhicheng Lin
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Tianyuan Fang
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Yuyu Zhou
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Chuxia Zhang
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Jianghui Shan
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Shiyu Chen
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Liping Li
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
- Ningbo Key Laboratory of Behavioral Neuroscience, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang Province, China
| |
Collapse
|
2
|
Jiao D, Xu L, Gu Z, Yan H, Shen D, Gu X. Pathogenesis, diagnosis, and treatment of epilepsy: electromagnetic stimulation-mediated neuromodulation therapy and new technologies. Neural Regen Res 2025; 20:917-935. [PMID: 38989927 PMCID: PMC11438347 DOI: 10.4103/nrr.nrr-d-23-01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 07/12/2024] Open
Abstract
Epilepsy is a severe, relapsing, and multifactorial neurological disorder. Studies regarding the accurate diagnosis, prognosis, and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy. The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression, protein expression, ion channel activity, energy metabolites, and gut microbiota composition. Satisfactory results are lacking for conventional treatments for epilepsy. Surgical resection of lesions, drug therapy, and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy. Non-pharmacological treatments, such as a ketogenic diet, gene therapy for nerve regeneration, and neural regulation, are currently areas of research focus. This review provides a comprehensive overview of the pathogenesis, diagnostic methods, and treatments of epilepsy. It also elaborates on the theoretical basis, treatment modes, and effects of invasive nerve stimulation in neurotherapy, including percutaneous vagus nerve stimulation, deep brain electrical stimulation, repetitive nerve electrical stimulation, in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation. Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures. Additionally, many new technologies for the diagnosis and treatment of epilepsy are being explored. However, current research is mainly focused on analyzing patients' clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level, which has led to a lack of consensus regarding the mechanisms related to the disease.
Collapse
Affiliation(s)
- Dian Jiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lai Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hua Yan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dingding Shen
- Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Zhang F, Fu Y, Jimenez-Cyrus D, Zhao T, Shen Y, Sun Y, Zhang Z, Wang Q, Kawaguchi R, Geschwind DH, He C, Ming GL, Song H. m 6A/YTHDF2-mediated mRNA decay targets TGF-β signaling to suppress the quiescence acquisition of early postnatal mouse hippocampal NSCs. Cell Stem Cell 2025; 32:144-156.e8. [PMID: 39476834 PMCID: PMC11698649 DOI: 10.1016/j.stem.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/26/2024] [Accepted: 10/02/2024] [Indexed: 01/06/2025]
Abstract
Quiescence acquisition of proliferating neural stem cells (NSCs) is required to establish the adult NSC pool. The underlying molecular mechanisms are not well understood. Here, we showed that conditional deletion of the m6A reader Ythdf2, which promotes mRNA decay, in proliferating NSCs in the early postnatal mouse hippocampus elevated quiescence acquisition in a cell-autonomous fashion with decreased neurogenesis. Multimodal profiling of m6A modification, YTHDF2 binding, and mRNA decay in hippocampal NSCs identified shared targets in multiple transforming growth factor β (TGF-β)-signaling-pathway components, including TGF-β ligands, maturation factors, receptors, transcription regulators, and signaling regulators. Functionally, Ythdf2 deletion led to TGF-β-signaling activation in NSCs, suppression of which rescued elevated quiescence acquisition of proliferating hippocampal NSCs. Our study reveals the dynamic nature and critical roles of mRNA decay in establishing the quiescent adult hippocampal NSC pool and uncovers a distinct mode of epitranscriptomic control via co-regulation of multiple components of the same signaling pathway.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA; School of Life Sciences, Nanjing University, Nanjing, PRC
| | - Yao Fu
- Department of Biology, School of Art and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennisse Jimenez-Cyrus
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ting Zhao
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yachen Shen
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yusha Sun
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhijian Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qing Wang
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA; The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Zhao L, Witter MP, Palomero-Gallagher N. Cyto-, gene, and multireceptor architecture of the early postnatal mouse hippocampal complex. Prog Neurobiol 2024:102704. [PMID: 39709019 DOI: 10.1016/j.pneurobio.2024.102704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Neurotransmitter receptors are key molecules in signal transmission in the adult brain, and their precise spatial and temporal balance expressions also play a critical role in normal brain development. However, the specific balance expression of multiple receptors during hippocampal development is not well characterized. In this study, we used quantitative in vivo receptor autoradiography to measure the distributions and densities of 18 neurotransmitter receptor types in the mouse hippocampal complex at postnatal day 7, and compared them with the expressions of their corresponding encoding genes. We provide a novel and comprehensive characterization of the cyto-, gene, and multireceptor architecture of the developing mouse hippocampal and subicular regions during the developmental period, which typically differs from that in the adult brain. High-density receptor expressions with distinct regional and laminar distributions were observed for AMPA, Kainate, mGluR2/3, GABAA, GABAA/BZ, α2, and A1 receptors during this specific period, whereas NMDA, GABAB, α1, M1, M2, M3, nicotinic α4β2, 5-HT1A, 5-HT2, D1 and D2/D3 receptors exhibited relatively low and homogeneous expressions. This specific balance of multiple receptors aligns with regional cytoarchitecture, neurotransmitter distributions, and gene expressions. Moreover, contrasting with previous findings, we detected a high α2 receptor density, with distinct regional and laminar distribution patterns. A non-covariation differentiation phenomenon between α2 receptor distributions and corresponding gene expressions is also demonstrated in this early developmental period. The multimodal data provides new insights into understanding the hippocampal development from the perspective of cell, gene, and multireceptor levels, and contributes important resources for further interdisciplinary analyses.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Psychology, School of Public Policy and Management, Nanchang University, 330000 Nanchang, China; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Dusseldorf, Germany
| |
Collapse
|
5
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatial transcriptomic clocks reveal cell proximity effects in brain ageing. Nature 2024:10.1038/s41586-024-08334-8. [PMID: 39695234 DOI: 10.1038/s41586-024-08334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain ageing is complex and is accompanied by many cellular changes2. Furthermore, the influence that aged cells have on neighbouring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in ageing tissues have not yet been developed. Here we generate a spatially resolved single-cell transcriptomics brain atlas of 4.2 million cells from 20 distinct ages across the adult lifespan and across two rejuvenating interventions-exercise and partial reprogramming. We build spatial ageing clocks, machine learning models trained on this spatial transcriptomics atlas, to identify spatial and cell-type-specific transcriptomic fingerprints of ageing, rejuvenation and disease, including for rare cell types. Using spatial ageing clocks and deep learning, we find that T cells, which increasingly infiltrate the brain with age, have a marked pro-ageing proximity effect on neighbouring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating proximity effect on neighbouring cells. We also identify potential mediators of the pro-ageing effect of T cells and the pro-rejuvenating effect of neural stem cells on their neighbours. These results suggest that rare cell types can have a potent influence on their neighbours and could be targeted to counter tissue ageing. Spatial ageing clocks represent a useful tool for studying cell-cell interactions in spatial contexts and should allow scalable assessment of the efficacy of interventions for ageing and disease.
Collapse
Affiliation(s)
- Eric D Sun
- Biomedical Data Science Graduate Program, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Olivia Y Zhou
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biophysics Graduate Program, Stanford University, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Max Hauptschein
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Lucy Xu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biology Graduate Program, Stanford University, Stanford, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A Rando
- Department of Neurology, Stanford University, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Yuan X, Li W, Liu Q, Ou Y, Li J, Yan Q, Zhang P. Single-Cell RNA-Seq Reveals the Pseudo-temporal Dynamic Evolution Characteristics of ADSCs to Neuronal Differentiation. Cell Mol Neurobiol 2024; 45:5. [PMID: 39661257 PMCID: PMC11634962 DOI: 10.1007/s10571-024-01524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Adipose-derived stromal cells (ADSCs) are commonly used in regenerative medicine, but the genetic features of their development into neuronal cells are unknown. This study used single-cell RNA sequencing (scRNA-seq) to reveal gene expression changes during ADSCs to neuronal differentiation. Sequencing of the ADSCs group, the prei-1d group, and the induction 1 h, 3 h, 5 h, 6 h, and 8 h groups was performed using the BD Rhapsody platform. Sequence data were analyzed using t-SNE, Monocle2, GO, and KEGG algorithms. Results showed that a total of 38,453 cells were collected, which were divided into 0-13 clusters. Monocle2 structured analysis revealed that ADSCs were located at the beginning of the trajectory, and the cells after 5 h of induction were mainly distributed at the end of the trajectory in branches 1 and 2. Up-regulated differentially expressed genes (DEGs) at 5 h after induction enriched GO items including cellular protein metabolism, cell adhesion, endocytosis, and cell migration. KEGG analysis showed that induced 6 h and 8 h groups mainly enriched pathways were oxidative phosphorylation, glutathione metabolism, and expression of Parkinson's disease-related genes. In conclusion, two distinct cell state mechanisms stimulate ADSCs to develop into mature neurons. ADSCs induced for 5 h had developed into mature neurons. Later, the differentiated cells undergo degenerative changes associated with senescence.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan, 063000, Hebei, China.
- Department of Neurology, Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei, China.
| | - Wen Li
- Department of Neurology, Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan, 063000, Hebei, China
- Department of Neurology, Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei, China
| | - Qing Liu
- Department of Neurology, Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan, 063000, Hebei, China
- Department of Neurology, Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan, 063000, Hebei, China
| | - Jing Li
- Department of Radiology, Tangshan Maternal and Child Health Hospital, Tangshan, 063000, Hebei, China
| | - Qi Yan
- Department of Neurology, Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan, 063000, Hebei, China
- Department of Neurology, Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei, China
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan, 063000, Hebei, China.
- Department of Neurology, Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei, China.
| |
Collapse
|
7
|
Ammothumkandy A, Corona L, Ravina K, Wolseley V, Nelson J, Atai N, Abedi A, Jimenez N, Armacost M, D'Orazio LM, Zuverza-Chavarria V, Cayce A, McCleary C, Nune G, Kalayjian L, Lee DJ, Lee B, Chow RH, Heck C, Russin JJ, Liu CY, Smith JAD, Bonaguidi MA. Human adult neurogenesis loss corresponds with cognitive decline during epilepsy progression. Cell Stem Cell 2024:S1934-5909(24)00401-6. [PMID: 39642885 DOI: 10.1016/j.stem.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/16/2024] [Accepted: 11/01/2024] [Indexed: 12/09/2024]
Abstract
Mesial temporal lobe epilepsy (MTLE) is a syndromic disorder presenting with seizures and cognitive comorbidities. Although seizure etiology is increasingly understood, the pathophysiological mechanisms contributing to cognitive decline and epilepsy progression remain less recognized. We have previously shown that adult hippocampal neurogenesis dramatically declines in MTLE patients with increased disease duration. Here, we investigate when multiple cognitive domains become affected during epilepsy progression and how human neurogenesis levels contribute to it. We find that intelligence, verbal learning, and memory decline at a critical period of 20 years disease duration. In contrast to rodents, the number of human immature neurons positively associates with auditory verbal, rather than visuospatial, learning and memory. Moreover, this association does not apply to mature granule neurons. Our study provides cellular evidence of how adult neurogenesis corresponds with human cognition and signifies an opportunity to advance regenerative medicine for patients with MTLE and other cognitive disorders.
