1
|
Benga L, Rehm A, Gougoula C, Westhoff P, Wachtmeister T, Benten WPM, Engelhardt E, Weber APM, Köhrer K, Sager M, Janssen S. The host genotype actively shapes its microbiome across generations in laboratory mice. MICROBIOME 2024; 12:256. [PMID: 39639355 PMCID: PMC11619136 DOI: 10.1186/s40168-024-01954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND The microbiome greatly affects health and wellbeing. Evolutionarily, it is doubtful that a host would rely on chance alone to pass on microbial colonization to its offspring. However, the literature currently offers only limited evidence regarding two alternative hypotheses: active microbial shaping by host genetic factors or transmission of a microbial maternal legacy. RESULTS To further dissect the influence of host genetics and maternal inheritance, we collected two-cell stage embryos from two representative wild types, C57BL6/J and BALB/c, and transferred a mixture of both genotype embryos into hybrid recipient mice to be inoculated by an identical microbiome at birth. CONCLUSIONS Observing the offspring for six generations unequivocally emphasizes the impact of host genetic factors over maternal legacy in constant environments, akin to murine laboratory experiments. Interestingly, maternal legacy solely controlled the microbiome in the first offspring generation. However, current evidence supporting maternal legacy has not extended beyond this initial generation, resolving the aforementioned debate. Video Abstract.
Collapse
Affiliation(s)
- Laurentiu Benga
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Anna Rehm
- Algorithmic Bioinformatics, Justus Liebig University Giessen, Giessen, Germany
| | - Christina Gougoula
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Westhoff
- Cluster of Excellence on Plant Science, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Center, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - W Peter M Benten
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eva Engelhardt
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas P M Weber
- Cluster of Excellence on Plant Science, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Center, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martin Sager
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Janssen
- Algorithmic Bioinformatics, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
2
|
Wu D, Yang S, Yuan C, Zhang K, Tan J, Guan K, Zeng H, Huang C. Targeting purine metabolism-related enzymes for therapeutic intervention: A review from molecular mechanism to therapeutic breakthrough. Int J Biol Macromol 2024; 282:136828. [PMID: 39447802 DOI: 10.1016/j.ijbiomac.2024.136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Purines are ancient metabolites with established and emerging metabolic and non-metabolic signaling attributes. The expression of purine metabolism-related genes is frequently activated in human malignancies, correlating with increased cancer aggressiveness and chemoresistance. Importantly, under certain stimulating conditions, the purine biosynthetic enzymes can assemble into a metabolon called "purinosomes" to enhance purine flux. Current evidence suggests that purine flux is regulated by a complex circuit that encompasses transcriptional, post-translational, metabolic, and association-dependent regulatory mechanisms. Furthermore, purines within the tumor microenvironment modulate cancer immunity through signaling mediated by purinergic receptors. The deregulation of purine metabolism has significant metabolic consequences, particularly hyperuricemia. Herbal-based therapeutics have emerged as valuable pharmacological interventions for the treatment of hyperuricemia by inhibiting the activity of hepatic XOD, modulating the expression of renal urate transporters, and suppressing inflammatory responses. This review summarizes recent advancements in the understanding of purine metabolism in clinically relevant malignancies and metabolic disorders. Additionally, we discuss the role of herbal interventions and the interaction between the host and gut microbiota in the regulation of purine homeostasis. This information will fuel the innovation of therapeutic strategies that target the disease-associated rewiring of purine metabolism for therapeutic applications.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shengqiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiachen Tan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
3
|
Pepke ML, Hansen SB, Limborg MT. Unraveling host regulation of gut microbiota through the epigenome-microbiome axis. Trends Microbiol 2024; 32:1229-1240. [PMID: 38839511 DOI: 10.1016/j.tim.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
Recent studies of dynamic interactions between epigenetic modifications of a host organism and the composition or activity of its associated gut microbiota suggest an opportunity for the host to shape its microbiome through epigenetic alterations that lead to changes in gene expression and noncoding RNA activity. We use insights from microbiota-induced epigenetic changes to review the potential of the host to epigenetically regulate its gut microbiome, from which a bidirectional 'epigenome-microbiome axis' emerges. This axis embeds environmentally induced variation, which may influence the adaptive evolution of host-microbe interactions. We furthermore present our perspective on how the epigenome-microbiome axis can be understood and investigated within a holo-omic framework with potential applications in the applied health and food sciences.
Collapse
Affiliation(s)
- Michael L Pepke
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen, Denmark.
| | - Søren B Hansen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen, Denmark
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen, Denmark.
| |
Collapse
|
4
|
Shen L, Zhao H, Xi Y, Wang Z, Deng K, Gou W, Zhang K, Hu W, Tang J, Xu F, Jiang Z, Fu Y, Zhu Y, Zhou D, Chen YM, Zheng JS. Mapping the gut microbial structural variations in healthy aging within the Chinese population. Cell Rep 2024; 43:114968. [PMID: 39520681 DOI: 10.1016/j.celrep.2024.114968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/14/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Mapping gut microbial structural variants (SVs) during human aging may provide fundamental knowledge and mechanistic understanding of the gut microbiome's relationship with healthy aging. We characterize gut microbial SVs from 3,230 Chinese participants, identifying key SVs associated with aging, healthy aging, and age-related chronic diseases. Our findings reveal a pattern of copy number loss in aging-related SVs, with 35 core SVs consistently detected. Additionally, eight SVs distinguish healthy from unhealthy aging, regardless of age. Notably, a 3-kbp deletion SV of Bifidobacterium pseudocatenulatum, encoding plant polysaccharide degradation, is regulated by plant-based diet and contributes to healthy aging through bile acid metabolism. Our analysis also connects SVs to age-related diseases, such as chronic kidney disease, via genes in the methionine-homocysteine pathway. This study deepens our understanding of the gut microbiome's role in aging and could inform future efforts to enhance lifespan and healthspan.
Collapse
Affiliation(s)
- Luqi Shen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Hui Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yue Xi
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhaoping Wang
- Department of Epidemiology & Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kui Deng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China
| | - Wanglong Gou
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Ke Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China
| | - Wei Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jun Tang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China
| | - Fengzhe Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Zengliang Jiang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China
| | - Yuanqing Fu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dan Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Ju-Sheng Zheng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China.
| |
Collapse
|
5
|
Lu Z, Zhang T, Zhao Y, Pang Y, Guo M, Zhu X, Li Y, Li Z. The influence of host genotype and gut microbial interactions on feed efficiency traits in pigs. Front Microbiol 2024; 15:1459773. [PMID: 39606106 PMCID: PMC11599184 DOI: 10.3389/fmicb.2024.1459773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Feed efficiency and growth performance are economically important traits in pigs. Precious studies have been revealed that both genetics and gut microbes could influence host phenotypes, however, the mechanisms by which they affect pig growth and feed efficiency remain poorly understood. In this study, 361 crossbred Duroc × (Landrace × Yorkshire) commercial pigs were genotyped using GeneSeek Porcine SNP50K BeadChip, and the microbiotas from fecal samples were acquired using microbial 16S rRNA gene sequencing technology to investigate the impact of host genetics and gut microorganisms on growth and feed efficiency. The results showed that the heritability and enterobacterial force ranged from 0.27 to 0.46 and 0 to 0.03, respectively. Genome-wide association studies (GWAS) identified seven significant SNPs to be associated with growth and feed efficiency, and several genes, including AIF1L, ASS1, and QRFP were highlighted as candidates for the analyzed traits. Additionally, microbiome-genome-wide association studies GWAS revealed potential links between CCAR2, EGR3, GSTM3, and GPR61 genes and the abundance of microorganisms, such as Trueperella, Victivallis, and Erysipelatoclostridium. In addition, six microbial genera linked to growth and feed efficiency were identified as follows Lachnospiraceae_UCG-005, Prevotellaceae_UCG-003, Prevotellaceae_NK3B31_group, Prevotella_1, Prevotella_9, and Veillonella. Our findings provide novel insights into the factors influencing host phenotypic complexity and identify potential microbial targets for enhancing pig feed efficiency through selective breeding. This could aid in the development of strategies to manipulate the gut microbiota to optimize growth rates and feed efficiency in pig breeding.
Collapse
Affiliation(s)
- Zhuoda Lu
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Tao Zhang
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Yunxiang Zhao
- Guangxi Yangxiang Co., Ltd., Guigang, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanqin Pang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Meng Guo
- Guangxi Yangxiang Co., Ltd., Guigang, China
| | - Xiaoping Zhu
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Ying Li
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Zhili Li
- School of Animal Science and Technology, Foshan University, Foshan, China
| |
Collapse
|
6
|
Zhang C, Liu H, Jiang X, Zhang Z, Hou X, Wang Y, Wang D, Li Z, Cao Y, Wu S, Huws SA, Yao J. An integrated microbiome- and metabolome-genome-wide association study reveals the role of heritable ruminal microbial carbohydrate metabolism in lactation performance in Holstein dairy cows. MICROBIOME 2024; 12:232. [PMID: 39529146 PMCID: PMC11555892 DOI: 10.1186/s40168-024-01937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Despite the growing number of studies investigating the connection between host genetics and the rumen microbiota, there remains a dearth of systematic research exploring the composition, function, and metabolic traits of highly heritable rumen microbiota influenced by host genetics. Furthermore, the impact of these highly heritable subsets on lactation performance in cows remains unknown. To address this gap, we collected and analyzed whole-genome resequencing data, rumen metagenomes, rumen metabolomes and short-chain fatty acids (SCFAs) content, and lactation performance phenotypes from a cohort of 304 dairy cows. RESULTS The results indicated that the proportions of highly heritable subsets (h2 ≥ 0.2) of the rumen microbial composition (55%), function (39% KEGG and 28% CAZy), and metabolites (18%) decreased sequentially. Moreover, the highly heritable microbes can increase energy-corrected milk (ECM) production by reducing the rumen acetate/propionate ratio, according to the structural equation model (SEM) analysis (CFI = 0.898). Furthermore, the highly heritable enzymes involved in the SCFA synthesis metabolic pathway can promote the synthesis of propionate and inhibit the acetate synthesis. Next, the same significant SNP variants were used to integrate information from genome-wide association studies (GWASs), microbiome-GWASs, metabolome-GWASs, and microbiome-wide association studies (mWASs). The identified single nucleotide polymorphisms (SNPs) of rs43470227 and rs43472732 on SLC30A9 (Zn2+ transport) (P < 0.05/nSNPs) can affect the abundance of rumen microbes such as Prevotella_sp., Prevotella_sp._E15-22, Prevotella_sp._E13-27, which have the oligosaccharide-degradation enzymes genes, including the GH10, GH13, GH43, GH95, and GH115 families. The identified SNPs of chr25:11,177 on 5s_rRNA (small ribosomal RNA) (P < 0.05/nSNPs) were linked to ECM, the abundance alteration of Pseudobutyrivibrio_sp. (a genus that was also showed to be linked to the ECM production via the mWASs analysis), GH24 (lysozyme), and 9,10,13-TriHOME (linoleic acid metabolism). Moreover, ECM, and the abundances of Pseudobutyrivibrio sp., GH24, and 9,10,13-TRIHOME were significantly greater in the GG genotype than in the AG genotype at chr25:11,177 (P < 0.05). By further the SEM analysis, GH24 was positively correlated with Pseudobutyrivibrio sp., which was positively correlated with 9,10,13-triHOME and subsequently positively correlated with ECM (CFI = 0.942). CONCLUSION Our comprehensive study revealed the distinct heritability patterns of rumen microbial composition, function, and metabolism. Additionally, we shed light on the influence of host SNP variants on the rumen microbes with carbohydrate metabolism and their subsequent effects on lactation performance. Collectively, these findings offer compelling evidence for the host-microbe interactions, wherein cows actively modulate their rumen microbiota through SNP variants to regulate their own lactation performance. Video Abstract.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Huifeng Liu