Collapse
Affiliation(s)
- Aswathy Ammothumkandy
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Luis Corona
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kristine Ravina
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Victoria Wolseley
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jeremy Nelson
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nadiya Atai
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Aidin Abedi
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nora Jimenez
- Los Angeles General Medical Center, Los Angeles, CA 90033, USA
| | - Michelle Armacost
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurology, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Lina M D'Orazio
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | - Alisha Cayce
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Carol McCleary
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - George Nune
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Laura Kalayjian
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Darrin J Lee
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brian Lee
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Robert H Chow
- Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Christianne Heck
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jonathan J Russin
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles Y Liu
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Jason A D Smith
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Michael A Bonaguidi
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
8
|
Adameyko I, Bakken T, Bhaduri A, Chhatbar C, Filbin MG, Gate D, Hochgerner H, Kim CN, Krull J, La Manno G, Li Q, Linnarsson S, Ma Q, Mayer C, Menon V, Nano P, Prinz M, Quake S, Walsh CA, Yang J, Bayraktar OA, Gokce O, Habib N, Konopka G, Liddelow SA, Nowakowski TJ. Applying single-cell and single-nucleus genomics to studies of cellular heterogeneity and cell fate transitions in the nervous system. Nat Neurosci 2024; 27:2278-2291. [PMID: 39627588 DOI: 10.1038/s41593-024-01827-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/22/2024] [Indexed: 12/13/2024]
Abstract
Single-cell and single-nucleus genomic approaches can provide unbiased and multimodal insights. Here, we discuss what constitutes a molecular cell atlas and how to leverage single-cell omics data to generate hypotheses and gain insights into cell transitions in development and disease of the nervous system. We share points of reflection on what to consider during study design and implementation as well as limitations and pitfalls.
Collapse
Affiliation(s)
- Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Aparna Bhaduri
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Chintan Chhatbar
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, MA, USA
| | - David Gate
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hannah Hochgerner
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Chang Nam Kim
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Jordan Krull
- Department of Biomedical Informatics, College of Medicine, the Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, the James Comprehensive Cancer Center, the Ohio State University, Columbus, OH, USA
| | - Gioele La Manno
- Laboratory of Neurodevelopmental Systems Biology, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Qingyun Li
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, the Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, the James Comprehensive Cancer Center, the Ohio State University, Columbus, OH, USA
| | - Christian Mayer
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Patricia Nano
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Steve Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Jin Yang
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | - Ozgun Gokce
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Naomi Habib
- The Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Hao P, Yang Z, So KF, Li X. A core scientific problem in the treatment of central nervous system diseases: newborn neurons. Neural Regen Res 2024; 19:2588-2601. [PMID: 38595278 PMCID: PMC11168522 DOI: 10.4103/nrr.nrr-d-23-01775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/06/2024] [Accepted: 02/22/2024] [Indexed: 04/11/2024] Open
Abstract
It has long been asserted that failure to recover from central nervous system diseases is due to the system's intricate structure and the regenerative incapacity of adult neurons. Yet over recent decades, numerous studies have established that endogenous neurogenesis occurs in the adult central nervous system, including humans'. This has challenged the long-held scientific consensus that the number of adult neurons remains constant, and that new central nervous system neurons cannot be created or renewed. Herein, we present a comprehensive overview of the alterations and regulatory mechanisms of endogenous neurogenesis following central nervous system injury, and describe novel treatment strategies that target endogenous neurogenesis and newborn neurons in the treatment of central nervous system injury. Central nervous system injury frequently results in alterations of endogenous neurogenesis, encompassing the activation, proliferation, ectopic migration, differentiation, and functional integration of endogenous neural stem cells. Because of the unfavorable local microenvironment, most activated neural stem cells differentiate into glial cells rather than neurons. Consequently, the injury-induced endogenous neurogenesis response is inadequate for repairing impaired neural function. Scientists have attempted to enhance endogenous neurogenesis using various strategies, including using neurotrophic factors, bioactive materials, and cell reprogramming techniques. Used alone or in combination, these therapeutic strategies can promote targeted migration of neural stem cells to an injured area, ensure their survival and differentiation into mature functional neurons, and facilitate their integration into the neural circuit. Thus can integration replenish lost neurons after central nervous system injury, by improving the local microenvironment. By regulating each phase of endogenous neurogenesis, endogenous neural stem cells can be harnessed to promote effective regeneration of newborn neurons. This offers a novel approach for treating central nervous system injury.
Collapse
Affiliation(s)
- Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Kwok-Fai So
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administration Region, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
10
|
Li C, Zhang M, Du Y, Liu S, Li D, Zhang S, Ji F, Zhang J, Jiao J. Compromised cell competition exhausts neural stem cells pool. Cell Prolif 2024; 57:e13710. [PMID: 39010274 PMCID: PMC11628731 DOI: 10.1111/cpr.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Blood vessels play a crucial role in maintaining the stem cell niche in both tumours and developing organs. Cell competition is critical for tumour progression. We hypothesise that blood vessels may act as a regulator of this process. As a pioneer, the secretions of blood vessels regulate the intensity of cell competition, which is essential for tumour invasion and developmental organ extension. Brd4 expresses highly in endothelial cells within various tumours and is positively correlated with numerous invasive genes, making it an ideal focal point for further research on the relationship between blood vessels and cell competition. Our results indicated that the absence of endothelial Brd4 led to a reduction in neural stem cell mortality and compromised cell competition. Endothelial Brd4 regulated cell competition was dependent on Testican2. Testican2 was capable of depositing Sparc and acted as a suppressor of Sparc. Compromised cell competition resulted in the depletion of neural stem cells and accelerated brain ageing. Testican2 could rescue the run-off of neural stem cells and accelerate the turnover rate of neurons. AD patients show compromised cell competition. Through the cloning of a point mutant of Brd4 identified in a subset of AD patients, it was demonstrated that the mutant lacked the ability to promote cell competition. This study suggests a novel approach for treating age-related diseases by enhancing the intensity of cell competition.
Collapse
Affiliation(s)
- Chenxiao Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical UniversityZhanjiangChina
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of ScienceBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| | - Mengtian Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of ScienceBeijingChina
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| | - Yushan Du
- College of Basic Medicine, Qingdao UniversityQingdaoChina
| | - Shuang Liu
- Jiaozuo Hospital of Traditional Chinese MedicineHenanChina
| | - Da Li
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of ScienceBeijingChina
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| | - Shukui Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of ScienceBeijingChina
| | - Fen Ji
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of ScienceBeijingChina
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical UniversityZhanjiangChina
| | - Jianwei Jiao
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of ScienceBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
11
|
He R, Zhang Q, Wang L, Hu Y, Qiu Y, Liu J, You D, Cheng J, Cao X. Exploring the feasibility of using mice as a substitute model for investigating microglia in aging and Alzheimer's disease though single cell analysis. PLoS One 2024; 19:e0311374. [PMID: 39591421 PMCID: PMC11594518 DOI: 10.1371/journal.pone.0311374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/18/2024] [Indexed: 11/28/2024] Open
Abstract
OBJECTIVE To guide animal experiments, we investigated the similarities and differences between humans and mice in aging and Alzheimer's disease (AD) at the single-nucleus RNA sequencing (snRNA-seq) or single-cell RNA sequencing (scRNA-seq) level. METHODS Microglia cells were extracted from dataset GSE198323 of human post-mortem hippocampus. The distributions and proportions of microglia subpopulation cell numbers related to AD or age were compared. This comparison was done between GSE198323 for humans and GSE127892 for mice, respectively. The Seurat R package and harmony R package were used for data analysis and batch effect correction. Differentially expressed genes (DEGs) were identified by FindMarkers function with MAST test. Comparative analyses were conducted on shared genes in DEGs associated with age and AD. The analyses were done between human and mouse using various bioinformatics techniques. The analysis of genes in DEGs related to age was conducted. Similarly, the analysis of genes in DEGs related to AD was performed. Cross-species analyses were conducted using orthologous genes. Comparative analyses of pseudotime between humans and mice were performed using Monocle2. RESULTS (1) Similarities: The proportion of microglial subpopulation Cell_APOE/Apoe shows consistent trends, whether in AD or normal control (NC) groups in both humans and mice. The proportion of Cell_CX3CR1/Cx3cr1, representing homeostatic microglia, remains stable with age in NC groups across species. Tuberculosis and Fc gamma R-mediated phagocytosis pathways are shared in microglia responses to age and AD across species, respectively. (2) Differences: IL1RAPL1 and SPP1 as marker genes are more identifiable in human microglia compared to their mouse counterparts. Most genes of DEGs associated with age or AD exhibit different trends between humans and mice. Pseudotime analyses demonstrate varying cell density trends in microglial subpopulations, depending on age or AD across species. CONCLUSIONS Mouse Apoe and Cell_Apoe maybe serve as proxies for studying human AD, while Cx3cr1 and Cell_Cx3cr1 are suitable for human aging studies. However, AD mouse models (App_NL_G_F) have limitations in studying human genes like IL1RAPL1 and SPP1 related to AD. Thus, mouse models cannot fully replace human samples for AD and aging research.
Collapse
Affiliation(s)
- Rong He
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| | - Qiang Zhang
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| | - Limei Wang
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| | - Yiwen Hu
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| | - Yue Qiu
- Dermatology Department of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Liu
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| | - Dingyun You
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Jishuai Cheng
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| | - Xue Cao
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
12
|
Elliott T, Liu KY, Hazan J, Wilson J, Vallipuram H, Jones K, Mahmood J, Gitlin-Leigh G, Howard R. Hippocampal neurogenesis in adult primates: a systematic review. Mol Psychiatry 2024:10.1038/s41380-024-02815-y. [PMID: 39558003 DOI: 10.1038/s41380-024-02815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024]
Abstract
It had long been considered that no new neurons are generated in the primate brain beyond birth, but recent studies have indicated that neurogenesis persists in various locations throughout the lifespan. The dentate gyrus of the hippocampus is of particular interest due to the postulated role played by neurogenesis in memory. However, studies investigating the presence of adult hippocampal neurogenesis (AHN) have reported contradictory findings, and no systematic review of the evidence has been conducted to date. We searched MEDLINE, Embase and PsycINFO on 27th June 2023 for studies on hippocampal neurogenesis in adult primates, excluding review papers. Screening, quality assessment and data extraction was done by independent co-raters. We synthesised evidence from 112 relevant papers. We found robust evidence, primarily supported by immunohistochemical examination of tissue samples and neuroimaging, for newly generated neurons, first detected in the subgranular zone of the dentate gyrus, that mature over time and migrate to the granule cell layer, where they become functionally integrated with surrounding neuronal networks. AHN has been repeatedly observed in both humans and other primates and gradually diminishes with age. Transient increases in AHN are observed following acute insults such as stroke and epileptic seizures, and following electroconvulsive therapy, and AHN is diminished in neurodegenerative conditions. Markers of AHN correlate positively with measures of learning and short-term memory, but associations with antidepressant use and mood states are weaker. Heterogeneous outcome measures limited quantitative syntheses. Further research should better characterise the neuropsychological function of neurogenesis in healthy subjects.