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Xingwei Jiang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Zhihong Zhang
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- JUNLEBAO-Northwest A&F University Cooperation Dairy Research Institute, Leyuan Animal Husbandry, JUNLEBAO Company, Shijiazhuang, Hebei, China
| | - Xinfeng Hou
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- JUNLEBAO-Northwest A&F University Cooperation Dairy Research Institute, Leyuan Animal Husbandry, JUNLEBAO Company, Shijiazhuang, Hebei, China
| | - Yue Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Zongjun Li
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
| | - Sharon A Huws
- Institute of Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
| |
Collapse
|
7
|
Jaroentomeechai T, Karlsson R, Goerdeler F, Teoh FKY, Grønset MN, de Wit D, Chen YH, Furukawa S, Psomiadou V, Hurtado-Guerrero R, Vidal-Calvo EE, Salanti A, Boltje TJ, van den Bos LJ, Wunder C, Johannes L, Schjoldager KT, Joshi HJ, Miller RL, Clausen H, Vakhrushev SY, Narimatsu Y. Mammalian cell-based production of glycans, glycopeptides and glycomodules. Nat Commun 2024; 15:9668. [PMID: 39516489 PMCID: PMC11549445 DOI: 10.1038/s41467-024-53738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Access to defined glycans and glycoconjugates is pivotal for discovery, dissection, and harnessing of a range of biological functions orchestrated by cellular glycosylation processes and the glycome. We previously employed genetic glycoengineering by nuclease-based gene editing to develop sustainable production of designer glycoprotein therapeutics and cell-based glycan arrays that display glycans in their natural context at the cell surface. However, access to human glycans in formats and quantities that allow structural studies of molecular interactions and use of glycans in biomedical applications currently rely on chemical and chemoenzymatic syntheses associated with considerable labor, waste, and costs. Here, we develop a sustainable and scalable method for production of glycans in glycoengineered mammalian cells by employing secreted Glycocarriers with repeat glycosylation acceptor sequence motifs for different glycans. The Glycocarrier technology provides a flexible production platform for glycans in different formats, including oligosaccharides, glycopeptides, and multimeric glycomodules, and offers wide opportunities for use in bioassays and biomedical applications.
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Felix Goerdeler
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fallen Kai Yik Teoh
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Nørregaard Grønset
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dylan de Wit
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Sanae Furukawa
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Venetia Psomiadou
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Ramon Hurtado-Guerrero
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | - Elena Ethel Vidal-Calvo
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Christian Wunder
- Institut Curie, Cellular and Chemical Biology Unit, PSL Research University, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Ludger Johannes
- Institut Curie, Cellular and Chemical Biology Unit, PSL Research University, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- GlycoDisplay ApS, Copenhagen, Denmark.
| |
Collapse
|
8
|
Solak HM, Kreisinger J, Čížková D, Sezgin E, Schmiedová L, Murtskhvaladze M, Henning Y, Çolak F, Matur F, Yanchukov A. Altitude shapes gut microbiome composition accounting for diet, thyroid hormone levels, and host genetics in a subterranean blind mole rat. Front Microbiol 2024; 15:1476845. [PMID: 39552645 PMCID: PMC11565052 DOI: 10.3389/fmicb.2024.1476845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
The animal gut microbiome acts as a crucial link between the host and its environment, playing a vital role in digestion, metabolism, physiology, and fitness. Using 16S rRNA metabarcoding, we investigated the effect of altitude on the microbiome composition of Anatolian Blind Mole Rats (Nannospalax xanthodon) across six locations and three altitudinal groups. We also factored in the host diet, as well as host microsatellite genotypes and thyroid hormone levels. The altitude had a major effect on microbiome composition, with notable differences in the relative abundance of several bacterial taxa across elevations. Contrary to prior research, we found no significant difference in strictly anaerobic bacteria abundance among altitudinal groups, though facultatively anaerobic bacteria were more prevalent at higher altitudes. Microbiome alpha diversity peaked at mid-altitude, comprising elements from both low and high elevations. The beta diversity showed significant association with the altitude. Altitude had a significant effect on the diet composition but not on its alpha diversity. No distinct altitude-related genetic structure was evident among the host populations, and no correlation was revealed between the host genetic relatedness and microbiome composition nor between the host microbiome and the diet. Free thyroxine (FT4) levels increased almost linearly with the altitude but none of the bacterial ASVs were found to be specifically associated with hormone levels. Total thyroxine (TT4) levels correlated positively with microbiome diversity. Although we detected correlation between certain components of the thyroid hormone levels and the microbiome beta diversity, the pattern of their relationship remains inconclusive.
Collapse
Affiliation(s)
- Halil Mert Solak
- Department of Biology, Faculty of Science, Bülent Ecevit University, Zonguldak, Türkiye
- Department of Zoology, Charles University, Prague, Czechia
| | | | - Dagmar Čížková
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Efe Sezgin
- Department of Food Engineering, Izmir Institute of Technology, Izmir, Türkiye
| | - Lucie Schmiedová
- Department of Zoology, Charles University, Prague, Czechia
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czechia
| | | | - Yoshiyuki Henning
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Faruk Çolak
- Department of Biology, Faculty of Science, Bülent Ecevit University, Zonguldak, Türkiye
| | - Ferhat Matur
- Department of Biology, Dokuz Eylül University, İzmir, Türkiye
| | - Alexey Yanchukov
- Department of Biology, Faculty of Science, Bülent Ecevit University, Zonguldak, Türkiye
| |
Collapse
|
9
|
Zhang Q, Schwarz D, Cheng Y, Sohrabi Y. Unraveling host genetics and microbiome genome crosstalk: a novel therapeutic approach. Trends Mol Med 2024; 30:1007-1009. [PMID: 38937208 DOI: 10.1016/j.molmed.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
The ability of the gut microbiome to adapt to a new environment and utilize a new metabolite or dietary compound by inducing structural variations (SVs) in the genome has an important role in human health. Here, we discuss recent data on host genetic regulation of SV induction and its use as a new therapeutic approach.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Cardiology I - Coronary and Peripheral Vascular Disease, University Hospital Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Dennis Schwarz
- Department of Cardiology I - Coronary and Peripheral Vascular Disease, University Hospital Münster, Westfälische Wilhelms-Universität, Münster, Germany; Institute of Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation (ZMBE), University Hospital Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Yumei Cheng
- Department of Critical Care Medicine, the Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Yahya Sohrabi
- Department of Cardiology I - Coronary and Peripheral Vascular Disease, University Hospital Münster, Westfälische Wilhelms-Universität, Münster, Germany; Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia.
| |
Collapse
|
10
|
Joos R, Boucher K, Lavelle A, Arumugam M, Blaser MJ, Claesson MJ, Clarke G, Cotter PD, De Sordi L, Dominguez-Bello MG, Dutilh BE, Ehrlich SD, Ghosh TS, Hill C, Junot C, Lahti L, Lawley TD, Licht TR, Maguin E, Makhalanyane TP, Marchesi JR, Matthijnssens J, Raes J, Ravel J, Salonen A, Scanlan PD, Shkoporov A, Stanton C, Thiele I, Tolstoy I, Walter J, Yang B, Yutin N, Zhernakova A, Zwart H, Doré J, Ross RP. Examining the healthy human microbiome concept. Nat Rev Microbiol 2024:10.1038/s41579-024-01107-0. [PMID: 39443812 DOI: 10.1038/s41579-024-01107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/25/2024]
Abstract
Human microbiomes are essential to health throughout the lifespan and are increasingly recognized and studied for their roles in metabolic, immunological and neurological processes. Although the full complexity of these microbial communities is not fully understood, their clinical and industrial exploitation is well advanced and expanding, needing greater oversight guided by a consensus from the research community. One of the most controversial issues in microbiome research is the definition of a 'healthy' human microbiome. This concept is complicated by the microbial variability over different spatial and temporal scales along with the challenge of applying a unified definition to the spectrum of healthy microbiome configurations. In this Perspective, we examine the progress made and the key gaps that remain to be addressed to fully harness the benefits of the human microbiome. We propose a road map to expand our knowledge of the microbiome-health relationship, incorporating epidemiological approaches informed by the unique ecological characteristics of these communities.
Collapse
Affiliation(s)
- Raphaela Joos
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Katy Boucher
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Marcus J Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre and VistaMilk SFI Research Centre, Moorepark, Fermoy, Moorepark, Ireland
| | - Luisa De Sordi
- Centre de Recherche Saint Antoine, Sorbonne Université, INSERM, Paris, France
| | | | - Bas E Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Stanislav D Ehrlich
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Tarini Shankar Ghosh
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), New Delhi, India
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Christophe Junot
- Département Médicaments et Technologies pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, Gif-sur-Yvette, France
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - Thulani P Makhalanyane
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Jeroen Raes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Center for Microbiology, Leuven, Belgium
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pauline D Scanlan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Andrey Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre and VistaMilk SFI Research Centre, Moorepark, Fermoy, Moorepark, Ireland
| | - Ines Thiele
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Medicine, University of Ireland, Galway, Ireland
| | - Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Natalia Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hub Zwart
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
11
|
Yuan Y, Fu X, Deng Y, Sun Y. Exploring the role of genetics, gut microbiota and blood metabolites in IBD. Gut 2024:gutjnl-2024-333611. [PMID: 39366724 DOI: 10.1136/gutjnl-2024-333611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Affiliation(s)
- Yiwen Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Xi Fu
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People's Republic of China
| | - Yiqun Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Yu Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
12
|
Vich Vila A, Zhang J, Liu M, Faber KN, Weersma RK. Untargeted faecal metabolomics for the discovery of biomarkers and treatment targets for inflammatory bowel diseases. Gut 2024; 73:1909-1920. [PMID: 39002973 PMCID: PMC11503092 DOI: 10.1136/gutjnl-2023-329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024]
Abstract
The gut microbiome has been recognised as a key component in the pathogenesis of inflammatory bowel diseases (IBD), and the wide range of metabolites produced by gut bacteria are an important mechanism by which the human microbiome interacts with host immunity or host metabolism. High-throughput metabolomic profiling and novel computational approaches now allow for comprehensive assessment of thousands of metabolites in diverse biomaterials, including faecal samples. Several groups of metabolites, including short-chain fatty acids, tryptophan metabolites and bile acids, have been associated with IBD. In this Recent Advances article, we describe the contribution of metabolomics research to the field of IBD, with a focus on faecal metabolomics. We discuss the latest findings on the significance of these metabolites for IBD prognosis and therapeutic interventions and offer insights into the future directions of metabolomics research.