Collapse
Affiliation(s)
| | - Kathy Y Liu
- Division of Psychiatry, University College London, London, UK
| | - Jemma Hazan
- Division of Psychiatry, University College London, London, UK
- Camden and Islington NHS Foundation Trust, London, UK
| | - Jack Wilson
- Camden and Islington NHS Foundation Trust, London, UK
| | | | | | | | | | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| |
Collapse
|
13
|
Nishimura H, Li Y. Human pluripotent stem cell-derived models of the hippocampus. Int J Biochem Cell Biol 2024; 177:106695. [PMID: 39557338 DOI: 10.1016/j.biocel.2024.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
The hippocampus is a crucial structure of the brain, recognised for its roles in the formation of memory, and our ability to navigate the world. Despite its importance, clear understanding of how the human hippocampus develops and its contribution to disease is limited due to the inaccessible nature of the human brain. In this regard, the advent of human pluripotent stem cell (hPSC) technologies has enabled the study of human biology in an unprecedented manner, through the ability to model development and disease as both 2D monolayers and 3D organoids. In this review, we explore the existing efforts to derive the hippocampal lineage from hPSCs and evaluate the various aspects of the in vivo hippocampus that are replicated in vitro. In addition, we highlight key diseases that have been modelled using hPSC-derived cultures and offer our perspective on future directions for this emerging field.
Collapse
Affiliation(s)
- Haruka Nishimura
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
14
|
Bonfanti L, La Rosa C, Ghibaudi M, Sherwood CC. Adult neurogenesis and "immature" neurons in mammals: an evolutionary trade-off in plasticity? Brain Struct Funct 2024; 229:1775-1793. [PMID: 37833544 PMCID: PMC11485216 DOI: 10.1007/s00429-023-02717-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Neuronal plasticity can vary remarkably in its form and degree across animal species. Adult neurogenesis, namely the capacity to produce new neurons from neural stem cells through adulthood, appears widespread in non-mammalian vertebrates, whereas it is reduced in mammals. A growing body of comparative studies also report variation in the occurrence and activity of neural stem cell niches between mammals, with a general trend of reduction from small-brained to large-brained species. Conversely, recent studies have shown that large-brained mammals host large amounts of neurons expressing typical markers of neurogenesis in the absence of cell division. In layer II of the cerebral cortex, populations of prenatally generated, non-dividing neurons continue to express molecules indicative of immaturity throughout life (cortical immature neurons; cINs). After remaining in a dormant state for a very long time, these cINs retain the potential of differentiating into mature neurons that integrate within the preexisting neural circuits. They are restricted to the paleocortex in small-brained rodents, while extending into the widely expanded neocortex of highly gyrencephalic, large-brained species. The current hypothesis is that these populations of non-newly generated "immature" neurons might represent a reservoir of developmentally plastic cells for mammalian species that are characterized by reduced stem cell-driven adult neurogenesis. This indicates that there may be a trade-off between various forms of plasticity that coexist during brain evolution. This balance may be necessary to maintain a "reservoir of plasticity" in brain regions that have distinct roles in species-specific socioecological adaptations, such as the neocortex and olfactory structures.
Collapse
Affiliation(s)
- Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Turin, Grugliasco, Italy.
| | - Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Turin, Grugliasco, Italy
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA.
| |
Collapse
|
15
|
Zhang Y, Wang S, Hei M. Maternal separation as early-life stress: Mechanisms of neuropsychiatric disorders and inspiration for neonatal care. Brain Res Bull 2024; 217:111058. [PMID: 39197670 DOI: 10.1016/j.brainresbull.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The establishment of positive early parent-infant relationships provide essential nourishment and social stimulation for newborns. During the early stages of postnatal brain development, events such as synaptogenesis, neuronal maturation and glial differentiation occur in a highly coordinated manner. Maternal separation, as an early-life stress introducer, can disrupt the formation of parent-child bonds and exert long-term adverse effects throughout life. When offspring are exposed to maternal separation, the body regulates the stress of maternal separation through multiple mechanisms, including neuroinflammatory responses, neuroendocrinology, and neuronal electrical activity. In adulthood, early maternal separation has long-term effects, such as the induction of neuropsychiatric disorders such as anxiety, depression, and cognitive dysfunction. This review summarized the application of maternal separation models and the mechanisms of stress system response in neuropsychiatric disorders, serving as both a reminder and inspiration for approaches to improve neonatal care, "from bench to bedside".
Collapse
Affiliation(s)
- Yuan Zhang
- Neonatal Center, Beijing Children's Hospital Capital Medical University, National Center of Children's Health, Beijing 100045, China
| | - Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Mingyan Hei
- Neonatal Center, Beijing Children's Hospital Capital Medical University, National Center of Children's Health, Beijing 100045, China.
| |
Collapse
|
16
|
Früholz I, Meyer-Luehmann M. The intricate interplay between microglia and adult neurogenesis in Alzheimer's disease. Front Cell Neurosci 2024; 18:1456253. [PMID: 39360265 PMCID: PMC11445663 DOI: 10.3389/fncel.2024.1456253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system, play a crucial role in regulating adult neurogenesis and contribute significantly to the pathogenesis of Alzheimer's disease (AD). Under physiological conditions, microglia support and modulate neurogenesis through the secretion of neurotrophic factors, phagocytosis of apoptotic cells, and synaptic pruning, thereby promoting the proliferation, differentiation, and survival of neural progenitor cells (NPCs). However, in AD, microglial function becomes dysregulated, leading to chronic neuroinflammation and impaired neurogenesis. This review explores the intricate interplay between microglia and adult neurogenesis in health and AD, synthesizing recent findings to provide a comprehensive overview of the current understanding of microglia-mediated regulation of adult neurogenesis. Furthermore, it highlights the potential of microglia-targeted therapies to modulate neurogenesis and offers insights into potential avenues for developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Iris Früholz
- Department of Neurology, Medical Center ˗ University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Center ˗ University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Penning A, Snoeck S, Garritsen O, Tosoni G, Hof A, de Boer F, van Hasenbroek J, Zhang L, Thrupp N, Craessaerts K, Fiers M, Salta E. NACC2, a molecular effector of miR-132 regulation at the interface between adult neurogenesis and Alzheimer's disease. Sci Rep 2024; 14:21163. [PMID: 39256511 PMCID: PMC11387632 DOI: 10.1038/s41598-024-72096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
The generation of new neurons at the hippocampal neurogenic niche, known as adult hippocampal neurogenesis (AHN), and its impairment, have been implicated in Alzheimer's disease (AD). MicroRNA-132 (miR-132), the most consistently downregulated microRNA (miRNA) in AD, was recently identified as a potent regulator of AHN, exerting multilayered proneurogenic effects in adult neural stem cells (NSCs) and their progeny. Supplementing miR-132 in AD mouse brain restores AHN and relevant memory deficits, yet the exact mechanisms involved are still unknown. Here, we identify NACC2 as a novel miR-132 target implicated in both AHN and AD. miR-132 deficiency in mouse hippocampus induces Nacc2 expression and inflammatory signaling in adult NSCs. We show that miR-132-dependent regulation of NACC2 is involved in the initial stages of human NSC differentiation towards astrocytes and neurons. Later, NACC2 function in astrocytic maturation becomes uncoupled from miR-132. We demonstrate that NACC2 is present in reactive astrocytes surrounding amyloid plaques in mouse and human AD hippocampus, and that there is an anticorrelation between miR-132 and NACC2 levels in AD and upon induction of inflammation. Unraveling the molecular mechanisms by which miR-132 regulates neurogenesis and cellular reactivity in AD, will provide valuable insights towards its possible application as a therapeutic target.
Collapse
Affiliation(s)
- Amber Penning
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Sarah Snoeck
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Oxana Garritsen
- UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Giorgia Tosoni
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Amber Hof
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Fleur de Boer
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | | | - Lin Zhang
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Nicky Thrupp
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | | | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Sorrells SF. Which neurodevelopmental processes continue in humans after birth? Front Neurosci 2024; 18:1434508. [PMID: 39308952 PMCID: PMC11412957 DOI: 10.3389/fnins.2024.1434508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
Once we are born, the number and location of nerve cells in most parts of the brain remain unchanged. These types of structural changes are therefore a significant form of flexibility for the neural circuits where they occur. In humans, the postnatal birth of neurons is limited; however, neurons do continue to migrate into some brain regions throughout infancy and even into adolescence. In human infants, multiple migratory pathways deliver interneurons to destinations across the frontal and temporal lobe cortex. Shorter-range migration of excitatory neurons also appears to continue during adolescence, particularly near the amygdala paralaminar nucleus, a region that follows a delayed trajectory of growth from infancy to adulthood. The significance of the timing for when different brain regions recruit new neurons through these methods is unknown; however, both processes of protracted migration and maturation are prominent in humans. Mechanisms like these that reconfigure neuronal circuits are a substrate for critical periods of plasticity and could contribute to distinctive circuit functionality in human brains.
Collapse
|
19
|
Vicidomini C, Goode TD, McAvoy KM, Yu R, Beveridge CH, Iyer SN, Victor MB, Leary N, Evans L, Steinbaugh MJ, Lai ZW, Lyon MC, Silvestre MRFS, Bonilla G, Sadreyev RI, Walther TC, Sui SH, Saido T, Yamamoto K, Murakami M, Tsai LH, Chopra G, Sahay A. An aging-sensitive compensatory secretory phospholipase that confers neuroprotection and cognitive resilience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605338. [PMID: 39211220 PMCID: PMC11361190 DOI: 10.1101/2024.07.26.605338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Breakdown of lipid homeostasis is thought to contribute to pathological aging, the largest risk factor for neurodegenerative disorders such as Alzheimer's Disease (AD). Cognitive reserve theory posits a role for compensatory mechanisms in the aging brain in preserving neuronal circuit functions, staving off cognitive decline, and mitigating risk for AD. However, the identities of such mechanisms have remained elusive. A screen for hippocampal dentate granule cell (DGC) synapse loss-induced factors identified a secreted phospholipase, Pla2g2f, whose expression increases in DGCs during aging. Pla2g2f deletion in DGCs exacerbates aging-associated pathophysiological changes including synapse loss, inflammatory microglia, reactive astrogliosis, impaired neurogenesis, lipid dysregulation and hippocampal-dependent memory loss. Conversely, boosting Pla2g2f in DGCs during aging is sufficient to preserve synapses, reduce inflammatory microglia and reactive gliosis, prevent hippocampal-dependent memory impairment and modify trajectory of cognitive decline. Ex vivo, neuronal-PLA2G2F mediates intercellular signaling to decrease lipid droplet burden in microglia. Boosting Pla2g2f expression in DGCs of an aging-sensitive AD model reduces amyloid load and improves memory. Our findings implicate PLA2G2F as a compensatory neuroprotective factor that maintains lipid homeostasis to counteract aging-associated cognitive decline.