Collapse
Affiliation(s)
- Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jingwan Zhang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong (SAR), People's Republic of China
- Microbiota I-Center (MagIC), Hong Kong (SAR), People's Republic of China
| | - Moting Liu
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Plomp N, Harmsen HJM. Description of Faecalibacterium wellingii sp. nov. and two Faecalibacterium taiwanense strains, aiding to the reclassification of Faecalibacterium species. Anaerobe 2024; 89:102881. [PMID: 38925221 DOI: 10.1016/j.anaerobe.2024.102881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES The genus Faecalibacterium is one of the most important butyrate producers in the human intestinal tract and has been widely linked to health. Recently, several different species have been described, but still more phylogroups have been identified, suggesting that additional species may exist. Four strains HTF-FT, HTF-128, HTF-75H and HTF-76H, representing two different phylogenetic clusters, are evaluated in this study. METHODS Phylogenomic analysis was performed using whole-genome sequences and 16S rRNA gene sequences. Chemotaxonomic analysis was done based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Physiological and phenotypical characteristics of these strains were also determined. All characteristics of these strains were compared with other validly published species within the genus Faecalibacterium. RESULTS On a genomic level, the strains HTF-FT and HTF-128 shared an average nucleotide identity (ANI) of <95.0 % and digital DNA-DNA hybridization (dDDH) of <70.0 with other Faecalibacterium species, while between HTF-FT and HTF-128 the ANI-value was 97.18 % and the dDDH was 76.8 %. HTF-75H and HTF-76H had an ANI and dDDH value of 100 % (99.96 %) and 100 % (99.99 %) respectively. Both HTF-75H and HTF-76H were closely related to Faecalibacterium taiwanense HLW78T. 16S rRNA gene and chemotaxonomic analysis were in accordance with the genomic data, confirming that HTF-FT and HTF-128 represent a novel Faecalibacterium species and HTF-75H and HTF-76H belong to F. taiwanense. CONCLUSIONS Faecalibacterium strains HTF-FT (=DSM 117771T = NCIMB 15531T) and HTF-128 represent a novel species. The name Faecalibacterium wellingii with HTF-FT as type strain is proposed. Two novel isolates HTF-75H (=DSM 17770 = NCIMB 15530) and HTF-76H are described in this study and belong to the recently described Faecalibacterium taiwanense.
Collapse
Affiliation(s)
- Niels Plomp
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| | - Hermie J M Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| |
Collapse
|
14
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
15
|
Liu Y, Wang Y, Wei F, Chai L, Wang H. Gut microbiota-bile acid crosstalk contributes to intestinal damage after nitrate exposure in Bufo gargarizans tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173795. [PMID: 38851338 DOI: 10.1016/j.scitotenv.2024.173795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Bile acids (BAs) are amphipathic steroid acids whose production and diversity depend on both host and microbial metabolism. Nitrate (NO3-) is a widespread pollutant in aquatic ecosystems, which can cause rapid changes in microbial community structure and function. However, the effect of gut microbiota reshaped by nitrate‑nitrogen (NO3-N) on BAs profiles remains unclarified. To test this, intestinal targeted BAs metabolomics and fecal metagenomic sequencing were performed on Bufo gargarizans tadpoles treated with different concentrations of NO3-N. NO3-N exposure induced a reduction in the abundance of microbiota with bile acid-inducible enzymes (BAIs) and/or hydroxysteroid dehydrogenases (HSDHs), thus inhibiting the conversion of primary BAs to secondary BAs. Inhibition of BAs biotransformation decreased protective hydrophilic BAs (UDCA) and increased toxic hydrophobic BAs (CA and CDCA), which may contribute to intestinal histopathological damage. Moreover, we found that NO3-N treatment increased microbial virulence factors and decreased Glycoside hydrolases, further highlighting the deleterious risk of NO3-N. Overall, this study shed light on the complex interactions of NO3-N, gut microbiota, and BAs, and emphasized the hazardous effects of NO3-N pollution on the health of amphibians.
Collapse
Affiliation(s)
- Ying Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yaxi Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fei Wei
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
16
|
Burgess S, Woolf B, Mason AM, Ala-Korpela M, Gill D. Addressing the credibility crisis in Mendelian randomization. BMC Med 2024; 22:374. [PMID: 39256834 PMCID: PMC11389083 DOI: 10.1186/s12916-024-03607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Genome-wide association studies have enabled Mendelian randomization analyses to be performed at an industrial scale. Two-sample summary data Mendelian randomization analyses can be performed using publicly available data by anyone who has access to the internet. While this has led to many insightful papers, it has also fuelled an explosion of poor-quality Mendelian randomization publications, which threatens to undermine the credibility of the whole approach. FINDINGS We detail five pitfalls in conducting a reliable Mendelian randomization investigation: (1) inappropriate research question, (2) inappropriate choice of variants as instruments, (3) insufficient interrogation of findings, (4) inappropriate interpretation of findings, and (5) lack of engagement with previous work. We have provided a brief checklist of key points to consider when performing a Mendelian randomization investigation; this does not replace previous guidance, but highlights critical analysis choices. Journal editors should be able to identify many low-quality submissions and reject papers without requiring peer review. Peer reviewers should focus initially on key indicators of validity; if a paper does not satisfy these, then the paper may be meaningless even if it is technically flawless. CONCLUSIONS Performing an informative Mendelian randomization investigation requires critical thought and collaboration between different specialties and fields of research.
Collapse
Affiliation(s)
- Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK.