Collapse
Affiliation(s)
- Cinzia Vicidomini
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Travis D Goode
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kathleen M McAvoy
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ruilin Yu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Conor H Beveridge
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sanjay N Iyer
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Matheus B Victor
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Noelle Leary
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Liam Evans
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael J Steinbaugh
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Zon Weng Lai
- Harvard Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marina C Lyon
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Manuel Rico F S Silvestre
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Gracia Bonilla
- Department of Molecular Biology. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias C Walther
- Harvard Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Shannan Ho Sui
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198 Japan
| | - Kei Yamamoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-jyosanjima, Tokushima 770-8513, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Li-Huei Tsai
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
20
|
Simard S, Rahimian R, Davoli MA, Théberge S, Matosin N, Turecki G, Nagy C, Mechawar N. Spatial transcriptomic analysis of adult hippocampal neurogenesis in the human brain. J Psychiatry Neurosci 2024; 49:E319-E333. [PMID: 39414359 PMCID: PMC11495544 DOI: 10.1503/jpn.240026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/21/2024] [Accepted: 08/18/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Adult hippocampal neurogenesis has been extensively characterized in rodent models, but its existence in humans remains controversial. We sought to assess the phenomenon in postmortem human hippocampal samples by combining spatial transcriptomics and multiplexed fluorescent in situ hybridization. METHODS We computationally examined the spatial expression of various canonical neurogenesis markers in postmortem dentate gyrus (DG) sections from young and middle-aged sudden-death males. We conducted in situ assessment of markers expressed in neural stem cells, proliferative cells, and immature granule neurons in postmortem DG sections from infant, adolescent, and middle-aged males. RESULTS We examined frozen DG tissue from infant (n = 1, age 2 yr), adolescent (n = 1, age 16 yr), young adult (n = 2, mean age 23.5 yr), and middle-aged (n = 2, mean age 42.5 yr) males, and frozen-fixed DG tissue from middle-aged males (n = 6, mean age 43.5 yr). We detected very few cells expressing neural stem cell and proliferative markers in the human DG from childhood to middle age. However, at all ages, we observed a substantial number of DG cells expressing the immature neuronal marker DCX. Most DCX + cells displayed an inhibitory phenotype, while the remainder were non-committed or excitatory in nature. LIMITATIONS The study was limited by small sample sizes and included samples only from males. CONCLUSION Our findings indicate very low levels of hippocampal neurogenesis throughout life and the existence of a local reserve of plasticity in the adult human hippocampus. Overall, our study provides important insight into the distribution and phenotype of cells expressing neurogenesis markers in the adult human hippocampus.
Collapse
Affiliation(s)
- Sophie Simard
- From the McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Que. (Simard, Rahimian, Antonietta, Théberge, Turecki, Nagy, Mechawar); the School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, Australia (Matosin); the Department of Psychiatry, McGill University, Montréal, Que. (Turecki, Nagy, Mechawar)
| | - Reza Rahimian
- From the McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Que. (Simard, Rahimian, Antonietta, Théberge, Turecki, Nagy, Mechawar); the School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, Australia (Matosin); the Department of Psychiatry, McGill University, Montréal, Que. (Turecki, Nagy, Mechawar)
| | - Maria Antonietta Davoli
- From the McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Que. (Simard, Rahimian, Antonietta, Théberge, Turecki, Nagy, Mechawar); the School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, Australia (Matosin); the Department of Psychiatry, McGill University, Montréal, Que. (Turecki, Nagy, Mechawar)
| | - Stéphanie Théberge
- From the McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Que. (Simard, Rahimian, Antonietta, Théberge, Turecki, Nagy, Mechawar); the School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, Australia (Matosin); the Department of Psychiatry, McGill University, Montréal, Que. (Turecki, Nagy, Mechawar)
| | - Natalie Matosin
- From the McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Que. (Simard, Rahimian, Antonietta, Théberge, Turecki, Nagy, Mechawar); the School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, Australia (Matosin); the Department of Psychiatry, McGill University, Montréal, Que. (Turecki, Nagy, Mechawar)
| | - Gustavo Turecki
- From the McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Que. (Simard, Rahimian, Antonietta, Théberge, Turecki, Nagy, Mechawar); the School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, Australia (Matosin); the Department of Psychiatry, McGill University, Montréal, Que. (Turecki, Nagy, Mechawar)
| | - Corina Nagy
- From the McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Que. (Simard, Rahimian, Antonietta, Théberge, Turecki, Nagy, Mechawar); the School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, Australia (Matosin); the Department of Psychiatry, McGill University, Montréal, Que. (Turecki, Nagy, Mechawar)
| | - Naguib Mechawar
- From the McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Que. (Simard, Rahimian, Antonietta, Théberge, Turecki, Nagy, Mechawar); the School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, Australia (Matosin); the Department of Psychiatry, McGill University, Montréal, Que. (Turecki, Nagy, Mechawar).
| |
Collapse
|
21
|
Okinaka Y, Maeda M, Kataoka Y, Nakagomi T, Doi A, Boltze J, Claussen C, Gul S, Taguchi A. Direct Water-Soluble Molecules Transfer from Transplanted Bone Marrow Mononuclear Cell to Hippocampal Neural Stem Cells. Stem Cells Dev 2024; 33:505-515. [PMID: 39028017 DOI: 10.1089/scd.2024.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Intravascularly transplanted bone marrow cells, including bone marrow mononuclear cells (BM-MNC) and mesenchymal stem cells, transfer water-soluble molecules to cerebral endothelial cells via gap junctions. After transplantation of BM-MNC, this fosters hippocampal neurogenesis and enhancement of neuronal function. Herein, we report the impact of transplanted BM-MNC on neural stem cells (NSC) in the brain. Surprisingly, direct transfer of water-soluble molecules from transplanted BM-MNC and peripheral mononuclear cells to NSC in the hippocampus was observed already 10 min after cell transplantation, and transfer from BM-MNC to GFAP-positive cortical astrocytes was also observed. In vitro investigations revealed that BM-MNC abolish the expression of hypoxia-inducible factor-1α in astrocytes. We suggest that the transient and direct transfer of water-soluble molecules between cells in circulation and NSC in the brain may be one of the biological mechanisms underlying the repair of brain function.
Collapse
Affiliation(s)
- Yuka Okinaka
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Mitsuyo Maeda
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yosky Kataoka
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo Medical University, Nishinomiya, Japan
| | - Akiko Doi
- Institute for Advanced Medical Sciences, Hyogo Medical University, Nishinomiya, Japan
| | - Johannes Boltze
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation, Kobe, Japan
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Carsten Claussen
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation, Kobe, Japan
| |
Collapse
|
22
|
Bonzano S, Dallorto E, Bovetti S, Studer M, De Marchis S. Mitochondrial regulation of adult hippocampal neurogenesis: Insights into neurological function and neurodevelopmental disorders. Neurobiol Dis 2024; 199:106604. [PMID: 39002810 DOI: 10.1016/j.nbd.2024.106604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Mitochondria are essential regulators of cellular energy metabolism and play a crucial role in the maintenance and function of neuronal cells. Studies in the last decade have highlighted the importance of mitochondrial dynamics and bioenergetics in adult neurogenesis, a process that significantly influences cognitive function and brain plasticity. In this review, we examine the mechanisms by which mitochondria regulate adult neurogenesis, focusing on the impact of mitochondrial function on the behavior of neural stem/progenitor cells and the maturation and plasticity of newborn neurons in the adult mouse hippocampus. In addition, we explore the link between mitochondrial dysfunction, adult hippocampal neurogenesis and genes associated with cognitive deficits in neurodevelopmental disorders. In particular, we provide insights into how alterations in the transcriptional regulator NR2F1 affect mitochondrial dynamics and may contribute to the pathophysiology of the emerging neurodevelopmental disorder Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS). Understanding how genes involved in embryonic and adult neurogenesis affect mitochondrial function in neurological diseases might open new directions for therapeutic interventions aimed at boosting mitochondrial function during postnatal life.
Collapse
Affiliation(s)
- Sara Bonzano
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Eleonora Dallorto
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy; Institute de Biologie Valrose (iBV), Université Cote d'Azur (UCA), CNRS 7277, Inserm 1091, Avenue Valrose 28, Nice 06108, France
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Michèle Studer
- Institute de Biologie Valrose (iBV), Université Cote d'Azur (UCA), CNRS 7277, Inserm 1091, Avenue Valrose 28, Nice 06108, France
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy.
| |
Collapse
|
23
|
A cellular reference atlas across human brain regions. Nat Med 2024; 30:2421-2422. [PMID: 39095600 DOI: 10.1038/s41591-024-03151-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
|
24
|
Friess D, Brauer S, Pöysti A, Choudhury C, Harris L. Tools to study neural and glioma stem cell quiescence. Trends Neurosci 2024; 47:736-748. [PMID: 39191628 DOI: 10.1016/j.tins.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Quiescence is a prolonged but reversible state of cell-cycle arrest that is an adaptive feature of most adult stem cell populations. In the brain, quiescence helps to protect adult neural stem cells from stress and supports lifelong neurogenesis. Unfortunately however, entry into a quiescent or a slow-cycling state is also a malignant feature of brain cancer stem cells. In glioblastoma, where the process has been best characterised, quiescent glioma stem cells preferentially survive chemoradiation, and after therapy, reactivate to regrow the tumour and drive recurrence. In this Review, we discuss the in vitro and in vivo models that have been developed for studying neural stem cell quiescence and how these tools may be used to deepen biological understanding and to develop novel therapies targeting quiescent glioma stem cells.
Collapse
Affiliation(s)
- Dana Friess
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia; The University of Queensland, Brisbane, School of Biomedical Sciences, QLD, 4067, Australia
| | - Stephanie Brauer
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia; Queensland University of Technology, School of Biomedical Sciences, QLD, 4059, Australia
| | - Anni Pöysti
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, WC1E 6DD London, UK
| | - Chandra Choudhury
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia; The University of Queensland, Brisbane, School of Biomedical Sciences, QLD, 4067, Australia
| | - Lachlan Harris
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia; The University of Queensland, Brisbane, School of Biomedical Sciences, QLD, 4067, Australia; Queensland University of Technology, School of Biomedical Sciences, QLD, 4059, Australia.
| |
Collapse
|
25
|
Chen X, Huang Y, Huang L, Huang Z, Hao ZZ, Xu L, Xu N, Li Z, Mou Y, Ye M, You R, Zhang X, Liu S, Miao Z. A brain cell atlas integrating single-cell transcriptomes across human brain regions. Nat Med 2024; 30:2679-2691. [PMID: 39095595 PMCID: PMC11405287 DOI: 10.1038/s41591-024-03150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 06/24/2024] [Indexed: 08/04/2024]
Abstract
While single-cell technologies have greatly advanced our comprehension of human brain cell types and functions, studies including large numbers of donors and multiple brain regions are needed to extend our understanding of brain cell heterogeneity. Integrating atlas-level single-cell data presents a chance to reveal rare cell types and cellular heterogeneity across brain regions. Here we present the Brain Cell Atlas, a comprehensive reference atlas of brain cells, by assembling single-cell data from 70 human and 103 mouse studies of the brain throughout major developmental stages across brain regions, covering over 26.3 million cells or nuclei from both healthy and diseased tissues. Using machine-learning based algorithms, the Brain Cell Atlas provides a consensus cell type annotation, and it showcases the identification of putative neural progenitor cells and a cell subpopulation of PCDH9high microglia in the human brain. We demonstrate the gene regulatory difference of PCDH9high microglia between hippocampus and prefrontal cortex and elucidate the cell-cell communication network. The Brain Cell Atlas presents an atlas-level integrative resource for comparing brain cells in different environments and conditions within the Human Cell Atlas.