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Benjamin Woolf
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
- School of Psychological Science, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unitat the , University of Bristol, Bristol, UK
| | - Amy M Mason
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Mika Ala-Korpela
- Systems Epidemiology, Faculty of Medicine, Research Unit of Population Health, University of Oulu and Biocenter Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Sequoia Genetics, London, UK
| |
Collapse
|
17
|
Gilbert SF. Inter-kingdom communication and the sympoietic way of life. Front Cell Dev Biol 2024; 12:1427798. [PMID: 39071805 PMCID: PMC11275584 DOI: 10.3389/fcell.2024.1427798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Organisms are now seen as holobionts, consortia of several species that interact metabolically such that they sustain and scaffold each other's existence and propagation. Sympoiesis, the development of the symbiotic relationships that form holobionts, is critical for our understanding the origins and maintenance of biodiversity. Rather than being the read-out of a single genome, development has been found to be sympoietic, based on multigenomic interactions between zygote-derived cells and symbiotic microbes. These symbiotic and sympoietic interactions are predicated on the ability of cells from different kingdoms of life (e.g., bacteria and animals) to communicate with one another and to have their chemical signals interpreted in a manner that facilitates development. Sympoiesis, the creation of an entity by the interactions of other entities, is commonly seen in embryogenesis (e.g., the creation of lenses and retinas through the interaction of brain and epidermal compartments). In holobiont sympoiesis, interactions between partners of different domains of life interact to form organs and biofilms, wherein each of these domains acts as the environment for the other. If evolution is forged by changes in development, and if symbionts are routinely involved in our development, then changes in sympoiesis can constitute an important factor in evolution.
Collapse
Affiliation(s)
- Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
- Evolutionary Phenomics Group, Biotechnology Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Li Q, Gu Y, Liang J, Yang Z, Qin J. A long journey to treat epilepsy with the gut microbiota. Front Cell Neurosci 2024; 18:1386205. [PMID: 38988662 PMCID: PMC11233807 DOI: 10.3389/fncel.2024.1386205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Epilepsy is a common neurological disorder that affects approximately 10.5 million children worldwide. Approximately 33% of affected patients exhibit resistance to all available antiseizure medications, but the underlying mechanisms are unknown and there is no effective treatment. Increasing evidence has shown that an abnormal gut microbiota may be associated with epilepsy. The gut microbiota can influence the function of the brain through multiple pathways, including the neuroendocrine, neuroimmune, and autonomic nervous systems. This review discusses the interactions between the central nervous system and the gastrointestinal tract (the brain-gut axis) and the role of the gut microbiota in the pathogenesis of epilepsy. However, the exact gut microbiota involved in epileptogenesis is unknown, and no consistent results have been obtained based on current research. Moreover, the target that should be further explored to identify a novel antiseizure drug is unclear. The role of the gut microbiota in epilepsy will most likely be uncovered with the development of genomics technology.
Collapse
Affiliation(s)
- Qinrui Li
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Youyu Gu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Jingjing Liang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| |
Collapse
|
19
|
Woelfel S, Silva MS, Stecher B. Intestinal colonization resistance in the context of environmental, host, and microbial determinants. Cell Host Microbe 2024; 32:820-836. [PMID: 38870899 DOI: 10.1016/j.chom.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Microbial communities that colonize the human gastrointestinal (GI) tract defend against pathogens through a mechanism known as colonization resistance (CR). Advances in technologies such as next-generation sequencing, gnotobiotic mouse models, and bacterial cultivation have enhanced our understanding of the underlying mechanisms and the intricate microbial interactions involved in CR. Rather than being attributed to specific microbial clades, CR is now understood to arise from a dynamic interplay between microbes and the host and is shaped by metabolic, immune, and environmental factors. This evolving perspective underscores the significance of contextual factors, encompassing microbiome composition and host conditions, in determining CR. This review highlights recent research that has shifted its focus toward elucidating how these factors interact to either promote or impede enteric infections. It further discusses future research directions to unravel the complex relationship between host, microbiota, and environmental determinants in safeguarding against GI infections to promote human health.
Collapse
Affiliation(s)
- Simon Woelfel
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Marta Salvado Silva
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany.
| |
Collapse
|
20
|
Wu D, Zhang K, Guan K, Khan FA, Pandupuspitasari NS, Negara W, Sun F, Huang C. Future in the past: paternal reprogramming of offspring phenotype and the epigenetic mechanisms. Arch Toxicol 2024; 98:1685-1703. [PMID: 38460001 DOI: 10.1007/s00204-024-03713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
That certain preconceptual paternal exposures reprogram the developmental phenotypic plasticity in future generation(s) has conceptualized the "paternal programming of offspring health" hypothesis. This transgenerational effect is transmitted primarily through sperm epigenetic mechanisms-DNA methylation, non-coding RNAs (ncRNAs) and associated RNA modifications, and histone modifications-and potentially through non-sperm-specific mechanisms-seminal plasma and circulating factors-that create 'imprinted' memory of ancestral information. The epigenetic landscape in sperm is highly responsive to environmental cues, due to, in part, the soma-to-germline communication mediated by epididymosomes. While human epidemiological studies and experimental animal studies have provided solid evidences in support of transgenerational epigenetic inheritance, how ancestral information is memorized as epigenetic codes for germline transmission is poorly understood. Particular elusive is what the downstream effector pathways that decode those epigenetic codes into persistent phenotypes. In this review, we discuss the paternal reprogramming of offspring phenotype and the possible underlying epigenetic mechanisms. Cracking these epigenetic mechanisms will lead to a better appreciation of "Paternal Origins of Health and Disease" and guide innovation of intervention algorithms to achieve 'healthier' outcomes in future generations. All this will revolutionize our understanding of human disease etiology.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
21
|
Chen H, Fu X, Wu X, Zhao J, Qiu F, Wang Z, Wang Z, Chen X, Xie D, Huang J, Fan J, Yang X, Song Y, Li J, He D, Xiao G, Lu A, Liang C. Gut microbial metabolite targets HDAC3-FOXK1-interferon axis in fibroblast-like synoviocytes to ameliorate rheumatoid arthritis. Bone Res 2024; 12:31. [PMID: 38782893 PMCID: PMC11116389 DOI: 10.1038/s41413-024-00336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 05/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease. Early studies hold an opinion that gut microbiota is environmentally acquired and associated with RA susceptibility. However, accumulating evidence demonstrates that genetics also shape the gut microbiota. It is known that some strains of inbred laboratory mice are highly susceptible to collagen-induced arthritis (CIA), while the others are resistant to CIA. Here, we show that transplantation of fecal microbiota of CIA-resistant C57BL/6J mice to CIA-susceptible DBA/1J mice confer CIA resistance in DBA/1J mice. C57BL/6J mice and healthy human individuals have enriched B. fragilis than DBA/1J mice and RA patients. Transplantation of B. fragilis prevents CIA in DBA/1J mice. We identify that B. fragilis mainly produces propionate and C57BL/6J mice and healthy human individuals have higher level of propionate. Fibroblast-like synoviocytes (FLSs) in RA are activated to undergo tumor-like transformation. Propionate disrupts HDAC3-FOXK1 interaction to increase acetylation of FOXK1, resulting in reduced FOXK1 stability, blocked interferon signaling and deactivation of RA-FLSs. We treat CIA mice with propionate and show that propionate attenuates CIA. Moreover, a combination of propionate with anti-TNF etanercept synergistically relieves CIA. These results suggest that B. fragilis or propionate could be an alternative or complementary approach to the current therapies.