Collapse
Affiliation(s)
- Xinyue Chen
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Yin Huang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Liangfeng Huang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Ziliang Huang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lahong Xu
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Nana Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhi Li
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yonggao Mou
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mingli Ye
- Tsinghua Fuzhou Institute for Data Technology, Fuzhou, China
| | - Renke You
- Tsinghua Fuzhou Institute for Data Technology, Fuzhou, China
| | - Xuegong Zhang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
- School of Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China.
| | - Zhichao Miao
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou International Bio Island, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou International Bio Island, Guangzhou, China.
| |
Collapse
|
26
|
Cho TH, Kim M, Kim SH, Lee JE, Kim SH, Kim HJ, Hong JE, Yeo IS, Yang HM. Reconsidering Neurogenetic Indication in the Human Brain: Broad Expression of Doublecortin Transcript in the Hippocampal and Cortical Cell Populations. Cells Tissues Organs 2024; 213:382-389. [PMID: 39191219 PMCID: PMC11446342 DOI: 10.1159/000540976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
INTRODUCTION Neurogenesis in the adult brain may play an important role in memory and cognition; however, knowledge of neurogenic markers in the human brain remains limited. We compared the single-nucleus transcriptome of the hippocampus with that of other cortical regions to identify hippocampus-specific neurogenic markers. METHODS We analyzed 26,189 nuclei from four human brains collected within 16 h of death. Clustering and annotation were performed to examine differential expression, gene ontology, and intercellular communication. DCX expression was validated by ddPCR. RESULTS Immature markers such as DCX, CALB2, NES, SOX2, PAX6, DPYSL3, and TUBB3 were expressed in both hippocampus and prefrontal cortex, with higher levels in the prefrontal cortex. ddPCR confirmed higher expression of DCX in the prefrontal cortex. DCX was involved in both neurogenesis and neuroprotection pathways. CONCLUSION Neurogenic markers are not definitive indicators of adult neurogenesis as their roles are more complex than previously understood.
Collapse
Affiliation(s)
- Tae-Hyeon Cho
- Department of Anatomy, College of Korean Medicine, Semyung University, Jecheon, Republic of Korea
- Translational Research Unit for Anatomy and Analgesia, Seoul, Republic of Korea
| | - Miri Kim
- Translational Research Unit for Anatomy and Analgesia, Seoul, Republic of Korea
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Shin Hyung Kim
- Translational Research Unit for Anatomy and Analgesia, Seoul, Republic of Korea
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ju-Eun Hong
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju, Republic of Korea
| | - In-Seung Yeo
- Translational Research Unit for Anatomy and Analgesia, Seoul, Republic of Korea
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hun-Mu Yang
- Translational Research Unit for Anatomy and Analgesia, Seoul, Republic of Korea
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Surgical Anatomy Education Centre, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
27
|
Marotta N, Boland MJ, Prosser BL. Accelerating therapeutic development and clinical trial readiness for STXBP1 and SYNGAP1 disorders. Curr Probl Pediatr Adolesc Health Care 2024; 54:101576. [PMID: 38472035 DOI: 10.1016/j.cppeds.2024.101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Gene-targeted therapies for genetic neurodevelopmental disorders (NDDs) are becoming a reality. The Center for Epilepsy and Neurodevelopmental Disorders (ENDD) is currently focused on the development of therapeutics for STXBP1 and SYNGAP1 disorders. Here we review the known clinical features of these disorders, highlight the biological role of STXBP1 and SYNGAP1, and discuss our current understanding of pathogenic mechanisms and therapeutic development. Finally, we provide our perspective as scientists and parents of children with NDDs, and comment on the current challenges for both clinical and basic science endeavors.
Collapse
Affiliation(s)
- Nicolas Marotta
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Center for Epilepsy and Neurodevelopmental Disorders (ENDD), University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael J Boland
- Center for Epilepsy and Neurodevelopmental Disorders (ENDD), University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Benjamin L Prosser
- Center for Epilepsy and Neurodevelopmental Disorders (ENDD), University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Wang Y, Kuca K, You L, Nepovimova E, Heger Z, Valko M, Adam V, Wu Q, Jomova K. The role of cellular senescence in neurodegenerative diseases. Arch Toxicol 2024; 98:2393-2408. [PMID: 38744709 PMCID: PMC11272704 DOI: 10.1007/s00204-024-03768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Increasing evidence has revealed that cellular senescence drives NDs, including Alzheimer's disease (AD) and Parkinson's disease. Different senescent cell populations secrete senescence-associated secretory phenotypes (SASP), including matrix metalloproteinase-3, interleukin (IL)-1α, IL-6, and IL-8, which can harm adjacent microglia. Moreover, these cells possess high expression levels of senescence hallmarks (p16 and p21) and elevated senescence-associated β-galactosidase activity in in vitro and in vivo ND models. These senescence phenotypes contribute to the deposition of β-amyloid and tau-protein tangles. Selective clearance of senescent cells and SASP regulation by inhibiting p38/mitogen-activated protein kinase and nuclear factor kappa B signaling attenuate β-amyloid load and prevent tau-protein tangle deposition, thereby improving cognitive performance in AD mouse models. In addition, telomere shortening, a cellular senescence biomarker, is associated with increased ND risks. Telomere dysfunction causes cellular senescence, stimulating IL-6, tumor necrosis factor-α, and IL-1β secretions. The forced expression of telomerase activators prevents cellular senescence, yielding considerable neuroprotective effects. This review elucidates the mechanism of cellular senescence in ND pathogenesis, suggesting strategies to eliminate or restore senescent cells to a normal phenotype for treating such diseases.
Collapse
Affiliation(s)
- Yating Wang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, 401520, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74, Nitra, Slovakia.
| |
Collapse
|
29
|
Methi A, Islam MR, Kaurani L, Sakib MS, Krüger DM, Pena T, Burkhardt S, Liebetanz D, Fischer A. A Single-Cell Transcriptomic Analysis of the Mouse Hippocampus After Voluntary Exercise. Mol Neurobiol 2024; 61:5628-5645. [PMID: 38217668 PMCID: PMC11249425 DOI: 10.1007/s12035-023-03869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/29/2023] [Indexed: 01/15/2024]
Abstract
Exercise has been recognized as a beneficial factor for cognitive health, particularly in relation to the hippocampus, a vital brain region responsible for learning and memory. Previous research has demonstrated that exercise-mediated improvement of learning and memory in humans and rodents correlates with increased adult neurogenesis and processes related to enhanced synaptic plasticity. Nevertheless, the underlying molecular mechanisms are not fully understood. With the aim to further elucidate these mechanisms, we provide a comprehensive dataset of the mouse hippocampal transcriptome at the single-cell level after 4 weeks of voluntary wheel-running. Our analysis provides a number of interesting observations. For example, the results suggest that exercise affects adult neurogenesis by accelerating the maturation of a subpopulation of Prdm16-expressing neurons. Moreover, we uncover the existence of an intricate crosstalk among multiple vital signaling pathways such as NF-κB, Wnt/β-catenin, Notch, and retinoic acid (RA) pathways altered upon exercise in a specific cluster of excitatory neurons within the Cornu Ammonis (CA) region of the hippocampus. In conclusion, our study provides an important resource dataset and sheds further light on the molecular changes induced by exercise in the hippocampus. These findings have implications for developing targeted interventions aimed at optimizing cognitive health and preventing age-related cognitive decline.
Collapse
Affiliation(s)
- Aditi Methi
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Md Rezaul Islam
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - M Sadman Sakib
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Dennis M Krüger
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Tonatiuh Pena
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - David Liebetanz
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - André Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany.
- Department for Psychiatry and Psychotherapy, University Medical Center of Göttingen, Georg-August University, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany.
| |
Collapse
|
30
|
Alonso M, Petit AC, Lledo PM. The impact of adult neurogenesis on affective functions: of mice and men. Mol Psychiatry 2024; 29:2527-2542. [PMID: 38499657 DOI: 10.1038/s41380-024-02504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
In most mammals, new neurons are not only produced during embryogenesis but also after birth. Soon after adult neurogenesis was discovered, the influence of recruiting new neurons on cognitive functions, especially on memory, was documented. Likewise, the late process of neuronal production also contributes to affective functions, but this outcome was recognized with more difficulty. This review covers hypes and hopes of discovering the influence of newly-generated neurons on brain circuits devoted to affective functions. If the possibility of integrating new neurons into the adult brain is a commonly accepted faculty in the realm of mammals, the reluctance is strong when it comes to translating this concept to humans. Compiling data suggest now that new neurons are derived not only from stem cells, but also from a population of neuroblasts displaying a protracted maturation and ready to be engaged in adult brain circuits, under specific signals. Here, we discuss the significance of recruiting new neurons in the adult brain circuits, specifically in the context of affective outcomes. We also discuss the fact that adult neurogenesis could be the ultimate cellular process that integrates elements from both the internal and external environment to adjust brain functions. While we must be critical and beware of the unreal promises that Science could generate sometimes, it is important to continue exploring the potential of neural recruitment in adult primates. Reporting adult neurogenesis in humankind contributes to a new vision of humans as mammals whose brain continues to develop throughout life. This peculiar faculty could one day become the target of treatment for mental health, cognitive disorders, and elderly-associated diseases. The vision of an adult brain which never stops integrating new neurons is a real game changer for designing new therapeutic interventions to treat mental disorders associated with substantial morbidity, mortality, and social costs.
Collapse
Affiliation(s)
- Mariana Alonso
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Action Unit, F-75015, Paris, France
| | - Anne-Cécile Petit
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Action Unit, F-75015, Paris, France
- Pôle Hospitalo-Universitaire Psychiatrie Paris 15, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte-Anne, Paris, France
| | - Pierre-Marie Lledo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Action Unit, F-75015, Paris, France.
| |
Collapse
|
31
|
Frechou MA, Martin SS, McDermott KD, Huaman EA, Gökhan Ş, Tomé WA, Coen-Cagli R, Gonçalves JT. Adult neurogenesis improves spatial information encoding in the mouse hippocampus. Nat Commun 2024; 15:6410. [PMID: 39080283 PMCID: PMC11289285 DOI: 10.1038/s41467-024-50699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Adult neurogenesis is a unique form of neuronal plasticity in which newly generated neurons are integrated into the adult dentate gyrus in a process that is modulated by environmental stimuli. Adult-born neurons can contribute to spatial memory, but it is unknown whether they alter neural representations of space in the hippocampus. Using in vivo two-photon calcium imaging, we find that male and female mice previously housed in an enriched environment, which triggers an increase in neurogenesis, have increased spatial information encoding in the dentate gyrus. Ablating adult neurogenesis blocks the effect of enrichment and lowers spatial information, as does the chemogenetic silencing of adult-born neurons. Both ablating neurogenesis and silencing adult-born neurons decreases the calcium activity of dentate gyrus neurons, resulting in a decreased amplitude of place-specific responses. These findings are in contrast with previous studies that suggested a predominantly inhibitory action for adult-born neurons. We propose that adult neurogenesis improves representations of space by increasing the gain of dentate gyrus neurons and thereby improving their ability to tune to spatial features. This mechanism may mediate the beneficial effects of environmental enrichment on spatial learning and memory.
Collapse
Affiliation(s)
- M Agustina Frechou
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Sunaina S Martin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
| | - Kelsey D McDermott
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Evan A Huaman
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Şölen Gökhan
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wolfgang A Tomé
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ruben Coen-Cagli
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - J Tiago Gonçalves
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
32
|
Zhao R. Can exercise benefits be harnessed with drugs? A new way to combat neurodegenerative diseases by boosting neurogenesis. Transl Neurodegener 2024; 13:36. [PMID: 39049102 PMCID: PMC11271207 DOI: 10.1186/s40035-024-00428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Adult hippocampal neurogenesis (AHN) is affected by multiple factors, such as enriched environment, exercise, ageing, and neurodegenerative disorders. Neurodegenerative disorders can impair AHN, leading to progressive neuronal loss and cognitive decline. Compelling evidence suggests that individuals engaged in regular exercise exhibit higher production of proteins that are essential for AHN and memory. Interestingly, specific molecules that mediate the effects of exercise have shown effectiveness in promoting AHN and cognition in different transgenic animal models. Despite these advancements, the precise mechanisms by which exercise mimetics induce AHN remain partially understood. Recently, some novel exercise molecules have been tested and the underlying mechanisms have been proposed, involving intercommunications between multiple organs such as muscle-brain crosstalk, liver-brain crosstalk, and gut-brain crosstalk. In this review, we will discuss the current evidence regarding the effects and potential mechanisms of exercise mimetics on AHN and cognition in various neurological disorders. Opportunities, challenges, and future directions in this research field are also discussed.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, China.
| |
Collapse
|
33
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatiotemporal transcriptomic profiling and modeling of mouse brain at single-cell resolution reveals cell proximity effects of aging and rejuvenation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603809. [PMID: 39071282 PMCID: PMC11275735 DOI: 10.1101/2024.07.16.603809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain aging is complex and accompanied by many cellular changes2-20. However, the influence that aged cells have on neighboring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in aging tissues have not yet been developed. Here, we generate spatiotemporal data at single-cell resolution for the mouse brain across lifespan, and we develop the first machine learning models based on spatial transcriptomics ('spatial aging clocks') to reveal cell proximity effects during brain aging and rejuvenation. We collect a single-cell spatial transcriptomics brain atlas of 4.2 million cells from 20 distinct ages and across two rejuvenating interventions-exercise and partial reprogramming. We identify spatial and cell type-specific transcriptomic fingerprints of aging, rejuvenation, and disease, including for rare cell types. Using spatial aging clocks and deep learning models, we find that T cells, which infiltrate the brain with age, have a striking pro-aging proximity effect on neighboring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating effect on neighboring cells. By developing computational tools to identify mediators of these proximity effects, we find that pro-aging T cells trigger a local inflammatory response likely via interferon-γ whereas pro-rejuvenating neural stem cells impact the metabolism of neighboring cells possibly via growth factors (e.g. vascular endothelial growth factor) and extracellular vesicles, and we experimentally validate some of these predictions. These results suggest that rare cells can have a drastic influence on their neighbors and could be targeted to counter tissue aging. We anticipate that these spatial aging clocks will not only allow scalable assessment of the efficacy of interventions for aging and disease but also represent a new tool for studying cell-cell interactions in many spatial contexts.
Collapse
Affiliation(s)
- Eric D. Sun
- Department of Biomedical Data Science, Stanford University, CA, USA
- Department of Genetics, Stanford University, CA, USA
| | - Olivia Y. Zhou
- Department of Genetics, Stanford University, CA, USA
- Stanford Biophysics Program, Stanford University, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, CA, USA
| | | | | | - Lucy Xu
- Department of Genetics, Stanford University, CA, USA
- Department of Biology, Stanford University, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A. Rando
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| | - Anne Brunet
- Department of Genetics, Stanford University, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| |
Collapse
|
34
|
Zhao T, Hong Y, Yan B, Huang S, Ming GL, Song H. Epigenetic maintenance of adult neural stem cell quiescence in the mouse hippocampus via Setd1a. Nat Commun 2024; 15:5674. [PMID: 38971831 PMCID: PMC11227589 DOI: 10.1038/s41467-024-50010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
Quiescence, a hallmark of adult neural stem cells (NSCs), is required for maintaining the NSC pool to support life-long continuous neurogenesis in the adult dentate gyrus (DG). Whether long-lasting epigenetic modifications maintain NSC quiescence over the long term in the adult DG is not well-understood. Here we show that mice with haploinsufficiency of Setd1a, a schizophrenia risk gene encoding a histone H3K4 methyltransferase, develop an enlarged DG with more dentate granule cells after young adulthood. Deletion of Setd1a specifically in quiescent NSCs in the adult DG promotes their activation and neurogenesis, which is countered by inhibition of the histone demethylase LSD1. Mechanistically, RNA-sequencing and CUT & RUN analyses of cultured quiescent adult NSCs reveal Setd1a deletion-induced transcriptional changes and many Setd1a targets, among which down-regulation of Bhlhe40 promotes quiescent NSC activation in the adult DG in vivo. Together, our study reveals a Setd1a-dependent epigenetic mechanism that sustains NSC quiescence in the adult DG.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA
| | - Yan Hong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA
| | - Bowen Yan
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
35
|
Charou D, Rogdakis T, Latorrata A, Valcarcel M, Papadogiannis V, Athanasiou C, Tsengenes A, Papadopoulou MA, Lypitkas D, Lavigne MD, Katsila T, Wade RC, Cader MZ, Calogeropoulou T, Gravanis A, Charalampopoulos I. Comprehensive characterization of the neurogenic and neuroprotective action of a novel TrkB agonist using mouse and human stem cell models of Alzheimer's disease. Stem Cell Res Ther 2024; 15:200. [PMID: 38971770 PMCID: PMC11227723 DOI: 10.1186/s13287-024-03818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Neural stem cell (NSC) proliferation and differentiation in the mammalian brain decreases to minimal levels postnatally. Nevertheless, neurogenic niches persist in the adult cortex and hippocampus in rodents, primates and humans, with adult NSC differentiation sharing key regulatory mechanisms with development. Adult neurogenesis impairments have been linked to Alzheimer's disease (AD) pathology. Addressing these impairments by using neurotrophic factors is a promising new avenue for therapeutic intervention based on neurogenesis. However, this possibility has been hindered by technical difficulties of using in-vivo models to conduct screens, including working with scarce NSCs in the adult brain and differences between human and mouse models or ethical limitations. METHODS Here, we use a combination of mouse and human stem cell models for comprehensive in-vitro characterization of a novel neurogenic compound, focusing on the brain-derived neurotrophic factor (BDNF) pathway. The ability of ENT-A011, a steroidal dehydroepiandrosterone derivative, to activate the tyrosine receptor kinase B (TrkB) receptor was tested through western blotting in NIH-3T3 cells and its neurogenic and neuroprotective action were assessed through proliferation, cell death and Amyloid-β (Aβ) toxicity assays in mouse primary adult hippocampal NSCs, mouse embryonic cortical NSCs and neural progenitor cells (NPCs) differentiated from three human induced pluripotent stem cell lines from healthy and AD donors. RNA-seq profiling was used to assess if the compound acts through the same gene network as BDNF in human NPCs. RESULTS ENT-A011 was able to increase proliferation of mouse primary adult hippocampal NSCs and embryonic cortical NSCs, in the absence of EGF/FGF, while reducing Aβ-induced cell death, acting selectively through TrkB activation. The compound was able to increase astrocytic gene markers involved in NSC maintenance, protect hippocampal neurons from Αβ toxicity and prevent synapse loss after Aβ treatment. ENT-A011 successfully induces proliferation and prevents cell death after Aβ toxicity in human NPCs, acting through a core gene network shared with BDNF as shown through RNA-seq. CONCLUSIONS Our work characterizes a novel BDNF mimetic with preferable pharmacological properties and neurogenic and neuroprotective actions in Alzheimer's disease via stem cell-based screening, demonstrating the promise of stem cell systems for short-listing competitive candidates for further testing.
Collapse
Affiliation(s)
- Despoina Charou
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Thanasis Rogdakis
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Alessia Latorrata
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Maria Valcarcel
- Innovative Technologies in Biological Systems SL (INNOPROT), 48160, Derio, Bizkaia, Spain
| | - Vasileios Papadogiannis
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology Biotechnology and Aquaculture (IMBBC), Heraklion, Crete, Greece
| | - Christina Athanasiou
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120, Heidelberg, Germany
| | - Alexandros Tsengenes
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120, Heidelberg, Germany
| | - Maria Anna Papadopoulou
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Dimitrios Lypitkas
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Matthieu D Lavigne
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120, Heidelberg, Germany
| | - M Zameel Cader
- Translational Molecular Neuroscience Group, Dorothy Crowfoot Hodgkin Building, Kavli Institute for Nanoscience, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece.
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece.
| |
Collapse
|
36
|
Kalisch R, Russo SJ, Müller MB. Neurobiology and systems biology of stress resilience. Physiol Rev 2024; 104:1205-1263. [PMID: 38483288 PMCID: PMC11381009 DOI: 10.1152/physrev.00042.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.
Collapse
Affiliation(s)
- Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
37
|
Zhang L, Zetter MA, Hernández VS, Hernández-Pérez OR, Jáuregui-Huerta F, Krabichler Q, Grinevich V. Morphological Signatures of Neurogenesis and Neuronal Migration in Hypothalamic Vasopressinergic Magnocellular Nuclei of the Adult Rat. Int J Mol Sci 2024; 25:6988. [PMID: 39000096 PMCID: PMC11241681 DOI: 10.3390/ijms25136988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
The arginine vasopressin (AVP)-magnocellular neurosecretory system (AVPMNS) in the hypothalamus plays a critical role in homeostatic regulation as well as in allostatic motivational behaviors. However, it remains unclear whether adult neurogenesis exists in the AVPMNS. By using immunoreaction against AVP, neurophysin II, glial fibrillar acidic protein (GFAP), cell division marker (Ki67), migrating neuroblast markers (doublecortin, DCX), microglial marker (Ionized calcium binding adaptor molecule 1, Iba1), and 5'-bromo-2'-deoxyuridine (BrdU), we report morphological evidence that low-rate neurogenesis and migration occur in adult AVPMNS in the rat hypothalamus. Tangential AVP/GFAP migration routes and AVP/DCX neuronal chains as well as ascending AVP axonal scaffolds were observed. Chronic water deprivation significantly increased the BrdU+ nuclei within both the supraaoptic (SON) and paraventricular (PVN) nuclei. These findings raise new questions about AVPMNS's potential hormonal role for brain physiological adaptation across the lifespan, with possible involvement in coping with homeostatic adversities.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
- Section on Molecular Neuroscience, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Mario A. Zetter
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
- Department of Medicine and Health, University of La Salle, Mexico City 14000, Mexico
| | - Vito S. Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
- Section on Molecular Neuroscience, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Oscar R. Hernández-Pérez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
| | - Fernando Jáuregui-Huerta
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
| | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69120 Mannheim, Germany; (Q.K.); (V.G.)
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69120 Mannheim, Germany; (Q.K.); (V.G.)
| |
Collapse
|
38
|
Jimenez-Cyrus D, Adusumilli VS, Stempel MH, Maday S, Ming GL, Song H, Bond AM. Molecular cascade reveals sequential milestones underlying hippocampal neural stem cell development into an adult state. Cell Rep 2024; 43:114339. [PMID: 38852158 PMCID: PMC11320877 DOI: 10.1016/j.celrep.2024.114339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
Quiescent adult neural stem cells (NSCs) in the mammalian brain arise from proliferating NSCs during development. Beyond acquisition of quiescence, an adult NSC hallmark, little is known about the process, milestones, and mechanisms underlying the transition of developmental NSCs to an adult NSC state. Here, we performed targeted single-cell RNA-seq analysis to reveal the molecular cascade underlying NSC development in the early postnatal mouse dentate gyrus. We identified two sequential steps, first a transition to quiescence followed by further maturation, each of which involved distinct changes in metabolic gene expression. Direct metabolic analysis uncovered distinct milestones, including an autophagy burst before NSC quiescence acquisition and cellular reactive oxygen species level elevation along NSC maturation. Functionally, autophagy is important for the NSC transition to quiescence during early postnatal development. Together, our study reveals a multi-step process with defined milestones underlying establishment of the adult NSC pool in the mammalian brain.