Collapse
Affiliation(s)
- Hongzhen Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Xuekun Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Junyi Zhao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Fang Qiu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Zhenghong Wang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhuqian Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Xinxin Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Duoli Xie
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Jie Huang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Junyu Fan
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yi Song
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jie Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dongyi He
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China.
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510006, China.
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China.
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China.
| |
Collapse
|
22
|
Panarese A. Bowel function and inflammation: Is motility the other side of the coin? World J Gastroenterol 2024; 30:1963-1967. [PMID: 38681124 PMCID: PMC11045487 DOI: 10.3748/wjg.v30.i14.1963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/23/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
Digestion and intestinal absorption allow the body to sustain itself and are the emblematic functions of the bowel. On the flip side, functions also arise from its role as an interface with the environment. Indeed, the gut houses microorganisms, collectively known as the gut microbiota, which interact with the host, and is the site of complex immune activities. Its role in human pathology is complex and scientific evidence is progressively elucidating the functions of the gut, especially regarding the pathogenesis of chronic intestinal diseases and inflammatory conditions affecting various organs and systems. This editorial aims to highlight and relate the factors involved in the pathogenesis of intestinal and systemic inflammation.
Collapse
Affiliation(s)
- Alba Panarese
- Division of Gastroenterology and Digestive Endoscopy, Department of Medical Sciences, Central Hospital - Azienda Ospedaliera, Taranto 74123, Italy
| |
Collapse
|
23
|
Shearer J, Shah S, MacInnis MJ, Shen-Tu G, Mu C. Dose-Responsive Effects of Iron Supplementation on the Gut Microbiota in Middle-Aged Women. Nutrients 2024; 16:786. [PMID: 38542697 PMCID: PMC10975138 DOI: 10.3390/nu16060786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 11/12/2024] Open
Abstract
Oral iron supplementation is the first-line treatment for addressing iron deficiency, a concern particularly relevant to women who are susceptible to sub-optimal iron levels. Nevertheless, the impact of iron supplementation on the gut microbiota of middle-aged women remains unclear. To investigate the association between iron supplementation and the gut microbiota, healthy females aged 40-65 years (n = 56, BMI = 23 ± 2.6 kg/m2) were retrospectively analyzed from the Alberta's Tomorrow Project. Fecal samples along with various lifestyle, diet, and health questionnaires were obtained. The gut microbiota was assessed by 16S rRNA sequencing. Individuals were matched by age and BMI and classified as either taking no iron supplement, a low-dose iron supplement (6-10 mg iron/day), or high-dose iron (>100 mg/day). Compositional and functional analyses of microbiome data in relation to iron supplementation were investigated using various bioinformatics tools. Results revealed that iron supplementation had a dose-dependent effect on microbial communities. Elevated iron intake (>100 mg) was associated with an augmentation of Proteobacteria and a reduction in various taxa, including Akkermansia, Butyricicoccus, Verrucomicrobia, Ruminococcus, Alistipes, and Faecalibacterium. Metagenomic prediction further suggested the upregulation of iron acquisition and siderophore biosynthesis following high iron intake. In conclusion, adequate iron levels are essential for the overall health and wellbeing of women through their various life stages. Our findings offer insights into the complex relationships between iron supplementation and the gut microbiota in middle-aged women and underscore the significance of iron dosage in maintaining optimal gut health.
Collapse
Affiliation(s)
- Jane Shearer
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.S.); (S.S.); (M.J.M.)
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Shrushti Shah
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.S.); (S.S.); (M.J.M.)
| | - Martin J. MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.S.); (S.S.); (M.J.M.)