Collapse
Affiliation(s)
- Dennisse Jimenez-Cyrus
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vijay S Adusumilli
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Max H Stempel
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra Maday
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Allison M Bond
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
39
|
Bielefeld P, Martirosyan A, Martín-Suárez S, Apresyan A, Meerhoff GF, Pestana F, Poovathingal S, Reijner N, Koning W, Clement RA, Van der Veen I, Toledo EM, Polzer O, Durá I, Hovhannisyan S, Nilges BS, Bogdoll A, Kashikar ND, Lucassen PJ, Belgard TG, Encinas JM, Holt MG, Fitzsimons CP. Traumatic brain injury promotes neurogenesis at the cost of astrogliogenesis in the adult hippocampus of male mice. Nat Commun 2024; 15:5222. [PMID: 38890340 PMCID: PMC11189490 DOI: 10.1038/s41467-024-49299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Traumatic brain injury (TBI) can result in long-lasting changes in hippocampal function. The changes induced by TBI on the hippocampus contribute to cognitive deficits. The adult hippocampus harbors neural stem cells (NSCs) that generate neurons (neurogenesis), and astrocytes (astrogliogenesis). While deregulation of hippocampal NSCs and neurogenesis have been observed after TBI, it is not known how TBI may affect hippocampal astrogliogenesis. Using a controlled cortical impact model of TBI in male mice, single cell RNA sequencing and spatial transcriptomics, we assessed how TBI affected hippocampal NSCs and the neuronal and astroglial lineages derived from them. We observe an increase in NSC-derived neuronal cells and a concomitant decrease in NSC-derived astrocytic cells, together with changes in gene expression and cell dysplasia within the dentate gyrus. Here, we show that TBI modifies NSC fate to promote neurogenesis at the cost of astrogliogenesis and identify specific cell populations as possible targets to counteract TBI-induced cellular changes in the adult hippocampus.
Collapse
Affiliation(s)
- P Bielefeld
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - A Martirosyan
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - S Martín-Suárez
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
| | - A Apresyan
- Armenian Bioinformatics Institute, Yerevan, Armenia
| | - G F Meerhoff
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - F Pestana
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - S Poovathingal
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - N Reijner
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - W Koning
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - R A Clement
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - I Van der Veen
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - E M Toledo
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - O Polzer
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - I Durá
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
| | - S Hovhannisyan
- Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
| | - B S Nilges
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
- OMAPiX GmbH, Langenfeld (Rheinland), Langenfeld, Germany
| | - A Bogdoll
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
| | - N D Kashikar
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
- OMAPiX GmbH, Langenfeld (Rheinland), Langenfeld, Germany
| | - P J Lucassen
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | | | - J M Encinas
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
- IKERBASQUE, The Basque Foundation for Science, Plaza Euskadi 5, Bilbao, Spain
| | - M G Holt
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- KU Leuven-Department of Neurosciences, Leuven, Belgium.
- Instituto de Investigaçāo e Inovaçāo em Saúde (i3S), University of Porto, Porto, Portugal.
| | - C P Fitzsimons
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Haniff ZR, Bocharova M, Mantingh T, Rucker JJ, Velayudhan L, Taylor DM, Young AH, Aarsland D, Vernon AC, Thuret S. Psilocybin for dementia prevention? The potential role of psilocybin to alter mechanisms associated with major depression and neurodegenerative diseases. Pharmacol Ther 2024; 258:108641. [PMID: 38583670 DOI: 10.1016/j.pharmthera.2024.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Major depression is an established risk factor for subsequent dementia, and depression in late life may also represent a prodromal state of dementia. Considering current challenges in the clinical development of disease modifying therapies for dementia, the focus of research is shifting towards prevention and modification of risk factors to alter the neurodegenerative disease trajectory. Understanding mechanistic commonalities underlying affective symptoms and cognitive decline may reveal biomarkers to aid early identification of those at risk of progressing to dementia during the preclinical phase of disease, thus allowing for timely intervention. Adult hippocampal neurogenesis (AHN) is a phenomenon that describes the birth of new neurons in the dentate gyrus throughout life and it is associated with spatial learning, memory and mood regulation. Microglia are innate immune system macrophages in the central nervous system that carefully regulate AHN via multiple mechanisms. Disruption in AHN is associated with both dementia and major depression and microgliosis is a hallmark of several neurodegenerative diseases. Emerging evidence suggests that psychedelics promote neuroplasticity, including neurogenesis, and may also be immunomodulatory. In this context, psilocybin, a serotonergic agonist with rapid-acting antidepressant properties has the potential to ameliorate intersecting pathophysiological processes relevant for both major depression and neurodegenerative diseases. In this narrative review, we focus on the evidence base for the effects of psilocybin on adult hippocampal neurogenesis and microglial form and function; which may suggest that psilocybin has the potential to modulate multiple mechanisms of action, and may have implications in altering the progression from major depression to dementia in those at risk.
Collapse
Affiliation(s)
- Zarah R Haniff
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Mariia Bocharova
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Tim Mantingh
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - James J Rucker
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Latha Velayudhan
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - David M Taylor
- South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, United Kingdom
| | - Dag Aarsland
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Wolfson Centre for Age Related Diseases, Division of Neuroscience of the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Stavanger University Hospital, Stavanger, Norway
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom.
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
41
|
Ding Y, Peng YY, Li S, Tang C, Gao J, Wang HY, Long ZY, Lu XM, Wang YT. Single-Cell Sequencing Technology and Its Application in the Study of Central Nervous System Diseases. Cell Biochem Biophys 2024; 82:329-342. [PMID: 38133792 DOI: 10.1007/s12013-023-01207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The mammalian central nervous system consists of a large number of cells, which contain not only different types of neurons, but also a large number of glial cells, such as astrocytes, oligodendrocytes, and microglia. These cells are capable of performing highly refined electrophysiological activities and providing the brain with functions such as nutritional support, information transmission and pathogen defense. The diversity of cell types and individual differences between cells have brought inspiration to the study of the mechanism of central nervous system diseases. In order to explore the role of different cells, a new technology, single-cell sequencing technology has emerged to perform specific analysis of high-throughput cell populations, and has been continuously developed. Single-cell sequencing technology can accurately analyze single-cell expression in mixed-cell populations and collect cells from different spatial locations, time stages and types. By using single-cell sequencing technology to compare gene expression profiles of normal and diseased cells, it is possible to discover cell subsets associated with specific diseases and their associated genes. Therefore, scientists can understand the development process, related functions and disease state of the nervous system from an unprecedented depth. In conclusion, single-cell sequencing technology provides a powerful technology for the discovery of novel therapeutic targets for central nervous system diseases.
Collapse
Affiliation(s)
- Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yu-Yuan Peng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jie Gao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
42
|
Lazarov O, Disouky A, Sanborn M, Mostafa M, Sabitha K, Schantz A, Kim N, Pawlowski S, Honer W, Bennett D, Zhou Y, Keene C, Maienschein-Cline M, Rehman J. A roadmap to human hippocampal neurogenesis in adulthood, aging and AD. RESEARCH SQUARE 2024:rs.3.rs-4469965. [PMID: 38854131 PMCID: PMC11160907 DOI: 10.21203/rs.3.rs-4469965/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In the rodent, hippocampal neurogenesis plays critical roles in learning and memory1,2, is tightly regulated by inhibitory neurons3-7 and contributes to memory dysfunction in Alzheimer's disease (AD) mouse models8-10. In contrast, the mechanisms regulating neurogenesis in the adult human hippocampus, the dynamic shifts in the transcriptomic and epigenomic profiles in aging and AD and putative niche interactions within the cellular environment, remain largely unknown. Using single nuclei multi-omics of postmortem human hippocampi we map the molecular mechanisms of hippocampal neurogenesis across aging, cognitive decline, and AD neuropathology. Transcriptomic and epigenetic profiling of neural stem cells (NSCs), neuroblasts and immature neurons suggests that the earliest shift in the characteristics of neurogenesis takes place in NSCs in aging. Cognitive impairment was associated with changes in neuroblast profile. In AD, there was a widespread cessation of the transcription machinery in immature neurons, with robust downregulation of genes regulating ribosomal and mitochondrial function. Further, there was substantial loss of parvalbumin+ inhibitory neurons in the hippocampus in aging. The number of the rest of inhibitory neurons were reduced as a function of age and diagnosis. Notably, a similar system-level effect was observed between immature and inhibitory neurons in the transition from aging to AD, manifested by common molecular pathways that were ultimately lost in AD. The numbers of neuroblasts, immature and GABAergic neurons inversely correlated with extent of neuropathology. Using CellChat and NeuronChat, we inferred the ligands and receptors by which neurogenic cells communicate with their cellular environment. Loss of synaptic adhesion molecules and neurotransmitters, either sent or received by neurogenic cells, was observed in AD. Together, this study delineates the molecular mechanisms and dynamics of human neurogenesis, functional association with inhibitory neurons and a mechanism of hippocampal hyperexcitability in AD.
Collapse
Affiliation(s)
| | | | | | | | - K Sabitha
- The University of Illinois at Chicago
| | | | | | | | | | | | - Yi Zhou
- Institute of Neuroscience, Chinese Academy of Sciences
| | | | | | | |
Collapse
|
43
|
Simard S, Matosin N, Mechawar N. Adult Hippocampal Neurogenesis in the Human Brain: Updates, Challenges, and Perspectives. Neuroscientist 2024:10738584241252581. [PMID: 38757781 DOI: 10.1177/10738584241252581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The existence of neurogenesis in the adult human hippocampus has been under considerable debate within the past three decades due to the diverging conclusions originating mostly from immunohistochemistry studies. While some of these reports conclude that hippocampal neurogenesis in humans occurs throughout physiologic aging, others indicate that this phenomenon ends by early childhood. More recently, some groups have adopted next-generation sequencing technologies to characterize with more acuity the extent of this phenomenon in humans. Here, we review the current state of research on adult hippocampal neurogenesis in the human brain with an emphasis on the challenges and limitations of using immunohistochemistry and next-generation sequencing technologies for its study.
Collapse
Affiliation(s)
- Sophie Simard
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
- Department of Psychiatry, McGill University, Montréal, Canada
| |
Collapse
|
44
|
Ramnauth AD, Tippani M, Divecha HR, Papariello AR, Miller RA, Nelson ED, Pattie EA, Kleinman JE, Maynard KR, Collado-Torres L, Hyde TM, Martinowich K, Hicks SC, Page SC. Spatiotemporal analysis of gene expression in the human dentate gyrus reveals age-associated changes in cellular maturation and neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567883. [PMID: 38045413 PMCID: PMC10690172 DOI: 10.1101/2023.11.20.567883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The dentate gyrus of the hippocampus is important for many cognitive functions, including learning, memory, and mood. Here, we investigated age-associated changes in transcriptome-wide spatial gene expression in the human dentate gyrus across the lifespan. Genes associated with neurogenesis and the extracellular matrix were enriched in infants, while gene markers of inhibitory neurons and cell proliferation showed increases and decreases in post-infancy, respectively. While we did not find evidence for neural proliferation post-infancy, we did identify molecular signatures supporting protracted maturation of granule cells. We also identified a wide-spread hippocampal aging signature and an age-associated increase in genes related to neuroinflammation. Our findings suggest major changes to the putative neurogenic niche after infancy and identify molecular foci of brain aging in glial and neuropil enriched tissue.