| | - Grace Shen-Tu
- Alberta’s Tomorrow Project, Cancer Control Alberta, Alberta Health Services, Calgary, AB T2T 5C7, Canada;
| | - Chunlong Mu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
24
|
Zhang Y, Gacesa R, Fu J. Implications of blood type in personalised microbiome therapy. Clin Transl Med 2024; 14:e1618. [PMID: 38468485 PMCID: PMC10928326 DOI: 10.1002/ctm2.1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/13/2024] Open
Affiliation(s)
- Yue Zhang
- Department of GeneticsUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Ranko Gacesa
- Department of GeneticsUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
- Department of Gastroenterology and HepatologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Jingyuan Fu
- Department of GeneticsUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
25
|
Wang Y, Choo JM, Richard AC, Papanicolas LE, Wesselingh SL, Taylor SL, Rogers GB. Intestinal persistence of Bifidobacterium infantis is determined by interaction of host genetics and antibiotic exposure. THE ISME JOURNAL 2024; 18:wrae107. [PMID: 38896583 PMCID: PMC11214156 DOI: 10.1093/ismejo/wrae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Probiotics have gained significant attention as a potential strategy to improve health by modulating host-microbe interactions, particularly in situations where the normal microbiota has been disrupted. However, evidence regarding their efficacy has been inconsistent, with considerable interindividual variability in response. We aimed to explore whether a common genetic variant that affects the production of mucosal α(1,2)-fucosylated glycans, present in around 20% of the population, could explain the observed interpersonal differences in the persistence of commonly used probiotics. Using a mouse model with varying α(1,2)-fucosylated glycans secretion (Fut2WT or Fut2KO), we examined the abundance and persistence of Bifidobacterium strains (infantis, breve, and bifidum). We observed significant differences in baseline gut microbiota characteristics between Fut2WT and Fut2KO littermates, with Fut2WT mice exhibiting enrichment of species able to utilize α(1,2)-fucosylated glycans. Following antibiotic exposure, only Fut2WT animals showed persistent engraftment of Bifidobacterium infantis, a strain able to internalize α(1,2)-fucosylated glycans, whereas B. breve and B. bifidum, which cannot internalize α(1,2)-fucosylated glycans, did not exhibit this difference. In mice with an intact commensal microbiota, the relationship between secretor status and B. infantis persistence was reversed, with Fut2KO animals showing greater persistence compared to Fut2WT. Our findings suggest that the interplay between a common genetic variation and antibiotic exposure plays a crucial role in determining the dynamics of B. infantis in the recipient gut, which could potentially contribute to the observed variation in response to this commonly used probiotic species.
Collapse
Affiliation(s)
- Yiming Wang
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5001, Australia
- Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Jocelyn M Choo
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5001, Australia
- Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Alyson C Richard
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5001, Australia
- Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Lito E Papanicolas
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5001, Australia
- Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
- SA Pathology, SA Health, Adelaide, South Australia 5001, Australia
| | - Steve L Wesselingh
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5001, Australia
| | - Steven L Taylor
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5001, Australia
- Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Geraint B Rogers
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5001, Australia
- Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
26
|
Ghani R, Chrysostomou D, Roberts LA, Pandiaraja M, Marchesi JR, Mullish BH. Faecal (or intestinal) microbiota transplant: a tool for repairing the gut microbiome. Gut Microbes 2024; 16:2423026. [PMID: 39499189 PMCID: PMC11540080 DOI: 10.1080/19490976.2024.2423026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/07/2024] Open
Abstract
Faecal/intestinal microbiota transplant (FMT/IMT) is an efficacious treatment option for recurrent Clostridioides difficile infection, which has prompted substantial interest in FMT's potential role in the management of a much broader range of diseases associated with the gut microbiome. Despite its promise, the success rates of FMT in these other settings have been variable. This review critically evaluates the current evidence on the impact of clinical, biological, and procedural factors upon the therapeutic efficacy of FMT, and identifies areas that remain nebulous. Due to some of these factors, the optimal therapeutic approach remains unclear; for example, the preferred timing of FMT administration in a heavily antibiotic-exposed hematopoietic cell transplant recipient is not standardized, with arguments that can be made in alternate directions. We explore how these factors may impact upon more informed selection of donors, potential matching of donors to recipients, and aspects of clinical care of FMT recipients. This includes consideration of how gut microbiome composition and functionality may strategically inform donor selection criteria. Furthermore, we review how the most productive advances within the FMT space are those where clinical and translational outcomes are assessed together, and where this model has been used productively in recent years to better understand the contribution of the gut microbiome to human disease, and start the process toward development of more targeted microbiome therapeutics.
Collapse
Affiliation(s)
- Rohma Ghani
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Infectious Diseases, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Despoina Chrysostomou
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Lauren A Roberts
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Madhumitha Pandiaraja
- Department of Gastroenterology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
27
|
van der Vossen EWJ, Davids M, Voermans B, Wortelboer K, Hartstra AV, Koopen AM, de Groot P, Levin E, Nieuwdorp M. Disentangle beneficial effects of strain engraftment after fecal microbiota transplantation in subjects with MetSyn. Gut Microbes 2024; 16:2388295. [PMID: 39163526 PMCID: PMC11340759 DOI: 10.1080/19490976.2024.2388295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Fecal Microbiota Transplantation (FMT) has emerged as a potential modality for mitigating microbiome-associated diseases. Despite this potential, the precise causal pathways by which specific gut microbiota strains induce remission remain inadequately elucidated. In this study, we aimed to discern the impact of engraftment of donor-infused strains on alterations in plasma metabolites, subsequently contributing to the amelioration of clinical parameters involved in subjects with metabolic syndrome (MetSyn) receiving an FMT. We observed that a higher fraction of donor strains engrafted in the recipient is correlated to a reduction in diastolic blood pressure and found specific strain associations through canonical correlation analysis. Integrating the metabolomics profile shows that engraftment of Collinsella aerofaciens and Fusocatenibacter saccharovorans was related to a reduction in 2-oxoarginine in plasma, which was subsequently correlated to a reduction in diastolic blood pressure. In conclusion, we applied a novel framework to elucidate on the complex and heterogenous FMT intervention, establishing a connection between engrafted microbiota and clinical outcome parameters. Our findings underscore the potential therapeutic efficacy of FMT in ameliorating MetSyn, demonstrating a potential contribution of microbial strain engraftment to the improvement of MetSyn via modulation of circulating metabolites.
Collapse
Affiliation(s)
- Eduard W. J. van der Vossen
- Department of Experimental Vascular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Mark Davids
- Department of Experimental Vascular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Bas Voermans
- Department of Experimental Vascular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Horaizon BV, Delft, The Netherlands
| | - Koen Wortelboer
- Department of Experimental Vascular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Annick V. Hartstra
- Department of Experimental Vascular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Annefleur M. Koopen
- Department of Experimental Vascular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Pieter de Groot
- Department of Experimental Vascular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Evgeni Levin
- Department of Experimental Vascular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Horaizon BV, Delft, The Netherlands
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Department of Vascular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|