Collapse
|
45
|
Li X, Liu C, Li W, Dai Y, Gu C, Zhou W, Ciliberto VC, Liang J, Udhaya KS, Guan D, Hu Z, Zheng H, Chen H, Liu Z, Wan YW, Sun Z. Multi-omics delineate growth factor network underlying exercise effects in an Alzheimer's mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592289. [PMID: 38746443 PMCID: PMC11092636 DOI: 10.1101/2024.05.02.592289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Physical exercise represents a primary defense against age-related cognitive decline and neurodegenerative disorders like Alzheimer's disease (AD). To impartially investigate the underlying mechanisms, we conducted single-nucleus transcriptomic and chromatin accessibility analyses (snRNA-seq and ATAC-seq) on the hippocampus of mice carrying AD-linked NL-G-F mutations in the amyloid precursor protein gene (APPNL-G-F) following prolonged voluntary wheel-running exercise. Our study reveals that exercise mitigates amyloid-induced changes in both transcriptomic expression and chromatin accessibility through cell type-specific transcriptional regulatory networks. These networks converge on the activation of growth factor signaling pathways, particularly the epidermal growth factor receptor (EGFR) and insulin signaling, correlating with an increased proportion of immature dentate granule cells and oligodendrocytes. Notably, the beneficial effects of exercise on neurocognitive functions can be blocked by pharmacological inhibition of EGFR and the downstream phosphoinositide 3-kinases (PI3K). Furthermore, exercise leads to elevated levels of heparin-binding EGF (HB-EGF) in the blood, and intranasal administration of HB-EGF enhances memory function in sedentary APPNL-G-F mice. These findings offer a panoramic delineation of cell type-specific hippocampal transcriptional networks activated by exercise and suggest EGF-related growth factor signaling as a druggable contributor to exercise-induced memory enhancement, thereby suggesting therapeutic avenues for combatting AD-related cognitive decline.
Collapse
Affiliation(s)
- Xin Li
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chaozhong Liu
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wenbo Li
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yanwan Dai
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chaohao Gu
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wenjun Zhou
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Veronica C. Ciliberto
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jing Liang
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Kumar. S Udhaya
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Dongyin Guan
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhaoyong Hu
- Department of Medicine – Nephrology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hu Chen
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhandong Liu
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ying-Wooi Wan
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zheng Sun
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas77030, USA
| |
Collapse
|
46
|
Cao Y, Liu P, Bian H, Jin S, Liu J, Yu N, Cui H, Sun F, Qian X, Qiu W, Ma C. Reduced neurogenesis in human hippocampus with Alzheimer's disease. Brain Pathol 2024; 34:e13225. [PMID: 38012054 PMCID: PMC11007046 DOI: 10.1111/bpa.13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Adult hippocampal neurogenesis (AHN), essential for the plasticity of hippocampal structure and function, may be disrupted in Alzheimer's disease (AD). However, the relationship between the changes in AHN and AD-related pathology in humans remains uncertain. By utilizing advanced immunostaining techniques, we could identify multiple biomarkers representing different stages of AHN in postmortem human hippocampal tissue that exhibited various AD-related neuropathological changes. In this study, we observed a significant presence of neurogenic cells in the hippocampus's dentate gyrus (DG) region in 30 individuals, including 14 individuals diagnosed with AD-related neuropathological changes and the remaining 16 individuals without any neurological diseases. Further investigation revealed that patients with AD exhibited pronounced astrogliosis and reduced neurogenesis. Specifically, the number of neuroblasts, immature and early mature granule cells decreased significantly as AD advanced. Although the number of neural stem cells (NSCs) remained unchanged in AD patients compared with mentally healthy individuals, they tended to be more quiescent state regulated by Notch and bone morphogenetic protein (BMP) signaling pathways. These abnormalities were strongly associated with the neuropathological alterations in AD patients. These research findings provide potential insights into the underlying mechanisms that underpin the pathogenesis of AD.
Collapse
Affiliation(s)
- Yan Cao
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Pan Liu
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Radiation and Medical Oncology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Hongfei Bian
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Sixuan Jin
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Jiaqi Liu
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Ning Yu
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Huan Cui
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Fengrun Sun
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Xiaojing Qian
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Wenying Qiu
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Chao Ma
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|
47
|
Lazarov O, Gupta M, Kumar P, Morrissey Z, Phan T. Memory circuits in dementia: The engram, hippocampal neurogenesis and Alzheimer's disease. Prog Neurobiol 2024; 236:102601. [PMID: 38570083 PMCID: PMC11221328 DOI: 10.1016/j.pneurobio.2024.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Here, we provide an in-depth consideration of our current understanding of engrams, spanning from molecular to network levels, and hippocampal neurogenesis, in health and Alzheimer's disease (AD). This review highlights novel findings in these emerging research fields and future research directions for novel therapeutic avenues for memory failure in dementia. Engrams, memory in AD, and hippocampal neurogenesis have each been extensively studied. The integration of these topics, however, has been relatively less deliberated, and is the focus of this review. We primarily focus on the dentate gyrus (DG) of the hippocampus, which is a key area of episodic memory formation. Episodic memory is significantly impaired in AD, and is also the site of adult hippocampal neurogenesis. Advancements in technology, especially opto- and chemogenetics, have made sophisticated manipulations of engram cells possible. Furthermore, innovative methods have emerged for monitoring neurons, even specific neuronal populations, in vivo while animals engage in tasks, such as calcium imaging. In vivo calcium imaging contributes to a more comprehensive understanding of engram cells. Critically, studies of the engram in the DG using these technologies have shown the important contribution of hippocampal neurogenesis for memory in both health and AD. Together, the discussion of these topics provides a holistic perspective that motivates questions for future research.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pavan Kumar
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zachery Morrissey
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Trongha Phan
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
48
|
Kaise T, Kageyama R. Transcriptional control of neural stem cell activity. Biochem Soc Trans 2024; 52:617-626. [PMID: 38477464 DOI: 10.1042/bst20230439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
In the adult brain, neural stem cells (NSCs) are under the control of various molecular mechanisms to produce an appropriate number of neurons that are essential for specific brain functions. Usually, the majority of adult NSCs stay in a non-proliferative and undifferentiated state known as quiescence, occasionally transitioning to an active state to produce newborn neurons. This transition between the quiescent and active states is crucial for the activity of NSCs. Another significant state of adult NSCs is senescence, in which quiescent cells become more dormant and less reactive, ceasing the production of newborn neurons. Although many genes involved in the regulation of NSCs have been identified using genetic manipulation and omics analyses, the entire regulatory network is complicated and ambiguous. In this review, we focus on transcription factors, whose importance has been elucidated in NSCs by knockout or overexpression studies. We mainly discuss the transcription factors with roles in the active, quiescent, and rejuvenation states of adult NSCs.
Collapse
Affiliation(s)
- Takashi Kaise
- RIKEN Center for Brain Science, Wako 351-0198, Japan
| | | |
Collapse
|
49
|
Lin L, Li C, Zhang T, Xia C, Bai Q, Jin L, Shen Y. An in silico scheme for optimizing the enzymatic acquisition of natural biologically active peptides based on machine learning and virtual digestion. Anal Chim Acta 2024; 1298:342419. [PMID: 38462343 DOI: 10.1016/j.aca.2024.342419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/23/2023] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND As a potential natural active substance, natural biologically active peptides (NBAPs) are recently attracting increasing attention. The traditional proteolysis methods of obtaining effective NBAPs are considerably vexing, especially since multiple proteases can be used, which blocks the exploration of available NBAPs. Although the development of virtual digesting brings some degree of convenience, the activity of the obtained peptides remains unclear, which would still not allow efficient access to the NBAPs. It is necessary to develop an efficient and accurate strategy for acquiring NBAPs. RESULTS A new in silico scheme named SSA-LSTM-VD, which combines a sparrow search algorithm-long short-term memory (SSA-LSTM) deep learning and virtually digested, was presented to optimize the proteolysis acquisition of NBAPs. Therein, SSA-LSTM reached the highest Efficiency value reached 98.00 % compared to traditional machine learning algorithms, and basic LSTM algorithm. SSA-LSTM was trained to predict the activity of peptides in the proteins virtually digested results, obtain the percentage of target active peptide, and select the appropriate protease for the actual experiment. As an application, SSA-LSTM was employed to predict the percentage of neuroprotective peptides in the virtual digested result of walnut protein, and trypsin was ultimately found to possess the highest value (85.29 %). The walnut protein was digested by trypsin (WPTrH) and the peptide sequence obtained was analyzed closely matches the theoretical neuroprotective peptide. More importantly, the neuroprotective effects of WPTrH had been demonstrated in nerve damage mouse models. SIGNIFICANCE The proposed SSA-LSTM-VD in this paper makes the acquisition of NBAPs efficient and accurate. The approach combines deep learning and virtually digested skillfully. Utilizing the SSA-LSTM-VD based strategy holds promise for discovering and developing peptides with neuroprotective properties or other desired biological activities.
Collapse
Affiliation(s)
- Like Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China.
| | - Tianlong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Chaoshuang Xia
- Center for Biomedical Mass Spectrometry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, United States
| | - Qiuhong Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China.
| |
Collapse
|
50
|
Yao J, Dai S, Zhu R, Tan J, Zhao Q, Yin Y, Sun J, Du X, Ge L, Xu J, Hou C, Li N, Li J, Ji W, Zhu C, Zhang R, Li T. Deciphering molecular heterogeneity and dynamics of human hippocampal neural stem cells at different ages and injury states. eLife 2024; 12:RP89507. [PMID: 38607670 PMCID: PMC11014727 DOI: 10.7554/elife.89507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
While accumulated publications support the existence of neurogenesis in the adult human hippocampus, the homeostasis and developmental potentials of neural stem cells (NSCs) under different contexts remain unclear. Based on our generated single-nucleus atlas of the human hippocampus across neonatal, adult, aging, and injury, we dissected the molecular heterogeneity and transcriptional dynamics of human hippocampal NSCs under different contexts. We further identified new specific neurogenic lineage markers that overcome the lack of specificity found in some well-known markers. Based on developmental trajectory and molecular signatures, we found that a subset of NSCs exhibit quiescent properties after birth, and most NSCs become deep quiescence during aging. Furthermore, certain deep quiescent NSCs are reactivated following stroke injury. Together, our findings provide valuable insights into the development, aging, and reactivation of the human hippocampal NSCs, and help to explain why adult hippocampal neurogenesis is infrequently observed in humans.
Collapse
Affiliation(s)
- Junjun Yao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Shaoxing Dai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Ran Zhu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Ju Tan
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State Key Laboratory of Trauma, Burn and Combined Injury, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical UniversityChongqingChina
| | - Qiancheng Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Yu Yin
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Jiansen Sun
- Zhong-Zhi- Yi-Gu Research InstituteChongqingChina
| | - Xuewei Du
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Longjiao Ge
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Jianhua Xu
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State Key Laboratory of Trauma, Burn and Combined Injury, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical UniversityChongqingChina
| | - Chunli Hou
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State Key Laboratory of Trauma, Burn and Combined Injury, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical UniversityChongqingChina
| | - Nan Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Jun Li
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Chuhong Zhu
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State Key Laboratory of Trauma, Burn and Combined Injury, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical UniversityChongqingChina
| | - Runrui Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| |
Collapse
|